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15.2.1 Bézier Element Representation 483
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Preface
When the first author was approached by John Wiley & Sons, Ltd to write a new edition of the
celebrated two-volume book of Mike Crisfield, Non-linear Finite Element Analysis of Solids
and Structures, he was initially very hesitant. The task would of course constitute a formidable
amount of work. But it would also be impossible to maintain Mike’s writing style, a feature
which has so much contributed to the success of the books. On the other hand, it would be
rewarding to provide the engineering community with a book that is as accessible as possible,
that gives a broad introduction into non-linear finite element analysis, with an outlook on the
newest developments, and that maintains the engineering spirit which Mike emphasised in
his books. This is the philosophy behind this second edition. Indeed, although much has been
changed in terms of content, it has been the intention not to change the engineering orientation
with an emphasis on practical solutions.

One of the aims of the original two-volume set was to provide the user of advanced non-
linear finite element packages with sufficient background knowledge, which is a prerequisite
to judiciously handle modern finite element packages. A closely related aim is to make the user
of such packages aware of their possibilities, but also of their limitations and pitfalls. Major
developments have taken place in computational technology since Mike Crisfield wrote about
the danger of the ‘black-box syndrome’ in the Preface to Volume 1. Therefore, his warning has
gained even more strength, and provides a further justification for the publication of a second
edition.

Unlike the first edition, the second edition comes as a single volume. The reduction has
been achieved by omitting or reducing the discussion on developments now considered to
be less central in computational mechanics, by a more compact and focused treatment, and
by a removal of all Fortran code from the book. Instead, a small finite element code has
been developed, written in Python, which is available through a companion website. The
main purpose of the code is to illustrate the models presented in the book, and to show how
abstract concepts can be translated into finite element software. To this end, the theory of
the book is first transformed into algorithms, mostly listed in boxes that accompany the text.
Subsequently, using ideas of literate programming, it is explained how these algorithms have
been implemented in the PyFEM code, which contains the basic numerical tools needed to
build a finite element code. Some of the solution techniques, element formulations, and material
models treated in this book have been added. These tools are used in a series of example
programs with increasing complexity.

The book comes in five parts. Part I discusses basic knowledge in mathematics and in
continuum mechanics, as well as solution techniques for non-linear problems in static and
dynamic analysis, and provides a first introduction into geometrical non-linearity. Some notions
and concepts will be familiar, but not all, and the first chapters also serve to provide a common
basis for the subsequent parts of the book. Part II contains major chapters on damage, plasticity
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xii Preface

and time-dependent non-linearities, such as creep. It contains all the material non-linearity that
is treated in this book. Shell plasticity forms an exception, since it is treated in Part III, which
focuses on structural elements: beams, arches and shells. Starting from a basic shallow arch
formulation the discussion extends to cover modern concepts like solid-like shell theories. In
Part IV first some additional continuum mechanics is provided that is needed in the remainder
of this part, which focuses on large-strain elastic and elastoplastic finite element analysis. Part
V, finally, gives an introduction into discretisation concepts that have become popular during
the past 20 years: interface elements, discontinuous Galerkin methods, meshless methods,
partition-of-unity methods, and isogeometric analysis. Particular reference is made to their
potential to solve problems that arise in non-linear analysis, such as locking phenomena,
damage and fracture, and non-linear shell analysis.

René de Borst
Joris Remmers

Clemens Verhoosel

Glasgow and Eindhoven

A Personal Note

Like many colleagues and friends in the community I treasure wonderful memories of my
meetings and discussions with Mike. I will never forget the times that I visited him at the
Transport and Road Research Laboratory, and later, at Imperial College of Science, Technology
and Medicine. After a full day of intense discussions on cracking, strain softening, stability
and solution techniques we normally went to his home, where Kiki, his wife, joined in and
discussions broadened over a good meal.

Mike was a real scientist, and a gentleman. I hope that this Second Edition will properly
preserve his legacy, and will help to keep the engineering approach alive in computational
mechanics, to which he has so much contributed.

René
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Series Preface
The series on Computational Mechanics is a conveniently identifiable set of books covering
interrelated subjects that have been receiving much attention in recent years and need to have a
place in senior undergraduate and graduate school curricula, and in engineering practice. The
subjects will cover applications and methods categories. They will range from biomechanics
to fluid-structure interactions to multiscale mechanics and from computational geometry to
meshfree techniques to parallel and iterative computing methods. Application areas will be
across the board in a wide range of industries, including civil, mechanical, aerospace, automo-
tive, environmental and biomedical engineering. Practicing engineers, researchers and software
developers at universities, industry and government laboratories, and graduate students will
find this book series to be an indispensible source for new engineering approaches, interdisci-
plinary research, and a comprehensive learning experience in computational mechanics.

Non-linear Finite Element Analysis of Solids and Structures, Second Edition is based on the
two original volumes by the late Mike Crisfield, who was a remarkable scholar in computa-
tional mechanics. This new edition is a greatly enriched version, written by an author team led
by René de Borst, an outstanding scholar in computational mechanics, solids, and structures.
The enrichments include the major developments in computational mechanics since the orig-
inal version was written, such as new numerical discretization techniques, with emphasis on
meshless methods and isogeometric analysis. This new edition still retains the “engineering
spirit” that was emphasized by the original author, and the algorithmic explanations, which
are only part of the enrichments, make it even easier to follow and more valuable in a practical
context.

Non-linear Finite Element Analysis of Solids and Structures, Second Edition will serve as an
excellent textbook for introductory and advanced courses in non-linear finite element analysis
of solids and structures, and will also serve as a very valuable source and guide for research in
this field.
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Notation

Linear Algebra and Mathematical Operators

a · b, aibi Dot-product of the vectors a and b
a ⊗ b, aibj Tensor (or dyadic) product of the vectors a and b
a × b, eijkajbk Cross-product of the vectors a and b
�T Transpose of matrix �
�sym = (�)sym Symmetry operator
tr(�) Trace of matrix �
‖�‖2 Euclidean or L2-norm of the vector �
δij Kronecker-delta identity
< � > MacAulay brackets/ramp function
∇ · a, ∂aij

∂xj
, LTa Divergence of a (second-order) tensor a

H(�) Heaviside function
δ� Admissable variation of the quantity �

Basic Continuum Mechanics

V Arbitrary body in the current configuration
S Boundary of an arbitrary body V in the current configuration
n Normal vector (to a surface S)
x = [x, y, z]T Coordinate in the physical domain
u = [u, v, w]T Displacement field
γxy, γxz, γyz Engineering shear strains/elementary square distortions
ωxy, ωxz, ωyz Elementary square rotations
t Stress vector
ε [E] Infinitesimal strain tensor [matrix representation]
σ [�] Cauchy stress tensor [matrix representation]
e [E] Deviatoric infinitesimal strain tensor [matrix representation]
s [S] Deviatoric stress tensor [matrix representation]
I�

1 , I�
2 , I�

3 Invariants of the tensor � (Cauchy stress tensor when � is omitted)
J�

1 , J�
2 , J�

3 Invariants of the tensor � (deviatoric stress tensor when � is omitted)
p Hydrostatic pressure
εvol Volumetric infinitesimal strain
T� Transformation matrix for the tensor � in Voigt form
D Tangential stiffness tensor
�tan Quantity � related to the tangent stiffness
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xvi Notation

�s Quantity � related to the secant stiffness
δWint Internal virtual work
δWext External virtual work
g Gravity acceleration vector

Elasticity

E Young’s modulus
ν Poisson’s ratio
K Bulk modulus
λ Lamé’s first parameter
µ, G Lamé’s second parameter/shear modulus
De Elastic stiffness matrix
Ce Elastic compliance matrix

Finite Element Data Structures

�e, �elem Quantity � related to the element e

Ze Element incidence (or location) matrix
ξ = [ξ, η, ζ]T Parent element coordinates
J Jacobian matrix
wi Weight factor of parent element integration point i

h, hi Finite element shape functions
H Displacement field interpolation matrix
B Strain field interpolation matrix
a Nodal displacement vector
fint Internal force vector
fext External force vector
K Stiffness matrix
�f Quantity � related to an unconstrained degree of freedom
�p Quantity � related to a constrained/prescribed degree of freedom

Geometrically Non-linear Analysis

�0 Quantity � related to the reference configuration
F Deformation gradient
lll Velocity gradient
U, V Right/left pure deformation tensor/stretch tensor
R Rotation matrix
��� Rotation rate matrix
eee Linear strain contribution
ηηη Quadratic/non-linear strain contribution
�L Quantity � related to linear contributions
�NL Quantity � related to non-linear contributions
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Notation xvii

�cr Corotational contribution to quantity �
�̄ Quantity � related to the corotational coordinate system
C, B Right/left Cauchy–Green deformation tensor
γγγ Green–Lagrange strain tensor
p Nominal stress tensor
κκκ Kirchhoff stress tensor
τττ Second Piola–Kirchhoff stress tensor
TTT Biot stress tensor
�i Principal values of the tensor �
λ Stretch ratio�
� Objective derivative of a vector �/Green–Naghdi rate of �
�

� Truesdell rate of the tensor �◦
� Jaumann rate of the tensor �
www Spin tensor
�vol Volumetric part of quantity �
�iso, �̃ Isochoric part of quantity �
E Total deformation energy
e Strain energy density
W Strain energy function
W∗ Volumetric part of the strain energy function
fp Deviatoric part of the strain energy function
Tσ Back-transformation matrix
�JK Quantity � related to the Jaumann derivatives of the Kirchhoff

stress
�JC Quantity � related to the Jaumann derivatives of the Cauchy stress
�TK Quantity � related to the Truesdell derivatives of the Kirchhoff

stress
�TC Quantity � related to the Truesdell derivatives of the Cauchy stress

Incremental Iterative Analysis and Solution Techniques

�0, �t Quantity � at the previous converged load step
�� = �t+�t − �t Incremental value of quantity �
��i Approximate incremental value of quantity � after i iterations
d�i+1 Correction to the approximate incremental value ��i

r Residual vector
A Constrained degrees of freedom selection matrix
λ Scalar-valued load parameter
f̂ext Unit external force vector
g Constraint equation
�l Path length increment
η Iterative procedure tolerance
Nt Number of iterations required for convergence at time t

�I , �II Quantity � related to a two-stage solution procedure
λk, vk Eigenvalue/vector of the tangential stiffness matrix
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xviii Notation

Dynamics and Time-dependent Material Models

t Time
�̇ First-order temporal derivative
�̈ Second-order temporal derivative
ρ Mass density
M Mass matrix
�0 Quantity � at the initial state
�̄ Quantity � evaluated at the time interval mid-point
θ Generalised mid-point rule parameter
β, γ Newmark integration parameters
α HHT α-method integration parameter
q Pseudo-load vector
τ Relaxation time
E(t − t̃) Response function
J(t − t̃) Creep function
h Hardening/softening modulus
s Strain-rate sensitivity
ωmax Maximum natural frequency of a system
l Internal length scale

Damage and Fracture

Sd Discontinuity surface
�d , �Sd

Quantity � related to the discontinuity surface Sd

�n, �s, �t Normal and shear components of quantity �
�+, �− Quantity � related to the positive or negative side of a discontinuity
��� = �+ − �− Jump operator
v Relative displacement across a discontinuity/crack opening
DSd

Distance function related to the discontinuity surface Sd

HSd
Heaviside function related to the discontinuity surface Sd

δSd
Dirac-delta function related to the discontinuity surface Sd

�eff , �̂ Effective part of quantity �
ω , ωωω, ��� Scalar, second-order tensor, and fourth-order tensor damage

parameter
�̃ Scalar-valued function of the tensor �
�̄ Spatially averaged scalar-valued function �̃
l Failure process zone length scale
ψ(x, y) Spatial averaging weight function, �(x) = ∫

V
ψ(x, y)dV

c1, c2, c3 (Higher-order) gradient damage parameters
ft Fracture strength
Gc Fracture energy
h Softening modulus
f Loading–unloading function
κ History parameter
β Shear retention factor

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Notation xix

µ Tensile stiffness damage factor
A Acoustic tensor
�̄ + ∑

ψl(x)�̃l Partition-of-unity decomposition of the quantity �
λλλ Lagrange multiplier
�con Concrete part of the quantity �
�cr Cracking part of the quantity �
�re Quantity � related to a reinforcement
�rc Quantity � related to reinforced concrete
�ia Quantity � related to concrete-reinforcement interaction

Plasticity

�p Plastic part of quantity �
�e Elastic part of quantity �
ψ Dilatancy angle
φ Friction angle
λ Plastic multiplier
m Plastic flow direction
f Yield function
g Plastic potential function
n Yield surface normal vector
τ Shear stress
γ Shear deformation
c Adhesion coefficient
σ̄ Yield strength
h Hardening modulus
κ, κκκ Scalar hardening parameter/vector of hardening (history) parameters
�e Quantity � related to the trial (elastic) step
�c Quantity � related to the corrector step
r�, r� Residuals for local scalar- and vector-valued quantities �
A Stress residual tangent matrix
H Pseudo-elastic stiffness matrix
q Modified J2 stress invariant
P Projection matrix for the modified J2 stress
Q Projection matrix for strain hardening
πππ Projection vector for the hydrostatic pressure
ααα Back-stress tensor
�̄ Quantity � represented in the principal stress coordinate system
�m Quantity � evaluated at the time interval mid-point
α, k, β Drucker–Prager model parameters
θ Lode’s angle
M, pc Cam-clay model parameters
κ∗ Modified swelling index
λ∗ Modified compression index
φ∗ Void volume fraction
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xx Notation

Structural Members

�0 Quantity � in the undeformed state
�l Quantity � related to the centre line/mid plane
ξ, η Centre line/mid plane parametric coordinates
ζ Out-of-plane parametric coordinate
l Length of the structural member
h, t Thickness of the structural member
b Width of the structural member
A Cross-sectional area of the structural member
I Moment of inertia of the structural member
d Director
φ, ψ Rotations of the structural member
θ, θθθ, ��� Centre line/mid plane rotations
χ, χχχ Centre line/mid plane curvature
N Normal force
M Bending moment
G Shear force
a Nodal variables related to the centre line/mid plane deformation
w Nodal variables related to the out-of-plane deformation
θθθ Nodal variables related to the centre line/mid plane rotations
�a Quantity � related to the centre line/mid plane nodal variables
�w Quantity � related to the out-of-plane deformation nodal variables
�θ Quantity � related to the centre line/mid plane rotation nodal variables
�c Quantity � related to an hierarchical mid-side node
k Shear stiffness correction factor
w Solid-like shell internal stretch parameter

Isogeometric Analysis

dp Dimension of the parameter domain
ds Dimension of the physical domain
V̂ Parameter domain
ξ = [ξ, η, ζ]T Parametric coordinate
�� Knot vector corresponding to �
P = [p1, . . . , pN ]T Control net/control points
Wi Control point weights
w(ξξξ) Weight function
h, hi B-spline basis functions
r, ri NURBS basis functions
B Bernstein basis functions
CCCe Element extraction operator
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About the Code
A number of models and algorithms that are discussed in this book, have been implemented
in a small finite element code named PyFEM, which is available for a free download from
the website that accompanies this book. The code has been written in Python, an object-
oriented, interpreted, and interactive programming language. Its clear syntax allows for the
development of small, yet powerful programs. A wide range of Python packages are available,
which are dedicated towards numerical simulations. Many numerical libraries and software
tools have been equipped with a Python interface and can be integrated within a Python program
seamlessly.

In PyFEM we restrict ourselves to the use of the packages NumPy, SciPy and
Matplotlib. The NumPy package contains array objects and a collection of linear algebra
operations. The SciPy package is an extension to this package and contains additional linear
algebra tools, such as solvers and sparse arrays. The Matplotlib package allows the user
to make graphs and plots. Python and the three aforementioned packages are standard com-
ponents of most Linux distributions. The most recent versions of Python for various Windows
operating systems and Mac OS X can be downloaded from www.python.org.

The PyFEM code contains the basic numerical tools which are needed to build a finite
element code. These tools are used in a series of example programs with increasing complexity.
The examples that illustrate the numerical techniques presented in the first chapters of this book
are basically small scripts that perform a single numerical operation and do not require an input
file. These small scripts are developed further, and finally result in a general finite element
program which will be presented in Chapter 4: PyFEM.py. This program can be considered
as a stand-alone program that can carry out a variety of simulations with different element
formulations and material models. In the remaining parts of this book the implementation of
some solvers, elements and material models is discussed in more detail.

The directory structure of PyFEM is shown in Figure 1. The package contains the following
files and directories:

– PyFEM.py is the main program. Executing this program requires an input file with the
extension .pro.

– The directory doc contains installation notes and a short user manual of the code.
– The directory examples contains a number of small example programs and input files,

which are stored in subdirectories ch01, ch02 etc., which refer to the corresponding chap-
ters of this book for easy reference. Some of the programs and files in these directories are
discussed in detail.

– The actual finite element tools are stored in the directory pyfem. This directory con-
sists of six subdirectories, including elements, which contains element implementations,
solvers, which contains the solvers and materials, in which the material formula-
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xxii About the Code

ch01

ch02

ch03

ch15

pyfem-x.y

docPyFEM.py.py examples

elements

fem

io

solvers

util

materials

pyfem

Figure 1 Directory structure of the PyFEM code. The root directory is called pyfem-x.y, where
x.y indicates the version number of the code

tions are stored. A selection of files in these directories is elaborated in the book. The other
three directories, io, fem and util contain input parsers and output writers and various
finite element utility functions such as a shape function utility, which will be discussed in
Chapter 2.

PyFEM is an open source code and is intended for educational and scientific use. It does not
contain comprehensive libraries, e.g. of material models, but it has been designed so that it
is relatively easy to implement other solvers, elements, and material models, for which the
theory and the algorithmic details can be found in this book. A concise user’s guide how to
implement these can be found at the website.

Instead of giving full listings of classes and functions, we will use a notation that is inspired
by literate programming. The main idea behind literate programming is to present a code in
such a way that it can be understood by humans and by computers. An important feature of
literate programming is that parts of the source code are presented as small fragments, allowing
for a detailed discussion of the code. A short overview of the notation, including a system to
refer to other fragments, is given in Figure 2.
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About the Code xxiii

Figure 2 Example of a code fragment with the nomenclature and references to other code fragments
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Part I
Basic Concepts and
Solution Techniques

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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1
Preliminaries

This chapter is primarily intended to familiarise the reader with the notation we have adopted
throughout this book and to refresh some of the required background in mathematics, especially
linear algebra, and applied mechanics. As regards notation, we remark that most developments
have been carried out using matrix-vector notation, and tensor notation is less often needed,
either in indicial form or in direct form. For the benefit of readers who are less familiar with
tensor notation, we have added a small section on this topic. But, first, we will give an example
of non-linearity in a structural member. This example involving a simple truss element can
be solved analytically, and serves well to illustrate the various procedures that are described
in this book for capturing non-linear phenomena in solids and structures, and for accurately
solving the ensuing initial/boundary-value problems.

1.1 A Simple Example of Non-linear Behaviour

Many features of solution techniques can be demonstrated for simple truss structures, pos-
sibly in combination with springs, where the non-linear structural behaviour can stem from
geometrical as well as from material non-linearities. In this section we shall assume that the
displacements and rotations can be arbitrarily large, but that the strains remain small, say less
than 5%. This limitation will be dropped in Part IV of this book, where the extension will be
made to large elastic and inelastic strains.

We consider the shallow truss structure of Figure 1.1. From elementary equilibrium consid-
erations in the deformed configuration, the following expression for the force can be deduced
that acts in a symmetric half of the shallow truss:

Fint = −Aσ sin φ − Fs (1.1)

where σ is the axial stress in the member, Fs is half of the force in the spring, and φ is the angle
of the truss member with the horizontal plane in the deformed configuration. Owing to the
small-strain assumption, the difference between the cross section in the current configuration,
A, and that in the original configuration, A0, is negligible. For the same reason, the difference

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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4 Non-linear Finite Element Analysis of Solids and Structures

v

2F

φ

h

2k

b

l0

EA0

Figure 1.1 Plane shallow truss structure

between the length of the bar in the original configuration,

�0 =
√

b2 + h2 (1.2)

and that in the current configuration,

� =
√

b2 + (h − v)2 (1.3)

can be neglected in the denominator of the expression for the strain:

ε = � − �0

�0
(1.4)

or when computing the inclination angle φ:

sin φ = h − v

�
≈ h − v

�0
(1.5)

The dimensions b and h are defined in Figure 1.1. The vertical displacement v is taken positive
in the downward sense. For half of the force in the spring we have

Fs = −kv (1.6)

with k the spring stiffness, and the axial stress in the bar reads:

σ = Eε (1.7)

with E the Young’s modulus. Substitution of the expressions for the stress σ, the force in the
spring Fs and the angle φ into the equilibrium condition (1.1) yields:

Fint(v) = −EA0 sin φ
� − �0

�0
+ kv (1.8)

Equation (1.8) expresses the internal force that acts in the structure as a non-linear function of
the vertical displacement v. Normally, the external force at time t + �t, Ft+�t

ext , is given. The
displacement v must then be computed such that

Ft+�t
ext − Ft+�t

int = 0 (1.9)
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Preliminaries 5

The correct value of v is computed in an iterative manner, for instance using the Newton–
Raphson method:

Ft+�t
ext = Fint(vj) + dFint

dv
dv + 1

2

d2Fint

dv2 dv2 + O(dv3) (1.10)

with j the iteration counter. In a linear approximation we have for the iterative correction to
the displacement v:

dv =
(

dFint

dv

)−1

j

(
Ft+�t

ext − Fint(vj)
)

(1.11)

The iterative process is terminated when a convergence criterion has been met, ‖Ft+�t
ext −

Fint(vj)‖ < ε, with ε a small number. For the present case the derivative dFint
dv

, or in computa-
tional mechanics terminology, the tangential stiffness modulus, can be evaluated from Equation
(1.8) as:

dFint

dv
= A0 sin2 φ

�0

(
E + dE

d�
(� − �0)

)
+

(
k + dk

dv
v

)
+ A0σ

�0
(1.12)

where, for generality, it has been assumed that the stiffness of the truss as well as that of the
spring depend on how much they have been extended. If this so-called material non-linearity is
not present, the terms that involve dE

d�
and dk

dv
cancel. The last term in Equation (1.12) is due to

the inclusion of large displacement/rotation effects (geometrical non-linearity), and is linear in
the stress. This term is of crucial importance when computing the stability of slender structures.
Figure 1.2 shows the behaviour of the truss for different values of the spring stiffness k. The
graphs directly follow from application of the closed-form expression (1.8) for the internal
force, in combination with the equilibrium condition (1.9). The iterative procedure can only
be applied for larger values of the spring stiffness k, i.e. when there is no local maximum in
the load–displacement curve.

1.2 A Review of Concepts from Linear Algebra

In computer oriented methods in the mechanics of solids frequent use is made of the concepts
of a vector and a matrix. Herein, we shall denote by a vector a one-dimensional array of
scalars. A scalar is a physical quantity that has the same value, irrespective of the choice of the
reference frame. When we denote scalars by italic symbols and vectors by roman, bold-faced,
lower-case symbols, the vector v has n scalar entries v1, . . . , vn, so that:

v =




v1

. . .

. . .

vn


 (1.13)

In Equation (1.13) the scalar entries are written in a column format. Alternatively, it is possible
to write the scalar quantities v1, . . . , vn as a row. This row of scalars is named the transpose
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6 Non-linear Finite Element Analysis of Solids and Structures

1.0

0.5

0.5

1.0

1.5

Displacement (m)

Fo
rc

e 
(k

N
)

k = 0

k = 

k = 

1000 N/m

500 N/m

Figure 1.2 Force–displacement diagram for the shallow truss structure for different values of the spring
stiffness k (b = 10 m, h = 0.5 m and EA0 = 5 MN/m2)

of the vector v and is written as:

vT = (v1, . . . , vn)

Addition of vectors is defined as the addition of their components, so that

w = u + v (1.14)

implies that wi = ui + vi for i = 1, . . . , n. The multiplication of a vector by a scalar, say λ, is
defined as:

w = λu (1.15)

with the components wi = λui.
An important operation between two vectors u and v, each with n entries, is the inner product,

also named scalar product:

uTv =
n∑

i=1

uivi (1.16)

The scalar product of two vectors possesses the commutativity property, i.e. uTv = vTu as
can be verified easily from the definition (1.16). The inner product can also be useful for the
definition of the norm of a vector. Several definitions of the norm of a vector are possible, but in

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Preliminaries 7

theoretical and applied mechanics the most customary definition is the Euclidian or L2-norm:

‖v‖2 =
√

vTv (1.17)

where the subscript is often omitted. The cross product of two vectors a and b, also named the
vector product, forms a vector c:

c = a × b (1.18)

that is orthogonal to a and b in the three-dimensional space, and has a direction that is given by
the right-hand rule, and as a consequence, is anti-symmetric: b × a = −a × b. The components
of c = a × b read:

c =




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


 (1.19)

The entries (or components) of a vector may be used to form a scalar function. Examples in
mechanics are the invariants of the stress and strain tensors, or the yield function in plasticity.
An operation that is often used is the calculation of the gradient of a function. Let the scalar-
valued function f be a function of the components ai of the vector a. Then, the gradient b is
obtained by differentiation of f with respect to a

b = ∂f

∂a
(1.20)

or in component form:

bi = ∂f

∂ai

(1.21)

The gradient operation is such that b is orthogonal to the hypersurface in the n-dimensional
vector space that is described by f = c, with c a constant that usually is taken equal to zero.

Matrices are another suitable mathematical vehicle that can be used in computational me-
chanics. While vectors in their most simple description are denoted as one-dimensional arrays
of scalars, matrices are two-dimensional arrays of scalars. A matrix is said to have m rows and
n columns. In general m does not have to be equal to n. If we think of vectors as matrices with
only one column, a vector with m components can be termed a m × 1 matrix. Similarly, a row
vector with n entries can be named an 1 × n matrix.

In this book we shall consistently denote a matrix by a bold-faced, upper-case symbol. The
entries or components of the matrix A are, in a similar fashion as the components of a vector,
denoted as aij , where, for an m × n matrix i = 1, . . . , m and j = 1, . . . , n. A vector b of length
n can be premultiplied by an m × n matrix A, as follows:

c = Ab (1.22)

The resulting vector c has m components:

ci =
n∑

j=1

aijbj (1.23)
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8 Non-linear Finite Element Analysis of Solids and Structures

The addition of two m × n matrices A and B is exactly analogous to the addition of vectors,
as we have for each entry: cij = aij + bij , while the multiplication of a matrix by a scalar, say
λ, is also defined similarly: cij = λaij .

The product of two matrices is defined similar to the product of a matrix and a vector. Let
A be an m × k matrix and B be a k × n matrix. The result of multiplying A and B is an m × n

matrix C, with components:

cij =
k∑

e=1

aiebej (1.24)

A special matrix multiplication occurs when the number of columns of A, and consequently
also the number of rows of B, is set equal to 1 (k = 1). Now, A and B reduce to vectors, say a
and bT. The resulting product is still an m × n matrix,

C = abT (1.25)

with components cij = aibj . This operation is named the dyadic or outer product of two vectors
a and b. The transpose operation for matrices is identical to that for vectors, i.e. B = AT implies
that bij = aji. An operation that is frequently carried out in the derivation of finite element
equations is taking the transpose of a product of two matrices. For such a transpose the following
relationship holds:

(AB)T = BTAT (1.26)

The most common type of matrices are square matrices, for which m = n. Under certain
conditions, to be discussed in the following pages, an inverse B = A−1 can be defined, such
that

AB = I (1.27)

with I the unit matrix, i.e. all entries of I are zero with exception of the diagonal entries of I
which are equal to 1: I = diag[1, . . . , 1]. The inversion of matrices is required for the solution
of large systems of linear equations which arise as a result of finite element discretisation. Such
systems have the form

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2 (1.28)

. . . + . . . + . . . = . . .

an1x1 + an2x2 + . . . + annxn = bn

When the known coefficients a11, . . . , ann are assembled in a matrix A, the known components
b1, . . . , bn in a vector b, and the unknowns x1, . . . , xn in a vector x, the system (1.28) can be
written in a compact fashion

Ax = b (1.29)

Formally, the vector of unknowns x can be obtained from

x = A−1b (1.30)
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Preliminaries 9

provided, of course, that A−1 exists. In solid mechanics the matrix A is often symmetric,
i.e. aij = aji, which facilitates the computation of A−1. However, when non-linearities are
incorporated in computational models, symmetry can be lost.

An efficient manner to carry out the above operation is to decompose the matrix A as

A = LDU (1.31)

with L a lower triangular matrix

L =




1 0 0 . . . 0

l21 1 0 . . . 0

l31 l32 1 . . . 0

. . . . . . . . . . . . . . .

ln1 ln2 ln3 . . . 1




(1.32)

U an upper triangular matrix,

U =




1 u12 u13 . . . u1n

0 1 u23 . . . u2n

0 0 1 . . . u3n

. . . . . . . . . . . . . . .

0 0 0 . . . 1




(1.33)

and

D = diag[d11, . . . , dnn] (1.34)

a diagonal matrix. For symmetric matrices the identity U = LT holds.
This LDU decomposition is based on Gauss elimination, and can preserve bandedness in

the sense that if the matrix A has a band structure, as is normally the case in finite element
applications, the lower and upper triangular matrices L and U also have a banded structure.
Since

x = (LDU)−1b = U−1(LD)−1b = U−1D−1L−1b

we can now solve for x:

c = L−1b

d = D−1c (1.35)

x = U−1d

This equation reveals another interesting fact. While the operations L−1b and U−1d only
involve multiplications, and cannot result in arithmetic problems, the operation D−1c consists
of divisions, since D−1 = diag[d−1

11 , . . . , d−1
nn ]. Hence, as soon as one of the diagonal entries,

named pivots, of D is zero, x can no longer be computed. In such a case the matrix A is said to be
singular and a unique decomposition no longer exists. We distinguish between three cases: all
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10 Non-linear Finite Element Analysis of Solids and Structures

pivots of D are positive, one or more pivots of D are zero, and finally, one or more pivots of D are
negative. When the diagonal matrix D has only positive pivots, the matrix A is called positive
definite. An example is the stiffness matrix A which results from a displacement-method based
finite element discretisation of a linear-elastic body. For positive-definite matrices the LDU
decomposition is unique and round-off errors which arise are not amplified. When non-linear
effects are introduced, the tangential stiffness matrix A can become singular (one or more zero
pivots) during the loading process and eventually become indefinite (one or more negative
pivots). As argued above, a singular matrix cannot be decomposed and meaningful answers
cannot be obtained. However, a unique LDU decomposition can again be obtained if one
or more pivots have turned negative, but are non-zero. Nevertheless, for indefinite matrices it
cannot be ensured that round-off errors which arise during the decomposition are not amplified.
In a non-linear analysis this observation implies that the iterative process that is necessary to
solve the set of non-linear algebraic equations which then arises, can diverge.

Singularity of a matrix is also closely related to its determinant. The determinant of a matrix
is defined as (Golub and van Loan 1983; Noble and Daniel 1969; Ortega 1987; Saad 1996)

detA =
n∑

j=1

(−1)i+jaijdetAij (1.36)

where Aij is an (n − 1) × (n − 1) matrix obtained by deleting the ith row and the jth column
of A. This recursive relation is closed by detA = a11 for n = 1. A useful property is that
det(AB) = detA · detB. In view of Equation (1.31) we have detA = detL · detD · detU and
from definition (1.36) we deduce that detL = detU = 1. We thus obtain the useful result that

detA =
n∏

i=1

di (1.37)

which implies that the determinant of a matrix equals zero if one or more pivots are zero. In
view of the discussion on pivots the matrix is then singular.

A useful result on the inversion of a special type of matrices is the Sherman–Morrison
formula. Let A be a non-singular n × n matrix and let u and v be two vectors with n entries
each. Then, the following identity holds:

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(1.38)

A further useful result involving vectors is Gauss’ divergence theorem. Using this theorem a
volume integral can be transformed into a surface integral:∫

V

divvdV =
∫

S

nTvdS (1.39)

where n is the outward normal to the bounding surface of the body, and div is the divergence
operator:

divv = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(1.40)
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Preliminaries 11

In the preceding, use has been made of the summation symbol 	. A short-hand notation is
to omit the 	 symbol and to suppose that a summation is implied whenever a subscript occurs
twice in an expression. For instance, we can replace the summation in Equation (1.24) by the
abbreviated notation (called the Einstein summation convention)

cij = aiebej (1.41)

where summation with respect to the repeated index e is implied. Such an index is often
called a ‘dummy’ index, since it is irrelevant which letter we take for this index. Indeed, the
expression cij = aiqbqj is identical. Of course, the indices i and j may not be replaced by other
letters unless it is done on both sides of the equation. When rewriting Gauss’ theorem in index
notation, the result is: ∫

V

∂vi

∂xi

dV =
∫

S

nividS

An important tensorial quantity is the Kronecker delta, defined as:{
δij = 1 if i = j

δij = 0 if i /= j
(1.42)

As an example we note that aij = aikδkj . Also useful is the permutation tensor eijk, which equals
+1 for e123 and for even permutations thereof (e.g. e231), and equals −1 for odd permutations
(e.g. e213). If two subscripts are identical, then eijk = 0.

In more recent years index notation has been gradually replaced by direct tensor notation,
which, at first sight, somewhat resembles the matrix-vector notation. Now, the multiplication
of Equation (1.24) is denoted as:

C = A · B (1.43)

where the central dot denotes a single contraction, i.e. the summation over the dummy index.
In a similar fashion, a double contraction is denoted as:

c = A : B (1.44)

or using index notation: c = aiebei. Taking the gradient of a quantity is done using the ∇
symbol, as follows,

b = ∇f (1.45)

which equals the gradient vector defined in Equation (1.20). This operator can also be used for
vectors, and Gauss’ theorem is now written as:∫

V

∇ · vdV =
∫

S

n · vdS

The dyadic product of two vectors a and b is now written as:

C = a ⊗ b (1.46)
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12 Non-linear Finite Element Analysis of Solids and Structures

with components cij = aibj . Finally, we define for a second-order tensor A the divergence
operator

a = ∇ · A (1.47)

such that

aj = ∂Aij

∂xi

(1.48)

and its trace:

c = tr(A) (1.49)

through c = aii.

1.3 Vectors and Tensors

So far, vectors have been introduced and treated as mere mathematical tools, arrays which
contain a number of scalar quantities in an ordered fashion. Nonetheless, vectors can be given a
physical interpretation. Take for instance the concept of force. A force not only has a magnitude,
but also has a direction. It is often of interest to know how the components of a force change
if the force is represented in a different coordinate system. A translation only adds the same
number to all force components. A rotation of the reference frame, for instance from the x, y-
coordinate system to a x̄, ȳ-coordinate system, Figure 1.3, changes the components of a vector
in a more complicated manner.

The components of a vector n̄ in the x̄, ȳ-coordinate system can be obtained from those in
the x, y-coordinate system, assembled in n, by the transformation

n̄ = Rn (1.50)

with R a transformation matrix. Since a full three-dimensional treatment is quite cumbersome,
and hardly adds anything to the understanding, we will elaborate R only for planar conditions.
Let the angle from the x, y-coordinate system to the x̄, ȳ-coordinate be φ. For n = [1, 0]T

and n = [0, 1]T, respectively, the representations in the rotated coordinate system are n̄ =
[cos φ, − sin φ]T and n̄ = [sin φ, cos φ]T, respectively. It follows that in two dimensions the

φ

x

x

n1

n1

n2

y n2

y

–

–

–
–

Figure 1.3 Original x, y-coordinate system and rotated x̄, ȳ-coordinate system
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Preliminaries 13

transformation matrix R is given by

R =
[

cos φ sin φ

− sin φ cos φ

]
(1.51)

The transformation, or rotation matrix R has a special structure. Inspection shows that

R−1 = RT (1.52)

which also holds true for the general three-dimensional case. Matrices that satisfy requirement
(1.52) are called orthogonal matrices, for which det(R) = 1.

With the aid of the transformation rules for vectors we can derive transformation rules for
tensors. Tensors, or here, more precisely, second-order tensors, are physical quantities that
relate two vectors. For instance, the stress tensor sets a relation between the force on a plane
and the normal vector of that plane, see also the next section. A natural representation of a
second-order tensor is a matrix. However, not all matrices are tensors: only matrices that obey
certain transformation rules can represent tensorial quantities. Suppose that the second-order
tensor C relates the vectors, or first-order tensors, t and n:

t = Cn (1.53)

In the x̄, ȳ frame the second-order tensor C̄ sets a similar relation between t̄ and n̄:

t̄ = C̄n̄ (1.54)

We next substitute Equation (1.50) and an identical relation for t, i.e. t̄ = Rt, into Equation
(1.54). Comparison with Equation (1.53) shows that any second-order tensor transforms ac-
cording to:

C̄ = RCRT (1.55)

Using Equation (1.51) this identity can be elaborated for two dimensions as

c̄11 = c11 cos2 φ + (c12 + c21) cos φ sin φ + c22 sin2 φ

c̄22 = c11 sin2 φ − (c12 + c21) cos φ sin φ + c22 cos2 φ (1.56)

c̄12 = −c11 cos φ sin φ + c12 cos2 φ − c21 sin2 φ + c22 cos φ sin φ

c̄21 = −c11 cos φ sin φ − c12 sin2 φ + c21 cos2 φ + c22 cos φ sin φ

For symmetric second-order tensors, which will be employed here exclusively, c21 = c12, and
consequently also: c̄21 = c̄12.

We observe that the components of a second-order tensor change from orientation to orien-
tation. It is often of interest to know the extremal values of the tensor components c̄11 and c̄22,
and on which plane they are attained, i.e. for which value of φ. For symmetric second-order
tensors, there exist two mutually orthogonal planes on which c̄11 and c̄22 have a maximum
and a minimum, respectively. The values in this coordinate system are commonly named the
principal values. Since c̄11 and c̄22 are functions of the inclination angle φ these extremal values
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14 Non-linear Finite Element Analysis of Solids and Structures

c11 − c22

2φ

2 c12

Figure 1.4 Principal directions of a second-order tensor

are obtained by requiring that

∂c̄11

∂φ
= 0 or

∂c̄22

∂φ
= 0 (1.57)

Elaborating these identities for symmetric second-order tensors we obtain that the diagonal
tensor components attain extremal values for

tan 2φ = 2c12

c11 − c22
(1.58)

To derive the principal values we first rewrite the first two equations of (1.56) as

c̄11 = 1

2
(c11 + c22) + 1

2
(c11 − c22) cos 2φ + c12 sin 2φ (1.59)

From Figure 1.4, cf. Equation (1.58), we infer that

sin 2φ = ± 2c12√
(c11 − c22)2 + 4c2

12

cos 2φ = ± c11 − c22√
(c11 − c22)2 + 4c2

12

(1.60)

whence we obtain the following closed-form expression for the principal values:


c̄11 = 1
2 (c11 + c22) − 1

2

√
(c11 − c22)2 + 4c2

12

c̄22 = 1
2 (c11 + c22) + 1

2

√
(c11 − c22)2 + 4c2

12

(1.61)

It is a property of symmetric second-order tensors (to which the treatment will be limited) that
for this inclination angle also the off-diagonal tensor components are zero: c̄12 = 0. This is
shown most simply by rewriting the first equation of (1.56) as:

c̄12 = −1

2
(c11 − c22) sin 2φ + c12 cos 2φ (1.62)

whereupon substitution of the identities (1.60) proves the assertion.
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Preliminaries 15

Another interpretation can be given to the coordinate system in which the principal values
of the diagonal tensor components attain a maximum. Let C be the matrix representation of a
symmetric second-order tensor. Let e be a vector. As a rule, the product Ce will not be parallel
with e. However, for every such tensor there exists a coordinate system for which the resulting
vector is indeed parallel with the original vector:

Ce = λe (1.63)

with λ the scalar-valued eigenvalue. We can rewrite Equation (1.63) as

(C − λI)e = 0 (1.64)

with I = diag[1, . . . , 1] the unit matrix. A non-trivial solution (e /= 0) then exists if and only
if the determinant of C − λI vanishes:

det[C − λI] = 0 (1.65)

Elaborating Equation (1.65) then yields exactly Equation (1.58). Thus, the coordinate system
in which c11 and c22 attain extremal values is the same coordinate system in which a vector
e multiplied by a tensor C results in a vector that is a multiple of e. Since the eigenvalues
λi correspond to the principal values, the eigenvectors ei point in the principal directions.
An elaboration for a symmetric second-order tensor is given in Box 1.1. Similar to pivots,
Equation (1.37), a direct relationship can be established between the product of all eigenvalues
and the determinant of a matrix:

detC =
n∏

i=1

λi (1.66)

which is known as Vieta’s rule, and is valid for symmetric and non-symmetric matrices. From
Equation (1.66) we infer that the singularity of a matrix not only implies that the determinant
and one or more pivots vanish, but also that at least one eigenvalue is equal to zero.

Inverting Equation (1.55) yields

C = RTC̄R (1.67)

with, in the principal axes,

C̄ =
[

c̄11 0

0 c̄22

]
(1.68)

and c̄11 = λ1 and c̄22 = λ2 the principal values or eigenvalues of C. Elaboration of
Equation (1.67) using expression (1.51) for R in two dimensions yields:

C = λ1

[
cos2 φ cos φ sin φ

cos φ sin φ sin2 φ

]
+ λ2

[
sin2 φ − cos φ sin φ

− cos φ sin φ cos2 φ

]

or

C = λ1

(
cos φ

sin φ

)
(cos φ, sin φ) + λ2

(
sin φ

− cos φ

)
(sin φ, − cos φ)
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16 Non-linear Finite Element Analysis of Solids and Structures

Box 1.1 Eigenvalues of a symmetric second-order tensor

For a symmetric matrix C the condition det[C − λI] = 0 can be elaborated as follows:∣∣∣∣∣ c11 − λ c12

c12 c22 − λ

∣∣∣∣∣ = 0 or (c11 − λ)(c22 − λ) − c2
12 = 0

Solving for the eigenvalues λ yields: λ1,2 = 1
2 (c11 + c22) ± 1

2

√
(c11 − c22)2 + 4c2

12, which
are exactly the principal values of the tensor C, see Equation (1.61). The directions of e can
be computed by inserting the principal values of the tensor C in either

(c11 − λ)e1 + c12e2 = 0 or c12e1 + (c22 − λ)e2 = 0

with e1, e2 the components of e. Taking the first equation as an example, we can derive that
substitution of the principal values λ1,2 yields:(

1

2
(c11 − c22) ± r

)
e1 + c12e2 = 0 where r = 1

2

√
(c11 − c22)2 + 4c2

12

Bringing the re1 term to the right-hand side, and squaring gives:

e1e2

e2
1 − e2

2

= c12

c11 − c22

Simple goniometry shows that

tan 2φ = 2 tan φ

1 − tan2 φ
= 2e1e2

e2
1 − e2

2

which proves that Equation (1.58) also defines the directions of the eigenvectors e. The
notions of eigenvectors and principal directions, and of eigenvalues and principal values of
symmetric second-order tensors coincide.

Identifying eT
1 = (cos φ, sin φ) and eT

2 = (sin φ, − cos φ) as the eigenvectors, we can represent
C through the spectral decomposition

C =
n∑

i=1

λiei ⊗ ei (1.69)

where a generalisation to n dimensions has been made. Defining the eigenprojections

Ei = ei ⊗ ei (1.70)

the spectral decomposition of a symmetric, second-order tensor can also be written as:

C =
n∑

i=1

λiEi (1.71)
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Preliminaries 17

∆S

∆f

Figure 1.5 Force acting on an imaginary cut in a solid body

1.4 Stress and Strain Tensors

The basic problem of solid mechanics is to determine the response of a body to forces that are
exerted onto that body. For instance, we want to know which forces act from one side of an
imaginary cut in the body on the other side (Figure 1.5). It has become customary to consider
a small area in that cut, say �S, and to investigate which force works on that area. This force
is called �f . When we take the limiting case that �S → 0 the stress vector t is obtained:

t = lim
�S→0

�f
�S

= df
dS

(1.72)

On each plane the stress vector t can be decomposed in a component that acts along the
normal to that plane and in two mutually orthogonal vectors which form a vectorial basis of
the plane. We now choose the normal vector of this plane to coincide with the x-axis. The
normal component of t is denoted by σxx, while the two components that lie in the plane are
labelled as σxy and σxz. σxy is the stress component which acts in the direction of the y-axis
and σxz is the stress component which acts in the direction of the z-axis. In accordance with
the sign convention in solid mechanics the normal stress component σxx is considered positive
when it points in the direction of the positive x-axis and works on a plane with a normal
vector that points in the positive x-direction. In a similar fashion the shear stress σxy is taken
positive when it points in the positive y-direction and acts on a plane with its normal in the
positive x-direction. The definition of the other shear stress, σxz, is analogous. Along this line
of reasoning the normal stress σxx is also called positive if it acts in the negative x-direction
on a plane with its normal in the negative x-direction, while a positive shear stress σxy is also
obtained when a shear stress acts on a plane with its normal in the negative x-direction and is
directed along the negative y-axis.

In three dimensions there are nine stress components (Figure 1.6). These nine stress compo-
nents fully determine the state of stress in a point of a body, and are components of the stress
tensor. The stress tensor σ is a second-order tensor. It can be naturally expressed in matrix
notation:

� =




σxx σyx σzx

σxy σyy σzy

σxz σyz σzz


 (1.73)
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18 Non-linear Finite Element Analysis of Solids and Structures

x

σzx

σyy

σzz

σxx

σyx

σyz

σzy

σxz

σxy

y

z

Figure 1.6 Stress components in a three-dimensional continuum

The stress tensor σ is related to the stress vector t which acts on a plane with normal n. In
matrix-vector notation, the relationship between �, t and n is:

�n = t (1.74)

The validity of this relationship can be verified easily if the normal vector is chosen to be par-
allel to the x-axis (nT = [1, 0, 0]), the y-axis (nT = [0, 1, 0]), and the z-axis (nT = [0, 0, 1]),
respectively. For future use the analogue of Equation (1.74) is also given in index notation:

niσij = tj

and in direct tensor notation:

n · σ = t (1.75)

For a non-polar or Boltzmann continuum, the balance of moment of momentum in the three
directions shows that not all the stress components are independent. In particular we find for
the shear stress components that

σxy = σyx

σyz = σzy (1.76)

σzx = σxz

(see Chapter 2 for a formal proof). Accordingly, there are six independent stress components
and the matrix representation of the symmetric stress tensor σ can be written as

� =




σxx σxy σzx

σxy σyy σyz

σzx σyz σzz


 (1.77)

The observation that there are only six independent stress components makes it also feasible
to write the stress tensor in a vector form (the so-called Voigt notation):

σT = (σxx, σyy, σzz, σxy, σyz, σzx) (1.78)
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Preliminaries 19

Note that for the vector representation the stress tensor is symbolically written as σ instead of
� which is used for the matrix representation.

Often, for instance in geotechnical applications, it is convenient to decompose the normal
stresses σxx, σyy and σzz into a deviatoric and a hydrostatic part. The deviatoric part then causes
changes in the shape of an elementary cube, while the hydrostatic pressure causes a change in
volume of the cube. The hydrostatic pressure is here defined as

p = 1

3
(σxx + σyy + σzz) (1.79)

With the aid of the definition of p we can define the deviatoric stress tensor. In matrix repre-
sentation we have

S = � − pI (1.80)

while in Voigt’s notation the following formula is obtained:

s = σ − pi (1.81)

where

sT = (sxx, syy, szz, sxy, syz, szx)

iT = (1, 1, 1, 0, 0, 0) (1.82)

Stress invariants are important quantities in non-linear constitutive theories. These are func-
tions of the stress components that are invariant with respect to the choice of the reference
frame. They arise naturally if the principal stresses in a three-dimensional continuum are com-
puted. From the previous section it is known that the principal values λ of a second-order tensor
are computed from the requirement that

det(� − λI) = 0 (1.83)

or, in component form: ∣∣∣∣∣∣∣
σxx − λ σxy σzx

σxy σyy − λ σyz

σzx σyz σzz − λ

∣∣∣∣∣∣∣ = 0 (1.84)

When we introduce the identities

I1 = σxx + σyy + σzz

I2 = σxxσyy + σyyσzz + σzzσxx − σ2
xy − σ2

yz − σ2
zx

I3 = σxxσyyσzz + 2σxyσyzσzx − σxxσ
2
yz − σyyσ

2
zx − σzzσ

2
xy

(1.85)

Equation (1.84) can be reformulated as:

λ3 − I1λ
2 + I2λ − I3 = 0 (1.86)

A crucial observation is that, since this equation has the same solution in each reference frame,
I1, I2 and I3 must have the same value irrespective of the choice of the reference frame. Thus,
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20 Non-linear Finite Element Analysis of Solids and Structures

the coefficients I1, I2 and I3 must be invariant under a coordinate transformation. For this
reason, I1, I2 and I3 are called invariants of the stress tensor. The concept of principal values
and principal directions exists for any second-order tensor, and invariants can be defined for
any second-order tensor, also for the strain tensor to be treated next.

Any function of invariants is an invariant itself. Such modified invariants arise naturally if
the principal values of the deviatoric stress tensor are computed. These quantities are obtained
by solving the cubic equation:

λ3 − J2λ − J3 = 0 (1.87)

where

J2 = −sxxsyy − syyszz − szzsxx + s2
xy + s2

yz + s2
zx (1.88)

and

J3 = sxxsyyszz + 2σxyσyzσzx − sxxσ
2
yz − syyσ

2
zx − szzσ

2
xy (1.89)

The first invariant of the deviatoric stress tensor vanishes by definition. With the above defi-
nitions for the invariants of the stress tensor and the deviatoric stress tensor it can be shown
that (Fung 1965):

J2 = 1

3
I2

1 − I2

J3 = I3 − 1

3
I1I2 + 2

27
I3

1 (1.90)

We now consider an elementary cube which we deform only in the x, y-plane. The sides of
the cube are denoted by �x, �y and �z (�x = �y = �z). Suppose that point A undergoes
the displacements u and v and that points B and C displace as [u + �uB, v + �vB] and
[u + �uC, v + �vC], respectively (Figure 1.7). In the limiting case that �x → 0 and �y → 0

y

x

A B

DC

uu +∆u
B

v
v +∆v

B

v +∆v
D

v +∆v
C

u+∆u
C

u+∆u
D

Figure 1.7 Undeformed and deformed configuration of an elementary quadrilateral
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Preliminaries 21

the strains in the x- and y-directions become (neglecting second-order terms):

εxx = lim
�x→0

�uB

�x
= ∂u

∂x

εyy = lim
�y→0

�vC

�y
= ∂v

∂y
(1.91)

The distortion of the elementary square in the x, y-plane is given by:

γxy = lim
�x→0,�y→0

�uC

�y
+ �vB

�x
= ∂u

∂y
+ ∂v

∂x
(1.92)

while its rotation is given by:

ωxy = lim
�x→0,�y→0

1

2

(
�vB

�x
− �uC

�y

)
= 1

2

(
∂v

∂x
− ∂u

∂y

)
(1.93)

Here γxy is the total angular distortion of the elementary cube in the x, y-plane. This measure
for the shear strain is often used in engineering applications. For theoretical investigations
it is more customary to adopt the tensorial shear strain component εxy = 1

2γxy. In a similar
fashion to which we have introduced the normal strains εxx, εyy and the engineering shear strain
γxy we can introduce the normal strain εzz and the shear strains γyz and γzx by considering
deformations of the elementary cube in the y, z- and the z, x-planes, respectively. In accordance
with the definitions (1.91) and (1.92) these strain components are defined as:

εzz = ∂w

∂z

γyz = ∂v

∂z
+ ∂w

∂y
(1.94)

γzx = ∂w

∂x
+ ∂u

∂z

where w is the displacement in the z-direction. The convention for subscripts in the strain
components is exactly the same as for stress components, e.g. εxx defines a normal strain
component in the x-direction and γxy represents a shear strain component in the x, y-plane.
Also the sign convention is identical: a strain component is called positive if it is related to
a positive displacement of a plane with normal in the positive direction, etc. This implies for
instance that elongation is considered positive.

Similar to the stress tensor we can now introduce the strain tensor. Again, matrix and
vector representations are possible. For the fully three-dimensional case we have the matrix
representation

E =




εxx εyx εzx

εxy εyy εzy

εxz εyz εzz


 (1.95)
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22 Non-linear Finite Element Analysis of Solids and Structures

or, noting that the strain tensor has been defined such that it is symmetric, we can write in Voigt
notation:

εT = (εxx, εyy, εzz, γxy, γyz, γzx) (1.96)

While the use of the total distortion γxy etc. is more common in the Voigt notation, the tensorial
shear strain εxy is normally used in the matrix representation. For future use we note that the
rate of the internal energy per unit volume can be expressed equivalently in Voigt notation,
direct tensor notation and index notation as:

Ẇint = ε̇Tσ = ε̇ : σ = ε̇ijσji (1.97)

In the treatment of the stress tensor the hydrostatic pressure p was introduced. Similarly, we
can introduce the volumetric strain εvol as the sum of the normal strains:

εvol = εxx + εyy + εzz (1.98)

With the aid of the volumetric strain εvol we can define the so-called deviatoric strain tensor
in a manner similar to the introduction of the deviatoric stresses:

E = E − 1

3
εvolI (1.99)

or using Voigt’s notation,

e = ε − 1

3
εvoli (1.100)

with

eT = (exx, eyy, ezz, γxy, γyz, γzx) (1.101)

In a preceding section the transformation rule for second-order tensors was derived, cf.
Equation (1.56). Using Voigt notation, these transformation rules can, for the two-dimensional
case, be written as:

σ̄ = Tσσ (1.102)

with

Tσ =




cos2 φ sin2 φ 2 sin φ cos φ

sin2 φ cos2 φ −2 sin φ cos φ

− sin φ cos φ sin φ cos φ cos2 φ − sin2 φ


 (1.103)

with the stress tensor σT = [σxx, σyy, σxy] for plane-stress conditions. By substituting (−φ) in
the latter equation it is seen that T−1

σ = TT
σ , whence

σ = TT
σ σ̄ (1.104)

Since the engineering shear strain γxy is normally used in Voigt’s notation, we have for the
strain transformation:

ε̄ = Tεε (1.105)
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Preliminaries 23

with

Tε =




cos2 φ sin2 φ sin φ cos φ

sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ − sin2 φ


 (1.106)

and εT = [εxx, εyy, γxy]. As for the stress transformation it holds that:

ε = TT
ε ε̄ (1.107)

1.5 Elasticity

So far, we have introduced the stress tensor and we have considered kinematic relations, i.e.
relations between displacements and strains. In Chapter 2 we will introduce the equations
of motion. To complete the field equations we need stress–strain relations, or constitutive
equations, which set a relation between the stress tensor and the strain tensor. For the simplest
constitutive model, namely isotropic, linear elasticity (Hooke’s law), the fourth-order elastic
compliance tensor Ce sets the relation between the strain tensor ε and the stress tensor σ:

ε = Ce : σ (1.108)

or in its inverse form:

σ = De : ε (1.109)

with De the elastic stiffness tensor. In Voigt notation the compliance relation can be elaborated
as:




εxx

εyy

εzz

γxy

γyz

γzx




= 1

E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)







σxx

σyy

σzz

σxy

σyz

σzx




(1.110)

with E the Young’s modulus and ν the Poisson’s ratio. Equation (1.110) can be written com-
pactly as:

ε = Ceσ (1.111)

with Ce the elastic compliance matrix.
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24 Non-linear Finite Element Analysis of Solids and Structures

Equation (1.110) gives the strain tensor ε as a function of the stress tensor σ. To obtain the
inverse relation we rewrite the first three equations of (1.110) as

εxx = 1 + ν

E
σxx − 3νEp

εyy = 1 + ν

E
σyy − 3νEp (1.112)

εzz = 1 + ν

E
σzz − 3νEp

Next, we add these equations and, using Equations (1.79) and (1.98) we obtain:

εvol = K−1p (1.113)

where the bulk modulus K, which sets the relation between the volumetric strain and the
hydrostatic pressure, has been introduced:

K = E

3(1 − 2ν)
(1.114)

Subsequent substitution of Equation (1.113) into Equations (1.112) and inversion yields the
elastic stiffness relation:




σxx

σyy

σzz

σxy

σyz

σzx




=




λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ







εxx

εyy

εzz

γxy

γyz

γzx




(1.115)

where the two Lamé constants have been introduced:

λ = νE

(1 + ν)(1 − 2ν)

µ = E

2(1 + ν)
(1.116)

The latter quantity is conventionally defined as the shear modulus and is also often denoted by
the symbol G. The above stiffness relation can be written as

σ = Deε (1.117)

with De the elastic stiffness matrix. An alternative expression for this matrix in terms of the
Young’s modulus and the Poisson’s ratio can be obtained by inserting Equations (1.116) into
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Preliminaries 25

Equation (1.115)

De = E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2




(1.118)

1.6 The PyFEM Finite Element Library

A number of the models that are discussed in this book have been implemented in a small finite
element code named PyFEM, which is written in the programming language Python. In order
to demonstrate some features of this programming language in a numerical simulation, the
implementation of the simple non-linear calculation in Section 1.1 is discussed in this section.
The file is called ShallowTruss.py and can be found in the directory examples/ch01
of PyFEM.

Instead of giving complete code listings, we will use a notation that is inspired by literate
programming, see e.g. Ramsey (1994). A concise overview of this notation has been given
earlier in the book on page xix. Some specific details of the notation will be highlighted in this
section as well.

In literate programming the complete script can be represented as a collection of code
fragments:

〈Shallow truss example 〉≡
〈Initialisation of the calculation 25〉
〈Step-wise calculation of the equilibrium path 27〉
〈Print results 28〉

This defines a fragment 〈Shallow truss example〉. The fragment itself refers to three other
fragments, which are executed one after the other. Their function within the program can be
deduced from their names. At this moment, this is the appropriate abstraction level.

The number behind the name of the fragment indicates the page number in this book where
this fragment is discussed. Accordingly, the fragment 〈Initialisation of the calculation〉 is
discussed on page 25. The absence of a page number indicates that the fragment is not discussed
explicitly. One has to study the original source code to understand its functionality,

In the first fragment of this example, the variables that set the dimensions of the simulation
are declared:

〈Initialisation of the calculation 〉≡ 25

b = 10.
h = 0.5
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26 Non-linear Finite Element Analysis of Solids and Structures

b and h represent the dimensions of the system, b and h, as specified in Figure 1.1. The number
in the right margin indicates the page number on which the fragment is mentioned before.

Obviously, the initialisation of the shallow truss example requires more than the sys-
tem dimensions. We therefore extend the fragment by defining the stiffnesses k and EA0,
Equation (1.8), by writing:

〈Initialisation of the calculation 〉+≡ 25

k = 1000.
EA0 = 5.0e6

The +≡ symbol after the fragment name indicates that this fragment augments a fragment
defined before. We can further extend the fragment by specifying the magnitude of the
incremental external force in the simulation, DF, the number of steps N, the convergence
tolerance tol, and the maximum number of iterations to reach convergence, iterMax.

〈Initialisation of the calculation 〉+≡ 26

DF = 50
N = 30
tol = 1e-6
iterMax = 5

The actual model is defined through use of the lambda function of Python:

〈Initialisation of the calculation 〉+≡ 26

from math import sqrt

l = lambda v : sqrt(b**2+(h-v)**2)
F = lambda v : -EA0*(h-v)/l(v)*(l(v)-l(0))/l(0)+k*v
dFdv= lambda v : (EA0/l(v))*((h-v)/l(v))**2+k+/

(EA0/l(v))*(l(v)-l(0))/l(0)

Please note that in this fragment we have used a function, namely the square root operator.
This function is imported from the math module. In PyFEM, we will often use functions
from the math, numpy and scipy modules. In order to limit the amount code listing in this
book, we will omit these import statements (from .. import ..) when possible. When
the origin of a function is not exactly clear, the import statement will be listed.

Subsequently, the length of the beam l and the reaction force F of the system are defined as
functions of the unknown v, see Equations (1.3) and (1.8). In the last line the derivative of the
force with respect to the unknown is given as a function of the unknown v, Equation (1.12).

Finally, the parameters that are needed during the simulation are initialised:
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Preliminaries 27

〈Initialisation of the calculation 〉+≡ 26

v = 0.
Dv = 0.
Fext = 0.
output = [ [0.,0.] ]

The variables v, Dv and Fext represent the displacement v in the last converged solution,
the incremental displacement �v and the total external force Fext, respectively. A list of lists
output is created to store the variables that are plotted in the load–displacement curve, see
Figure 1.2.

The simulation consists of a loop over N load steps, where i is the current step number.
First a header is printed to denote the current load step. Then, the iterations are prepared in the
fragment〈Prepare iteration〉. Finally, the calculations are done in the fragment〈Iteration〉:

〈Step-wise calculation of the equilibrium path 〉≡ 25

for i in range(N):
print ’=================================’
print ’ Load step %i’ % i
print ’=================================’
print ’ NR iter : |Fext-F(v)|’

〈Prepare iteration 27〉
〈Iteration 28〉

An important feature of Python is that code blocks are defined by indentation. Code blocks
are collections of statements that are executed within an if statement, within a for statement,
or within a while loop. A block starts by indenting the code. A block ends by a reset to the
original indent. The specific Python indentation rules also apply in the literate programming
notation. In the above fragment, the new fragment 〈Prepare iteration〉 is executed within the
loop for i in range(N):, since the fragment name is indented with respect to the for
statement. The same holds for the fragment〈Iteration〉.

The preparation of the iteration consists of the update of the magnitude of the external force
Fext, and resetting the error and the iteration counter iiter:

〈Prepare iteration 〉≡ 27

Fext = Fext + DF
error = 1.
iiter = 0

The iteration itself is described in the following fragment:
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28 Non-linear Finite Element Analysis of Solids and Structures

〈Iteration 〉≡ 27

while error > tol:
iiter += 1
dv = ( 1. / dFdv(v+Dv) ) * ( Fext - F(v+Dv) )
Dv += dv
error = abs( Fext - F(v+Dv) )
print ’ Iter’, iiter, ’:’, error

if iiter == iterMax:
raise RuntimeError(’Iterations did not converge!’)

print ’ Converged solution’
v += Dv
Dv = 0.
output.append( [ v, F(v) ] )

In this fragment, the iteration counter iiter is initially increased by 1. The new displacement
increment dv is calculated in the second line and added to the total increment of this step Dv.
The error is calculated and printed in the following lines. In order to prevent the program from
entering an infinite loop, a runtime error occurs when the number of iterations exceeds the
maximum number of iterations. When the error is smaller than a certain tolerance, a converged
solution has been found. The total displacement v is updated, and this displacement and the
current internal force are added to the output list.

The last fragment of the〈Shallow truss example〉 program prints the results:

〈Print results 〉≡ 25

from pylab import plot, show, xlabel, ylabel

plot( [x[0] for x in output], [x[1] for x in output], ’ro’ )

The output array is plotted using pylab (a part of the MatPlotLib package). In this
fragment, list comprehension has been used to create two new lists that contain the data for
the horizontal and the vertical axes, respectively.

For this example problem, the exact solution F is known and can be added to the plot:

〈Print results 〉+≡ 28

from numpy import arange

vrange = arange(0,1.2,0.01)
plot( vrange, [F(vval) for vval in vrange], ’b-’ )
xlabel(’v [m]’)
ylabel(’F [N]’)

show()
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Preliminaries 29

The exact solution has been calculated in the range 0.0 ≤ F ≤ 1.2, with increments of 0.01.
After printing the labels for the horizontal and vertical axes, the graph appears on the screen
by invoking the command show().
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2
Non-linear Finite Element Analysis

The pure displacement version of the finite element method is the most convenient spatial
discretisation method for the majority of the applications of non-linear constitutive relations.
Its formulation is simple, and allows for a straightforward implementation of complicated
constitutive relations. However, in some cases the displacement version of the finite element
method ceases to give accurate results. In such cases one usually has to resort to mixed or hybrid
methods, e.g. Chapters 7 or 11. These methods tend to give answers that are more accurate
than pure displacement models, but there is an increased risk of improper element behaviour.
This is already the case for linear elastic material behaviour, but if material non-linearities
are incorporated, the possibility that spurious kinematic modes in elements are triggered is far
greater. In fact, this is another reason why pure displacement-based methods are often preferred
in finite element analyses involving material non-linearities such as plasticity or damage. We
shall therefore now outline displacement-based finite element models and the structure of
non-linear finite element codes based upon this concept.

2.1 Equilibrium and Virtual Work

The concept of stress is vital in the derivation of the equations of motion. An elegant way to
derive these equations is to consider the balance of momentum of a body V with boundary S

in its current configuration. With the stress vector t and the gravity acceleration assembled in
the vector g the linear momentum balance reads:

∫
S

tdS +
∫

V

ρgdV =
∫

V

ρüdV (2.1)

where ρ is the mass density, and a superimposed dot denotes differentiation with respect to
time. Using Equation (1.75) we can modify this equation to give:

∫
S

n · σdS +
∫

V

ρgdV =
∫

V

ρüdV (2.2)

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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32 Non-linear Finite Element Analysis of Solids and Structures

where n is the outward unit vector at the boundary of the body. The divergence theorem can
now be employed to give ∫

V

(∇ · σ + ρg − ρü) dV = 0 (2.3)

Since this identity must also hold for each subpart of the body, we must require that locally:

∇ · σ + ρg = ρü (2.4)

It is noted that by considering the balance of moment of momentum, the symmetry of the stress
tensor can be demonstrated (Box 2.1).

Box 2.1 Symmetry of the stress tensor

We start the proof by considering rotational equilibrium of a bodyB. If tk are the components
of the surface traction and if gk are the components of the gravity acceleration, we have:∫

S

eijkxjtkdS +
∫

V

ρeijkxjgkdV = 0

We insert the relation between the stress vector and the stress tensor to obtain:∫
S

eijkxjσlknldS +
∫

V

ρeijkxjgkdV = 0

with nl the components of the unit normal vector on the given plane. We next apply the
divergence theorem to give∫

V

(
eijk

∂xjσlk

∂xl

+ ρeijkxjgk

)
dV = 0

whence ∫
V

(
eijkxj

[
∂σlk

∂xl

+ ρgk

]
+ eijkδjlσlk

)
dV = 0

Because of translational equilibrium the first term in the integral vanishes. Using an argu-
ment similar to that used for the derivation of the equations of translational equilibrium we
require that the second integral holds pointwise: eijkδjlσlk = 0, which directly results in the
sought symmetry: σkl = σlk.

In the remainder of this chapter we shall adopt matrix-vector notation, and we introduce the
operator matrix L

LT =




∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x


 (2.5)
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Non-linear Finite Element Analysis 33

With Equation (2.5), Equation (2.4) can be recast in a compact matrix-vector format:

LTσ + ρg = ρü (2.6)

The crucial step is to transform Equation (2.6) into a weak formulation. To this end we multiply
this equation by a virtual displacement field δu and integrate over the domain V currently
occupied by the body: ∫

V

δuT(LTσ + ρg − ρü)dV = 0 (2.7)

We next apply the divergence theorem to obtain:∫
V

(
ρδuTü + (Lδu)Tσ

)
dV =

∫
V

ρδuTgdV +
∫

S

δuTtdS (2.8)

with the boundary conditions �n = t or u = up prescribed on complementary parts of the
body surface S, and the initial conditions: u(t0) = u0, u̇(t0) = u̇0.

Identity (2.8) is the weak form of the equation of motion and represents the principle of virtual
work expressed in the current configuration. It is emphasised that in the above derivation no
assumptions have been made with regard to the material behaviour, nor with respect to the
magnitude of the spatial gradients of the displacements. Consequently, it is valid for linear as
well as for non-linear material behaviour and for arbitrarily large displacement gradients.

2.2 Spatial Discretisation by Finite Elements

We shall now use Equation (2.8) as the starting point of the finite element approximation. We
adopt a pure displacement-based formulation, in which the displacements at nodes of elements
are considered as the fundamental unknowns. Upon introduction of a vector ak in which the
components (ax, ay, az) of the displacement vector at node k are gathered, we can approximate
the continuous displacement field u elementwise as:

u =
n∑

k=1

hk(ξ, η, ζ)ak (2.9)

where hk are the shape functions, or interpolation functions, of an element that is supported
by n nodes. Normally, the interpolation functions are polynomials expressed in terms of the
isoparametric coordinates (ξ, η, ζ), see Figure 2.1 and Box 2.2 for an example of an eight-noded
three-dimensional element. Upon introduction of the vector ae in which all the displacement
degrees of freedom of the nodes connected to this element are assembled

ae =




a1

a2

...

...

an




(2.10)
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34 Non-linear Finite Element Analysis of Solids and Structures

and the 3 × 3n matrix H,

H =




h1 0 0 h2 0 0 ... ... hn 0 0

0 h1 0 0 h2 0 ... ... 0 hn 0

0 0 h1 0 0 h2 ... ... 0 0 hn


 (2.11)

the interpolation of the continuous displacement field for all points within an element can be
written in a more compact manner:

u = Hae (2.12)

The displacements that are contained in the element-related vector ae can be related to the
global displacements contained in a global displacement vector a via an incidence or location
matrix Ze, which reflects the topology of the discretisation:

ae = Zea (2.13)

When the system consists of N global degrees of freedom Ze is a 3n × N matrix. If the global
coordinate system and the element coordinate system have the same axes, the matrix Ze simply
consists of zeros and ones, else the cosines and the sines of the transformation between both
coordinate systems enter this matrix. With the aid of Equations (2.12) and (2.13) the weak
form of the balance of momentum (2.8) can be reformulated as

ne∑
e=1

∫
Ve

ρ(HZeδa)THZeädV +
ne∑

e=1

∫
Ve

(LHZeδa)TσdV =
ne∑

e=1

∫
Ve

ρ(HZeδa)TgdV +
ne∑

e=1

∫
Se

(HZeδa)TtdS (2.14)

where all integrals extend over the element domain Ve of each of the ne elements of the finite
element mesh. The global nodal virtual displacements as collected in δa are independent of
the spatial coordinates, and can therefore be brought outside the integral as well as outside of
the summation sign. The incidence or location matrices Ze also do not depend on the spatial
coordinates, but are different for each element and can consequently be brought only outside
of the integral, but not outside of the summation operation. Considering that the latter equation
must hold for any virtual displacement we arrive at the semi-discrete balance of momentum:

Mä = fext − fint (2.15)

with the mass matrix,

M =
ne∑

e=1

ZT
e

∫
Ve

ρHTHdVZe (2.16)

the external force vector,

fext =
ne∑

e=1

ZT
e

∫
Ve

ρHTgdV +
ne∑

e=1

ZT
e

∫
Se

HTtdS (2.17)
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Non-linear Finite Element Analysis 35

and the internal force vector:

fint =
ne∑

e=1

ZT
e

∫
Ve

BTσdV (2.18)

with

B = LH (2.19)

the matrix that sets the relation between the strains within an element and the nodal displace-
ments. The connotation ‘semi-discrete’ is used since the discretisation only applies to the
spatial domain, but not (yet) to the time domain.

The evaluation of the mass matrix, and the external and internal force vectors [and also
that of the tangential stiffness matrix K that will be introduced in Equation (2.43)] require
computation of integrals over the element domain. The functions to be integrated can be
quite complex if higher-order interpolation functions are used, for axisymmetric configurations
where 1/r terms enter the integrand, if element geometries are used that are not rectangular,
or if geometric non-linearities are so important that they change the shape of the element from
its original rectangular form. These complexities make it virtually impossible to carry out
analytical integration of the integrals in Equations (2.16)–(2.18). If material non-linearities are
included, a closed-form evaluation of the integrals is impossible because of the a priori unknown
manner in which the non-linearity varies over the domain. For the above reasons numerical
integration is used almost exclusively when considering non-linearities, arising either from
material or from geometrical non-linearity.

To demonstrate the application of numerical integration, we shall take the element internal
force vector as an example. To facilitate the evaluation we will define a mapping from a cuboidal
parent element in a ξ, η, ζ-coordinate system (Figure 2.1), onto the actual, arbitrary geometry
of the element in the x, y, z-coordinate system. If ξT = [ξ, η, ζ] and if xT = [x, y, z] we have

x = x(ξ) (2.20)

The shape functions hk have been defined directly on the parent element in ξ, η, ζ coordinates,
cf. Equation (2.9). The derivatives that appear in Equation (2.18) through the presence of

8

ξ

ζ

η

3

1 2

4

5

7

6

Figure 2.1 Eight-noded three-dimensional element in isoparametric coordinates

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



36 Non-linear Finite Element Analysis of Solids and Structures

Box 2.2 Example of interpolation functions and derivatives

For an eight-noded three-dimensional element (Figure 2.1), the trilinear interpolation func-
tions are as follows:

h1 = 1
8 (1 + ξ)(1 + η)(1 + ζ) h5 = 1

8
(1 − ξ)(1 − η)(1 + ζ)

h2 = 1
8 (1 − ξ)(1 + η)(1 + ζ) h6 = 1

8
(1 − ξ)(1 + η)(1 − ζ)

h3 = 1
8 (1 + ξ)(1 − η)(1 + ζ) h7 = 1

8
(1 + ξ)(1 − η)(1 − ζ)

h4 = 1
8 (1 + ξ)(1 + η)(1 − ζ) h8 = 1

8
(1 − ξ)(1 − η)(1 − ζ)

The matrix B = LH involves differentiation with respect to the global coordinates x. How-
ever, the shape functions hk are functions of the isoparametric coordinates ξ. For this reason
the chain rule is used to obtain

∂hk

∂ξ
= ∂x

∂ξ

∂hk

∂x
= J

∂hk

∂x

cf. Equation (2.22), or upon inversion,

∂hk

∂x
= J−1 ∂hk

∂ξ

The B matrix is then retrieved as:

B = J−1




∂h1
∂ξ

0 0 ∂h2
∂ξ

0 0 ... ... ∂h8
∂ξ

0 0

0 ∂h1
∂η

0 0 ∂h2
∂η

0 ... ... 0 ∂h8
∂η

0

0 0 ∂h1
∂ζ

0 0 ∂h2
∂ζ

... ... 0 0 ∂h8
∂ζ

∂h1
∂η

∂h1
∂ξ

0 ∂h2
∂η

∂h2
∂ξ

0 ... ... ∂h8
∂η

∂h8
∂ξ

0

0 ∂h1
∂ζ

∂h1
∂η

0 ∂h2
∂ζ

∂h2
∂η

... ... 0 ∂h8
∂ζ

∂h8
∂η

∂h1
∂ζ

0 ∂h1
∂ξ

∂h2
∂ζ

0 ∂h2
∂ξ

... ... ∂h8
∂ζ

0 ∂h8
∂ξ




where the inverse of the Jacobian is now written as a 6 × 6 matrix, filled at appropriate
entries and expressed in terms of isoparametric coordinates, see Equation (2.25).

the B matrix are computed via straightforward differentiation, cf. Box 2.2. Using a standard
transformation the integration domain in x, y, z-coordinates can subsequently be converted
into the simple cuboidal domain of the parent element:

fint =
ne∑

e=1

ZT
e

∫ +1

−1

∫ +1

−1

∫ +1

−1
(detJ)BTσdξdηdζ (2.21)
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Non-linear Finite Element Analysis 37

where the advantage of defining the shape functions hk in terms of isoparametric coordinates
becomes apparent. In Equation (2.21) J is the Jacobian matrix of the mapping x = x(ξ) as
defined through:

J = ∂x
∂ξ

(2.22)

or, written in component form:

J =




∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ


 (2.23)

Similar to the interpolation of the displacement field in Equation (2.9) we interpolate the
geometry of the element via

x =
n∑

k=1

hk(ξ, η, ζ)xk (2.24)

with xT
k = (xk, yk, zk), the set (xk, yk, zk) being the spatial coordinates of node k. When the

functions hk used for the interpolation of the displacement field are the same as those used for
the interpolation of the geometry we refer to the element formulation as isoparametric. When
lower-order interpolation functions are used for the geometry than for the displacement field,
the formulation is called subparametric, while the terminology superparametric is employed
for the case that the interpolation of the geometry is done with higher-order polynomials than
that of the displacement field. For simplicity we shall adhere to the isoparametric concept.
Then, the Jacobian matrix takes the following simple form:

J =
n∑

k=1

∂hk

∂ξ
xT
k (2.25)

Finally, numerical integration is applied for the computation of the integral of Equation (2.21):

fint =
ne∑

e=1

ZT
e

ni∑
i=1

wi(detJi)BT
i σi (2.26)

with wi the weight factor of integration point i, and ni the number of integration points in
element e.

All matrices in Equations (2.16)–(2.18) must be evaluated separately for each individual
integration point. The behaviour at an integration point is thought to be representative for the
tributary area that ‘belongs’ to this integration point. For continuum elements it has become
customary to employ Gauss integration, as it provides the highest accuracy for a given number of
integration points. For the through-the-thickness integration of structural elements like beams,
plates and shells, Gauss integration is less appropriate and Simpson, Lobatto, or Newton–
Cotes integration rules are generally preferred, see also Chapters 9 and 10. Also for interface
elements, the latter type of integration rules are superior, since in this case the application of
Gauss integration rules tends to result in oscillatory stress fields, see Chapter 13.
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38 Non-linear Finite Element Analysis of Solids and Structures

2.3 PyFEM: Shape Function Utilities

In the previous section, the weak form of the balance of momentum equation has been discre-
tised by means of finite element shape functions. In this section, we will take a closer look at
the implementation of these shape functions in the finite element code PyFEM. The numerical
integration of a domain, which is closely related to the spatial discretisation, is also dealt with
in these routines.

The complete implementation of the shape functions and the corresponding numerical in-
tegration can be found in the file shapeFunctions.py in the directory pyfem/util of
the PyFEM code. The file contains the data structure definitions as well as the implementation
of various functions:

〈Shape functions 〉≡
〈Shape function data structures 38〉
〈Shape function algorithms 40〉
〈Shape function main routine 39〉

The fragment〈Shape function data structures〉 contains the class definitions of the data struc-
tures that contain the element shape functions and the numerical integration scheme of an
element. Irrespective of the kind of numerical integration technique that is used, the values of
the shape functions and their derivatives are calculated in the integration points. All the data
in an integration point are stored in an object of the type shapeData:

〈Shape function data structures 〉≡ 38

class shapeData:
pass

The class shapeData is initially empty and is gradually filled with the values of the shape
functions at this point, by their derivatives and by the integration weight.

It can be useful to compute the shape function and the integration data of all the inte-
gration points in an element at once. This information is stored in an object of the type
elemShapeData:

〈Shape function data structures 〉+≡ 38

class elemShapeData:

def __init__( self ):
self.sData = []

def __iter__( self ):
return iter(self.sData)

def __len__( self ):
return len(self.sData)
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Non-linear Finite Element Analysis 39

This class contains a single member: an empty list named sData which will be appended
with objects of the type shapeData. The function __iter__ has been defined in order to
be able to iterate over the items in the list sData. The function __len__ returns the number
of items in this list.

The main routine of the code is getElemShapeData, which can be used to obtain the
shape function and the integration point data in an element.

〈Shape function main routine 〉≡ 38

def getElemShapeData( elemCoords , order = 0 , \
method = ’Gauss’ , elemType = ’default’ ):

elemData = elemShapeData() 38

if elemType == ’default’:
elemType = getElemType( elemCoords )

(intCrds,intWghts) = getIntPoints( elemType , order , method )

for xi,weight in zip( intCrds , intWghts ):

try:
sData = eval( ’getShape’+elemType+’(xi)’ ) 40

except:
raise NotImplementedError(’Unknown type :’+elemType)

jac = dot ( elemCoords.transpose() , sData.dhdxi )

if jac.shape[0] is jac.shape[1]:
sData.dhdx = dot ( sData.dhdxi , inv( jac ) )

sData.weight = calcWeight( jac ) * weight

elemData.sData.append(sData)

return elemData

This function has four arguments. The array elemCoords passes the coordinates of the
nodes of the element. These coordinates are defined in the global reference frame. The
second argument, order, is used to specify the order of the numerical integration scheme.
The default value 0 indicates that the standard integration order is used. The argument
method selects the integration scheme. ’Gauss’ integration is the default scheme, but
’Newton-Cotes’, ’Lobatto’ and ’Simpson’ schemes are also available. Finally,
elemType sets the parent element type that is used to construct the shape functions, e.g.
Line2, Quad4 or Hexa8. When this argument is set to ’default’, the element type is
derived from the number of nodes of the element and the spatial dimensions.
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40 Non-linear Finite Element Analysis of Solids and Structures

In this routine, an empty object elemData of the type elemShapeData is created
first. If elemType is not specified, the type of the element is determined by the function
getElemType. This is done by checking the dimensions of the two-dimensional array
elemCoords. The number of rows in this array is equal to the number of nodes that support
the element, while the number of columns is equal to the spatial dimension of the element. The
function returns the element type as a string. For example, when the dimensions of the array
elemCoords are equal to (4,2), the function getElemType returns the string Quad4,
which indicates a four-noded quadrilateral element.

The position of the integration points in the parent element and the corresponding integration
weights are determined by the function getIntPoints. The positions and the weights
depend on the element type, on the order of integration and on the integration scheme, which
are the arguments of the function. The output is the two-dimensional array intCrds, which
contains the coordinates of the integration point in the parent element coordinate system and
the array intWghts in which the integration weights are stored. The length of these arrays
specify the number of integration points in the element.

Next, a loop over the integration points is carried out. For each point xi the corresponding
shape functions and their derivatives are calculated. For a four-noded quadrilateral element,
this is done in the function getShapeQuad4. Note that in the code, the function call is
somewhat hidden in the command eval( ’getShape’+elemType+’(xi)’) where
the string elemType has the value ’Quad4’. This function returns the object sData of the
type shapeData which contains the values of the shape functions and its spatial derivatives
in the parent element coordinate system.

When the spatial derivatives of the physical element and the parent element are identical,
i.e. when the Jacobian in Equation (2.22) is a square matrix, the derivatives of the shape
functions in the physical space can be calculated and stored in sData as the member dhdx.
Finally, the integration weight is calculated, which is composed of the weight factor of the
integration point in the parent element weight, and an additional factor for the mapping to
the physical element. This parameter is calculated in the function calcWeight. When the
spatial dimensions of the parent and the physical element are identical, this factor is equal to
the absolute value of the determinant of the Jacobian: jac. Finally, the integration point data
sData is appended to the list of integration point data of the element.

The implementation of the function getShapeQuad4 is given by:

〈Shape function algorithms 〉≡ 38

def getShapeQuad4( xi ):

sData = shapeData() 38
sData.h = empty(4)
sData.xi = xi

sData.h[0] = 0.25*(1.0-xi[0])*(1.0-xi[1])
sData.h[1] = 0.25*(1.0+xi[0])*(1.0-xi[1])
sData.h[2] = 0.25*(1.0+xi[0])*(1.0+xi[1])
sData.h[3] = 0.25*(1.0-xi[0])*(1.0+xi[1])
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Non-linear Finite Element Analysis 41

The argument xi of this function is an array of length two which represents the parent element
coordinate ξ = [ξ, η]. First, an object sData of the type shapeData is created in which the
coordinate xi is stored. The values of the interpolation functions hi are stored in the member
h, which is a one-dimensional array of length four. The values of the shape function hi in
point ξ are calculated next. It is is noted that in Python the index of arrays start counting at
zero. Hence, h[0] represents the value of the interpolation function for the first node in point
h1(ξ), etc. The derivatives of the interpolation functions with respect to the coordinate ξ are
calculated next:

〈Shape function algorithms 〉+≡ 40

sData.dhdxi = empty( shape=(4,2) )

sData.dhdxi[0,0] = -0.25*(1.0-xi[1])
sData.dhdxi[1,0] = 0.25*(1.0-xi[1])
sData.dhdxi[2,0] = 0.25*(1.0+xi[1])
sData.dhdxi[3,0] = -0.25*(1.0+xi[1])

〈Calculate derivatives of shape functions hi with respect to η〉

return sData

Similar routines are available for the calculation of the shape functions and derivatives for
a variety of one- two- and three-dimensional elements. The procedure in the routine
getElemShape remains the same for all cases.

2.4 Incremental-iterative Analysis

For quasi-static processes Equation (2.15) reduces to:

fext − fint = 0 (2.27)

For purely static processes, time plays no role anymore. Yet, also then we need a parameter
to order the sequence of events. For this reason we shall continue to use the concept of ‘time’
also in static mechanical processes to order the loading sequence. In particular, the concept of
time can be employed to apply the external load in a number of loading steps (or increments).
It would be possible to impose the entire external load fext in a single step, but this is not a
sensible approach because of the following reasons:

• The set of algebraic equations that arises from the discretisation of a non-linear continuum
model is non-linear, thus necessitating the use of an iterative procedure for its solution. For
very large loading steps, the case of imposing the entire load in one step being the extreme,
it is usually difficult to obtain a properly converged solution, if a solution can be obtained at
all. Indeed, the convergence radius is limited for most commonly used iterative procedures,
including the Newton–Raphson method.
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42 Non-linear Finite Element Analysis of Solids and Structures

• Experiments show that most materials exhibit path-dependent behaviour. This means that
different values for the stress are obtained depending on the strain path that is followed.
For instance, the resulting stress can be different when we first apply tension on a panel
followed by a shear strain increment or when the same strain increments are imposed in the
reverse order. Evidently, the structural behaviour can only be predicted correctly if the strain
increments are relatively small, so that the strain path is followed as closely as possible.

Along this line of reasoning we decompose the vector of unknown stress components at
time t + �t, denoted by σt+�t into a stress vector σt at time t when the stress components are
known, and �σ which contains the hitherto unknown components of the stress increment:

σt+�t = σt + �σ (2.28)

Substituting this additive decomposition into Equation (2.27) and using Equation (2.18) results
in:

f t+�t
ext −

ne∑
e=1

ZT
e

∫
Ve

BTσtdV −
ne∑

e=1

ZT
e

∫
Ve

BT�σdV = 0 (2.29)

where the superscript t + �t is attached to fext to emphasise that the external force vector must
be evaluated at time t + �t. The set of Equations (2.29) can be non-linear for two reasons.
First, the stress increment �σ generally depends on the displacement increment �u in a non-
linear manner. Secondly, the volume of the element Ve over which the integration extends
is unknown at time t + �t. In other words, the integrals of Equation (2.29) depend on the
incremental nodal displacements �a, which are not yet known. We will show in the next
chapter that this problem can be solved by an adequate mapping to a reference configuration,
and presently it suffices to just note this source of geometric non-linearity, and linearise, so that
the integrals of Equation (2.29) become independent of the nodal displacement increments.

We now use Equation (2.18) to rewrite Equation (2.29) as:

ne∑
e=1

ZT
e

∫
V

BT�σdV = f t+�t
ext − f t

int (2.30)

The superscript t has been attached explicitly to fint to underscore that the internal force vector
has been evaluated at time t, i.e. for σ = σt .

The solution of the set of non-linear Equations (2.30) requires the use of an iterative solution
technique. Typically, such techniques, for instance the Newton–Raphson method which is
frequently used in structural analysis, involve repeated linearisation of the governing equations.
Hence, we must linearise the dependence of the stress increment �σ on the displacement
increment �u. The stress increment �σ depends on the increment of the strain tensor, say �ε

(we by pass which definition of the strain tensor should be used), while the increment of the
strain tensor can be a non-linear function of the increment of the continuous displacement field
�u:

�σ = �σ(�ε(�u)) (2.31)
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Non-linear Finite Element Analysis 43

The stress increment, �σ can be linearised as:

δσ =
(

∂σ

∂ε

)t

δε (2.32)

Defining

D =
(

∂σ

∂ε

)t

(2.33)

as the material tangential stiffness matrix, we can also write:

δσ = Dδε (2.34)

We furthermore note that the second term on the left-hand side of Equation (2.8) represents
the internal virtual work δWint. Since by definition we also have

δWint =
∫

V

δεTσdV (2.35)

with ε the work-conjugate strain measure, the kinematic relation between the variation of the
strain tensor and that of the continuous displacement field directly follows:

δε = Lδu (2.36)

and, for quasi-static loading conditions, Equation (2.8) is rewritten as:∫
V

δεTσdV =
∫

V

ρδuTgdV +
∫

S

δuTtdS (2.37)

Using Equation (2.36) the variation of the stress becomes:

δσ = DLδu (2.38)

Inserting the interpolation (2.12) for the continuous displacements one obtains:

δσ = DLHδae (2.39)

or using Equation (2.13):

δσ = DLHZeδa (2.40)

Inserting this result into Equation (2.30) and using Equation (2.19) to introduce B yields the
linearised equation for a finite load increment:

ne∑
e=1

ZT
e

∫
Ve

BTDBZe�adV = f t+�t
ext − f t

int (2.41)

Since the incremental nodal displacements do not depend upon the spatial coordinates, they
can be brought outside the integral and one obtains the following linearised set of N equations:

K�a = f t+�t
ext − f t

int (2.42)
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44 Non-linear Finite Element Analysis of Solids and Structures

where

K =
ne∑

e=1

ZT
e

(∫
Ve

BTDBdV

)
Ze (2.43)

has been introduced, which is the tangential stiffness matrix of the structure upon a small
increment of loading. Equation (2.42) can readily be solved since it is a set of N linear equations.

Often, the set (2.42) is written in a slightly different format:

K�a = �fext + f t
ext − f t

int (2.44)

where the external load vector has been split into the load increment during the present step
and the contribution that had already been applied to the structure at the beginning of the
step. Furthermore, we often consider only a single load type during a non-linear analysis. This
definitely holds during an increment, and we can rewrite the load increment as �λf̂ext with
�λ a scalar-valued incremental load parameter, and f̂ext the normalised external load vector,
so that:

K�a = �λf̂ext + f t
ext − f t

int (2.45)

In the above derivation, both the non-linear stress–strain relation and the non-linear relation
between the (incremental) strains and the (incremental) displacements were linearised at the
beginning of the loading step, i.e. at time t, while the loading step ranges from t to t + �t.
This linearisation leads to a ‘drifting away’ from the true equilibrium solution, especially if
relatively large loadings steps are employed. A graphical illustration of this ‘drifting tendency’
is provided in Figures 2.2 and 2.3. The gradual departure of the numerical solution from the
true solution can be prevented, or at least be made smaller, by adding equilibrium iterations
within each loading step. Now, we obtain an incremental-iterative procedure instead of a pure
incremental procedure. In an incremental-iterative solution method a first estimate for the
displacement increment �a is made through

�a1 = K−1
0 r0 (2.46)

∆fext
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Figure 2.2 Purely incremental solution procedure
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Non-linear Finite Element Analysis 45

0.5 1.0
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Displacement (m)

Figure 2.3 Application of incremental solution procedure to shallow truss for a spring stiffness k =
1000 N/m

with

r0 = f t+�t
ext − fint,0 (2.47)

the residual vector, or out-of-balance vector at the beginning of the load increment. The sub-
script 1 of �a signifies that we deal with the estimate in the first iteration for the incremental
displacement vector. Likewise, the subscript 0 of the internal force vector relates to the fact
that this vector is calculated using the stresses at the beginning of the loading step, i.e. that are
left behind at the end of the previous iteration (σ0 = σt):

fint,0 =
ne∑

e=1

ZT
e

ni∑
i=1

wi(detJi)BT
i σi,0 (2.48)

From the incremental displacement vector �a1 a first estimate for the strain increment �ε1
can be calculated, whereupon, using the stress–strain law, the stress increment �σ1 can be
computed. The stresses after the first iteration are then given by:

σ1 = σ0 + �σ1 (2.49)

Generally, the internal force vector fint,1 that is computed on the basis of the stresses σ1 is
not in equilibrium with the external loads f t+�t

ext that have been added up to and including this
loading step. For this reason a correction to the displacement increment is necessary. Denoting
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46 Non-linear Finite Element Analysis of Solids and Structures

this correction by da2,

da2 = K−1
1 r1 with r1 = f t+�t

ext − fint,1 (2.50)

and K1 the updated tangential stiffness matrix, the displacement increment after the second
iteration in the loading step follows from

�a2 = �a1 + da2 (2.51)

In a similar fashion to the calculation of the strain and stress increment in the first iteration the
quantities �ε2 and �σ2 are now computed. From the latter quantity an improved approximation
for the stress at the end of the loading step, σ2 can be made. This process can be summarised
as:

rj = f t+�t
ext − fint,j

daj+1 = K−1
j rj

�aj+1 = �aj + daj+1

�εi,j+1 = �εi(�aj+1)

�σi,j+1 = �σi(�εi,j+1) (2.52)

σi,j+1 = σi,0 + �σi,j+1

fint,j+1 =
ne∑

e=1

ZT
e

ni∑
i=1

wi(detJi)BT
i,j+1σi,j+1

where the operations in lines three to six have to be done for each integration point, denoted
by the index i. This iterative process ultimately results in stresses that are in equilibrium
internally and with the applied external loading within some user-prescribed convergence
tolerance. A graphical explanation is given in Figure 2.4, while the algorithm that underlies
essentially any incremental-iterative procedure in non-linear finite element analysis is given
in Box 2.3.

The procedure summarised in Equations (2.52) is called the total-incremental method. Every
iteration the total displacement increment within the step is computed and on the basis of
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Figure 2.4 Incremental-iterative solution procedure
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Non-linear Finite Element Analysis 47

Box 2.3 Computational flow in a non-linear finite element code

For each loading step:

1. Initialise the data for the loading step. Set �a0 = 0.
2. Compute the new external force vector f t+�t

ext .
3. Compute the tangential stiffness matrix:

Kj =
ne∑

e=1

ZT
e

ni∑
i=1

widetJiBT
i,jDi,jBi,jZe

4. Adjust for prescribed displacements and linear dependence relations.
5. Solve, e.g. by LDU decomposition, the linear system:

Kjdaj+1 = f t+�t
ext − fint,j

6. Add the correction daj+1 to the incremental displacement vector:

�aj+1 = �aj + daj+1

7. Compute the strain increment �εi,j+1 for each integration point i:

�aj+1 → �εi,j+1

8. Compute the stress increment from the strain increment for each integration point i:

�εi,j+1 → �σi,j+1

9. Add the stress increment to σi,0 for each integration point i:

σi,j+1 = σi,0 + �σi,j+1

10. Compute the internal force vector:

fint,j+1 =
ne∑

e=1

ZT
e

ni∑
i=1

widetJiBT
i,j+1σi,j+1

11. Check convergence. Is ‖f t+�t
ext − fint,j+1‖ < η, with η a small number? If yes, go to next

loading step, else go to 3.

this total displacement increment the total strain increment and the total stress increment are
computed. Then, the new stresses are found as the sum of the stresses at the beginning of the
step and the total stress increment. As an alternative approach, we might continue to work
with corrections. Rather than first adding the correction to the total displacement increment
obtained in the previous iteration, we could also proceed by calculating a correction to the strain
increment dεi,j+1, which can be used to compute a correction to the stress increment dσi,j+1.
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48 Non-linear Finite Element Analysis of Solids and Structures

This so-called delta-incremental method is less robust, particularly when we have materially
non-linear models in which we have different behaviour in loading than in unloading, e.g.
plasticity. Then, the delta-incremental update methodology can result in pseudo-unloading
which impairs numerical stability.

An issue that has not been discussed yet, is the implicit assumption that the tangential
stiffness matrix Kj is updated after each iteration, see for instance Figure 2.4. This is by no
means necessary, since, as long as the stresses are determined in a proper manner and the
resulting internal force vector is computed on the basis of these stresses and inserted on the
right-hand side of Equation (2.15), it is in most cases less relevant which stiffness matrix is
being used to iterate towards equilibrium. Indeed, it can be rather costly to compute and to
decompose a stiffness matrix every iteration, as is being done within a full Newton–Raphson
process, especially in computations of three-dimensional structures. This has motivated the
search for methods which obviate the need to construct and decompose a tangential stiffness
matrix in every iteration. Here, we will consider two classes of such methods.

In the first class, the stiffness matrix is obtained simply by setting up a new tangential stiffness
only every few iterations, or only once within a loading step. It is assumed that the stiffness
matrix varies so slowly that the stiffness matrix set up in an iteration serves as a reasonably
accurate approximation of the tangential stiffness for a couple of subsequent iterations. It is
anticipated that the slowing down of the convergence speed, actually the loss of quadratic
convergence that is characteristic of Newton’s method, is off set by the gain in computer time
within each iteration.

An alternative to the full Newton–Raphson method is setting up and decomposing the tan-
gential stiffness matrix only once within every loading step. Within this modified Newton–
Raphson method (Figure 2.5), some alternatives exist with regard to the iteration in which the
stiffness matrix is computed anew. The most classical approach is at the beginning of a load-
ing step. An advantage is that all state variables are computed on the basis of an equilibrium
state (presuming of course that a converged solution has been obtained in the preceding load
increment). The variant in which the stiffness matrix is only reformulated at the beginning
of the second iteration of each load increment does not have this advantage, but also does
not suffer from the drawback of the first variant, namely that none of the non-linearities that
arise during the loading step are incorporated in the stiffness matrix that is being used in the
majority of the iterations. In particular sudden (physical) non-linearities, e.g. local unloading
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Figure 2.5 Modified Newton–Raphson iteration scheme
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Non-linear Finite Element Analysis 49
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Figure 2.6 Linear elastic stiffness iteration scheme

from an inelastic to an elastic state, can cause convergence difficulties, since the conventional
modified Newton–Raphson procedure cannot cope well with either local or global stiffening
of structural behaviour. Using the linear-elastic stiffness matrix in the first iteration, and then
setting up, decomposing and using the tangential stiffness matrix in the subsequent iterations
can be even more effective. By doing so we allow for local or global unloading, so that we do
not iterate with a ‘too soft’ stiffness matrix, which can result in divergence.

The simplest variant in this class of methods is the Initial Stiffness method, shown in Fig-
ure 2.6. In this scheme, the stiffness matrix is set up and decomposed only at the beginning of
the first loading step. It is obvious that, especially when the failure load is approached and the
current stiffness deviates considerably from this initial, linear-elastic stiffness, convergence
becomes slow and a large number of iterations are required to obtain a reasonable accuracy.
Experience shows, that often a rather slack convergence tolerance (for more information see
Chapter 4) must be adopted in order for the number of iterations to remain below approxi-
mately thirty. As a result of the inability to stick to a tight convergence tolerance with this
scheme the failure load can be overestimated. However, by continuing the calculation beyond
the limit point of the load–deflection curve the proper failure load can sometimes be obtained,
since the additional iterations that are added in these post-peak increments result in a levelling
out of the load–deflection path until the true failure load has been reached. This phenomenon
can be called ‘numerical softening’. One has to be careful to distinguish properly between this
numerical artifact and true structural softening which occurs for instance with the snapping of
thin shells and for certain types of constitutive models, e.g. softening plasticity or damage.

The difference in convergence behaviour between the full Newton–Raphson method, the
modified Newton–Raphson method and the Initial Stiffness method can be nicely illustrated
by the truss in Figure 1.1. We take the case without a spring (k = 0) and as convergence criterion
we take that the change in computed displacement from one iteration to the next should not be
smaller than 10−6. The load is applied in four equal increments of 30 N. With a failure load of
116.9 N this implies that the last loading step exceeds the limit load and the iterative process
should diverge. Indeed, from Table 2.1 we observe that this is the case for all three methods.
We also observe that the convergence behaviour becomes slower at each loading step for the
modified Newton–Raphson method and for the elastic-stiffness method, while, until failure,
with the full Newton–Raphson method convergence is attained within four to five iterations.
Moreover, from Table 2.2, which gives the convergence behaviour of the Newton–Raphson
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50 Non-linear Finite Element Analysis of Solids and Structures

Table 2.1 Comparison of iteration methods

Load (N) FNR MNR IS

30 4 8 8
60 4 10 13
90 5 13 23
120 +100 +100 +100

FNR, full Newton–Raphson method; MNR, modified Newton–Raphson method;
IS, Initial Stiffness method.

Table 2.2 Full Newton–Raphson method

Step 1 Step 2 Step 3 Step 4

0.24 × 10−1 0.28 × 10−1 0.36 × 10−1 0.52 × 10−1

0.20 × 10−2 0.32 × 10−2 0.67 × 10−2 0.28 × 10−1

0.13 × 10−4 0.42 × 10−4 0.24 × 10−3 0.15 × 10−1

0.59 × 10−9 0.68 × 10−8 0.29 × 10−6 0.78 × 10−2

— — 0.44 × 10−12 0.42 × 10−2

— — — 0.29 × 10−2

— — — 0.25 × 10−1

— — — −0.13 × 10−1

method at each step for the first eight iterations, we observe that if the error at iteration j is
εj , we approximately have for the error at iteration j + 1: εj+1 = C(εj)2, with C a constant.
This so-called quadratic convergence is typical for this iterative process once we are within
the so-called radius of convergence, i.e. when we are sufficiently close to the solution that
subsequent iterations will indeed yield convergence to the solution.

The second class of methods consists of the so-called Quasi-Newton methods or Secant-
Newton methods. These methods apply updates on existing tangential stiffness matrices such
that the stiffness in the subsequent iteration is computed using a multi-dimensional secant
approximation. A more in-depth discussion of this class of methods is given in Chapter 4.

2.5 Load versus Displacement Control

In the preceding section the load has been applied to the structure in a number of steps. This
process is named load control. Alternatively, we can prescribe displacement increments. This
so-called displacement control procedure causes a stress development within the specimen,
which in turn results in nodal forces at the nodes where the displacements are prescribed.
Summation of these forces gives the total reaction force, which, except for a minus sign,
equals the equivalent external load that would be caused by the prescribed displacements.

Often the physics dictate which type of load application is the most obvious choice. With
creep problems, for instance, the loads must be prescribed (Chapter 8). For other problems
displacement control is a more natural choice, such as when a very stiff plate is pushed into a
relatively soft subsoil. However, when there is no preference for either load or displacement
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Non-linear Finite Element Analysis 51

control from a physical point of view, the latter method is often to be preferred. The reasons
for the preference for displacement control are twofold:

• The tangential stiffness matrix is better conditioned for displacement control than for load
control. This tends to result in a faster convergence behaviour of the iterative procedure.

• Under load control, the tangential stiffness matrix becomes singular at a limit point in the
load–deflection diagram, not only when global failure occurs, but also when we have a local
maximum along this curve (Figure 2.7). The tangential stiffness matrix of the displacement
controlled problem, on the other hand, does not become singular.

These statements are best elucidated starting from Equation (2.42). This equation has been
derived for load control, and the prescribed external load level is contained explicitly in the
vector fext. The use of displacement control does not directly cause external forces to be exerted
on the structure. Rather, a number of non-zero displacements are prescribed in an incremental
loading programme. We now decompose the incremental displacement vector �a into a vector
that contains only degrees of freedom that are ‘free’, i.e. which have to be calculated, �af , and
displacement increments that have been assigned a certain non-zero value, �ap:

�a =
[

�af

�ap

]
(2.53)

In a similar manner the stiffness matrix can be partitioned, as follows:

K =
[

Kff Kfp

Kpf Kpp

]
(2.54)

Using Equations (2.53) and (2.54), Equation (2.42) can be replaced by the expression[
Kff Kfp

Kpf Kpp

] [
�af

�ap

]
= −

[
(ff )int,0

(fp)int,0

]
(2.55)

where it has been assumed that, apart from the prescribed displacements, no other forces act
on the structure. Next, the unknown or ‘free’ displacement increments can be calculated by
eliminating �ap from Equation (2.55). For the first iteration this elimination process yields

�af,1 = −K−1
ff (Kfp�ap + (ff )int,0) (2.56)

while in the subsequent iterations the formula for computing the unknown degrees of freedom
changes into:

daf,j+1 = −K−1
ff (ff )int,j (2.57)

since dap vanishes. Comparison of Equations (2.42) and (2.56) shows, that for the first itera-
tion the external load f t+�t

ext must be replaced by the ‘equivalent force vector’ Kfp�ap when
switching from load to displacement control. In the next iterations this contribution vanishes
altogether for displacement control.
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52 Non-linear Finite Element Analysis of Solids and Structures
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Figure 2.7 Singularity of tangential stiffness matrix at limit point and divergence of iterative procedure

The most important distinction between load and displacement control lies in the fact that
load control requires the inversion (or in practice the LDU decomposition) of the matrix K
while in the latter method only the reduced stiffness matrix Kff needs to be inverted (or fac-
torised). For symmetric matrices, which covers the majority of all practical computations, it
is possible to show that the spectral radius of Kff , i.e. the quotient of the largest and smallest
eigenvalues, is smaller than or equal to that of K. A heuristic reasoning is that a better condi-
tioned tangential stiffness matrix results in a faster convergence, and since displacement control
involves iterating with a better conditioned tangential stiffness matrix, the result is ultimately a
faster convergence for displacement control than for load control. An additional advantage of
displacement control is that the tangential stiffness matrix Kff does not become singular at a
local or global peak load in the load–displacement curve, whereas the tangential stiffness ma-
trix K that is used in conjunction with load control does (Figure 2.7). In fact, the problem is not
so much that use of load control results in a tangential stiffness matrix that becomes singular at
limit points. For instance, one might argue that use of an elastic stiffness matrix or some other
Ersatz-stiffness matrix would circumvent the problem of decomposing the tangential stiffness
matrix at a singular point. However, the basic problem is that in load controlled processes
one tries to find an intersection between the horizontal line in the load–displacement diagram
which characterises the load level that is imposed on the structure and the load–displacement
path, but that there does not exist such an intersection point (Figure 2.7). The result is obviously
divergence of the iterative procedure, which manifests itself in an unbounded growth of the
unbalanced forces, i.e. the difference between external load and internal forces. Displacement
control does not share this disadvantage, since we now strive to calculate the intersection point
of the load–displacement curve with the vertical line in Figure 2.8. The latter line is the result of
imposing a fixed value for one of the degrees of freedom (displacements). Nonetheless, some
types of structural behaviour are still not traceable with a displacement control procedure. This
is obviously the case when the physics prohibit the use of displacement control, e.g. in creep
problems, or when in the course of the loading process the displacements under externally
applied forces do not grow at an equal pace. Displacement control also cannot be applied for
structural behaviour, as shown in Figure 2.8 (so-called snap-back behaviour which is encoun-
tered in geometrically non-linear behaviour of thin shells and for strain-softening constitutive
relations). The most elegant procedure that can be used to analyse these kinds of problems
properly is known as a ‘path-following method’, or ‘arc-length control’, see Chapter 4.
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Figure 2.8 Intersection of the load–displacement curve with a line that represents a fixed value of one
degree of freedom and ‘snap-back’ behaviour

2.6 PyFEM: A Linear Finite Element Code with Displacement Control

The implementation of a finite element simulation under displacement control is demonstrated
by means of a patch test. Patch tests are simple finite element simulations which are intended to
demonstrate that an element possesses some basic requirements, such as the ability to represent
a uniform stress state. The following patch test is taken from MacNeal and Harder (1985).

We consider a rectangular domain, shown in Figure 2.9. The domain is discretised by five
quadrilateral elements. The positions of the nodes are chosen such that all elements are skewed
and are mildly distorted. The positions of the internal nodes 4, 5, 6, and 7 are given in the figure.
The displacements a = (ax, ay) of the external nodes 0, 1, 2, and 3 are prescribed according
to the relations:

ax(x, y) = 10−3(x + y/2) ; ay(x, y) = 10−3(y + x/2) (2.58)

Finally, a plane-stress constitutive relation is assumed with Young’s modulus E = 106 and
Poisson’s ratio ν = 0.25.

5

23

7 6

4

10 x

y

0.24

0.12

Node x y

4 0.04 0.02

5 0.18 0.03

6 0.16 0.08

7 0.08 0.08

Figure 2.9 Patch test for linear quadrilateral elements. The positions of the internal nodes (4,5,6,7) are
given on the right
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54 Non-linear Finite Element Analysis of Solids and Structures

Box 2.4 Computational flow in a linear elastic finite element code

1. Compute the tangential stiffness matrix of the undeformed system:

K =
ne∑

e=1

ZT
e

ni∑
i=1

widetJiBT
i DBiZe

2. Adjust for prescribed displacements and linear dependence relations.
3. Solve the system: Ka = fext
4. Compute the stresses from the total strain for each integration point i:

σi = Dεi = DBiae.

5. Compute the internal force vector:

fint =
ne∑

e=1

ZT
e

ni∑
i=1

widetJiBT
i σi

In this chapter, we have focused on the solution of a non-linear problem using the Newton–
Raphson iterative method. The linear solution can be considered as a further simplification of
this algorithm and deals with the solution of the following system:

Ka = fext (2.59)

where K is the stiffness matrix of the undeformed structure, a is the total displacement vector
and fext is the external force vector. The complete procedure to solve this system and to calculate
the resulting stresses is described in Box 2.4.

The code for solving the patch test can be found in the directory examples/ch02 and is
called PatchTest.py. The file contains all the tools for the solution, including the material
and element formulation. The outline of the code is as follows:

〈Patch test example 〉≡
〈Patch test utility functions 57〉
〈Patch test main code 55〉

In the fragment〈Patch test utility functions〉, we describe a number of common functions that
will be used at different locations in the code. The program is listed in the fragment〈Patch test
main code〉:
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Non-linear Finite Element Analysis 55

〈Patch test main code 〉≡ 54

〈Description of geometry and boundary conditions 55〉
〈Solution procedure 58〉
〈Post processing the results〉

The main code of this example can be split into three parts. In the first part, 〈Description of
geometry and boundary conditions〉, the geometry, the boundary conditions and the material
parameters are specified. The solution procedure for linear systems (Box 2.4), is given in
〈Solution procedure〉. Finally, the program is completed by printing the results in the fragment
〈Post processing the results〉.

A finite element mesh is described by two sets of data: (i) the position of the nodes in the
mesh; and (ii) the connectivity of the elements. In this program, the position of the nodes is
stored in a two-dimensional array coords with the dimensions (8,2), which matches the
number of nodes in the mesh and the spatial dimension of the problem. After the creation of
this array, the coordinates of the nodes are set.

〈Description of geometry and boundary conditions 〉≡ 55

coords = zeros( shape=(8,2) )

coords[0,:] = [0.0 ,0.0 ]
coords[1,:] = [0.24,0.0 ]
coords[2,:] = [0.24,0.12]
coords[3,:] = [0.0 ,0.12]
coords[4,:] = [0.04,0.02]
coords[5,:] = [0.18,0.03]
coords[6,:] = [0.16,0.08]
coords[7,:] = [0.08,0.08]

The element connectivity is stored in a two-dimensional integer array called elems. The
dimensions of this array are equal to the number of elements (five), and to the number of
nodes that support an element (four).

〈Description of geometry and boundary conditions 〉+≡ 55

elems = zeros( shape=(5,4) , dtype=int )

elems[0,:] = [ 0 , 1 , 5 , 4 ]
elems[1,:] = [ 1 , 2 , 6 , 5 ]
elems[2,:] = [ 2 , 3 , 7 , 6 ]
elems[3,:] = [ 3 , 0 , 4 , 7 ]
elems[4,:] = [ 4 , 5 , 6 , 7 ]

The next step is the creation of the solution space. In this example, it is assumed that each
node k supports two degrees of freedom: a displacement in the x-direction, ak,x, and a
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56 Non-linear Finite Element Analysis of Solids and Structures

displacement in the y-direction: ak,y. The vectorial displacement of a node is equal to
ak = (ak,x, ak,y). All the nodes in this problem are connected to an element and take part in
the solution space. Hence, the total number of degrees of freedom is two times the number of
nodes, which in this case equals 16. The degrees of freedom in the solution space are stored
node-wise.

In most finite element simulations, not all the degrees of freedom are part of the solution
space. Some of the degrees of freedom have a prescribed value. In this example, all the external
nodes (0, 1, 2, and 3) are prescribed in the x- and in the y-direction. In other words, the
corresponding degrees of freedom, ak,x and ak,y, are fixed. As a first step, the indices of these
prescribed degrees of freedom must be determined. This is done by the function getDofs(),
which is described in the fragment 〈Patch test utility functions〉. The resulting index array is
stored as presInds. The length of this array equals consDof.

〈Description of geometry and boundary conditions 〉+≡ 55

presNodes = array([0,1,2,3])

presInds = getDofs( presNodes ) 57

consDof = len(presInds)

When the indices and the nodes are known, the magnitude of the prescribed displacement
components can be calculated according to Equation (2.58) and can be stored in the array
presVals, which has the same length.

〈Description of geometry and boundary conditions 〉+≡ 56

presVals = zeros( consDof )

upres = lambda crd : 1e-3*(crd[0]+crd[1]/2)
vpres = lambda crd : 1e-3*(crd[1]+crd[0]/2)

presVals[2*presNodes]=[upres(crd) for crd in coords[presNodes,:] ]
presVals[2*presNodes+1]=[vpres(crd) for crd in coords[presNodes,:] ]

The function getDofs is used to determine the indices of the degrees of freedom that
correspond to a specific set of nodes. The array of node indices, nodes, is passed onto this
function as an argument. Since it is assumed that all nodes have two degrees of freedom and
that the node numbering is continuous, the list of indices can be determined in the following
manner:
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Non-linear Finite Element Analysis 57

〈Patch test utility functions 〉≡ 54

def getDofs( nodes ):

n = 2*len(nodes)

dofs = zeros( n , dtype=int )

dofs[0:n:2]=2*nodes
dofs[1:n:2]=2*nodes+1

return dofs

Note that the length of the returning array dofs is twice the length of the argument nodes.
The initialisation of the simulation is completed by the constitutive behaviour. The patch

is assumed to be in a plane-stress condition. The Young’s modulus is given by E, and the
Poisson’s ratio is given by nu.

〈Description of geometry and boundary conditions 〉+≡ 56

nu = 0.25
E = 1.e6

Because the material behaviour is fully elastic, all stresses can be determined by means of the
elastic material stiffness matrix D = De. This stiffness matrix is calculated as well and stored
as a two-dimensional array:

〈Description of geometry and boundary conditions 〉+≡ 57

D = zeros( shape = (3,3) )

D[0,0] = E / (1.0 - nu*nu )
D[0,1] = D[0,0] * nu
D[1,0] = D[0,1]
D[1,1] = D[0,0]
D[2,2] = E / (2.0 * (1+nu) )

In the next fragment of the example,〈Solution procedure〉, the problem is solved according to
the algorithm in Box 2.4.
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58 Non-linear Finite Element Analysis of Solids and Structures

〈Solution procedure 〉≡ 55

K = zeros( shape = ( totDof , totDof ) )

for elemNodes in elems:
elemDofs = getDofs(elemNodes) 57
elemCoords = coords[elemNodes,:]

sData = getElemShapeData( elemCoords ) 39

for iData in sData:
B = getBmatrix( iData.dhdx ) 58
Kint = dot ( B.transpose() , dot ( D , B ) ) * iData.weight
K[ix_(elemDofs,elemDofs)] += Kint

In the first step, the system stiffness matrix K is computed. This stiffness matrix is stored in
the array K with the dimensions (totDof,totDof). Initially, all items in this array are set
equal to zero. It is filled in a step-wise manner by calculating the local stiffness matrix of each
element in the model. The first for-loop in the fragment 〈solution procedure〉 is a loop over
the elements. The variable elemNodes is an array that contains the indices of the nodes that
support the current element. This array is used as an input of the function getDofs to obtain
the array with the indices of the corresponding degrees of freedom. The array elemNodes is
also used to build an array with the coordinates of the nodes of this element elemCoords,
which serves as input for the function getElemShapeData. The latter provides all the
shape function and the integration data for this element.

The second for-loop in this fragment evaluates the stiffness components at each integration
point of the element. The matrix B is calculated by the function getBmatrix. In this function,
the derivatives of the shape functions in the current integration point, dhdx are passed as an
argument. The length of this array is equal to the number of nodes in the element nNel. The
number of degrees of freedom in the element and the length of the second dimension of the
array B are equal to two times the number of nodes.

〈Patch test utility functions 〉+≡ 57

def getBmatrix( dhdx ):

B = zeros( shape = ( 3 , 2*len(dhdx) ) )

for i,dp in enumerate(dhdx):
B[0,i*2 ] = dp[0]
B[1,i*2+1] = dp[1]
B[2,i*2 ] = dp[1]
B[2,i*2+1] = dp[0]

return B

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Non-linear Finite Element Analysis 59

The contribution of a single integration point is stored in the array Kint, which in turn is
added to the global stiffness matrix. Note that the assembly of the stiffness matrix is described
by means of an element specific location matrix Ze, see Equation (2.13). In most finite element
codes, this assembly is performed in a more direct way by means of an index operator. In
numpy, the ix_ operator can be used to add the components of an multi-dimensional array
in arbitrary positions of a different array. The argument of the operator ix_ is the array
elemDofs, which contains the element degrees of freedom.

Similar to Equation (2.56), the prescribed degrees of freedom must be eliminated from the
system of equations, and we must solve for the ‘free’ degrees of freedom af :

Kff af = fext,f − Kfpap (2.60)

Note that in this case, the load is applied by means of prescribed displacements only and that
the external force vector fext,f is equal to zero. In general, the prescribed degrees of freedom
are not nicely lumped, but are located in an arbitrary manner in the array that contains the
total degrees of freedom. As a result, we cannot simply take a block of the stiffness matrix to
solve Equation (2.60). Instead, we have to construct the matrix Kff in a different way, using
a constraint matrix C. The constraint matrix consists of N rows – it is recalled that N is
the total number of degrees of freedom – and of Nf columns, with Nf the number of ‘free’
degrees of freedom. The row of the matrix C that corresponds to a degree of freedom that
is prescribed consists of 0 terms only. The rows of this matrix that correspond to degrees of
freedom that are not prescribed contain only one term that is equal to 1, located in the first
column that, so far, did not contain a term 1. In the code, the constraint matrix C is constructed as
follows:

〈Solution procedure 〉≡ 58

consDof = len( presInds )

C = zeros( shape = (totDof,totDof-consDof) )

j = 0

for i in range(totDof):
if i in presInds:

continue
C[i,j] = 1.
j+=1

Using the constraint matrix, the reduced stiffness matrix can be written as:

Kff = CTKC (2.61)
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60 Non-linear Finite Element Analysis of Solids and Structures

The right-hand side of the system is equal to:

fext,f = −CTKa∗ (2.62)

with a∗ the solution vector in which the prescribed displacements have the corresponding
value. Upon solving the reduced equation, Equation (2.60), the solution vector a is obtained
from:

a = Caf (2.63)

In the example code, these operations are programmed as follows:

〈Solution procedure 〉+≡ 59

a = zeros(totDof)

a[presInds] = presVals

Kff = dot( dot( C.transpose(), K ), C )
rhs = dot( C.transpose(), dot( K , -a ) )

af = scipy.linalg.solve( Kff, rhs )

a = dot( C, af )
a[presInds] = presVals

When the new displacement field has been calculated, the stresses and the internal force vector
can be calculated. In a finite element code, the stresses are only directly computed in the
integration points. For post-processing, it is often necessary to have knowledge of the stresses
in the nodes. This can be done by extrapolating the stresses from the integration points to
the nodal coordinates. This process is the inverse of the element integration, and is, in most
cases, not straightforward. In addition, a single node normally supports different elements.
When using C0 interpolation functions, the stress field is usually not continuous, and therefore
not uniquely defined across element boundaries. Accordingly, the value of the stress at a
node is at best the weighted average of the contributions of the stresses in the neighbouring
elements.

To avoid the effort of first extrapolating the stress, and then to take an averaged value, it
is common practice to simply calculate the average of the stresses in all integration points of
the elements that are supported by the node of interest. To this end, a two-dimensional array
nodalStress is created to store the stresses at integration points. Furthermore, an integer
array nodalCount is constructed to count the number of times that a stress state is added to
the array nodalStress. The internal forces are stored in an array fint which has the size
totDof.
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Non-linear Finite Element Analysis 61

〈Solution procedure 〉+≡ 60

fint = zeros( totDof )
nodalStress = zeros( shape = (len(coords),3) )
nodalCount = zeros( len(coords) )

for elemNodes in elems:
elemDofs = getDofs( elemNodes ) 57
sData = getElemShapeData( coords[elemNodes,:] ) 39

for iData in sData:
B = getBmatrix( iData.dhdx ) 58

strain = dot( B , a[elemDofs] )
stress = dot( D , strain )

fint[elemDofs] += dot(b.transpose(),stress)*iData.weight

nodalStress[elemNodes,:] += stress
nodalCount [elemNodes] += ones(len(elemNodes));

The structure of the calculation of the internal forces is identical to the structure of the calcu-
lation of the stiffness matrix. The fragment consists of two nested for-loops. The first loop
is over the elements in the model and the second loop is over the integration points within an
element. It is noted that the stress in each integration point is stored in the row of the array
nodalStress that corresponds to the nodes that support this element: elemNodes. The
corresponding counters are increased by one.

In the final fragment of this example, 〈Post processing the results〉, the displacements and
the stresses are printed. The results of the analysis are given, in Table 2.3. The nodal displace-
ments, including the displacements of the internal nodes, match the prescribed field given by
Equation (2.58). Furthermore, the internal forces that act on the internal nodes are equal to
zero. The sum of the internal forces on the external nodes in the x- as well as in the y-direction

Table 2.3 Displacements, internal forces and stress at the nodes in the patch test

Node ax[10−3] ay[10−3] fint,x fint,y σxx σyy σxy

0 0.000 0.000 −128.0 −184.0 1333.0 1333.0 400.0
1 0.240 0.120 32.0 −136.0 1333.0 1333.0 400.0
2 0.300 0.240 128.0 184.0 1333.0 1333.0 400.0
3 0.060 0.120 −32.0 136.0 1333.0 1333.0 400.0
4 0.050 0.040 0.0 0.0 1333.0 1333.0 400.0
5 0.195 0.120 0.0 0.0 1333.0 1333.0 400.0
6 0.200 0.160 0.0 0.0 1333.0 1333.0 400.0
7 0.120 0.120 0.0 0.0 1333.0 1333.0 400.0
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62 Non-linear Finite Element Analysis of Solids and Structures

are equal to zero since the body is in equilibrium. The same holds for the sum of moments
about an arbitrary point in the domain. Finally, the stress state, which is constant over the
domain, matches the analytical solution σ = [1333.0, 1333.0, 400.0].

Reference

MacNeal R and Harder R 1985 A proposed standard set of problems to test finite element accuracy. Finite Elements
in Analysis and Design 1, 3–20.
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3
Geometrically Non-linear Analysis

Structural stability problems constitute an important field of application of the finite element
method. Usually, structural instability is assumed to be caused by geometrically non-linear
effects in spite of the fact that physically non-linear material models can also play an important
role in causing destabilisation.

In the present chapter we will set up a proper description of the statics and kinematics of
continuous media subjected to large deformations. To elucidate the underlying concepts, which
are somewhat abstract, the appropriate stiffness matrices and load vectors are first derived for
simple truss elements. Subsequently, the extension is made towards a continuum.

When we employ the terminology ‘large deformations’ it may not be clear what we exactly
mean. Sometimes, reference is made to large strains as, for example, observed in deforming
rubber materials or in extrusion processes of metals, while others only imply the large dis-
placements and rotations that occur in, e.g. thin-walled, slender structural members. Consider
for instance the cantilever beam of Figure 3.1. By increasing the stiffness EI the strains in the
beam can be made arbitrarily small. But even for large values of EI, and consequently for small
strains, the vertical displacement and the rotation of the tip of the beam can be made arbitrarily
large if the beam is made long enough. Apparently, the notions ‘large strains’ and ‘large dis-
placements’, or more accurately, ‘large displacement gradients’, do not coincide. Large strains
can only occur if the displacement gradients are also large, but the reverse does not necessarily
hold true: large displacement gradients can be observed in structural behaviour while the strains
are still limited, smaller than, say, 2%. For many materials in engineering practice the strains
are usually small. This assumption is adopted in this chapter, and will be made explicitly for
the truss models in the next section. In the subsequent sections we will extend the formula-
tions to two- and three-dimensional bodies, for which a more rigorous approach is necessary.
In this approach no approximations will be made with respect to the kinematics and statics
of a continuum subject to large deformations. The only restriction resides in the constitutive
relations, i.e. the relation between stress and strain. For large displacement gradients, but small
strains, the usual constitutive relationships, e.g. Hooke’s law of linear elasticity, remain valid.
However, for large strains the extraction of these relations from experimental data, for instance
from uniaxial tensile tests, requires careful interpretation of test data (e.g. does the specimen

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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64 Non-linear Finite Element Analysis of Solids and Structures

EI

F

l

Figure 3.1 Cantilever beam

indeed deform homogeneously for such large strains) and a judicious choice of physically
relevant stress and strain measures.

The treatment of continuum mechanics has been kept to a minimum. For further reading,
reference is made to standard textbooks (Fung 1965; Holzapfel 2000; Malvern 1969; Ogden
1984). For a treatment of non-linear continuum mechanics in a finite element setting the reader
is referred to Bonet and Wood (1997).

3.1 Truss Elements

Since we will restrict ourselves to small strains in this chapter, the following two assumptions
are made in the derivation of tangential stiffness matrices and load vectors for truss elements:

A ≈ A0 and � ≈ �0 (3.1)

These two identities state that the cross section and the length of the truss member in the
undeformed configuration (A0 and �0, respectively) are approximately equal to the cross section
and the length in the deformed configuration (A and �, respectively). Furthermore, we have
external forces only at the nodes of a truss member. If these nodal forces are assembled in a
vector f and if the assumptions (3.1) are invoked, the virtual work equation (2.37) at t + �t

reduces to:

A0

∫
�0

(δεt+�t)Tσt+�tdx = (δut+�t)Tf t+�t
ext (3.2)

with εt+�t and σt+�t the strain and stress at t + �t, respectively. In truss elements the only
non-vanishing stress component is the axial stress, so that:

A0

∫
�0

δεt+�tσt+�tdx = (δut+�t)Tf t+�t
ext (3.3)

Non-linear finite element calculations are carried out in a number of increments, i.e. the total
load is applied in a stepwise fashion. The stress increment between time t and time t + �t is
given by

�σ = σt+�t − σt (3.4)

With this decomposition Equation (3.3) can be written as:

A0

∫
�0

δεt+�t(σt + �σ)dx = (δut+�t)Tf t+�t
ext (3.5)
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Figure 3.2 Truss member in undeformed and deformed configuration

The majority of the constitutive models are characterised by a linear relation between the stress
increment �σ and the strain increment �ε:

�σ = Etan�ε (3.6)

with Etan the instanteneous, tangential stiffness modulus. For a linear-elastic material model
the tangential stiffness modulus is identical to the Young’s modulus: Etan = E. Since we
shall limit the treatment in the present chapter to geometrical non-linearity we will henceforth
assume that we deal with a linear-elastic material and, consequently, the subscript ‘tan’ will
be dropped in the constitutive relation. Combination of the last two equations yields:

EA0

∫
�0

δεt+�t�εdx + A0

∫
�0

δεt+�tσtdx = (δut+�t)Tf t+�t
ext (3.7)

We now set out to derive a proper relationship between the displacements of the truss
member and the strain ε. The length of the deformed rod in Figure 3.2 is related to its nodal
displacements by:

�2 = (�0 + u2 − u1)2 + (v2 − v1)2 (3.8)

Dividing by �2
0, and expanding the right-hand side gives

(
�

�0

)2

= 1 + 2
u2 − u1

�0
+

(
u2 − u1

�0

)2

+
(

v2 − v1

�0

)2

(3.9)

While for small differences in the displacements the strain can be defined in a straightforward
fashion by setting it equal to the elongation of the bar � − �0 divided by the length �0,

ε = � − �0

�0
(3.10)

the definition

ε = 1

2

[(
�

�0

)2

− 1

]
(3.11)
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66 Non-linear Finite Element Analysis of Solids and Structures

is more appropriate when large differences between the displacements are allowed. This strain
measure is identical to the normal components of the so-called Green–Lagrange strain tensor,
which will be introduced in the next section. Equation (3.11) can be rewritten as:

ε = � − �0

�0
+ 1

2

(
� − �0

�0

)2

(3.12)

which, when � ≈ �0, approaches Equation (3.10).
Substitution of Equation (3.9) into the definition (3.11) yields a strain measure for large

differences in displacements:

ε = u2 − u1

�0
+ 1

2

(
u2 − u1

l0

)2

+ 1

2

(
v2 − v1

l0

)2

(3.13)

The second term on the right-hand side is usually small compared with the other two contribu-
tions. It is therefore often neglected in the strain expression. Nevertheless, we will retain this
contribution in the present treatment, although in Box 3.1 we present an alternative derivation

Box 3.1 Alternative derivation of the strain measure

Rather than defining the strain ε for large deformations as in Equation (3.11), we can also
directly start from definition (3.10). Use of Equation (3.8) then results in

ε(u, v) = 1

�0

√
(�0 + u)2 + v2 − 1

where the shorthand notations u = u2 − u1 and v = v2 − v1 have been utilised. Developing
this expression in a Taylor series including the quadratic terms yields:

ε = ε(0, 0) + ∂ε

∂u
u + ∂ε

∂v
v + 1

2

∂2ε

∂u2 u2 + ∂2ε

∂u∂v
uv + 1

2

∂2ε

∂v2 v2

The differentials can now be evaluated as follows for small deviations from (u, v) = (0, 0):

∂ε

∂u
= 1

�0
,

∂ε

∂v
= 0 ,

∂2ε

∂u2 = 0 ,
∂2ε

∂u∂v
= 0 ,

∂2ε

∂v2 = 1

�2
0

which gives the following expression for the strain measure:

ε = u2 − u1

�0
+ 1

2

(
v2 − v1

�0

)2

We observe that compared with the original derivation the contribution 1
2 (u2 − u1)2/�2

0 is
missing. The somewhat different choice of strain measure causes this difference. However,
for small strains, the quadratic term is small compared with the linear contribution (u2 −
u1)/�0 and can be neglected. Thus, the seemingly different expressions obtained in both
derivations can be reconciled provided that we remain within the realm of small strains.
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Geometrically Non-linear Analysis 67

of the expression for the strain measure ε in which, as a consequence of the approximation
� ≈ �0, this term cancels.

With aid of Equation (3.13) we can formulate an expression for the strain increment �ε =
εt+�t − εt :

�ε = �u2 − �u1

�0

(
1 + u2 − u1

�0

)
+

(
�v2 − �v1

�0

) (
v2 − v1

�0

)

+1

2

(
�u2 − �u1

�0

)2

+ 1

2

(
�v2 − �v1

�0

)2 (3.14)

Apparently, the last two terms are quadratic in the displacement increments �u and �v. Note
that u1, u2, v1 and v2 do not give non-linear contributions to the strain increment, since they
represent the values of the displacements at the beginning of the load increment, and are
known. Strictly speaking, superscripts t should be attached to u1, u2, v1 and v2 to indicate that
these displacements are evaluated at time t, but for notational simplicity, these superscripts are
neglected.

To maintain a strict analogy between the present treatment of truss elements, and the deriva-
tion for continuum elements to be presented next, we will formally split the strain increment
�ε into a part �e that is linear in the displacement increments,

�e = �u2 − �u1

�0

(
1 + u2 − u1

�0

)
+

(
�v2 − �v1

�0

) (
v2 − v1

�0

)
(3.15)

and a contribution that is quadratic in the displacement increments:

�η = 1

2

(
�u2 − �u1

�0

)2

+ 1

2

(
�v2 − �v1

�0

)2

(3.16)

Consequently, from Equation (3.14) it follows that:

�ε = �e + �η (3.17)

The virtual strain increments, which are also needed in the process of constructing proper
tangential stiffness matrices and force vectors, are now given by:

δ�e = δ�u2 − δ�u1

�0

(
1 + u2 − u1

�0

)
+

(
δ�v2 − δ�v1

�0

) (
v2 − v1

�0

)

δ�η =
(

�u2 − �u1

�0

) (
δ�u2 − δ�u1

�0

)
+

(
�v2 − �v1

�0

) (
δ�v2 − δ�v1

�0

) (3.18)

3.1.1 Total Lagrange Formulation

Equation (3.3), which expresses the principle of virtual work for truss elements, is valid at
any time. Note that, as already discussed in Chapter 2, the notion of ‘time’ can be used in an
abstract sense, since in the present context of static deformation processes, the concept of time
is merely used to order the sequence of events and has no correlation with the real time. Noting
that δεt vanishes because the variation of a constant is zero, the identity δεt+�t = δ�ε holds.
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68 Non-linear Finite Element Analysis of Solids and Structures

Using Equation (3.17) to elaborate Equation (3.7) gives:

EA0

(∫
�0

(δ�e)�edx +
∫

�0

(δ�η)�edx

)
+

EA0

(∫
�0

(δ�e)�ηdx +
∫

�0

(δ�η)�ηdx

)
+

A0

(∫
�0

(δ�η)σtdx +
∫

�0

(δ�e)σtdx

)
= (δ�u)Tf t+�t

ext

(3.19)

On the left-hand side of the equation we have to arrive at a product of the tangential stiffness
matrix, that represents the tangent at that point to the load–displacement curve, and a vector �u
which contains the unknown displacement increments. The tangential stiffness matrix itself is
not a function of the displacement increments, which leads to the requirement that only integrals
which give a linear contribution to �u can be kept on the left-hand side. A0

∫
(δ�e)σtdx is not

a function of �u and, consequently, cannot contribute to the tangential stiffness matrix either.
Therefore, this term is transferred to the right-hand side to form the internal force vector. Since
the terms EA0

∫
(δ�η)�edx and EA0

∫
(δ�e)�ηdx are quadratic functions of the displacement

increment vector �u, they also cannot contribute to the tangential stiffness matrix. A similar
reasoning holds for EA0

∫
(δ�η)�ηdx which is cubic in the displacement increments. The

latter three contributions are therefore deleted, to obtain the linearised expression:

EA0

∫
�0

(δ�e)�edx + A0

∫
�0

(δ�η)σtdx = (δ�u)Tf t+�t
ext − A0

∫
�0

(δ�e)σtdx (3.20)

It is emphasised that deleting the contributions that are quadratic and cubic in the displacement
increments does not affect the accuracy of the solution, provided that an iterative solution
procedure is employed to arrive at a proper equilibrium state.

When translating finite element concepts into software it is convenient to have the governing
equations in matrix-vector notation. As a first step we write

�e = bT
L�u (3.21)

instead of Equation (3.15). In Equation (3.21) the following definitions have been adopted:

bT
L = 1

�0

(
−

(
1 + u2 − u1

�0

)
, −v2 − v1

�0
,

(
1 + u2 − u1

�0

)
,

v2 − v1

�0

)
(3.22)

and

�uT = (�u1 , �v1 , �u2 , �v2) (3.23)

Use of the approximation � ≈ �0 then gives:

cos φ = 1 + u2 − u1

�0
and sin φ = v2 − v1

�0

and bT
L can be rewritten as:

bT
L = 1

�0
(− cos φ , − sin φ , cos φ , sin φ) (3.24)
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Geometrically Non-linear Analysis 69

With the above results the calculation of the internal force vector that stems from the term
A0

∫
(δ�e)σtdx on the right-hand side of the virtual work Equation (3.20) is straightforward.

With the aid of Equation (3.21) the internal force vector at element level can be written as

A0

∫
�0

(δ�e)σtdx = (δ�u)Tf t
int (3.25)

with

f t
int = A0

∫
�0

bLσtdx = A0�0bLσt (3.26)

since bL and σ are constant along the length of the truss member. Using Equation (3.21) we
can elaborate the first term on the left-hand side as:

EA0

∫
�0

(δ�e)�edx = EA0�0(δ�u)TbLbT
L�u (3.27)

Defining

KL = EA0�0bLbT
L (3.28)

as the first, or ‘linear’, contribution to the tangential stiffness matrix the first integral of
Equation (3.20) results in:

EA0

∫
�0

(δ�e)�edx = (δ�u)TKL�u (3.29)

The linear contribution to the tangential stiffness matrix is found by elaborating Equation (3.28)
and results in:

KL = EA0

�0




cos2 φ cos φ sin φ − cos2 φ − cos φ sin φ

cos φ sin φ sin2 φ − cos φ sin φ − sin2 φ

− cos2 φ − cos φ sin φ cos2 φ cos φ sin φ

− cos φ sin φ − sin2 φ cos φ sin φ sin2 φ


 (3.30)

The second, ‘geometric’ or ‘non-linear’, contribution to the tangential stiffness matrix, can be
rewritten as:

A0

∫
(δ�η)σtdx = (δ�u)TKNL�u (3.31)

so that the second part of the tangential stiffness matrix becomes:

KNL = A0σ
t

�0




1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


 (3.32)
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70 Non-linear Finite Element Analysis of Solids and Structures

The contribution (3.32) is very important in geometrically non-linear calculations, since it
embodies the destabilising influence in structural members that are subjected to compressive
forces.

Substitution of Equations (3.25), (3.29) and (3.31) into Equation (3.20) yields:

(δ�u)T(KL + KNL)�u = (δ�u)T(
f t+�t
ext − f t

int

)
(3.33)

Since this equation must hold for any virtual displacement vector, the following system of
non-linear algebraic equations is obtained:

(KL + KNL)�u = f t+�t
ext − f t

int (3.34)

In the above approach each material point of a body is monitored. It is a function of time
and of the coordinates of that material point in some previous configuration, usually called
the reference configuration. While this procedure, which is named a Lagrange or material
description, is natural and effective in solid mechanics, this is not so for flow problems, e.g.
in fluid flow or in forming processes. Then, the Euler or spatial description is often more
appropriate. In this approach a constant volume of the space is considered. Matter may flow
into this fixed volume as well as leave it.

3.1.2 Updated Lagrange Formulation

Two alternatives exist within the Lagrange description, namely the Total Lagrange formulation
and the Updated Lagrange formulation (Bathe et al. 1975). While in the former method all
quantities are referred to the original, undeformed configuration, the second approach utilises
the configuration at the beginning of a loading step as the reference configuration during that
step. For most applications in structural mechanics it is not so important which formulation
is adopted. If only geometrical non-linearities are taken into account the differences between
both formulations are usually in the order of only a few per cent. When physical non-linearities
also play a role, the differences may become larger, but will seldom exceed 5%. Within the
class of physically non-linear problems the largest differences occur when path-dependent
material models are used. In such models the total deformation state depends on the sequence
in which the load has been applied to the structure. Examples of such models are plasticity
and damage models. For these models the Updated Lagrange formulation is more appealing,
since the physical relevance of the undeformed configuration is then lost. Elasticity, including
non-linear elasticity, is an example of a path-independent model, since the strain state for this
class of constitutive models is unique for a given stress level, no matter in which order the
loading programme has been applied.

In the case of geometrically non-linear behaviour of trusses, the assumptions that A ≈ A0
and � ≈ �0 cause both formulations to exactly coincide. To show this we will now derive the
tangential stiffness matrix in the updated coordinate system (Updated Lagrange formulation).
This is accomplished by introducing the quantity φ that sets the angle between the axes of
the truss member in the deformed and undeformed configurations (Figure 3.2). For a small
load increment the contribution K̄L to the tangential stiffness matrix in the updated coordinate

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geometrically Non-linear Analysis 71

system is given by:

K̄L = EA0

�0




1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


 (3.35)

where the bar denotes quantities referred to the rotated or updated coordinate system. The
‘linear’ contribution to the tangential stiffness matrix in the undeformed configuration, KL, is
now obtained through the transformation

KL = TTK̄LT (3.36)

with

T =




cos φ sin φ 0 0

− sin φ cos φ 0 0

0 0 cos φ sin φ

0 0 − sin φ cos φ


 (3.37)

which derives directly from the two-dimensional rotation matrix for vectors, cf.
Equation (1.51). Carrying out these multiplications results again in Equation (3.30).

For the geometric contribution to the tangential stiffness matrix a similar result can be
obtained. It is straightforward to show rotational invariance of KNL:

KNL = TTKNLT (3.38)

Apparently, it is immaterial in which configuration KNL is set up. The Total Lagrange and the
Updated Lagrange formulations result in exactly the same set of equations for truss elements.
For other types of elements, however, the approximations that are made in the course of the
derivation can cause small differences between both formulations, which, in turn, may result
in minor deviations in the numerical results.

The above statements regarding the equivalence between the Total Lagrange formulation and
the Updated Lagrange formulation for truss elements can be further supported by considering
again the spring-truss structure of Figure 1.1. We again consider the left half of the structure
for symmetry reasons. The boundary conditions of this truss element read: u1 = v1 = u2 = 0,
and, in view of Equations (3.30) and (3.32), and after adding the spring stiffness k, we obtain

dF

dv
= EA0 sin2 φ

�0
+ A0σ

�0
+ k

which is exactly the stiffness expression of Equation (1.12) when materially non-linear effects
are disregarded. The Lagrangian formulation of truss elements derived above thus results in
an exact expression for the tangential stiffness.
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72 Non-linear Finite Element Analysis of Solids and Structures
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Figure 3.3 Truss element with a corotating x̄, ȳ-reference frame

3.1.3 Corotational Formulation

A further possibility to derive the load vector and the stiffness matrix is to use a coordinate
system that is attached to the truss element. This approach is called corotational, since the
relevant vectors and matrices are derived in a reference frame which corotates with the truss
element. When this coordinate system is named the x̄, ȳ-system, cf. Figure 3.3, the (axial)
strain is given by:

e = b̄Tū (3.39)

with

b̄T = 1

�
(−1 , 0 , 1 , 0) (3.40)

and with

ūT = (ū1 , v̄1 , ū2 , v̄2) (3.41)

the vector which assembles the displacement increments in the corotated x̄, ȳ-system. The
internal virtual work, i.e. the left-hand side of Equation (3.3), can then be elaborated as:

A0

∫
�0

δ(�ε)σt+�tdx = A0

∫
�0

δ(b̄T�ū)σt+�tdx (3.42)

With the matrix T defined in Equation (3.37) we can transform this expression to the fixed
x, y-coordinate system in a straightforward manner:

A0

∫
�0

δ(�ε)σt+�tdx = A0

∫
�0

δ(b̄TT�u)σt+�tdx (3.43)
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Geometrically Non-linear Analysis 73

With the definitions (3.37) and (3.40) the matrix product b̄TT can be elaborated as:

b̄TT = 1

�
(−1 , 0 , +1 , 0)




cos φ sin φ 0 0

− sin φ cos φ 0 0

0 0 cos φ sin φ

0 0 − sin φ cos φ


 =

1

�
[− cos φ − sin φ cos φ sin φ] = �0

�
bT

L

(3.44)

Using this result, the decomposition of the stress defined in Equation (3.4), the one-dimensional
constitutive relation from Equation (3.6), and restricting the use to linear elasticity for simplic-
ity, we subsequently obtain:

A0

∫
�0

δ(�ε)σt+�tdx = A0

∫
�0

δ

(
�0

�
bT

L�u
)

(σt + E�ε)dx (3.45)

or, upon elaboration,

A0

∫
�0

δ(�ε)σt+�tdx = A0

∫
�0

δ

(
�0

�

)
bT

L�u(σt + E�ε)dx+

A0

∫
�0

�0

�
δbT

L�u(σt + E�ε)dx + A0

∫
�0

�0

�
bT

Lδ(�u)(σt + E�ε)dx

(3.46)

As with the derivation for the Total and Updated Lagrange formulations, terms that are zero
order in the displacement increments result in the internal force vector. This holds for the
product of �0

�
bT

Lδ(�u) and σt , which can be elaborated as:

A0

∫
�0

�0

�
bT

Lδ(�u)σtdx = A0
�2

0

�
bT

Lδ(�u)σt = A0
�2

0

�
δ(�u)TbLσt (3.47)

so that the internal force vector becomes:

f t
int = A0

�2
0

�
bLσt ≈ A0�0bLσt (3.48)

which, under the assumption that � ≈ �0, is identical to the internal force vector derived in the
Lagrange approaches.

The terms �0
�

bT
Lδ(�u)E�ε, �0

�
δbT

L�uσt , and δ
(

�0
�

)
bT

L�uσt are all linear in the displace-

ment increment and contribute to the tangential stiffness matrix, while the remaining terms are
of higher order in terms of the displacement increments and cancel in the linearisation process.
The first term contributing to the tangential stiffness can be elaborated as:

A0

∫
�0

�
bT

Lδ(�u)E�εdx = EA0�
3
0

�2 δ(�u)TbLbT
L�u (3.49)

The contribution to the tangential stiffness matrix that results from this term therefore equals:

KL = EA0�
3
0

�2 BT
LBL ≈ EA0�0bLbT

L
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74 Non-linear Finite Element Analysis of Solids and Structures

and is also equal to that derived in the Lagrange approaches. Next, the second term of
Equation (3.46) is elaborated as:

A0

∫
�0

�0

�
δbT

L�uσtdx = A0σ
t�2

0

�
δ(�u)T

(
∂bT

L

∂u

)
�u (3.50)

Straightforward differentiation of bT
L, cf. Equation (3.21), leads to:

∂bT
L

∂u
= 1

�2
0




1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1




Using � ≈ �0 we then derive:

KNL = A0σ
t

�0




1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1




as the geometric contribution to the tangential stiffness matrix, which also equals the expres-
sion obtained using the Lagrange approaches, Equation (3.32). Finally, the third term can be
elaborated as follows:

A0

∫
δ

(
�0

�

)
bT

L�uσtdx = −A0σ
t�2

0δ�

�2 bT
L�u =

−A0σ
t�2

0

�2 δ(�u)T
(

∂�

∂u

)T

bT
L�u = −A0σ

t�4
0

�3 δ(�u)TbLbT
L�u

(3.51)

where the definition of �, Equation (3.8), has been used to derive that

∂�

∂u
= �2

0

�
bT

L

The third contribution to the tangential stiffness matrix thus reads:

Kcr
NL = −A0σ

t�4
0

�3 bLbT
L ≈ −A0σ

t�0bLbT
L (3.52)

or after elaboration

Kcr
NL = −A0σ

t

�0




cos2 φ cos φ sin φ − cos2 φ − cos φ sin φ

cos φ sin φ sin2 φ − cos φ sin φ − sin2 φ

− cos2 φ − cos φ sin φ cos2 φ cos φ sin φ

− cos φ sin φ − sin2 φ cos φ sin φ sin2 φ


 (3.53)
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Geometrically Non-linear Analysis 75

This contribution is absent in the tangential stiffness matrix when adopting the Lagrange
approaches. An alternative derivation of the tangential stiffness expression for truss elements
using a corotational formulation is given in Box 3.2.

Box 3.2 Alternative derivation tangential stiffness matrix corotational formulation

In an engineering approach the strain in the truss element can be defined as ε = ū2−ū1
�0

, so

that instead of Equation (3.40), we now have b̄T = 1
�0

(−1, 0, 1, 0), and the expression
for the virtual work is elaborated as:

A0

∫
�0

δ(�ε)σt+�tdx = A0

∫
�0

b̄T(Tδ(�u) + δT�u)(σt + E�ε)dx

The terms that are linear in the displacement increments, and thus contribute to the tangential
stiffness matrix are b̄TTδ(�u)E�ε and b̄TδT�uσt . The first term results in the contribution
KL to the tangential stiffness matrix, cf. Equation (3.28). To elaborate the second term we
first observe that:

δT = ∂T
∂φ

δφ with
∂T
∂φ

=




− sin φ cos φ 0 0

− cos φ − sin φ 0 0

0 0 − sin φ cos φ

0 0 − cos φ − sin φ




From Figure 3.3 we have

dφ ≈ da

�
= nTdu21

�
= 1

�
[− sin φ cos φ]

[
−1 0 1 0

0 −1 0 1

]
du

whence

∂φ

∂u
= 1

�
[sin φ − cos φ − sin φ cos φ]

and the second term which is linear in the displacement increments can be written as:

A0

∫
�0

b̄TδT�uσtdx = A0�0σ
tδ(�u)T

(
∂φ

∂u

)T

b̄T ∂T
∂φ

�u

With � ≈ �0 the second contribution to the tangential stiffness matrix then becomes:

K = A0σ
t

�0




sin2 φ − cos φ sin φ − sin2 φ cos φ sin φ

− cos φ sin φ cos2 φ cos φ sin φ − cos2 φ

− sin2 φ cos φ sin φ sin2 φ − cos φ sin φ

cos φ sin φ − cos2 φ − cos φ sin φ cos2 φ




which exactly equals the sum of KNL and Kcr
NL, Equations (3.32) and (3.53).
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76 Non-linear Finite Element Analysis of Solids and Structures
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Figure 3.4 Finite element model of the non-linear shallow truss problem presented in Section 1.1.
The elements 1 and 2 are non-linear trusses with a Young’s modulus E = 105 N/m2 and a cross-section
A0 = 1.0 m2. Element 3 is a linear spring with a spring constant k = 2000.0 N/m.

3.2 PyFEM: The Shallow Truss Problem

In this section, the plane shallow truss problem presented in Section 1.1 is solved by means
of a finite element simulation. The finite element discretisation of the problem is shown in
Figure 3.4. The model consists of three elements which are supported by four nodes. The
elements 1 and 2 are non-linear truss elements, which have been derived in the previous
section. Element 3 is a linear spring. Nodes 1, 2 and 3 are constrained in the x- and in the
y-direction. Hence, node 4 is the only ‘free’ node.

The finite element code for this problem is called ShallowTrussFE.py and can be found
in the directory examples/ch3. It has the following lay-out:

〈Finite element shallow truss structure example 〉≡
〈Initialisation of the finite element model 77〉
〈Non-linear solution procedure 80〉
〈Post-processing the results〉

First, the finite element model is described in the fragment〈Initialisation of the finite element
model〉. This includes a description of the geometry, of the boundary conditions, and of the
material parameters for each element. The simulation is carried out in the fragment〈Non-linear
solution procedure〉, and the results are plotted in the form of a load–displacement curve in
fragment〈Post-processing the results〉.

To be able to handle large finite element meshes, that contain many nodes, elements and
degrees of freedom, we will introduce a number of new classes to store the information. The
first new class is the Properties class, which will be used to store the material parameters
of the elements in the model.
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Geometrically Non-linear Analysis 77

〈Initialisation of the finite element model 〉≡ 76

from pyfem.util.dataStructures import Properties

props = Properties()
props.TrussElem = Properties( { ’type’ : ’Truss’ , ’E’ : 5.0e6 , \

’Area’ : 1.0 } )
props.SpringElem = Properties( { ’type’ : ’Spring’ , ’k’ : 2000. } )

The Properties class is derived from the standard Python database. The implementation
can be found in the file Properties.py in the directory pyfem/util. In this fragment,
the empty instance props is first created. Next, two members are added, TrussElem and
SpringElem, which contain the material and geometry parameters of the truss and of
the spring elements, respectively. Both members contain the mandatory argument ’type’
which refers to the element type. Here, we use the element types ’Truss’ and ’Spring’.
The other arguments depend on the specific element type. The truss element requires a
Young’s modulus E and a cross-sectional area Area which are set equal to 5.0e6 and 1.0,
respectively. These parameters will be used in the calculation of the element stiffness matrix
Ke and of the internal force vector fint, see page 83. The spring element has one parameter:
the spring constant k which is set equal to 2000.

Even though the shallow truss example consists of a small number of nodes, we will store
the position of the nodes in an instance nodes of the class NodeSet. The implementation
can be found in the file NodeSet.py in the directory pyfem/fem.

〈Initialisation of the finite element model 〉+≡ 77

from pyfem.fem.NodeSet import NodeSet

nodes = NodeSet()

nodes.add( 1 , [ 0. , 0. ] )
nodes.add( 2 , [-10.0, 0. ] )
nodes.add( 3 , [ 10.0, 0. ] )
nodes.add( 4 , [ 0. , 0.5] )

A new node can be added to this instance using the member function add. The first argument
of this function is the node identification number, where the numbering does not have to be
continuous. Internally, the node identification number is mapped to an alternative numbering
that starts at zero, and is continuous. The second argument is a one-dimensional array that
contains the global coordinate of the node. The length of this array can be one, two or three,
depending on the spatial dimensions of the problem. In this two-dimensional example, the
length of this array obviously equals two.

The element connectivity is stored in the instance elements of the class ElementSet:
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78 Non-linear Finite Element Analysis of Solids and Structures

〈Initialisation of the finite element model 〉+≡ 77

from pyfem.fem.ElementSet import ElementSet

elements = ElementSet( nodes , props )

elements.add( 1, ’TrussElem’ , [2,4] )
elements.add( 2, ’TrussElem’ , [3,4] )
elements.add( 3, ’SpringElem’ , [1,4] )

The constructor of the class ElementSet has two arguments: an instance of the class
NodeSet and an instance of Properties that contains the parameters of the various
models. Individual elements can be added by using the member function add, which has
three arguments. The first argument is the element identification number. Similar to the node
numbering, the element numbering does not have to be continuous. The second argument is a
string that corresponds to the model properties. In this example, the element numbers 1 and
2 are of the type ’TrussElem’, which has been defined previously. The final argument is
an array of integers which contains the identification numbers of the nodes that support this
element. The length of this array depends on the element type. In this example, the truss as
well as the spring elements are supported by two nodes, hence, the length of this integer array
equals two.

When the nodes and the elements have been added, the instance dofs of the class
DofSpace can be created. This instance contains a database in which the connection of
the global degrees of freedom and the corresponding nodes are stored.

〈Initialisation of the finite element model 〉+≡ 78

from pyfem.fem.DofSpace import DofSpace

dofs = DofSpace( elements )

dofs.constrain( 1, [’u’,’v’] )
dofs.constrain( 2, [’u’,’v’] )
dofs.constrain( 3, [’u’,’v’] )

The constructor of the DofSpace class has a single argument of the type ElementSet.
During the initialisation of the corresponding object dofs, the constructor checks which
elements have been added to elements, which nodes are connected to those elements,
and which degrees of freedom must be assigned to those nodes. Boundary conditions can be
added to the class by means of the function constrain. This function has two arguments:
the node identification number and the degrees of freedom of that node, which must be set to
zero. In this fragment, the displacements in the x- and in the y-direction, ’u’ and ’v’, of the
nodes 1, 2 and 3 are constrained (Figure 3.4). The function constrain will signal when a
combination of nodes and nodal degree of freedom does not exist.

The three instances nodes, elements and dofs are stored in a global database globdat
in order to provide access in other parts of the program:
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Geometrically Non-linear Analysis 79

〈Initialisation of the finite element model 〉+≡ 78

from pyfem.util.dataStructures import GlobalData

globdat = GlobalData( nodes, elements, dofs )

During the initialisation of the instance globdat the global solution vector a and the incre-
mental solution vector �a are created as the members state and Dstate, respectively.
The length of these arrays is identical to the number of degrees of freedom in dofs.

When the total number-of-degrees of freedom is known, the external force vector can be
created:

〈Initialisation of the finite element model 〉+≡ 79

loadDof = dofs.getForType(4,’v’)
Dfext = zeros( len(dofs) )
Dfext[loadDof] = -100.

In the present example, the load acts on node 4 in the negative y-direction. The member
function getForType is used to obtain the global degree of freedom identification number
from the instance dofs. This identification number is stored as the variable loadDof. The
length of the external force vector evidently equals the total number of degrees of freedom.
It contains zeros, except for the position that corresponds to the degree of freedom that
represents the y-displacement of node 4. We adopt a value of -100 for the external load
increment.

The non-linear solver is controlled by three variables: N, which gives the number of load
steps in the simulation, tol, which sets the error tolerance in the convergence criterion, and
iterMax, which bounds the maximum number of iterations. These variables are set in the
next lines of the code.

〈Initialisation of the finite element model 〉+≡ 79

N = 30
tol = 1e-6
iterMax = 10

Finally, the temporary vectors a and Da are created as copies of the state vectors in the global
database, and an array is initialised that represents the external force:

〈Nonlinear solution procedure 〉+≡ 79

a = globdat.state
Da = globdat.Dstate

fext = zeros( len(dofs) )
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80 Non-linear Finite Element Analysis of Solids and Structures

Upon initialisation the model can be solved by means of a Newton–Raphson method, where
the procedure described in Box 2.3 has been implemented.

〈Non-linear solution procedure 〉≡ 76

from pyfem.fem.Assembly import assembleStiffness

for iCyc in range(N):
fext += Dfext

error = 1.
iiter = 0

K,fint = assembleStiffness( props, globdat )

〈Solve non-linear system of equations 80〉

In this fragment, we loop over N steps using iCyc as the counter. First, the external force
vector fext for the current step is determined. Since we use a constant step size, the external
force vector is simply increased by the external force increment Dfext. The tangential
stiffness matrix K is computed using the assembleStiffness function. The arguments
of this function are the instance props, which contains the element parameters, globdat,
which contains the topology of the finite element mesh, and the solution vectors state
and Dstate. The function calculates the element stiffness matrices Ke for all elements and
assembles the total stiffness matrix, as shown in Equations (2.43). As we will see later, it is
highly efficient to compute the internal force vector fint in the same procedure. Therefore,
the function returns the tangential stiffness matrix and the internal force vector fint.

The non-linear system of equations is solved in the fragment 〈Solve non-linear system of
equations〉:

〈Solve non-linear system of equations 〉≡ 80

while error > tol:
iiter +=1
da = dofs.solve( K, fext-fint )

Da[:] += da[:]
a [:] += da[:]

K,fint = assembleStiffness( props, globdat )

The solution is determined iteratively. The iteration loop continues as long as the error exceeds
the tolerance tol. The function solve is a member of the DofSpace class. This function
reduces the global system of equations by removing the constrained degrees of freedom,
similar to the procedure shown in the fragment 〈Solution procedure〉 on page 58. The
incremental displacement vector Da and the total displacement vector a are updated, and the
new internal force vector and the new tangential stiffness matrix are computed.
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Geometrically Non-linear Analysis 81

The norm of the residual vector is determined next:

〈Solve non-linear system of equations 〉+≡ 80

error = dofs.norm( fext-fint )

if iiter == iterMax:
raise RuntimeError(’Iterations did not converge!’)

The function norm determines the L2-norm of the residual vector and is equally well a
member of the DofSpace class, since the constrained degrees of freedom terms must be
removed from the residual vector. When the norm is smaller than the tolerance, the while
loop is discontinued, and the displacement increment Da is reset to zero:

〈Solve non-linear system of equations 〉+≡ 81

Da[:] = zeros( len(dofs) )

elements.commitHistory()

The element history is stored in the function elements.commitHistory(), i.e. the
history parameters are replaced by their new values. Finally, the results of the simulation are
plotted in the fragment〈Post-processing the results〉. The code of this fragment is similar that
of the fragment〈Print results〉 on page 28.

The function call assembleStiffness collects the tangential stiffness matrices and
the internal force vectors of each element, and assembles the system stiffness matrix and the
internal force vector. It will be shown here for the truss element. We will confine our attention
to the Total Lagrange implementation for a non-linear truss element, see Section 3.1.1.

The complete implementation of the truss element can be found in the file Truss.py in
the directory pyfem/elements. The structure of the code is as follows:

〈Truss element 〉≡
〈Truss class definition 81〉
〈Truss class main functions 82〉
〈Truss class utility functions 83〉

The truss element is implemented as a class, which is derived from the base class Element:

〈Truss element class definition 〉≡ 81

class Truss ( Element ):

dofTypes = [’u’,’v’]
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82 Non-linear Finite Element Analysis of Solids and Structures

In the class definition the types of degrees of freedom that are attached to this element have
to be defined. The two-dimensional truss element has two degrees of freedoms per node: a
displacement u in the x-direction, and a displacement v in the y-direction. In the code, these
nodal degrees of freedom types are stored as a tuple of length two: [’u’,’v’]. The tuple
dofTypes is used by the DofSpace class to construct the global solution space in which
the corresponding degrees of freedom are assigned to each node.

Additional data for the element are initialised in the __init__ function of the class:

〈Truss class definition 〉≡ 81

def __init__ ( self, elnodes , props ):
Element.__init__( self, elnodes , props )

self.setHistory( ’sigma0’, 0. )
self.commitHistory()

self.l0 = 0.

In the constructor of the base class Element, the element properties are read from the
instance props and are stored as members of the class. The truss element contains two
parameters, which are initialised as the members E and Area. The element has a single history
parameter sigma0, which is initialised in this fragment as well. This history parameter
represents the stress in the element in the previous step after convergence. It is also useful to
initialise the variable l0, which represents the current length of the element as a member of
the class.

For each element a number of tasks have to be executed. One of these tasks is
to construct the element stiffness matrix Ke and the internal force vector fint. This is
done in the function getElementStiffness which is used by the assembler function
assembleStiffness to construct the global and the internal force vector, see also the
fragment〈Non-linear solution procedure〉 on page 80.

〈Truss class main fuctions 〉≡ 81

def getElementStiffness ( self, elemdat ):

from pyfem.utils.transformations import glob2Elem

a = glob2Elem( elemdat.state , elemdat.coords )
Da = glob2Elem( elemdat.Dstate, elemdat.coords )
a0 = a - Da

self.l0 = norm( elemdat.coords[1]-elemdat.coords[0] )

epsilon , Depsilon = self.getStrain( a , a0 ) 83

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geometrically Non-linear Analysis 83

The function getElementStiffness has a single argument elemdat, which is an in-
stance that contains the element data such as the nodal coordinates and the material parameters.
The output of this routine, the element stiffness matrix and the internal force vector are stored
as members of this class. To construct the stiffness matrix and the internal force vector, the
nodal displacements must be transformed to the local frame of reference of the element. This
transformation is carried out by the function glob2Elem. The resulting total and incremental
local displacement fields are stored in the arrays a and Da, respectively. The length of the
undeformed element l0 is equal to the norm of the vector that connects the positions of the
two nodes of the element. The strain and the strain increment can be determined using the
local displacement arrays a and a0. This is done in the member function getStrain, see
also Equation (3.13).

〈Truss class utility fuctions 〉≡ 81

def getStrain( self , a , a0 ):

epsilon = (a[2]-a[0])/self.l0
epsilon += 0.5*((a[2]-a[0])/self.l0)**2
epsilon += 0.5*((a[3]-a[1])/self.l0)**2

epsilon0 = (a0[2]-a0[0])/self.l0 +
epsilon0 += 0.5*((a0[2]-a0[0])/self.l0)**2
epsilon0 += 0.5*((a0[3]-a0[1])/self.l0)**2

Depsilon = epsilon -epsilon0

return epsilon,Depsilon

The stresses are obtained by multiplying the strain increment by the Young’s modulus E and
adding the result to the stress in the previous state, see also Equations (3.4) and (3.6):

〈Truss class main fuctions 〉+≡ 82

Dsigma = self.E * Depsilon
sigma = self.getHistory(’sigma’) + Dsigma

self.setHistory( ’sigma’, sigma )

Note that the current value of sigma is set as the new history value. When the solution has
converged, this value will serve as the old history parameter.

The linear and non-linear parts of the stiffness matrix, KL and KNL, respectively, are calcu-
lated according to Equations (3.28) and (3.32):
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84 Non-linear Finite Element Analysis of Solids and Structures

〈Truss class main fuctions 〉+≡ 83

BL = self.getBL( a )
KL = self.E * self.Area * self.l0 * outer( BL , BL ) 84

KNL = self.getKNL( sigmaA , self.Area )

elStiff = KL + KNL

elemdat.stiff = elem2Glob( elStiff , elemdat.coords )

The total stiffness matrix is transformed back to the global frame of reference using the
function elem2Glob. The vector BL that is needed to construct the linear part of the stiffness
matrix is calculated in the member function getBL, see also Equation (3.22):

〈Truss element utility fuctions 〉+≡ 83

def getBL( self , a ):

BL = zeros( 4 )
BL[0] = (-1./self.l0)*(1.+(a[2]-a[0])/self.l0)
BL[1] = (-1./self.l0)*(a[3]-a[1])/self.l0
BL[2] = -BL[0]
BL[3] = -BL[1]

return BL

Since the components of the internal force vector are already available, it is efficient to
calculate this vector concurrently, see also Equation (3.26):

〈Truss element main fuctions 〉+≡ 84

elFint = self.l0 * sigma * elemdat.props.Area * BL

elemdat.fint = elem2Glob( elFint , elemdat.coords )

Each element in the code follows the same structure. In addition to the function
getStiffness, two other functions are mentioned. In the function getIntForce,
the internal force vector of an element is calculated. This function is useful in solution
techniques in which the global stiffness matrix is not required, for example in explicit time
integration. Another important member function is getMass, which constructs the element
mass matrix that is used in dynamic calculations, see Chapter 5.
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Geometrically Non-linear Analysis 85

3.3 Stress and Deformation Measures in Continua

The formulation of tangential stiffness matrices and the associated consistent internal force
vectors requires much more care in continuous media than for simple truss elements. In partic-
ular, stress and strain measures must be defined in an unambiguous, but physically meaningful
manner. The most straightforward and elegant procedure is to consider the total motion of an
elementary, originally square material element to be the product of a translation, a rigid rotation
and a pure deformation. We suppose that the elementary particle occupies a position ξ in space
in the reference configuration (usually the undeformed configuration), with the so-called ma-
terial coordinates (ξ1, ξ2, ξ3), and a position x, with so-called spatial coordinates (x1, x2, x3),
in the deformed configuration. In line with the notions of Lagrange and Euler descriptions
introduced for large deformations of truss elements the former coordinate set is also denoted
by the terminology Lagrange coordinates, while the latter coordinate set is also named Euler
coordinates. Clearly: x = x(ξ).

The translation can be eliminated from the total motion through differentiation. Differenti-
ating the spatial coordinates with respect to the material coordinates results in the deformation
gradient tensor

F = ∂x
∂ξ

(3.54)

The deformation gradient, which is a second-order tensor, gives a complete description of
the motion of an elementary particle up to a (rigid) translation. To proceed we consider the
elementary quadrilateral element of Figure 3.5. The total deformation is decomposed into a pure
deformation U – from configuration A to configuration B – and a rigid-body rotation R – from
configuration B to configuration C. A line element dξ which connects two material points that
are only a small, infinitesimal distance apart in the reference configuration, is transformed to a
line element dx in the current configuration via position dη in an intermediate configuration B.
Then, dx and dη are related through

dx = R · dη (3.55)

while the relationship between dη and dξ is given by

dη = U · dξ (3.56)

A
B

C

U R

dξ1

dξ2

dη1

dη2
dx1

dx2

Figure 3.5 Graphical interpretation of polar decomposition: pure deformation followed by a rigid
rotation
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86 Non-linear Finite Element Analysis of Solids and Structures

Combination of Equations (3.55) and (3.56) results in the relation

dx = R · dη = R · U · dξ (3.57)

and a comparison with Equation (3.54) shows that the deformation gradient F can be decom-
posed into a pure rotation R and a pure deformation U in a multiplicative fashion:

F = R · U (3.58)

This decomposition is commonly named the polar decomposition of the deformation gradient.
The right stretch tensor U is less convenient as a deformation measure. Its calculation

involves expensive square root evaluations. A deformation measure that is easier to compute
is the right Cauchy–Green deformation tensor C. This tensor is defined by first taking the
difference between the squares of the lengths of dξ and dx:

dx · dx − dξ · dξ = (F · dξ) · (F · dξ) − dξ · dξ = dξ · (FT · F − I) · dξ (3.59)

Since the right stretch tensor U is a measure of a pure deformation, the right Cauchy–Green
deformation tensor

C = FT · F = U2 (3.60)

also completely defines the state of deformation, and the effects of rigid-body rotations are
eliminated. The Green–Lagrange strain tensor is then defined as:

γ = 1

2
(C − I) (3.61)

Equations (3.54), (3.60) and (3.61) show that the Green–Lagrange tensor γ is referred to
the original, undeformed configuration. It is a deformation measure that is used within the
framework of a Lagrange description of the motion of a body, and reduces to the small strain
tensor ε for small displacement gradients.

Alternatively, the deformation process can be considered as a sequence of a rigid-body
rotation R – from configuration A to configuration B in Figure 3.6 – and a pure deformation
V – from configuration B to configuration C. Now, dx and dη are related through:

dx = V · dη (3.62)

A
B

C

VR

dξ1

dξ2

dη1

dη2

dx1

dx2

Figure 3.6 Graphical interpretation of polar decomposition: rigid rotation followed by a pure
deformation

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geometrically Non-linear Analysis 87

while the relationship between dη and dξ is given by

dη = R · dξ (3.63)

Combination of Equations (3.62) and (3.63) results in the relation

dx = V · dη = V · R · dξ (3.64)

and a comparison with Equation (3.54) shows that the deformation gradient F can equivalently
be decomposed multiplicatively into a pure deformation V and a rigid rotation R:

F = V · R (3.65)

Like the right stretch tensor U the left stretch tensor V is less convenient to use, and for
this reason the left Cauchy–Green deformation tensor B – also sometimes called the Finger
deformation tensor – is introduced in a manner similar to the right Cauchy–Green deformation
tensor:

B = F · FT = V2 (3.66)

In the remainder of this chapter we will only use the right Cauchy–Green deformation tensor and
the Green–Lagrange strain tensor. We will come back to the left Cauchy–Green deformation
tensor when discussing large strains, where it is useful in some formulations.

It is customary to use the displacement vector u rather than the vector x which contains the
spatial coordinates of a material point in the deformed configuration. Clearly, x = ξ + u, and
we obtain

F = I + ∂u
∂ξ

(3.67)

or, in component form

Fij = ∂(ξi + ui)

∂ξj

= δij + ∂ui

∂ξj

(3.68)

The components of the Green–Lagrange strain tensor thus read:

γij = 1

2

(
FkiFkj − δij

)
(3.69)

or after substitution of Equation (3.68),

γij = 1

2

(
∂ui

∂ξj

+ ∂uj

∂ξi

)
+ 1

2

∂uk

∂ξi

∂uk

∂ξj

(3.70)

When the displacement gradients remain small, the quadratic terms can be omitted from the
definition for the strain, and the (classical) expression for the linear strain tensor is retrieved, cf.
Equations (1.91) and (1.92). Now, the relevance of introducing the factor 1/2 in the definition
of the Green–Lagrange strain tensor becomes clear. Without introducing this factor the linear
expression for the strain tensor would not have been obtained when reducing the full expression
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88 Non-linear Finite Element Analysis of Solids and Structures

for the strain tensor. For future use we also list the increment of the Green–Lagrange strain
tensor:

�γ = 1

2

(
FT · ∇0(�u) + (∇0(�u))T · F

) + 1

2
(∇0(�u))T · ∇0(�u) (3.71)

which is obtained by substracting γ t from γ t+�t . The subscript 0 signifies that the gradient is
taken with respect to the material coordinates ξ. When this subscript is omitted, differentiation
with respect to the spatial coordinates x is implied.

The concept of stress is defined as the force per unit load-carrying area. When the displace-
ment gradients remain small compared with unity, it is not relevant in which configuration the
load-carrying area is measured, the deformed or the undeformed configuration. However, when
this assumption no longer applies, it must be defined unambiguously to which configuration
the stresses are referred. For engineering purposes we usually wish to know the magnitude of
the stresses in the current configuration, i.e. the total force divided by the current load-carrying
area. The stress tensor σ that contains these ‘true stress components’ is called the Cauchy stress
tensor.

In solid mechanics the Lagrange description is the most popular way of describing the statics
and kinematics of a structure subject to large displacements. In this approach all kinematic
and static quantities must be referred to some previous configuration. Since the Cauchy stress
tensor is referred to the current, unknown, configuration, the use of an auxiliary stress measure,
which refers to a reference configuration, is needed. The quantity that is most often employed
in non-linear analyses is the Second Piola–Kirchhoff stress tensor τ, which is related to the
Cauchy stress tensor σ through:

σ = ρ

ρ0
F · τ · FT (3.72)

with ρ and ρ0 the mass densities in the deformed and reference configurations, respectively.
In index notation the relation between both stress tensors reads:

σij = ρ

ρ0
FikτklFjl (3.73)

The Second Piola–Kirchhoff stress tensor has no direct physical relevance. When the stresses
must be determined in an analysis in addition to the displacements, Cauchy stresses have to be
computed from the Second Piola–Kirchhoff stresses. For small displacement gradients ρ ≈ ρ0,
F ≈ I, and the Cauchy stress tensor and the Second Piola–Kirchhoff stress tensor coincide.
We finally note that there exists also the First Piola–Kirchhoff stress tensor, see Box 3.3.

Just as the stress measure used internally in the formulation of the finite element equations
must be referred to the reference configuration, so must all quantities occurring in the principle
of virtual work. Normally, this principle is formulated in the current domain of the structure.
Again, this is inconvenient and we will transform the virtual work equation into an expression
which only involves integrals which can be evaluated in the reference configuration. The
starting point for this derivation is the notion of conservation of mass of an elementary volume,
which is mathematically expressed as:

ρdV = ρ0dV0 (3.74)
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Geometrically Non-linear Analysis 89

Box 3.3 First Piola–Kirchhoff stress tensor

The First Piola–Kirchhoff stress tensor p∗ is defined through:

σ = ρ

ρ0
p∗ · FT or p∗ = ρ0

ρ
σ · (F−1)T

In component form we have σij = ρ
ρ0

p∗
ikFjk or p∗

jk = ρ0
ρ

σji(F−1)ki. Substitution of the
expression for the internal energy in the reference configuration, Equation (3.83), yields:

δWint =
∫

V0

p∗
ik

∂δui

∂xj

FjkdV =
∫

V0

p∗
ik

∂δui

∂ξk

dV =
∫

V0

p∗
ikδFikdV

so that the First Piola–Kirchhoff stress tensor is energetically conjugate to the variation
of the deformation gradient. A disadvantage of the First Piola–Kirchhoff stress tensor is
its unsymmetry, which makes it less suitable for computations. However, it can be given
a physical interpretation. For this, we first derive the relation between an area dS0 in the
undeformed configuration and that in the deformed configuration, dS. When the normal
vectors are denoted by n0 and n, respectively, and an arbitrary vector d�0, that transforms
into d� and is not orthogonal to n0, there exists an elementary volume dV0 = d�0 · n0dS0
which transforms into dV = d� · ndS. Since ρdV = ρ0dV0 and d� = F · d�0, one obtains:
ρn · F · d�0dS = ρ0n0 · d�0dS0. This identity must hold for arbitrary d�0, which results in
Nanson’s formula for the transformation of surface elements:

ndS = ρ0

ρ
n0(F−1)TdS0 or; nidS = ρ0

ρ
(n0)k(F−1)kidS0

Now, we can express the force fj on a tributary area dS in the current configuration as:

fj = tjdS = niσijdS = ρ0

ρ
(n0)k(F−1)kiσijdS0

Invoking the symmetry of the Cauchy stress tensor and the definition of the First Piola–
Kirchhoff stress tensor, and defining the nominal traction as (t0)j = fj/dS0 then results
in:

(t0)j = ρ0

ρ
(n0)kσji(F

−1)ki = p∗
jk(n0)k

The components of the First Piola–Kirchhoff stress tensor can thus be interpreted as the
stresses that result from the force that acts on a surface in the undeformed configuration.

Since

detF = dxdydz

dξdηdζ
= dV

dV0
(3.75)

in view of Equation (3.74) we also have:

detF = ρ0

ρ
(3.76)
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90 Non-linear Finite Element Analysis of Solids and Structures

The variation of the internal energy, or the internal virtual work, δWint is given by:

δWint =
∫

V

δε : σdV (3.77)

Conservation of mass permits conversion of this integral into an integral of the body in the
reference configuration:

δWint =
∫

V0

ρ0

ρ
δε : σdV (3.78)

In Equation (3.78) δε and σ are functions of the current configuration. To transform them into
quantities in the reference configuration we must establish a relationship between the virtual
strain field δε and the virtual displacement field δu. From the definition of the Green–Lagrange
strain tensor, Equation (3.61), the variation reads:

δγ = 1

2
δ(FT · F − I) = 1

2
(δFT · F + FT · δF) (3.79)

Using index notation, the variation of the Green-Lagrange strain tensor can be rewritten as:

δγij = 1

2

(
∂δuk

∂ξi

∂xk

∂ξj

+ ∂xk

∂ξi

∂δuk

∂ξj

)

= 1

2

(
∂δuk

∂xl

∂xl

∂ξi

∂xk

∂ξj

+ ∂xk

∂ξi

∂δuk

∂xl

∂xl

∂ξj

)

= 1

2
Fkj

(
∂δuk

∂xl

+ ∂δul

∂xk

)
Fli

so that

δγ = FTδεF (3.80)

sets the relation between the variation of the Green–Lagrange strain tensor referred to the
undeformed configuration, δγ , and δε which is referred to the current configuration:

δε = 1

2
(δFT + δF) (3.81)

or in index notation:

δεij = 1

2

(
∂δuj

∂xi

+ ∂δui

∂xj

)
(3.82)

The latter identity can be substituted into Equation (3.78). Together with the symmetry of the
Cauchy stress tensor this results in:

δWint =
∫

V0

ρ0

ρ
∇(δu) : σdV (3.83)
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Geometrically Non-linear Analysis 91

We next substitute the relation between the Cauchy stress tensor and the Second Piola–
Kirchhoff stress tensor in Equation (3.73):

∫
V0

ρ0

ρ
∇(δu) : σdV =

∫
V0

tr(∇(δu) · F · τ · FT)dV =
∫

V0

tr(δF · τ · FT)dV (3.84)

where the chain rule has been used to establish the last identity. Using the definition of the
first variation of the Green–Lagrange strain tensor referred to the undeformed configuration,
Equation (3.79), and the symmetry of the Second Piola–Kirchhoff stress tensor subsequently
permits rewriting the latter equation as:

δWint =
∫

V0

δγ : τdV (3.85)

This results states that the Second Piola–Kirchhoff stress tensor is energetically conjugate
to the Green–Lagrange strain tensor, and arises naturally as a convenient stress measure in
numerical schemes that take some previous configuration as the reference configuration.

3.4 Geometrically Non-linear Formulation of Continuum Elements

3.4.1 Total and Updated Lagrange Formulations

Using Equation (3.85) we can write the principle of virtual work referred to the reference
configuration in terms of matrices and vectors:

∫
V0

δγTτt+�tdV =
∫

S0

δuTt0dS +
∫

V0

ρ0δuTgdV (3.86)

with t0 the nominal traction, i.e. the force divided by a surface in the undeformed configuration.
Basically, the derivation of tangential stiffness matrices and consistent load vectors runs along
the same lines as for the truss elements. First, the unknown stress τt+�t is decomposed into
a stress τt at the beginning of a load step, and a stress increment �τ. Substitution into the
virtual work equation, which, although referred to some previous configuration, is valid at time
t + �t, results in:

∫
V0

δγT�τdV +
∫

V0

δγTτtdV =
∫

S0

δuTt0dS +
∫

V0

ρ0δuTgdV (3.87)

For small strains a linear relation can be assumed between the stress increment �τ and the
strain increment �γ:

�τ = D�γ (3.88)
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92 Non-linear Finite Element Analysis of Solids and Structures

The matrix D contains the instantaneous stiffness moduli of the material model. For linear
elasticity it reduces to Hooke’s law. Substitution of the latter equation into Equation (3.87)
gives

∫
V0

δγTD�γdV +
∫

V0

δγTτtdV =
∫

S0

δuTt0dS +
∫

V0

ρ0δuTgdV (3.89)

Again, the strain increment �γ contains contributions that are linear and contributions that are
quadratic in the displacement increment �u, cf. Equation (3.71). Assembling the terms that are
linear in the displacement increment in the contribution �e and the terms that are non-linear
in the displacement increment in �η, we can formally define the following decomposition:

�γ = �e + �η (3.90)

In the same spirit as with the derivation for truss elements the variation of the Green–Lagrange
strain tensor at time t vanishes and we have δγ t+�t = δ�γ . Substitution then gives:

∫
V0

δ�eTD�edV +
∫

V0

δ�eTD�ηdV+∫
V0

δ�ηTD�edV +
∫

V0

δ�ηTD�ηdV+∫
V0

δηTτtdV =
∫

S0

δuTt0dS +
∫

V0

ρ0δuTgdV −
∫

V0

δeTτtdV

(3.91)

where, just as with the derivation for the truss elements, the contribution
∫

(δ�e)TτtdV , which
is of degree zero in the displacement increments, has been brought to the right-hand side to form
the internal force vector. For the derivation of the tangential stiffness matrix we can only use
those contributions that are linear in the displacement increment. The second, third and fourth
terms on the left-hand side are non-linear in the displacement increment, and linearisation
yields:

∫
V0

δ�eTD�edV +
∫

V0

δηTτtdV =∫
S0

δuTt0dS +
∫

V0

ρ0δuTgdV −
∫

V0

δeTτtdV

(3.92)

The relation between the linear part of the strain increment �e and the displacement incre-
ment �u formally reads

�e = L�u (3.93)
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Geometrically Non-linear Analysis 93

where the matrix L contains differentials which must be determined for every strain measure
and every strain condition separately. For instance, for a two-dimensional configuration the
Green–Lagrange strain definition gives

L =




F11
∂

∂ξ1
F21

∂

∂ξ1

F12
∂

∂ξ2
F22

∂

∂ξ2

F11
∂

∂ξ2
+ F12

∂

∂ξ1
F21

∂

∂ξ2
+ F22

∂

∂ξ1




(3.94)

where the last row of this matrix reflects the fact that the engineering shear strain is used in the
matrix-vector notation, which is the double of the tensorial quantity of Equation (3.71), and
for a three-dimensional configuration we have:

L =




F11
∂

∂ξ1
F21

∂

∂ξ1
F31

∂

∂ξ1

F12
∂

∂ξ2
F22

∂

∂ξ2
F32

∂

∂ξ2

F13
∂

∂ξ3
F23

∂

∂ξ3
F33

∂

∂ξ3

F11
∂

∂ξ2
+ F12

∂

∂ξ1
F21

∂

∂ξ2
+ F22

∂

∂ξ1
F31

∂

∂ξ2
+ F32

∂

∂ξ1

F12
∂

∂ξ3
+ F13

∂

∂ξ2
F22

∂

∂ξ3
+ F23

∂

∂ξ2
F32

∂

∂ξ3
+ F33

∂

∂ξ2

F13
∂

∂ξ1
+ F11

∂

∂ξ3
F23

∂

∂ξ1
+ F21

∂

∂ξ3
F33

∂

∂ξ1
+ F31

∂

∂ξ3




(3.95)

While for truss elements the derivation is completed at this point, continua require the inter-
polation of the continuous displacement field u. With the matrix H containing the interpolation
functions h1, h2, h3, h4, . . . defined in Equation (2.11), the relation between u and the discrete
nodal displacements as contained in the vector a can be formulated as u = Ha, and conse-
quently �u = H�a. With the definition BL = LH the relation between the linear part of the
strain increment, �e, and the continuous displacement vector u becomes:

�e = BL�a (3.96)

For example, in a two-dimensional configuration and using the Green–Lagrange strain we
have:

BL =




F11
∂h1

∂ξ1
F21

∂h1

∂ξ1
. . . . . .

F12
∂h1

∂ξ2
F22

∂h1

∂ξ2
. . . . . .

F11
∂h1

∂ξ2
+ F12

∂h1

∂ξ1
F21

∂h1

∂ξ2
+ F22

∂h1

∂ξ1
. . . . . .




(3.97)
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94 Non-linear Finite Element Analysis of Solids and Structures

while for the three-dimensional case we have:

BL =




F11
∂h1

∂ξ1
F21

∂h1

∂ξ1
F31

∂h1

∂ξ1
. . . . . .

F12
∂h1

∂ξ2
F22

∂h1

∂ξ2
F32

∂h1

∂ξ2
. . . . . .

F13
∂h1

∂ξ3
F23

∂h1

∂ξ3
F33

∂h1

∂ξ3
. . . . . .

F11
∂h1

∂ξ2
+ F12

∂h1

∂ξ1
F21

∂h1

∂ξ2
+ F22

∂h1

∂ξ1
F31

∂h1

∂ξ2
+ F32

∂h1

∂ξ1
. . . . . .

F12
∂h1

∂ξ3
+ F13

∂h1

∂ξ2
F22

∂h1

∂ξ3
+ F23

∂h1

∂ξ2
F32

∂h1

∂ξ3
+ F33

∂h1

∂ξ2
. . . . . .

F13
∂h1

∂ξ1
+ F11

∂h1

∂ξ3
F23

∂h1

∂ξ1
+ F21

∂h1

∂ξ3
F33

∂h1

∂ξ1
+ F31

∂h1

∂ξ3
. . . . . .




(3.98)

When we define

KL =
∫

V0

BT
LDBLdV (3.99)

as the first contribution to the tangential stiffness matrix, it follows that:

∫
V0

(δ�e)TD�edV = (δ�a)TKL�a (3.100)

Formally, the second contribution to the left-hand side can be rewritten as

∫
V0

(δ�η)TτtdV = (δ�a)TKNL�a (3.101)

so that the geometric contribution to the tangential stiffness matrix is given by:

KNL =
∫

V0

BT
NLT tBNLdV (3.102)

Herein the Second Piola–Kirchhoff stress is represented in matrix form, which, for two-
dimensional configuration is given by:

T =




τxx τxy 0 0

τxy τyy 0 0

0 0 τxx τxy

0 0 τxy τyy


 (3.103)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geometrically Non-linear Analysis 95

and

BNL =




∂h1

∂ξ1
0

∂h2

∂ξ1
0 . . . . . .

∂h1

∂ξ2
0

∂h2

∂ξ2
0 . . . . . .

0
∂h1

∂ξ1
0

∂h2

∂ξ1
. . . . . .

0
∂h1

∂ξ2
0

∂h2

∂ξ2
. . . . . .




(3.104)

For three-dimensional configurations the matrix form of the Second Piola–Kirchhoff stress
tensor becomes:

T =




τxx τxy τzx 0 0 0 0 0 0

τxy τyy τyz 0 0 0 0 0 0

τzx τyz τzz 0 0 0 0 0 0

0 0 0 τxx τxy τzx 0 0 0

0 0 0 τxy τyy τyz 0 0 0

0 0 0 τzx τyz τzz 0 0 0

0 0 0 0 0 0 τxx τxy τzx

0 0 0 0 0 0 τxy τyy τyz

0 0 0 0 0 0 τzx τyz τzz




(3.105)

while then:

BNL =




∂h1

∂ξ1
0 0

∂h2

∂ξ1
0 0 . . . . . .

∂h1

∂ξ2
0 0

∂h2

∂ξ2
0 0 . . . . . .

∂h1

∂ξ3
0 0

∂h2

∂ξ3
0 0 . . . . . .

0
∂h1

∂ξ1
0 0

∂h2

∂ξ1
0 . . . . . .

0
∂h1

∂ξ2
0 0

∂h2

∂ξ2
0 . . . . . .

0
∂h1

∂ξ3
0 0

∂h2

∂ξ3
0 . . . . . .

0 0
∂h1

∂ξ1
0 0

∂h2

∂ξ1
. . . . . .

0 0
∂h1

∂ξ2
0 0

∂h2

∂ξ2
. . . . . .

0 0
∂h1

∂ξ3
0 0

∂h2

∂ξ3
. . . . . .




(3.106)
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96 Non-linear Finite Element Analysis of Solids and Structures

In a similar spirit as for truss elements we derive that:

(δ�a)T(KL + KNL)�a = (δ�a)T (
f t+�t
ext − f t

int

)
(3.107)

with the external force vector and the internal force vector defined as:{
f t+�t
ext = ∫

S0
HTt0dS + ∫

V0
ρ0HTgdV

f t
int = ∫

V0
BT

LτtdV
(3.108)

Identity (3.107) must hold for any virtual displacement increment δ�a, whence

(KL + KNL)�a = f t+�t
ext − f t

int (3.109)

The above derivation applies to two- and three-dimensional continuum elements. The origi-
nal, undeformed configuration has been chosen as the reference configuration, so that formally
we have a Total Lagrange formulation. Nonetheless, any other reference configuration can
be chosen without affecting the derivation, which thus encompasses the Updated Lagrange
formulation. At variance with the formulation for truss elements, minor differences in the re-
sults may now arise between both Lagrange formulations. As mentioned already for the truss
element, these differences can become more significant when inelastic effects are included,
such as plasticity or damage. Then, use of the Total Lagrange formulation is less appealing,
since the physical relevance of the undeformed configuration is lost.

3.4.2 Corotational Formulation

A crucial issue in corotational formulations is the proper definition of the local coordinate
frame. For structural elements this definition is usually straightforward, as for instance with
the truss element. For continuum elements several definitions are possible for the choice of the
local rotation φ, as has been discussed by Crisfield and Moita (1996a), which has been extended
to three dimensions by Crisfield and Moita (1996b). Herein, we shall restrict the discussion to
a two-dimensional configuration, for which we can define the base vectors n̄T

1 = (cos φ, sin φ)
and n̄T

2 = (− sin φ, cos φ) (Figure 3.7), which are attached to the element and located at its
centroid. In order that the element passes the ‘large-strain patch test’, which means that for

x , ξ

y ,η

x1

n
1

xi1 φ

i
y

1

1i
x

i1
x

i1
y

n2

x
i

Figure 3.7 Position vectors for a deformed element in the corotational formulation
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Geometrically Non-linear Analysis 97

a constant deformation gradient, a patch of elements should respond with the same, constant
strains at each integration point, the local spin at the centroid of the element in the current
configuration should be constrained to zero (Jetteur and Cescotto 1991):

�̄ ≡ ∂ū

∂η
− ∂v̄

∂ξ
= 0 (3.110)

where an overbar refers to the ‘local’, rotated coordinate frame, and ξ, η are the Lagrangian,
material coordinates. The local displacements ū and v̄ are interpolated in a standard manner,

{
ū = ∑n

i=1(hi)0(āx)i
v̄ = ∑n

i=1(hi)0(āy)i
(3.111)

where (āx)i, (āy)i are the displacements in the local coordinate system at node i, and the
subscript 0 denotes that the interpolants hi are evaluated at the element centroid. Using these
identities, Equation (3.110) transforms into:

�̄ ≡
n∑

i=1

∂(hi)0

∂η
(āx)i −

n∑
i=1

∂(hi)0

∂ξ
(āy)i = 0 (3.112)

We transform the nodal displacements to the global coordinate system using Equation (1.50),
with the local rotation matrix R given by Equation (1.51), so that:

�̄ ≡ a sin φ + b cos φ = 0 (3.113)

with




a = ∑n
i=1

(
∂(hi)0

∂ξ
(ax)i + ∂(hi)0

∂η
(ay)i

)
b = ∑n

i=1

(
∂(hi)0

∂η
(ax)i − ∂(hi)0

∂ξ
(ay)i

) (3.114)

The local rotation φ can then be computed from:

φ = tan−1
(

−b

a

)
(3.115)

For future use we also list the variation of φ:

δφ = bδa − aδb

a2 + b2 = wTδa (3.116)

with

w = bc − ad
a2 + b2 (3.117)
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98 Non-linear Finite Element Analysis of Solids and Structures

where a = [(ax)1, (ay)1, . . . , (ax)n, (ay)n] contains the nodal displacements, and


cT =
[
∂(h1)0

∂ξ
,
∂(h1)0

∂η
, . . . ,

∂(hn)0

∂ξ
,
∂(hn)0

∂η

]

dT =
[
−∂(h1)0

∂η
,
∂(h1)0

∂ξ
, . . . ,−∂(hn)0

∂η
,
∂(hn)0

∂ξ

] (3.118)

Having derived an expression for the local rotation φ, we proceed by expressing the relative
position vector x̄i1 for node i in the local, rotated coordinate system with respect to the global
relative position vector xi1 = xi − x1

x̄i1 = Rxi1 (3.119)

see Figure 3.7. Since δxi1 = δai1 = δai (and similarly for the displacement quantities in the
rotated, local coordinate system), the latter equation can be differentiated to yield:

δāi = Rδai + ∂R
∂φ

xi1δφ (3.120)

with (cf. Box 3.2):

∂R
∂φ

=
[

− sin φ cos φ

− cos φ − sin φ

]
(3.121)

We introduce the composite rotation matrix:

R =




R . . . 0
...

. . .
...

0 . . . R


 (3.122)

with an equivalent expression for ∂R
∂φ

, and use Equation (3.116) to give:

δā =
(

R + ∂R
∂φ

x1wT
)

δa (3.123)

with xT
1 = [0, x21, . . . , xn1] the composite, relative position vector. The matrix

T = R + ∂R
∂φ

x1wT (3.124)

is thus the transformation matrix for continuum elements in the corotational formulation.
For the derivation of the tangential stiffness we exploit the invariance of the virtual work in

the global and local systems to give:

fint = TT f̄int (3.125)

so that:

δfint = TTδf̄int + δTT f̄int (3.126)
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Geometrically Non-linear Analysis 99

Elaboration of the first term of Equation (3.126) gives:

TTδf̄int = TT
∫

V0

BTDBdV δā (3.127)

with the linear B matrix defined in Chapter 2, which, for two-dimensional configurations,
reads:

B =




∂h1

∂ξ
0 . . . . . .

∂hn

∂ξ
0

0
∂h1

∂η
. . . . . . 0

∂hn

∂η

∂h1

∂η

∂h1

∂ξ
. . . . . .

∂hn

∂η

∂hn

∂ξ




(3.128)

cf. Box 2.2 for the elaboration for a three-dimensional eight-noded element, and D the material
tangential stiffness matrix which accounts for possible inelastic effects (Yaw et al. 2009), with
D ≡ De for linear elasticity. Backtransformation of the nodal displacements to the global
coordinate system yields:

TTδf̄int = TTK̄Tδa (3.129)

with

K̄ =
∫

V0

BTDBdV

the conventional stiffness matrix for small displacement gradients. Using Equation (3.124) we
obtain for the second term:

δTT f̄int =
(

∂R
∂φ

)T

f̄intδφ + wxT
1

(
∂2R
∂φ2

)T

f̄intδφ

+wδaT
(

∂R
∂φ

)T

f̄int + δwxT
1

(
∂R
∂φ

)T

f̄int (3.130)

Using Equation (3.116) the first two terms can be rewritten as:(
∂R
∂φ

)T

f̄intδφ =
(

∂R
∂φ

)T

f̄intwTδa

and

wxT
1

(
∂2R
∂φ2

)T

f̄intδφ = wxT
1

(
∂2R
∂φ2

)T

f̄intwTδa

The third and fourth terms can be rearranged to give, respectively:

w

(
δaT

(
∂R
∂φ

)T

f̄int

)
= w

((
∂R
∂φ

)T

f̄int

)T

δa = wf̄T
int

∂R
∂φ

δa
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100 Non-linear Finite Element Analysis of Solids and Structures

and

δw

(
xT

1

(
∂R
∂φ

)T

f̄int

)
=

(
xT

1

(
∂R
∂φ

)T

f̄int

)
Wδa

where the matrix W follows by straightforward differentiation of w, Equation (3.117):

W = 2ab(ddT − ccT) + (a2 − b2)(cdT + dcT)

(a2 + b2)2 (3.131)

The second contribution to the tangential stiffness matrix is therefore elaborated as:

δTT f̄int =
[(

∂R
∂φ

)T

f̄intwT + wxT
1

(
∂2R
∂φ2

)T

f̄intwT + wf̄T
int

∂R
∂φ

+
(

xT
1

(
∂R
∂φ

)T

f̄int

)
W

]
δa (3.132)

From Equations (3.126), (3.129) and (3.132) the complete tangential stiffness matrix for con-
tinuum elements for a corotational formulation is derived as:

K = TTK̄T +
(

∂R
∂φ

)T

f̄intwT + wxT
1

(
∂2R
∂φ2

)T

f̄intwT + wf̄T
int

∂R
∂φ

+
(

xT
1

(
∂R
∂φ

)T

f̄int

)
W (3.133)

Numerical experience shows that the last term is often less important and can be omitted.

3.5 Linear Buckling Analysis

A complete non-linear calculation can be expensive in terms of the computer time that is
needed. For stability problems it is desirable to have a simple method which gives an accurate
estimate of the critical load at which loss of structural stability occurs. Such a method is known
as linear buckling analysis. In this method the complete non-linear analysis in which the entire
load–deflection path is followed up to, and possibly beyond the critical load level, is replaced
by an eigenvalue analysis. A derivation of the method, starting from the complete set of the
non-linear field equations and elucidating the assumptions that are made, is given below.
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Geometrically Non-linear Analysis 101

The basic assumption is that prior to the point where loss of uniqueness occurs,1 the displace-
ment gradients remain small, e.g. ∂v

∂x
� 1. Under this condition, the following approximations

hold:

1. The second, third and fourth members on the left-hand side of Equation (3.91) can be
neglected, since they are of second order and third order in the displacement gradients.

2. The difference between the Cauchy stress tensor σ and the Second Piola–Kirchhoff stress
tensor τ disappears.

3. No distinction has to be made between material coordinates and spatial coordinates. Con-
sequently, all integrals can be evaluated in the reference configuration.

4. The contribution to the increment of the Green–Lagrange strain tensor that is linear in the
displacement increments, �e, can be replaced by the increment of the engineering strain.
This has the effect that the BL matrix, which relates the increments of the nodal point
displacements �u with the strain increment, ceases to depend upon the current displacement
gradient, since the latter quantities are small compared with unity. Therefore, the BL matrix
as defined in Equation (3.97) can be replaced by the linear B matrix defined in Chapter 2.

With these assumptions we can rewrite Equation (3.91) as

∫
V0

(δ�u)TBTDB�udV +
∫

V0

(δ�u)TBT
NL�BNL�udV =∫

S0

(δ�u)THTt0dS +
∫

V0

ρ0(δ�u)THTgdV

(3.134)

where � is a matrix representation of the Cauchy stress tensor, with a format similar to
Equation (3.103) for the Second Piola–Kirchhoff stress tensor. Since the latter equation must
hold for any virtual displacement increment δ�u, the resulting set of equilibrium equations
ensues:

[∫
V0

BTDBdV +
∫

V0

BT
NL�BNLdV

]
�u =

∫
S0

HTt0dS +
∫

V0

ρ0HTgdV (3.135)

At the critical load level at least two solutions exist which both satisfy incremental equilibrium.
If �u1 denotes the incremental displacement field belonging to the first solution and if �u2 is

1 Note that we are not talking about loss of stability of the equilibrium, but about loss of uniqueness of the solution. With
the latter terminology we mean that after a certain load level has been reached in an incremental loading programme,
the differential equations that govern the next, infinitesimally small load increment, have more than one solution. All
solutions that emanate from this so-called bifurcation point satisfy the differential equations. A simple example is
the perfect Euler strut, which has two solutions at the buckling (bifurcation) point: one for which the strut remains
perfectly straight and one for which we observe large lateral deflections (buckling). It is emphasised that, although
they are intimately related for major classes of material models, the notions of loss of uniqueness and loss of stability
are not synonymous. This will be discussed in Chapter 4.
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102 Non-linear Finite Element Analysis of Solids and Structures

the incremental displacement field of the second solution, subtraction of the solutions, which
must both satisfy Equation (3.135), yields:

[∫
V0

BTDBdV +
∫

V0

BT
NL�cBNLdV

]
(�u1 − �u2) = 0 (3.136)

with �c the stress matrix at the critical (buckling) load.2

We now label �e as the stress matrix that is obtained in a linear-elastic calculation for a unit
load, and λ the load factor that sets the relation between this elastic solution for a unit load and
the stresses at the critical load �c: �c = λ�e, so that λ is the multiplication factor for the unit
load to obtain the critical load at which loss of uniqueness (buckling) occurs. Substitution of
this identity in Equation (3.136) yields:

[∫
V0

BTDBdV + λ

∫
V0

BT
NL�eBNLdV

]
(�u1 − �u2) = 0 (3.137)

Since by definition �u1 − �u2 /= 0, this equation forms a linear eigenvalue problem for which
a non-trivial solution exists if and only if the determinant of the characteristic equation vanishes:

det
(
K0 + λKe

NL

) = 0 (3.138)

where

K0 =
∫

V0

BTDBdV and Ke
NL =

∫
V0

BT
NL�eBNLdV

The solution of Equation (3.138) results in n eigenvalues, which belong to the load levels at
which loss of uniqueness (bifurcation) can occur. The lowest eigenvalue corresponds to the
lowest load level for which a bifurcation exists. Multiplication of the elastic solution with
this eigenvalue therefore gives the critical load level at which bifurcation is first possible.
An example for a simple truss–spring structure is given in Box 3.4. It is noted that the load
levels predicted by the higher eigenvalues can be so high that the assumptions made for the
linear buckling analysis may be violated, and that these eigenvalues can therefore be unreal-
istic. In computations of structures that have a fine discretisation, high eigenvalues may arise
that are merely artifacts of the discretisation, which is another possible source of unrealistic
eigenvalues. It is finally noted that efficient algorithms exist for the computation of the lowest
eigenvalues (Chatelin 1993; Golub and van Loan 1983).

2 Note that the validity of this subtraction rests upon the assumption that at the bifurcation point, all quantities in
Equation (3.135) have the same value for both solutions. For the kinematic quantities, as contained in the B matrices
this is obviously the case, since they represent the current deformation state which is unique. The issue is not so
clear for the D matrix. For constitutive models which have different stiffness moduli for loading and unloading as in
plasticity or damage the question arises as to which stiffness modulus we have to insert in the D matrix. This issue will
be discussed in greater depth in Chapter 4. For the case of linear elasticity, however, the stiffness moduli are unique
and this problem does not arise.
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Geometrically Non-linear Analysis 103

Box 3.4 Buckling of a truss member supported by a spring

For the simple structure of Figure 3.8 the buckling stress is given by σc = k �0
A0

, with k the
stiffness of the spring, �0 the length of the truss member and A0 the cross-sectional area of
the member. The x-axis is chosen to coincide with the axis of the truss member. Further, the
boundary conditions are such that u1 = v1 = 0. Then, after addition of the spring stiffness
k, the linear part of the stiffness matrix, Equation (3.30), becomes:

K0 =
[

EA0
�0

0

0 k

]

The second, non-linear part of the stiffness matrix is given by:

KNL = A0

�0

[
1 0

0 1

]

According to Equation (3.138) loss of uniqueness (buckling) first occurs when the deter-
minant of the matrix (K0 + σcKNL) vanishes. Since A0

�0
is always non-zero, this condition

can be elaborated as: (k − A0σc

�0
)(E − σc) = 0. so that the two solutions for the eigenvalue

problem are given by: {
σc = k�0

A0

σc = E

The first solution is related to buckling of the truss member with the spring acting as
a support to prevent lateral buckling. The second solution represents the possible lateral
buckling of the spring with the (non-rigid) truss member functioning as a support. Of course,
this possibility can only become active if there is a horizontal load present. In any case, EA0
is usually much larger than kl0: EA0 � k�0. Then, the solution σc = k�0

A0
corresponds to

the lowest eigenvalue and, consequently, gives the lowest (most critical) buckling load. For
a rigid truss member E → ∞ and the second buckling stress goes to infinity. The buckling
stress that is computed on the basis of a linear buckling analysis is exact for the present
case, which is due to the fact that the assumptions made in deriving the linear buckling
criterion have been satisfied exactly.

3.6 PyFEM: A Geometrically Non-linear Continuum Element

In this section, we shall continue the development of the PyFEM code by adding a geometrically
non-linear continuum element, described in Section 3.4. To improve the flexibility of the code,
we will use an input file to specify the finite element discretisation, the boundary conditions,
the material constants and the parameters of the solver. The syntax of this input file is presented
in the reference manual that is included in the source code of the program.

Moreover, the program will be restructured and we will construct the code in a modular way.
The code of the main routine of the program that performs a non-linear simulation is called
NewtonRaphson.py and can be found in the directory examples/ch03.
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104 Non-linear Finite Element Analysis of Solids and Structures

l0 EA0

F

k

Figure 3.8 Buckling problem: truss member supported by a spring

〈Non-linear Newton–Raphson finite element simulation 〉≡

from pyfem.io.InputReader import InputReader
from pyfem.io.OutputWriter import OutputWriter
from pyfem.io.MeshWriter import MeshWriter

from pyfem.solvers.NonlinearSolver import NonlinearSolver

props,globdat = InputReader( sys.argv )

solver = NonlinearSolver( props,globdat )
outputWriter = OutputWriter ( props,globdat )
meshWriter = MeshWriter ( props,globdat )

while globdat.active:
solver .run( props , globdat )
outputWriter.run( props , globdat )
meshWriter .run( props , globdat )

print "The Newton–Raphson simulation terminated successfully"

It is noted that this routine is very small. It basically consists of a number of modular units, such
as InputReader, NonlinearSolver and MeshWriter. The simulation is initialised
in the function InputReader. This function reads the input file, which is passed onto this
function through the argument sys.argv, together with some command line statements.
The entire input file is stored in props, which is a return parameter from the function. The
instance props has been used before in the fragment on page 77. The function furthermore
constructs the instances nodes, elements and dofs, which contain the nodal coordinates,
the element connectivity and the mapping of global degrees of freedom, respectively. These
instances are stored in the data container globdat, similar to the fragment on page 79.
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Geometrically Non-linear Analysis 105

Whereas props is just a database representation of the input file, the data that are created
afterwards, and which can be changed, are stored in the instance globdat. This instance not
only includes nodes, elements and dofs, but also the current solution vectors state
and dstate, and solver information, such as the current cycle number cycle and a boolean
active that is initialised as True. This boolean indicates whether the program is running.
When it is set to False, e.g. when the maximum number of load steps has been reached, the
program is terminated.

The program consists of a single while loop, that is controlled by the flag
globdat.active. Each execution of this loop represents a single step in the solution
procedure. Hence, the function solver.run solves the non-linear system of equations for
a single given external load, similar to the calculations in the fragment〈Solve Non-linear Sys-
tems of Equations〉 on page 80. When the solution has converged, the main routine continues
executing the function outputWriter.run, which writes the current solution to a file in a
specific text format. The name of the output file, as well as additional instructions, can be given
in the input file, which passes this information onto this function via the argument props.
Finally, the geometry of the deformed mesh is written to a file in meshWriter.run. Here,
the geometry is stored in the Visualization Toolkit data file format (www.vtk.org). Data that
are stored in this format can be visualised by means of a variety of post-processors, including
the open-source program Paraview (www.paraview.org).

We demonstrate the program NewtonRaphson.py by analysing the cantilever beam of
Figure 3.1. The beam is assigned a length l = 8.0 mm, a height h = 0.5 mm, a Young’s modulus
E = 100 N/mm2 and a Poisson’s ratio ν = 0.3. The beam is loaded by a concentrated load F =
0.2 N, which is applied in 20 steps of �F = 0.01 N. The finite element mesh consists of 8 eight-
noded continuum elements. The input file for this problem is named cantilever8.pro
and can be found in the same directory. The program is executed by the following command:

> python NewtonRaphson.py cantilever8.pro

The load–displacement curve of the cantilever beam in this example is shown in Figure 3.9.
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Figure 3.9 Load–displacement curve of the cantilever beam. The solution with a small strain continuum
model is given as a reference
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106 Non-linear Finite Element Analysis of Solids and Structures

The continuum element that is used in this example, is implemented in the same manner as
the truss element in Section 3.2. The source code of this element can be found in the file
FiniteStrainContinuum.py in the directory elements. The main structure of this
file is as follows:

〈Finite strain continuum element 〉≡
〈Finite strain continuum element class definition 106〉
〈Finite strain continuum element class main functions 106〉
〈Finite strain continuum element class utility functions 107〉

The constructor of the class, which is derived from the base class Element, is given by:

〈Finite strain continuum element class definition 〉≡ 106

class FiniteStrainContinuum ( Element ):

dofTypes = [’u’,’v’]

In the constructor, the element nodal degrees of freedom are defined. Since this element is a
two-dimensional element, the nodal degrees of freedom are ’u’ and ’v’. Additional data
for the element are initialised in the __init__ function:

〈Finite strain continuum element class definition 〉≡ 106

def __init__ ( self, elnodes , props ):
Element.__init__( self, elnodes , props )

The function getElementStiffness which is used to construct the element stiffness
matrix Ke and the internal force vector fe

int is implemented next:

〈Finite strain continuum element class main functions 〉≡ 106

def getElementStiffness ( self, elemdat ):

sData = getElemShapeData( elemdat.coords ) 39

The first action in this function is the determination of the shape functions. This is done using
the function getElemShapeData, which has been described in Chapter 2. The single
argument of this function is an array that contains the nodal coordinates of the element. This
array is a member of the instance elemdat. The length of the array coords determines
the shape function type. As a result, the element implementation that follows is valid for all
two-dimensional continuum elements. The element shape functions are stored in the instance
sData. The length of this instance is used to loop over the integration points of the elements:
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Geometrically Non-linear Analysis 107

〈Finite strain continuum element class main functions 〉+≡ 106

for iData in sData:

kin = self.getKinematics( iData.dhdx , elemdat.state ) 107

The deformation gradient, Equation (3.54), and the Green–Lagrange strain tensor,
Equation (3.61), are calculated in the member function getKinematics which uses the
derivatives of the shape functions and the current element displacement as input.

〈Finite strain continuum element class utility functions 〉≡ 106

def getKinematics( self , dphi , elstate ):

kin = Kinematics( 2 , 3 ) 107

kin.F = eye(2)

for i in range(len(dphi)):
for j in range(2):

for k in range(2):
kin.F[j,k] += dphi[i,k]*elstate[2*i+j]

kin.E = 0.5*( dot(kin.F.transpose() , kin.F ) - eye(2) )

kin.strain[0] = E[0,0]
kin.strain[1] = E[1,1]
kin.strain[2] = 2.0*E[0,1]

return kin

The kinematic properties of the current integration point are stored in the instance kin of the
class Kinematics. This instance contains at least the deformation gradient F and the Green–
Lagrange strains, which are stored in tensor format, E, as well as in vector format, strain.
When initialising the instance kin, two arguments are required, nDim and nStr, which are
the spatial dimensions of the problem and the number of independent strain terms, respectively.

〈Kinematics class 〉≡
class Kinematics:

def __init__( self , nDim , nStr ):

self.F = zeros( shape = ( nDim , nDim ) )
self.E = zeros( shape = ( nDim , nDim ) )
self.strain = zeros( nStr )
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108 Non-linear Finite Element Analysis of Solids and Structures

In this example, the spatial dimension is two and the number of independent strain terms
is three.

After the calculation of the strains at the integration point, the Second Piola–Kirchhoff
stresses and the material tangential stiffness matrix can be calculated. This is done in the
material manager mat, which will be discussed later. The stiffness matrix is calculated in two
parts, according to Equations (3.99) and (3.102):

〈Finite strain continuum element class main functions 〉+≡ 107

stress,tang = self.mat.getStress( kin ) 109

B = self.getBmatrix ( iData.dhdx , kin.F ) 108
Kl = dot( B.transpose() , dot( tang , B ) ) * iData.weight

T = self.stress2matrix( stress ) 109
Bnl = self.getBNLmatrix( iData.dhdx )
Knl = dot( Bnl.transpose() , dot( T , Bnl ) ) * iData.weight

elemdat.stiff += Kl + Knl

The relation between the linear part of the Green–Lagrange strain and the displacement
vector, matrix BL in Equation (3.97), is calculated in an additional utility function:

〈Finite strain continuum element class utility functions 〉+≡ 107

def getBmatrix( self , dphi , F ):

B = zeros( shape=( 3 , 2*len(dphi) ) )

for i,dp in enumerate( dphi ):
B[0,2*i ] = dp[0]*F[0,0]
B[0,2*i+1] = dp[0]*F[1,0]

B[1,2*i ] = dp[1]*F[0,1]
B[1,2*i+1] = dp[1]*F[1,1]

B[2,2*i ] = dp[1]*F[0,0]+dp[0]*F[0,1]
B[2,2*i+1] = dp[0]*F[1,1]+dp[1]*F[1,0]

return B

The non-linear counterpart of this matrix, BNL in Equation (3.104), is calculated in a similar
fashion. The Second Piola–Kirchhoff stress is stored in matrix form in the member function
stress2matrix, see also Equation (3.103):

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geometrically Non-linear Analysis 109

〈Finite strain continuum element class utility functions 〉+≡ 108

def stress2matrix( self , stress ):

T = zeros( shape=( 4 , 4 ) )

T[0,0] = stress[0]
T[1,1] = stress[1]
T[0,1] = stress[2]
T[1,0] = stress[2]

T[2:,2:] = T[:2,:2]

return T

The loop over the integration points in the function getElementStiffness is concluded
by constructing the internal force vector fint:

〈Finite strain continuum element class main functions 〉+≡ 108

elemdat.fint += dot ( B.transpose() , stress ) * iData.weight

In order to be able to use different material models in this element, we introduce another
level of abstraction, the material model. One of the input properties of the element is a refer-
ence to a material model. In this case, the material model that is specified in the input file is
PlaneStrain. The elementSet class contains a so-called material manager that connects
the correct material model to a specific element. In the fragment on page 108 we have already
encountered the most important function of the material model getStress. Now, we will
focus on the implementation.

The structure of the file PlaneStrain.py, which contains the constitutive relation for
plane-strain conditions, is as follows:

〈Plane strain material model 〉≡
〈Initialisation of the plain strain material class 110〉
〈Plane strain member functions 110〉

The material is implemented as a class, derived from the class BaseMaterial:
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110 Non-linear Finite Element Analysis of Solids and Structures

〈Initialisation of the plain strain class 〉≡ 109

from pyfem.materials.BaseMaterial import BaseMaterial

class PlaneStrain( BaseMaterial ):

def __init__ ( self, props ):

BaseMaterial.__init__( self, props )

self.H = zeros( (3,3) )

self.H[0,0] = self.E*(1.-self.nu)/((1+self.nu)*(1.-2.*self.nu))
self.H[0,1] = self.H[0,0]*self.nu/(1-self.nu)
self.H[1,0] = self.H[0,1]
self.H[1,1] = self.H[0,0]
self.H[2,2] = self.H[0,0]*0.5*(1.-2.*self.nu)/(1.-self.nu)

In the constructor of the BaseMaterial, the material properties are read from the instance
props and are stored as members of the class. For example, the Young’s modulus, which
is labelled as E in the input file and in the properties data structure, is stored as self.E
in this class. The same holds for the other parameter of this material model, the Poisson’s
ratio nu. Since the model is a linear stress–strain relation, it is advantageous to calculate
the constant material tangential stiffness also in the constructor, and to store it as a member
variable self.H

The only member function in the material model class is getStress:

〈Plane strain class member functions 〉≡ 109

def getStress( self, kinematics ): 107

sigma = dot( self.H, kinematics.strain )

return sigma, self.H

The return values of this function are the stress, which in this case is the result of the mul-
tiplication of the material stiffness matrix and the strain vector, and the material stiffness
matrix. In Chapter 6, when non-linear material models are discussed, we will return to the
implementation of material models.
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4
Solution Techniques in Quasi-static
Analysis

In Chapter 2 the basic ideas were introduced regarding the solution of the set of non-linear
algebraic equations which arises in a non-linear finite element analysis, namely load and dis-
placement control, the incremental-iterative solution strategy, and the use of Newton–Raphson
type methods within a load step. In this chapter advanced solution techniques will be dis-
cussed, including line searches, path-following methods, Quasi-Newton methods, and branch
switching techniques at bifurcation points.

4.1 Line Searches

A drawback of any variant of the Newton–Raphson method is the limited radius of convergence.
To enlarge this convergence radius, line searches have been introduced. The basic idea of the
line search technique is to apply an improvement to the original incremental displacement
vector dãj+1 by scaling it by a multiplier ηj+1 such that we arrive at the point of lowest
potential energy along the search direction. The correction to the displacement increment then
reads:

daj+1 = ηj+1dãj+1 (4.1)

where, for load control, dãj+1 follows from

dãj+1 = K−1
j (f t+�t

ext − fint,j)

cf. Equation (2.52). Generally, the potential energy � of a system is a function of the displace-
ments. Let the total displacements after iteration j of a certain load step be given by aj and the
correction in iteration j + 1 be given by daj+1, such that aj+1 = aj + daj+1. Then, a Taylor

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
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114 Non-linear Finite Element Analysis of Solids and Structures

adaj+1 d
Πd

Figure 4.1 Isolines of the potential energy � and the line-search direction

expansion of � gives:

�(aj+1) = �(aj) +
(

∂�

∂a

)T

daj+1 + 1

2
daT

j+1

(
∂2�

∂a∂a

)
daj+1 + · · · (4.2)

Evidently, � is minimised by requiring(
∂�

∂a

)T

daj+1 = 0 (4.3)

see also Figure 4.1 for a graphical interpretation. The variation of the potential energy equals
the difference of the external and the internal virtual work, δ� = δWext − δWint, so that, in
view of the discussion in Section 2.3, we have

δ� = (f t+�t
ext )Tδa − (fint,j+1)Tδa

Considering that

δ� =
(

∂�

∂a

)T

δa

the derivative ∂�
∂a can be identified as

∂�

∂a
= f t+�t

ext − fint,j+1 = f t+�t
ext − fint(aj + ηj+1dãj+1) (4.4)

and the line search multiplier ηj+1 can be determined after substitution of this result into
Equation (4.3):

(
f t+�t
ext − fint(aj + ηj+1dãj+1)

)T
daj+1 = 0 (4.5)

Experience shows that an exact satisfaction of this requirement, and accordingly, an accurate
determination of ηj+1, are not necessary. An accurate determination of ηj+1 often only has a
marginal effect on the speed of the global iterative procedure, definitely when the solution has
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g

x1

x2
x3

θR

L

Figure 4.2 Cylindrical shell subjected to self weight loading (Scordelis-Lo roof)

come within the convergence radius of the Newton–Raphson procedure. We define

s = (f t+�t
ext − fint(aj + ηj+1daj+1))Tdaj+1 (4.6)

The line-search procedure is then terminated when

|s| ≤ ψ|s0| (4.7)

with the line-search tolerance ψ usually taken in the range 0.7–0.9 and

s0 = (f t+�t
ext − fint(aj))Tdaj+1 (4.8)

which is easily computed, since fint(aj) is known from the previous global equilibrium iteration.
With a slack tolerance ψ, the criterion (4.7) is normally fulfilled in the first line search.

The Scordelis-Lo roof is one of the classical benchmarks in shell theories (MacNeal and
Harder 1985). A schematic representation of the problem is shown in Figure 4.2. The problem
is considered in non-dimensional form with radius R = 25, length L = 50 and thickness t =
0.25. The cross section of the roof is described by a circular arc of 2θ = 80◦. The modulus
of elasticity and Poisson’s ratio are taken as 4.32 × 108 and 0, respectively, with a von Mises
yield contour to bound the allowable stresses, see Chapter 7 for details. The roof is loaded by
a gravity load of g = 90 (per unit area), and is clamped at its ends by rigid diaphragms which
constrain the displacements of the shell in the x1- and in the x2-direction. Because of symmetry
considerations the calculations have been carried out for a quarter of the shell, which has been
idealised using 16 eight-noded shell elements. A 2 × 2 Gauss integration rule in the plane and
five-point Simpson integration through the thickness have been used (Chapter 9).

In Tables 4.1 and 4.2 the effect of line searches on the convergence is presented for different
values of the line-search tolerance. These tables suggest that line searches are only then useful
when no proper tangential stiffness matrix is adopted. In the case of a full Newton–Raphson
method hardly any savings in computer time are obtained when applying line searches. It is
also observed that although a line-search procedure improves the performance of the modified
Newton–Raphson method, it is still not competitive with a full Newton–Raphson scheme.
In fact, line searches can only enhance the performance of a full Newton–Raphson scheme
in the first iterations, in order to bring the solution within the radius of convergence of the
Newton–Raphson method.
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116 Non-linear Finite Element Analysis of Solids and Structures

Table 4.1 Effect of line searches on a full Newton–Raphson method

No. of Relative computing
Tolerance Iterations searches time(%)

No line search 36 0 100
0.8 34 1 102
0.6 34 1 102
0.4 34 1 102

Table 4.2 Effect of line searches on a modified Newton–Raphson method

No. of Relative computing
Tolerance Iterations searches time(%)

No line search 249 0 302
0.8 204 64 284
0.6 120 113 235
0.4 129 157 275

4.2 Path-following or Arc-length Methods

The crucial idea of the path-following method or arc-length method is that the load increment
�λ is considered as an additional unknown, thereby augmenting the n-dimensional space of
unknown displacements, collected in the array a, to an n + 1-dimensional space of unknowns.
Let a0 contain the nodal displacements at the beginning of a generic load increment, let λ0 be the
value of the load parameter, and let �a and �λ be their increments, see also Equation (2.45).
Since we have n + 1 unknowns and only n equations the system is indeterminate and an
additional equation must be supplied. This is done by adding a path-following constraint (Riks
1972):

g(a0, λ0, �a, �λ, �	) = 0 (4.9)

where �	 is the path length increment that determines the size of the load increment. The
new equilibrium state of the augmented system of n + 1 equations can now be determined by
simultaneously solving

[
−r

g

]
=

[
0

0

]
(4.10)

Solution of this non-linear system can be achieved in a standard manner, e.g. via a Newton–
Raphson method, where the set (4.10) is linearised to give:


 fint,j + ∂fint

∂a daj+1 − λj f̂ext − dλj+1f̂ext

gj +
(

∂g
∂a

)T
daj+1 + ∂g

∂λ
dλj+1


 =

[
0

0

]
(4.11)
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Solution Techniques in Quasi-static Analysis 117

The solution (a, λ) at iteration j + 1 is then obtained by solving:

[
K −f̂ext

hT s

][
daj+1

dλj+1

]
=

[
rj

−gj

]
(4.12)

with

K ≡ ∂fint

∂a
(4.13)

the tangential stiffness matrix, and the array h and the scalar s defined as:

h = ∂g

∂a
, s = ∂g

∂λ
(4.14)

Unless the rather exceptional case occurs that h is orthogonal to f̂ext, the augmented stiffness
matrix does not become singular, not in limit points, and neither at points of the load–deflection
curve where snap-back behaviour is encountered (Figure 2.8).

Equation (4.12) destroys the symmetry and the banded nature of the tangential stiffness
matrix. For this reason, solution of the coupled set of equations (4.12) is not done in a direct
manner. Instead, a partitioned procedure is normally adopted, which effectively leads to a
two-stage solution procedure for the system of equations (Crisfield 1981; Ramm 1981). The
computational procedure for this implementation of path-following techniques is as follows.
Assuming that K is non-singular, the following arrays are computed that contain contributions
to the incremental displacements:

daI
j+1 = K−1f̂ext (4.15)

daII
j+1 = K−1rj (4.16)

From the first equation of the set (4.11) the new estimate for the displacement increment then
follows as:

daj+1 = dλj+1daI
j+1 + daII

j+1 (4.17)

while the second equation of the set (4.11) gives the new estimate for the load increment:

dλj+1 = −gj + hTdaII
j+1

s + hTdaI
j+1

(4.18)

The computational procedure is given in Box 4.1.
Geometrically, path-following techniques can be interpreted by considering a generalised

n + 1-dimensional load–displacement space, that includes the n discrete displacements and
the load parameter λ. The idea is that it is always possible to construct a hypersurface g in this
space that intersects with the load–displacement curve. Such a surface can be a hypersphere, as

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



118 Non-linear Finite Element Analysis of Solids and Structures

Box 4.1 Computational flow when using a path-following technique

For each loading step:

1. Initialise the data for the loading step. Set �a0 = 0.
2. Compute the tangential stiffness matrix: Kj .
3. Adjust for prescribed displacements and linear dependence relations.
4. Solve the linear systems: daI

j+1 = K−1
j f̂ext and daII

j+1 = K−1
j rj .

5. Compute dλj+1 via a constraint equation.
6. Compute: �aj+1 = �aj + dλj+1daI

j+1 + daII
j+1.

7. Compute �εi,j+1 for each integration point i: �aj+1 → �εi,j+1.
8. Compute �σi,j+1 for each integration point i: �εi,j+1 → �σi,j+1.
9. Add �σi,j+1 to σi,0 for each integration point i: σi,j+1 = σi,0 + �σi,j+1.

10. Compute the internal force vector: fint,j+1.
11. Check convergence: is ‖rj+1‖ < η, with η a small number? If yes, go to the next loading

step, else go to 2.

depicted in Figure 4.3, but hyperplanes, either fixed or updated (Figure 4.4), and hyperellipsoids
have been suggested as well. The use of a path-following technique makes it possible to
overcome limit points (where the tangent is horizontal) and also points at which that tangent
becomes vertical (snap-back behaviour) in load–displacement curves in an elegant and robust
manner. In accordance with the convergence radius of Newton–Raphson methods, the path
length increment �	 has to be reduced when the curvature of the load–displacement curve is
strong.

∆ 
equilibrium

l

iterations

E
xt

er
na

l f
or

ce

Displacement

hypersphere

Figure 4.3 Example of a path-following technique, where a hypersphere is used for the constraint
function g and a modified Newton–Raphson method is used to reach equilibrium
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Solution Techniques in Quasi-static Analysis 119
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Figure 4.4 Geometrical interpretations of alternative constraint equations g. (a) Updated hyperplanes.
(b) A fixed hyperplane

A constraint function that is used widely is the spherical arc-length constraint (Crisfield
1981):

g = �aT
j+1�aj+1 + β2�λ2

j+1f̂T
extf̂ext − �	2 (4.19)

with β a user-specified value that weighs the importance of the contributions that stem from
the displacement degrees of freedom and the load increment. It should be chosen such that
the different magnitudes of the displacement increments �aj+1 and the load as collected in
�λf̂ext are properly balanced. A disadvantage of this method is that the algebraic equation in
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120 Non-linear Finite Element Analysis of Solids and Structures

�λj+1 is quadratic. Setting g = 0 and employing Equation (4.17) gives:

a1dλ2
j+1 + a2dλj+1 + a3 = 0 (4.20)

with

a1 = (daI
j+1)TdaI

j+1 + β2 f̂T
extf̂ext

a2 = 2(�aj + daII
j+1)TdaI

j+1 + 2β2�λj f̂T
extf̂ext

a3 = (�aj + daII
j+1)T(�aj + daII

j+1) + β2�λ2
j f̂T

extf̂ext − �	2

(4.21)

Commonly, the root of the above quadratic equation is chosen which gives an incremental
displacement vector that points in the same direction as that which was ultimately obtained in
the previous loading step �at

�aT
j+1�at > 0 (4.22)

At strongly curved parts of the equilibrium path, especially in the presence of sharp snap-back
behaviour, this method does not always work well. A particular difficulty is that two imaginary
roots can be computed. The obvious remedy to this non-physical result is to decrease the
increment size. As an alternative, Equation (4.19) can be linearised to give (cf. Figure 4.4):

�aT
j �aj+1 + β2�λj�λj+1f̂T

extf̂ext − �	2 = 0 (4.23)

This linearisation results in the updated normal path method (Ramm 1981):

dλj+1 = �	2 − �aT
j �aj − �aT

j daII
j+1 − β2�λ2

j f̂T
extf̂ext

�aT
j daI

j+1 + β2�λj f̂T
extf̂ext

(4.24)

where Equation (4.18) has been used. Noting that �	2 ≈ �aT
j �aj , one can, within the spirit

of linearisation, approximate Equation (4.24) by:

dλj+1 = −�aT
j daII

j+1 + β2�λ2
j f̂T

extf̂ext

�aT
j daI

j+1 + β2�λj f̂T
extf̂ext

(4.25)

As a further simplification, we can keep constant the direction of the tangent normal to the
hyperplane which is used to intersect the equilibrium path after the first iteration:

�aT
1 �aj+1 + β2�λ1�λj+1f̂T

extf̂ext − �	2 = 0 (4.26)

This normal path method is very simple, especially if one realises that upon subtraction of

�aT
1 �aj + β2�λ1�λj f̂T

extf̂ext − �	2 = 0

which holds in the preceding iteration, we arrive at an expression from which �	 has been
dropped:

�aT
1 daj+1 + β2�λ1dλj+1f̂T

extf̂ext = 0 (4.27)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Solution Techniques in Quasi-static Analysis 121

Together with Equation (4.18) the following simple formula ensues:

dλj+1 = − �aT
1 daII

j+1

�aT
1 daI

j+1 + β2�λ1 f̂T
extf̂ext

(4.28)

which resembles Equation (4.25), in particular when β = 0. Equation (4.28) resembles the
constraint equation originally introduced by Riks (1972). It is noted that the above results for
dλj+1 could also have been obtained by substituting the various expressions for the constraint
equation g into Equation (4.18), while using Equation (4.14).

An argument in favour of still using Equation (4.12) is that the augmented stiffness matrix
does not become singular, not in limit points, and also not at points of the load–deflection
curve where snap-back behaviour is encountered. On the other hand, engineering systems
usually involve so many degrees of freedom, that it is extremely seldom that one really ‘hits’ a
point in which the tangential stiffness matrix exactly becomes singular. It is finally noted that
extensions exist for cases where the external force vector is not directly available, such as in
thermal loading or in out-of-plane loading of generalised plane-strain elements, see Box 4.2.

The various alternatives for determining dλj+1 normally do not give very different results,
and a systematic advantage of one formula over the others does not seem to exist. Also,
numerical experience indicates that the value of β does not seem to influence the performance
of the method very much. The version with β = 0 seems to be robust for many cases of
engineering interest.

When physical non-linearities (plasticity, damage) are involved, the situation can be differ-
ent. Indeed, in such cases we observe that at incipient failure all further deformation tends to
localise in narrow bands in the structure, for instance shear bands in soils and metals, dila-
tional bands in polymers, rock faults and cracks in concrete and brittle rocks. Then, a global
constraint equation to control the solution is inadequate. For instance, in the case of a single,
dominant crack, it is very reasonable from a physical viewpoint – and actually, numerically
also very robust and efficient – to apply the constraint condition directly on the crack opening
displacement (COD). Labelling the nodes at both sides of the notch as m and n, the constraint
condition then becomes

dam − dan = 0 (4.29)

with am and an the displacements of the nodes m and n. This can be incorporated elegantly
within the format of global constraint equations as outlined before by redefining the constraint
equation as in Wriggers and Simo (1990):

�aT
j+1A�aj+1 + β2�λ2

j+1f̂T
extf̂ext − �	2 = 0 (4.30)

where we have taken the spherical constraint equation (4.19) as an example. Similar relations
can be constructed for the normal path and the updated normal path method. For COD control
the matrix A reads:

A = diag[. . . , am, . . . , an, . . .] (4.31)

The limiting case when only a single degree of freedom is selected to control the loading process
constitutes a generalisation of early attempts to control the solution by prescribing, directly or
indirectly, a single degree of freedom (Batoz and Dhatt 1979). Selecting a limited number of
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122 Non-linear Finite Element Analysis of Solids and Structures

Box 4.2 A path-following technique for thermal loading

A path-following method can also be applied when an external load vector that arises
from mechanical actions is not directly available. Examples are thermal loading, or when
generalised plane-strain elements are used for which the loading direction is out-of-plane.
We take the example of thermal loading, for which the constitutive relation reads:

dσ = Dtan(dε − αdθπ)

with Dtan the material tangential stiffness operator, α the linear coefficient of thermal
expansion, θ the temperature measured with respect to some reference temperature and
πT = (1, 1, 1, 0, 0, 0). In the absence of external actions, equilibrium at iteration j + 1
reduces to fint,j+1, or, after a first-order Taylor series expansion:∫

V

BTdσdV = −fint,j

Inserting the constitutive relation and applying the kinematic relation between strains and
nodal displacements, ε = Ba, yields:∫

V

BTDtan(Bdaj+1 − αdθj+1π)dV = −fint,j

Using the global tangential stiffness matrix K and defining the normalised ‘external’ force
vector as:

f̂ext =
∫

V

αBTDtanπdV

we obtain:

Kdaj+1 = dθj+1f̂ext − fint,j

Setting daI
j+1 = K−1f̂ext and daII

j+1 = −K−1fint,j we obtain:

daj+1 = dθj+1daI
j+1 + daII

j+1

which has the same form as Equation (4.17) and can be regarded as a constrained non-linear
finite element procedure, where the constraint applies to θ.

degrees of freedom to control the loading process can be conceived as applying a constraint
equation in a subspace of the n + 1-dimensional load–displacement space. A comprehensive
overview and comparison of the application of constraint equations in subspaces has been
provided by Geers (1999a,b).

Recently, a constraint equation g has been proposed for dissipative failure processes, which
is based on the energy release rate. This constraint appears to be very robust for inelasticity,
works well for highly localised failure modes, and has the advantage that no a priori selection of
degrees of freedom has to be done, since the dissipated energy is a global quantity (Verhoosel
et al. 2009). Moreover, since such a constraint is directly related to the failure process, good
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Solution Techniques in Quasi-static Analysis 123

convergence is observed until the last stages of the failure process. The dissipation rate of a
body G is defined as the difference of the exerted power P and the rate of elastic energy V̇ .
Since the exerted power equals the nodal velocities times the applied external forces, the rate
of dissipation becomes:

G = λȧT f̂ext − V̇ (4.32)

The elastic energy stored in the solid depends on the constitutive behaviour and on the kinematic
formulation. For instance, for small deformations and inelastic behaviour with unloading back
to the origin along a secant branch, the stored elastic energy reads:

V = 1

2

∫
V

εTσdV = 1

2
aTfint

Assuming that at the end of the previous loading step an equilibrium has been obtained, so that
r ≡ 0, we have equivalently

V = 1

2
λaT f̂ext

so that

G = 1

2
(λȧ − λ̇a)T f̂ext (4.33)

With a forward Euler integration the expression for the constraint equation g then becomes

g = 1

2
(λ0�a − �λa0)T f̂ext − �	 (4.34)

as an example of a constraint equation based on energy dissipation. The derivatives of g with
respect to a and λ needed in Equation (4.12) are subsequently computed in a straightforward
manner.

The example of snap-through behaviour in a simple truss of Chapter 1 also lends itself well
to elucidate the concept of arc-length control. For this purpose Equations (1.11) and (1.12) are
rewritten as:

dv = dFdvI + dvII

with

dvI = 1

(EA0/	0) sin2 φ + k + (A0σ)/	0
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124 Non-linear Finite Element Analysis of Solids and Structures
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Figure 4.5 Mode jumping from point A to point B

and

dvII = Fext,j + F (vj)

(EA0/	0) sin2 φ + k + (A0σ)/	0

where the variable load increment dF is determined from the requirement that for j > 1 we
have dv = 0, so that:

dF = −dvII

dvI = Fext,j + F (vj)

An alternative to tracing the complete equilibrium path in a static manner, is to recognise that
snap-through as, for instance, observed in this truss structure, but also snap-back, are dynamic
phenomena. At the onset of snap-through or snap-back behaviour, point A in Figure 4.5, a
switch is made from a static to a dynamic solver, and the full dynamic equations are solved.
The load remains constant during this part of the computation, the dashed line in Figure 4.5.
When the equilibrium curve is hit, point B, one switches back to a static solution procedure.
In general a different failure mode will have developed during snapping, and the name mode
jumping has been coined for this procedure (Riks et al. 1996).

When line searches are applied without arc-length control, hence at a constant load level, the
line search can be invoked in a straightforward manner within each equilibrium iteration and
no additional operations are needed. This also holds for an (updated) normal plane method and
β = 0, since then η disappears from the constraint equation. However, in combination with
the quadratic constraint formulation, Equation (4.19), or when β /= 0, the arc-length constraint
will be violated because of the modification of da through the scalar η and refinements are
necessary (Crisfield 1983).

4.3 PyFEM: Implementation of Riks’ Arc-length Solver

In the previous chapter, we have presented a general Python program to solve a system of non-
linear equations using a Newton–Raphson procedure. In this chapter, we have discussed alter-
native procedures for the solution of the set of non-linear equations that govern the equilibrium
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Solution Techniques in Quasi-static Analysis 125

of discretised systems. In the final version of PyFEM, which will be discussed in this section,
the solution procedure can be selected in the input file. The complete main routine of PyFEM is
called PyFEM.py and can be found in the root directory of the code. The listing is:

〈PyFEM Main Routine 〉≡
from pyfem.io.InputReader import InputReader
from pyfem.io.OutputManager import OutputManager
from pyfem.solvers.Solver import Solver

props,globdat = InputReader( sys.argv )

solver = Solver ( props , globdat )
output = OutputManager ( props , globdat )

while globdat.active:
solver.run( props , globdat )
output.run( props , globdat )

print "PyFem analysis terminated successfully."

Obviously, the code shows many similarities with the Newton–Raphson code presented in the
fragment〈Non-linear Newton–Raphson finite element simulation〉 on page 104. Instead of the
Newton–Raphson solver NonlinearSolver a generic solver Solver is now specified.
This instance is, in fact, a wrapper around a collection of solvers, varying from a linear solver
(LinearSolver) to Riks’ arc-length solver (RiksSolver), which will be discussed here.
The solver and the parameters can be selected in the input file, which is read and processed in
the function InputReader. More information on the format of the input file is given in the
user’s manual that is attached to the code on the website.

A similar construction is used to specify the output modules. The instance output of the
type OutputManager contains the output modules that are used in the simulation. Different
from the solver, it is possible to select multiple output modules, which will be executed con-
secutively in the function call output.run. Again, the output modules and their parameters
can be specified in the input file.

Riks’ arc-length solver, which is implemented in the file RiksSolver.py, is now dis-
cussed in greater detail. The file is located in the directory pyfem/solvers, together with
the other solution modules. The structure of the file is as follows:

〈Riks Arclength Solver 〉≡
〈Initialisation of the Riks solver class 126〉
〈Riks solver class main functions 126〉
〈Riks solver class utility functions〉

All solvers are implemented as classes, which are derived from the class BaseModule:
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126 Non-linear Finite Element Analysis of Solids and Structures

〈Initialisation of the Riks solver class 〉≡ 125

from pyfem.util.BaseModule import BaseModule

class RiksSolver( BaseModule ):

def __init__( self , props , globdat ):

〈Initialisation of default solver parameters〉

BaseModule.__init__( self , props )

self.Daprev = zeros( len(globdat.dofs) )
self.Dlamprev = 0.0

globdat.lam = 1.0

In the constructor of this class, the default parameters are set in the fragment 〈Initialisation
of default solver parameters〉. The most important parameters are self.tol, which sets the
tolerance for the convergence check, and self.maxLambda, which defines the load factor
λmax at which the simulation is stopped.

All parameters of the solver, including tol and maxLambda, can be specified in the input
file. These values are read by the InputReader and are stored in the instance props. In
the constructor of the base class BaseModule.__init__ the parameters are turned into
members of the class. For example, if in the input file the parameter tol is set equal to
1.0e-3, this value is copied to the member self.tol in this constructor.

The array self.Daprev and double self.Dlamprev are created to store the incremen-
tal solution vector and the load factor of the previous loading step. These values are needed to
predict the solution of the next load step. Finally, the global load factor λ is initialised as lam
in the global database globdat.1

A single load step of the system is solved in the function run:

〈Riks solver class main functions 〉≡ 125

def run( self , props , globdat ):

globdat.cycle += 1

a = globdat.state
Da = globdat.Dstate
fhat = globdat.fhat

self.printHeader( globdat.cycle )
error = 1.
globdat.iiter = 0

1 Since lambda is one of the few keywords of the programming language Python, we have to use the alternative
variable name lam to denote the parameter λ.
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Solution Techniques in Quasi-static Analysis 127

First, the load cycle number is increased by one. Then, for simplicity, copies of the solution
vector state and the incremental solution vector Dstate are made. The same is done for
the array fhat, which represents the normalised, unit force vector f̂ext, see Equation (2.45).
After printing a short header that indicates that a new load increment has been added, the
variable error, which represents the norm of the residual vector, is initialised to 1. and the
iteration counter is reset to 0.

The predictor for the current load increment is calculated next:

〈Riks solver class main functions 〉+≡ 126

if globdat.cycle == 1:
K,fint = assembleTangentStiffness( props, globdat )
Da1 = globdat.dofs.solve( K , globdat.lam*fhat )
Dlam1 = globdat.lam

else:
Da1 = self.factor * self.Daprev
Dlam1 = self.factor * self.Dlamprev
globdat.lam += Dlam1

a [:] += Da1[:]
Da[:] = Da1[:]
Dlam = Dlam1

In the first load increment, when globdat.cycle==1, the predictor �a1 is obtained as the
solution of the linearised system of equations:

K�a1 = �λ1f̂ext

cf. Equation (4.15), with �λ1 the load factor in the first step. In the following steps, the predictor
is obtained according to Equation (4.58). After calculation of the predictor, the new stiffness
matrix, the internal force vector, and the new residual res are computed:

〈Riks solver class main functions 〉+≡ 127

K,fint = assembleTangentStiffness( props, globdat )

res = globdat.lam*fhat-fint

The actual iteration process can now be started:

〈Riks solver class main functions 〉+≡ 127

while error > tol:
globdat.iiter += 1

d1 = globdat.dofs.solve( K , fhat )
d2 = globdat.dofs.solve( K , res )

ddlam = -dot(Da1,d2)/dot(Da1,d1)
dda = ddlam*d1 + d2
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128 Non-linear Finite Element Analysis of Solids and Structures

After increasing the iteration counter globdat.iiter, the components d1 and d2 of
the solution vector are calculated according to Equations (4.15) and (4.16). These solution
vectors are used to determine the load increment ddlam and the solution increment dda, see
Equations (4.17) and (4.28).

Subsequently, the solution vector a and the total load factor globdat.lam are updated:

〈Riks solver class main functions 〉+≡ 127

Dlam += ddlam
globdat.lam += ddlam

Da[:] += dda[:]
a [:] += dda[:]

The new solution is used to update the stiffness matrix, the internal force vector and the residual
vector, and the error at the current iteration is calculated by taking the L2-norm of the residual
vector, normalised by the absolute value of the external force vector:

〈Riks solver class main functions 〉+≡ 128

K,fint = assembleTangentStiffness( props, globdat )

res = globdat.lam*fhat-fint

error = globdat.dofs.norm( res )
error = error / globdat.dofs.norm( globdat.lam*fhat )

self.printIteration( globdat.iiter,error )

if globdat.iiter == self.iterMax:
raise RuntimeError("Riks solver did not converge!")

When the error is smaller than the tolerance self.tol, the while-loop is stopped.

〈Riks solver class main functions 〉+≡ 128

self.printConverged( globdat.iiter )

globdat.elements.commitHistory()

globdat.fint = fint

if not self.fixedStep:
self.factor = pow(0.5,0.25*(globdat.iiter-self.optiter))

self.Daprev[:] = Da[:]
self.Dlamprev = Dlam
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Solution Techniques in Quasi-static Analysis 129
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Figure 4.6 Graphical interpretation of the second-order work

After printing an iteration report, the element history is updated and the internal force vector is
stored in globdat. The new factor that sets the magnitude of the next increment is determined
next, unless the option fixedStep is chosen. In that case factor remains equal to 1.0.
In Section 4.5 we will have a closer look at load stepping. Finally, the displacement increment
and load increment in this step are stored as Daprev and Dlamprev and will be used as the
predictor in the next load step.

This implementation of Riks’ arc-length solver has been used in the simulation of the shallow
truss problem ShallowTrussRiks.pro in the directory examples/ch04. Different
from the implementation of the problem in Chapter 2, this model can determine the quasi-
static equilibrium path also for values of k smaller than 1000.0, resulting in the curves shown
in Figure 1.2.

4.4 Stability and Uniqueness in Discretised Systems

4.4.1 Stability of a Discrete System

Several definitions of the notion of stability exist in mechanics. Most probably, the oldest is due
to Diderot and d’Alembert, who, in their famous Encyclopedie (1778), equivalenced stability
with the notions rigid and unmovable. Evidently, this definition is too narrow, and nowadays
an equilibrium state is called stable if the response on a vanishingly small disturbance remains
vanishingly small (Hill 1959; Koiter 1969), which is often called stability in the sense of
Lyapounov.

Stability in the above sense can be difficult to prove, and another definition is normally
adopted. We consider a discrete system which is in equilibrium at time τ = t, and undergoes
an infinitesimal displacement δa = ȧδt. It is further assumed that the external forces fext do not
depend on the position (dead loading). During the infinitesimal time increment δt the increase
in the internal energy minus the work of the external forces equals [up to second order (Hill
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130 Non-linear Finite Element Analysis of Solids and Structures

1959); Figure 4.6]:

δ2U =
(

fint + 1

2

∂fint

∂a
ȧδt

)T

ȧδt − fT
extȧδt (4.35)

along any kinematically admissible path which starts in the direction ȧ. At equilibrium of a
discete system, Equation (2.27) holds, and in view of definition (4.13), this expression can be
simplified to

δ2U = 1

2
(δt)2ȧTKȧ (4.36)

It is now assumed that stability under dead loading is ensured if δ2U > 0 for all kinematically
admissible velocity fields, while the equilibrium state is unstable under dead loading if δ2U

becomes negative for at least one kinematically admissible velocity field. Stability in the sense
of Lyapounov and the energy criterion δ2U > 0 are not identical, but for the restricted class of
elastic materials at infinitesimal strains it can be proven that they coincide (Koiter 1969).

A discrete mechanical system is thus said to be in a state of stable equilibrium under dead
loading if

ȧTKȧ > 0 (4.37)

for all kinematically admissible ȧ, while it is said to be in a critical state of neutral equilibrium
if

ȧTKȧ = 0 (4.38)

for at least one admissible ȧ, which implies loss of positive definiteness of K. If the tangential
stiffness matrix K is symmetric, a sufficient and necessary condition for Equation (4.38) to be
satisfied is that:

det(K) = 0 (4.39)

Using Vieta’s rule, Equation (1.66), this identity implies that at least one eigenvalue vanishes.
It is noted that for the more general case of a non-symmetric tangential stiffness matrix, which
arises in some plasticity and damage models, the vanishing of the lowest eigenvalue is only a
sufficient condition for loss of stability, but not a necessary condition.

4.4.2 Uniqueness and Bifurcation in a Discrete System

If more equilibrium paths emanate from a point in the n + 1-dimensional load–displacement
solution space, such a point is named a bifurcation point. The differential equations that govern
the next, infinitesimally small load increment, then have more than one solution. Accordingly,
at a bifurcation point we observe a loss of uniqueness of the incremental solution. Bifurcations
and multiple equilibrium branches arise in many engineering problems. They can be caused
by the inclusion of non-linear terms in the kinematic description, as for instance with buckling
of slender, thin-walled members, because of the non-linearity of the material model used, or
can stem from both causes.
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Solution Techniques in Quasi-static Analysis 131

A discussion on loss of uniqueness is best started from Equation (2.45), which represents
equilibrium of the structure. We assume that the iterative process has been such that we have
obtained a state of perfect equilibrium, so that the array of residuals vanishes, r ≡ f t

ext − f t
int =

0. Then:

K�a = �λf̂ext (4.40)

We introduce the eigenvectors v1, v2, . . . , vn of the tangential stiffness matrix K. They cor-
respond to the eigenvalues λ1, λ2, . . . , λn (in ascending order), where the eigenvalues, which
have a subscript k, should not be confused with the load increment �λ, which is no subscript.
By standard concepts of linear algebra we have:

Kvk = λkvk (4.41)

where no summation over repeated indices is implied. For a symmetric matrix K there exists
the relationship vT

k vl = 0, k /= l between the eigenvectors vk and vl. To simplify the subsequent
derivations the eigenvectors vk will be normalised such that vk

Tvk = 1.
If the tangential stiffness matrix K is not defect, i.e. if the n eigenvectors span an n-

dimensional vector space, any vector can be expressed as a linear combination of the eigen-
vectors:

a =
n∑

k=1

(vT
k a)vk (4.42)

We now apply this decomposition to the array of incremental nodal displacements �a and to
the normalised external load vector f̂ext, and we substitute the result into Equation (4.40):

K

(
n∑

k=1

(vT
k a)vk

)
= �λ

n∑
i=1

(vT
k f̂ext)vk (4.43)

With the aid of Equation (4.41) we can modify this equation as:(
n∑

k=1

λk(vT
k a) − �λ(vT

k f̂ext)

)
vk = 0 (4.44)

Since K is not defect, the eigenvectors vk constitute a set of n linearly independent vectors,
which implies that this equation can only be satisfied non-trivially if and only if

λkvT
k a − �λvT

k f̂ext = 0 (4.45)

for each eigenvector vk. In particular, we have for k = 1 (the lowest eigenvalue):

λ1vT
1 a − �λvT

1 f̂ext = 0 (4.46)

Since λ1 is the lowest eigenvalue, its vanishing implies that either the identity

�λ = 0 (4.47)

or the orthogonality condition

vT
1 f̂ext = 0 (4.48)
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132 Non-linear Finite Element Analysis of Solids and Structures

External force
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bifurcation point
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Figure 4.7 Bifurcation point and possible post-bifurcation equilibrium paths

must hold, or both. The case that λ2, λ3, etc. also vanish is not considered here, but the
generalisation to more vanishing eigenvalues can be done. The first possibility, Equation (4.47),
is referred to as limit point behaviour, since the load becomes stationary (Figure 2.7). Indeed,
there is a maximum in the load–deflection curve. The second possibility, Equation (4.48),
corresponds to a bifurcation point (loss of uniqueness), from which at least two equilibrium
paths emanate (Figure 4.7).

At a bifurcation point, Equation (4.40) holds for a given solution �a with, in general, a non-
zero value of the incremental load parameter, �λ /= 0. Loss of uniqueness of the incremental
solution implies that there exists another solution, often called the non-trivial solution, say
�a∗, which also satisfies incremental equilibrium for the same tangential stiffness matrix K:

K�a∗ = �λf̂ext (4.49)

Subtraction of Equation (4.40) from Equation (4.49) yields:

K(�a∗ − �a) = 0 (4.50)

We now premultiply this equation by vT
k and use Equation (4.41) to derive that

λkvT
k (�a∗ − �a) = 0 (4.51)

for all i. Because λ1 = 0 and because of the mutual orthogonality of the eigenvectors this
equation can be satisfied non-trivially only if �a∗ − �a = γv1 with γ some scalar. Hence, all
solutions

�a∗ = �a + γv1 (4.52)

are possible and we have loss of uniqueness of the incremental solution (bifurcation). A distinc-
tion can be made between symmetric and asymmetric bifurcation points, but this classification
is restricted to elastic solids under small strains and has been developed specifically for buckling
phenomena in thin-walled structural members (Koiter 1945; Riks 1984).

In discrete numerical processes, limit or bifurcation points are extremely difficult to isolate.
Rather, distinction is made between stable equilibrium states for which Equation (4.37) holds,
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Solution Techniques in Quasi-static Analysis 133

and equilibrium states which are unstable under dead loading, i.e.

ȧTKȧ < 0 (4.53)

for at least one kinematically admissible ȧ. Substitution of Equation (4.42) gives

n∑
k=1

n∑
l=1

(vT
k ȧ)(vT

l ȧ)vT
k Kvl < 0 (4.54)

or using Equation (4.41) and the orthogonality relation between eigenvectors as well as their
normalisation:

n∑
k=1

(vT
k ȧ)2λk < 0 (4.55)

This inequality can be satisfied if one or more eigenvalues have become negative. We choose
ȧ = αv1, with α a scalar. Then,

∑n
k=1(vT

k ȧ)2λk = α2λ1 < 0, since λ1 < 0, and the equilibrium
state is unstable.

Negative eigenvalues in the tangential stiffness matrix emerge when a limit point has been
passed (and the load-carrying capacity is decreasing), when a bifurcation point has been passed,
or when both a limit point and a bifurcation point have been passed, possibly at the same point
in the load–displacement curve. The first case is characterised by a descending branch in the
load–displacement curve and there is a single negative eigenvalue. If a bifurcation point has
been passed, but not (yet) a limit point, the solution will normally, that is without perturbation,
continue on the basic equilibrium path. The Euler strut is a simple example where this is
encountered. Even though the load is rising, the tangential stiffness matrix will exhibit one or
more negative eigenvalues, each related to a non-trivial equilibrium path. When a limit point
has been passed as well, and the load is descending, one negative eigenvalue relates to the limit
point and the other negative eigenvalues relate to other, non-trivial equilibrium paths.

This discussion shows the importance of monitoring the eigenvalues of the tangential stiff-
ness matrix as they reveal whether the current solution is still the most critical one in the
sense that the ‘lowest’ equilibrium path is followed. Incremental-iterative solution procedures
normally converge towards one of the possible equilibrium states that exist in the structure.
But if there are more possible solutions they will not necessarily pick the most critical branch.
Monitoring the eigenvalues of the tangential stiffness matrix thus allows the analyst to assess
whether the solution which has been obtained is the most critical solution.

Considering the computational effort that is necessary to compute the lowest eigenvalue at
each loading step, monitoring the (lowest) eigenvalues in order to assess whether the most
critical solution path is still followed, may lead to an unacceptable computational overhead.
A computationally much cheaper solution is to monitor the pivots that are computed during
an LDU decomposition. In Chapter 1 it has been shown that loss of positive definiteness of a
matrix is equivalent to the positiveness of all pivots. Loss of positive definiteness of K, i.e. when
Equation (4.53) holds, must therefore be signalled by the emergence of at least one negative
pivot. Monitoring the negative pivots that arise during the LDU decomposition is therefore
equivalent to checking whether one of the eigenvalues becomes negative if the analyst wishes
to assess whether the solution that is computed is unique.
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134 Non-linear Finite Element Analysis of Solids and Structures

While the notions of stability and uniqueness are closely related, they are not identical and
can give rise to different requirements on the structural system. The stability requirement is
single-valued, that is, the stress rate is associated with a unique velocity gradient. However, the
uniqueness requirement is multi-valued, as both possible velocity gradient distributions can
be related to stress rates by different stiffness moduli, which happens when we have different
behaviour in loading and unloading as in plasticity or continuum damage relations. Strictly
speaking, we have to investigate all possible combinations of loading and unloading for such
a multi-valued constitutive relation in order to determine whether uniqueness ceases to hold
for some combination. Indeed, when monitoring the eigenvalues, or pivots, of the tangential
stiffness matrix, we will only detect bifurcations for which the material tangent moduli show
loading for at least an infinitesimal instant after bifurcation. Such a solid has been named a
‘linear comparison solid’ (Hill 1959), and numerical experience shows that this situation is
normally the most critical. For a restricted number of multi-valued constitutive relations, this
can be proven rigorously.

4.4.3 Branch Switching

When a bifurcation point has been passed the trivial solution �a can be perturbed in the sense
of Equation (4.52) by adding a part of the eigenvector v1 which corresponds to the lowest eigen-
value λ1 to the trivial solution. The factor γ , which is undetermined for the infinitesimal case,
can be estimated for finite load increments from the following orthogonality requirement (Riks
1972; de Borst 1987):

�aT�a∗ = 0 (4.56)

Combination of Equations (4.52) and (4.56) gives for the perturbed displacement increment:

�a∗ = �a − �aT�a

vT
1 �a

v1 (4.57)

Equation (4.56) states that the search direction for the non-trivial solution �a∗ is orthogonal to
the trivial or basic solution path. For finite increments, the non-trivial solution will not be in the
search direction. For instance, the occurrence of loading–unloading conditions in plasticity or
damage models will cause deviations. However, when we add equilibrium iterations, condition
(4.56) will maximise the possibility that we converge to the non-trivial solution.

4.5 Load Stepping and Convergence Criteria

In the preceding discussion attention has been focused on the determination of the value of the
load increment for the second and subsequent iterations in such a fashion that the ‘arc-length’
�	 remains more or less constant. No attention has been paid so far to the determination of
its value in the first iteration of a new loading step. In other words, what should �	 be to find
a proper balance between a value of the load increment that is not unnecessarily small, but
small enough that iterative procedure will converge? A related question is the proper choice
of the sign of the load increment. At present, a well-founded method does not seem to exist
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Solution Techniques in Quasi-static Analysis 135

for handling these two important issues in an automatic and robust manner. Some procedures
that work well in numerical practice are summarised below.

In general, the predictor is obtained by a simple linear extrapolation of the previous increment
of the displacement vector and of the load factor:

�at+�t
1 = ξ�at ; �λt+�t

1 = ξ�λt (4.58)

where

ξ = �	t+�t

�	t
(4.59)

sets the magnitude of the new load increment, with �	t the computed arc-length in the preced-
ing loading step, and �	t+�t the desired value in the new loading step. In a heuristic procedure
ξ is estimated from the requirement that the number of ‘desired’ iterations in the new loading
step n + 1 equals Nd . If the number of iterations needed to satisfy equilibrium in the preceding
load increment equals Nt , the estimate for the new arc-length reads

�	t+�t

�	t
=

(
Nd

Nt

)ζ

(4.60)

with ζ a parameter to damp/amplify the influence of the quotient Nd/Nt , and is normally
chosen equal to 1

2 . Although heuristic, the method has been reported to work well (Crisfield
1981).

Another method is based on the fact that the second-order work

�U2 = 1

2
�fT

ext�a (4.61)

gives a good indication on the stability of a structure. Obviously, �U2 becomes zero at a limit
point, i.e. when the ultimate load-carrying capacity of a structure is reached, and becomes
negative afterwards. The idea is to select the load increment in the first iteration of the new
loading step, �λn+1

1 , such that the value of the second-order work in both increments is
equal (Bergan et al. 1978):

1

2
�λt f̂T

ext�at = 1

2
�λt+�t

1 f̂T
ext�at+�t

1 (4.62)

Assuming that we have arrived at a properly converged solution in the preceding load step, so
that r ≈ 0, we have �at+�t

1 ≈ �λt+�t
1 �aI

1. This gives the following approximation for the
magnitude of the new load increment:

�λt+�t
1 =

√
‖�λt f̂T

ext�at‖
‖f̂T

ext�aI
1‖

(4.63)

The application of any automatic load incrementation scheme may fail in the sense that it may
produce too large or impractically small increments. To avoid this situation from happening, a
lower and an upper bound on the load increment should be prescribed:

�λmin ≤ ‖�λ‖ ≤ �λmax (4.64)
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136 Non-linear Finite Element Analysis of Solids and Structures

Having determined the magnitude of the load step in the first iteration of the new increment,
it remains to determine its proper sign. An obvious choice would be to monitor the lowest
eigenvalue of the structural tangential stiffness matrix K and to reverse the sign of the load
increment when the lowest eigenvalue changes sign, or alternatively, if a negative pivot appears
during the decomposition of the tangential stiffness matrix. However, this procedure can give
wrong indications when bifurcation points are encountered. A more heuristic procedure, which
works well according to ample numerical evidence, is to adopt a sign-switching strategy similar
to the one used by Crisfield (1981) for determining the correct sign in the quadratic arc-length
procedure:

�λt+�t
1 =

{
+‖�λt+�t

1 ‖ if (�at)T�aI
1 > 0

−‖�λt+�t
1 ‖ if (�at)T�aI

1 < 0
(4.65)

where the approximation �at+�t
1 ≈ �λt+�t�aI has again been used. It is emphasised that

a proper estimation of the initial step size �λ through the new arc-length �	 is of great
importance for the extent to which the whole computation can be made automatic, as well
as for the required computer time. Indeed, numerical evidence shows that this is far more
important than the exact choice of the constraint condition that is employed in the path-
following procedure.

In order to be able to assess whether an iterative procedure has converged a so-called con-
vergence criterion is needed. Such a criterion requires that some quantity, e.g. a force or a
displacement, must be approximated within some tolerance. If the error does not become
smaller than this pre-set tolerance the iterative process is said to not have converged. If the
quantity that is being monitored becomes unbounded the process diverges. To prevent the
computer program continuing to search for a solution when either of the latter two possibities
occur, a maximum number of iterations must be specified. It is difficult to provide guide-
lines as to the number of iterations the iterative procedure should be limited to, since this
is not only problem-dependent, but also depends on the type of iterative procedure, e.g. full
Newton–Raphson, modified Newton–Raphson, Initial Stiffness or Quasi-Newton method, that
is employed, and on the quantity that is being monitored. In practice, as a rule-of-thumb one
can set the maximum number of iterations equal to 8 for the full Newton–Raphson method,
equal to 20 for the modified Newton–Raphson method, and equal to 30 for the Initial Stiffness
approach.

The above guidelines are primarily valid for so-called global convergence criteria, in which
a global quantity is monitored. Here, one may think of a norm of the unbalanced force vector,
a norm of the displacement increments or the energy of the system. When the interest mainly
lies in obtaining an impression of the global behaviour of the structure, e.g. the ultimate
load-bearing capacity, such a global criterion is always sufficient. Also, in analyses in which
attention is focused on local structural behaviour one can usually rely on a global convergence
criterion. Yet, in critical cases it may be wise to adopt a local convergence criterion in which,
for instance, the unbalanced forces of some nodes have to be zero within some tolerance. Since
most finite element packages only offer options for monitoring the convergence behaviour in
a global sense, we will restrict the treatment to such criteria. In particular, a force criterion,
a displacement criterion and an energy criterion will be discussed, since these criteria are the
most popular in existing finite element software.
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Solution Techniques in Quasi-static Analysis 137

The most demanding global criterion is the force criterion. With this criterion equilibrium
iterations are added until the change in the norm of the unbalanced force vector is smaller
than the prescribed convergence tolerance η times the value of the norm in the first iteration of
that loading step. As a rule, the L2-norm is used to measure the unbalanced force vector and
iterations are terminated when:

‖fext − fint,j‖ ≤ η × ‖fext − fint,1‖ (4.66)

A reasonable balance between accuracy and consumption of computer time is usually achieved
if the tolerance η is set equal to 10−3.

Another criterion that is used frequently in non-linear finite element analysis is the energy
criterion. Now, the iterations can be stopped when:

fT
int,jdaj ≤ η × fT

int,1�a1 (4.67)

Experience shows that this convergence criterion is often somewhat easier to satisfy than the
preceding criterion. To achieve the same accuracy the tolerance should be set at smaller value,
e.g. 10−4.

The norm of the incremental displacements (displacement criterion) is usually the easiest
to comply with. Defining this criterion as

‖daj‖ ≤ η × ‖�a1‖ (4.68)

the η parameter should normally not exceed 10−6 in order that a reasonably accurate solution
is obtained.

The choice of a convergence criterion and the associated convergence tolerance η must be
done with great care. A simple example is pure relaxation. For this problem the incremental
displacements have the correct value immediately after the first iteration, whereas it may
need several more iterations to allow the stresses, and consequently the internal forces, to
relax to their proper values. It will be clear that in such a case any convergence criterion that
involves the incremental displacement vector da, including the energy criterion and the norm
of incremental displacements, will erroneously identify the process as converged after the first
iteration. In such cases only a force norm does not result in a premature termination of the
iterative procedure.

The value of the convergence tolerance η must be chosen carefully. On one hand a too loose
convergence may result in inaccurate and unreliable answers. On the other hand, a too strict
convergence tolerance sometimes hardly improves the results while drastically increasing the
required computer time. It should be realised that convergence is a relative matter. Neither of
the convergence criteria discussed above warrants that the error is smaller than some prescribed
value in an absolute sense.

Finally, while it is clear that a diverged solution is unreliable, it is more difficult to assess
whether a non-converged solution must also be abandoned. It can be reasonable to continue a
solution after a loading step in which the convergence criterion has been missed only marginally,
but caution should be exercised.
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138 Non-linear Finite Element Analysis of Solids and Structures
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Figure 4.8 One-dimensional representation of Quasi-Newton iterative procedures

4.6 Quasi-Newton Methods

In Chapter 2 alternatives have been discussed for obtaining a solution that satisfies equilibrium,
and complies with the constitutive and kinematic equations. As the Newton–Raphson method
involves the rather costly formulation and the ensuing decomposition of the tangential stiffness
matrix, alternatives have been proposed in which this formulation and decomposition is carried
out less frequently, e.g. once every load step, or only in the elastic stage. A different strategy is
to approximate the tangential stiffness matrix, for instance using a secant approach. One can
elucidate this starting from the correction to the displacement vector in iteration j + 1:

daj+1 = K−1
j (f t+�t

ext − fint,j)

cf. Equation (2.50). From daj+1 a new internal force vector fint,j+1 can be computed. Subse-
quently a secant-like approximation Kj+1 to the tangential stiffness matrix can be constructed
such that it satisfies:

Kj+1daj+1 = dfint,j+1 (4.69)

where dfint,j+1 = fint,j+1 − fint,j , see Figure 4.8 for a graphical illustration of the one-
dimensional case.

With a single degree of freedom the construction of a secant approximation is unique and
straightforward. This is not so for the multi-dimensional case. By simple substitution it can be
shown that all first-order approximations of the form

Kj+1 = Kj + (dfint,j+1 − Kjdaj+1)uT
j+1

uT
j+1daj+1

(4.70)

satisfy the Quasi-Newton Equation (4.69), where uj+1 is a vector that can be chosen in order
to optimise the performance of the iteration method. Equation (4.70) is a so-called rank-one
update of the stiffness matrix Kj . Rank-two updates are also used frequently in Quasi-Newton
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Solution Techniques in Quasi-static Analysis 139

methods (Dennis and More 1977; Dennis and Schnabel 1983):

Kj+1 = Kj + (dfint,j+1 − Kjdaj+1)uT
j+1 + uj+1(dfint,j+1 − Kjdaj+1)T

uT
j+1daj+1

−

(dfint,j+1 − Kjdaj+1)Tdaj+1

(uT
j+1daj+1)2

uj+1uT
j+1

(4.71)

Update formulas like Equations (4.70) or (4.71) avoid the need to construct the tangential
stiffness matrix completely anew every iteration. However, the costly LDU decomposition
still has to be carried out. A solution is to apply the update directly to the factorised tangential
stiffness matrix. This can be done using the Sherman–Morrison formula (1.38). Application
to the rank-one update of Equation (4.70) gives:

K−1
j+1 = K−1

j + (daj+1 − K−1
j dfint,j+1)uTK−1

j

uTK−1
j dfint,j+1

(4.72)

A well-known first-order update formula is that of Broyden, which is obtained for uj+1 =
daj+1. The inverse of a second-order update formula can be derived by applying the Sherman–
Morrison formula twice, leading to:

K−1
j+1 = K−1

j + (daj+1 − K−1
j dfint,j+1)vT

j+1 + vj+1(daj+1 − K−1
j dfint,j+1)T

vT
j+1dfint,j+1

−

(daj+1 − K−1
j dfint,j+1)Tdfint,j+1

(vT
j+1dfint,j+1)2

vj+1vT
j+1

(4.73)

with vj+1 a vector that can be chosen in order to optimise the convergence behaviour. Its
relation to uj+1 is complex. The most popular rank-two formula is the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) update, which is obtained by setting vj+1 = daj+1.

As the update formulas (4.72) and (4.73) destroy the bandedness and sparseness of the
inverse stiffness matrix, the actual implementation is done in a different manner. For the first-
order update formulas we substitute the expression for the inverse stiffness matrix (4.72) into
the expression for the correction to the displacement vector in iteration j + 1:

daj+1 =
[

I + (daj − K−1
j−1dfint,j)uT

j

uT
j K−1

j−1dfint,j

]
K−1

j−1(f t+�t
ext − fint,j) (4.74)

Defining the auxiliary vector

wj = K−1
j−1(f t+�t

ext − fint,j) (4.75)

we can derive that:

wj = daj − K−1
j−1dfint,j (4.76)
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140 Non-linear Finite Element Analysis of Solids and Structures

and the expression for the correction to the incremental displacement vector can be rewritten
as:

daj+1 = (1 + αjβj)wj (4.77)

with

αj = (uT
j K−1

j−1dfint,j)−1 = (uT
j (daj − wj))−1 (4.78)

βj = uT
j wj (4.79)

In the next iteration, j + 2, the updated auxiliary vector wj+1 must be computed in order to
obtain the correction to the displacement vector, daj+2 using Equation (4.77). This can be
done in a recursive manner, as follows:

wj+1 = K−1
j (f t+�t

ext − fint,j+1) =
[
I + αjwjuT

j

]
K−1

j−1(f t+�t
ext − fint,j+1)

=
j∏

i=1

[
I + αiwiuT

i

]
K−1

0 (f t+�t
ext − fint,j+1)

(4.80)

Clearly, the update reduces to simple scalar-vector operations, and no inverse has to be com-
puted explicitly. Second-order update formulas can be handled in a similar manner. For instance,
for the BFGS update, the following formulas ensue:

daj+1 = (1 + αjβj)wj + αj(δj − αjβjγj)vj (4.81)

with:

αj = (vT
j dfint,j)−1 (4.82)

βj = vT
j (f t+�t

ext − fint,j) (4.83)

γj = wT
j dfint,j (4.84)

δj = wT
j (f t+�t

ext − fint,j) (4.85)

and for the update of w:

wj+1 = K−1
0 (f t+�t

ext − fint,j+1) +
j∑

i=1

[
αiβiwi + αi(δi − αiβiγi)vi

]
(4.86)

When using a Quasi-Newton method for the solution of a set of non-linear equations, the
convergence behaviour deteriorates compared with a Newton–Raphson method. The typical
quadratic convergence of Table 2.2 is lost. Instead, a so-called superlinear convergence be-
haviour is obtained, in which εk+1 = µεα

k , with 1 ≤ α ≤ 2 and µ a number.
Clearly, the added computational cost is minimal, since it reduces to some additional inner

products and scalar-vector multiplications. Although significant gains have been reported in
terms of computer time, others report a somewhat erratic behaviour of Quasi-Newton methods
with a non-monotonous convergence behaviour (Crisfield 1979; Matthies and Strang 1979).
This lack of numerical stability seems to have decreased the popularity of this class of iterative
methods in more recent years.
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5
Solution Techniques for Non-linear
Dynamics

In Chapters 2 and 4 the basic structure of non-linear finite element programs has been laid
out and solution techniques have been described to solve quasi-static problems. In this chapter
we will supplement this by explaining how the methods described in these chapters can be
extended to yield solutions for dynamic problems. It is not the intention of this chapter to
give an overview of the rich literature on time integration approaches, including important
issues like stability, accuracy, dissipation and dispersion, that has been developed over the
past decades. For that, reference is made to other books and overview articles (Bathe 1982;
Belytschko 1983; Hughes 1983, 1987; Hulbert 2004). Also, we will not touch upon important
issues like computational multibody dynamics, either for rigid bodies or for flexible bodies.

5.1 The Semi-discrete Equations

We pick up the discussion at Equation (2.15), the semi-discrete balance of momentum:

Mät+�t = f t+�t
ext − f t+�t

int

with M the mass matrix, fext the external force vector, and fint the internal force vector, Equa-
tions (2.16), (2.17) and (2.18), and proceed in a manner similar to that in Chapter 2, but now
including the inertia term. Equation (2.15) is used directly in explicit time integration schemes,
where this equation is usually approximated by a finite difference scheme in time, and which
are treated in Section 5.2. Within a time step, iterations are not carried out to rigorously satisfy
the balance of momentum, and small time steps are therefore mandatory to obtain an accurate
solution.

Within implicit time integration schemes, on the other hand, an iterative procedure like those
treated in Chapters 2 and 4, is carried out to satisfy the balance of momentum at the end of
the time step. Partitioning the stress at t + �t, in a known quantity at t and an increment �σ,
Equation (2.28), and substituting this into the expression for the internal force, Equation (2.18),

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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144 Non-linear Finite Element Analysis of Solids and Structures

allows us to extend expression (2.29) to:

ne∑
e=1

ZT
e

(∫
Ve

ρHTHdVZeät+�t +
∫

Ve

BT�σdV

)
= f t+�t

ext − f t
int,0 (5.1)

With a linearisation similar to that following Equation (2.30), we can elaborate Equation (5.1)
as:

Mät+�t + K0�a = f t+�t
ext − f t

int,0 (5.2)

cf. Equation (2.42), with K0 the tangential stiffness matrix at the beginning of the time step,
Equation (2.43). Unlike in Chapter 2 the superscripts in Equations (5.1) and (5.2) now denote the
real time, and not a virtual time. Similar to Chapter 2 for quasi-static situations, the linearisation
error committed in going from Equation (5.1) to Equation (5.2) leads to a drifting away from
the ‘dynamic’ equilibrium curve, and iterations should be added to ensure that the error remains
within a certain tolerance, see Section 5.3 on implicit time integration methods. For this purpose
we define, similar to the quasi-static case, cf. Equation (2.47), a ‘dynamic residual force vector’:

r∗
0 = f t+�t

ext − f t
int,0 − Mät+�t (5.3)

so that a first estimate for the displacement increment, �a1, can be obtained from solving the
linearised equations:

�a1 = K−1
0 r∗

0 (5.4)

5.2 Explicit Time Integration

One of the most popular explicit time integration schemes is the central difference scheme,
which is classically written as:

ȧt+�t = at+�t − at−�t

2�t
(5.5a)

ät+�t = at+�t − 2at + at−�t

�t2 (5.5b)

and is second-order accurate in time, i.e. the error associated with the time integration scheme
decreases proportional to �t2. Substitution of Equation (5.5b) into the semi-discrete balance
of momentum, Equation (2.15), and rearranging gives:

1

�t2 Mat+�t = f t+�t
ext − f t+�t

int + 1

�t2 M
(
2at − at−�t

)
(5.6)
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Solution Techniques for Non-linear Dynamics 145

Box 5.1 Central difference time integration scheme for non-linear problems

Initialise a0 and ȧ0

Compute the mass matrix: M
Compute: a−�t = a0 − �tȧ0 + 1

2�t2M−1(f0
ext − f0

int)
For each time step:

1. Solve for total displacements: at+�t = �t2M−1
(

f t+�t
ext − f t+�t

int

)
+ 2at − at−�t

2. Compute the displacement increment: �a = at+�t − at

3. For each integration point i:
– Compute the strain increment: �a → �εi

– Compute the stress increment: �εi → �σi

– Compute the total stress: σt+�t
i = σt

i + �σi

4. Compute the internal force vector: f t+�t
int = ∑ne

e=1 ZT
e

∑ni

i=1 widetJiBT
i σi

5. Update the velocities: ȧt+�t = at+�t−at−�t

2�t

6. Update the accelerations: ät+�t = at+�t−2at+at−�t

�t2

This equation can be solved directly for the displacement at time t + �t:

at+�t = �t2M−1
(

f t+�t
ext − f t+�t

int

)
+ 2at − at−�t (5.7)

Then, the displacement increment �a = at+�t − at can be computed, which, through the
kinematic relation yields the strain increment �ε, and subsequently, using the constitutive
equations, the stress increment �σ can be computed. The stress is updated according to:

σt+�t = σt + �σ

and the internal force vector f t+�t
int is computed according to Equation (2.18). The algorithm is

summarised in Box 5.1. Please note that in Equation (5.7) the displacement at t + �t is given
in terms of the displacements at time t and at time t − �t, which implies that information on
the displacement field of the two preceding time steps is required. This poses a problem for
initialising the computation, since this would require knowledge of the displacement field at
−�t. To circumvent this problem Equations (5.5) are considered for t = 0 and a�t is eliminated
to yield:

a−�t = a0 − �tȧ0 + 1

2
�t2M−1(f0

ext − f0
int) (5.8)

where a0 and ȧ0 are the initial displacement and velocity fields, respectively. The semi-discrete
balance of momentum, Equation (2.15), at t = 0 has been used to obtain the last term. Often,
this term will be zero, but not necessarily, e.g. in the presence of initial stresses.
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146 Non-linear Finite Element Analysis of Solids and Structures

An alternative, which is employed in most explicit computer codes, is to approximate the
velocity at mid-interval (Belytschko et al. 1976):

ȧt+ 1
2 �t = at+�t − at

�t
(5.9)

together with the following approximation for the acceleration at t + �t:

ät = ȧt+ 1
2 �t − ȧt− 1

2 �t

�t
(5.10)

Upon substitution of Equation (5.9) into Equation (5.10) the central difference approximation
for the acceleration, Equation (5.5b), is recovered. Using Equation (5.9) the nodal displace-
ments at t + �t are obtained from the velocities at t + 1

2�t as:

at+�t = at + �tȧt+ 1
2 �t (5.11)

As before, the displacement increment is computed next: �a = at+�t − at , followed by the
strain increment �ε, and subsequently, the stress increment �σ. With the updated stress,
σt+�t = σt + �σ, the internal force vector f t+�t

int is computed according to Equation (2.18).
The accelerations are then straightforwardly computed using the semi-discrete balance of
momentum, Equation (2.15):

ät+�t = M−1
(

f t+�t
ext − f t+�t

int

)
(5.12)

and, for the next step, the velocities at mid-time interval are computed using Equation (5.10):

ȧt+ 3
2 �t = ȧt+ 1

2 �t + �tät+�t (5.13)

As for the previous central difference scheme a special starting condition must be used. It is
assumed that:

ȧ
1
2 �t = ȧ0 + 1

2
�tä0 (5.14)

The algorithm is summarised in Box 5.2.
When the full, or consistent mass matrix is used, a global system of equations must be

solved, cf. Equation (2.15) or Equation (5.7), which is not attractive, especially not for explicit
methods, which are conditionally stable and have a rather strict requirement on the critical
time step, see below. For this reason the mass matrix is often diagonalised in explicit time
integration schemes. Several possibilities of this lumping process are available, such as nodal
quadrature, row-sum lumping, or a ‘special lumping technique’ (Hinton et al. 1970), where
only the latter method produces positive lumped masses for any element type (Hughes 1987).
As an example, in row-sum lumping, the diagonal terms of the lumped mass matrix Mlumped

read:

M
lumped
kk =

N∑
l=1

Mkl (5.15)
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Solution Techniques for Non-linear Dynamics 147

Box 5.2 Alternative central difference time integration scheme for non-linear problems

Initialise a0 and ȧ0

Compute the mass matrix: M

Compute: ȧ
1
2 �t = ȧ0 + 1

2�tä0

For each time step:
1. Solve for total displacements: at+�t = at + �tȧt+ 1

2 �t

2. Compute the displacement increment: �a = at+�t − at

3. For each integration point i:
– Compute the strain increment: �a → �εi

– Compute the stress increment: �εi → �σi

– Compute the total stress: σt+�t
i = σt

i + �σi

4. Compute the internal force vector: f t+�t
int = ∑ne

e=1 ZT
e

∑ni

i=1 widetJiBT
i σi

5. Solve for the new accelerations: ät+�t = M−1
(

f t+�t
ext − f t+�t

int

)
6. Compute the velocities at new mid-time: ȧt+ 3

2 �t = ȧt+ 1
2 �t + �tät+�t

for a system with N unknowns. After diagonalisation, the system of equations, Equation (2.15)
or Equation (5.7), is no longer coupled and the acceleration for each degree of freedom k can
be solved separately:

ät+�t
k = rk

M
lumped
kk

(5.16)

The computational time of explicit time integration schemes is thus reduced significantly by
using a diagonal mass matrix.

Replacing the consistent mass matrix by a lumped mass matrix can have an additional
benefit. For a consistent mass matrix a higher frequency, and therefore a smaller period, is
calculated compared with the exact solution. The use of a consistent mass matrix thus yields
an upper bound value for the frequency. A lumped mass matrix, on the other hand, tends to
result in a frequency that is below the exact solution. Analyses of time integrators for linear
systems furthermore show that implicit schemes provide a lower bound to the frequency, while
explicit schemes provide an upper bound. These observations suggest that optimal results with
respect to the induced period errors can be obtained when pairing an implicit time integration
scheme to a consistent mass matrix, and using an explicit time integrator in conjunction with
a lumped mass matrix (Hughes 1987). Although this statement can be made more rigorously
for linear systems, numerical experience shows that it normally also holds true for the analysis
of non-linear systems.
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148 Non-linear Finite Element Analysis of Solids and Structures

Explicit time integration schemes can have advantages in reducing the computational effort,
especially if a lumped mass matrix is used, as factorisation and storage of a system matrix
are then not required. Two possible disadvantages of explicit time integration schemes are
the stability of the solution and the impossibility to ascertain that the solution computes the
‘dynamic equilibrium path’ with sufficient accuracy. Explicit time stepping schemes are only
conditionally stable, which implies that, for linear problems, the time step is bounded by the
Courant–Friedrichs–Lewy (CFL) criterion (Courant et al. 1928):

�t = 2

ωmax (5.17)

see also Park and Underwood (1980) and Underwood and Park (1980). The maximum natural
frequency ωmax of the system is rather expensive to compute. For this reason, it is often
approximated by the maximum frequency of a single finite element ωmax

e , which provides
an upper bound to the maximum natural frequency of the system: ωmax

e ≥ ωmax (Belytschko
1983; Hughes 1987), and can be calculated by assuming a displacement field of the form:

a = â exp (iωet)

with â the amplitude of the displacement, and ωe the frequencies of the element. Substituting
this expression into the linearised and discretised balance of momentum for the element:

Meä + Kea = 0

with Me and Ke the element mass and stiffness matrices, respectively, yields the maximum
frequency ωmax

e by solving the eigenvalue problem:

det
(

Ke − ω2
eMe

)
= 0 (5.18)

Alternatively, the maximum natural frequency ωmax can be approximated through the Rayleigh
coefficient, where the ‘current frequency’ is estimated as (Bergan and Mollestad 1985):

ω2 = �aTK�a
�aTM�a

(5.19)

In explicit time integration methods usually no iterative procedure is applied to enforce that
the dynamic residual force vector

r∗ = f t+�t
ext − f t+�t

int − Mät+�t

is sufficiently close to zero, measured in some norm. Indeed, a drifting tendency can occur,
where the dynamic residual force vector r∗ grows when the calculation proceeds. The use of
small time steps is the only solution to mitigate this drifting tendency.
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Solution Techniques for Non-linear Dynamics 149

5.3 PyFEM: Implementation of an Explicit Solver

An explicit time integration solver has been implemented in ExplicitSolver.py. This
file can be found in the directory pyfem/solvers. The global structure of this file is similar
to the structure of Riks’ arc-length solver, which has been discussed in Chapter 4. It contains
the declaration of the class ExplicitSolver and a number of member functions:

〈Explicit time integration solver 〉≡
〈Initialisation of the explicit solver class 149〉
〈Explicit solver class main functions 150〉
〈Explicit solver class utility functions〉

The class is derived from the class BaseModule as can be seen in the following fragment.

〈Initialisation of the explicit solver class 〉≡ 149

from pyfem.fem.Assembly import assembleMass

class ExplicitSolver( BaseModule ):

def __init__( self , props , globdat ):

〈Initialisation of default solver parameters〉

BaseModule.__init__( self , props )

M,self.Mlumped = assembleMass( props , globdat )

〈Calculate velocity at t = 1
2�t〉

The parameters of the solver, such as the time step and the loading function, are read from
the instance properties props and are stored as members of this class, self.dtime and
self.loadfunc. Since it has been assumed that the mass of the system remains constant
during the simulation, the mass terms need to be determined only once, at the start of the
simulation, see also Box 5.2. The function assembleMass assembles the mass terms in a
similar way as the function assembleTangentStiffness, which has been discussed
in Chapter 2. This function returns the consistent mass matrix as well as the lumped mass
matrix. The consistent mass matrix will not be used here and is stored temporarily in the
local variable M. The lumped mass matrix is stored in vector format as a member of the class
Mlumped.

The function assembleMass assembles the total mass of the system by looping over all
elements and calculating their contributions through the function getElementMass. Most
element formulations in the code contain a description of a mass matrix. For example, the
implementation of this function in a continuum element that incorporates large displacement
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150 Non-linear Finite Element Analysis of Solids and Structures

gradients is given on page 151. The constructor of the class ends with the calculation of the
velocity ȧ at t = 1

2�t, see Box 5.2.
The class ExplicitSolver has a member function run which solves the governing

system of equations for a single time step.

〈Explicit solver class main functions 〉≡ 149

def run( self , props , globdat ):

globdat.cycle += 1
globdat.time += self.dtime

lam = self.loadfunc( globdat.time )

disp = globdat.state
ddisp = globdat.dstate
velo = globdat.velo
fhat = globdat.fhat

After increasing the cycle number and the simulation time globdat.time, the current
load parameter lam is determined as a function of time. The displacement vector is copied
from the globdat database. Next to the total and the incremental displacement vectors,
state and dstate, an additional solution vector is used, velo, which represents the time
derivative of the solution vector. The unit external force vector is represented in fhat.

The updated total and incremental displacement vectors are calculated according to steps 1
and 2 in Box 5.2:

〈Explicit solver class main functions 〉+≡ 150

ddisp = props.dtime * velo
disp += ddisp

from pyfem.fem.Assembly import assembleInternalForce

fint = assembleInternalForce( props, globdat )

globdat.dofs.setConstrainFactor( lam )

acce = globdat.dofs.solve( self.Mlumped , lam*fhat - fint )

The updated state vectors are used to compute the internal force vector. In this case the
function assembleInternalForce can be used since there is no need to compute the
tangential stiffness matrix of the system. The constrained degrees of freedom are updated
next. Since we are solving a system of equations where the acceleration is the unknown,
we specify prescribed accelerations. The new accelerations are calculated in the function
dofs.solve, which is an alternative implementation of the solver used in the fragments on
pages 80 and 127. When the first argument is a diagonal matrix, stored in vector format, the
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Solution Techniques for Non-linear Dynamics 151

system of equations is uncoupled and can be solved for each degree of freedom separately,
according to Equation (5.16).

With the updated accelerations the new velocity field can be computed (step 6 in Box 5.2).
At the end of the time step, the element history is stored.

〈Explicit solver class main functions 〉+≡ 150

velo += 0.5 * props.dtime * acce

elements.commitHistory()

The calculation of the consistent and the lumped mass matrices of the element is implemented
as a member function of the FiniteStrainContinuum class, see Chapter 3.

〈Finite strain continuum element class main functions 〉+≡ 109

def getMassMatrix ( self, elemdat ):

sData = getElemShapeData( elemdat.coords ) 39

rho = elemdat.matprops.rho

for iData in sData:
N = self.getNmatrix( iData.h )
elemdat.mass += dot ( N.transpose() , N ) * rho * iData.weight

elemdat.lumped = sum(elemdat.stiff)

The function has a single argument elemdat which contains the element nodal coordinates.
The element shape functions are obtained using these coordinates. The mass density of the ele-
ment is stored in the material properties instance matprops, which is a member of elemdat.
The mass matrix is constructed according to Equation (2.16). When the consistent mass matrix
has been computed, the lumped mass matrix is obtained by summing over each row of the
consistent mass matrix. The result is stored in the vector elemdat.lumped.

An example calculation using the explicit solver is presented next. We consider a block
of material in a plane-strain configuration (Figure 5.1). It has the dimensions L=5 mm and
W =10 mm. The Young’s modulus E=3.24 GPa, the Poisson’s ratio ν=0.35, and the mass
density ρ=1190 kg/m3, which results in a dilatational wave speed cd = 2090 m/s (Freund
1998). The block is not supported and is loaded by an impact velocity which acts in the positive
y-direction on the top boundary of the block, at y = +L. The impact velocity is increased
linearly to v = 10 m/s with a rise time tr = 1.0 × 10−7 s. In the finite element model we must
specify the prescribed accelerations instead. Differentiation of this velocity profile yields a
constant prescribed acceleration of 108 m/s2 during the first 0.1 µs of the simulation. Because of
symmetry with respect to the y-axis only one half of the block has been modelled, using a mesh
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152 Non-linear Finite Element Analysis of Solids and Structures
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Figure 5.1 Geometry and boundary conditions of a rectangular block loaded by impact.
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Figure 5.2 (a) σyy measured along the centre of the specimen (at x = 0 mm) for different times during
the simulation. (b) Contours of σyy in the right-hand side of the specimen at t = 3 µs

of 20×40 quadrilaterals. The displacements of the nodes on the symmetry axis are constrained
in the x-direction, which, in the present case, implies that the prescribed acceleration of the
corresponding degree of freedom is constrained to zero. The time step �t is set to 1.0 × 10−8

which satisfies the CFL criterion, Equation (5.17).
The stress contours along the y-axis at different times are given in Figure 5.2(a). The os-

cillations at the wave front can be attributed to initiation effects. The amplitude of the peaks
are smaller when the prescribed acceleration is smeared out over a longer period of time. The
magnitude of the stress is approximately 25.0 MPa, which resembles the results presented
by Xu and Needleman (1994). The speed of the stress wave equals the distance travelled by
the first peak divided by the elapsed time. We can estimate this velocity as 2000 m/s, which
is close to the dilatational wave speed cd = 2090 m/s. Figure 5.2(b) shows the contours of the
normal stress in the y-direction, σyy, at t = 3 µs.

5.4 Implicit Time Integration

Implicit time integration schemes are more complicated, and more expensive per time step, but
can allow for (significantly) larger time steps, and provide a control on the dynamic residual
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Solution Techniques for Non-linear Dynamics 153

force vector, since they are usually used in conjunction with an iterative procedure within each
time step. While explicit schemes are primarily chosen when high frequencies are present in
the problem, such as in blast or impact loading, implicit time integration schemes are more
often used when the accelerations are relatively low, such as in earthquake engineering.

5.4.1 The Newmark Family

One of the most widely used implicit time integration methods is due to Newmark (1959), and
is based on the assumption that the acceleration varies linearly over the time step, so that:

ȧt+�t = ȧt + �t
(
(1 − γ)ät + γ ät+�t

)
(5.20a)

at+�t = at + �tȧt + 1

2
�t2 (

(1 − 2β)ät + 2βät+�t
)

(5.20b)

The integration parameters β and γ determine the stability, accuracy, dissipative and dispersion
characteristics of the system. For linear systems unconditional stability is achieved when:

2β ≥ γ ≥ 1

2
(5.21)

and second-order accuracy is obtained for γ = 1
2 , i.e. the error decreases proportional to �t2.

For

γ ≥ 1

2
∧ 2β < γ (5.22)

conditional stability is obtained, where the time step is constrained by:


�t ≤ ωcrit

ωmax

ωcrit =
√

2√
γ−2β

(5.23)

Several well-known time integration schemes can be conceived as special cases of the
Newmark family. For β = 1

4 , γ = 1
2 the average acceleration scheme, or trapezoidal rule is

obtained, which is unconditionally stable and second-order accurate in the time step. Other
implicit schemes are obtained for β = 1

6 , γ = 1
2 , the linear acceleration scheme, and for

β = 1
12 , γ = 1

2 , the Fox–Goodwin scheme. Neither scheme, although having an implicit for-
mat, is unconditionally stable, and the time step is limited by Equation (5.23). Also some
explicit integration schemes can be considered as special cases of the Newmark family, for
instance the central difference scheme, which is obtained for β = 0, γ = 1

2 , so that ωcrit = 2,
thus retrieving the critical time step for explicit methods derived in the preceding section.

The above statements on unconditional stability and the time step limit for the case of
conditional stability hold rigorously for linear elasticity, and the linear-elastic element stiffness
matrix must be substituted in Equation (5.18). For non-linear behaviour the element tangential
stiffness matrix can be substituted for Ke, but no proof exists that this indeed provides a bound
to the time step. For sufficient accuracy, significantly smaller time steps should be selected
when non-linear behaviour is considered. Depending on the material model and the specific
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154 Non-linear Finite Element Analysis of Solids and Structures

structure, the time step can be in the range 0.1–0.5 of that used in linear structural behaviour.
For softening problems, i.e. when there is a negative stiffness, cf. Chapter 6, ωmax

e becomes
imaginary, and a value for the critical time step cannot be obtained at all.

5.4.2 The HHT α-method

Numerical dissipation can be desirable in a number of cases, e.g. to filter out the high-frequency
modal components that are introduced by the spatial discretisation. Numerical dissipation can
be introduced in the Newmark scheme, for γ > 1

2 . Unfortunately, second-order accuracy is
then lost. To circumvent this problem, Hilber et al. (1977) developed the α-method, in which
the dynamic residual force vector (5.3) is replaced by:

r∗
0 = (1 + α)f t+�t

ext − αf t
ext − f t

int,0 − Mät+�t (5.24)

while maintaining Newmark’s assumption that the acceleration varies linearly over the time
step, Equations (5.20):

{
ȧt+�t = ȧt + �t

(
(1 − γ)ät + γ ät+�t

)
at+�t = at + �tȧt + 1

2�t2
(
(1 − 2β)ät + 2βät+�t

)
Evidently, the α-method reduces to Newmark’s method for α = 0, but introduces numerical
dissipation for − 1

3 < α < 0, while second-order accuracy is preserved for β = 1
4 (1 − α)2 and

γ = 1
2 − α. In non-linear analyses α = −0.05 is often used, but similar to any time integration

method, stability cannot be assured.
For the algorithmic implementation we proceed by solving for ät+�t from Equation (5.20b):

ät+�t = 1

β�t2 �a − 1

β�t
ȧt − 1 − 2β

2β
ät (5.25)

and substitute this expression into the dynamic residual force vector, Equation (5.24), which
using Equation (5.4) yields for the first estimate of the displacement increment within the time
step:

�a1 = (K∗
0)−1f∗

0 (5.26)

with the algorithmic tangential stiffness matrix

K∗
0 = (1 + α)K0 + 1

β�t2 M (5.27)

and the right-hand side vector f∗
0 defined as:

f∗
0 = (1 + α)f t+�t

ext − αf t
ext − f t

int,0 + M
(

1

β�t
ȧt + 1 − 2β

2β
ät

)
(5.28)
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Solution Techniques for Non-linear Dynamics 155

This first estimate for the displacement increments, �a1, can be used – at each integration
point – to compute a first estimate for the strain increment, �ε1, and via the constitutive
relation, the stress increment �σ1. From this, the first estimate for the stress:

σt+�t
1 = σt + �σ1

at t + �t can be computed, so that first estimate for the internal force vector ensues as:

f t+�t
int,1 =

ne∑
e=1

ZT
e

∫
Ve

BTσt+�t
1 dV

With these results the accelerations can be updated according to Equation (5.25):

ät+�t
1 = 1

β�t2 �a1 − 1

β�t
ȧt − 1 − 2β

2β
ät

and the new estimate for the dynamic residual force vector can be computed as, cf. Equation
(5.24):

r∗
1 = (1 + α)f t+�t

ext − αf t
ext − f t+�t

int,1 − Mät+�t
1

With the (possibly) updated tangential stiffness matrix K1 the new algorithmic stiffness matrix
K∗

1 and the force vector f∗
1 can be computed, similar to Equations (5.27) and (5.28), whereupon

the correction to the displacement increment da2 ensues as:

da2 = (K∗
1)−1f∗

1

and the new estimate for the displacement increment reads:

�a2 = �a1 + da2

from which new strain and stress increments can be computed. An algorithm for the HHT
α-method is given in Box 5.3.

5.4.3 Alternative Implicit Methods for Time Integration

There is a host of methods available that can attain higher-order accuracy. In particular the linear
multi-step (LMS) family of algorithms has gained some popularity in structural dynamics. An
early LMS method that has been developed for use in structural dynamics is due to Houbolt
(1950). In it, the equation of motion is augmented by the following expressions to evaluate the
acceleration and the velocity:{

ät+�t = 2at+�t−5at+4at−�t−at−2�t

�t2

ȧt+�t = 11at+�t−18at+9at−�t−2at−2�t

6�t

(5.29)

This three-step LMS method has second-order accuracy and is unconditionally stable for
linear problems. A more accurate (six-step) LMS method is Park’s method (Park 1975). A
disadvantage of both methods is that they require special starting procedures.
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156 Non-linear Finite Element Analysis of Solids and Structures

Box 5.3 HHT α time integration scheme for non-linear problems

Initialise a0, ȧ0, and f0
int

Compute the mass matrix: M

For each time step:
1. Initialise the displacement increment: �a0 = 0, and the internal force: f t+�t

int,0 = f t
int

2. Iterations j = 0, . . . for finding ‘dynamic equilibrium’ within the time step:
(a) Compute tangential stiffness: Kj = ∑ne

e=1 ZT
e

∑ni

i=1 widetJiBT
i,jDi,jBi,jZe

(b) Compute the algorithmic stiffness matrix: K∗
j = (1 + α)Kj + 1

β�t2
M

(c) Compute f∗
j = (1 + α)f t+�t

ext − αf t
ext − f t+�t

int,j + M
(

1
β�t

ȧt + 1−2β
2β

ät
)

(d) Solve the linear system: daj+1 = (K∗
j )−1f∗

j

(e) Update the displacement increments: �aj+1 = �aj + daj+1
(f) For each integration point i:

– Compute the strain increment: �aj+1 → �εi,j+1
– Compute the stress increment: �εi,j+1 → �σi,j+1
– Compute the total stress: σi,j+1 = σt

i + �σi,j+1

(g) Compute internal force: f t+�t
int,j+1 = ∑ne

e=1 ZT
e

∑ni

i=1 widetJiBT
i,j+1σi,j+1

(h) Compute accelerations: ät+�t
j+1 = 1

β�t2
�aj+1 − 1

β�t
ȧt − 1−2β

2β
ät

(i) Compute residual: r∗
j+1 = (1 + α)f t+�t

ext − αf t
ext − f t+�t

int,j+1 − Mät+�t
j+1

(j) Check convergence: if ‖r∗
j+1‖ < η, with η the convergence tolerance, go to 3.

3. Compute the velocities and displacements at the end of the time step:
• Velocities: ȧt+�t = ȧt + �t

(
(1 − γ)ät + γ ät+�t

)
• Displacements: at+�t = at + �a

Algorithms that involve multiple function evaluations such as the Runge–Kutta methods are
usually less efficient in structural dynamics because of the increased computational costs per
time step, which can become prohibitive for larger systems. We finally note that in the last
two decades time-discontinuous Galerkin methods have become popular, especially for elastic
wave propagation because of their favourable properties with respect to the error made with
respect to wave dispersion (Cho et al. 2011; Hughes and Hulbert 1988), i.e. the propagation
of the different harmonics of a wave with different velocities, thereby changing the wave
profile (Whitham 1974).

5.5 Stability and Accuracy in the Presence of Non-linearities

As remarked before, the unconditional stability of certain time integration schemes can only be
proven rigorously for linear systems. Indeed, it has been shown that integration schemes which
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Figure 5.3 (a) Simple pendulum problem. (b) Variation of the energy with time

are unconditionally stable in the linear regime, can suffer from severe numerical instabilities
when used in non-linear problems (Crisfield and Shi 1994; Galvanetto and Crisfield 1996;
Simo and Tarnow 1992, 1994; Simo et al. 1995).

Although general analyses of stability and accuracy of time-stepping schemes for non-linear
problems, and definitely for problems that involve softening, are impossible, some insight can
be gained by studying simple examples (Kulkarni et al. 1995). We first consider the pendulum
problem of Figure 5.3(a) (Bathe 1982; Crisfield and Shi 1994; Galvanetto and Crisfield 1996).
In this problem the mass m is given an initial horizontal velocity v0. The problem is solved
using the trapezoidal rule (Newmark scheme with β = 1

4 and γ = 1
2 ), which is unconditionally

stable for linear problems. The solution was computed for two time steps, �t = 0.1 s and
�t = 0.025 s, which are both considerably smaller than the period (≈4 s). Figure 5.3(b)
shows that both time steps give correct answers until approximately the end of the first period.
Thereafter, the solution for the coarser time step locks on a wrong level of the total energy.
It is emphasised that in this example no instability was encountered in the sense of lack of
convergence. Simply the wrong solution was computed. A possible remedy in this case would
be to use a time-stepping algorithm with some built-in numerical dissipation, like the HHT
α-method (Hilber et al. 1977).

Next, we focus on the mass–spring system of Figure 5.4(a) (Sluys et al. 1995; Xie and Wood
1993), which has a negative spring stiffness k in order to simulate some basic characteristics of
softening problems, see also Chapter 6. The advantages of this single degree of freedom system
are that there is no spatial discretisation, so that no errors can stem from this source, that an
analytical solution can be constructed against which the numerical solutions can be compared,
and that a dispersion analysis can be carried out, which shows the dispersive properties of the
various time integrators.

The mass is given an initial displacement u0 with a zero initial velocity u̇0 = 0. The dis-
placement then grows according to the analytical solution:

u(t) = u0

2
(exp(−ωrt) + exp(ωrt)) (5.30)
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Figure 5.4 (a) Mass–spring system with a negative stiffness k. (b) Exact solution and results for different
time integrators

with the growth coefficient

ωr =
√

− k

m
(5.31)

Figure 5.4(b) shows the displacement as a function of time for the trapezoidal scheme, for
the Fox–Goodwin scheme, and for the central difference scheme. For this particular case
the central difference method underestimates the analytical solution, while the other time
integration methods overestimate the displacement. Interestingly, the second-order accuracy
of the time integrators that is assured for linear problems, is preserved (Table 5.1), while the
Fox–Goodwin method even exhibits O(�t4) accuracy.

More insight can be gained by studying the equivalent problem of a one-dimensional bar
with a bilinear stress–strain relation (Figure 5.5). With ρ the mass density and u the axial
displacement, the balance of momentum for the one-dimensional bar reads:

∂σ

∂x
= ρ

∂2u

∂t2 (5.32)

Beyond the peak strength the relation between an increment of stress and an increment
of strain reads: �σ = H�ε, with H < 0 the tangential stiffness. Taking into account the

Table 5.1 Absolute error in displacement for mass–spring system at t = 1.0 s for
various time-stepping schemes

Time step(s) Trapezoidal rule Fox–Goodwin Central difference

0.05 2.66 × 103 1.42 × 101 −1.06 × 103

0.025 5.95 × 102 8.95 × 10−1 −2.81 × 102

0.0125 1.45 × 102 5.60 × 10−2 −7.13 × 101
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Figure 5.5 (a) One-dimensional bar. (b) Bilinear stress–strain relation

one-dimensional, linear kinematic relation, ε = ∂u
∂x

, the equation of motion becomes:

ρ
∂2�u

∂t2 − H
∂2�u

∂x2 = 0 (5.33)

We assume a solution of the form

�u(x, t) = a(t) exp(ikx) (5.34)

with k the wave number and a(t) a discrete displacement that only varies in time (Whitham
1974). Substitution into Equation (5.33) eliminates the dependence on x and yields:

ρ
∂2a

∂t2 + Hk2a = 0 (5.35)

We consider the Newmark scheme, Equations (5.20), and the homogeneous part of Equa-
tion (5.2), i.e. f t+�t

ext − f t
int = 0, at t − �t, t and t + �t, and eliminate the time derivatives to

arrive at the temporally discretised equation of motion:

Hk2�t2 (
c1a

t+�t − c2a
t − c3a

t−�t
) = ρ

(−at+�t + 2at − at−�t
)

(5.36)

with the constants c1 = β, c2 = 2β − γ − 1
2 and c3 = γ − β − 1

2 . Considering that we are
dealing with an instability problem we assume a non-harmonic solution for a with the growth
coefficient ωr:

at = A exp(ωrt) (5.37)

with A a constant. The values at t + �t follow from at+�t = A exp(ωr�t) exp(ωrt) etc., and
upon substitution into Equation (5.36) the dispersion relation for the temporally discretised
system is found:

k2 = ρH

�t2

− exp(ωr�t) + 2 − exp(−ωr�t)

c1 exp(ωr�t) − c2 − c3 exp(−ωr�t)
(5.38)
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Figure 5.6 (a) Dispersion relations for trapezoidal time integration scheme for different time steps.
(b) Dispersion relations for different members of the Newmark family

Figure 5.6(a) shows the dispersion curves for different values of the time step when the trape-
zoidal rule is used. The curves converge to the continuum dispersion curve upon refinement
of the time step. For this implicit method upper bound values are obtained for ωr, which is in
agreement with the tendency observed for the mass–spring system of Figure 5.4. Figure 5.6(b)
shows the dispersion curves for different members of the Newmark family. The Fox–Goodwin
method gives the best approximation, while the (explicit) central difference method underes-
timates the growth coefficient ωr. To determine the convergence rate the wave number k can
be calculated using Equation (5.38) for different values of the time step (ωr = 106 rad/s and
the exact solution ke = 1 mm−1). The results, summarised in Figure 5.7 confirm the results
shown in Table 5.1. In Sluys et al. (1995) results can also be found on the HHT α-method. It is
noted that dispersion analyses can also be used to study the effect of the spatial discretisation,
including the effects of mass lumping (Huerta and Pijaudier-Cabot 1994; Sluys and de Borst
1994; Sluys et al. 1995). It is emphasised that, although the above results confirm some tenden-
cies observed in computational dynamics analyses of linear systems, they are case-dependent,
and cannot be generalised. When carrying out dynamic analysis of non-linear systems the
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Figure 5.7 Accuracy analysis for different Newmark schemes for a one-dimensional problem with
negative stiffness
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Solution Techniques for Non-linear Dynamics 161

results should be carefully scrutinised with respect to stability and accuracy, which cannot be
guaranteed.

5.6 Energy-conserving Algorithms

In a finite element context, energy-conserving algorithms seem to have been first considered
by Hughes et al. (1978), who used Lagrangian multipliers to enforce energy conservation
as a constraint. While in most structural systems there will be some form of damping or
dissipation, and therefore energy will not be conserved, it can nevertheless make sense to start
with an algorithm that conserves energy in the absence of damping or dissipation, and to use
time integrators that are energy conserving (Crisfield and Shi 1994; Galvanetto and Crisfield
1996; Simo and Tarnow 1992, 1994; Simo et al. 1995).

The basic idea of energy-conserving time integrators is to search for a ‘mid-point dynamic
equilibrium’, with associated ‘mid-point stresses’, which should be the average of those stresses
at the beginning and at the end of the time step. We explore this idea by adopting a Total
Lagrange formulation, and extend Equation (3.86) by including the inertia term:

∫
V0

ρ0δuTüdV0 +
∫

V0

δγTτdV0 =
∫

S0

δuTt0dS0 +
∫

V0

ρ0δuTgdV0 (5.39)

which must hold at t + α�t, 0 ≤ α ≤ 1. With a standard spatial discretisation, and integrating
from t till t + �t we transform this identity into:

∫ t+�t

t

δaTMädt +
∫ t+�t

t

δaT
∫

V0

BT
LτdV0dt =

∫ t+�t

t

δaTfextdt (5.40)

with BL as defined in Equation (3.21). We now integrate in time by a combination of trapezoidal
and mid-point approximations to obtain:

δāTM
(

ȧt+�t − ȧt

�t

)
+ δāT

∫
V0

B̄T
Lτ̄dV0 = δāT f̄ext (5.41)

where the bar signifies that a quantity is evaluated at the mid-point,

B̄ = B
(

āt + āt+�t

2

)

and the Second Piola–Kirchhoff stress tensor averaged over the time step �t is defined as:

τ̄ = τ(at) + τ(at+�t)

2

In a compact format Equation (5.41) can be rewritten as:

δāTr̄ = 0 (5.42)
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162 Non-linear Finite Element Analysis of Solids and Structures

where the residual vector at the mid-point is defined as:

r̄ = M
(

ȧt+�t − ȧt

�t

)
+

∫
V0

B̄T
Lτ̄dV0 − f̄ext

= M
(

ȧt+�t − ȧt

�t

)
+ f̄int − f̄ext (5.43)

The particular form of the integration that leads to Equation (5.41) relates to energy con-
servation (Simo and Tarnow 1992). We consider the change in the strain energy over the time
step, which can be written as:

�E =
∫

V0

�γ̄Tτ̄dV0 = �āT
∫

V0

B̄T
Lτ̄dV0 = �āT f̄int (5.44)

The change in kinetic energy over the time step reads:

�K = 1

2
(ȧt+�t)TMȧt+�t − 1

2
(ȧt)TMȧt

= 1

2
(ȧt+�t + ȧt)TM(ȧt+�t − ȧt)

= �aTM
(

ȧt+�t − ȧt

�t

)
(5.45)

Assuming a fixed external load – as in a gravity field – the total energy change is:

�(K + E + U) = �aT
(

M
(

ȧt+�t − ȧt

�t

)
+ f̄int − f̄ext

)
= �aTr̄ (5.46)

which will tend to zero upon reaching dynamic equilibrium, i.e. when r̄ vanishes. This class
of algorithms thus preserves energy when there are no dissipative processes, as for instance
in large rotations, and/or large deflections of slender members. When energy dissipation is
present in the problem, as in plasticity, or damage, this class of algorithms can still be used,
but of course, there is no conservation of energy. The fact that there is no energy dissipated
by the algorithm as such, however, may also be favourable for the stability properties of the
algorithm for dissipative non-linear problems.

When we assume that the semi-discrete balance of momentum has been satisfied at t − 1
2�t,

use of a Taylor series gives:

f
t+ 1

2 �t

int = f
t− 1

2 �t

int + ∂f
t− 1

2 �t

int

∂a
(at+�t − at)

= f
t− 1

2 �t

int + Kt− 1
2 �t�a (5.47)

with the tangential stiffness matrix derived from Equation (5.43):

Kt− 1
2 �t =

∫
V0

(
B̄t−�t

L + B̄t
L

4

)T

DtBt
LdV0 +

∫
V0

BT
NL

(T t−�t + T t

4

)
BNLdV0 (5.48)
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Solution Techniques for Non-linear Dynamics 163

with NNL and T as defined in Equations (3.104) and (3.103). The first contribution to the
tangential stiffness matrix becomes non-symmetric. However, for a vanishing time step, this
non-symmetry disappears. A similar form of non-symmetry of the algorithmic tangential stiff-
ness matrix will be encountered in computational plasticity (Chapter 7).

We now define the velocity update similar to that for the Newmark scheme, Equation (5.20a):

ȧt+�t = 2(at+�t − at)

�t
− ȧt (5.49)

Substitution of Equation (5.49) for ȧt+�t and of Equation (5.47) for f
t+ 1

2 �t

int into the residual

vector r̄t+ 1
2 �t as defined through Equation (5.43) yields

(Kt− 1
2 �t)∗�a = f∗ (5.50)

where

(Kt− 1
2 �t)∗ = Kt− 1

2 �t + 2

�t2 M (5.51)

and

f∗ = f
t+ 1

2 �t

ext − f
t− 1

2 �t

int + 2

�t
Mȧt (5.52)

Having computed �a using Equation (5.50), the displacements at+�t = at + �a can be
computed and, using Equation (5.49), the velocity can be updated. Using the constitutive
relation the Second Piola–Kirchhoff stress τt+�t can be calculated and, using Equation (5.43),

the residual force vector r̄t+ 1
2 �t can be computed,

r̄t+ 1
2 �t = M

(
ȧt+�t − ȧt

�t

)
+ f̄

t+ 1
2 �t

int − f̄
t+ 1

2 �t

ext (5.53)

which will generally not be equal to zero. Again applying a Taylor series to this identity gives
the tangential stiffness matrix

Kt+ 1
2 �t =

∫
V0

(
B̄t

L + B̄t+�t
L

4

)T

Dt+�tBt+�t
L dV0 +

∫
V0

BT
NL

(T t + T t+�t

4

)
BNLdV0

which takes the same form as before. The process is completed by taking the variation of the
velocity update, Equation (5.49):

δȧt+�t = 2δat+�t

�t
(5.54)

and combine this with the linearised form of r̄t+ 1
2 �t to give the correction to the displacement

vector:

da = −[(Kt+ 1
2 �t)∗]−1r̄t+ 1

2 �t (5.55)
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164 Non-linear Finite Element Analysis of Solids and Structures

where (Kt+ 1
2 �t)∗ relates to Kt+ 1

2 �t in a similar manner as (Kt− 1
2 �t)∗ relates to Kt− 1

2 �t ,
Equation (5.51).

5.7 Time Step Size Control and Element Technology

A proper time step should strike a balance between computational costs on one hand, and
accuracy, algorithmic stability, and convergence of the solver on the other hand. For instance,
for single degree of freedom problems as in Figure 5.4 at least 10 steps would be necessary
per period of oscillation already in the linear regime, see Wood (1990) for a comprehensive
overview of step size control. The requirements that are imposed by accuracy and convergence
of the iterative process that is necessary to solve the non-linear system of equations within each
time step, can lead to time steps that are even (much) smaller (Kuhl and Ramm 1999). Also
for time integrators that are only conditionally stable in the linear regime, the time step that
stems from accuracy considerations and convergence requirements can be much smaller than
the critical time step that is derived from the CFL criterion, up to a factor five or ten smaller.
Chapter 14 includes some studies in non-linear fracture dynamics, which confirm this.

In view of the high computational demand of (non-linear) dynamics calculations, methods
have been sought, which can reduce the computational burden. Among these we find the
implicit–explicit methods, in which different parts of the domain can be integrated either using
an implicit algorithm, or using an explicit algorithm, depending on the corresponding critical
time step. For instance, the part of the domain in which a fine discretisation is applied, and
which would therefore lead to a small critical time step, can then be integrated using an implicit
method, while the remainder of the domain is integrated in an explicit manner. Typically, a
consistent parameterisation is adopted, that encapsulates both an implicit and an explicit time
integration algorithm (Daniel 2003a; Hughes and Liu 1978b,a; Miranda et al. 1989). It is
noted that in the non-linear regime, the efficiency gain of implicit–explicit methods may be
less pronounced.

Another way to improve efficiency is to adopt subcycling (Daniel 1998, 2003b; Wu and
Smolinski 2000). In this class of methods the spatial domain is partitioned in a manner that
depends on the critical time step in a subdomain. Each subdomain is then solved using a time
step that is smaller than the critical time step in the subdomain. Synchronisation must take
place after a certain time interval, but this can be (much) larger than the most critical time step.
The effect is similar to in implicit–explicit methods: the subdomain that has to be integrated
with a time step that is below the most critical time step is significantly smaller than the total
domain, thus giving a significant efficiency gain. Crucial issues in this class of methods are
stability and accuracy, and the synchronisation across subdomains. This holds a fortiori for
non-linear analyses.

While the above methods set out to achieve a higher efficiency via optimising the temporal
integration, savings can also be made by reducing the number of integration points. In particular
when a mass lumping is adopted, the time spent for updating the stress–strain relation in the
integration points becomes a considerable part of the total computational effort. This can be
achieved by employing reduced integration. However, as will also be discussed in Chapter 7, a
uniformly reduced integration can cause the emergence of spurious kinematic modes, or zero-
energy modes, such as the hour-glass modes in four-noded elements. Measures to suppress these
modes have been proposed (Belytschko et al. 1984; Flanagan and Belytschko 1981; Kosloff
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Solution Techniques for Non-linear Dynamics 165

and Frazier 1978), but for material non-linearities these remedies can embody the danger that
they artificially stiffen the solution, since it may no longer be known which spurious modes
have to be suppressed.
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6
Damage Mechanics

Damage mechanics is a branch of continuum mechanics that incorporates changes at the
microstructural level in the continuum model via a finite number of scalar or tensor-valued
internal variables. In this sense it is very much related to plasticity theory (Chapter 7) where
the influence of the history on the stress evolution is also incorporated in the continuum theory
via a number of internal variables.

6.1 The Concept of Damage

We consider the system of Figure 6.1, which is composed of m parallel bars. The bars all have
the same stiffness k, but the strength of each bar i is different. After the tensile strength in a
particular bar is exceeded, we assume a perfectly brittle behaviour, that is the force drops to
zero at no additional straining (Figure 6.1). In each individual, unbroken bar, there is a force

fi = ku (6.1)

where it is emphasised, that because of the parallel arrangement of the bars, they all experience
the same displacement u. We subsequently assume that for a given displacement u, n bars are
broken. The total force that can be transmitted is then equal to

F =
m−n∑
i=1

ku = (m − n)ku (6.2)

We define the individual stiffness of the bars as k = EA0/m�, with E the total stiffness of
the system and A0 and � the total cross-sectional area and the length of the bars, respectively.
Then, we can write Equation (6.2) as

F = (1 − n/m)EA0
u

�
(6.3)

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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L

F,u

f
i

u

(a) (b)

Figure 6.1 Simple damage model composed of m parallel bars (a), each with an elastic perfectly brittle
behaviour (b)

When making the transition from a discrete to a continuous model, with ω = n/m the fraction
of broken bars, which starts at 0 and ends at 1, and with the strain in the bars ε = u/�, we can
write:

F = (1 − ω)EA0ε (6.4)

Obviously ω is a function of the end displacement of the bars u, and characterises the state of
the system. This so-called damage variable is an internal variable, which signifies how much
of the system is still intact. It increases monotonically, since the number of broken bars can
only grow or remain constant (during unloading).

Equation (6.4) is a total, non-linear stress–strain relation. For solving the non-linear set of
equations that arises when using a non-linear force–displacement relation, we must differentiate
Equation (6.4) to obtain:

Ḟ =
[

(1 − ω) − dω

dε
ε

]
EA0ε̇ (6.5)

so that the tangential stiffness modulus Etan reads

Etan =
[

(1 − ω) − dω

dε
ε

]
EA0 (6.6)

During unloading, ω remains constant, so that the second term in Equation (6.6) vanishes, and
we have

Etan = (1 − ω)EA0

Evidently, unloading goes along a secant branch to the stress and strain-free origin of the
stress–strain diagram.
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Damage Mechanics 171

Equation (6.4) is also useful to introduce the effective stress concept. F is the force that
is instantaneously transmitted by the m − n intact bars, and accordingly, the macroscopically
observed stress can be defined as:

σ = F

A0
= (1 − ω)Eε (6.7)

Designating the instanteneous area of unbroken bars by A, we can define the effective stress
σeff that exists in the unbroken bars, as

σeff = F

A
= (1 − ω)

EA0ε

A
(6.8)

It is obvious that the relation σeff = Eε holds in each individual bar. Accordingly, we obtain
the identity

A = (1 − ω)A0 (6.9)

between the virgin area A0 and the still intact load-carrying area A.

6.2 Isotropic Elasticity-based Damage

The basic structure of constitutive models that are set up in the spirit of damage mechanics is
simple. We have a total stress–strain relation (Lemaitre and Chaboche 1990):

σ = Ds(ω, ω, �) : ε (6.10)

where σ is the stress tensor, ε is the strain tensor and Ds is a secant, fourth-order stiffness tensor,
which can depend on a number of internal variables, like scalar-valued variables ω, second-
order tensors ω and fourth-order tensors �. Equation (6.10) differs from non-linear elasticity
in the sense that a history dependence is incorporated via a loading–unloading function, f ,
which vanishes upon loading and is negative otherwise. For damage growth, f must remain
zero for an infinitesimal period, so that we have the additional requirement that ḟ = 0 upon
damage growth. The theory is completed by specifying the appropriate (material-dependent)
evolution equations for the internal variables.

For isotropic damage evolution, the secant stiffness tensor of Equation (6.10) becomes (in
matrix format):

Ds = Es

(1 + νs)(1 − 2νs)




1 − νs νs νs 0 0 0

νs 1 − νs νs 0 0 0

νs νs 1 − νs 0 0 0

0 0 0 1−2νs

2 0 0

0 0 0 0 1−2νs

2 0

0 0 0 0 0 1−2νs

2




(6.11)
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172 Non-linear Finite Element Analysis of Solids and Structures

with Es = E(1 − ω1) the secant stiffness modulus, and νs = ν(1 − ω2) the secant value of
Poisson’s ratio, see also Equation (1.118). ω1 and ω2 are scalar-valued damage variables,
which grow from zero to one at complete damage. A further simplification can be achieved
if it is assumed that the Poisson’s ratio remains constant during the damage process, which
is equivalent to the assumption that the secant shear stiffness and bulk moduli degrade in the
same manner during damage evolution. Equation (6.11) then simplifies to:

Ds = (1 − ω)De (6.12)

with ω the single damage variable. Alternatively, Equation (6.12) can be expressed as

σ = (1 − ω)σ̂ (6.13)

with σ̂ the effective stress tensor,

σ̂ = De : ε (6.14)

which is thought to work on the intact material, i.e. the material between the voids or micro-
cracks.

The total stress–strain relation (6.12) is complemented by a damage loading function f ,
which reads:

f = f (ε̃, σ̃, κ) (6.15)

with ε̃ and σ̃ scalar-valued functions of the strain and stress tensors, respectively, and κ the
internal variable. The internal variable κ starts at a damage threshold level κi and is updated
by the requirement that during damage growth f = 0, whereas at unloading f < 0 and κ̇ =
0. Damage growth occurs according to an evolution law such that ω = ω(κ), which can be
determined from a uniaxial test. The loading–unloading conditions of inelastic constitutive
models are often formalised using the Karush–Kuhn–Tucker conditions:

f ≤ 0 , κ̇ ≥ 0 , f κ̇ = 0 (6.16)

We here limit the treatment to the case that the damage loading function does not depend
on σ̃. For such a strain-based, or elasticity-based, damage model we have:

f (ε̃, κ) = ε̃ − κ (6.17)

For metals a common choice for ε̃ is the energy measure:

ε̃ = 1

2
ε : De : ε (6.18)
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Figure 6.2 Contour plots for ε̃ for (a) the energy-based concept, (b) the Mazars definition (Mazars and
Pijaudier-Cabot 1989) and (c) the modified von Mises definition for k = 10

Equation (6.18) is less convenient in the sense that it does not reduce to the uniaxial strain for
uniaxial stressing. For this reason it is sometimes replaced by the modified expression

ε̃ =
√

1

E
ε : De : ε (6.19)

Expression (6.19) is represented graphically in the principal strain space for plane-stress condi-
tions in Figure 6.2(a). In this figure, a scaling has been applied such that ε̃ = 1, while ν = 0.2.
The dashed lines are uniaxial stress paths.

The above energy release rate definition for ε̃ gives equal weights to tensile and compressive
strain components, which makes it unsuitable to describe the mechanical behaviour of quasi-
brittle materials like concrete, rock and ceramics. To remedy this deficiency, Mazars and
Pijaudier-Cabot (1989) have suggested the definition

ε̃ =
√√√√ 3∑

i=1

(< εi >)2 (6.20)

with εi the principal strains, with < · > the MacAulay brackets defined such that < εi >= εi

if εi > 0 and < εi >= 0 otherwise. A contour plot for ε̃ = 1 is given in Figure 6.2(b). A
third definition for the equivalent strain ε̃ has been proposed by de Vree et al. (1995). This
proposition, which has been named a modified von Mises definition, is given by

ε̃ = k − 1

2k(1 − ν)
Iε

1 + 1

2k

√
(k − 1)2

(1 − 2ν)2 (Iε
1)2 + 12k

(1 + ν)2 Jε
2 (6.21)

with Iε
1 the first invariant of the strain tensor and Jε

2 the second invariant of the deviatoric
strain tensor. The parameter k governs the sensitivity to the compressive strain components
relative to the tensile strain components. The definition of ε̃ is such that a compressive uniaxial
stress kσ has the same effect as a uniaxial tensile stress σ. k is therefore normally set equal
to the ratio of the compressive uniaxial strength and the tensile uniaxial strength. A graphical
representation of the modified von Mises definition is given in Figure 6.2(c).
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174 Non-linear Finite Element Analysis of Solids and Structures

Box 6.1 Algorithmic treatment of isotropic elasticity-based damage model

1. Compute the strain increment: �εj+1
2. Update the total strain: εj+1 = ε0 + �εj+1
3. Compute the equivalent strain: ε̃j+1 = ε̃(εj+1)
4. Evaluate the damage loading function: f = ε̃j+1 − κ0

if f ≥ 0 , κj+1 = ε̃j+1
else κj+1 = κ0

5. Update the damage variable: ωj+1 = ω(κj+1)
6. Compute the new stresses: σj+1 = (1 − ωj+1)De : εj+1

From a computational point of view the above elasticity-based damage model is cast easily
into a simple and robust algorithm. Indeed, in a displacement-based finite element formulation
we can directly compute the strains from the given nodal displacements. The equivalent strain
follows in a straightforward fashion, since ε̃ = ε̃(ε). After evaluation of the damage loading
function (6.17), the damage variable ω can be updated and the new value for the stress tensor
can be computed directly. The simple structure of the algorithm, see Box 6.1 for details, is
due to the fact that the stress–strain relation (6.10) is a total stress–strain relation, in the sense
that there exists a bijective relation for unloading, and a surjective, but non-injective relation
between the stress and strain tensors for loading.

The algorithm described above evaluates the stress from a given strain. To arrive at a compu-
tationally efficient procedure that utilises a Newton–Raphson method, it must be complemented
by a tangential stiffness tensor, which is derived by a consistent linearisation of the stress–strain
relation. Differentiating Equation (6.12) gives:

σ̇ = (1 − ω)De : ε̇ − ω̇De : ε (6.22)

Since ω = ω(κ), and because the internal variable κ depends on the equivalent strain via ε̃ and
the loading function (6.17), we obtain:

ω̇ = ∂ω

∂κ

∂κ

∂ε̃
˙̃ε (6.23)

where ∂κ/∂ε̃ ≡ 1 for loading and ∂κ/∂ε̃ ≡ 0 for unloading. Considering the dependence ε̃ =
ε̃(ε), we can elaborate this relation as:

ω̇ = ∂ω

∂κ

∂κ

∂ε̃

∂ε̃

∂ε
: ε̇ (6.24)

Substitution of Equation (6.24) into the expression for the stress rate yields:

σ̇ =
(

(1 − ω)De − ∂ω

∂κ

∂κ

∂ε̃
(De : ε) ⊗ ∂ε̃

∂ε

)
: ε̇ (6.25)
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Damage Mechanics 175

For unloading the second term in Equation (6.25) cancels and we retrieve the secant stiffness
matrix (1 − ω)De as the tangential stiffness matrix for unloading. It is finally noted, cf. Simo and
Ju (1987), that the tangential stiffness matrix as defined in (6.25) is generally non-symmetric.
For the special choice that the equivalent strain is given by Equation (6.18), symmetry is
restored, since then

σ̇ =
(

(1 − ω)De − ∂ω

∂κ

∂κ

∂ε̃
(De : ε) ⊗ (De : ε)

)
: ε̇ (6.26)

6.3 PyFEM: A Plane-strain Damage Model

In this section, we will take a closer look at the implementation of a simple plane-strain
damage model in PyFEM. The Python code for this constitutive model can be found in the
file PlaneStrainDamage.py in the directory pyfem/materials. The structure of this
file shows many similarities with the elastic plane-strain model, which has been discussed in
Section 3.6.

〈Plane-strain damage model 〉≡
〈Initialisation of the plain-strain damage class 175〉
〈Plane-strain damage class main functions 176〉
〈Plane-strain damage class utility functions 177〉

The plane-strain damage model is implemented as a class, derived from the class
BaseMaterial:

〈Initialisation of the plane-strain damage class 〉≡ 175

class PlaneStrain( BaseMaterial ):

def __init__ ( self, props ):

self.setHistoryParameter( ’kappa’, 0. )
self.commitHistory()

BaseMaterial.__init__( self, props )

The internal variable kappa is initialised at zero, and is stored in a similar fashion as the
internal variables in, e.g., the truss element discussed in Chapter 3. The material parameters
are obtained from the props instance in the constructor of the mother class BaseMaterial.
The main parameters for this model are the Young’s modulus, E, and the Poisson’s ratio, ν,
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176 Non-linear Finite Element Analysis of Solids and Structures

which are stored as the members E and nu. These parameters are used to construct the elastic
stiffness matrix De, which is stored as a two-dimensional array De:

〈Initialisation of the plane-strain damage class 〉+≡ 175

self.De = zeros( shape = (3,3) )

self.De[0,0]=self.E*(1.-self.nu)/((1.+self.nu)*(1.-2.*self.nu))
self.De[0,1]=self.De[0,0]*self.nu/(1.-self.nu)
self.De[1,0]=self.De[0,1]
self.De[1,1]=self.De[0,0]
self.De[2,2]=self.De[0,0]*0.5*(1.-2.*self.nu)/(1.-self.nu)

self.a1 = (1./(2.*self.k))
self.a2 = (self.k-1.)/(1.-2.*self.nu)
self.a3 = 12.*self.k/((1.+self.nu)**2)

In addition, the constants a1, a2 and a3 are determined and stored for the calculation of the
modified von Mises equivalent strain, Equation (6.21). The constants are a function of the
parameter k, which is set in the input file and is obtained from the props database in the
constructor of BaseMaterial.

The stresses are calculated in the member function getStress. The only input argument
of this function is the instance kinematics, which contains the deformation gradient, and
the total and the incremental strains at an integration point. In the present model only the total
strains are used.

〈Plane-strain damage class main functions 〉≡ 175

def getStress( self, kinematics ): 107

kappa = self.getHistoryParameter(’kappa’)

eps,depsdstrain = self.getEquivStrain( kinematics.strain ) 177

Having retrieved the internal variable kappa from the database, the equivalent strain eps
and its derivative with respect to the total strains, depsdstrain, are calculated. The latter
array is needed for the construction of the tangential stiffness matrix.

The current PyFEM implementation uses the modified von Mises formulation of the equiv-
alent strain (de Vree et al. 1995). This relation is implemented as a member function of the
class and can be easily replaced by an alternative expression. The parameters a1, a2, a3 in
this function have been defined in the constructor of the class.
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Damage Mechanics 177

〈Plane-strain damage class utility functions 〉≡ 175

def getEquivStrain( self , strain ):

exx = strain[0]
eyy = strain[1]
exy = strain[2]
ezz = self.nu/(self.nu-1.0)*(exx+eyy)

I1 = exx+eyy+ezz
J2 = (exx**2+eyy**2+ezz**2-exx*eyy-eyy*ezz-exx*ezz)/3.0+exy**2

eps = self.a1*(self.a2*I1+sqrt((self.a2*I1)**2+self.a3*J2))

Next to the equivalent strain, its derivative is calculated and stored in the array detadstrain
of length three.

〈Plane-strain damage class utility functions 〉+≡ 177

depsdstrain = zeros(3)

〈Calculate derivative of equivalent strain with respect to the strains〉

return eps , depsdstrain

The actual calculation of the terms of this array is not shown in the above fragment. The
equivalent strain and the derivatives are the return values of this member function.

In the function getStress the equivalent strain eps is compared with the internal variable
kappa to determine whether there is progressive damage or not, see Equation (6.17). In case
of progressive damage, the Boolean progDam is set to True, else progDam is set equal
to False. The updated value of the internal variable kappa is subsequently stored in the
database.

〈Plane-strain damage class main functions 〉+≡ 176

if eps > kappa:
progDam = True
kappa = eps

elif:
progDam = False

self.setHistoryParameter( ’kappa’, kappa )

omega , domegadkappa = self.getDamage( kappa ) 178

Now that the internal variable kappa is known, the magnitude of the damage, omega,
and its derivative with respect to the history, domegadkappa, can be calculated. This
derivative is needed for the calculation of the tangential stiffness matrix. In this model, we
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178 Non-linear Finite Element Analysis of Solids and Structures

have implemented a linear dependence of the damage parameter omega on the internal
variable kappa.

〈Plane-strain damage class utility functions 〉+≡ 177

def getDamage( self , kappa ):

if kappa <= self.kappa0:
omega = 0.
domegadkappa = 0.

elif self.kappa0 < kappa < self.kappac:
fac = self.kappac/kappa
omega = fac*(kappa-self.kappa0)/(self.kappac-self.kappa0)
domegadkappa = fac/(self.kappac-self.kappa0)-(omega/kappa)

else:
omega = 1.
domegadkappa = 0.

return omega , domegadkappa

When kappa is smaller than a threshold value kappa0, the damage omega and its derivative
domegadkappa equal zero. When kappa is between kappa0 and kappac, the damage
parameter increases linearly from zero to one. The parameters kappa0 and kappac are
members of the class and need to be specified in the input file. The scalars omega and
domegadkappa are return values of the function.

Upon return in the main member function getStress the stress and the material tangential
stiffness matrix in the integration point can be determined:

〈Plane-strain damage class main functions 〉+≡ 177

effStress = dot( self.De , kinematics.strain )

stress = ( 1. - omega ) * effStress
tang = ( 1. - omega ) * self.De

if progDam:
tang += -domegadkappa * outer( effStress , detadstrain )

return stress , tang

The stress is calculated according to step 6 in Box 6.1. To this end, we first calculate the
effective stress effStress, see also Equation (6.14). Finally, the material tangential
stiffness matrix is computed according to Equation (6.25).

The plane-strain damage model has been used in the small example program
DamageBar.pro in the directory examples/ch06.
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Damage Mechanics 179

6.4 Stability, Ellipticity and Mesh Sensitivity

A fundamental problem of incorporating damage evolution in standard continuum models is
the inherent mesh sensitivity that occurs after reaching a certain damage level. This mesh
sensitivity goes beyond the standard discretisation sensitivity of numerical approximation
methods for partial differential equations and is not related to deficiencies in the discretisation
methods. Instead, the underlying reason for this mesh sensitivity is a local change in character
of the governing partial differential equations. This local change of character of the governing
set of partial differential equations leads to a loss of well-posedness of the initial boundary
value problem and results in an infinite number of possible solutions. After discretisation, a
finite number of solutions results. For a finer discretisation, the number of solutions increases,
which explains the observed mesh sensitivity.

Since the observed mesh sensitivity is of a fundamental nature, we shall first discuss some
basic notions regarding stability and ellipticity. Subsequently, we elucidate the mathematical
concepts by simple examples regarding mesh sensitivity.

6.4.1 Stability and Ellipticity

At the continuum level stable material behaviour is usually defined as the scalar product of the
stress rate σ̇ and the strain rate ε̇ being positive (Hill 1958; Maier and Hueckel 1979):

ε̇ : σ̇ > 0 (6.27)

although it can be linked in a rigorous manner to Lyapunov’s mathematical definition of stability
only for elastic materials (Koiter 1969). In Equation (6.27) restriction is made to geometrical
linearity. Extension to geometrical non-linearity is straightforward by replacing σ̇ by the rate of
the First Piola–Kirchhoff stress tensor and ε̇ by the velocity gradient, see Box 3.3. Evidently, the
scalar product of Equation (6.27) becomes negative when, in a uniaxial tension or compression
test, the slope of the homogenised axial stress–strain curve is negative. This phenomenon is
named strain softening and is not restricted to a damage mechanics framework, but can also
occur in plasticity.

There is a class of material instabilities that can cause the scalar product of stress rate
and strain rate to become negative without the occurrence of strain softening in the sense as
defined above. These instabilities can arise when the predominant load-carrying mechanism of
the material is due to frictional effects such as in sands, rock joints and in pre-cracked concrete.
At a phenomenological level such material behaviour typically results in constitutive models
which, in a multiaxial context, have a non-symmetric relation between the stress-rate tensor
and the strain-rate tensor, e.g. as in Equation (6.25), unless a special choice is made for the
equivalent strain ε̃. This lack of symmetry is sufficient to cause loss of material stability, even
if the slope of the axial stress–strain curve is still rising (Rudnicki and Rice 1974).

In the above discussion, the terminology ‘homogenised’ has been used. Here, we refer to
the fact that initial flaws and boundary conditions inevitably induce an inhomogeneous stress
state in a specimen. During progressive failure of a specimen these flaws and local stress
concentrations cause strongly inhomogeneous deformations of the specimen. The procedure
that is normally utilised to derive stress–strain relations, i.e. dividing the force by the virgin
load-carrying area and dividing the displacement of the end of the specimen by the original
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180 Non-linear Finite Element Analysis of Solids and Structures

length so as to obtain stress and strain, respectively, then no longer reflects what happens at a
lower length scale and loses physical significance.

Limiting the discussion to incrementally linear stress–strain relations, that is the relation
between the stress rate σ̇ and the strain rate ε̇ can be written as

σ̇ = D : ε̇ (6.28)

with D the material tangential stiffness tensor, inequality (6.27) can be reformulated as

ε̇ : D : ε̇ > 0 (6.29)

The limiting case that the inequality (6.29) is replaced by an equality, marks the onset of unstable
material behaviour. Mathematically, this is expressed by the loss of positive definiteness of the
material tangential stiffness tensor D:

det(Dsym) = 0 (6.30)

where the superscript sym denotes a symmetrised operator. Material instability can lead to
structural instability. For a structure that occupies a volume V , Hill’s definition (Hill 1958)
guarantees structural stability if ∫

V

ε̇ : σ̇ dV > 0 (6.31)

for all kinematically admissible ε̇. Obviously, violation of inequality (6.27), i.e. loss of material
stability, can lead to violation of Equation (6.31), thus opening the possibility of structural
instability. Accordingly, the existence of material instabilities, such as strain softening, can
lead to structural instability, even in the absence of geometrically destabilising terms. Of
course, there exist many cases where material instabilities and geometrical terms interact and
are both (partly) responsible for structural instability.

Yet, the occurrence of unstable material behaviour does not explain the frequently observed
discretisation-sensitive behaviour of computations of such solids. Indeed, a crucial conse-
quence of the loss of positive definiteness of the material tangential stiffness tensor D is that it
can result in loss of ellipticity of the governing set of rate equations. Considering quasi-static
loading conditions, the governing differential equations – equilibrium equations, kinematic
equations and constitutive equations – normally have an elliptic character. Mathematically,
this implies that discontinuities in the solution are not possible. Now suppose that within the
given context of quasi-static loading conditions, a (possibly curved) plane emerges, say Sd

(Figure 6.3), across which the solution can be discontinuous. The difference in the traction rate
ṫd across this plane reads:

[[ṫd]] = nSd
· [[σ̇]] (6.32)

with nSd
the normal vector to the discontinuity Sd , or using the tangential stress–strain rela-

tion (6.28)

[[ṫd]] = nSd
· D : [[ε̇]] (6.33)

where the assumption of a linear comparison solid (Hill 1958) has been introduced, i.e. D is
assumed to have the same value at both sides of the discontinuity Sd . A displacement field u
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Damage Mechanics 181

n
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+
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Figure 6.3 Body composed of continuous displacement fields at each side of the discontinuity Sd

that is crossed by a single discontinuity can be represented as:

u = ū + HSd
ũ (6.34)

with the Heaviside function HSd
separating the continuous displacement fields ū and ũ. The

strain field is subsequently obtained by straightforward differentiation:

ε = ∇symū + HSd
∇symũ + δSd

(ũ ⊗ nSd
)sym (6.35)

where δSd
is the Dirac function placed at the discontinuity Sd . For a stationary discontinuity,

so that there is no variation of the Heaviside function HSd
and the Dirac function δSd

, the strain
rate field follows by differentiation with respect to time:

ε̇ = ∇sym ˙̄u + HSd
∇sym ˙̃u + δSd

( ˙̃u ⊗ nSd
)sym (6.36)

The difference in strain rate fields at Sd is proportional to the unbounded term at the interface:

[[ε̇]] = ζ( ˙̃u ⊗ nSd
)sym (6.37)

also known as the Maxwell compatibility condition and ζ a non-zero scalar. Substitution into
Equation (6.33) gives:

[[ṫd]] = ζ(nSd
· D · nSd

) · ˙̃u (6.38)

where the minor symmetry of the tangential stiffness tensor has been exploited. A non-trivial
solution can exist if and only if the determinant of the acoustic tensor A = nSd

· D · nSd
van-

ishes:

det(nSd
· D · nSd

) = 0 (6.39)

Thus, if condition (6.39) is met, discontinuous solutions can emerge and loss of ellipticity of
the governing differential equations occurs. It is noted that condition (6.39) is coincident with
Hill’s condition for the propagation of plane acceleration waves in solids (Hill 1962). Analyses
that aim at determining the load level at which the determinant of the acoustic tensor vanishes
are also denoted as discontinuous bifurcation analyses, cf. Vardoulakis and Sulem (1995).

Ellipticity is a necessary condition for the rate boundary value problem, in the sense that a
finite number of linearly independent solutions are admitted, continuously depending on the
data and not involving discontinuities, cf. Benallal et al. (1988). Loss of ellipticity therefore
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182 Non-linear Finite Element Analysis of Solids and Structures

allows an infinite number of solutions to occur, including those which involve discontinuities.
A numerical approximation method will try to capture the discontinuity as good as possible
and resolve it in the smallest possible volume which the discretisation allows. Accordingly,
mesh refinement will result in a smaller and smaller localisation volume, but obviously, a
discontinuity cannot be represented exactly unless special approximation methods are used
that can capture a discontinuity rigorously.

For small displacement gradients loss of material stability as expressed by Equation (6.30) is
a necessary condition for loss of ellipticity. We show this by substituting the strain field (6.37)
into the condition for loss of material stability (6.29):

(ũ ⊗ nSd
) : D : (ũ ⊗ nSd

) > 0 (6.40)

The left-hand side of this inequality vanishes for arbitrary ũ if and only if

det(nSd
· Dsym · nSd

) = 0 (6.41)

Because the real-valued eigenspectrum of the acoustic tensor A is bounded by the minimum and
maximum eigenvalues of nSd

· Dsym · nSd
, Equation (6.41) is always met prior to satisfaction

of Equation (6.39). Since Equation (6.41) can only be satisfied if material stability is lost,
Equation (6.30), it follows that loss of ellipticity can occur only after loss of material stability.
However, when geometrically non-linear terms are included, ellipticity can be lost prior to
loss of material stability. This, for instance, can occur at low, but positive values of the plastic
hardening modulus, in situations where geometrically non-linear terms have a destabilising
effect.

6.4.2 Mesh Sensitivity

Mesh sensitivity in a standard continuum equipped with a strain-softening stress–strain rela-
tion is conveniently demonstrated by the example of a simple bar loaded in uniaxial tension
(Figure 6.4). Let the bar be divided into m elements. Prior to reaching the tensile strength ft a
linear relation is assumed between the normal stress σ and the normal strain ε:

σ = Eε

After reaching the peak strength a descending slope is defined in this diagram through an affine
transformation from the measured load–displacement curve. The result is given in Figure 6.5(a),
where κu marks the point where the load-carrying capacity is exhausted. In the post-peak regime

L

m elements σ

Figure 6.4 Bar of length L subjected to an axial tensile stress σ
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Damage Mechanics 183

σ

εκ i κ u

E

(a) (b)

ft

σ

ft

εκ i κ u

m = 1m = n

Figure 6.5 (a) Elastic-linear damaging material behaviour. (b) Response of an imperfect bar in terms
of a stress-average strain curve

the constitutive model thus reads:

σ = ft + h(ε − κi) (6.42)

where, evidently, in case of degrading materials, h < 0 and may be termed a softening modulus.
For linear strain softening we have

h = − ft

κu − κi

(6.43)

We next suppose that one element has a tensile strength that is marginally below that of the
other m − 1 elements. Upon reaching the tensile strength of this element, failure will occur.
In the other, neighbouring elements the tensile strength is not exceeded and they will unload
elastically. Beyond the peak strength the average strain in the bar is thus given by:

ε̄ = σ

E
+ E − h

Eh

σ − ft

m
(6.44)

Substitution of Equation (6.43) for the softening modulus h and introduction of n as the ratio
between the strain κu at which the residual load-carrying capacity is exhausted and the threshold
damage level κi, n = κu/κi and h = −E/(n − 1), gives

ε̄ = σ

E
+ n(ft − σ)

mE
(6.45)

This result has been plotted in Figure 6.5(b) for different values of m for given n. The computed
post-peak curves do not seem to converge to a unique curve. In fact, they do, because the
governing equations predict the failure mechanism to be a line crack with zero thickness. The
numerical solution simply tries to capture this line crack, which results in localisation in one
element, irrespective of the width of the element. The impact on the stress-average strain curve
is obvious: for an infinite number of elements (m → ∞) the post-peak curve doubles back on
the original loading curve. A major problem is now that, since in continuum mechanics the
constitutive model is phrased in terms of a stress–strain relation and not as a force–displacement
relation, the energy that is dissipated tends to zero upon mesh refinement, simply because the
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184 Non-linear Finite Element Analysis of Solids and Structures

Figure 6.6 Deformed SiC/C specimen beyond the peak load exhibiting a localised failure mode

volume in which the failure process occurs also becomes zero. From a physical point of view
this is unacceptable.

The above observations are by no means exclusive to the simple one-dimensional example
discussed above. A more complicated boundary value problem is the silicium carbide specimen
of Figure 6.6, which is reinforced with carbon fibres (SiC/C composite). The dimensions of
the specimen are 30 µm × 30 µm and a uniform horizontal loading is applied to the vertical
sides. The fibres are assumed to remain elastic and also the bond between the fibres and matrix
material is assumed to be perfect. A degrading mechanism is only considered for the matrix
material, for which a simple softening model has been used.

After the onset of softening a clear localisation zone develops, as is shown in Figure 6.6.
This figure shows the fine mesh which consists of 15,568 elements. The computed load–
displacement curve has been plotted in Figure 6.7, together with those for the two coarser
discretisations, with 3892 and 973 elements, respectively. The same picture arises as for the
simple one-dimensional example: a more brittle behaviour is obtained when the mesh is refined
and there seems to be convergence towards a solution with zero energy dissipation. In fact, the
solution not only becomes more brittle upon mesh refinement, but the peak load is also reduced.
Moreover, the solution process becomes very unstable for finer discretisations. This shows
through the rather irregular shape of the load–displacement curve for the finest discretisation
and by the observation that the solution could not be continued at some stage, no matter how
sophisticated the solution techniques employed were. The explanation for this phenomenon is
that, as shown in the simple bar problem, a refinement of the discretisation introduces more
and more possible equilibrium states. The iterative solution process has to ‘choose’ between
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Figure 6.7 Load–displacement curves for a SiC/C specimen obtained with three different discretisations
and a softening material model

these equilibrium states and tends to pick another equilibrium state every subsequent iteration.
Ultimately, this leads to divergence of the iterative solution procedure.

As discussed, the severe mesh sensitivity is caused by the local loss of ellipticity, or, equiv-
alently, loss of hyperbolicity for dynamic loadings. Since the underlying reason is of a math-
ematical rather than of a numerical nature, the sensitivity to the discretisation occurs for any
discretisation method, including meshfree methods. This is shown in Figures 6.8 and 6.9, which
give results of calculations on a one-dimensional tensile bar for different discretisations with
the element-free Galerkin method (Belytschko et al. 1994) as a prototype meshfree method,
see also Pamin et al. (2003).

6.5 Cohesive-zone Models

An important issue when considering damage and fracture is the observation that most en-
gineering materials are not perfectly brittle in the Griffith sense, but display some ductility
after reaching the strength limit. In fact, there exists a zone in front of the crack tip, in which
small-scale yielding, micro-cracking and void initiation, growth and coalescence take place. If
this fracture process zone is sufficiently small compared with the structural dimensions, linear-
elastic fracture mechanics concepts can apply. However, if this is not the case, the cohesive
forces that exist in this fracture process zone must be taken into account. The most powerful
and natural way is to use cohesive-zone models, which were introduced by Barenblatt (1962)
and Dugdale (1960) for elastic-plastic fracture in ductile metals, and for quasi-brittle materials
by Hillerborg et al. (1976) in the so-called fictitious crack model.
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186 Non-linear Finite Element Analysis of Solids and Structures
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Figure 6.8 Load–displacement curves for a one-dimensional tensile bar composed of a strain-softening
elastoplastic material. An element-free Galerkin method has been used with different numbers of nodes
along the bar. For each discretisation, the domain of influence equals four times the nodal spacing (Pamin
et al. 2003)

In cohesive-zone models, the degrading mechanisms in front of the actual crack tip are
lumped into a discrete line or plane (Figure 6.10) and a relation between the tractions at
the discontinuity td and the relative displacements v across this line or plane represents the
degrading mechanisms in the fracture process zone:

td = td(v, κ) (6.46)

ε

5 x 38 xx 010101
3−4−4−

εε

xxx

(a) (b) (c)

Figure 6.9 Strain evolution in a one-dimensional tensile bar composed of a strain-softening elastoplastic
material. Results are shown for discretisations with 21 nodes (a), 41 nodes (b) and 81 nodes (c). Note
that the vertical scale is different for the three discretisations (Pamin et al. 2003).
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Damage Mechanics 187

t

v

debonding perfect bondtraction free

Figure 6.10 Schematic representation of a cohesive zone

with κ an internal variable, which memorises the largest value of a (material-dependent) func-
tion of the relative displacements.

Figure 6.11 shows some commonly used decohesion relations, a simple linear relation (a),
one for ductile fracture (b) (Tvergaard and Hutchinson 1992) and one for quasi-brittle fracture
(c) (Reinhardt and Cornelissen 1984). For ductile fracture, the most important parameters of
the cohesive-zone model appear to be the tensile strength ft and the work of separation or
fracture energy Gc (Hutchinson and Evans 2000), which is the work needed to create a unit
area of fully developed crack. It has the dimensions J/m2 and is formally defined as:

Gc =
∫ ∞

vn=0
tndvn (6.47)

with tn and vn the normal traction and the normal relative displacement across the fracture
process zone, respectively. For more brittle decohesion relations as shown for instance in
Figure 6.11(c), i.e. when the decohesion law stems from micro-cracking as in concrete or
ceramics, the shape of the stress–separation relation also plays a role and can be more important
than the value of the tensile strength ft (Chandra et al. 2002). In either case, the fracture energy
introduces an internal length scale into the model, since the quotient Gc/E has the dimension
of length.

Gc Gc Gc

uuu

σσσ

ffft tt

(a) (b) (c)

Figure 6.11 Stress–displacement curves for linear decohesion (a), for a ductile solid (b), and for a
quasi-brittle solid (c)
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188 Non-linear Finite Element Analysis of Solids and Structures

Most fracture problems are driven by crack opening (mode I). However, in a number of
cases, the sliding (mode II) components can become substantial. A possible way to include the
sliding components is to redefine Equation (6.47), cf. Tvergaard and Hutchinson (1993), as:

Gc =
∫ ∞

ṽ=0
t̃dṽ (6.48)

with t̃ = t̃(ṽ), where

ṽ =
√

v2
n + α(v2

s + v2
t ) (6.49)

and vs and vt are the sliding components, α being a mode-mixity parameter that sets the ratio
between the mode-I and the mode-II components. Alternatively, a mode-II fracture energy can
be defined:

GII
c =

∫ ∞

ṽ=0
τdṽ (6.50)

with ṽ =
√

v2
s + v2

t and τ the resolved shear stress, in addition to Gc, which then should be
interpreted strictly as a mode-I fracture energy.

Although the cohesive-zone model is essentially a discrete concept, it can be transformed
into a continuum formulation by distributing the work of separation or fracture energy Gc over
the thickness w of the volume in which the crack localises (Bažant and Oh 1983). We obtain:

Gc =
∫ w

n=0

∫ ∞

εnn=0
σnndεnn(n)dn (6.51)

with n the coordinate normal to the localisation plane, and σnn and εnn the normal stress and
normal strain in the n-direction, respectively. For linear elements the strains are constant over
the width of an element w, so that Gc = wgc, with gc the energy dissipated per unit volume of
fully damaged material:

gc =
∫ ∞

εnn=0
σnndεnn (6.52)

The length scale w which is now introduced into the model is equal or at least proportional to
the element size and therefore has a numerical nature.

Assuming a uniform strain distribution over the width of the crack band, carrying out the
integration of Equation (6.52) for a linear softening diagram [Figure 6.11(a)] and using the
observation that for the bar of Figure 6.3, w = L/m, with L the length of the bar and m the
number of elements, the softening modulus specialises as:

h = Lf 2
t

2mGc − Lf 2
t /E

(6.53)

Evidently, this pseudo-softening modulus is proportional to the structural size and inversely
proportional to the number of elements. A model in which the softening modulus was made a
function of the element size was first proposed by Pietruszczak and Mróz (1981), but without
resorting to an energy concept.
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Damage Mechanics 189

We shall now carry out an analysis for the tension bar of Figure 6.3 and give one ele-
ment a tensile strength marginally below that of the other elements. As with the stress-based
fracture model, the average strain in the post-peak regime is given by Equation (6.44). How-
ever, substitution of the fracture-energy-based expression for the pseudo-softening modulus h,
Equation (6.53), now results in

ε̄ = σ

E
− 2Gc(σ − ft)

Lf 2
t

(6.54)

We observe that, in contrast to the pure stress-based fracture model, Equation (6.45), the num-
ber of elements has disappeared from the expression for the ultimate average strain. Therefore,
inclusion of the fracture energy Gc as a material parameter has made the stress–average strain
curves, or alternatively, the load–displacement curves, insensitive with respect to mesh re-
finement. But also the specimen length L has entered the expression for ε̄. In other words, the
brittleness of the structure now depends on the value of L, and a size effect has been introduced.

When we prescribe the fracture energy Gc in continuum damage models, the computed
load–displacement curves can become reasonably insensitive to the discretisation also for
more complicated structures. However, when ‘smeared cracks’ propagate at lines that are
inclined to the grid lay-out, or when quadratic or higher-order finite elements are used, the
numerically obtained crack band width normally no longer coincides with the element size.
Various formulas have been proposed to estimate the numerical length scale, depending on the
interpolation order of the polynomials, the spatial integration scheme and the expected angle
between the crack and the grid lines (Feenstra and de Borst 1995b; Oliver 1989). A typical
example for quadrilateral elements is:

w ≈ αw

√
Aelem = αw

√√√√ nξ∑
ξ=1

nη∑
η=1

det(J)wξwη (6.55)

with Aelem the area of the element, and wξ and wη the weight factors of the Gaussian integration
rule. The local, isoparametric coordinates of the integration points are given by ξ and η, and
det(J) is the Jacobian of the transformation between the local, isoparametric coordinates and
the global coordinate system. The factor αw is a modification factor which is usually taken
equal to one for quadratic elements and equal to

√
2 for linear elements. Experience shows

that this approach works reasonably well, but it is of a heuristic nature and can give inaccurate
results in particular cases.

When a smeared version of the cohesive-zone model is applied to the SiC/C specimen
that was analysed before (Figures 6.6 and 6.7), we obtain load–displacement responses that
are fairly independent of the discretisation (Figure 6.12). However, it is emphasised that the
number of alternative equilibrium states is not reduced. The numerical procedure is only more
stable because the softening branches are more ductile for the finer meshes because of the
introduction of a fracture energy. Indeed, if one included the possibility of debonding at the
fibre–matrix interface, the number of equilibrium states would increase again, possibly to an
extent that divergence would result again.
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Figure 6.12 Load–displacement curves for SiC/C specimen obtained with a smeared cohesive-zone
model

6.6 Element Technology: Embedded Discontinuities

Finite element models with embedded discontinuities provide an elegant way to implement
cohesive-zone models in a continuum setting and are probably the most powerful way to
analyse cracks, rock faults or shear bands at a macroscopic level. Following the pioneering
work of Ortiz et al. (1987) and Belytschko et al. (1988), who assumed a discontinuity in the
displacement gradients, but kept the displacements continuous, many formulations have been
published. Starting with the work of Dvorkin et al. (1990), Klisinski et al. (1991) and Simo et al.
(1993) discontinuities in the displacements have also been considered; this has been named
the ‘strong’ discontinuity approach, as opposed to the ‘weak’ discontinuity approach, in which
discontinuous displacement gradients are considered. To outline the general framework of
embedded discontinuity models, we shall use the kinematics of a strong discontinuity, noting
that similar formulations are obtained when adopting the kinematics of a weak discontinuity.

For the derivation of the finite element equations we conventionally take the balance of
momentum as a starting point (neglecting body forces for simplicity):

∇ · σ = 0

Multiplication by a variational field δū, integrating over the domain V of the body, application
of the divergence theorem and use of the appropriate boundary conditions leads to the standard
weak formulation: ∫

V

∇δū : σdV =
∫

S

δū · tdS (6.56)
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Damage Mechanics 191

which is complemented by the weak forms of the kinematic and the constitutive equations:∫
V

δσ : (∇ū − ε)dV = 0 (6.57)

and ∫
V

δε : (σ − σε)dV = 0 (6.58)

with δσ, δε variational fields, ū the continuous displacement field and σε the stress that is
derived from the constitutive relation. Equations (6.56)–(6.58) are the stationarity conditions
of the Hu–Washizu variational principle.

We now decompose the strain field into a part ε̄ that is derived from ū and an additional
strain field ε̃:

ε = ∇ū︸︷︷︸
ε̄

+ε̃ (6.59)

and explicitly allow for the emergence of a discontinuity plane placed at Sd with relative dis-
placements v and interface tractions td . Substitution into Equations (6.56)–(6.58) then results
in: ∫

V

∇δū : σεdV =
∫

S

δū · tdS (6.60)

∫
V/Sd

δσ : ε̃dV +
∫

Sd

δtv · ṽdS = 0 (6.61)

and ∫
V/Sd

δε̃ : (σ − σε)dV +
∫

Sd

δṽ · (tv − td)dS = 0 (6.62)

with δtv the variations of tv, δv those of v and tv the ‘static’ interface tractions.
In the spirit of the enhanced assumed strain approach (Simo and Rifai 1990), we require

that the variations of the stress field and that of the enhanced strain field are orthogonal in an
L2-sense: ∫

V/Sd

δσ : δε̃dV +
∫

Sd

δtv · δṽdS = 0 (6.63)

which implies Equation (6.61) for δε̃ = ε̃ and δṽ = ṽ and reduces Equation (6.62) to:∫
V/Sd

δε̃ : σεdV +
∫

Sd

δṽ · tddS = 0 (6.64)

if, in addition, δσ = σ and δtv = tv. Equation (6.64) can be integrated exactly under the as-
sumptions of a constant strain field and a straight discontinuity Sd – these conditions are
automatically satisfied for constant strain elements. Taking into account that in order to pass
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192 Non-linear Finite Element Analysis of Solids and Structures

the patch test, Equation (6.64) must hold for arbitrary constant stress fields and that the or-
thogonality condition (6.63) must hold for each element:

Velemδε̃ + Ad,elem(nSd
⊗ δṽ) = 0 (6.65)

with Velem the element volume and Ad,elem the area of Sd in the element. Backsubstituting
identity (6.65) into Equation (6.64) then gives:

−
∫

V

Ad,elem

Velem
(nSd

⊗ δṽ) : σεdV +
∫

Sd

δṽ · tddS = 0 (6.66)

We interpolate the continuous part of the displacements in a standard Galerkin manner,

ū = Ha and δū = Hδa (6.67)

Substituting Equation (6.67) into Equations (6.60) and (6.66), computing the gradients of the
variations and the variations of the relative displacements, and requiring that the results hold
for all admissible variations, yields the following set of coupled algebraic equations:∫

V

BTσεdV =
∫

S

HTtdS (6.68)

and ∫
V

GTσεdV +
∫

Sd

tddS = 0 (6.69)

with

G = −Ad,elem

Velem




nx 0 0

0 ny 0

0 0 nz

ny nx 0

0 nz ny

nz 0 nx




(6.70)

with nx, ny, nz the x, y, z-components of nSd
. The derivation is completed by relating the

stresses to the strains

σε = Deε (6.71)

with De the linear-elastic stiffness matrix, and invoking the discrete relation (6.46) over the
interface Sd . In the spirit of a Bubnov–Galerkin approach we interpolate the enhanced strain
field by G:

ε̃ = Gα (6.72)

with α containing discrete parameters at element level. Combining Equations (6.59), (6.71),
(6.72) and the kinematic relation then leads to:

σε = De(Ba + Gα) (6.73)
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Damage Mechanics 193

In order to solve the set of non-linear Equations (6.68) and (6.69) by means of a Newton–
Raphson method, linearisation is required. Substituting the linearised form of the constitutive
equations (6.46),

dtd = Dddv = Dddα (6.74)

with

Dd = ∂td
∂v

+ ∂td
∂κ

∂κ

∂v
(6.75)

and the linearised form of Equation (6.73) into the linearised forms of the discrete equations
(6.68) and (6.69) yields: [

Kaa Kaα

Kαa Kαα

](
da

dα

)
=
(

fa
ext − fa

int

−fα
int

)
(6.76)

with fa
ext given by the right-hand side of Equation (6.68) and fa

int, fα
int given by the left-hand

sides of Equations (6.68) and (6.69). The stiffness matrices are given by:

Kaa =
∫

V

BTDeBdV (6.77)

Kaα =
∫

V

BTDeGdV (6.78)

Kαa =
∫

V

GTDeBdV (6.79)

Kαα =
∫

V

GTDeGdV +
∫

Sd

DddS (6.80)

The degrees of freedom that correspond to the enhanced strain field can be condensed at
element level and, after solution of the global system of equations, be retrieved at element
level by an expansion technique, see Box 6.2 for how this method is implemented within the
framework of an incremental-iterative procedure. In this manner, the size of the global system
is unchanged, and the method can be viewed as a technique that locally improves the element
behaviour.

In the above approach, the orthogonality condition in combination with the requirement of
traction continuity dictates the form of the enhanced strains ε̃ and the variations thereof, δε̃.
Indeed, considering the orthogonality requirement for a single element and piecewise constant
stress fields, we obtain from Equation (6.63) for an element:∫

Velem

ε̃dV = 0 (6.81)

which implies that the enhanced strains make no overall contribution to the element deforma-
tions. This requirement makes elements that are enhanced with strains that are obtained from
static considerations only, kinematically identical to standard finite elements. Thus, they still
suffer relatively strongly from a sensitivity to the direction of the mesh lines. This conclusion
holds when the enrichment is done by incorporating weak discontinuities (Sluys and Berends
1998) as well as for strong discontinuities (Wells and Sluys 2001b).
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194 Non-linear Finite Element Analysis of Solids and Structures

Box 6.2 Condensation and expansion of internal degrees of freedom within an
incremental-iterative procedure

A reduction of the global system can be achieved when the internal degrees of freedom
are eliminated at element level by a static condensation procedure (Bathe 1982; Hughes
1987). When applying such a process within an incremental-iterative procedure, care must
be exercised with respect to the time that the compression of the element stiffness matrix
and the expansion of the internal degrees of freedom take place. We will demonstrate this
by considering the local compression/expansion process of a static condensation procedure
in greater detail. To this end, we first express the internal degrees of freedom in terms of
the displacements:

dα = K−1
αα (fα

int − Kαada)

Inserting this identity into Equation (6.76) yields:

(Kaa − KaαK−1
αα Kαa)da = fa

ext − fa
int − KaαK−1

αα fα
int

The stiffness matrix and the right-hand side vector at global level are derived from the second
equation of this box. After solving for the corrections to the displacement increments, da,
the corrections to the increments of the internal degrees of freedom, dα are computed
at element level from the first equation of this box. When using a full Newton–Raphson
method, it is essential that the expansion for the internal degrees of freedom is done with the
same matrices Kaα, Kαa and Kαα as have been used for the compression of these degrees of
freedom. The danger of using a wrong right-hand side becomes apparent when considering
that the force vectors fa

int and fα
int are usually set up at the end of an iteration. The force

vector fa
ext − fa

int − KaαK−1
αα fα

int that is to be used in the next iteration must be computed
with the tangential submatrix Kαα which is, however, not available until the beginning of
the next iteration. Consequently, the right-hand side vector for the new iteration cannot
be set up at the end of the ‘old’ iteration, but can only be calculated after the tangential
stiffness matrices have been set up at the beginning of the new iteration. If this force vector
is computed with the ‘old’ matrix Kαα, the quadratic convergence of Newton’s method will
be lost.

To mitigate this direction sensitivity elements must be enhanced kinematically in the sense
that the embedment of a displacement discontinuity results in a relative displacement between
nodes on both sides of the discontinuity. As a consequence, the gradient of this enhanced field
will be a function of the position of the discontinuity within an element. Generally, a field
that contains a single displacement discontinuity, but is continuous otherwise, is given, see
Equation (6.34), by:

u = ū + HSd
ũ

For finite element formulations with embedded displacement discontinuities the effect of
the discontinuity is required to vanish at the element boundaries, which can be ensured by
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Damage Mechanics 195

modifying Equation (6.34) as follows:

u = ū + (HSd
− φ)ũ (6.82)

with ū defined such that u = ū |x∈Selem and φ a smooth function which vanishes at S−
elem and

equals unity at S+
elem. Assuming small strains, it follows that:

ε = Lū + (HSd
− φ)Lũ + (ũ ⊗ (δSd

nSd
− ∇φ))sym (6.83)

where δSd
is the Dirac function placed at the discontinuity Sd . Normally, the assumption is

made in embedded formulations that ũ is elementwise constant, which is rigorously satisfied
for constant strain triangles. Then, Equation (6.83) reduces to:

ε = Lū + (ũ ⊗ (δSd
nSd

− ∇φ))sym (6.84)

In the interior of an element this formulation captures the kinematics of a strong discontinuity
exactly. An element which is purely based on kinematics can now be constructed by replacing
G as defined by Equation (6.70) (Lotfi and Shing 1995):

G∗ = −




∂φ
∂x

0 0

0 ∂φ
∂y

0

0 0 ∂φ
∂z

∂φ
∂y

∂φ
∂x

0

0 ∂φ
∂z

∂φ
∂y

∂φ
∂z

0 ∂φ
∂x




(6.85)

The unbounded term in Equation (6.84) does not enter Equation (6.85), cf. Equation (6.70).
In both cases the unbounded term, which acts at Sd only, comes back in the surface integral of
Equation (6.80). It is finally noted that this kinematically optimal formulation is defect in the
sense that traction continuity is not imposed rigorously.

An optimal element performance can be obtained when traction continuity is imposed
following the orthogonality requirement (6.63), but when the kinematics are derived as in
Equation (6.84), so that (Armero and Garikipati 1996; Oliver 1996):

σε = De(Ba + G∗α) (6.86)

A non-symmetric formulation results, formally still given by the set (6.76), but with the sub-
matrices defined as:

Kaa =
∫

V

BTDeBdV (6.87)

Kaα =
∫

V

BTDeG∗dV (6.88)

Kαa =
∫

V

GTDeBdV (6.89)

Kαα =
∫

V

GTDeG∗dV +
∫

Sd

DddS (6.90)
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196 Non-linear Finite Element Analysis of Solids and Structures
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Figure 6.13 Geometry of single-edge notched beam

Numerical experience has shown that this approach is effective in mitigating mesh alignment
sensitivity in localisation problems, in spite of the variational inconsistency that is obtained,
since, in the spirit of a Petrov–Galerkin approach, the test functions and the trial functions are
taken from different spaces (Wells and Sluys 2001b). The relative insensitivity of this stati-
cally and kinematically optimal formulation with respect to the mesh orientation is shown in
Figure 6.14 for crack propagation in the Single-Edge Notched Beam of Figure 6.13 (Wells
and Sluys 2001b). Figure 6.15 shows another three-dimensional calculation – a biaxial test
loaded in compression using a strain-softening plasticity model with the aim to simulate shear
bands (Wells and Sluys 2001a). The results suggest that the individual discontinuities are cor-
rectly oriented, but that the pattern of discontinuities still tends to follow mesh lines, although
considerably less than without embedding a discontinuity, or when a statically optimal embed-
ded discontinuity concept is used, see also Gasser and Holzapfel (2003) and Jirasek (2000) for
further discussions on embedded discontinuity models.

It is noted that even in the statically and kinematically optimal formulation, a true discontinu-
ity which extends across element boundaries is not obtained. This is because the kinematics of
Equation (6.82) are diffused over the element when the governing equations are cast in a weak
format. The fact that strain enrichment is discontinuous across element boundaries, makes it
possible to resolve the enhanced strain modes at element level by condensation. Restricting the
development for simplicity to a case in which ũ = γm, with m giving the shape of the inelastic

(a) (b)

Figure 6.14 Three-dimensional simulation with a statically and kinematically optimal embedded dis-
continuity model: crack pattern (a) and contours of interface internal variable (b) of the single-edge
notched beam at the peak load (Wells and Sluys 2001b)
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Damage Mechanics 197

y
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x

Figure 6.15 Three-dimensional simulation with a statically and kinematically optimal embedded dis-
continuity model: biaxial test under compressive loading (Wells and Sluys 2001a)

deformation and γ its magnitude – single-surface plasticity models treated in Chapter 7 for
instance satisfy this assumption – the second term of the right-hand side of Equation (6.72)
can be elaborated as: ε̃ = γGm. Using this identity, we can resolve the enhanced strain modes
by condensation at the element level (Borja 2000):

Kcon =
∫

V

BTDeBdV−∫
V

BTDeG∗mdV

(∫
Sd

mTDdmdS +
∫

V

GmTDeG∗mdV

)−1 ∫
V

GmTDeBdV

(6.91)

For constant strain triangles, this expression reduces to:

Kcon = VelemBT


De − De(G∗m)(Gm)TDe

−mTDdm︸ ︷︷ ︸
h

+(Gm)TDe(G∗m)


B (6.92)

This matrix has exactly the format of a tangential stiffness that results from the use of a plasticity
model with a non-associated flow rule. For instance, the term −mTDm can be identified
with the conventional softening modulus h. Consequently, under certain assumptions, finite
element models with embedded discontinuities can be made identical with a standard finite
element model that incorporates softening with a discretisation-dependent softening modulus
(Pietruszczak and Mróz 1981).
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198 Non-linear Finite Element Analysis of Solids and Structures

6.7 Complex Damage Models

After the discussion on the consequences of damage, and in particular strain softening, for
the spatial discretisation, we return to the description of damage models, in particular more
sophisticated models that describe anisotropic damage, including concrete fracture, and higher-
order continua, which can rigorously avoid the ill-posedness caused by the introduction of strain
softening.

6.7.1 Anisotropic Damage Models

A simple way to incorporate directional dependence of damage evolution is to degrade the
Young’s modulus E in a preferential direction. When, for plane-stress conditions, distinction
is made between the global x, y-coordinate system and a local n, s-coordinate system, a simple
loading function in the local coordinate system would be

f (εnn, κ) = εnn − κ (6.93)

with εnn the normal strain in the local n, s-coordinate system, subject to the standard loading–
unloading conditions. The secant stiffness relation (6.10) now becomes (in matrix-vector for-
mat):

σns = Ds
nsεns (6.94)

with σns = [σnn, σss, σns]T, εns = [εnn, εss, γns]T, and Ds
ns given by

Ds
ns =




(1−ω)E
1−(1−ω)ν2

(1−ω)νE
1−(1−ω)ν2 0

(1−ω)νE
1−(1−ω)ν2

E
1−(1−ω)ν2 0

0 0 E
2(1+ν)


 (6.95)

with ω = ω(κ). Using standard transformation rules the components of εns and σns, can be
related to those in the global x, y-coordinate system, Equations (1.102) and (1.105):

εns = Tε εxy (6.96)

and

σns = Tσ σxy (6.97)

with Tε and Tσ the standard transformation matrices for the strains and stresses, respectively.
Combining Equation (6.94) with Equations (6.96) and (6.97) leads to:

σxy = TT
σDs

nsTεεxy (6.98)

Similar to isotropic damage models, a tangential stiffness matrix can be derived by differ-
entiating the secant stress–strain relation, here Equation (6.98). This results in:

σ̇xy = TT
σ

(
Ds

ns − �Dns
)
Tε ε̇xy (6.99)
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Damage Mechanics 199

with Ds
ns given by Equation (6.95) and

�Dns =


 d11 0 0

νd11 0 0

0 0 0


 (6.100)

with

d11 = ∂ω

∂κ

∂κ

∂εnn

E(εnn + νεss)

(1 − (1 − ω)ν2)2 (6.101)

and ∂κ/∂εnn ≡ 1 upon loading and zero otherwise. It is noted that, similar to isotropic damage
models, the tangential stiffness matrix normally becomes non-symmetric.

More generally, anisotropic damage can be characterised by a fourth-order damage tensor.
This can, for instance, be achieved by broadening the effective stress concept, Equation (6.13)
to (Lemaitre and Chaboche 1990):

σ = (I − �) : σ̂ (6.102)

or using Equation (6.14),

σ = (I − �) : De : ε (6.103)

with � a fourth-order damage tensor.

6.7.2 Microplane Models

The framework of anisotropic damage models allows for the incorporation of models that are
based on the microplane concept. The microplane concept was originally conceived for metals,
where well-defined planes exist in the crystal lattice, along which slip occurs preferentially.
This theory, originated by Batdorf and Budiansky (1949), was originally named the slip theory
and is now commonly referred to as crystal plasticity (Miehe and Schotte 2004). Later, the
concept of preferential slip planes was adapted to damage and fracture in quasi-brittle materials
such as concrete and rock and was renamed the microplane model (Bažant and Gambarova
1984) or multilaminate model (Zienkiewicz and Pande 1977). Obviously, the physical basis is
now less obvious in the sense that preferential fracture planes cannot be distinguished, but by
defining a sufficiently large number of potential fracture planes the damage evolution can be
described accurately.

Two major classes of microplane models can be distinguished, namely those based on the
kinematic constraint and those based on a static constraint. Herein, we shall only consider a
microplane model based on the so-called kinematic constraint, which implies that the normal
and tangential strains on a microplane that is labelled α, can be derived by a simple projection
of the global strain εxy on a microplane with the local n, s-coordinate system, similar to
Equation (6.96). In the spirit of Equation (6.10), a secant relation can be set up between the
stresses and the strains on each microplane:

σα
ns = Dα

nsεns (6.104)
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200 Non-linear Finite Element Analysis of Solids and Structures

with Dα
ns given by

Dα
ns =


 (1 − ωα

N)EN 0 0

0 0 0

0 0 (1 − ωα
T)ET


 (6.105)

where the initial stiffness moduli EN and ET are functions of the Young’s modulus, the Pois-
son’s ratio and a weight parameter (Bažant and Prat 1988). The damage variables ωα

N and
ωα

T for the normal stiffness and the shear stiffness are functions of the internal variables κα
N

and κα
T in a standard fashion: ωα

N = ωα
N(κα

N) and ωα
T = ωα

T(κα
T). Evidently, two damage loading

functions are required for each microplane α:

fα
N = εα

nn − κα
N

fα
T = γα

ns − κα
T

(6.106)

each subject to the standard loading–unloading conditions. Finally, the stresses in the global
x, y-coordinate system are recovered by summing over all the microplanes and by transforming
them in a standard fashion according to Equation (6.97):

σxy =
n∑

α=1

wα(Tα
σ)TDα

nsT
α
ε εxy (6.107)

with n the chosen number of microplanes and wα weight factors that stem from numerical
integration rules for a sphere.

Attention is drawn to the fact that the second row of Dα
ns consists of zeros. This is because

in the microplane concept only the normal stress and the shear stress are resolved on each
microplane. The normal stress parallel to this plane is irrelevant. We also note that this is a
simple version of the microplane model, namely one in which no splitting in volumetric and
deviatoric components is considered. More sophisticated microplane models, e.g. by Bažant
and Prat (1988), which incorporate such a split can be captured by the same formalism.

The tangential stiffness matrix of microplane models can be cast in the same format as
Equation (6.99). Upon linearisation of Equation (6.107) one obtains:

σ̇xy =
n∑

α=1

wα(Tα
σ)T(Dα

ns − �Dα
ns)T

α
ε ε̇xy (6.108)

with Dα
ns given by Equation (6.105) and

�Dα
ns =


 dα

11 0 0

0 0 0

0 0 dα
33


 (6.109)

with

d11 = ∂ωα
N

∂κα
N

∂κα
N

∂εα
nn

ENεα
nn (6.110)
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Damage Mechanics 201

where ∂κα
N/∂εα

nn ≡ 1 if fα
N = 0 and zero otherwise, and

d33 = ∂ωα
T

∂κα
T

∂κα
T

∂γα
ns

ETγα
ns (6.111)

where ∂κα
T/∂γα

ns ≡ 1 if fα
T = 0 and zero otherwise (Kuhl and Ramm 1998).

6.8 Crack Models for Concrete and Other Quasi-brittle Materials

Two main approaches exist for modelling cracking in concrete, mortar, masonry and rocks,
namely discrete crack models (Ingraffea and Saouma 1985; Ngo and Scordelis 1967) and
smeared crack models (Rashid 1968).

In the oldest version of the discrete crack model fracture is assumed to occur as soon
as the nodal force that is normal to the element boundaries exceeds the maximum tensile
force that can be sustained. New degrees of freedom at that node location are created and a
geometrical discontinuity is assumed to occur between the ‘old’ node and the newly created
node. Two obvious drawbacks of the method are the continuous change of the topology of the
discretisation and the restriction of the crack propagation to follow the mesh lines. Modern,
advanced discretisation methods can overcome these limitations.

The counterpart of the discrete crack concept is the smeared crack concept, in which a
cracked solid is imagined to be a continuum where the notions of stress and strain continue to
apply. The behaviour of cracked concrete is then described in terms of stress–strain relations
and, upon cracking, it is sufficient to replace the initial isotropic stress–strain relation by an
orthotropic stress–strain relation. As a consequence, the topology of the original finite element
mesh remains preserved. This is computationally efficient and it is for this reason that the
method has come into widespread use and replaced the early discrete crack models in large-
scale computations, especially of reinforced concrete structures.

6.8.1 Elasticity-based Smeared Crack Models

In a smeared crack approach, the nucleation of one or more cracks in the volume that is attributed
to an integration point is translated into a deterioration of the current stiffness and strength at
that integration point. Generally, when the combination of stresses satisfies a specified criterion,
e.g. the major principal stress reaching the tensile strength ft , a crack is initiated. This implies
that at the integration point where the stress, the strain and the internal variables are monitored,
the isotropic stress–strain relation is replaced by an orthotropic elasticity-type relation with
the n, s-axes being axes of orthotropy. In early studies (Rashid 1968), the orthotropic relation
was defined by the following secant stiffness matrix:

Ds
ns =


 0 0 0

0 E 0

0 0 0


 (6.112)
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202 Non-linear Finite Element Analysis of Solids and Structures

If we introduce φ as the angle from the x-axis to the s-axis, we can write Equation (6.98) more
explicitly as:

σxy = TT
σ (φ)Ds

nsTε(φ)εxy (6.113)

The approach with φ fixed at crack initiation is known as the fixed smeared crack model.
Referring to this angle as φ0, we have:

σxy = TT
σ (φ0)Ds

nsTε(φ0)εxy (6.114)

Because of ill-conditioning, use of Equation (6.112) can induce convergence difficulties.
Also, physically unrealistic and distorted crack patterns may be obtained (Suidan and Schno-
brich 1973). For this reason a reduced shear modulus βG, 0 ≤ β ≤ 1 was introduced into the
secant stiffness matrix:

Ds
ns =


 0 0 0

0 E 0

0 0 βG


 (6.115)

The use of the shear retention factor β not only reduces numerical difficulties, but also improves
the capability of fixed smeared crack models to simulate the physics of the cracking process
more realistically, because in this way the effects of aggregate interlock, i.e. the locking effect
which bigger grains in a crack face have with respect to sliding, and friction in the crack can
be represented indirectly.

Setting the stiffness normal to the crack in Equation (6.115) equal to zero gives a sudden
stress drop from the tensile strength ft to zero upon crack initiation. This can cause numerical
problems as well. A gradual decrease of the tensile carrying capacity, given by:

Ds
ns =


µE 0 0

0 E 0

0 0 βG


 (6.116)

gives results that are physically more appealing and computations that are numerically more
stable. In Equation (6.116), µ is a factor which gradually decreases from one to zero as
a function of the normal strain εnn, µ = µ(εnn). The introduction of the reduced normal
stiffness µE was originally motivated by the argument that, in reinforced concrete, the volume
attributed to an integration point contains a number of cracks and that due to the bond between
concrete and reinforcing steel, the intact concrete between the cracks adds stiffness which
would be underestimated by a sudden drop to zero of the tensile strength. Later, servo-controlled
experiments on plain concrete have shown that concrete is not a perfectly brittle material in
the Griffith sense, but that it has some residual load-carrying capacity after reaching the tensile
strength. This experimental observation has led to another interpretation of the reduction factor
µ, namely where the descending branch was introduced to model the gradually diminishing
tensile strength of plain concrete upon further crack opening (Bažant and Oh 1983). This class
of models has been named tension softening models. In fact, such models are a smeared version
of cohesive-zone models, in which the fracture energy Gc is the governing material parameter,
and is distributed over the crack band width. In practical finite element computations the crack
band width is estimated using formulas like Equation (6.55).
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Damage Mechanics 203

It is nowadays recognised that smeared crack models are, in fact, anisotropic damage models,
cf. Equation (6.98). Along the preceding line of development, both the normal stiffness and
the shear stiffness are usually reduced, leading to the following definition:

Ds
ns =




(1−ω1)E
1−(1−ω1)ν2

(1−ω1)νE
1−(1−ω1)ν2 0

(1−ω1)νE
1−(1−ω1)ν2

E
1−(1−ω1)ν2 0

0 0 (1−ω2)E
2(1+ν)


 (6.117)

instead of Equation (6.95) (Bažant and Oh 1983; de Borst and Nauta 1985; de Borst 1987; Rots
1991). The factor 1 − ω1 represents the degradation of the normal stiffness and can be identified
with the normal reduction factor µ. The factor 1 − ω2 represents the degradation of the shear
stiffness and can be identified with the traditional shear retention factor β as introduced by
Suidan and Schnobrich (1973). Equation (6.117) differs from Equation (6.116) in the sense
that the diminishing of the Poisson effect upon cracking is now properly incorporated. It is
noted that the scalar damage variables ω1 and ω2 have no relation with the scalar damage
variables which enter Equation (6.11). For the fixed crack model the secant stiffness matrix
(6.117) takes the place of Ds in Equation (6.114). Differentiation of Equation (6.114) yields
the tangential stress–strain relation needed in an incremental-iterative procedure which utilises
the Newton–Raphson method:

σ̇xy = TT
σ (φ0)

(
Ds

ns − �Dns
)
Tε(φ0)ε̇xy (6.118)

with Ds
ns given by Equation (6.117) and

�Dns =


 d11 0 0

νd11 0 0

d31 0 0


 (6.119)

with

d11 = ∂ω1

∂κ

∂κ

∂εnn

E(εnn + νεss)

(1 − (1 − ω1)ν2)2 (6.120)

and

d31 = ∂ω2

∂κ

∂κ

∂εnn

E

2(1 + ν)
γns (6.121)

∂κ/∂εnn = 1 upon loading and zero otherwise.
The fixed crack model outlined above assumes that, upon violation of the fracture criterion,

the direction of the crack plane is fixed. During subsequent loading shear strains can arise along
the crack plane, which, in turn, will lead to a build-up of shear stresses over the crack plane.
Although the stress normal to the crack plane is reduced gradually, the residual normal stress
and the shear stress over the crack can cause principal values of the stress tensor that exceed
the tensile strength in a direction different from the normal to the existing crack plane. This
problem can be overcome by using a rotating crack model (Cope et al. 1980). The rotating crack
model is a total stress–strain relation which takes its point of departure in Equation (6.113),
similar to the total-strain, elasticity-based fixed crack model. The salient difference with the
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204 Non-linear Finite Element Analysis of Solids and Structures

fixed crack model is that in the rotating crack model the directions of the major principal stress
and the normal to the crack are aligned during the entire cracking process. Consequently, the
shear stress σns is always zero and defining a secant shear stiffness is irrelevant. There is only
one remaining damage variable, ω = ω1, and we have:

Ds
ns =




(1−ω)E
1−(1−ω)ν2

(1−ω)νE
1−(1−ω)ν2 0

(1−ω)νE
1−(1−ω)ν2

E
1−(1−ω)ν2 0

0 0 0


 (6.122)

Differentiation of Equation (6.113) yields the tangential stress–strain relation needed in an
incremental-iterative procedure which utilises the Newton–Raphson method:

σ̇xy = TT
σ (φ)(Ds

ns − �Dns)Tε(φ)ε̇xy (6.123)

with �Dns now given by:

�Dns =


 d11 0 0

νd11 0 0

0 0 −d33


 (6.124)

with

d11 = ∂ω

∂κ

∂κ

∂εnn

E(εnn + νεss)

(1 − (1 − ω)ν2)2 (6.125)

and

d33 = σnn − σss

2(εnn − εss)
(6.126)

the tangential shear stiffness which directly follows from the requirement of coaxiality between
the stress and strain tensors. It derives from the fact that φ is no longer constant, and results
from a consistent differentiation of the secant stiffness relation (Box 6.3).

The above smeared crack models are based on total strain concepts. This makes it difficult
to properly combine cracking with other non-linear phenomena such as creep, plasticity, or
thermal effects. Alternatively, the strain can be decomposed additively into a concrete part εco

and a cracking part εcr:

ε = εco + εcr (6.127)

The crack strain can be composed of several contributions:

εcr = εcr
1 + εcr

2 + ... (6.128)

with εcr
1 the strain related to a primary crack, εcr

2 the strain related to a secondary crack, and so
on. The relation between the crack strain rate and the stress rate is conveniently defined in the
coordinate system which is aligned with the crack. This necessitates a transformation between
the crack strain εcr

xy,k of crack k in the global x, y-coordinate system and a crack strain εcr
ns,k

expressed in local n, s-coordinates:

εcr
ns,k = Tε(φk)εcr

xy,k (6.129)
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Damage Mechanics 205

Box 6.3 Derivation of the tangential stiffness matrix for the rotating crack model

From the relation between the stress tensor expressed in the global x, y-coordinate system
and that expressed in the local n, s-coordinate system σxy = TT

σσns, cf. Equation (1.104),
we obtain by differentiation: σ̇xy = TT

σ σ̇ns + ṪT
σσns and linearise the secant stress–strain

relation in the local coordinate system, Equation (6.94):

σ̇ns = (Dns − �D∗
ns)ε̇ns , �D∗

ns =


d11 0 0

νd11 0 0

0 0 0




if Ds
ns is as in Equation (6.122) for the rotating crack model, and d11 is given by

Equation (6.125). Substitution of the local tangential stress–strain relation into the expres-
sion for σ̇xy, noting that the transformation matrix Tσ is a function of φ, that φ is a function
of the strains, via tan 2φ = γxy/(εxx − εyy), and using the strain transformation (1.105), we
obtain:

σ̇xy = TT
σ (Dns − �D∗

ns)Tεε̇xy +
(

∂TT
σ

∂φ
σns

)(
∂φ

∂εxy

)
ε̇xy

Noting that for the rotating crack model σT
ns = (σ1, σ2, 0), the second term on the right-hand

side can be elaborated as:

∂TT
σ

∂φ
σns = (σ1 − σ2)z ,

∂φ

∂εxy
= zT

2(ε1 − ε2)

with zT = (sin 2φ, − sin 2φ, − cos 2φ), whence

σ̇xy = TT
σ (Dns − �D∗

ns)Tεε̇xy + z
σ1 − σ2

2(ε1 − ε2)
zTε̇xy

which can be further rewritten as:

σ̇xy = TT
σ

(
Dns − �D∗

ns + σ1 − σ2

2(ε1 − ε2)
Z
)

Tεε̇xy , Z =


0 0 0

0 0 0

0 0 1




This proves Equations (6.123)–(6.126).

with Tε(φk) the transformation matrix for crack k, which has an inclination angle φk between
the normal of the crack and the x-axis. In the case of n cracks we have:

εcr
xy =

n∑
k=1

TT
ε (φk)εcr

ns,k (6.130)
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206 Non-linear Finite Element Analysis of Solids and Structures

The relation between the stress σxy in the global x, y-coordinate system and the stress σns,k in
the local coordinate system of crack k can be written as:

σns,k = Tσ(φk)σxy (6.131)

Secant stress–strain relations for the the intact concrete

σxy = Dcoεco
xy (6.132)

and for the smeared cracks

σns,k = Dcr
k εcr

ns,k (6.133)

with Dcr
k a 2×2 matrix, complete the model. Equations (6.127)–(6.133) allow the derivation

of the compliance relation for the cracked concrete:

εxy = [(Dco)−1 +
n∑

k=1

TT
ε (φk)(Dcr

k )−1Tσ(φk)]σxy (6.134)

Repeated use of the Sherman–Morrison formula results in the stiffness relation:

σxy =
(

Dco − Dco
n∑

k=1

TT
ε (φk)(Dcr

k + Tσ(φk)DcoTT
ε (φk))−1Tσ(φk)Dco

)
εxy (6.135)

In smeared crack analyses of concrete members one experiences a lot of what may be referred
to as spurious cracking. Here, we mean that there are quite a number of sampling points which
crack, but show only small crack strains. This partly causes the diffuse crack pattern of smeared
crack analyses. In fact, we often observe that only a limited number of cracks really open and
lead to failure. Yet, these sampling points with small crack strains pose a problem as a number
of them show unloading, even close and sometimes open again in a later stage of the loading
process. It is important to carefully handle closing and eventually reopening of cracks. In the
spirit of damage mechanics a secant approach is usually adopted for the unloading/reloading
branch. This assumption neglects the residual strain which we can expect upon crack closing.

6.8.2 Reinforcement and Tension Stiffening

The most common way to incorporate reinforcement and prestressing tendons in a computa-
tional model of reinforced or prestressed concrete is to adopt the assumption of perfect bond,
which states that the reinforcement undergoes the same displacements as the concrete elements
in which it is embedded. In this embedded formulation a reinforcing bar is subject to the same
state of strain as a concrete ‘fibre’ that is aligned with the bar.

In the uncracked state the assumption of perfect bond seems natural and will be an accurate
model of the reality. This can be different when cracks occur. Then, the assumption of perfect
bond is weaker. In consideration of the role of bond in setting the crack width and crack
spacing in reinforced concrete structures, it may be no longer possible to adhere to the concept
of perfect bond if one strives at obtaining accurate predictions of crack width and crack spacing
at a detailed level. For such detailed calculations the use of a discretisation is required which
models the displacement discontinuity at the interface between steel and surrounding concrete.
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Damage Mechanics 207

The concept of embedded reinforcement implies that there are two different contribu-
tions to the internal virtual work. Starting from the weak form of the equilibrium equations,
Equation (2.37), and assuming that the reinforcement only carries normal stresses, we obtain
for a composite with a concrete matrix and reinforcement:∫

V

δεTσcodV +
∫

V

δεreσredV =
∫

S

δuTtdS (6.136)

with σco and σre the stresses in the concrete and reinforcement, respectively, and

εre = Brea (6.137)

is the axial strain in the reinforcement. The angle ψ between the local ξ-axis and the axis of
the reinforcement bar enters the Bre matrix. We next specify the stress–strain relationships for
the concrete and for the reinforcement. For the concrete, a secant stress–strain relation can be
used, as in the foregoing:

σco = Dcoε (6.138)

For the steel an elasto-plastic model is commonly used, which is most conveniently formalised
in a rate format:

σ̇re = Ereε̇re (6.139)

where Ere is the tangential stiffness modulus of the reinforcement. Substitution of
Equations (6.137)–(6.139) into the decomposed form of Equation (6.136), discretising and
requiring that the result holds for any admissible kinematic field gives:[∫

V

BTDcoBdV +
∫

V

(Bre)TEreBredV

]
da =

f t+�t
ext −

∫
V

BTσco
j dV −

∫
V

σre
j (Bre)TdV

(6.140)

We observe that we have an overlay of a concrete and a reinforcement element which are
governed by the same displacement field. The evaluation of the integrals is done separately for
the concrete and the steel such that they each have their own integration points.

The limitation of the embedded reinforcement concept – and consequently, of neglecting
bond-slip behaviour – can be elucidated by considering an elementary concrete element with
a reinforcement bar that is aligned with the global x-axis. When pulling in the x-direction the
composite element initially reacts elastically with a stiffness that is the sum of the linear-elastic
stiffnesses of the concrete and the reinforcement. This is the linear branch of Figure 6.16 until
point A. At point A the concrete cracks. If cracking would occur in a completely brittle manner,
the load-carrying capacity would fall back to point B, where the stiffness of the steel bar is
picked up until point C, which marks the onset of yielding of the reinforcement. When carrying
out an experiment the curve A–C is observed instead of the path A–B–C.

There are two possible explanations why the measured load–elongation curve is stiffer than
that which is obtained from the above elementary consideration. A first explanation is that
concrete is not a perfectly brittle material, but exhibits a gradual descending branch. This
phenomenon can be modelled using a cohesive-zone formulation, for which, as already said,
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208 Non-linear Finite Element Analysis of Solids and Structures

ε

σ

B

A

C

Figure 6.16 Load–displacement curve of a concrete element with an embedded central reinforcing bar

in a smeared format the name ‘tension softening’ has been coined. But there is an additional
effect. After cracking the concrete can still sustain tensile stresses and therefore there can still
be shear stress transfer between concrete and the reinforcement along most of the bar. Hence,
the concrete between the cracks has a significant residual contribution to the stiffness of the
composite element. This is the tension stiffening effect.

A rational approach is to assume that the behaviour of cracked, reinforced concrete can be
obtained by superposition of the stiffness of plain concrete, a stiffness of the reinforcement and
an additional stiffness due to interaction between concrete and the reinforcement. This leads
to the following summation of stress contributions (Feenstra and de Borst 1995a):

σ = σco + σre + σia (6.141)

with σco the stress contribution of the plain concrete, σre the contribution of the reinforcing
steel, and σia the interaction stress contribution due to tension stiffening [Figure 6.17(a)]. In

ε

σ

σ
σ
σ

tension stiffening

tension softening

reinforcement

ia

co

re

σ

t

f

ε εεε ε
c0 cu u sy

ia

(a) (b)

Figure 6.17 (a) Model for separation of tension softening and tension stiffening. (b) Interaction stress
between concrete and reinforcement
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Damage Mechanics 209

reinforced concrete structures a number of cracks develop during loading until the cracking
process has stabilised and no further cracks develop. The crack spacing at stabilised cracking
is determined mainly by the amount of reinforcement. It is assumed that the material model for
plain concrete, based on fracture energy, can be applied to reinforced concrete with the total
amount of fracture energy dissipated over the equivalent length. In general, the dimensions of
the finite elements in simulations of reinforced concrete structures are much larger than the
average crack spacing, �s. Therefore, it is assumed that the released energy can be determined
from:

Grc
c = min

[
Gc,Gc

w

�s

]
(6.142)

with Gc the fracture energy of a single crack.
After a stabilised crack pattern has developed, stresses are still transferred from reinforce-

ment to concrete between the cracks due to the bond action which increases the total stiffness
of the structure. The additional stress due to tension stiffening is usually assumed to be given
as a function of the strain in the direction of the reinforcement. A trilinear function is often
adopted for the interaction stress [Figure 6.17(b)]. The interaction stress is only active if the
strain in the reinforcement is larger than:

εc0 = ft

Ec

cos2 α (6.143)

with α the angle between the direction of the reinforcement and the direction of the principal
stress at incipient cracking. The factor εcu is determined by the crack spacing, the equivalent
length of the element and the fracture energy of the concrete and reads:

εcu = 2 cos2 α
Grc

c

wft

(6.144)

The constant part of the diagram can be approximated to equal the tensile strength of the
concrete ft . Close to the yield strain of the reinforcement, εsy, the tension-stiffening component
is reduced to avoid an artificial increase of the yield stress of the reinforcement. The strain at
which the tension-stiffening component is reduced is given by:

εu = εsy − ft

ρsEs

(6.145)

with εsy the yield strength of the steel, and ρs the reinforcement ratio. The local stiffness matrix
that incorporates the interaction stiffness then reads:

Dia =


Eb 0 0

0 0 0

0 0 0


 (6.146)

where Eb is the bond stiffness. The transformation to the global coordinate system follows in
a standard manner from:

σia =
(

TT
σ (ψ)DiaTε(ψ)

)
ε
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210 Non-linear Finite Element Analysis of Solids and Structures

6.9 Regularised Damage Models

Loss of well-posedness of the rate boundary value problem causes a complete dependence
of the numerical results on the discretisation, not only with respect to mesh refinement, but
also, and especially, with respect to mesh alignment, since failure zones exhibit a strong ten-
dency to propagate along lines of discretisation. To avoid loss of ellipticity, the standard,
rate-independent continuum must be enhanced. Several possibilities for a regularisation exist:
(i) spatial averaging; (ii) introducing a dependence of the stress evolution on strain gradi-
ents; (iii) adding couple stresses and conjugate kinematic quantities like micro-curvatures to
the continuum description, the so-called Cosserat continuum (de Borst 1991, 1993); or (iv)
by adding viscosity (Needleman 1987; Sluys and de Borst 1992). Not all enhancements are
as effective in eliminating discretisation sensitivity. Adding viscosity can only be effective
when the material under consideration exhibits a sufficiently high rate sensitivity for the given
loading rate. Evidently, discretisation dependence is recovered in the rate-independent limit.
The Cosserat continuum is usually only effective when there exist a physical motivation for
adding couple stresses and micro-curvatures, as is the case in granular materials. Because of
the restrictions of the latter two approaches, the non-local and gradient-enhanced models have
become widely used in computational analyses.

6.9.1 Non-local Damage Models

In a non-local generalisation the equivalent strain ε̃ is normally replaced by a spatially averaged
quantity in the damage loading function (Pijaudier-Cabot and Baz̆ant 1987):

f (ε̄, κ) = ε̄ − κ (6.147)

where the non-local strain ε̄ is computed from:

ε̄(x) = 1

�(x)

∫
V

ψ(y, x)ε̃(y)dV , �(x) =
∫

V

ψ(y, x)dV (6.148)

with ψ(y, x) a weight function. Often, the weight function is assumed to be homogeneous and
isotropic, so that it only depends on the norm s = ‖ x − y ‖. In this formulation all the other
relations remain local: the local stress–strain relation (6.12), the loading–unloading condi-
tions (6.16) and the dependence of the damage variable ω on the internal variable κ: ω = ω(κ).
As an alternative to Equation (6.148), the locally defined internal variable κ may be replaced
in the damage loading function f by a spatially averaged quantity κ̄:

κ̄(x) = 1

�(x)

∫
V

ψ(y, x)κ(y)dV (6.149)

The fact that in elasticity-based damage models the stress can be computed directly from
the given strain means that a straightforward algorithm can be set up for non-local damage
models. For the non-local damage model defined by Equation (6.148) the algorithm of Box 6.4
applies. Although conceptually straightforward, the tangential stiffness matrix entails some
inconvenient properties. Due to the non-local character of the constitutive relation the tangential
stiffness matrix is full, i.e. the bandedness is lost. The introduction of a cut-off on the averaging
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Damage Mechanics 211

Box 6.4 Algorithmic treatment of non-local elasticity-based damage model

1. Compute the strain increment: �εj+1
2. Update the total strain: εj+1 = εj + �εj+1
3. Compute the equivalent strain: ε̃j+1 = ε̃(εj+1)
4. Compute the non-local equivalent strain:

ε̄j+1(x) =∑i wiψ(yi, x)ε̃j+1(yi)Velem

5. Evaluate the damage loading function: f = ε̄j+1 − κ0

if f ≥ 0 , κj+1 = ε̄j+1
else κj+1 = κ0

6. Update the damage variable: ωj+1 = ω(κj+1)
7. Compute the new stresses: σj+1 = (1 − ωj+1)De : εj+1

function partially remedies this disadvantage, but an increased band width will nevertheless
result. Secondly, symmetry can be lost (Pijaudier-Cabot and Huerta 1991).

6.9.2 Gradient Damage Models

Non-local constitutive relations can be considered as a point of departure for constructing
gradient models, although we wish to emphasise that the latter class of models can also be
defined directly by supplying higher-order gradients in the damage loading function. Yet,
we will follow the first-mentioned route to underline the connection between integral and
differential type non-local models. This is done either by expanding the kernel ε̃of the integral in
Equation (6.148) in a Taylor series, or by expanding the internal variable κ in Equation (6.149)
in a Taylor series. We will first consider the expansion of ε̃ and then we will do the same
for κ. If we truncate after the second-order terms and carry out the integration implied in
Equation (6.148) under the assumption of isotropy, the following relation ensues:

ε̄ = ε̃ + c∇2ε̃ (6.150)

where c is a gradient parameter of the dimension length squared. It can be related to the
averaging volume and then becomes dependent on the precise form of the weight function ψ.
For instance, for a one-dimensional continuum and taking

ψ(s) = 1√
2π�

e−s2/2�2
(6.151)

we obtain c = 1/2�2. Here, we adopt the phenomenological view that � = √
2c reflects the

internal length scale of the failure process which we wish to describe macroscopically.
Formulation (6.150), known as the explicit gradient damage model, has a disadvantage

when applied in a finite element context, namely that it requires computation of second-order
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212 Non-linear Finite Element Analysis of Solids and Structures

gradients of the local equivalent strain ε̃. Since this quantity is a function of the strain tensor,
and since the strain tensor involves first-order derivatives of the displacements, third-order
derivatives of the displacements have to be computed, which would necessitate C2-continuity
of the shape functions. To obviate this problem, Equation (6.150) is differentiated twice and
the result is substituted again into Equation (6.150). Again neglecting fourth-order terms
leads to:

ε̄ − c∇2ε̄ = ε̃ (6.152)

In Peerlings et al. (2001) it has been shown that the implicit gradient damage model of
Equation (6.152) becomes formally identical to a fully non-local formulation for a specific
choice of the weighting function ψ in Equation (6.148), which underlines that this for-
mulation has a truly non-local character, in contrast to the explicit gradient formulation of
Equation (6.150).

Higher-order continua require additional boundary conditions. With Equation (6.152) gov-
erning the damage process, either the averaged equivalent strain ε̄ itself or its normal derivative
must be specified on the boundary S of the body:

ε̄ = ε̄s or nS · ∇ ε̄ = ε̄ns (6.153)

In most example calculations in the literature the natural boundary condition nS · ∇ ε̄ = 0 has
been adopted.

In a fashion similar to the derivation of the gradient damage models based on the averaging
of the equivalent strain ε̃, we can elaborate a gradient approximation of Equation (6.149), i.e.
by developing κ into a Taylor series. For an isotropic, infinite medium and truncating after the
second term we have (de Borst et al. 1996):

κ̄ = κ + c∇2κ (6.154)

Since the weight functions for the different gradient formulations may be quite different,
the gradient parameter c may also be very different for the various formulations. For in-
stance, the gradient parameter c of Equation (6.154) may differ considerably from those in
Equation (6.150) or (6.152). The additional boundary conditions now apply to κ. Although
formally similar to those of Equation (6.153), namely

κ = κs or nS · ∇κ = κns (6.155)

they have a different character, since they apply to an internal variable instead of to a kinematic
quantity, which seems somewhat suspect. On the other hand, the physical interpretation that
can be given to the boundary condition (6.155)2 is rather clear. Since the damage variable ω

is a function of the internal variable κ, and therefore, the differential equation (6.154) and the
boundary conditions (6.155) can be replaced by (de Borst et al. 1996):

ω̄ = ω + c∇2ω (6.156)

where ω̄ is a spatially averaged damage field, similar to ε̄ or κ̄, and the corresponding boundary
conditions

ω = ωs or nS · ∇ω = ωns (6.157)
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Damage Mechanics 213

Equation (6.157) with ωns = 0 can be identified as a condition of no damage flux through the
boundary S of the body.

Numerical schemes for gradient-enhanced continua typically have the character of a coupled
problem and depart from the weak form of the balance of momentum (6.56) and a weak form
of the averaging equation, e.g. Equation (6.152):

∫
V

δε̄(ε̄ − c∇2ε̄ − ε̃)dV = 0 (6.158)

with δε̄ the variational field of the non-local strain ε̄. Transforming Equation (6.158), using the
divergence theorem and the natural boundary condition nS · ∇ ε̄ = 0 yields:

∫
V

(δε̄ε̄ + c∇δε̄ · ∇ ε̄)dV =
∫

V

δε̄ ε̃dV (6.159)

From Equation (6.159) it becomes clear that in this formulation a C0-interpolation for ε̄ suffices.
Accordingly, we can discretise the displacements u and the non-local strains

u = Ha and ε̄ = H̄e (6.160)

where H and H̄ contain C0-interpolation polynomials which can have a different order. Simi-
larly, for the variations

δu = Hδa and δε̄ = H̄δe (6.161)

Substitution into Equations (6.56), (6.159) and requiring that the result holds for arbitrary
(δa, δe), yields the discrete formats of the equilibrium equation (6.68):

∫
V

BTσdV =
∫

S

HTtdS

and the averaging equation:

∫
V

(H̄TH̄ + cB̄TB̄)dV =
∫

V

H̄Tε̃dV (6.162)

where B̄ contains the spatial derivatives of H̄. An algorithm for computing the right-hand side
of this model is given in Box 6.5.

The tangential stiffness matrix needed for an iterative solution via the Newton–Raphson
method reads (Peerlings et al. 1996):

[
Kaa Kae

Kea Kee

](
da

de

)
=
(

fa
ext − fa

int

fe
int − Keee

)
(6.163)
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214 Non-linear Finite Element Analysis of Solids and Structures

Box 6.5 Algorithmic treatment of second-order implicit gradient damage model

1. Compute the strain increment: �εj+1 and the non-local strain increment �ε̄j+1
2. Update the total strain: εj+1 = εj + �εj+1 and

the non-local strain ε̄j+1 = ε̄j + �ε̄j+1
3. Evaluate the damage loading function: f = ε̄j+1 − κ0

if f ≥ 0 , κj+1 = ε̄j+1

else κj+1 = κ0

4. Update the damage variable: ωj+1 = ω(κj+1)
5. Compute the new stresses: σj+1 = (1 − ωj+1)De : εj+1

with fe
int given by the right-hand side of Equation (6.162). The stiffness matrices are given by:

Kaa =
∫

V

(1 − ω)BTDeBdV (6.164)

Kae =
∫

V

qBTDeεH̄dV (6.165)

Kea =
∫

V

H̄T
(

∂ε̃

∂ε

)
BdV (6.166)

Kee =
∫

V

(
H̄TH̄ + cB̄TB̄

)
dV (6.167)

where q = ∂ω/∂κ for loading and vanishes if otherwise. The expressions for Kae and Kea
exhibit a non-symmetry. This non-symmetry is caused by the damage formalism and not by
the gradient enhancement, cf. Equation (6.25).

A one-dimensional bar with an imperfection in the centre is shown in Figure 6.18. Re-
sults of a computation with this model are shown in Figure 6.19. Figure 6.19 shows that the
load–displacement curves converge upon mesh refinement. We finally show the results of a cal-
culation using a gradient damage model for the single-edge notched beam of Figure 6.13. The
specimen has been modelled with 1362 elements with an eight-noded quadratic displacement
interpolation and a bilinear interpolation for the equivalent non-local strain. A path-following

u

A =10 mm
2 A = 9 mm

2

45 mm45 mm 10 mm

Figure 6.18 Bar with an imperfection subjected to an axial load
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Figure 6.19 Load–displacement curves for a second-order implicit gradient model upon refinement of
the finite element discretisation (Peerlings et al. 1996)

Figure 6.20 Damage contours for the single-edge notched beam of Figure 6.13

procedure has been used to control the loading process, with the crack mouth sliding dis-
placement as the controlling parameter, see Peerlings et al. (1998) for details. The damage
distribution at impending failure has been plotted in Figure 6.20.
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7
Plasticity

One of the most well-developed theories for describing material non-linearity is the theory
of plasticity. Its development goes back to Coulomb who postulated the dependence of the
sliding resistance on a plane between two bodies to be a function of the adhesion and the
frictional properties (Coulomb 1776). Significant developments took place just before and
after the Second World War, including the establishment of upper and lower bound theorems
and the shakedown theorems. For classical treatises the reader is referred to Hill (1950) or Koiter
(1960). More modern treatises are those by Lubliner (1990) and Khan and Huang (1995), while
comprehensive treatments of computational aspects have been presented in Simo and Hughes
(1998) and in de Souza Neto et al. (2008). In this chapter we shall first review some basic
notions of standard elasto-plastic theories. Subsequently, we shall focus on the computational
setting of continuum plasticity.

7.1 A Simple Slip Model

The simplest ‘plasticity’ model is probably the spring–sliding system of Figure 7.1. In this
formulation the entire horizontal displacement of point A is initially caused by the deformation
(elongation) of the spring, since, for low force levels, the adhesion and the friction between
the block and the floor prevent any sliding of the block. Only when the maximum shear force
that can be exerted by adhesion and friction is exhausted will the block start sliding. From that
moment onwards the total horizontal displacement of point A is composed of a contribution of
the spring and a contribution of the sliding between block and floor. If u represents the horizontal
displacement of point A and if the superscripts e and p are used to denote the contributions due
to the deformation in the spring and the sliding of the block, respectively, the total displacement
after the onset of sliding is given by the following additive decomposition:

u = ue + up (7.1)

The first component is called elastic because, upon removal of the force, the deformation in
the spring also disappears. The ensuing displacement of point A is recoverable. However, the

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



220 Non-linear Finite Element Analysis of Solids and Structures

H, uΑ

ψ

k

V, v

Figure 7.1 Simple spring–sliding system with two degrees of freedom

displacements of the block do not disappear. Any sliding that has occurred is permanent: such
deformations cannot be recovered by unloading the system and are named inelastic or plastic.

If the surface between the floor and the sliding block is not perfectly smooth, but micro-
scopically rough, any horizontal sliding will generally also entail a vertical displacement of
the block, either an uplift or a downward movement. Let this plastic component be denoted by
vp, then both plastic displacement components can be assembled in a vector up:

up =
(

up

vp

)
(7.2)

In a similar fashion the elastic displacements can be assembled in a vector

ue =
(

ue

ve

)
(7.3)

where, for the present example, ve cannot be given a physical meaning and is zero. Extension
of Equation (7.1) to incorporate the vertical displacements yields

u = ue + up (7.4)

Another important distinction between the deformations attributable to the spring and those
that take place in the sliding block–floor system is the uniqueness between stresses and strains,
or in terms of the present discrete mechanical system, between forces and displacements.
Between the elastic displacement ue and the horizontal force H a unique relation

H = kue (7.5)

with k the spring constant, can be established. Clearly, if the force H vanishes after reaching a
non-zero value, the ‘elastic’ displacement also reduces to zero. For the inelastic displacement
up it is physically not plausible that such a one-to-one relation can be established, in which
the inelastic strain is directly related to the instantaneous value of the stress, here the force
(note that in the present section the terms ‘forces’ and ‘stresses’, but also ‘displacements’ and
‘strains’, are used interchangably). All we can say is that during plastic deformation the rate of
the inelastic deformation can be determined. For the moment we assume that the ratio between
the horizontal ‘plastic’ velocity u̇p and the vertical ‘plastic’ velocity v̇p can be obtained from
measurements and is governed by a dilatancy angle ψ (Figure 7.1):

tan ψ = v̇p

u̇p (7.6)
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Plasticity 221

which may be a function of the total accumulated ‘plastic’ displacements, but for the present,
such a dependence will not be considered. With this proposition the direction of the plastic
flow is fully determined, since we may write

u̇p = λ̇m (7.7)

with

m =
(

1

tan ψ

)
(7.8)

governing the relative magnitudes of the plastic flow components, often named the direction of
the plastic flow. The value of the plastic multiplier λ̇ can be determined from the requirement
that during plastic flow the stresses remain bounded. To date, this flow theory of plasticity is the
most widely used plasticity theory. It is physically appealing and the transition between elastic
and plastic states can also be defined in a straightforward fashion for multi-dimensional stress
states. This is not so for the deformation theory of plasticity which is rooted in the assumption
that the plastic strain, rather than the plastic strain rate, is determined by the instantaneous
values of the stresses.

If we define the force vector f in a similar fashion as the displacement vector, i.e.

f =
(

H

V

)
(7.9)

the ‘elastic’ displacement vector can be related to the force vector symbolically by the matrix-
vector relation

f = Deue (7.10)

where De signifies the elastic stiffness matrix:

De =
(

k 0

0 0

)
(7.11)

We next differentiate the fundamental decomposition (7.4), so that

u̇ = u̇e + u̇p (7.12)

and the elastic relation for the spring (7.10), ḟ = Deu̇e, and combine these results with the
relation that sets the direction of the ‘plastic’ velocity (7.7) for the sliding block. Then, the
following relation ensues:

ḟ = De(u̇ − λṁ) (7.13)

So far, we have loosely used the terminology ‘maximum shear force exhausted’ to describe
the onset of permanent displacements. Here again, we must have a criterion that sets the bor-
derline between purely ‘elastic’ displacements and the moment when the block starts sliding,
i.e. when ‘plastic’ displacements occur. For our present system we only have two force com-
ponents, namely, H and V . The simplest assumption is that sliding starts when the Coulomb
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222 Non-linear Finite Element Analysis of Solids and Structures

friction augmented with some adhesion is fully mobilised, i.e.

H + V tan ϕ − c = 0 (7.14)

with tan ϕ a friction coefficient and c the adhesion. To mobilise friction between the block
and the surface the force V must act downwards, and therefore V < 0. The second term in
Equation (7.14) thus gives a negative contribution. If

H + V tan ϕ − c < 0 (7.15)

only elastic deformations (within the spring) will take place. A combination of forces such that

H + V tan ϕ − c > 0 (7.16)

is physically impossible, since the maximum horizontal force is bounded by the restriction
(7.14). We now assume that ϕ and c are constants, an assumption that will be dropped later.
Use of this assumption leads to

Ḣ + V̇ tan ϕ = 0 (7.17)

after differentiation of Equation (7.14). Upon introduction of the vector

n =
(

1

tan ϕ

)
(7.18)

Equation (7.17) can be written symbolically as:

nT ḟ = 0 (7.19)

Premultiplying Equation (7.13) with nT and utilising the fact that during plastic flow Equa-
tion (7.19) must hold, the following explicit expression is obtained for the plastic multiplier
λ̇:

λ̇ = nTDeu̇
nTDem

(7.20)

which can be inserted in Equation (7.13) to yield an explicit relation between velocity u̇ and
the rate of the force vector ḟ :

ḟ =
(

De − DemnTDe

nTDem

)
u̇ (7.21)

The rate equations (7.21) are in general non-symmetric. This is because in general ϕ /= ψ, so
that n /= m. In that case the matrix formed by the outer product mnT will be non-symmetric,
thus rendering the tangential stiffness matrix that sets the incremental relation between ḟ
and u̇ also non-symmetric. It is noted that the present case is perhaps less illustrative, since
elaboration shows that the off-diagonal terms are zero, but it can be seen as a precursor to
continuum plasticity in the next section, where the off-diagonal terms do not vanish.

By its very nature the flow theory of plasticity does not provide a direct relation between
the force (stress) and the displacement (strain). Only a relation between the rate of force
(stress rate) and the velocity (strain rate) can be established and even this relation is not
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u

H

reloading

unloading

loading

Figure 7.2 Loading, unloading and reloading for the simple slip model of Figure 7.1. The theory of
plasticity for continua follows the same principle

necessarily unique, although for most practical applications it is. It is of utmost importance
that the incremental equations are integrated accurately, in particular if multi-dimensional
stress states are considered. Implicit integration schemes are best suited to carry out this task,
as will be discussed later.

A salient feature of this simple slip model, and also of the theory of plasticity for continuous
media, is that when the condition for continued sliding as represented in Equation (7.14) is
no longer satisfied, in other words the strict inequality (7.15) is again valid, we again have
purely elastic behaviour. So, unloading is a purely elastic process. The same statement holds
true for reloading, of course subject to inequality (7.15). If Equation (7.14) is again satisfied,
permanent contributions to the displacement increment again occur. A graphical representation
of this behaviour is given in Figure 7.2.

7.2 Flow Theory of Plasticity

7.2.1 Yield Function

In the preceding section a simple model has been constructed for frictional/adhesive sliding
along a fixed plane. This concepts lends itself well for extension to continua in which we deal
with stresses rather than with forces. If we extend Coulomb’s assumption, i.e. sliding occurs
when the shear force on a plane exceeds the normal force multiplied by some friction coefficient
plus some adhesion, to continua, we must search for the plane on which the combination of
normal stress σ and shear stress τ is critical in the sense that the condition

τ + σ tan ϕ − c = 0 (7.22)

is satisfied for the normal stress and the shear stress on that plane. ϕ now signifies the internal
friction angle of the material. For a material such as sand the physical meaning is obvious,
since it is related to the friction between the particles. For a continuous medium c represents
the cohesion of the material. For metals it is equal to half of the yield strength as we will derive
below, while for dry sand the cohesion is almost zero.
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τ

σc
3

σ ϕσ1

Figure 7.3 Mohr’s stress circle and the envelopes that bound all possible stress states for the Mohr–
Coulomb yield criterion

Considering a two-dimensional stress state first, we can relate σ and τ to the principal stresses
with the aid of Mohr’s circle (Figure 7.3):

σ = 1

2
(σ3 + σ1) + 1

2
(σ3 − σ1) sin ϕ

τ = 1

2
(σ3 − σ1) cos ϕ

with σ1 and σ3 the smallest and the largest principal stress, respectively (σ1 ≤ σ3). Inserting the
expressions for σ and τ into Equation (7.22), and multiplying by cos ϕ gives after rearranging:

1

2
(σ3 − σ1) + 1

2
(σ3 + σ1) sin ϕ − c cos ϕ = 0 (7.23)

Equation (7.23) is the two-dimensional representation of the Mohr–Coulomb yield crite-
rion (Mohr 1900). It is described by two material parameters, namely the angle of internal
friction ϕ and the cohesion c. The model is well suited to describe the strength characteristics
of soils, rocks, concrete, and ceramics.

We next extend the Mohr–Coulomb yield condition to fully three-dimensional stress states.
Working again in the principal stress space, we observe that Equation (7.23) is valid as long
as σ1 ≤ σ2 ≤ σ3. If this is not the case, for instance if σ2 ≤ σ3 ≤ σ1, the shear stress on the
plane where the combination of shear stress and normal stress becomes critical is given by
τ = 1

2 (σ1 − σ2) cos ϕ, while the corresponding normal stress is given by: σ = 1
2 (σ1 + σ2) +

1
2 (σ1 − σ2) sin ϕ. The yield condition is now formulated in terms of σ1 and σ2 instead of σ3
and σ1, and reads:

1

2
(σ1 − σ2) + 1

2
(σ1 + σ2) sin ϕ − c cos ϕ = 0
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σ = σ = σ
1 32

−σ

−σ

−σ1

2

3

ϕcotc

Figure 7.4 Representation of Mohr–Coulomb and Drucker–Prager yield criteria in the three-
dimensional principal stress space

instead of by Equation (7.23). By cyclic permutation we successively obtain that the Mohr–
Coulomb yield criterion in the three-dimensional principal stress space is complemented by
the four conditions:

1

2
(σ2 − σ3) + 1

2
(σ2 + σ3) sin ϕ − c cos ϕ = 0

1

2
(σ1 − σ3) + 1

2
(σ1 + σ3) sin ϕ − c cos ϕ = 0

1

2
(σ2 − σ1) + 1

2
(σ2 + σ1) sin ϕ − c cos ϕ = 0

1

2
(σ3 − σ2) + 1

2
(σ3 + σ2) sin ϕ − c cos ϕ = 0

When represented graphically in the three-dimensional principal stress space, each of the
permutations of Equation (7.23) represents a plane. Together they form a cone with six facets
which meet in the apex of the yield surface at σ1 = σ2 = σ3 = c cot ϕ and which opens up in
the negative direction of the space diagonal σ1 = σ2 = σ3 (Figure 7.4). The six permutations
of Equation (7.23) bound all possible stress combinations. In other words, this six-faceted
surface can be considered as a limit surface, which acts as an envelope of all possible stress
states. Stress states inside this contour cause elastic deformations, while stress states on this
yield surface can give rise to elasto-plastic deformations. By definition, stress states outside
this yield contour are not possible.

We now introduce the more abstract notion of a yield function. In analogy with Equa-
tion (7.23) such a loading function bounds all possible stress states:

f (σ) ≤ 0 (7.24)

where the strict equality sign holds for stress states on the yield contour and where the inequality
sign is valid whenever stresses are inside the yield contour and cause only elastic deformations.
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226 Non-linear Finite Element Analysis of Solids and Structures

Considering the Mohr–Coulomb yield function, f attains the form:

f (σ) = 1

2
(σ3 − σ1) + 1

2
(σ3 + σ1) sin ϕ − c cos ϕ (7.25)

while the other five yield functions are obtained by cyclic permutation.
Many well-known yield criteria can be considered as approximations or refinements of

the Mohr–Coulomb yield criterion. A straightforward example is the Tresca yield criterion.
Tresca postulated that metals start to yield when in some direction the shear strength has been
exhausted (Tresca 1868):

1

2
(σ3 − σ1) = τmax (7.26)

From Equation (7.23) it is obvious that this is a special case of the Mohr–Coulomb yield
function in which the angle of internal friction is zero. Comparison with Equation (7.26)
shows that the Tresca yield function reads:

f (σ) = (σ3 − σ1) − σ̄ (7.27)

with the yield strength in uniaxial tension, σ̄, equal to twice the cohesion: σ̄ = 2c. Evidently,
the full expression for three-dimensional stress states is given by six yield functions that can
be obtained from Equation (7.27) by cyclic permutation. The result is a six-faceted cylinder
in the principal stress space, which extends infinitely along the axis σ1 = σ2 = σ3 in both the
positive and negative directions. Such a yield function, which in shape as well as in size has
the same cross section in each plane that is orthogonal to the space diagonal σ1 = σ2 = σ3,
is called pressure-insensitive. Metals satisfy this property as long as the hydrostatic stress
level does not become too high. Yield functions are often represented in the π-plane, which is
perpendicular to the space diagonal σ1 = σ2 = σ3 and passes through the origin (Figure 7.5).
For pressure-insensitive yield functions, such a representation is complete.

σ
1

σ
2

σ
3

Tresca

(a) (b)

von Mises

σ
1

σ
2

σ
3

Mohr–Coulomb

Drucker–Prager

Figure 7.5 Representation of yield surfaces in the π-plane: (a) Tresca and von Mises; (b) Mohr–
Coulomb and Drucker–Prager
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Plasticity 227

An inconvenient property of the Tresca and Mohr–Coulomb yield surfaces is that the facets
that compose the entire yield contour form corners at the places where they meet. At such
places the gradient to the yield surface is no longer uniquely defined which, as we will see, gives
rise to difficulties when formulating the incremental stress–strain relations. Therefore, smooth
approximations have been proposed to these angular yield surfaces. The smooth approximation
to the Tresca yield contour is the von Mises yield criterion, which is a circular cylinder in the
principal stress space, and a circle in the π-plane [Figure 7.5(a)] (von Mises 1913). Expressed
in principal stresses, the von Mises yield function reads:

f (σ) =
√

1

2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

] − σ̄ (7.28)

where the factor 1
2 has been chosen in order that in pure uniaxial stressing the yield function

reduces to the uniaxial yield strength σ̄. In terms of normal and shear stresses the yield function
can be rewritten as:

f (σ) =
√

1

2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2

] + 3σ2
xy + 3σ2

xy + 3σ2
xy − σ̄

(7.29)
The expression under the square root is proportional to the second invariant of the deviatoric
stresses, Equation (1.88). Introducing the modified stress invariant

q =
√

3J2 (7.30)

we can also write:

f (σ) = q − σ̄ (7.31)

The theory of plasticity that utilises von Mises’ yield contour is often called J2-plasticity. For
later use, we also express the von Mises yield function using Voigt notation:

f (σ) =
√

3

2
σTPσ − σ̄ (7.32)

with the projection matrix P defined as:

P =




2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 − 1

3
2
3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2




(7.33)

In a similar fashion as von Mises has introduced a yield contour as an approximation to the
non-smooth Tresca yield contour, Drucker and Prager (1952) have approximated the Mohr–
Coulomb yield contour by a circular cone. While it maintains the linear dependence on the
hydrostatic stress level, just as the Mohr–Coulomb contour, the angular shape in the π-plane
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228 Non-linear Finite Element Analysis of Solids and Structures

– dashed lines in Figure 7.5(b) – is replaced by a circle. The Drucker–Prager yield criterion is
defined by:

f (σ) = q + αp − k (7.34)

with the pressure p defined in Equation (1.79), and α and k material constants. Because of
the pressure dependence the circle cannot pass through all corners. Often the approximation
is chosen that passes through the three outermost corners, and the constants α and k are then
related to c and ϕ by:

α = 6 sin ϕ

3 − sin ϕ
and k = 6c cos ϕ

3 − sin ϕ

Using the projection matrix P, Equation (7.33), and rewriting the pressure as

p = πTσ (7.35)

with the projection vector

πT =
[

1

3
,

1

3
,

1

3
, 0, 0, 0

]
(7.36)

the Drucker–Prager yield function can be rewritten as:

f (σ) =
√

3

2
σTPσ + απTσ − k (7.37)

7.2.2 Flow Rule

To obtain plastic deformations, the stress point must not only be on the yield contour, it must
also remain there for a ‘short period’. When the stress point only touches the yield contour and
immediately moves inward again, plastic flow will not occur. Plastic straining will take place
if and only if the yield function f vanishes:

f = 0 (7.38)

as well as its ‘time derivative’:

ḟ = 0 (7.39)

The latter equation is called Prager’s consistency condition and expresses that the yield function
f must remain zero for at least a small ‘time increment’ in order that plastic flow can occur.

Within the elastic domain the injective relation σ = De : ε, with De the continuum elastic
stiffness tensor, sets the dependence of the stress σ on the strain ε. However, such an injective
relationship can only be established between the stress σ and the elastic strain εe,

σ = De : εe (7.40)

when plastic straining occurs, i.e. when Equations (7.38) and (7.39) hold. The remaining part
of the strain is permanent, or plastic, and together with the elastic contribution εe forms the
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Plasticity 229

total strain ε:

ε = εe + εp (7.41)

Using Equation (7.40) this results in:

σ = De : (ε − εp) (7.42)

In a three-dimensional stress space Equation (7.42) constitutes a set of six equations with
twelve unknowns, namely the six components of σ and those of εp. Note that ε is known, as
it can be computed directly from the (known) displacement field. From the missing six equa-
tions five must be supplied by measurements, while one equation follows from the consistency
requirement, Equation (7.39). To separate the equations that must be supplied from experi-
mental data from the equation that follows from the mathematical structure of the theory of
plasticity, the plastic strain rate is written as the product of a scalar λ̇ and an array m:

ε̇p = λ̇m (7.43)

cf. Equation (7.7). In Equation (7.43), λ̇ determines the magnitude of the plastic flow, while m
sets the relative magnitude of the components of the plastic flow, often named the direction.
Sometimes m is normalised, such that ‖m‖2 = 1, but this is not necessary and will not be done
here. Since the yield function f has hitherto been assumed to be solely a function of the stress
tensor, f = f (σ), the consistency condition (7.39) can be elaborated as

n : σ̇ = 0 (7.44)

with n the gradient of the yield function, that is perpendicular to the yield surface at the current
stress point σ:

n = ∂f

∂σ
(7.45)

Differentiation of Equation (7.42) with respect to a virtual time and combination of the result
with Equations (7.43) and (7.44) yields an explicit expression for the magnitude of the plastic
flow:

λ̇ = n : De : ε̇

n : De : m
(7.46)

Similar to the derivation of the simple slip model a linear relation can now be deduced between
the stress rate σ̇ and the strain rate ε̇:

σ̇ =
(

De − (De : m) ⊗ (De : n)

n : De : m

)
: ε̇ (7.47)

For a number of materials, the assumption that the plastic flow direction m is co-linear with
the gradient to the yield surface n, is reasonable, and is corroborated by experimental evidence,
in particular for metals. Then,

m = γn
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230 Non-linear Finite Element Analysis of Solids and Structures

with γ an undetermined scalar quantity, and the plastic strain rate can be computed using the
associated flow rule of plasticity:

ε̇p = λ̇n (7.48)

or, in view of Equation (7.45),

ε̇p = λ̇
∂f

∂σ
(7.49)

The plastic flow direction is thus normal to the yield surface, and the associated flow rule
is often referred to as ‘normality rule’, although the terminology orthogonality rule would
be more correct. A major (computational) advantage of the use of an associated flow rule is
that the tangential stress–strain relation (7.47), which is non-symmetric for the general case,
becomes symmetric:

σ̇ =
(

De − (De : n) ⊗ De : n)

n : De : n

)
: ε̇ (7.50)

An elegant way for deriving the normality rule is to adopt Drucker’s Postulate, see Box 7.1.
However, Drucker’s Postulate is not a law of mechanics, or of thermodynamics, as is some-
times suggested. It is an assumption. Whether this assumption holds, can only be assessed by
comparison with experimental data. For metals the agreement is very reasonable, which makes
Drucker’s Postulate and the normality rule applicable to such materials. For soils, rocks and
concrete, the agreement is less good (Vermeer and de Borst 1984).

Flow rules that do not obey identity (7.49) are called non-associated. An important subclass
of non-associated flow rules, which covers by far the majority of the applications, are those for
which a function of the stresses g, often named the plastic potential function, exists, such that

m = ∂g

∂σ
(7.51)

According to this identity the plastic flow vector is now coaxial with the gradient to the surface
g = 0:

ε̇p = λ̇
∂g

∂σ
(7.52)

We now investigate the consequences of the normality rule and take the Mohr–Coulomb
criterion as an example. From definition (7.25) and invoking the concept of an associated flow
rule we can derive that the plastic volumetric strain rate

ε̇
p
vol = ε̇

p
1 + ε̇

p
2 + ε̇

p
3

and the rate of plastic shear deformation

γ̇p = ε̇
p
3 − ε̇

p
1
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Plasticity 231

Box 7.1 Drucker’s Postulate and the direction of plastic flow

Instead of determining the plastic flow direction m experimentally, one can make an as-
sumption, which is then verified for its correctness. A widely used assumption, especially
for the plastic behaviour of metals, is to postulate:

During a complete cycle of loading and unloading of an additional stress increment the
work that is exerted by external forces is non-negative.

This postulate is usually referred to as Drucker’s Postulate. Mathematically, it states that:∫
(σ − σ0) : ε̇dt ≥ 0 , f (σ0) ≤ 0

By definition, any cycle in which only elastic deformations occur, results in a zero net work
dissipation, so that the preceding expression is equivalent to:∫

(σ − σ0) : ε̇pdt ≥ 0 , f (σ0) ≤ 0

This inequality will certainly be satisfied if the integrand is non-negative. If the current
stress is written as σ = σ0 + σ̇dt, we obtain:

σ̇ : ε̇p ≥ 0

In the case of ideal plasticity as considered here, i.e. the yield function is only a function
of the current stress state and not of the loading history, σ must be on or inside the original
yield surface: f (σ) = f (σ0 + σ̇dt) ≤ 0. Accordingly, the stress states σ and σ0 can be
interchanged, which, upon substitution into Drucker’s Postulate, yields σ̇ : ε̇p ≤ 0, so that
in the case of ideal plasticity the following identity must hold rigorously:

σ̇ : ε̇p = 0

Using Equation (7.43) and considering that λ̇ is non-negative the latter identity directly
leads to:

m : σ̇ = 0

Comparing this result with the consistency condition (7.44) for ideally plastic materials
shows that m must be co-linear with the gradient to the yield surface n, and that the
associated flow rule (7.49) holds.

are related by:

ε̇
p
vol = γ̇p sin ϕ (7.53)

Experimental evidence shows that Equation (7.53) significantly overpredicts the amount of
plastic volume change, also called plastic dilatancy. Introduction of the Mohr–Coulomb like

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



232 Non-linear Finite Element Analysis of Solids and Structures

plastic potential function

g = 1

2
(σ3 − σ1) + 1

2
(σ3 + σ1) sin ψ + constant (7.54)

results in a much better prediction of the plastic volume change, since the dilatancy an-
gle ψ is now an independent parameter. Use of Equation (7.54) as plastic potential func-
tion results in a relation between plastic volume change and plastic shear intensity that is
given by:

ε̇
p
vol = γ̇psinψ (7.55)

which makes it possible to match experimental data. For completeness we also list a common
potential function for the Drucker–Prager yield criterion,

g(σ) = q + βp + constant (7.56)

with p and q defined in Equations (1.79) and (7.30). For α /= β this definition renders the
Drucker–Prager plasticity model non-associated.

We note that a special case occurs when ψ = 0 in the Mohr–Coulomb plastic potential
function, Equation (7.54), since then, according to Equation (7.55), the plastic flow is isochoric,
i.e. volume-preserving. This implies that for the Tresca yield function with an associated
flow rule, the plastic straining is also isochoric. The same holds for the Drucker–Prager yield
criterion when β = 0 in Equation (7.56), and for the von Mises yield function with an associated
flow rule.

7.2.3 Hardening Behaviour

In the preceding section it has been assumed that the yield function only depends on the stress
tensor. Also in the example of the simple slip model the assumption was made that the friction
coefficient is a constant and does not depend upon the loading history. Such a dependence,
however, can be envisaged, e.g. due to breaking-off of the asperities between the block and the
surface. Making the friction coefficient a descending function of the total amount of sliding
would then be a logical choice.

The simplest extension beyond the model of ideal plasticity is to make the yield function
dependent on a scalar measure of the plastic strain tensor as well:

f = f (σ, κ) (7.57)

The scalar-valued hardening parameter κ is typically dependent on the strain history through
invariants of the plastic strain tensor εp. Another suitable, frame-invariant choice would be the
dissipated plastic work. A host of possibilities now emerges, for any function of the invariants
of εp and/or the plastic work could serve the purpose of defining the hardening parameter such
that it is frame-invariant, but three choices have gained popularity. Classically, we have the
work-hardening hypothesis,

κ̇ = σ : ε̇p (7.58)
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Plasticity 233

which is sometimes, especially for metal plasticity, also formulated as:

κ̇ = 1

σ̄
σ : ε̇p (7.59)

and the strain-hardening hypothesis,

κ̇ =
√

2

3
ėp : ėp (7.60)

For future use we also list the strain-hardening hypothesis in matrix-vector format:

κ̇ =
√

2

3
(ε̇p)TQε̇p (7.61)

where the matrix

Q =




2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 − 1

3
2
3 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2




(7.62)

accounts for the fact that normally only the deviatoric strains are included in the strain-
hardening hypothesis and that the double, shear strain components are incorporated in ε.
For applications in granular materials, the following hypothesis has become popular, as it
postulates a history dependence on the plastic volumetric strain:

κ̇ = −ε̇
p
vol (7.63)

where the minus sign has been introduced to have a positive hardening parameter for com-
paction. Using the projection vector (7.36) this hardening hypothesis can also be cast in matrix-
vector format:

κ̇ = −3πTε̇p (7.64)

In all cases the hardening parameter is integrated along the loading path:

κ =
∫

κ̇dt (7.65)

and, because of the dependence of the yield function on the loading history only through a
scalar-valued hardening parameter, the yield surface can only expand or shrink, but not translate
or rotate in the stress space (Figure 7.6). Because of the latter property this type of hardening
is named isotropic hardening.

Isotropic hardening models cannot accurately capture effects that typically occur in cyclic
loading, for instance the Bauschinger effect in metals. An isotropic hardening model would
predict the dashed line in Figure 7.7 upon reverse loading, whereas experimental evidence
results in the solid line. Kinematic hardening is better suited to model this phenomenon. In this
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234 Non-linear Finite Element Analysis of Solids and Structures

yield surface

Evolution of the

Evolution of the

yield surface

(a) (b)

Figure 7.6 Different types of hardening. (a) Isotropic hardening. (b) Kinematic hardening

class of hardening models the yield surface translates (Figure 7.6). A second-order tensor, α,
often called the back stress tensor, describes the movement of the origin of the yield surface.
In its original form, where the yield surface only translates, but does not change size, the yield
function only depends on the difference of the stress tensor and the back stress tensor:

f = f (σ − α) (7.66)

For von Mises plasticity evolution equations for the back stress tensor were formulated by
Prager (1955), who assumed that the translation of the back stress was in the direction of the
plastic strain rate:

α̇ = a(α)ε̇p (7.67)

with a(α) a scalar-valued function of the back stress tensor. To remedy some inconsistencies
that can be encountered with Prager’s hardening rule – especially when working in subspaces
such as plane stress – Ziegler (1959) proposed the following hardening rule:

α̇ = λ̇a(α)(σ − α) (7.68)

ε

σ

Figure 7.7 Cyclic loading in metals: Bauschinger effect
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Plasticity 235

Box 7.2 Alternative plasticity models

The evolution equations for the back stress tensor can be hard to formulate. An early
alternative approach is the sublayer model (Besseling 1958), a parallel arrangement of
spring–slider elements (Figure 7.8). In the same figure a related model has been plotted,
the so-called nested yield surfaces model (Mróz 1967). In this model hardening starts
when the stress point touches the innermost yield surface and ideal-plastic yielding occurs
when the outermost circle has been reached. The bounding surface plasticity model (Dafalias
and Popov 1975; Krieg 1975) can be considered as a limiting case of the latter model, and
consists of two surfaces only, a yield surface (the innermost circle), and a bounding surface.
The hardening rate is determined from the distance between both surfaces, measured in a
suitable norm.

In classical plasticity, the hardening modulus h and the vectors n and m are fully determined
through the definition of the yield surface and the evolution of the plastic strains. This is
not so for plasticity models in which a yield surface has not been defined explicitly. For
instance, in generalised plasticity (Pastor et al. 1990), they can be chosen without recourse
to a yield or loading surface. Different expressions can be selected, depending on whether
the material is loading or unloading, thus making the approach suitable to cyclic loading
conditions. In the absence of an explicitly defined loading surface, plastic loading/unloading
is determined by comparing the direction of the elastic stress increment with n,

n : De : ε̇ > 0 → loading

n : De : ε̇ = 0 → neutral loading

n : De : ε̇ < 0 → unloading

Since consistency cannot be enforced, the rate of plastic flow is simply defined as:

λ̇ ≡ n : De : ε̇

hL/U + n : De : mL/U

where the subscripts used are L for loading and U for unloading. When n : De : ε̇ = 0
(neutral loading), both predict λ̇ = 0, and continuity between loading and unloading is
guaranteed.

which corresponds to a radial motion. Combinations of isotropic and kinematic hardening
models are possible as well. In these mixed hardening models the yield function translates and
changes size:

f = f (σ − α, κ) (7.69)

Some alternative plasticity models for cyclic loading are discussed in Box 7.2.
When using matrix-vector notation, one can assemble all internal variables, either compo-

nents of a second-order tensor as α, or scalars like κ in an array κ. Then, we have the following
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236 Non-linear Finite Element Analysis of Solids and Structures

σ

σ

E
1

E
α

E
N

σ 1 σ α σ N

Movement of 

yield surfaces

(a) (b)

Figure 7.8 Alternative plasticity models. (a) Sublayer model (Besseling 1958). (b) Nested yield surfaces
model (Mróz 1967)

general format for a yield function that includes isotropic and kinematic hardening:

f = f (σ, κ) (7.70)

Owing to the presence of hardening the mathematical structure of the tangential constitutive
relation between stress rate and strain rate has changed. The consistency condition (7.39) is
now elaborated as:

nTσ̇ +
(

∂f

∂κ

)T

κ̇ = 0 (7.71)

From the definitions (7.58), (7.60) and (7.63) it can be inferred that the hardening variables
are proportional to the consistency parameter λ̇, so that

κ̇ = λ̇p(σ, κ) (7.72)

with p a vector function of the stress σ and the hardening variables collected in κ. Equa-
tion (7.71) can then be rewritten as:

nTσ̇ − hλ̇ = 0 (7.73)

with

h = −
(

∂f

∂κ

)T

p(σ, κ) (7.74)

the hardening modulus. Equation (7.74) shows that the hardening modulus cannot be defined
independently. When the dependence of the yield function f on the array of hardening param-
eters κ, on the hardening hypothesis and on the evolution of the plastic strains have been set,
the hardening modulus is fully determined.

For the derivation of the tangential stiffness relation for hardening plasticity we could proceed
along the same lines as with the derivation for the simple slip model and for ideal plasticity.
For future reference it is more convenient to first set up the tangential compliance relation. To
this end we combine the time derivative of Equation (7.42) and the flow rule (7.43) with the
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Plasticity 237

consistency condition for hardening plasticity (7.73). This results in:

ε̇ =
(

(De)−1 + 1

h
mnT

)
σ̇ (7.75)

Note that a compliance relation cannot be derived for ideal plasticity, since thenh = 0. Equation
(7.75) can be inverted with the aid of the Sherman–Morrison formula. The result is similar to
Equation (7.47):

σ̇ =
(

De − DemnTDe

h + nTDem

)
ε̇ (7.76)

As noted before, the work-hardening hypothesis in metal plasticity is often cast in the
modified format of Equation (7.59). The von Mises yield function that incorporates hardening
reads:

f (σ, κ) = q − σ̄(κ) (7.77)

while for the Tresca yield function one obtains:

f (σ, κ) = (σ3 − σ1) − σ̄(κ) (7.78)

For both yield functions, the rate of the hardening parameter κ̇ and the plastic multiplier λ̇ then
become identical, κ̇ = λ̇, and, using Equation (7.59), the hardening modulus reduces to:

h = −∂f

∂κ
(7.79)

which can also be expressed as:

h = ∂σ̄

∂κ
(7.80)

Consequently, for this hardening hypothesis and these yield functions, the hardening modulus
simply equals the slope of the hardening diagram.

For the Tresca and von Mises yield functions an appealing interpretation of Equation (7.80)
can be made. For uniaxial stressing, σ̄ = σ3 and the associated flow rule states that λ̇ = ε̇

p
3, or,

equivalently: κ̇ = ε̇
p
3. Note that in keeping with Equation (7.23), the axial stress σ3 is the major

principal stress in uniaxial tension. The uniaxial plastic strain ε
p
3 in the loading direction thus

coincides with the hardening parameter and can directly be used to plot the hardening diagram
as: ε

p
3 vs σ̄ (Figure 7.9). The hardening modulus simply reads:

h = ∂σ̄

∂ε
p
3

(7.81)

which shows the analogy between the Young’s modulus E and the hardening modulus h, since
the latter governs the plastic strain rate in a manner similar to the way Young’s modulus deter-
mines the elastic strain rate. The rationale for preferring Equation (7.59) over Equation (7.58)
now becomes apparent. If Equation (7.58) had been used for the work-hardening hypothesis,
the uniaxial plastic strain could not have served as the x-coordinate in the hardening diagram.
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238 Non-linear Finite Element Analysis of Solids and Structures

p

3

σ

ε

h

Figure 7.9 Hardening diagram for metal plasticity

Instead, we would have been forced to plot the plastic work on the horizontal axis of the hard-
ening diagram. Finally, it is observed from this identity that the hardening modulus will be
positive if the slope of the curve in the hardening diagram is also positive. The latter property
is shared by all yield functions and hardening hypotheses.

For other plasticity models the relation between the rate of the hardening parameter κ̇ and
the rate of plastic flow λ̇ is more complicated. For instance, the strain-hardening hypothesis
in combination with the Mohr–Coulomb yield function results in the following expression for
the hardening modulus h:

h = −
√

1

3
(1 + sin2 ϕ)

∂f

∂κ
(7.82)

or when a non-associated flow rule with a plastic potential as defined in Equation (7.54) is
employed:

h = −
√

1

3
(1 + sin2 ψ)

∂f

∂κ
(7.83)

When more strength parameters than the uniaxial yield strength σ̄ enter the yield function each
of these parameters can, in principle, be a function of the amount of hardening. For instance, in
the Mohr–Coulomb yield function (7.23) both the cohesion c and the angle of internal friction
ϕ can be made a function of the plastic strain through the hardening parameter:

f (σ, κ) = 1

2
(σ3 − σ1) + 1

2
(σ3 + σ1) sin ϕ(κ) − c(κ) cos ϕ(κ) (7.84)

The derivative of the yield function f with respect to the hardening parameter κ now involves
the stress level:

∂f

∂κ
= 1

2
(σ3 + σ1)

∂ sin ϕ

∂κ
− ∂(c cos ϕ)

∂κ

and two hardening diagrams are needed to completely define the hardening process. Clearly,
for the Mohr–Coulomb and Drucker–Prager yield criteria the hardening behaviour cannot be
inferred from a simple tension test. The plastic strains in all three directions must be measured
in a triaxial device in order to construct a proper hardening diagram in which one or more
strength measures are plotted as a function of the hardening parameter κ.
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Plasticity 239

7.3 Integration of the Stress–strain Relation

Computational models for elasto-plasticity were first developed in the early 1970s, e.g., in the
seminal paper of Nayak and Zienkiewicz (1972). An account of the developments in these early
years has been presented in the book by Owen and Hinton (1980). A firm basis of algorithms in
plasticity was established in the 1980s, with the introduction of important notions like return-
mapping algorithms and consistent tangent operators, see for instance Simo and Taylor (1985),
Ortiz and Popov (1985) and Runesson et al. (1986). With the introduction of these concepts,
large-scale computations have become feasible.

To obtain the strains and stresses in a structure that relate to a generic loading stage Equa-
tion (7.76) must be integrated along the loading path. The most straightforward way is to use
a one-point Euler forward integration rule. Such a scheme is fully explicit: the stresses and the
value of the hardening modulus h are known at the beginning of the strain increment so that
the tangential stiffness matrix can be evaluated directly. If the initial stress point σ0 is on the
yield contour the stress increment can be computed as:


σ =
(

De − Dem0nT
0 De

h0 + nT
0 Dem0

)

ε (7.85)

where the subscript 0 refers to the fact that quantities are evaluated at the beginning of the load
increment. The estimate in iteration j + 1 for the stress at the end of the loading step, σj+1,
then follows from:

σj+1 = σ0 + 
σ (7.86)

If the stress point is initially inside the yield contour the total strain increment must be
subdivided into a purely elastic part, i.e. a part that is needed to make the stress point reach the
yield surface, 
εA in Figure 7.10, and a part that involves elasto-plastic straining. Now, the
stress increment is computed as:


σ = De
εA +
(

De − DemcnT
c De

hc + nT
c Demc

)

εB (7.87)

D
e∆εε

A

D
e∆εε

B

σσ
0

σσ
c

σσ
e

σσ
j+1

n
c

m
c

f = 0 σ
1

σ
2

Figure 7.10 Explicit integration scheme: the total strain increment is divided into an elastic and a plastic
part. The plastic part is integrated with an Euler forward rule
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240 Non-linear Finite Element Analysis of Solids and Structures

where the subscript c denotes that the respective quantities are evaluated at σ = σc. A major
disadvantage of the explicit Euler method now becomes apparent: the contact stress must be
calculated explicitly. The procedure can also be viewed as follows. First, the ‘elastic’ stress
increment


σe = De
ε (7.88)

is calculated. For this calculation it is irrelevant whether the initial location of the stress
is inside or on the current yield surface. This stress increment may be conceived as a trial
stress increment, which rests upon the assumption of purely elastic behaviour during the load
increment. Possible plastic straining is not considered during this trial step. The total trial stress
σe is set up as the sum of the stress at the beginning of the loading step, σ0, and the ‘elastic’
stress increment 
σe:

σe = σ0 + De
ε (7.89)

If the trial stress σe violates the yield condition, f (σe, κ0) > 0, a correction is applied. The
direction and the magnitude of this correction are inferred from Equation (7.87):

σj+1 − σe = − nT
c De
εB

hc + nT
c Demc

Demc (7.90)

for the most general case that the initial stress point is located within the yield surface. Equa-
tion (7.90) shows that in the explicit Euler method, the flow direction m, the gradient to the
yield surface n and the hardening modulus h are computed either at the initial stress state σ0, or
at the stresses at the contact or intersection point of the ‘elastic’ stress path with the yield con-
tour σc if the initial stress state is within the yield contour. Combining Equations (7.88)–(7.90)
shows that the elastic predictor–plastic corrector process has the following format:

σj+1 = σe − 
λDemc (7.91)

where 
λ is the amount of plastic flow within this loading step:


λ = nT
c De
εB

hc + nT
c Demc

(7.92)

Equation (7.91) can be interpreted as follows. First, a trial stress is computed assuming fully
elastic behaviour. Then, the trial stress is mapped back, i.e. projected in the direction of the
yield surface. Therefore, the name return-mapping algorithm has become popular for this type
of integration method.

Figure 7.10 shows that, in the absence of hardening, the stress σj+1 is found at the intersection
of the hyperplane that is a tangent to the yield surface at σc and the return direction mc.
Apparently, the forward Euler method does not guarantee a rigorous return to the yield surface.
An error is committed with a magnitude which depends upon the local curvature of the yield
surface. A strongly curved yield surface gives rise to larger errors than an almost flat yield
contour. Especially when relatively large loading steps are used, the accumulation of errors
can become significant, which decreases the accuracy, and may lead to numerical instability of
the algorithm. This is shown in Figure 7.11, where the projection from the trial stress onto the
yield surface fails. Possible corrections to improve the estimate (7.85) for the stress increment
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Plasticity 241

f = 0

σ
0

σ
e

σ
2

σ
3

σ
1

Figure 7.11 Failure of the Euler forward integration rule.The return direction is such that the yield
contour will be missed

such that the plastic part of the strain increment is computed more accurately and the drifting
error is made smaller, are not of much help in this situation. The direction of the correction for
plastic flow is simply such that the yield surface will never be reached. For the Euler forward
algorithm stability of the integration scheme is only ensured for small loading steps.

The latter property of the Euler forward method is at variance with the wish to use large
loading steps. Therefore, the conceptual simplicity of the Euler forward method is normally
sacrificed to a more robust algorithm which warrants numerical stability irrespective of the
step size. A good and relatively simple algorithm is the implicit Euler backward method.
Formally, this algorithm is also given by Equation (7.91), but all quantities are now evaluated
at ( σj+1, κj+1):

σj+1 = σe − 
λDem(σj+1, κj+1) (7.93)

Comparing Equations (7.91) and (7.93), we observe that in the fully implicit Euler backward
algorithm there is no need to determine the contact stress σc. However, the equations are now
implicit in the sense that neither 
λ, σj+1 or κj+1 can be computed directly. Moreover, the
six equations of (7.93) contain fourteen unknowns, namely the six stress components of σj+1,
the seven components of κj+1, and 
λ. We must therefore augment Equations (7.93) by the
integrated form of the hardening rule (7.72):

κj+1 = κ0 + 
λp(σj+1, κj+1) (7.94)

with κ0 containing the values of the hardening variables at the beginning of the load increment,
and the requirement that the yield condition is complied with at the end of the loading step:

f (σj+1, κj+1) = 0 (7.95)

The set of non-linear equations (7.93)–(7.95) is subsequently cast in a format of local residuals
(in the sense that the residuals are defined at integration point level):


rσ = σj+1 − σe + 
λDem(σj+1, κj+1)

rκ = κj+1 − κ0 − 
λp(σj+1, κj+1)

rf = f (σj+1, κj+1)

(7.96)
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242 Non-linear Finite Element Analysis of Solids and Structures

This system can be solved using an iterative procedure, e.g. a Newton–Raphson method:


σk+1
j+1

κk+1
j+1

λk+1
j+1


 =




σk
j+1

κk
j+1

λk
j+1


 −




∂rσ
∂σ

∂rσ
∂κ

∂rσ
∂λ

∂rκ
∂σ

∂rκ
∂κ

∂rκ
∂λ

∂rf
∂σ

∂rf
∂κ

0




−1 


rk
σ

rk
κ

rk
f


 (7.97)

Within the global iteration j + 1, k denotes the iteration counter of this local Newton–Raphson
method at integration point level. The equations (7.96) and (7.97) are elaborated in Box 7.3 for
the case of a von Mises yield function with kinematic hardening. Box 7.4 shows that the same
methodology can also be applied to non-standard plasticity models like generalised plasticity
or bounding surface plasticity.

For isotropic hardening, the evolution equations of the hardening variable (7.72) reduce
to a quasi-linear relation between the rate of the hardening variable κ̇ and the consistency
parameter λ̇:

κ̇ = λ̇p(σ, κ) (7.98)

We can exploit this proportionality by reducing the system of residuals


rσ = σj+1 − σe + 
λDem(σj+1, κj+1)

rκ = κj+1 − κ0 − 
λp(σj+1, κj+1)

rf = f (σj+1, κj+1)

to: {
rσ = σj+1 − σe + 
λDem(σj+1, λj+1)

rf = f (σj+1, λj+1)
(7.99)

and κj+1 is then computed from

κj+1 = κ0 + 
λp(σj+1, λj+1) (7.100)

after convergence of the local Newton–Raphson iterative process, now described by:(
σk+1

j+1

λk+1
j+1

)
=

(
σk

j+1

λk
j+1

)
−

[
∂rσ
∂σ

∂rσ
∂λ

∂rf
∂σ

∂rf
∂λ

]−1 (
rk
σ

rk
f

)
(7.101)

The differentials in Equation (7.101) can be elaborated as:

∂rσ

∂σ
= I + 
λDe ∂m

∂σ
≡ A (7.102)

∂rσ

∂λ
= Dem̄ (7.103)

∂rf

∂σ
= ∂f

∂σ
= nT (7.104)
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Plasticity 243

Box 7.3 Von Mises plasticity with kinematic hardening

The von Mises yield function equipped with kinematic hardening reads:

f (σ − α) =
√

3

2
(σ − α)TP(σ − α) − σ̄

With an associated flow rule the flow direction becomes

m = 3P(σ − α)

2
√

3
2 (σ − α)TP(σ − α)

or, using the yield function f = 0:

m = 3

2σ̄
P(σ − α)

Using Ziegler’s kinematic hardening rule (7.68) we have: p = a(α)(σ − α) and the set (7.96)
can be elaborated as:


rσ = σj+1 − σe + 3
λ

2σ̄
DeP(σj+1 − αj+1)

rα = αj+1 − α0 − 
λa(αj+1)(σj+1 − αj+1)

rf =
√

3
2 (σj+1 − αj+1)TP(σj+1 − αj+1) − σ̄

whence the derivates needed in the local iteration (7.97) become:


∂rσ
∂σ

= I + 3
λ
2σ̄

DeP
∂rσ
∂α

= − 3
λ
2σ̄

DeP
∂rσ
∂λ

= 3
2σ̄

DeP(σj+1 − αj+1)
∂rα
∂σ

= −
λa(αj+1)I
∂rα
∂α

= (
1 + 
λa(αj+1)

)
I − 
λ(σj+1 − αj+1)

(
∂a
∂α

)T

∂rα
∂λ

= −a(αj+1)(σj+1 − αj+1)
∂rf
∂σ

= 3
2σ̄

P(σj+1 − αj+1)
∂rf
∂α

= − 3
2σ̄

P(σj+1 − αj+1)

and, using Equations (7.74) and (7.98):

∂rf

∂λ
= ∂f

∂κ

∂κ

∂λ
= −h (7.105)

In Equation (7.103) the vector m̄ has been introduced, which is defined as:

m̄ = m + 
λ
∂m
∂λ

(7.106)
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244 Non-linear Finite Element Analysis of Solids and Structures

Box 7.4 Integration of alternative plasticity models

For generalised plasticity, the stress update and the internal variable update remain valid.
The difference is that the yield condition is replaced by an evolution equation for the
consistency parameter. If the discretised loading conditions for generalised plasticity are
violated, the governing equations read:

rσ = σj+1 − σe + 
λDe(mL)j+1

rκ = κj+1 − κ0 − 
λpj+1

rf = 
λ((hL)j+1 + nT
j+1De(mL)j+1) − nT

j+1De
ε

In bounding surface plasticity the hardening modulus h depends on the distance between
the current state and the bounding surface, and the vectors m and n depend on the bounding
surface. Since the equations do not require the specification of a yield function, the algorithm
also includes the integration of bounding surface plasticity, see also Auricchio and Taylor
(1995).

As we will observe in the next section, A, m̄, nT and (−h) are reused when assembling the
tangential stiffness matrix at global level.

A number of commonly used yield functions permit expressing σj+1 explicitly in terms of
σe, simplifying the procedure to the solution of a single non-linear equation. An example is
the Drucker–Prager yield function with isotropic hardening:

f (σ, κ) =
√

3

2
σTPσ + απTσ − k(κ) (7.107)

Considering that the Drucker–Prager yield function is often used for granular materials, strain
hardening is a reasonable hypothesis for this yield function. Substitution of the (non-associated)
flow rule (7.52) with the Drucker–Prager plastic potential (7.56) into Equation (7.60), and
considering that for the projection matrices we have:

PQP = P (7.108)

cf. Equations (7.33) and (7.62), we have κ̇ = λ̇, and the following expression for σj+1 ensues
upon substitution into Equation (7.93):

σj+1 = σe − 
λ


 3DePσj+1

2
√

3
2σT

j+1Pσj+1

+ βDeπ


 (7.109)

We next use the yield condition, f (σj+1, λj+1) = 0 to transform this equation into:

σj+1 = σe − 
λ

(
3DePσj+1

2(k(λj+1) − απTσj+1)
+ βDeπ

)
(7.110)
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Plasticity 245

The unknown stress σj+1 appears in both sides of the equation. This problem can be solved
by the following projection. We premultiply both sides by π, note that Pπ = 0, and obtain:

πTσj+1 = πTσe − 
λβK (7.111)

with K = πTDeπ the bulk modulus, Equation (1.114). Substitution of this result into Equa-
tion (7.110) yields:

σj+1 = A−1(σe − 
λβDeπ) (7.112)

with

A = I + 3
λDeP
2k(λj+1) + 
λαβK − απTσe

(7.113)

Enforcing the yield condition f (σj+1, λj+1) = 0 results in a single non-linear equation in
terms of 
λ:

f (
λ) =
√

3

2
(σe − 
λβDeπ)TA−TPA−1(σe − 
λβDeπ)

+απTA−1(σe − 
λβDeπ) − k(λj+1) = 0

(7.114)

The solution of this non-linear equation can be accomplished using a Newton–Raphson method
or a secant method, or to apply a spectral decomposition to P and De (Matthies 1989), which is
convenient in the present case because of the isotropic character of Drucker–Prager plasticity
and the assumed isotropy of the elastic part. Most anisotropic yield functions allow a similar
reduction to a single non-linear equation expressed in terms of the increment of the plastic
multiplier 
λ (Box 7.5).

Slope stability problems are often used to illustrate pressure-dependent plasticity, e.g. using
the Drucker–Prager yield function. Typically, and this assumption has also been made in
the example shown here, the slope is modelled as a plane strain configuration. A Drucker–
Prager yield function with a non-associated, non-dilatant flow rule (ψ = 0) has been used.
The slope has been is discretised using 2854 six-noded triangular elements with a three-point
Gauss integration scheme. Further details regarding the material data and geometry are given
in Verhoosel et al. (2009).

Figure 7.12 shows the slip plane that develops in the final stages of such a computation.
The load application for such an embankment is not trivial, since the self-weight that causes
failure cannot be increased further after the critical value has been reached. A force-controlled
simulation is therefore not capable of tracing the entire equilibrium path, and a path-following
method, see Chapter 4, must be used. Since the problem shows a localised failure mode which
involves energy dissipation, an energy release constraint that is based on Equation (4.32) has
been used, for which a more detailed formulation in the case of plasticity has been given
by Verhoosel et al. (2009). In Figure 7.13 the self-weight |b| is plotted as a function of the
downward vertical displacement of the crest of the slope.

Algorithms in which the flow direction and the state variables are not evaluated at the
beginning or at the end of the loading step have also been proposed. More precisely, we can
distinguish between the generalised trapezoidal return-mapping scheme and the generalised
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246 Non-linear Finite Element Analysis of Solids and Structures

Box 7.5 Anisotropic plasticity: the Hoffman and Hill yield criteria

The Hill (1950) and the Hoffman (1967) failure criteria have been developed to describe
the fracture behaviour of anisotropic (rolled) metals and of composites. Later, they have
been adapted to serve as yield criteria for anisotropic materials in a general sense (de Borst
and Feenstra 1990; Hashagen and de Borst 2001; Schellekens and de Borst 1990). The
Hoffman failure criterion is a quadratic function of the stresses:

f (σ) = α23(σ22 − σ33)2 + α31(σ33 − σ11)2 + α12(σ11 − σ22)2+
α11σ11 + α22σ22 + α33σ33 + 3α44σ

2
23 + 3α55σ

2
31 + 3α66σ

2
12 − σ̄2

In the principal stress space the criterion forms an elliptic paraboloid. The intersections
of the yield surface with planes parallel to the deviatoric plane are ellipses, with shapes
which are determined by the quadratic part of the function. The expansion of the function
along its space diagonal is governed by the terms that are linear in the stress. Setting
α11 = α22 = α33 = 0, the dependence on the hydrostatic stress is eliminated and the Hill
criterion results. For finite element implementation the yield function is reformulated as:

f (σ) = 1

2
σTPασ + σTπα − σ̄2

with

Pα =




2(α31 + α12) −2α12 −2α31 0 0 0

−2α12 2(α23 + α12) −2α23 0 0 0

−2α31 −2α23 2(α31 + α23) 0 0 0

0 0 0 6α44 0 0

0 0 0 0 6α55 0

0 0 0 0 0 6α66




and πT
α = (α11, α22, α33, 0, 0, 0). Use of an associated flow rule gives m = Pασ + πα and

the Euler backward algorithm, Equation (7.93), then gives:

σj+1 = (I + 
λDePα)−1(σe − 
λDeπα)

Subsequent substition into the yield function f (σ) results in a non-linear equation in 
λ.

midpoint return-mapping scheme. In the first class the residuals are defined as:


rσ = σj+1 − σe + 
λDe
(
(1 − θ)m(σj, κj) + θm(σj+1, κj+1)

)
rκ = κj+1 − κ0 − 
λ

(
(1 − θ)p(σj, κj) + θp(σj+1, κj+1)

)
rf = f (σj+1, κj+1)

(7.115)

where 0 ≤ θ ≤ 1, so that the flow direction and the hardening variables are determined as a
weighted average of the values at the beginning and at the end of the step. In the midpoint
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2nd invariant of the

deviatoric strain

Figure 7.12 Failure mode of the slope stability problem

return-mapping scheme the stress and the hardening variables are evaluated at an intermediate
stage, i.e. somewhere between the beginning and the end of the load increment, and these are
taken as input for the computation of the local residuals:


rσ = σj+1 − σe + 
λDem(σj+θ, κj+θ)

rκ = κj+1 − κ0 − 
λp(σj+θ, κj+θ)

rf = f (σj+1, κj+1)

(7.116)

with σj+θ = (1 − θ)σj + θσj+1 and κj+θ = (1 − θ)κj + θκj+1. Clearly, for both schemes
the fully explicit Euler forward method is retrieved when θ = 0, while the (implicit) Euler
backward method is obtained for θ = 1.

Ortiz and Simo (1986) have proposed the tangent cutting plane (TCP) algorithm as a succes-
sive application of a number of Euler forward steps (Figure 7.14). As with the Euler forward
and backward algorithms a trial stress σe is computed assuming purely elastic behaviour. Then,
a yield surface f0 is constructed through this stress point, and a flow direction m0 = m(σe, κ0)
is computed, with κ0 the hardening variables at the end of the previous loading step. When the
new stress σ1 is not compliant with the yield condition (7.95), the process is repeated until the
yield condition is met within a certain tolerance. This process can be summarised as:

σj+1 = σj − 
λDemj , mj = m(σj, κj) (7.117)

vA (m)

|b
|(
k
N
/
m
3

)

0.120.090.060.030

20
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Figure 7.13 Self-weight as a function of the vertical displacement of the crest of the slope

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



248 Non-linear Finite Element Analysis of Solids and Structures

f

f

f

f

0

1

2

3

m
2

σ

σ
0

σ
1

m
1

m

2σ
3

0

Figure 7.14 The tangent cutting plane algorithm (Ortiz and Simo 1986)

with the initial flow direction m0 = m(σe, κ0). The plastic flow intensity 
λ is obtained from
a linearisation of the yield condition (7.95):

f (σj+1, κj+1) = f (σj, κj) −
(
hj + nT

j Demj

)

λ (7.118)

Requiring the yield condition to hold at j + 1 provides the explicit expression:


λ = f (σj, κj)

hj + nT
j Demj

(7.119)

so that we have the following explicit update for the stress at iteration j + 1:

σj+1 = σj − f (σj, κj)

hj + nT
j Demj

Demj (7.120)

Although the TCP algorithm is conceptually simple and accurate, it is not unconditionally
stable because of its explicit character.

For a single iteration, Equation (7.120) specialises as:

σ1 = σe − f (σe, κ0)

h0 + nT
0 Dem0

Dem0 (7.121)

For linear, isotropic hardening h = h0 is constant. Furthermore, for (piecewise) linear yield
functions such as Tresca and Mohr–Coulomb, higher-order terms in the expansion of Equa-
tion (7.118) vanish and the gradients to the yield surface are the same for the trial stress σe and
for the stress that follows after the return map, σ1 – we will return to this property in Section 7.5.
The single-iteration TCP algorithm then coincides with an Euler backward algorithm. Indeed,
a rigorous return to the yield surface is obtained in a single iteration. The circular shape of the
yield surface in the π-plane in combination with the linearity in terms of the pressure p warrant
the same properties for the von Mises yield function (7.31) and for the Drucker–Prager yield
function (7.34), and it can be shown that higher-order terms cancel (de Borst and Feenstra
1990). For the von Mises yield function the return map attains a particularly simple format:

σ1 = σe − 3µ

h + 3µ

(
1 − σ̄(κ0)√

3(J2)e)

)
se (7.122)
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Plasticity 249

The name radial return method has been coined for this case, since the stress return direction
is radially in the π-plane (Wilkins 1964).

As regards the important issue of stability of the integration scheme, Ortiz and Popov (1985)
have shown that both for the generalised trapezoidal rule and for the generalised midpoint rule,
unconditional stability is obtained for θ ≥ 1

2 , irrespective of the magnitude of the loading step.
For the case of the von Mises yield criterion thorough accuracy studies have been carried out
for the generalised midpoint rule for θ = 0, θ = 1

2 – the mean-normal method (Rice and Tracey
1971) – and θ = 1 (Krieg and Krieg 1977; Schreyer et al. 1979). It was concluded that for this
particular yield criterion the Euler backward method is especially accurate for larger loading
steps, while the mean-normal method is the most accurate for smaller loading steps.

It is finally noted that Bushnell (1977) has proposed the substepping technique, where the
strain increment 
ε is divided in a number of, say n, subincrements, see also Pérez-Foguet
et al. (2001). The elasto-plastic stress computation is then carried out for each subincrement.
The substepping technique is mostly used in connection with an Euler forward scheme, but
can be applied equally well to the Euler backward schemes. Substepping still involves the
linearisation of the strain path over the loading step. This approximation can only be improved
when smaller loading steps are taken.

7.4 Tangent Stiffness Operators

Equation (7.93), which sets the dependence of the stress increment on the prescribed strain
increment can be conceived as a total stress–strain relation within the loading step. Accordingly,
we have a deformation theory of plasticity within a finite loading step rather than a flow theory
of plasticity when a return-mapping algorithm is used. For this reason the tangential stiffness
relation between stress rate and strain rate that is required when a Newton–Raphson method
is used at a global (structural) level, bears resemblance to the tangential operators that result
from a deformation theory of plasticity.

For the derivation of the consistent tangent operator the set (7.96) is differentiated to give:

(
I + 
λDe ∂m

∂σ

)

λDe ∂m

∂κ
Dem

−
λ
∂p
∂σ

(
I − 
λ

∂p
∂κ

)
−p

nT
(

∂f
∂κ

)T
0




 σ̇

κ̇

λ̇


 =


Deε̇

0

0


 (7.123)

Inversion of this system formally gives:
 σ̇

κ̇

λ̇


 =




D11 D12 D13

D21 D22 D23

D31 D32 D33




Deε̇

0

0


 (7.124)

so that

σ̇ = D11Deε̇ (7.125)

and D11De is the consistent tangent operator as it sets the relation between the stress rate σ̇

and the strain rate ε̇.
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250 Non-linear Finite Element Analysis of Solids and Structures

The simpler structure of the reduced system (7.99) permits the construction of the consistent
tangential stiffness operator in an explicit format. Differentiation of Equations (7.99) results in{

σ̇ = Deε̇ − λ̇Dem − 
λDe ∂m
∂σ

σ̇ − 
λDe ∂m
∂λ

λ̇

nTσ̇ − hλ̇ = 0
(7.126)

Using Equations (7.102) and (7.106) we rewrite Equation (7.126) as:{
Aσ̇ = Deε̇ − λ̇Dem̄

nTσ̇ − hλ̇ = 0
(7.127)

Introduction of the ‘pseudo-elastic’ stiffness matrix

H = A−1De (7.128)

permits the rewriting of Equation (7.126) in the following format:{
σ̇ = H(ε̇ − λ̇m̄)

nTσ̇ − hλ̇ = 0
(7.129)

Invoking the second equation of the above set, the algorithmic tangential stiffness relation
between stress rate and strain rate can be derived as:

σ̇ =
(

H − Hm̄nTH
h + nTHm̄

)
ε̇ (7.130)

or, invoking Equation (7.128) again:

σ̇ =
(

A−1 − Hm̄nTA−1

h + nTHm̄

)
︸ ︷︷ ︸

D11

Deε̇ (7.131)

which better brings out the similarity with the consistent tangent operator derived for the full
set, cf. Equation (7.125). For von Mises plasticity with isotropic hardening, a particularly
simple form of the tangential stiffness matrix can be constructed, which consists of a simple
modification of the elastic and plastic stiffness parameters, see Box 7.6 for details. For
infinitesimally small load steps 
λ → 0, and consequently, A → I, cf. Equation (7.102).
Then, H → De and the tangential stiffness matrix for continuum plasticity is recovered, Equa-
tion (7.76). However, for large increments of plastic strain, H can differ significantly from De.

Normally, the matrix H will be symmetric. This can be seen most easily by considering its
inverse:

H−1 = (De)−1A (7.132)

or, with A according to Equation (7.102),

H−1 = (De)−1 + 
λ
∂m
∂σ

(7.133)
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Plasticity 251

Box 7.6 Von Mises (J2) plasticity with isotropic hardening

For von Mises plasticity the ‘pseudo-elastic’ stiffness relation (7.128) particularises
as (de Borst 1989; Simo and Taylor 1985):

H = (
De)∗

where (De)∗ has the same structure as De, but with a modified shear modulus

µ∗ = E

2(1 + ν) + 3E
λ/
√

3J2

and a modified Poisson ratio

ν∗ = ν + E
λ/2
√

3J2

1 + E
λ/
√

3J2

which reduce to their continuum counterparts when plastic flow is not included (
λ ≡ 0).
Furthermore, a modified value for the plastic hardening modulus

h∗ = h

1 − E
λ/
√

3J2

has to be inserted in the consistent tangential stiffness matrix, Equation (7.130). The above
expressions provide a simple modification to the continuum elasto-plastic stiffness matrix.

For coaxial flow rules, i.e. when Equation (7.51) holds, we can further reduce H−1 to:

H−1 = (De)−1 + 
λ
∂2g

∂σ2 (7.134)

which is clearly symmetric, and therefore also H. The symmetry of H is, however, a necessary,
but not a sufficient condition for the symmetry of the consistent tangential stiffness matrix as
expressed through Equation (7.130). Clearly, a non-associated flow rule (m /= n) causes the
consistent tangential stiffness matrix to become non-symmetric, but this also happens when
the plastic flow direction m is dependent on the plastic strain history through the hardening
parameter κ. Then, m̄ differs from the plastic flow direction m, Equation (7.106), and there-
fore from the gradient to the yield function n. This source of non-symmetry, which is called
non-associated hardening, is not present in the conventional expression for the elasto-plastic
tangential stiffness relation. Furthermore, the scheme that is used to integrate the rate equations
influences the tangential stiffness matrix and can cause the matrix to become non-symmetric,
even when the tangential stiffness matrix for the rate problem is symmetric (Box 7.7). It is
finally noted that use of a consistent tangential stiffness matrix is meaningful only when a full
Newton–Raphson procedure is employed to solve the set of non-linear equations at a global
(structural) level. This is because the magnitude of the plastic strain within the loading step
enters the tangential stiffness matrix.
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252 Non-linear Finite Element Analysis of Solids and Structures

Box 7.7 Symmetry vs non-symmetry of consistently linearised tangent operators

Among the class of implicit integration schemes, the Euler backward scheme (θ = 1) is the
only scheme that can preserve symmetry (Ortiz and Martin 1989). For the von Mises yield
criterion with an associated flow rule and no hardening this can be shown straightforwardly.
Then, m and n are co-linear, and we have instead of Equation (7.126):

σ̇ = Deε̇ − λ̇Denj+θ − 
λDe ∂nj+θ

∂σj+1
σ̇

Defining A now as:

A = I + 
λDe ∂nj+θ

∂σj+1

one obtains:

σ̇ = A−1De(ε̇ − λ̇nj+θ)

Since compliance with the yield function is enforced at the end of the loading step, cf.
Equation (7.99), the consistency condition gives:

nT
j+1σ̇ = 0

and the consistent tangential stiffness relation reads:

σ̇ =
(

A−1 − A−1Denj+θnT
j+1A−1

nT
j+1A−1Denj+θ

)
Deε̇

Thus, symmetry is lost even for associated von Mises plasticity as a pure consequence of
the update algorithm.

7.5 Multi-surface Plasticity

7.5.1 Koiter’s Generalisation

A complication occurs when the plastic potential function, or in the case of an associated flow
rule the yield function, is not continously differentiable along the entire yield surface. This for
instance occurs for the Tresca and Mohr–Coulomb yield surfaces at places where two planes
intersect. At such vertices a unique flow direction cannot be defined. At most, it can be stated
that the plastic flow direction is within the wedge spanned by the flow direction vectors that
belong to either of the plastic potential functions g1 and g2 that are adjacent to the corner of
Figure 7.15. Mathematically, we obtain that

ε̇p = λ̇1m1 + λ̇2m2 (7.135)
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Figure 7.15 Corner in the yield surface and/or plastic potential function

where

m1 = ∂g1

∂σ
, m2 = ∂g2

∂σ

The constraints are that we cannot have a negative magnitude of the plastic flow in either
direction m1 or m2:

λ̇1 ≥ 0 ∧ λ̇2 ≥ 0

Thus, Koiter’s generalisation for singularities in the yield surface states that the plastic strain-
rate vector can be written as a linear combination of both flow vectors mi, i = 1, 2, with
non-negative coefficients (Koiter 1953). Application of the Euler backward algorithm results
in the following discrete set of equations:{

σj+1 = σe − ∑2
i=1 
λiDemi

κj+1 = κ0 + ∑2
i=1 
λipi

(7.136)

subject to the discrete Karush–Kuhn–Tucker conditions:


λi ≥ 0 , fi ≤ 0 , 
λifi = 0 (7.137)

The relative magnitudes of the plastic multipliers λ̇1 and λ̇2 depend on the external kinematic
constraints that are imposed on the deformation. Taking the Tresca yield function with an
associated flow rule as an example, we find for pure uniaxial tension that the plastic strain rate
is given by: 

 ε̇
p
1

ε̇
p
2

ε̇
p
3


 = λ̇1


 1

0

−1


 + λ̇2


 1

−1

0


 (7.138)

Suppose now that the boundary conditions are such that while loading is in the 1-direction,
the displacements in the 2- and 3-directions are not restrained. Then, symmetry dictates that
the displacements in the 2- and 3-directions will be equal, which results in λ̇1 = λ̇2 = 1

2 λ̇.
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254 Non-linear Finite Element Analysis of Solids and Structures

Next, suppose that the boundary conditions are such that the displacements in the 3-direction
are prohibited, and that only those in the 2-direction are free (plane-strain conditions). Now,
one of the flow mechanisms will not become active, so that λ̇1 = 0, but λ̇2 = λ̇. Note that
under this kinematic condition there is no plastic straining in the 3-direction. Since also the
total strain rate in this direction is zero, this implies that there is also no elastic strain rate in
this direction, and consequently, there is no stress build-up in the 3-direction. Here, we have a
salient difference with the von Mises criterion for which an associated flow rule predicts plastic
straining in the intermediate direction, and as an ultimate consequence thereof, a change in the
stress level in the direction of the intermediate principal stress.

7.5.2 Rankine Plasticity for Concrete

The proper modelling of tension-compression biaxial stress states in plain and reinforced
concrete is of major practical importance, since such stress states occur in critical regions and
crack initiation under such stress conditions often acts as a precursor to progressive collapse
of concrete structures. Examples include shear-critical reinforced concrete beams and splitting
failure in plain concrete structures. The modelling involves different inelastic mechanisms
which play a role under such stress conditions. Often, smeared crack or damage models are
used for tensile cracking and a plasticity formalism is employed for the failure of concrete
in (biaxial) compression. The simultaneous satisfaction of a fracture/damage criterion and a
yield function is not trivial. In de Borst and Nauta (1985) this issue is solved through a local
procedure at integration point level in which cracking and plasticity were treated in an iterative
fashion, such that during the computation of the plastic flow the cracking strain increment
was treated as an initial strain increment, and subsequently the fracture strain increment was
updated while freezing the computed plastic flow increment etc. Although this procedure has
been applied successfully in a number of calculations, numerical difficulties with state changes
have been reported (Crisfield and Wills 1989), especially for tension–compression stress states.

An alternative, robust option is to model both the fracture behaviour under tensile stresses and
the ‘crushing’ of concrete under compressive stresses via a plasticity formalism. For this pur-
pose a composite yield function can be constructed (Figure 7.16), in which a Rankine (principal
stress) yield function is used to limit the tensile stresses (Rankine 1858) and a Drucker–Prager
yield criterion is employed to model the compression–compression regime and part of the
tension–compression regime. This composite yield contour appears to closely match classical
experimental data (Kupfer and Gerstle 1973). Since both tensile and compressive failures are
now modelled using plasticity, the ‘corner’ regime, where both yield contours intersect, can be
handled using Koiter’s generalisation for plastic flow at a corner in the yield contour (Koiter
1953), and an Euler backward integration algorithm can be developed, including a consistently
linearised tangential stiffness matrix. A drawback of the plasticity-based approach is that the
stiffness degradation due to progressive damage cannot be modelled, which is disadvantageous
especially under cyclic loadings.

The composite yield surface consists of a Rankine yield function, f1, and a Drucker–Prager
yield function, f2. Both yield functions will subsequently be formulated for plane-strain con-
ditions. Plane-stress conditions can be derived either by direct reduction, or indirectly by en-
forcing the plane-stress condition, σzz = 0, via a compression/expansion algorithm (de Borst
1991). In this algorithm, the strain vector is expanded by including the normal strain in the
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Figure 7.16 Comparison of a composite Rankine/Drucker–Prager yield surface with experimental data
for biaxially loaded concrete (Kupfer and Gerstle 1973)

constrained direction in the beginning of an iteration. Then, the constitutive model is evaluated
in the expanded, or plane-strain stress space. Finally, the stress vector is compressed such that
the condition σzz = 0 is enforced rigorously.

The composite yield contour is thus expressed by the following yield functions:


f1 =

√
1
2σTP1σ + 1

2πT
1 σ − σ̄1(κ1)

f2 =
√

1
2σTP2σ + αf πT

2 σ − βσ̄2(κ2)
(7.139)

with σT = (σxx, σyy, σzz, σxy) and the projection matrices P1 and P2 are given by:

P1 =




1
2 − 1

2 0 0

− 1
2

1
2 0 0

0 0 0 0

0 0 0 2


 (7.140)
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256 Non-linear Finite Element Analysis of Solids and Structures

and

P2 =




2 −1 −1 0

−1 2 −1 0

−1 −1 2 0

0 0 0 6


 (7.141)

respectively. The projection vectors read:{
πT

1 = (1, 1, 0, 0)

πT
2 = (1, 1, 1, 0)

(7.142)

The equivalent stress σ̄1 is the uniaxial tensile strength, and is a function of an internal variable,
κ1. The equivalent stress σ̄2 is the uniaxial compressive strength, which is also expressed as
a function of an internal variable, κ2. The factors αf and β can be related to the uniaxial and
biaxial compressive strengths. In the tensile regime an associated flow rule suffices, but in the
compressive regime an excessive plastic volume increase is predicted by an associated flow
rule, hence the following potential functions are used:


g1 = f1

g2 =
√

1
2σTP2σ + αgπ

T
2 σ − βσ̄2(κ2)

(7.143)

with typically αg < αf .
For the choice of gi formulated in Equations (7.143) the Euler backward procedure (7.136)

evolves as: 
σj+1 = A−1

(
σe − 1

2
λ1Deπ1 − αg
λ2Deπ2

)
κj+1 = κ0 + ∑2

i=1 
λipi

(7.144)

with the matrix A given by:

A = I + 
λ1

2�1
DeP1 + 
λ2

2�2
DeP2 (7.145)

where the denominators read: 


�1 =
√

1
2σT

j+1P1σj+1

�2 =
√

1
2σT

j+1P2σj+1

(7.146)

These expressions are not convenient because they involve the updated stress σj+1. Using
projections as outlined for the Drucker–Prager yield function, expressions can be obtained
for �1 and �2 which are only functions of the variables in the trial state and of the plastic
multipliers (Feenstra and de Borst 1996).

The singular point at the apex in the Rankine and the Drucker–Prager yield surfaces can
cause numerical problems because the denominators �1 as well as �2 can become zero at
the apex of these yield surfaces, see Equation (7.146). Because of the assumption of isotropic
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Plasticity 257

elasticity, the elastic stiffness matrix De and the projection matrices P1 and P2 have the same
eigenvector space. This means that the spectral decomposition is given by the same transfor-
mation, according to: 


De = W�DWT

P1 = W�P1WT

P2 = W�P2WT

(7.147)

with the diagonal matrices


�D = diag
[

E
1+ν

, E
1+ν

, E
1−2ν

, E
2(1+ν)

]
�P1 = diag [0, 1, 0, 2]

�P2 = diag [3, 3, 0, 6]

(7.148)

and the orthogonal matrix

W =




1√
6

− 1√
2

1√
3

0

1√
6

1√
2

1√
3

0

− 2√
6

0 1√
3

0

0 0 0 1


 (7.149)

The matrix A now simplifies to:

A = W
[

I + 
λ1

2�1
�D�P1 + 
λ2

2�2
�D�P2

]
WT (7.150)

which can be inverted to give:

A−1 = W diag

[
�2

�2 + 3
λ2G
,

�1�2

�1�2 + (�2
λ1 + 3�1
λ2)G
,

1,
�1�2

�1�2 + (�2
λ1 + 3�1
λ2)G

]
WT (7.151)

When the stress is at the apex of the Rankine yield function, i.e. when σT = [σ̄1, σ̄1, 0, 0],
we have �1 = 0. Since the Drucker–Prager yield function is not active at this point, 
λ2 equals
zero, and the limit of the mapping matrix is given by

lim
�1→0

A−1 =




1
2

1
2 0 0

1
2

1
2 0 0

0 0 1 0

0 0 0 0


 (7.152)
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258 Non-linear Finite Element Analysis of Solids and Structures

so that the return map reads:

σj+1 = lim
�1→0

A−1(σe − 1

2

λ1Deπ1) (7.153)

Another situation which could cause numerical problems is when the final stress is at the apex
of the Drucker–Prager yield surface, �2 = 0. Because the tensile stresses are bounded by the
tensile strength via the Rankine criterion, this situation cannot occur.

When the stress is at an intersection of two yield surfaces, both yield functions fi(σj+1, κj+1)
must vanish. Upon substitution of σj+1 and κj+1, as given by Equations (7.136), the yield
functions fi can be expressed in terms of the plastic multipliers 
λi, and reduce to a coupled
system of scalar equations: {

f1(
λ1, 
λ2) = 0

f2(
λ1, 
λ2) = 0
(7.154)

which have to be solved for (
λ1, 
λ2) to obtain the final stress state which is subject to the
constraints of the discrete Karush–Kuhn–Tucker conditions, Equation (7.137). The location
of the intersection between two yield surfaces is unknown at the beginning of a step and the
initial configuration cannot provide sufficient information for determining which surface is
active at the end of the load step. Simo et al. (1988) have proposed an algorithm in which the
assumption is made that the number of active yield surfaces in the final stress state is less than
or equal to the number of active yield surfaces in the trial stress state. This implies that it is
not possible for a yield function which is inactive in the trial state to become active during
the return map. As explained by Pramono and Willam (1989) this assumption is not valid for
softening plasticity. For this reason Feenstra and de Borst (1996) have modified the approach
of Simo et al. (1988) to account for the fact that a yield surface can become active during
the return map. Additional constraints cj are introduced, which indicate the status of the yield
functions. Initially, the constraints are determined by the violation of the yield criterion in the
trial state:

ci =
{

1 if fi(σe, κ0) > 0

0 if fi(σe, κ0) ≤ 0
(7.155)

During the return map the active yield functions are determined through the conditions

ci =
{

1 if 
λi > 0 ∨ fi > 0

0 if 
λi < 0 ∧ fi < 0
(7.156)

The additional constraints are introduced for numerical convenience, since the non-linear
constraint equations, Equations (7.154), are now expressed as{

c1f1(
λ1, 
λ2) + (1 − c1)
λ1 = 0

c2f2(
λ1, 
λ2) + (1 − c2)
λ2 = 0
(7.157)

so that the conditions (7.137) are enforced simultaneously. The solution of this system of
equations is obtained through a local iterative procedure, for instance with a Quasi-Newton
update of the Jacobian (Dennis and Schnabel 1983). The success of this approach depends on
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Figure 7.17 Experimental set-up and finite element discretisation of shear wall [panel S2 of Maier and
Thürlimann (1985), all dimensions are in millimetres]

the initial Jacobian, which is typically determined from the linearisation of the yield functions
in the trial state. With this algorithm it is usually possible to arrive at the correct number of
active yield surfaces within ten iterations, also when more yield conditions are violated in the
trial state.

The analysis of shear wall panels is an example of the application of a composite plasticity
model to reinforced concrete. The panel which is shown in Figure 7.17 has been tested by
Maier and Thürlimann (1985). The panel is initially loaded by a vertical compressive force,
and then by a horizontal force until the experiment becomes unstable and failure occurs. In
the experimental set-up, the panels were supported on a base block and loaded through a thick
top slab. Linear elasticity has been assumed for the top slab and no reinforcement has been
added in the top slab. The supporting block has been replaced by fixed supports in the x-
and y-directions. Figure 7.17 shows that the horizontal and vertical loads have been applied
as uniformly distributed loads. The figure also shows the finite element discretisation, with
quadratic plane-stress elements and nine-point Gaussian integration for the concrete as well as
for the reinforcement. The reinforcement consists of reinforcing grids in two directions with a
diameter of 8 mm and a cover of 10 mm. The reinforcement ratios in the web of the panel are
equal to 0.0103 and 0.0116 for the x- and y-directions, respectively. The reinforcement ratio
in the flange of the panel is equal to 0.0116. The material properties have been averaged from
the experimental data, but with a reduced compressive strength fc = 27.5 MPa. The following
material parameters have been used: Young’s modulus Ec = 30 GPa, Poisson’s ratio ν = 0.15,
tensile strength ft = 2.2 MPa and a tensile fracture energy Gc = 0.07 N/mm. To strive for mesh
objectivity in the compressive region as well, a compressive fracture energy GII

c = 50 N/mm
has been included in the model (Feenstra and de Borst 1996).

The panel is subjected to an initial vertical load of 1653 kN, which results in an initial
horizontal displacement of 0.29 mm in the experiment. The calculated initial displacement is
equal to −54 × 10−6 mm which indicates a possible eccentricity in the experimental set-up.
After the initial vertical load, the horizontal load is applied using a path-following method with
the horizontal direction uh as the active degree of freedom and load steps of approximately
0.1 mm. Using a Newton–Raphson iterative procedure, converged solutions could be obtained
in the entire loading regime. The load–displacement diagram for uh is shown in Figure 7.18,
which shows a fair agreement between the experimental and calculated response for both
discretisations. The failure mechanism was rather explosive and caused a complete loss of
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260 Non-linear Finite Element Analysis of Solids and Structures
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Figure 7.18 Experimental and computed load–displacement curves for shear wall [panel S2 of Maier
and Thürlimann (1985)]

load-carrying capacity (Maier and Thürlimann 1985), which is well simulated by the computed
brittle behaviour of the panel after maximum load.

7.5.3 Tresca and Mohr–Coulomb Plasticity

Early numerical work on yield surfaces with corners focused on the Tresca and Mohr–Coulomb
criteria. As a first solution, it was proposed to locally round-off the corners (Nayak and
Zienkiewicz 1972; Owen and Hinton 1980). However, the early approach in which the Mohr–
Coulomb yield criterion was replaced by the Drucker–Prager yield criterion in the vicinity of
the corner effectively introduces new corners at the intersection of the Mohr–Coulomb and
the Drucker–Prager yield surfaces. A better approach is to place a small cone in the corner
such that a smooth transition between the regular part of the yield surface and this cone is
obtained. A disadvantage of this procedure is that the introduction of such a strongly curved
part in the yield surface causes the accuracy and stability properties to deteriorate (Ortiz and
Popov 1985).

A more robust approach is to adopt Koiter’s generalisation (de Borst 1987). At the corner of
the Mohr–Coulomb or Tresca yield surfaces, both yield functions must be satisfied identically:{

f1(σj+1, κj+1) = 0

f2(σj+1, κj+1) = 0
(7.158)

Substitution of Equation (7.136)1 leads to:{
f1(σe − 
λ1Dem1 − 
λ2Dem2, κj+1) = 0

f2(σe − 
λ1Dem1 − 
λ2Dem2, κj+1) = 0
(7.159)

We recall that the Mohr–Coulomb and Tresca yield functions are linear in the princi-
pal stress space. Since for a single hardening mechanism, κj+1 = κ0 + h(
λ1 + 
λ2), cf.
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Plasticity 261

Equation (7.136), and assuming linear hardening with respect to the cohesion, so that the hard-
ening modulus h becomes a constant, a first-order Taylor series expansion results in a stress
σ1 that exactly satisfies both yield functions f1 and f2, and one obtains:{

H1
λ1 + H2
λ2 = f1(σe, κ0)

H2
λ1 + H3
λ2 = f2(σe, κ0)
(7.160)

with 


H1 = h + nT
1 Dem1

H2 = h + nT
1 Dem2 = h + nT

2 Dem1

H3 = h + nT
2 Dem2

(7.161)

The set (
λ1, 
λ2) can be be solved in closed form as:



λ1 = H3f1(σe,κ0)−H2f2(σe,κ0)
H1H3−H2

2


λ2 = H1f2(σe,κ0)−H2f1(σe,κ0)
H1H3−H2

2

(7.162)

and we have for the final stress:

σ1 = σe − 
λ1Dem1 − 
λ2Dem2 (7.163)

The Mohr–Coulomb yield function (7.25) is expressed in terms of principal stresses. It can
be expressed in terms of invariants by first solving the characteristic equation for the deviatoric
stresses, Equation (1.87):

s3 − J2s − J3 = 0

with J2 and J3 the deviatoric stress invariants. Using Cardano’s formula, the principal values,
or eigenvalues, of the deviatoric stress tensor can be derived, and addition of the hydrostatic
component yields the principal values of the stress tensor:

σ1

σ2

σ3


 = 2

√
J2/3


 sin(θ − 2

3π)

sin(θ)

sin(θ + 2
3π)


 + p


1

1

1


 (7.164)

where Lode’s angle −π/6 ≤ θ ≤ π/6 follows from (Figure 7.19):

sin(3θ) = − J2

2(J3/3)3/2 (7.165)

For σ1 ≤ σ2 ≤ σ3 the Mohr–Coulomb yield function is given by Equation (7.25). Substitution
of the expressions for σ1 and σ3 into this identity results in an expression in terms of stress
invariants:

f = √
J2 cos θ −

(
2
√

J2/3 − p
)

sin ϕ − c (7.166)
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262 Non-linear Finite Element Analysis of Solids and Structures

and we have for the gradient to the yield surface:

n = sin ϕ
∂p

∂σ
+ a

∂J2

∂σ
+ b

∂θ

∂σ
(7.167)

with the scalars a and b given by{
a = 1

2
√

J2
(cos θ − sin θ sin ϕ/

√
3)

b = −√
J2(sin θ + cos θ sin ϕ/

√
3)

(7.168)

and

∂θ

∂σ
=

√
3

2 cos 3θ

(
3

2
J

−5/2
2 J3

∂J2

∂σ
− J

−3/2
2

∂J3

∂σ

)
(7.169)

The derivatives of the invariants read:


(
∂p
∂σ

)T = (1 , 1 , 1 , 0 , 0 , 0)(
∂J2
∂σ

)T = (sxx , syy , szz , 2sxy , 2syz , 2szx)(
∂J3
∂σ

)T =
(
syyszz − s2

yz + J2/3 , szzsxx − s2
zx + J2/3 , sxxsyy − s2

xy + J2/3 ,

2(syzszx − szzsxy) , 2(szxsxy − sxxsyz) , 2(sxysyz − syyszx)
)

(7.170)

The expression for the flow direction m is identical to that for the gradient n except for the
replacement of the friction angle ϕ by the dilatancy angle ψ.

When the strict inequality signs of σ1 ≤ σ2 ≤ σ3 do not hold, i.e. when the stress point is in
a corner of the Mohr–Coulomb yield surface, the plastic strain rate is determined via Koiter’s
generalisation. For the Mohr–Coulomb surface, we essentially have two yield corners for the
present ordering of the principal stresses (Figure 7.19). We first consider the case for which
σ1 = σ2, so that the yield function

f = 1

2
(σ3 − σ2) + 1

2
(σ3 + σ2) sin ϕ − c

is also active. Carrying out a similar operation as for the yield function (7.25) the following
values for the scalars a and b are obtained:


a = 1

4
√

J2

(
cos θ − √

3 sin θ + (cos θ + sin θ/
√

3) sin ϕ
)

b = − 1
2

√
J2

(√
3 cos θ + sin θ + (cos θ/

√
3 − sin θ) sin ϕ

) (7.171)

Similarly, for σ2 = σ3, we obtain:


a = 1
4
√

J2

(
sin θ + √

3 cos θ + (sin θ/
√

3 − cos θ) sin ϕ
)

b = − 1
2

√
J2

(
sin θ − √

3 cos θ − (sin θ + cos θ/
√

3) sin ϕ
) (7.172)

A problem can arise if two principal stresses of the trial stress become exactly equal, since
the derivative ∂θ

∂σ
then becomes indeterminate. However, even when two principal stresses are
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Plasticity 263

σ
2

σ

µ

3 σ1

µ
2
< 0

e
D m

< 0
1

1µ > 0

mD
e

µ > 0
2

θ

Figure 7.19 Active part of the Mohr–Coulomb yield surface in the π-plane, with Lode’s angle −π/6 ≤
θ ≤ π/6

exactly equal, the expression for the gradient n remains bounded. Indeed, for this limiting case
the gradient to the Mohr–Coulomb yield surface becomes identical to that of the Drucker–
Prager yield surface. As an example we consider the case that θ = 1

6π. Then:


σ1

σ2

σ3


 =

√
J2/3


−2

1

1


 + p


1

1

1


 (7.173)

which upon substitution in the yield function (7.25) gives

f = (3 − sin ϕ)
√

J2/12 + p sin ϕ (7.174)

Differentation results in:

n = 3 − sin ϕ

4
√

3J2

∂J2

∂σ
+ sin ϕ

∂p

∂σ
(7.175)

which is precisely the gradient which is obtained when we differentiate the Drucker–Prager
yield function.

Another singularity in the Mohr–Coulomb yield surface occurs at the apex of the yield
surface. The algorithm has to check whether the stress is beyond the apex. If this happens to be
the case, an additional correction should be applied to bring the stress point back to the apex
of the yield cone. This problem only arises for cohesionless materials such as sand, because
for cohesive materials, a fracture criterion bounds the tensile stresses.
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264 Non-linear Finite Element Analysis of Solids and Structures

Equation (7.163) can be differentiated to yield the consistent tangent stiffness matrix for the
corner regime:(

I + 
λ1De ∂m1

∂σ
+ 
λ2De ∂m2

∂σ

)
σ̇ = Deε̇ − λ̇1Dem1 − λ̇2Dem2 (7.176)

assuming that the flow directions do not depend on the plastic strain, i.e. that the dilatancy angle
ψ is constant. This assumption certainly does not hold for many frictional materials, including
soils, rocks, and concrete. The assumption has merely been made here to not overcomplicate
the derivation. A matrix A can now be defined that derives from the sum of both plastic flow
mechanisms, so that:

A = I + 
λ1De ∂m1

∂σ
+ 
λ2De ∂m2

∂σ
(7.177)

and the ‘pseudo-elastic’ stiffness matrix H can be defined according to Equation (7.128).
Equation (7.176) can subsequently be written in a format that resembles Equation (7.129):

σ̇ = Hε̇ − λ̇1Hm1 − λ̇2Hm2 (7.178)

In the corner regime not only yield functions f1(σ, κ) and f2(σ, κ) must be satisfied, but also
their ‘time’ derivatives (consistency condition). This leads to:

nT
1 σ̇ − h(λ̇1 + λ̇2) = 0 ∧ nT

2 σ̇ − h(λ̇1 + λ̇2) = 0 (7.179)

cf. Equation (7.129). Combining Equations (7.178) and (7.179) and defining


H̃1 = h + nT
1 Hm1

H̃2 = h + nT
1 Hm2 = h + nT

2 Hm1

H̃3 = h + nT
2 Hm2

(7.180)

results in the consistent tangential stiffness matrix in the corner regime for a Mohr–Coulomb
yield function:

σ̇ =
(

H − 1

H̃1H̃3 − H̃2
2

H
(H̃3m1nT

1 − H̃2m1nT
2 − H̃2m2nT

1 + H̃1m2nT
2

)
H
)

ε̇ (7.181)

This expression becomes singular if two principal stresses are equal, which is at the corner. As
observed by Crisfield (1987) this problem can be circumvented by observing that in view of
the linearity of the Mohr–Coulomb yield criterion in the principal stress space, the gradients
n and m at the trial stress σe and those for the final stress σ1 are coaxial. Therefore, the
gradients at the trial stress σe can be used for the evaluation of the consistent tangential
stiffness matrix (7.181). In practical computations, no singularities are then encountered, and
also not when two principal stresses are equal in the trial stress state, since round-off errors
then usually prevent a singularity.

The observation that, for the Mohr–Coulomb yield function, the gradients at the trial stress
σe and at the final stress σ1 are coaxial can be exploited to derive a return mapping that operates
in principal stress space (Larsson and Runesson 1996; Perić and de Souza Neto 1999). It is
based on the observation that the gradient of a scalar function with respect to a second-order
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Plasticity 265

tensor is coaxial with the tensor (Ogden 1984). This implies that both at the trial stress state
and at the final stress state the gradient n is coaxial with the stress tensor. Since both gradients
are coaxial in this particular case, the tensors σe and σ1 are also coaxial. This implies that they
have the same eigenvectors, and therefore, the transformation to the principal stress axes can be
carried out with the same transformation matrix Tσ . Using Equation (1.102) we can transform
the Euler backward method, Equation (7.93), to the coordinate system of the principal stresses:

σ̄1 = Tσσ1 = Tσ

(
σe − 
λDem1

) = σ̄e − 
λDem̄1 (7.182)

where the bar above a symbol denotes a quantity in the coordinate system of the principal
stresses. For simplicity we now restrict the discussion to a regular part of the Mohr–Coulomb
yield surface. The derivation for the corner regime is identical and straightforward, but involves
a more lengthy derivation. Using Equations (7.25) and (7.54) the following explicit expressions
in the principal directions ensue:

σ1

σ2

σ3




1

=


σ1

σ2

σ3




e

− µf (σe, κ0)

h + µ(1 + sin ϕ sin ψ
1−2ν

)




−1 + sin ψ
1−2ν

2ν sin ψ
1−2ν

1 + sin ψ
1−2ν


 (7.183)

The updated stresses in the x, y, z-coordinate system can subsequently be obtained in a standard
manner via, cf. Equation (1.104):

σ1 = TT
σ σ̄1 (7.184)

The consistent tangential stiffness matrix can be obtained in a manner similar to that for the
stiffness matrix of the rotating crack model, Equation (6.123). From Equation (7.184) we have
by differentiation:

σ̇1 = TT
σ

˙̄σ1 + ṪT
σ σ̄1 (7.185)

Using the derivative of Equation (7.183), observing that the transformation matrix Tσ is a
function of the angle φ between the global coordinate system and the directions of the principal
stresses, and noting that φ is a function of the strains, cf. Box 6.3, we can rewrite this identity
as:

σ̇ = TT
σ

(
De ˙̄ε − λ̇Dem̄1

) +
(

∂TT
σ

∂φ
σ̄

)(
∂φ

∂ε

)
ε̇ (7.186)

with

λ̇ = n̄T ˙̄σe

h + µ(1 + sin ϕ sin ψ
1−2ν

)

Noting that n̄T ˙̄σe = n̄TDe ˙̄ε = µ(n∗)T ˙̄ε with

(n∗)T = µ(−1 + sin ϕ

1 − 2ν
,

2ν sin ϕ

1 − 2ν
, 1 + sin ϕ

1 − 2ν
)

and using the transformation of the strain components, Equation (1.105), the tangential stiffness
relation in the global coordinate system σ̇ = Dε̇ for a smooth part of the Mohr–Coulomb yield
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266 Non-linear Finite Element Analysis of Solids and Structures

Box 7.8 Construction of the tangential stiffness matrix for the Mohr–Coulomb yield
function using eigenprojections

1. Given σe, compute the principal values (σi)e , i = 1, 2
2. Compute the principal stresses (σi)1, via a return map in the principal stress space,

Equation (7.183)
3. Compute the derivatives in the principal stress space, ∂(σi)1

∂(σj)e
, i = 1, 2, j = 1, 2, from

Equation (7.183)
4. Compute the eigenprojections: (σm)e = (σ1)e + (σ2)e

(a) Ei = 1
2(σi)e−(σm)e

[σe − ((σi)e − (σm)e)I] , (σ1)e /= (σ2)e

(b) Ei = I , (σ1)e = (σ2)e
5. Compute the derivatives:

(a) D = (σ1)1−(σ2)1
(σ1)e−(σ2)e

[Isym − E1 ⊗ E1 − E2 ⊗ E2]

+∑2
i=1

∑2
j=1

∂(σi)1
∂(σj)e

Ei ⊗ Ej , (σ1)e /= (σ2)e

(b) D =
(

∂(σ1)1
∂(σ1)e

− ∂(σ1)1
∂(σ2)e

)
Isym + ∂(σ1)1

∂(σ2)e
I ⊗ I , (σ1)e = (σ2)e

surface is obtained, with the tangential stiffness matrix:

D = TT
σ

(
De − m∗(n∗)T

h + µ(1 + sin ϕ sin ψ
1−2ν

)

)
Tε +

(
∂TT

σ

∂φ
σ̄

)(
∂φ

∂ε

)
(7.187)

where m∗ and n∗ are identical, except for the replacement of the friction angle ϕ by the dilatancy
angle ψ. In a manner similar to the derivation of the tangential stiffness matrix for orthotropic
damage (Box 6.3), the second term on the right-hand side can be elaborated to give an explicit
form of the tangential stiffness matrix in two dimensions:

D = TT
σ

(
De − m∗(n∗)T

h + µ(1 + sin ϕ sin ψ
1−2ν

)
+ σ1 − σ2

2(ε1 − ε2)
Z

)
Tε (7.188)

Alternatively, the tangential stiffness matrix can be constructed using eigenprojections
(Box 7.8), from which the similarity with the expression derived in Equation (7.188), as
well as with the tangential stiffness for the rotating crack model, Equation (6.123), becomes
apparent. For the construction of the tangential stiffness matrix at corners of the yield surface,
or for three-dimensional configurations, eigenvalues and eigenprojections are more suited,
see Box 7.8 for the elaboration in two dimensions and de Souza Neto et al. (2008) for the
three-dimensional case.

In the preceding subsection a general procedure has been outlined to determine which yield
functions have been violated, and therefore, which return mapping should be applied. For
yield functions that are linear in the principal stress space, like those of Mohr–Coulomb or
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Plasticity 267

Tresca, a simple indicator can be derived whether the stress point is in a corner regime or not.
The procedure is rigorous for ideal plasticity and a good first approximation for hardening or
softening plasticity. The idea is to construct a plane which is spanned by the vector that points
along the intersection of two planes of the Mohr–Coulomb yield surface and the direction vector
Dem. This plane distinguishes between trial stresses that are mapped back onto a regular part
of the yield surface and those that are in the corner regime. The trial stress is mapped onto a
regular part of the yield surface if

µ1 ≤ 0 ∧ µ2 ≤ 0 (7.189)

with {
µ1 = f + 1−2ν+sin ϕ sin ψ

(1−2ν)(1+sin ψ) (σ2 − σ3)

µ2 = f + 1−2ν+sin ϕ sin ψ
(1−2ν)(1−sin ψ) (σ2 − σ1)

(7.190)

see also Figure7.19. If µ1 > 0 we are in the upper corner (σ2 = σ3) and for µ2 > 0 the stress
return must be towards the lower corner (σ1 = σ2) (de Borst et al. 1991). For hardening or
softening plasticity, this procedure cannot rigorously predict the correct regime, because the
position of the yield surface is unknown. An a posteriori check must then be done to verify the
prediction, and if it turns out that the prediction is falsified, a return map assuming the other
regime must be carried out.

7.6 Soil Plasticity: Cam-clay Model

When shearing a clay sample either of the stress–strain curves of Figure 7.20 will be obtained,
depending on the initial stress state. When the clay layer has been deposited in a normal
manner, the monotonically rising curve, labelled ‘normally consolidated’ will be obtained.
However, when there has been a (vertical) prestress in the past, for instance resulting from an
overburden such as a thick layer of ice, there can be large horizontal initial stresses present, and
the hardening part of the curve will be followed by softening (Wood 1990). Since the plastic
compaction is an important measure for the loading history, it is natural to take the volumetric
plastic compaction κ̇ = −ε̇

p
vol as an internal variable, Equation (7.63). Within the framework

normally consolidated clay

overconsolidated clay

Shear strain

Sh
ea

r 
st

re
ss

Figure 7.20 Shearing of normally consolidated and overconsolidated clay
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268 Non-linear Finite Element Analysis of Solids and Structures

c M pp

q
εp.

Figure 7.21 Elliptical yield surface of the Cam-clay model in the p, q-space

of single surface plasticity, the (modified) Cam-clay model is able to capture this phenomenon.
In its simplest form, it uses an ellipse in the p, q-space as yield surface, and the yield function
reads:

f =
( q

M

)2 + p(p − 2pc) (7.191)

see Figure 7.21, where, for simplicity, restriction has been made to a cohesionless soil. In
Equation (7.191) M is the stress ratio q/p at the critical state, i.e. the state for which continued
plastic shearing will occur at a zero plastic volume change, and pc is the preconsolidation
pressure. Defining (pc)0 as the initial preconsolidation pressure and p0 being the initial value
of the pressure, normally consolidated clays are characterised by p0 < (pc)0, and an associated
flow rule ε̇p = λ̇n predicts plastic volume compaction and an expansion of the yield surface
(hardening). For overconsolidated clays, p0 > (pc)0, and a plastic volume expansion occurs,
accompanied by softening. A hardening rule that can accommodate this behaviour reads:

ṗc =
(

pc

κ∗ − λ∗

)
ε̇

p
vol (7.192)

with κ∗ and λ∗ the modified swelling index and the modified compression index, respectively.
This relation can be integrated to give:


pc = exp

(

ε

p
vol

κ∗ − λ∗

)
(7.193)

Unlike metals, concrete and most other materials, it is not possible to distinguish an initial
linear-elastic branch in the stress–strain curve for soils, and stress-dependent elastic moduli
are required for a proper description. For clays, this non-linear elasticity primarily applies to
the volumetric behaviour, while in shear linearity is often assumed. Then, the shear modulus
µ can be taken as constant, while for the volumetric elastic behaviour the following relation is
postulated:

ṗ =
( p

κ∗
)

ε̇e
vol (7.194)
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Plasticity 269

instead of the linear relation (1.113). Integrating Equation (7.194) for a finite strain increment
yields:


p = exp

(

εe

vol

κ∗

)
(7.195)

By definition the secant bulk modulus Ks = 
p

εe

vol
, so that

Ks =
exp

(

εe

vol
κ∗

)

εe

vol
(7.196)

has to be inserted in the elastic secant stiffness matrix Ds that is used in the algorithm to
compute the updated stresses for finite strain increments.

Using the projection matrix (7.36) and the projection matrix (7.33) the yield function can
be rewritten as:

f = 3σTPσ

2M2 + πTσ(πTσ − 2pc) (7.197)

and the flow rule becomes:

ε̇p = λ̇n = λ̇

(
3Pσ

M2 + 2p(1 − pc)π

)
(7.198)

Note that the Cam-clay model involves a dependence of the plastic flow on the hardening
(through pc), and therefore, exhibits non-associated hardening behaviour, leading to a non-
symmetric consistent tangent stiffness matrix. Using the flow rule, Equation (7.198), the evo-
lution of the hardening variable κ becomes:

κ̇ = −ε̇
p
vol = −3πTε̇p = −3λ̇πTn = −2λ̇p(1 − pc) (7.199)

Since (pc)j+1 = pc(κj+1) = pc(κ0 + 
κ) and since, according to Equation (7.199), 
κ is
a function of the preconsolidation pressure pc, it is not possible to explicitly resolve pc, and
therefore, Equations (7.99) cannot be used. The non-linear dependence of the elastic volumetric
strain on the pressure is another reason that the framework of Equations (7.99) is insufficient.
Indeed, this non-linear dependence means that a further residual equation has to be added. For
a proper return-mapping algorithm for Cam-clay plasticity, the set of local residuals (7.99) has
to be expanded to include a variable elastic stiffness (de Borst and Heeres 2002; Rouainia and
Wood 2000): 



rσ = σj+1 − (σ0 + Ds
ε) + 
λDsn(σj+1, (pc)j+1)

rp = pj+1 − p0 exp
(


εvol−2
λpj+1[1−(pc)j+1]
κ∗

)
rpc = (pc)j+1 − (pc)0 exp

(

ε

p
vol+2
λpj+1[1−(pc)j+1]

κ∗−λ∗

)
rf = f (σj+1, (pc)j+1)

(7.200)

This set of non-linear equations in the unknowns (σ, p, pc, 
λ) can be solved in a standard
manner, via a local Newton–Raphson procedure. Simplifications can be made by exploiting
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270 Non-linear Finite Element Analysis of Solids and Structures

the fact that the Cam-clay model is formulated in terms of the stress invariants p and q only.
Using a procedure similar to those for Drucker–Prager or Hoffman plasticity, the residuals can
be reduced to three equations (Rouainia and Wood 2000). When non-linear elasticity is left
out of consideration a reduction to two equations is possible (de Souza Neto et al. 2008).

7.7 Coupled Damage–Plasticity Models

A possible way to combine plasticity and damage in a rational and physically meaningful
manner is to adopt a damage-like stress–strain relation:

σ = (1 − ω)De : εe (7.201)

and to postulate that plasticity only applies to the intact matrix material and not to the voids
of the micro-cracks. Using the effective stress concept, Equation (6.13), the effective stresses
in a coupled damage–plasticity model can therefore be defined as:

σ̂ = De : εe (7.202)

which enter the yield function (7.24) and the flow rule,

ε̇p = λ̇
∂f

∂σ̂
(7.203)

An algorithm for this coupled damage–plasticity model is given in Box 7.9.

Box 7.9 Algorithm for coupled damage–plasticity model

1. Compute the strain increment: 
ε

2. Update the strain: εj+1 = εj + 
ε

3. Compute the trial stress in the effective stress space:
σ̂0 = σ0/(1 − ω0)
σ̂e = σ̂0 + De
ε

σ̃e = σ̃(σ̂e)
4. Evaluate the plastic loading function: f p = σ̃e − σ̄(κp

j )

if f p ≥ 0 , σ̂j+1 = σ̂e − 
λDe
(

∂f p

∂σ̂

)
j+1

else 
λ = 0 → σ̂j+1 = σ̂e

5. Evaluate the damage loading function: f d = ε̃(εj+1) − κd
j

if f d ≥ 0 , κd
j+1 = ε̃(εj+1)

else κd
j+1 = κd

j

6. Update the damage paramater: ωj+1 = ω(κd
j+1)

7. Compute the new stresses: σj+1 = (1 − ωj+1)σ̂j+1
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Plasticity 271

An alternative way for coupling damage and plasticity is provided by the modified Gurson
model, which has been widely used for the analysis of void nucleation and growth in porous
metals. Essentially, this model is a plasticity model, equipped with the usual decomposition of
the strain into elastic and plastic components, Equation (7.41), the injective relation between
the elastic part of the strain and the stress, Equation (7.40), the flow rule (7.43) and the loading–
unloading conditions, but with the yield function incorporating a damage parameter ω:

f (I1, J2, κ, φ
∗) = 3J2

2σ̄2(κ)
+ 2q1ω(φ∗) cosh

(
q2I1

2σ̄(κ)

)
− q3ω

2(φ∗) − 1 (7.204)

with σ0 the uniaxial yield strength of the material without voids, which depends on the hard-
ening parameter κ. q1, q2 and q3 are material parameters, which, for many conditions, can
be taken as: q1 = 1.5, q2 = 1 and q3 = q2

1. The coupling is provided by the inclusion of the
damage parameter ω in the yield function f . The damage parameter ω is specified as:

ω =



φ∗ if φ∗ ≤ φ∗
c

φ∗
c + q−1

1 −φ∗
c

φ∗
f
−φ∗

c
(φ∗ − φ∗

c ) if φ∗ > φ∗
c

(7.205)

with φ∗
c a critical value of the void volume fraction φ∗ at which coalescence begins and φ∗

f

its final value. The model is completed by an evolution equation for φ∗, which consists of
two terms, one due to void nucleation, φ̇∗

nucl and a second term due to void growth φ̇∗
growth:

φ̇∗ = φ̇∗
nucl + φ̇∗

growth, and starts at φ∗ = φ∗
0. Detailed expressions are given by Needleman and

Tvergaard (1987). In the absence of voids, φ∗ = 0 and the yield function reduces to the von
Mises contour.

The coupling of damage to plasticity causes a degradation of the strength at a certain level
of deformation. A softening behaviour is then observed, material stability is lost, and the pos-
sibility of loss of ellipticity exists in quasi-static calculations. As a consequence, an excessive
dependence on the discretisation can be obtained in numerical simulations, as discussed in
Chapter 6. Regularisation strategies, for instance the addition of spatial gradients, must then
be adopted in order to restore ellipticity, so that physically meaningful results are obtained,
see de Borst et al. (1999) for a gradient-enhancement of coupled damage–plasticity mod-
els. A degradation mechanism can also be introduced in plasticity alone by making the yield
strength a descending function of the hardening variable. Also in this case regularisation must
be adopted to restore ellipticity in quasi-static calculations (de Borst and Mühlhaus 1992).

7.8 Element Technology: Volumetric Locking

An important issue in computational elasto-plasticity is the phenomenon of mesh locking
at fully developed plastic flow, which can lead to large errors when computing collapse
loads (Nagtegaal et al. 1974). Much effort has therefore been put in the development of simple
elements that alleviate or even remove this problem.

For a proper discussion of locking of finite elements under kinematic constraints induced
by the constitutive relation, we take our point of departure at the rate form of the principle of
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272 Non-linear Finite Element Analysis of Solids and Structures

virtual work (2.37): ∫
V

δεTσ̇dV =
∫

V

ρδuTġdV +
∫

S

δuT ṫdS (7.206)

When a limit point is attained the external loads become stationary, ġ = 0 and ṫ = 0, and
Equation (7.206) reduces to: ∫

V

δεTσ̇dV = 0 (7.207)

This equation is satisfied for all possible δε if and only if σ̇ = 0. Considering linear elasticity,
we have σ̇ = Deε̇e. Clearly, the requirement that the stress becomes stationary implies ε̇e = 0.
This observation, together with the fact that the plastic flow components are interdependent,
effectively imposes a kinematic constraint upon the velocity field u̇ for certain types of consti-
tutive operators and configurations, notably plane-strain, axisymmetric and three-dimensional
conditions. The issue is most conveniently illustrated for a Mohr–Coulomb yield function,
Equation (7.23), where a non-associated flow rule with a plastic potential of the form (7.54)
results in the following relation between the plastic volume change and the plastic shear strain,
see also Equation (7.55):

ε̇
p
vol = γ̇psinψ

Since the elastic strain rates have been shown to vanish at a limit point, we can replace this
identity by:

ε̇vol = γ̇sinψ (7.208)

which states that at collapse any amount of shear strain imposed upon the element is necessarily
accompanied with an amount of volumetric strain, governed by the dilatancy angle ψ. The
consequences for the element performance can be illustrated simply for the two constant
strain triangles of Figure 7.22, which are representative for the whole mesh. According to the
constraint (7.208) the right-upper node can only move along the dashed lines, which effectively
means that the node must remain on its place, thus preventing the possibility of a collapse
mechanism. This phenomenon of volumetric locking is known for incompressible elasticity
and isochoric plasticity (ψ = 0 for Mohr–Coulomb plasticity), but is present whenever the
constitutive relation imposes a kinematic constraint on the strain rate field.

fixed

ψ

ψ

Figure 7.22 Locking of two three-noded triangles for fully developed plastic flow
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u̇
v̇
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v̇
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(a) (b) (c)

II

III
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Figure 7.23 (a) Four-noded quadrilateral element; (b) patch of two three-noded triangular elements;
(c) patch of four three-noded triangular elements

To present a more quantitative treatment of the phenomenon and of some of the remedies
that have been proposed, we consider the quadrilateral element of Figure 7.23. We choose the
principal axes of the strain rate tensor to coincide with the local ξ, η-coordinate system of an
element. This choice is permissible, since under planar deformations ε̇vol and γ̇ are invariant.
For the Mohr–Coulomb yield function resembling plastic potential g, the kinematic constraint
(7.208) then specialises as

(1 − sin ψ)ε̇ξξ + (1 + sin ψ)ε̇ηη + ε̇ζζ = 0 (7.209)

The velocities within the element are interpolated in an isoparametric manner, so that{
u̇(ξ, η) = 1

4 (1 + ξ)(1 + η)u̇

v̇(ξ, η) = 1
4 (1 + ξ)(1 + η)v̇

(7.210)

with u̇, v̇ the horizontal and vertical velocities of the right upper node of the element. The
normal strain rates within the element are obtained by differentiation as:

 ε̇ξξ

ε̇ηη

ε̇ζζ


 = 1

4


 1 + η 0

0 0

0 1 + ξ



(

u̇

v̇

)
(7.211)

Upon substitution of these expressions into the kinematic constraint (7.209), the following
restriction upon the velocity field ensues:

[(1 − sin ψ)u̇ + (1 + sin ψ)v̇] + (1 − sin ψ)u̇η + (1 + sin ψ)v̇ξ = 0 (7.212)

The term between brackets sets the ratio between the horizontal velocity u̇ and the vertical
velocity v̇ of the right upper node of the element. It vanishes, which is a direct reflection of the
kinematic constraint imposed on the possible velocity field by the constitutive relation. Since
this term must be zero, disappearance of the entire identity can only be achieved for arbitrary
pairs ξ, η if u̇ and v̇ are both zero. This implies that the element is not able to deform and
locks. It is emphasised that this observation holds for all values of ψ, including the isochoric
case (ψ = 0). Using the same methodology it can be shown that a patch of two three-noded
triangular elements [Figure 7.23(b)], also exhibits volumetric locking.

As first observed by Nagtegaal et al. (1974) a cross-diagonal patch of four three-noded
triangular element performs well under incompressibility. This statement also holds true for
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274 Non-linear Finite Element Analysis of Solids and Structures

dilatant/contractant plasticity. We demonstrate this as follows. First, we consider elements I
and II of the patch of Figure 7.23(c). For element I we have:{

u̇I(ξ, η) = 2ξu̇A

v̇I(ξ, η) = 2ξv̇A

and for element II: {
u̇II(ξ, η) = 2ηu̇A

v̇II(ξ, η) = 2ηv̇A

Differentiation of both velocity fields and substitution of the results into the kinematic constraint
(7.209) then results in {

(1 + sin ψ)v̇A = 0

(1 − sin ψ)u̇A = 0

which obviously yields u̇A = v̇A = 0. Using this result we can derive for elements III and IV
that: {

u̇III/IV(ξ, η) = (ξ + η − 1)u̇B

v̇III/IV(ξ, η) = (ξ + η − 1)v̇B

Substitution of these expressions in the kinematic constraint (7.209) gives:

(1 − sin ψ)u̇ + (1 + sin ψ)v̇ = 0 (7.213)

which is by definition satisfied for arbitrary pairs ξ, η.
A trick that is often adopted to alleviate mesh locking is to underintegrate the stiffness matrix

and the internal force vector, i.e. is to apply an integration scheme that, even in linear elasticity
and for rectangular elements, would not evaluate the integrals exactly. Typically, an integration
scheme is used that is one order lower than a scheme that would yield an exact integration.
For instance, for the four-noded quadrilateral element reduced Gauss integration would use
a single integration point in the centre of the element instead of the consistent two-by-two
integration scheme. Obviously, the strain rate distribution over the element is now constant, so
that: 

 ε̇ξξ

ε̇ηη

ε̇ζζ


 = 1

4


 1 0

0 1

0 0



(

u̇

v̇

)
(7.214)

Substitution of this expression in the kinematic constraint (7.209) again gives Equation (7.213),
which excludes volumetric locking. However, the four-noded quadrilateral element with a
uniform, one-point integration has two spurious kinematic modes, which can occur without an
increase of the internal energy. These modes can propagate into neighbouring elements, which
makes practical computations not feasible without proper stabilisation (Belytschko et al. 1984;
Flanagan and Belytschko 1981; Kosloff and Frazier 1978). The situation seems less severe for
eight-noded quadrilateral elements with reduced, four-point Gauss integration. This element
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Plasticity 275

also has a spurious mode, but unlike the four-noded quadrilateral elements, it cannot propagate
into neighbouring elements. However, this statement only holds for linear elasticity, and for
non-linear constitutive relations, propagation of spurious kinematic modes into neighbouring
elements and an ensuing lack of reliability of the solution is still possible (de Borst and Vermeer
1984).

Considering that uniform reduced integration is impractical for the four-noded element, it
has been proposed to apply selective integration, such that four Gauss integration points are
used for the shear strains, and only one, the centre point, for the volumetric strain. This approach
can be cast within the B̄-concept (Hughes 1980) and the normal strain rates are redefined as:


 ε̇ξξ

ε̇ηη

ε̇ζζ


 = 1

4




1 + 2
3η − 1

3ξ

− 1
3η 1 + 2

3ξ

− 1
3η − 1

3ξ



(

u̇

v̇

)
(7.215)

Note that the normal strain rate in the third direction, ε̇ζζ , does not vanish pointwise, but only
in an average sense. Substitution of this strain rate field in the kinematic constraint (7.209)
leads to

[(1 − sin ψ)u̇ + (1 + sin ψ)v̇] − sin ψ(u̇η − v̇ξ) = 0 (7.216)

Obviously, this condition can only be satisfied for arbitrary pairs ξ, η when ψ = 0, the case of
plastically volume-preserving flow. For arbitrary values of ψ, u̇ and v̇ must vanish identically,
which means that the B̄ element locks for the general case of ψ /= 0, but is effective for isochoric
plastic flow.

Another possible way to avoid volumetric locking is to adopt higher-order interpolation
of pure displacement-based finite elements. This solution is expensive in terms of computer
time, but is robust. It suffers less from unreliable element behaviour such as the emergence
of spurious modes than mixed/hybrid approaches. The favourable properties of higher-order
elements regarding volumetric locking are now demonstrated for the nine-noded Lagrangian
element of Figure 7.24(b). This element has four ‘free’ nodes, labelled A, B, C and D, for

u̇

v̇

ξ
η

u̇

v̇

ξ
η

A

B C

(a) (b)

A

B C

D

Figure 7.24 (a) Eight-noded quadrilateral element; (b) nine-noded quadrilateral element
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276 Non-linear Finite Element Analysis of Solids and Structures

which the shape functions read:




hA = 1
2ξ(1 + ξ)(1 − η2)

hB = 1
2η(1 + η)(1 − ξ2)

hC = 1
4ξη(1 + ξ)(1 + η)

hD = (1 − ξ2)(1 − η2)

For the normal strain rates we obtain by differentiation:

{
ε̇ξξ = 1

2 (1 + 2ξ)(1 − η2)u̇A − ξη(1 + η)u̇B + 1
4η(1 + 2ξ)(1 + η)u̇C − 2ξ(1 − η2)u̇D

ε̇ηη = −ξη(1 + ξ)v̇A + 1
2 (1 + 2η)(1 − ξ2)v̇B + 1

4ξ(1 + ξ)(1 + 2η)v̇C − 2η(1 − ξ2)v̇D

which, upon substitution into the kinematic constraint (7.209), results in an equation with a
constant term, and with terms η, ξ, η2, ξη, η2, ξη2 and ξ2η. Since this equation must hold for
arbitrary pairs (ξ, η), we obtain the following homogeneous system of equations:




(1 − sin ψ)u̇A + (1 + sin ψ)v̇B = 0

(1 − sin ψ)(4u̇A − 8u̇D) + (1 + sin ψ)v̇C = 0

(1 − sin ψ)u̇C + (1 + sin ψ)(4v̇B − 8v̇D) = 0

v̇C − 2v̇B = 0

(1 − sin ψ)(u̇C − 2u̇B) + (1 + sin ψ)(v̇C − 2v̇A) = 0

u̇C − 2u̇A = 0

−2u̇A − 2u̇B + u̇C + 4u̇D = 0

−2v̇A − 2v̇B + v̇C + 4v̇D = 0

This system can be shown to be singular, so that there exists a solution for non-zero u̇A, . . . , v̇D,
and, therefore, volumetric locking does not occur for this element. For the eight-noded quadri-
lateral element of Figure 7.24(a), there are only six degrees of freedom to satisfy eight con-
straints. A slightly different homogeneous system of eight equations arises, which can only
be satisfied if u̇A = v̇A = u̇B = v̇B = u̇C = v̇C = 0. Accordingly, volumetric locking occurs
for this element, although numerical experience indicates that it is less severe than for the
four-noded quadrilateral element or for the three-noded triangular element.

The favourable properties of higher-order interpolations with respect to volumetric locking
can be preserved if the higher-order displacement modes are eliminated at element level by
static condensation. In this manner incompatible displacement modes are obtained, e.g. the
modified incompatible modes element by Taylor et al. (1976), in which the displacement field
is locally enriched by quadratic polynomials:

{
ũ(ξ, η) = 1

2 (ξ2 − 1)α1 + 1
2 (η2 − 1)α4

ṽ(ξ, η) = 1
2 (ξ2 − 1)α3 + 1

2 (η2 − 1)α2
(7.217)
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Plasticity 277

with α1, . . . , α4 displacement parameters which are defined locally at element level. For the
normal strain rates we thus find that:

 ε̇ξξ

ε̇ηη

ε̇ζζ


 = 1

4


1 + η 0

0 1 + ξ

0 0




(
u̇

v̇

)
+


 ξ 0

0 η

0 0




(
α̇1

α̇2

)
(7.218)

Substitution in the kinematic constraint (7.209) gives:

[(1 − sin ψ)u̇ + (1 + sin ψ)v̇] + [(1 + sin ψ)v̇ + 4(1 − sin ψ)α̇1]ξ+
[(1 − sin ψ)u̇ + 4(1 + sin ψ)α̇2]η = 0

The first term between brackets vanishes and so do the other two terms, because we can always
find values for α̇1 and α̇2 which nullify them for non-zero u̇ and v̇. Accordingly, a locking-free
element is obtained. This element has been shown to belong to a more general class of mixed
elements that follow the enhanced assumed strain approach (Simo and Rifai 1990), in which the
strain field that stems from the continuous displacement field is augmented by a strain field
that is defined locally per element. This class of elements was introduced in Chapter 6 where
the enrichment consisted of a discontinuous field. The fact that only the strains are augmented,
makes it possible to straightforwardly utilise standard methods for the stress integration. In
general, the elements are accurate, but as all mixed formulations, they can exhibit spurious
modes when plasticity or damage is introduced.

It is noted that the incompatible displacement element is a somewhat exceptional case in the
sense that the augmented strain field can be derived from a displacement field at element level.
Since this element has been used widely, both in the original format and cast in the enhanced
assumed strain framework, we list the full, two-dimensional strain field for completeness:


 ε̇ξξ

ε̇ηη

γ̇ξη


 = 1

4


1 + η 0

0 1 + ξ

1 + ξ 1 + η




(
u̇

v̇

)
+


 ξ 0 0 0

0 η 0 0

0 0 ξ η







α̇1

α̇2

α̇3

α̇4


 (7.219)

which shows also the enrichment for the shear strain, which considerably improves the be-
haviour when shear stresses are (locally) important.

Finally, it is noted that also mixed formulations have been proposed (Sussmann and Bathe
1987) in which the displacements are interpolated as well as the pressures (u/p-formulation).
Typically, the pressure degrees of freedom are eliminated at element level by static condensa-
tion, so that only displacements enter the global system of equations. While generally effective,
they bear the disadvantage that the presence of stress-like quantities as degrees of freedom
makes it less straightforward to apply the stress integration algorithms outlined before, since
these are strain-driven.
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8
Time-dependent Material Models

Time-dependent material models like visco-elasticity, creep, and visco-plasticity, differ from
rate-independent material models. In rate-independent models, the relation between the stress
and the strain can be linearised to give

�σ1 = D1�ε1 (8.1)

where the subscript ‘1’ denotes quantities that are related to the first iteration, and D is the
material tangential stiffness matrix, while in the ensuing iterations one obtains:

dσj = Djdεj (8.2)

for the iterative improvements. As we will see in this chapter, rate-dependent material models
result in an incremental relation that attains the following format

�σ1 = D1�ε1 + q (8.3)

where the vector q, which can depend on the stress at the beginning of the time step, on a set
of internal variables, or on non-mechanical quantities like thermal or hygral strains, and often,
on a parameter from the time integration scheme. Clearly, q has to be added to the right-hand
side of the discretised balance of momentum, and can be conceived as a pseudo-load vector.
However, this only has to be done in the first iteration, since q does not vary from iteration to
iteration, so that in the next iterations Equation (8.2) still holds.

8.1 Linear Visco-elasticity

In this section we show how visco-elastic models can be used to analyse the time-dependent
behaviour of materials and structures. We introduce the theory of linear visco-elasticity with
the help of a simple one-dimensional model consisting of a linear spring and a linear dashpot.
Next, the extension to three-dimensional models is made and aspects concerning the numerical
implementation are discussed. The formulation is generalised to incorporate the possible effects
of aging.

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 8.1 Maxwell element (a) and Kelvin element (b)

8.1.1 One-dimensional Linear Visco-elasticity

The two simplest linear visco-elastic models are the Maxwell element and the Kelvin element
(Figure 8.1), where the term ‘element’ is here used for a constitutive element, and not for a
finite element. The former model arises when a linear spring is coupled in series with a linear
dashpot, while the latter model ensues when these two rheological elements are connected in
parallel.

For the Maxwell element the total strain rate ε̇ is obtained as the sum of the elastic strain rate
that stems from the spring ε̇e and the viscous strain rate ε̇v that results from the mechanical
action of the dashpot:

ε̇ = ε̇e + ε̇v (8.4)

When E denotes the Young’s modulus of the spring and η is the viscosity of the dashpot, we
can set up the following constitutive relations

ε̇e = σ̇

E
(8.5)

ε̇v = σ

η
(8.6)

where the observation that the stress σ is equal for the spring and dashpot has been utilised.
Combination of Equations (8.4)–(8.6) gives the differential equation for the Maxwell element:

ε̇ = σ̇

E
+ σ

η
(8.7)

Now suppose that at time t = t0 a constant strain ε0 is imposed on the system. The system will
then react according to

σ(t) = Eε0 exp

(
− t − t0

τ

)
(8.8)

which follows from the solution of the differential equation (8.7) with the initial condition, and

τ = η

E
(8.9)

the so-called relaxation time, i.e. the time that is needed to bring the stress back to exp(−1) of
its value immediately after imposing the strain [σ(0) = Eε0].
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Time-dependent Material Models 283

Although the response function of a Maxwell element on some imposed strain is now known,
this is not so for the response of this element to an arbitrary strain history. A fundamental
property of linear visco-elasticity enters at this point: the response of the system on two
individual strain histories is equal to the sum of the responses on each of those strain histories.
This assumption is named the superposition principle and states that the total response on a
strain ε0 that is applied at t0 and a strain ε1 that is applied at t1 is given by

σ(t) = Eε0 exp

(
− t − t0

τ

)
+ Eε1 exp

(
− t − t1

τ

)

More generally we have for n excitations:

σ(t) =
n∑

i=1

Eεi exp

(
− t − ti

τ

)
(8.10)

For the limiting case that εi becomes infinitesimally small we obtain the integral

σ(t) =
∫

E exp

(
− t − t̃

τ

)
dε (8.11)

or replacing this so-called Stieltjes integral by a Riemann integral

σ(t) =
∫ t

0
E exp

(
− t − t̃

τ

)
ε̇(t̃)dt̃ (8.12)

The relaxation function

E(t − t̃) = E exp

(
− t − t̃

τ

)
(8.13)

is characteristic for a Maxwell element that is subjected to a relaxation experiment, since
another combination of springs and dashpots results in a different response function E(t − t̃).
Upon introduction of the relaxation function we can set up a general expression for the stress
at time t as a function of the strain history:

σ(t) =
∫ t

0
E(t − t̃)ε̇(t̃)dt̃ (8.14)

For each combination of springs and dashpots a specific expression of E(t − t̃) can be de-
rived. We can even postulate relaxation functions for Equation (8.14) that do not have a direct
mechanical interpretation in terms of springs and dashpots.

Equation (8.14) gives the current stress as a function of the strain. Creep experiments on the
other hand give the current strain as a function of the applied stress history. This necessitates
an inversion of Equation (8.14), which results in the compliance formulation

ε(t) =
∫ t

0
J(t − t̃)σ̇(t̃)dt̃ (8.15)

with J(t − t̃) the creep function. The creep function gives the current value of the strain for
a given unit stress increment applied at t̃, i.e. σ(t̃) = H(t̃) with H the Heaviside function,
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284 Non-linear Finite Element Analysis of Solids and Structures

as can be inferred since then σ̇(t̃) = δ(t̃), with δ the Dirac function, so that substitution into
Equation (8.15) renders: ε(t) = J(t − t̃).

8.1.2 Three-dimensional Visco-elasticity

We will now generalise Equations (8.14) and (8.15) to three dimensions. In addition we will
generalise the formulation to include the phenomenon of aging – the increase of the stiffness of
a material over the course of time, which has been observed experimentally for many materials
including concrete and polymers.

Generalising Equation (8.14) to three dimensions and taking into account the possible in-
fluence of aging and of an initial strain ε(0) we obtain

σ(t) = D(t)ε(0) +
∫ t

0
D(t − t̃, t̃)ε̇(t̃)dt̃ (8.16)

The matrix D(t − t̃, t̃) is the three-dimensional generalisation of the relaxation function E(t −
t̃, t̃). Aging is incorporated because D is not only a function of the time difference t − t̃ as
in Equation (8.14), but also of t̃. The first term on the right-hand side of Equation (8.16)
represents the possible presence of initial strains.

Similar to Equation (8.16) the strain ε at time t can be expressed as a function of the stress
history:

ε(t) = C(t)σ(0) +
∫ t

0
C(t − t̃, t̃)σ̇(t̃)dt̃ (8.17)

The matrix C(t − t̃, t̃) is the three-dimensional generalisation of the creep function J(t − t̃, t̃).
As with the three-dimensional generalisation of the relaxation function the time of loading t̃

has entered the formulation as an independent quantity to account for possible effects of aging
of the material. The first term on the right-hand size represents the possible presence of initial
stresses. We shall continue the treatment of three-dimensional, linear visco-elasticity by taking
Equation (8.16) as a point of departure. In a displacement-based finite element formulation
this has the advantage that the stresses are directly expressed as a function of the strain history.

An important simplification of Equation (8.16) can be achieved if it is assumed that the
material remains isotropic during the entire loading history. Then, D reads:

D(t − t̃, t̃) =




λ̃ + 2µ̃ λ̃ λ̃ 0 0 0

λ̃ λ̃ + 2µ̃ λ̃ 0 0 0

λ̃ λ̃ λ̃ + 2µ̃ 0 0 0

0 0 0 µ̃ 0 0

0 0 0 0 µ̃ 0

0 0 0 0 0 µ̃




(8.18)

with λ̃ = λ(t − t̃, t̃) and µ̃ = µ(t − t̃, t̃) the Lamé constants, which are now time- and age-
dependent. In many applications it is more convenient to work with the Young’s modulus and
the Poisson’s ratio, especially since the variation of Poisson’s ratio with time is often of minor
importance compared with that of the change of the Young’s modulus. Making this assumption
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Time-dependent Material Models 285

and using the definitions (1.116) we obtain:

σ(t) = E(t)D̄ε(0) +
∫ t

0
E(t − t̃, t̃)D̄ε̇(t̃)dt̃ (8.19)

with D̄ the dimensionless matrix

D̄ = 1

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1
2 − ν 0 0

0 0 0 0 1
2 − ν 0

0 0 0 0 0 1
2 − ν




(8.20)

8.1.3 Algorithmic Aspects

Equations (8.16) and (8.19) require that we memorise the entire strain history in order to
calculate the value of the stress after the new time step. Put differently, we have to store all
previous strain increments in order to compute the new stress increment �σ with the aid of
Equation (8.19). This is inconvenient for large-scale computations. Starting with the pioneering
work of Zienkiewicz et al. (1968) and of Taylor et al. (1970), which was later extended to
aging visco-elasticity by Bažant and Wu (1974), most algorithms in finite element programs
are based on an expansion of the relaxation function E(t − t̃, t̃), which is known as the kernel
of the hereditary integral. After an expansion of the original kernel in a series of polynomials or
negative exponential powers a so-called degenerated kernel arises. For instance, if we expand
E(t − t̃, t̃) in a series of negative exponential powers, we obtain:

E(t − t̃, t̃) = E0(t̃) +
N∑

α=1

Eα(t̃) exp

(
− t − t̃

τα

)
(8.21)

In Equation (8.21) Eα is a stiffness and τα has the dimension of time. Neglecting the possible
effect of initial strains, substitution of Equation (8.21) in (8.19) gives:

σ(t) =
∫ t

0

(
E0(t̃) +

N∑
α=1

Eα(t̃) exp

(
− t − t̃

τα

))
D̄ε̇(t̃)dt̃ (8.22)

We now compare Equations (8.22) and (8.12), which is the response function for a single
Maxwell element. We observe that the response of (8.22) is exactly the same as that obtained
when a parallel arrangement of N Maxwell elements, each with its own relaxation time τα

and spring stiffness Eα, and one spring element with stiffness E0, is loaded by the same strain
history ε(t̃). The parallel chain of Figure 8.2 is named a Maxwell chain, and can be derived
formally by first differentiating both sides of Equation (8.22). This gives:

σ̇(t) = d

dt

(∫ t

0

(
E0(t̃) +

N∑
α=1

Eα(t̃) exp

(
− t − t̃

τα

))
D̄ε̇(t̃)dt̃

)
(8.23)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



286 Non-linear Finite Element Analysis of Solids and Structures

σ

σ

E0 E1 , λ1 Eα , λα EN , λN

Figure 8.2 Maxwell chain

When we define the stress within each Maxwell element as

σα(t) =
∫ t

0
Eα(t̃) exp

(
− t − t̃

τα

)
D̄ε̇(t̃)dt̃ (8.24)

and subsequently interchange the order of integration and summation we obtain

σ̇(t) = E0D̄ε̇(t) +
N∑

α=1

σ̇α(t) (8.25)

Finally, Leibnitz’ rule can be invoked to derive from Equation (8.24) that

σ̇α(t) = EαD̄ε̇(t) − 1

τα
σα(t) (8.26)

which is the three-dimensional generalisation of the differential equation for a single Maxwell
element, cf. Equation (8.7). The above derivation shows that the expansion in negative expo-
nential powers – also called a Dirichlet series – of a relaxation function as in Equation (8.21)
can be interpreted as a Maxwell chain. In a manner similar to this derivation one can show that
the expansion of a creep function in a Dirichlet series mechanically results in a Kelvin chain,
i.e. a series arrangement of Kelvin elements.

Equation (8.22) is a useful point of departure for the development of an algorithm that is
suitable for large-scale computations, in the sense that storage of the entire strain history is
not required for the computation of a new stress increment. Instead, the stress at time t can
be calculated on the basis of the strain increment and a finite number of state variables, all of
which are known at the current time t − �t. Information of previous time steps is not needed.

When we bring the dimensionless matrix D̄ outside the integral and interchange the order
of integration and summation in Equation (8.22) we obtain:

σ(t) = D̄

(∫ t

0
E0(t̃)ε̇(t̃)dt̃ +

N∑
α=1

∫ t

0
Eα(t̃) exp

(
− t − t̃

τα

)
ε̇(t̃)dt̃

)
(8.27)
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Time-dependent Material Models 287

Next, the time interval is divided into two parts, one from t̃ = 0 to t̃ = t − �t, and one from
t̃ = t − �t to t̃ = t. When we subtract

σ(t − �t) = D̄
(∫ t−�t

0
E0(t̃)ε̇(t̃)dt̃

+
N∑

α=1

∫ t−�t

0
Eα(t̃) exp

(
− t − �t − t̃

τα

)
ε̇(t̃)dt̃

)
(8.28)

from both sides of the previous equation, the following incremental stress–strain relation
results:

�σ = D̄E0(t̃)�ε +
N∑

α=1

D̄
∫ t

t−�t

Eα(t̃) exp

(
− t − t̃

τα

)
ε̇(t̃)dt̃

−
N∑

α=1

(
1 − exp

(
−�t

τα

))
σα(t − �t) (8.29)

Using the assumption that the strain rate is constant over the time step,

ε̇ ≈ �ε

�t
(8.30)

the integral can be elaborated in a semi-analytical manner, as follows:

�σ = D̄E0(t̃)�ε +
N∑

α=1

(
1 − exp

(
−�t

τα

))(
Eα(t̃)

�t/τα
D̄�ε − σα(t − �t)

)
(8.31)

For non-aging materials, Eα does not depend on t̃, and the integration is exact. Clearly, Equa-
tion (8.31) can be brought in the format of Equation (8.3), with

D1 = D̄E0(t̃) +
N∑

α=1

(
1 − exp

(
−�t

τα

))
Eα(t̃)

�t/τα
D̄ (8.32)

and

q = −
N∑

α=1

(
1 − exp

(
−�t

τα

))
σα(t − �t) (8.33)

8.2 Creep Models

Creep models are often used to describe the time-dependent behaviour of metals, and can be
considered as a generalisation of visco-elasticity. To elucidate this, we note that, similar to the
strain-rate decomposition in visco-elasticity, Equation (8.4), we have a strain-rate decomposi-
tion into an elastic and a creep strain:

ε̇ = ε̇e + ε̇c (8.34)
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288 Non-linear Finite Element Analysis of Solids and Structures

and, considering the Bailey–Norton power law, which is often used to characterise the creep
behaviour of metals (Hult 1966):

ε̇c = 1

ϕ(t)

(
σ

σn

)n

(8.35)

we observe that this is a non-linear generalisation of the linear dashpot of Equation (8.6).
In Equation (8.35), σn and n are (temperature-dependent) material parameters, and ϕ(t) is a
(monotonically increasing) function of time. Equation (8.35) is a function of the applied stress
σ, the temperature T and the time t:

ε̇c = ε̇c(σ, T, t) (8.36)

Creep laws of this kind are called time hardening and are convenient for simplified design
calculations. For a constant stress σ and temperature T , we can equivalently write:

ε̇c = ε̇c(σ, T, εc) (8.37)

where the creep strain takes the role of an internal variable, similar to the plastic strain εp

in elasto-plasticity. Obviously, for non-constant stressing or a varying temperature, time-
hardening creep, Equation (8.36), and strain-hardening creep, Equation (8.37), differ and will
not give the same result. Note also that by replacing the time by the creep strain in the ex-
pression for the strain rate, the framework of (non-linear) visco-elasticity no longer applies,
and that the total creep strain cannot be obtained via the computation of hereditary integrals.
Instead, the creep strain increment is directly calculated as:

�εc = �t(ε̇c)t+θ�t (8.38)

for the time increment �t, with (ε̇c)t+θ�t evaluated via a generalised midpoint rule. Alter-
natively, a trapezoidal rule can be used. The new stress is computed in a manner similar to
elasto-plasticity (Zienkiewicz and Taylor 1991), namely via:

σt+�t = σt + E(�ε − �εc) (8.39)

From Equations (8.38) and (8.39) we can derive the tangential relation needed for the
iterative solution of the resulting non-linear equations at structural level using a Newton–
Raphson method. Linearisation of both equations gives:

σ̇ =
(

E−1 + �t
∂εc

∂σ

)−1

ε̇ (8.40)

which necessitates the assembly and the factorisation of the tangential stiffness matrix at
every time step, except for θ = 0, i.e. when explicit time integration is used. However, explicit
integration schemes suffer from limited accuracy and stability, see also Chapter 5 in the context
of the integration of the balance of momentum equation.

The generalisation of the above one-dimensional constitutive relation to the three-
dimensional case is straightforward. Since creep models as formulated above are typically
used in computations for metals, this is usually done via a creep potential function, similar to
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Time-dependent Material Models 289

plasticity, so that for the multiaxial generalisation of the creep strain rate one obtains:

�εc = �t(ε̇c)t+θ�t ∂f

∂σ
(8.41)

with f = f (σ) a potential function and ε̇c = ε̇c(εc) the equivalent creep strain rate. The gen-
eralisation of Equations (8.39) and (8.40) is straightforward.

8.3 Visco-plasticity

Visco-elasticity and creep models as described in the preceding sections predict time-dependent
deformations for all stress levels. This may not always be realistic, and for certain materials
time-dependent strains only become noticeable above a threshold stress level. This can be well
modelled using visco-plasticity. Similar to inviscid plasticity (Chapter 7), there exists a yield
surface, and when the stress remains inside the yield surface, no time-dependent strains will
develop.

8.3.1 One-dimensional Visco-plasticity

The visco-plastic extension of the rate-independent equations is demonstrated with the rheo-
logical model in Figure 8.3. The model consists of an elastic element with stiffness E, which
is connected in series to an inelastic element, which consists of a dashpot with a viscosity η in
parallel with a plastic slider with a current yield strength σ̄. As in rate-independent small-strain
plasticity an additive decomposition is assumed with respect to the total strain:

ε = εe + εvp (8.42)

with εe the strain in the spring and εvp the visco-plastic strain in the inelastic element
(Figure 8.4). When we denote the applied stress by σ we have

σ = Eεe (8.43)

which can be combined with Equation (8.42) to give:

σ = E(ε − εvp) (8.44)

σ σ

σ

η

ε

E

eεvp

Figure 8.3 One-dimensional representation of a visco-plasticity model
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290 Non-linear Finite Element Analysis of Solids and Structures

ε

σ

ε εvp e

σ

σ

backbone solid

visco-plastic solid

E

Figure 8.4 Schematic representation of the stress response for visco-plasticity

As in rate-independent plasticity the solid remains elastic when the stress σ is smaller than the
yield stress σ̄ (assuming that σ > 0), and the yield function reads:

f (σ) = σ − σ̄ (8.45)

In rate-independent plasticity, stresses that are larger than the yield strength σ̄ are impossible,
and the strict requirement that f ≤ 0 is imposed, which is formalised through the Karush–
Kuhn–Tucker conditions, Equation (6.16). This requirement is relaxed in visco-plasticity,
where, during yielding, an additional stress, sometimes called the overstress, can be carried by
the dashpot:

σ̂ = f (σ) > 0 (8.46)

which is assumed to react according to a viscous relation,

σ̂ = ηε̇vp (8.47)

with the viscosity parameter η. Combination of the latter two equations yields:

ε̇vp = 1

η
f (σ) if f (σ) ≥ 0 (8.48)

which represents a one-dimensional visco-plastic constitutive equation of the Perzyna
type (Perzyna 1966).

Viscosity effectively introduces a time scale in the boundery-value problem. This can be
demonstrated most straightforwardly by defining

τ = η

E

as in Equation (8.9). As in visco-elasticity, τ can be interpreted as the relaxation time of
the model. To show this, we subject the model of Figure 8.3 to a relaxation test, where an
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t

σ

0
εE

σ (   )t

Figure 8.5 One-dimensional relaxation test on a visco-plastic element

instantaneous strain ε0 > σ̄
E

is applied, hence inducing visco-plastic straining. We first substi-
tute the definition of the yield function into Equation (8.48). Assuming continued loading we
then have

ε̇vp = 1

τ
E−1(σ − σ̄) (8.49)

Substitution of this expression into Equation (8.44) and using the definition for τ yields:

σ̇ + 1

τ
σ = Eε̇ + 1

τ
σ̄ (8.50)

Since ε̇ = 0 for a relaxation experiment the following closed-form solution is obtained:

σ(t) = (Eε0 − σ̄) exp
(
− t

τ

)
+ σ̄ (8.51)

which is shown in Figure 8.5.

8.3.2 Integration of the Rate Equations

As for rate-independent plasticity, the algorithms for integrating the rate equations of visco-
plasticity are strain driven. This implies that we depart from a converged state at time t, with
known quantities εt , (εvp)t , σt , κt in a three-dimensional context. Here, κ is the hardening
parameter, cf. Equation (7.57). The new stress σt+�t is then computed from

σt+�t = σt + De(�ε − �εvp) (8.52)

where the strain increment �ε follows from the displacement increments collected in �a using
standard kinematic operators (Chapters 2 and 3) and where the visco-plastic strain increment
is computed either using a generalised trapezoidal rule{

�εvp = (
(1 − θ)(ε̇vp)t + θ(ε̇vp)t+�t

)
�t

�κ = (
(1 − θ)κ̇t + θκ̇t+�t

)
�t

(8.53)
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292 Non-linear Finite Element Analysis of Solids and Structures

or using a generalised midpoint rule{
�εvp = (ε̇vp)t+θ�t�t

�κ = κ̇t+θ�t�t
(8.54)

similar to rate-independent plasticity (Chapter 7). The following subsections elaborate the
generalised trapezoidal rule for three different classes of visco-plasticity, namely the theory
proposed by Perzyna (1966), the theory of Duvaut and Lions (1972), and the consistency
visco-plasticity model (Wang et al. 1996, 1997).

8.3.3 Perzyna Visco-plasticity

The Perzyna theory of visco-plasticity is the oldest visco-plasticity theory. In it, the visco-
plastic strain rate is defined as:

ε̇vp = η < ϕ(f ) > m (8.55)

with m the visco-plastic flow direction, Equation (7.43), and < · > the MacAulay brackets.
ϕ(f ) is an arbitrary function of f , for which a power law is commonly utilised:

ϕ(f ) =
(

f

σ̄0

)n

(8.56)

with n a constant and σ̄0 the initial yield stress.
The visco-plastic strain rate at t + �t can be approximated using a truncated Taylor series

as:

(ε̇vp)t+�t = (ε̇vp)t +
(

∂ε̇vp

∂σ

)t

�σ +
(

∂ε̇vp

∂κ

)t

�κ

= (ε̇vp)t + Gt�σ + ht�κ (8.57)

where Equation (8.55) has been substituted to give:

Gt = η

(
∂ϕ

∂σ
mT + ϕ

∂m
∂σ

)t

ht = η

(
∂ϕ

∂κ
m + ϕ

∂m
∂κ

)t
(8.58)

and �κ stems from the previous time step or from the previous equilibrium iteration. Substi-
tution of Equation (8.57) into Equation (8.53) yields:

�εvp = (
(ε̇vp)t + θGt�σ + θht�κ

)
�t (8.59)

which can be substituted into the expression for the updated stress, Equation (8.52), leading
to:

σt+�t = σt + D�ε − q (8.60)
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Time-dependent Material Models 293

where

D =
(

(De)−1 + θ�tGt
)−1

q = D
(
(ε̇vp)t + θht�κ

)
�t

(8.61)

are the tangential stiffness matrix and the pseudo-load vector, which arises due to the time-
dependency, respectively. Box 8.1 summarises this single-step Euler algorithm for Perzyna
visco-plasticity.

The single-step integration algorithm for the Perzyna visco-plasticity model may suffer from
a limited stability and/or accuracy, especially when θ ≤ 1

2 , or when no global equilibrium
iterations are added after the first estimate for the stress increment. A more rigorous approach

Box 8.1 Perzyna visco-plasticity: single-step Euler algorithm for t → t + �t

1. Begin time step. Initialise: �a = 0 , f t+�t
ext

2. For each integration point i:

– Compute: Gi,0 = η
(

∂ϕ
∂σ

mT + ϕ∂m
∂σ

)
i,0

, hi,0 = η
(

∂ϕ
∂κ

m + ϕ ∂m
∂κ

)
i,0

– Compute material tangential stiffness matrix: Di,0 = (
(De

i )−1 + θ�tGi,0
)−1

– Compute pseudo-load vector: qi = Di,0
(
(ε̇vp)ti + θhi,0�κt

i

)
�t

3. Compute the internal force vector: fint,0 = f t
int + ∫

V
BTqdV

4. Iterations j = 0, . . . for finding equilibrium within the time step:

• For each integration point i: compute Di,j = (
(De

i )−1 + θ�tGi,j

)−1

• Compute tangential stiffness matrix: Kj = ∫
V

BTDjBdV

• Solve the linear system: daj+1 = (Kj)−1(f t+�t
ext − fint,j)

• Update the displacement increments: �aj+1 = �aj + daj+1
• For each integration point i:

– Compute the strain increment: �εi,j+1 = Bi�aj+1
– Compute the trial stress: (σe)i,j+1 = σt

i + De
i �εi,j+1

– Evaluate the loading function: f = f ((σe)i,j+1, κ
t
i).

– If f ≥ 0: �ε
vp
i,j+1 = (

(ε̇vp)ti + θGi,j�σi,j + θhi,j�κi,j

)
�t

Else: �ε
vp
i,j+1 = 0

– Compute the stress increment: �σi,j+1 = De
i (�εi,j+1 − �ε

vp
i,j+1)

– Compute the total stress: σi,j+1 = σt
i + �σi,j+1

– Update the hardening parameter increment: �κi,j+1 = �κ(�ε
vp
i,j+1)

• Compute internal force: fint,j = ∫
V

BTσj+1dV

• Check convergence: if ‖f t+�t
ext − fint,j+1‖ < η, continue, else go to 4

5. For each integration point i: κt+�t
i = κt

i + �κi,j+1
6. End time step
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294 Non-linear Finite Element Analysis of Solids and Structures

is to rewrite the Perzyna visco-plasticity model using residuals. Similar to inviscid plasticity,
Equations (7.99), we obtain:{

rσ = σj+1 − σe + �λDem(σj+1, λj+1)

rf = ϕ
(
f (σj+1, λj+1)

) − �λ
η�t

(8.62)

where the second term in Equation (8.62)2 satisfies the visco-plastic relation (8.55) in an
incremental sense, as was also done for the generalised and bounding surface plasticity models
in Box 7.4 (de Borst and Heeres 2002). A local Newton–Raphson iterative process can now
be carried out, cf. Equation (7.101):

(
σk+1

j+1

λk+1
j+1

)
=

(
σk

j+1

λk
j+1

)
−

[
∂rσ
∂σ

∂rσ
∂λ

∂rf
∂σ

∂rf
∂λ

]−1 (
rk
σ

rk
f

)

where the derivatives ∂rσ
∂σ

, ∂rσ
∂λ

and
∂rf
∂σ

are given by Equations (7.102), (7.103) and (7.104),

while, using Equations (7.74) and (7.98),
∂rf
∂λ

becomes:

∂rf

∂λ
= −

(
h

∂ϕ

∂f
+ 1

η�t

)
(8.63)

instead of Equation (7.105), which holds for inviscid plasticity. For the tangential stiffness ma-
trix that is associated with this integration algorithm we take the variations of Equations (8.62)
to give: 


δσ = Deδε − Demδλ − �λDe ∂m

∂σ
δσ − �λDe ∂m

∂λ
δλ

nTδσ −
(
h + 1

η�t

)
δλ = 0

(8.64)

Using Equation (7.102), (7.106) and (7.128) we rewrite Equation (8.64) as:

{
δσ = H(δε − m̄δλ)

nTδσ −
(
h + 1

η�t

)
δλ = 0

(8.65)

and, using arguments as in Chapter 7, the algorithmic tangential stiffness relation between
stress rate and strain rate can be derived as:

δσ =
(

H − Hm̄nTH

h + 1
η�t

+ nTHm̄

)
δε (8.66)

8.3.4 Duvaut–Lions Visco-plasticity

An alternative approach, which in its elaboration more closely connects to rate-independent
plasticity, has been proposed by Duvaut and Lions (1972), and is based on the difference
in response between the visco-plastic model and the underlying, rate-independent plasticity
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Time-dependent Material Models 295

model. The visco-plastic strain rate and the hardening law are now defined as:

ε̇vp = 1

τ
(De)−1 (σ − σ̄) (8.67a)

κ̇ = −1

τ
(κ − κ̄) (8.67b)

with τ the relaxation time, and σ̄ the rate-independent material response. Quantities that relate to
the inviscid plasticity model or back bone model, denoted by ·̄, can be viewed as a projection
of the current stress on the yield surface. The visco-plastic strain rate is determined by the
difference between the total stress and the stress in the inviscid back-bone model, which marks
a difference with the Perzyna model, but it is noted that under certain conditions, both visco-
plasticity formulations can be made to coincide (Runesson et al. 1999). The Duvaut–Lions
visco-plasticity model has a marked advantage, namely that it can be used for yield surfaces
for which the gradient is discontinuous at some point (Simo et al. 1988).

In the Duvaut–Lions visco-plastic model, the stress update is carried out in two steps. First,
the inviscid back bone stress σ̄ is updated using a standard Euler backward return-mapping
algorithm for inviscid plasticity, see Chapter 7. Subsequently, the visco-plastic response at
t + �t is computed according to Equation (8.67):

(ε̇vp)t+�t = 1

τ
(De)−1 (

σt+�t − σ̄t+�t
)

(8.68)

Substitution into the generalised trapezoidal rule, Equation (8.53), gives the visco-plastic strain
increment:

�εvp =
(

(1 − θ)(ε̇vp)t + θ

τ
(De)−1(σt+�t − σ̄t+�t)

)
�t (8.69)

Using this expression the new stress σt+�t can be computed by substitution into Equa-
tion (8.52), while the new value of the hardening parameter follows from

κt+�t = κt + �κ

with �κ = �κ(�εvp).
The tangential stiffness matrix can be derived by substitution of Equation (8.69) into Equa-

tion (8.52), which yields Equation (8.60), with

{
D = τ

τ+θ�t

(
De + θ�t

τ
D̄

)
q = τ�t

τ+θ�t

(
(1 − θ)De(ε̇vp)t + θ

τ
(σt − σ̄t)

) (8.70)

and D̄ the tangential stiffness matrix that is computed for the inviscid back bone plasticity
model, and relates the stress rate in the back bone inviscid plasticity model to the strain rate:
˙̄σ = D̄ε̇. It is noted that for θ = 1 the tangential stiffness matrix D for the backward Euler
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296 Non-linear Finite Element Analysis of Solids and Structures

Box 8.2 Duvaut–Lions visco-plasticity: stress update for t → t + �t

1. Begin time step. Initialise: �a = 0 , f t+�t
ext

2. For each integration point i:
• Compute pseudo-load vector: qi = τ�t

τ+θ�t

(
(1 − θ)De

i (ε̇vp)ti + θ
τ
σt

i − σ̄t
i)
)

3. Compute the internal force vector: fint,0 = f t
int + ∫

V
BTqdV

4. Iterations j = 0, . . . for finding equilibrium within the time step:

• For each integration point i: compute Di,j = τ
τ+θ�t

(
De

i + θ�t
τ

D̄i,j

)
• Compute tangential stiffness matrix: Kj = ∫

V
BTDjBdV

• Solve the linear system: daj+1 = (Kj)−1(f t+�t
ext − fint,j)

• Update the displacement increments: �aj+1 = �aj + daj+1
• For each integration point i:

– Compute the strain increment: �εi,j+1 = Bi�aj+1
– Compute the trial stress: (σe)i,j+1 = σt

i + De
i �εi,j+1

– Compute the backbone stress σ̄i,j+1 using a return-mapping algorithm
– Compute the visco-plastic strain increment:

�ε
vp
i,j+1 = (

(1 − θ)(ε̇vp)ti + θ
τ
(De

i )−1(σi,j+1 − σ̄i,j+1)
)
�t

– Compute the stress increment: �σi,j+1 = De
i (�εi,j+1 − �ε

vp
i,j+1)

– Compute the total stress: σi,j+1 = σt
i + �σi,j+1

• Compute internal force: fint,j+1 = ∫
V

BTσj+1dV

• Check convergence: if ‖f t+�t
ext − fint,j+1‖ < η, continue, else go to 4.

5. For each integration point i:
• Update: �κi,j+1 = �κ(�ε

vp
i,j+1) , κt+�t

i = κt
i + �κi,j+1

• Update the visco-plastic strain rate: (ε̇vp)t+�t
i = 1

τ
(De

i )−1
(
σi,j+1 − σ̄i,j+1

)
6. End time step

algorithm as derived by Ju (1990) is recovered. In Box 8.2 the algorithm for Duvaut–Lions
visco-plasticity is summarised.

8.3.5 Consistency Model

The Perzyna and Duvaut–Lions visco-plasticity theories differ from the inviscid plasticity
theory in that the current stress may violate the yield criterion, so that the Karush–Kuhn–
Tucker conditions, Equation (6.16), do not apply. In the stress space this has the implication
that the stress point can be outside the yield surface, which is the reason that the terminology
overstress plasticity models has been coined for these classes of visco-plasticity models. For a
constant external loading the stresses return, or relax, to the yield surface in the course of time.
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Time-dependent Material Models 297

However, visco-plasticity models have been proposed where the rate effect is introduced
via a rate-dependent yield surface (Ristinmaa and Ottosen 2000; Wang et al. 1996, 1997).
The Karush–Kuhn–Tucker conditions are then enforced, hence they are known by the name
consistency visco-plasticity models. For isotropic hardening/softening the yield function then
attains the format:

f (σ, κ, κ̇) = 0 (8.71)

so that the vanishing of its variation, δf = 0, which is an alternative expression for the consis-
tency condition, Equation (7.39), can be elaborated to give:

nTδσ − hδλ − sδλ̇ = 0 (8.72)

where n is the gradient to the yield surface, Equation (7.45), h follows the standard definition
of a hardening modulus, Equation (7.74), and s signifies the rate sensitivity parameter:

s = −∂f

∂κ̇

∂κ̇

∂λ̇
(8.73)

A notable advantage of the consistency visco-plastic model is that the current yield strength
is not only dependent on the accumulated plastic strain, but can also account for strain-rate
softening or hardening, which occurs in certain alloys. Like the Duvaut–Lions visco-plasticity
model, the consistency visco-plasticity model can be made to coincide with the Perzyna visco-
plasticity model (Heeres et al. 2002). For continued plastic loading and in the absence of
strain-rate effects, this is enforced by choosing:

s = η

(
dϕ(f )

df

)−1

(8.74)

Since the consistency model of visco-plasticity is equipped with a yield surface, a stan-
dard return-mapping algorithm (Chapter 7), can be applied to integrate the rate equations of
elasto-visco-plasticity. The tangential stiffness matrix follows by taking the variation of the
updated stress, Equation (8.52), with the generalised trapezoidal rule for the visco-plastic strain
increment, Equation (8.53)1:

δσ = Deδε − θ�tDeδ(ε̇vp)t+�t (8.75)

Following Chapter 7 we consider the wide class of plasticity models for which the rate of the
hardening parameter κ̇ is proportional to the consistency parameter λ̇, Equation (7.98), so that
the yield function can also be written as: f = f (σ, λ, λ̇). Accordingly,

ε̇vp = λ̇ m(σ, λ, λ̇) (8.76)

and the variation of the stress, δσ can be elaborated as:

δσ = Deδε − Deθ�t

(
λ̇

(
∂m
∂σ

δσ + ∂m
∂λ

δλ + ∂m
∂λ̇

δλ̇

)
+ mδλ̇

)

In consideration of Equation (8.53) we have

δλ = θ�tδλ̇ (8.77)
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298 Non-linear Finite Element Analysis of Solids and Structures

so that the latter identity can be re-expressed as:

δσ = Hδε − Hm̄δλ (8.78)

At variance with Chapter 7, H and m̄ are now defined as:

H =
(

(De)−1 + θ�tλ̇
∂m
∂σ

)−1

m̄ = m + θ�tλ̇
∂m
∂λ

+ λ̇
∂m
∂λ̇

(8.79)

where, according to Equation (8.53)2

λ̇ ≡ λ̇t+�t = �λ − (1 − θ)λ̇t

θ�t
(8.80)

Inserting the expression of Equation (8.77) for δλ̇ into the variation of the yield function,
Equation (8.72), yields:

nTδσ =
(
h + s

θ�t

)
δλ (8.81)

from which δλ̇ can be resolved, and Equation (8.78) can be rewritten as:

δσ = Dδε (8.82)

with

D = H − Hm̄nTH(
h + s

θ�t

) + nTHm̄
(8.83)

the tangential stiffness matrix for the consistency model of visco-plasticity.

8.3.6 Propagative or Dynamic Instabilities

As discussed in Chapter 6, localisation of deformation followed by failure can be caused by
descending branches in the equivalent stress–strain diagram and by loss of the major symmetry
in the tangential stiffness tensor, while geometrical non-linearities may either be stabilising or
destabilising. The instabilities discussed in Chapter 6 are called static instabilities, because the
localised strain mode remains confined to a certain part in the body. However, experimental
observations have revealed other types of instabilities, like patterning in rock masses and salt
formations and propagative instabilities, also named dynamic instabilities, like Lüders bands
and Portevin–Le Chatelier (PLC) bands in metals and alloys, where a shear band propagates
through the body. The latter types of instabilities are caused by rehardening and by strain-rate
softening, respectively.
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Time-dependent Material Models 299

For a classification of instability problems we shall consider the simple problem of a uni-
axially stressed tensile bar subject to a dynamic loading. In this case, the equation of motion
and the continuity equation can be expressed in a rate format as:{

∂σ̇
∂x

= ρ ∂2u̇
∂t2

ε̇ = ∂u̇
∂x

where ρ is the mass density. Using the format of classical small-strain plasticity, the strain
rate ε̇ is additively decomposed into an elastic contribution ε̇e and a plastic contribution ε̇p, cf.
Equation (7.41):

ε̇ = ε̇e + ε̇p (8.84)

Assuming linear elasticity, the elastic contribution is related to the stress rate σ̇ according to
Equation (7.40), which yields for one-dimensional conditions:

σ̇ = Eε̇e

Differentation of the one-dimensional equation of motion with respect to the spatial coordinate
x and substitution of the kinematic equation, the strain decomposition and the linear relation
between the stress rate and the elastic strain rate yields:

∂2σ̇

∂x2 − ρ

E

∂2σ̇

∂t2 = ρ
∂2ε̇p

∂t2 (8.85)

We now postulate the stress to be dependent on the plastic strain, the plastic strain rate and,
following arguments advocated by Aifantis (1984), on the second spatial gradient of the plastic
strain

σ = σ

(
εp, ε̇p,

∂2εp

∂x2

)
(8.86)

which constitutes the simplest possible, symmetric extension of a standard, rate-independent
plasticity model, where σ = σ(εp). In a rate format we obtain

σ̇ = hε̇p + sε̈p + c
∂2ε̇p

∂x2 (8.87)

with

h = ∂σ

∂εp , s = ∂σ

∂ε̇p , c = ∂σ

∂(∂2εp/∂x2)
(8.88)

Herein, h, s and c refer to the hardening/softening modulus, the strain-rate sensitivity and to the
gradient parameter, respectively. In general, they can be strain and strain-rate dependent. We
now combine Equation (8.85) with the constitutive equation in rate format, Equation (8.87),
to obtain:

h∇̃ ε̇p + s∇̃ ε̈p + c∇̃
(

∂2ε̇p

∂x2

)
= ρ

∂2ε̇p

∂t2 (8.89)
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300 Non-linear Finite Element Analysis of Solids and Structures

with

∇̃ = ∂2

∂x2 − ρ

E

∂2

∂t2 (8.90)

To investigate the stability of an equilibrium state, we assume a harmonic perturbation ε̇p

starting from a homogeneous deformation state

ε̇p = Aei(kx+λt) (8.91)

where A is the amplitude, k is the wave number and λ is the eigenvalue. Substitution of
Equation (8.91) into Equation (8.89) gives the characteristic equation:

λ3 + aλ2 + bλ + d = 0 (8.92)

with

a = h − ck2 + E

s
, b = Ek2

ρ
, d = Ek2

ρ

h − ck2

s
(8.93)

According to the Routh–Hurwitz stability theorem all solutions λ(k) have a negative real part
when the following conditions are fulfilled simultaneously:

a = h − ck2 + E

s
> 0 , d = Ek2

ρ

h − ck2

s
> 0 , ab − d = E2k2

ρs
> 0 (8.94)

If the Routh–Hurwitz criterion fails to hold, an eigenvalue with a real, positive part will exist,
which implies that the homogeneous state is unstable and a small perturbation can grow into,
for instance, a shear band instability. Here, we consider two possible types of instabilities:

1. An h-type instability which is associated with the formation of a stationary localisation
band

s > 0 , h − ck2 < 0 (8.95)

It is noted that this type of instability is dependent on k, the wave number, which has a
cut-off value

k =
√

h

c
(8.96)

Only waves with a wave length smaller than L = 2π/k can propagate in the localisation
band. This sets an internal length scale in this gradient-enhanced continuum

� = L

2π
=

√
c

h
(8.97)

since the size of the localisation band in the one-dimensional case coincides with the largest
possible wavelength.
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Time-dependent Material Models 301

h2

G
h1

τ

γ

Figure 8.6 Simplified softening–rehardening model for Lüders band propagation

2. An s-type instability, which can be associated with the occurrence of travelling PLC bands

s < 0 , h > 0 (8.98)

The consistency model of visco-plasticity has the advantage that it is well suited to describe
s-type instability phenomena, i.e. that are are caused by strain-rate softening.

As an example of Lüders band propagation we consider a one-dimensional bar, but now
subjected to a shear force that is applied instantaneously (Wang et al. 1997). The boundary
conditions are such that the bar is loaded purely in shear (no bending effects). Eight-noded
elements with a nine-point Gaussian integration scheme have been used. The elastic parameters
are such that the shear wave speed is cs = 1000 m/s. The time step has been chosen such that
�t = �l/cs, with �l the finite element size, and cs the shear wave velocity. The time integration
has been done using a Newmark scheme, with parameters β = 0.9 and γ = 0.49 to introduce
some numerical damping (Chapter 5).

The propagation of the instability has been investigated for the softening–rehardening model
sketched in Figure 8.6, using two different meshes, with 20 and 40 elements, respectively. In
Figure 8.7 analytical and numerical results are shown for strain distributions when the reflected
wave front has travelled to xr = 15 mm and the propagative instability has reached xs = 8.6
mm.

For both discretisations, the numerical results well capture the reflected wave front at xr.
Strain softening occurs as soon as the shear stress exceeds the initial yield strength. Due to
the rehardening, another discontinuity emerges at xs which propagates with a different (lower)
velocity cs and stress fluctuations arise (Figure 8.8). For strain softening followed by ideal

0

1

2

0 4 8 12 16 20
x (mm)

γ ( × 10−2)

analytical

coarse mesh

fine mesh

Figure 8.7 Shear strain distribution for the softening–rehardening model after wave reflection (Wang
et al. 1997)
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302 Non-linear Finite Element Analysis of Solids and Structures

0. 0

50

100

2. 0 2. 1 2. 2 2. 3 t (×10−6s)

τ ( N/mm2 )

coarse mesh , h2 = 0

coarse mesh fine mesh

Figure 8.8 Stress evolution at the left-most integration point in the bar for ideal and softening plasticity,
considering two different discretisations (Wang et al. 1997)

plasticity, h2 = 0 in Figure 8.8, these fluctuations do not occur, since then the wave speed
becomes imaginary, so that the instability cannot propagate and is trapped at this position.
However, when rehardening takes place after softening, the wave speed becomes real again
and the wave front propagates to the next point, where this sequence of events is repeated:
softening, trapping of the wave, followed by rehardening, which causes wave propagation. Due
to the instantaneous drop at the onset of softening, a reflected wave propagates to the centre
region and a fluctuation propagates to the left. Hence, the number of fluctuations increases
with the number of elements in the bar, which is confirmed in Figure 8.8. Therefore, conven-
tional strain-softening models are mesh sensitive even if rehardening is introduced. However,
mesh sensitivity must now be interpreted in the sense that, upon mesh refinement, the stress
distribution will show more fluctuations.

The bar loaded in shear is now reanalysed with a material model, which incorporates strain
hardening (h > 0) and strain-rate softening (s < 0) (Figure 8.9) (Wang et al. 1997). For this
s-type instability a propagative shear band is observed, which commonly is referred to as a
PLC band. The competition between strain hardening (h > 0) and strain-rate softening (s < 0)
determines the propagation velocity of this shear band in the absence of temperature effects.

σ σ

κ κ

σ
0

h

s

Figure 8.9 Simplified model for an s-type instability such as the Portevin–Le Chatelier effect
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Figure 8.10 Stroboscopic picture of the plastic strain distribution during wave propagation in a bar due
to an s-type instability (Wang et al. 1997)

When the deformation reaches a critical value, the local PLC band is arrested due to the
contribution of the strain hardening. Subsequently, a new PLC band will be initiated at the
adjacent element, so that the PLC effect progresses from one end of the bar to the other in a
discontinuous, but orderly and periodic fashion (Figure 8.10).
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Part III
Structural Elements
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9
Beams and Arches

The majority of this chapter is devoted to two-dimensional beam elements, while in the final
part of the chapter the extension to three-dimensional formulations is made. Beam elements
for two-dimensional analysis are of interest in their own right, but also have a didactic role.
Much more so than for three-dimensional beam formulations, or for other structural elements
such as plates and shells, the mathematical complications remain limited, and transparency
is preserved. Moreover, it allows us to easily connect with the developments in Part I. We
therefore start with a shallow-arch formulation. Subsequently, a corotational approach for
two-dimensional beam elements is introduced, which can be considered as an extension of the
corotational formulation for truss elements in Chapter 3. Before entering a three-dimensional
formulation, we will then consider a degenerated continuum beam element using the To-
tal Lagrange formulation, which connects with the discussion on continuum elements in
Chapter 3.

9.1 A Shallow Arch

9.1.1 Kirchhoff Formulation

We will start the discussion by departing from an initially flat element (Figure 9.1). Using a

degenerated form of the Green–Lagrange strain tensor – Equation (3.70) with
(

du
dx

)2 �
(

dw
dx

)2

– the axial strain can be expressed as:

ε = du

dx
+ 1

2

(
dw

dx

)2

(9.1)

Note that we have adopted the short-hand notation ε = εxx, u = ux and w = uz in conformity
with the majority of the literature on beam elements. With u� the axial displacement at the centre
line and assuming that plane cross-sections remain plane [Figure 9.2(a)], the displacement in

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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l
0

1 2

w

u

x

z

z

w
w’

c

Figure 9.1 A shallow-arch element

the x-direction is given by:

u = u� − z�

dw

dx
(9.2)

with z� measured with respect to the centreline of the element. Substitution of Equation (9.2)
into Equation (9.1) results in:

ε = du�

dx
+ 1

2

(
dw

dx

)2

+ z�χ (9.3)

with the curvature

χ = −d2w

dx2 (9.4)

For an initially curved element (Figure 9.1), Equation (9.3) must be modified to become:

ε = ε� + z�χ (9.5)

u u

xd
wd

dw
d x

z

θ

(b)(a)

d
wd
xu

l lul

Figure 9.2 Detail for shallow-arch element: (a) using the Kirchhoff assumptions (no shear deformation);
(b) for a Timoshenko beam (including shear deformation)
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Beams and Arches 309

with the membrane strain

ε� = du�

dx
+ 1

2

[(
dw′

dx

)2

−
(

dz

dx

)2
]

(9.6)

and

w′ = w + z (9.7)

Note that for z = 0, Equations (9.5)–(9.7) reduce to Equation (9.3). The virtual strain follows
in a straightforward manner as:

δε = δε� + z�δχ (9.8)

with

δε� = dδu�

dx
+ dw′

dx

dδw

dx
(9.9)

since δw′ = δw.
As in truss elements the internal virtual work involves only the axial stress and the axial

strain, Equation (3.3): ∫
V0

σδεdV0 = δuTfext

where the superscripts t + �t have been dropped for notational convenience. Substitution of
Equation (9.8) and integration through the depth yields:∫

�0

(Nδε� + Mδχ) dx = δuTfext (9.10)

with

N =
∫ +h/2

−h/2
b(z�)σdz� (9.11)

the normal force, and

M =
∫ +h/2

−h/2
b(z�)σz�dz� (9.12)

the bending moment, being the stress resultants. h is the height of the beam and b(z�) is its
width at z�.

The finite element shape functions are now formally introduced as:

u� = hT
ua , w = hT

ww (9.13)

In this section, we assume that the beam is thin, and that the Kirchhoff assumption holds. A
possible, matching interpolation is then a quadratic, hierarchical interpolation for u�, and a
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310 Non-linear Finite Element Analysis of Solids and Structures

cubic, Hermitian interpolation for w:

hT
u = 1

2

(
1 − ξ, 1 + ξ, 2(1 − ξ2)

)
(9.14a)

hT
w = 1

8

(
4 − 6ξ + 2ξ3, �0(ξ2 − 1)(ξ − 1), 4 + 6ξ − 2ξ3, �0(ξ2 − 1)(ξ + 1)

)
(9.14b)

with ξ the isoparametric coordinate along the axis, and the nodal arrays:

aT = (a1, a2, �ac)

wT = (w1, θ1, w2, θ2)

with, according to the Kirchhoff assumption:

θ = dw

dx
(9.15)

and �ac the relative displacement at the hierarchical mid-side node c. Differentiation of
Equation (9.13) leads to:

du�

dx
= bT

ua

dw

dx
= bT

ww (9.16)

χ = −d2w

dx2 = cTw

with

bu = 1

�0
(−1, +1, −4ξ)

bw = 1

4�0

(
6(ξ2 − 1), �0(3ξ2 − 2ξ − 1), −6(ξ2 − 1), �0(3ξ2 + 2ξ − 1)

)
(9.17)

c = − 1

�2
0

(
6ξ, �0(3ξ − 1), −6ξ, �0(3ξ + 1)

)
so that the strain, Equation (9.5), becomes:

ε = bT
ua + 1

2
(bT

ww′)2 − 1

2

(
dz

dx

)2

︸ ︷︷ ︸
ε�

+z� cTw︸︷︷︸
χ

(9.18)

where w′ = w + z. Assuming a Bubnov–Galerkin approach, the virtual displacements are
interpolated in the same manner as the displacements, and the expression for the virtual strain,
Equation (9.8), attains the following discrete format:

δε = bT
uδa + (bT

ww′)bT
wδw︸ ︷︷ ︸

δε�

+z� cTδw︸ ︷︷ ︸
δχ

(9.19)
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Beams and Arches 311

For the present we will assume linear elasticity, so that the stress resultants, Equations (9.11)
and (9.12), can be integrated explicitly to give:

N = EAε� (9.20a)

M = EIχ (9.20b)

with I the moment of inertia of the beam. It has been assumed implicitly that the strains remain
small, so that for the cross-sectional area of the beam we have: A ≈ A0. Substitution of these
expressions and Equation (9.19) into the virtual work expression for the beam, Equation (9.10),
leads to:∫

�0

[(
NδaTbu + N(bT

ww′)δwTbw

)+ MδwTc
]

dx = δaTfa
ext + δwTfw

ext (9.21)

Since this identity must hold for arbitrary δa, δw, the following set of equations results:(
fa
int

fw
int

)
=
(

fa
ext

fw
ext

)
(9.22)

with the internal force vectors defined as:

fa
int =

∫
�0

Nbudx (9.23a)

fw
int =

∫
�0

(
N(bT

ww′)bw + Mc
)

dx (9.23b)

The set of equations (9.22) is non-linear and must be solved using an iterative procedure, e.g.
a Newton–Raphson method. For this purpose a truncated Taylor series is applied

(fa
int)j+1 = (fa

int)j +
(

∂fa
int

∂a

)
j

da +
(

∂fa
int

∂w

)
j

dw

(fw
int)j+1 = (fw

int)j +
(

∂fw
int

∂a

)
j

da +
(

∂fw
int

∂w

)
j

dw

and the residual is forced to zero, so that the following matrix-vector equation results:[
Kaa Kaw

KT
aw Kww

](
da

dw

)
=
(

fa
ext − fa

int

fw
ext − fw

int

)
(9.24)

with the submatrices of the tangential stiffness matrix defined as:

Kaa = ∂fa
int

∂a
=
∫

�0

EAbubT
udx

Kaw = ∂fa
int

∂w
=
∫

�0

EA(bT
ww′)bubT

wdx (9.25)

Kww = ∂fw
int

∂w
=
∫

�0

(
EIccT + EA(bT

ww′)2bwbT
w + NbwbT

w

)
dx
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312 Non-linear Finite Element Analysis of Solids and Structures

z

x

Figure 9.3 Gauss integration along the axis and Newton–Cotes, Simpson or Lobatto integration through
the depth for a layered beam element

where the last term of Kww can be identified as the geometric contribution to the tangential
stiffness matrix.

When material non-linear behaviour is to be included in the analysis, e.g. plasticity or
damage, the beam must be divided into a number of layers, in order to be able to monitor the
spread of plasticity or damage through the depth of the beam. The inelasticity is, like along the
x-axis, sampled at integration points. At variance with the integration along the x-axis which
is typically done using Gauss integration, Newton–Cotes, Simpson and Lobatto integration
schemes are more suitable for through-the-depth integration, since the outermost fibres of the
beam, which are the most severely strained, and therefore the starting point of yielding or
damage evolution, are then explicitly monitored (Figure 9.3) (Burgoyne and Crisfield 1990).
For most practical purposes, using five to nine integration points through the depth suffices.
Considering that plasticity and damage can be cast in an incrementally linear relation between
the axial stress σ and the strain ε,

σ̇ = Etan(z�)ε̇ (9.26)

with Etan the tangential stiffness modulus which, for a given x, only depends on the position
with respect to the centreline, closed-form expressions for the normal force and the bending
moment can no longer be derived. Instead, we obtain for the rate of the normal force and the
rate of the bending moment,

Ṅ =
(∫ +h/2

−h/2
b(z�)Etan(z�)dz�

)
︸ ︷︷ ︸

EA

ε̇� +
(∫ +h/2

−h/2
b(z�)Etan(z�)z�dz�

)
︸ ︷︷ ︸

EX

χ̇ (9.27)

and

Ṁ =
(∫ +h/2

−h/2
b(z�)Etan(z�)z�dz�

)
︸ ︷︷ ︸

EX

ε̇� +
(∫ +h/2

−h/2
b(z�)Etan(z�)z2

�dz�

)
︸ ︷︷ ︸

EI

χ̇ (9.28)
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Beams and Arches 313

respectively. For a layered beam the stiffness matrices thus become:

Kaa =
∫

�0

EAbubT
udx

Kaw =
∫

�0

(
EA(bT

ww′)bubT
w + EXbucT) dx (9.29)

Kww =
∫

�0

(
EIccT + EA(bT

ww′)2bwbT
w + NbwbT

w

+EX(bT
ww′)(bwcT + cbT

w)
)

dx (9.30)

For the special case that z� is measured from the centreline, that b(z�) is symmetric with respect
to the centreline, and that the material behaves identically in tension and in compression (so
that Etan is symmetric with respect to z�), the second integral of Equation (9.27) and the first
integral of Equation (9.28) – the coupling terms – vanish.

With a Kirchhoff bending theory we cannot use an interpolation for the transverse displace-
ment w that is lower than cubic polynomials. By contrast, it is well possible, with respect to
all continuity requirements, to adopt any function, from linear functions onwards, for the axial
displacement at the centreline, u�. However, with a cubic interpolation for w, an interpolation
for u� would be required that involves quintic polynomials in order that the interpolations
for w and u� are balanced, and that we can represent a constant membrane strain, and, in
particular, the zero membrane strain associated with inextensional bending. The inability to
represent such a constant membrane strain can lead to overstiff solutions, commonly denoted
as membrane locking. However, a quintic interpolation for the axial strain would be extremely
cumbersome, particularly when extended to plate or shell elements.

Instead of resorting to such a complicated element, a number of techniques have been
proposed to remove, or at least to ameliorate, membrane locking (Stolarski and Belytschko
1982; Crisfield 1986; Bischoff et al. 2004). When adopting a linear interpolation function for u�,
a possible solution is to use a single point, selective-reduced integration for the membrane strain
ε̄. The problem remains, however, that a linear interpolation for u� in conjunction with a cubic
interpolation for w leads to terms in the expression for the displacement u, Equation (9.2), that
do not match, since the spatial derivative of w is then quadratic. Ignoring the non-linear terms
we then have a solution that even for bending-dominant problems depends on the reference
plane, i.e. where u� acts (Crisfield 1991). Hence, for eccentricity, for which the coupling terms
that involve the EX-terms are non-zero, an overstiff solution may be induced. It is noted that
eccentricity can stem from the initial geometry, but also from induced material non-linearity
when there is a difference in tensile and compressive behaviour. As an alternative solution, one
can use different interpolations for w, e.g. a linear interpolation with respect to the membrane
strain, but a cubic interpolation for the curvature, χ.

Methods to remove or reduce membrane locking can be put on a more rigorous footing using
the Hu–Washizu variational principle (Crisfield 1986; Washizu 1975; Wempner 1969). This
involves the membrane strain ε� being replaced by an effective membrane strain, εeff , such that

εeff = 1

�0

∫
�0

ε�dx (9.31)
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314 Non-linear Finite Element Analysis of Solids and Structures

Using a linear interpolation for u� (so that �ac = 0), we can elaborate this identity for the
shape functions (9.14) as:

ε̄eff = a2 − a1

�0
+ 1

2�0
(w′)T

(∫
�0

bwbT
wdx

)
w′ − 1

2�0
(z)T

(∫
�0

bwbT
wdx

)
z (9.32)

If the original expression for ε̄ is used instead, it is essential to use at least a quadratic polynomial
for u� and to include the variable �ac to limit the self-straining. With a two-point Gauss
integration along the beam axis, reasonable solutions are obtained. Without this quadratic
term, overstiff solutions can result (Crisfield 1986).

9.1.2 Including Shear Deformation: Timoshenko Beam

As an alternative to using the Kirchhoff hypothesis, Equation (9.15), we can adopt a Timo-
shenko beam formulation, which includes shear deformation (Timoshenko 1921). As a con-
sequence, θ, the rotation of the normal to the centreline, becomes an independent variable
[Figure 9.2(b)], and the curvature is given by:

χ = dθ

dx
(9.33)

Defining

Q =
∫ +h/2

−h/2
b(z�)τdz� (9.34)

as the shear force, with τ = σxz the short-hand notation for the shear stress, the virtual work
contribution ∫

�0

Qδγdx

with the shear strain γ defined as:

γ = θ + dw

dx
(9.35)

must be added to Equation (9.10) to give:∫
�0

(Nδε̄ + Mδχ + Qδγ) dx = δuTfext (9.36)

The interpolation now formally follows from:

u� = hT
ua , w = hT

ww , θ = hT
θ θ (9.37)

and the spatial derivatives follow by straightforward differentiation:

du�

dx
= bT

ua ,
dw

dx
= bT

ww ,
dθ

dx
= bT

θ θ (9.38)
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Beams and Arches 315

Using quadratic, hierarchical shape functions for the interpolation of u�, w and θ gives hu =
hw = hθ , with hu as defined in Equation (9.14), and the nodal variables:

aT = (a1, a2, �ac)

wT = (w1, w2, �wc)

θT = (θ1, θ2, �θc)

Note that the nodal rotational variables have a sign that is opposite of that in the Kirchhoff
formulation, since they no longer follow the slope of the centreline ( dw

dx
), but that of the rotation

of the normal. This slight notational anomaly could have been remedied by defining the z-axis
in the downward direction (Hartsuijker and Welleman 2007). From the spatial derivates and
Equations (9.33) and (9.35) we obtain the following expressions for the shear strain:

γ = hT
θ θ + bT

ww (9.39)

and the curvature:

χ = bT
θ θ (9.40)

Substitution of the interpolations (9.37) into Equation (9.36) and noting that the discrete
nodal variables now consist of the set (a, w, θ) yields:∫

�0

[
N
(
δaTbu + (bT

ww′)δwTbw

)+ MδθTbθ + Q
(
δθThθ + δwTbw

)]
dx =

δaTfa
ext + δwTfw

ext + δθTfθ
ext (9.41)

Since this identity must hold for arbitrary (δa, δw, δθ), a set of equations results that has the
familiar appearance of the balance of the external and the internal forces: fa

int

fw
int

fθ
int

 =

 fa
ext

fw
ext

fθ
ext


with the internal force vectors now defined as:

fa
int =

∫
�0

Nbudx

fw
int =

∫
�0

(
N(bT

ww′)bw + Qbw

)
dx (9.42)

fθ
int =

∫
�0

(Mbθ + Qhθ) dx

As with the beam based on the Kirchhoff hypothesis, a Newton–Raphson method is
used to solve the resulting set of non-linear algebraic equations, and the linearisation
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316 Non-linear Finite Element Analysis of Solids and Structures

process results in:  Kaa Kaw Kaθ

KT
aw Kww Kwθ

KT
aθ KT

wθ Kθθ


 da

dw

dθ

 =

 fa
ext − fa

int

fw
ext − fw

int

fθ
ext − fθ

int

 (9.43)

with the submatrices of the tangential stiffness matrix defined as:

Kaa =
∫

�0

EAbubT
udx

Kaw =
∫

�0

EA(bT
ww′)bubT

wdx

Kaθ =
∫

�0

EXbubT
θ dx

Kww =
∫

�0

(
EA(bT

ww′)2 + GA + N
)

bwbT
wdx (9.44)

Kwθ =
∫

�0

(
EX(bT

ww′)bwbT
θ + GAbwhT

θ

)
dx

Kθθ =
∫

�0

(
EIbθbT

θ + GAhθhT
θ

)
dx

where the last term of Kww can again be identified as the geometric contribution to the tangential
stiffness matrix.

Similar to EI etc., the expression GA can be derived by considering the rate of the shear
force, as defined in Equation (9.34)

Q̇ =
∫ +h/2

−h/2
b(z�)τ̇dz� =

(∫ +h/2

−h/2
b(z�)Gtan(z�)dz�

)
γ̇ (9.45)

with Gtan the tangential shear modulus, which depends on the position with respect to the
centreline. It follows that

GA =
∫ +h/2

−h/2
b(z�)Gtan(z�)dz� (9.46)

and for a homogeneous cross section GA = GA. It has been shown by Cowper (1966) that
even for a homogeneous cross section and linear elasticity, a shear correction factor k should
be applied:

GA = kGA (9.47)

with k = 5
6 for rectangular cross sections.

Very acceptable solutions can be obtained when quadratic, hierarchic shape functions are
used for all variables, in conjunction with a two-point Gauss integration. However, for slen-
der beams, i.e. if the length-to-thickness ratio becomes high, so-called shear locking can oc-
cur (Bischoff et al. 2004; Crisfield 1986). This can be overcome by forcing the shear strain to
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Beams and Arches 317

be effectively constant along the beam axis, by adopting the constraint (Crisfield 1986):

�wc = �

8
(θ2 − θ1) (9.48)

and the set of nodal variables becomes:

aT = (a1, a2, �ac)

wT = (w1, w2)

θT = (θ1, θ2, �θc)

The constraint can be imposed after the stiffness matrix has been formed, but it is usually
advantageous to directly modify the shape function derivatives in bw.

9.2 PyFEM: A Kirchhoff Beam Element

The Kirchhoff and the Timoshenko beam elements have been implemented in PyFEM in the
files KirchhoffBeam.py and TimoshenkoBeam.py, which are located in the directory
pyfem/elements. In this section, we will take a closer look at the implementation of the
Kirchhoff beam element.

In general, each node of a continuum element has the same number of degrees of freedom.
In structural elements however, this is not always the case. The Kirchhoff and the Timoshenko
beam elements both contain additional degrees of freedom, which do not represent the displace-
ment or the rotation of a node, but are used to construct a higher-order field. In the Kirchhoff
beam model �ac, introduced in Equation (9.15), is an example of such a degree of freedom.

In most finite element codes, including PyFEM, it is assumed that each node in an element
contains the same degrees of freedom. In order to implement a structural element with this
restriction, the following trick can be used. We define the beam element as a three-noded
element, where nodes 1 and 3 are the nodes which define the position of the element. Both
nodes have three degrees of freedom [u, w, θ]. Node 2 is a so-called ‘dummy’ node, which is
only used to introduce an element specific degree of freedom, �ac. Since the node automatically
contains the same set of degrees of freedom as the other nodes, the first degree of freedom u

represents �ac. The other two degrees of freedom of this node, w and θ, are constrained.
The file KirchhoffBeam.py is organised as follows:

〈Kirchhoff beam element 〉≡
〈Kirchhoff beam class definition 318〉
〈Kirchhoff beam class main functions 318〉
〈Kirchhoff beam class utility functions 319〉

In the class definition, the nodal degrees of freedom of the element are specified:
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318 Non-linear Finite Element Analysis of Solids and Structures

〈Kirchhoff beam class definition 〉≡ 317

class KirchhoffBeam ( Element ):

dofTypes = [ ’u’ , ’w’ , ’theta’ ]

def __init__ ( self, elnodes , props ):
Element.__init__( self, elnodes , props )

self.EA = self.E * self.A
self.EI = self.E * self.I

〈Construct arrays with sample points and integration weights〉

The list dofTypes is a member of the class, and is used to construct the solution space of
the problem. The items in this list represent the three nodal degrees of freedom u, w and θ. In
the constructor of the base class the other parameters of the model are obtained: the Young’s
modulus E, the cross-sectional area A and the second moment of inertia I. They are used to
compute the parameters EA and EI, which are stored as members of the class. Finally, two
one-dimensional arrays are created that contain the sample point positions intpoints and
integration weights weights of a third-order Gauss integration scheme.

The most important member function is getTangentStiffness:

〈Kirchhoff beam class main functions 〉≡ 317

def getTangentStiffness ( self, elemdat ):

l0 = norm( elemdat.coords[2]-elemdat.coords[0] )
jac = 0.5 * l0

a_bar = self.glob2Elem( elemdat.state , elemdat.coords )

fint = zeros(9)
stiff = zeros( elemdat.stiff.shape )

First, the length of the current element is calculated and stored as l0. It is noted that the length
is set by the positions of the first and the third node. The determinant of the Jacobian matrix,
which is needed for the numerical integration, is calculated next. In this case, it is equal to half
the length of the element. Then, the total state vector is rotated to the local element coordinate
system. The function glob2Elem is also a member of this class. Finally, the new, empty
arrays fint and stiff are created and are used to compute the internal force vector and the
stiffness matrix in the local element coordinate system.

The numerical integration of the element is carried out by looping over the integration points:
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Beams and Arches 319

〈Kirchhoff beam class main functions 〉+≡ 318

for xi,alpha in zip( self.intpoints , self.weights ):

bu = self.getBu( l0 , xi ) 319
bw = self.getBw( l0 , xi )
c = self.getC ( l0 , xi )

epsl = dot( bu , a_bar ) + 0.5 *( dot( bw , a_bar ) )**2
chi = dot( c , a_bar )

The operators bu, bw and c that map the local state variables onto the derivatives, are first
calculated for a given integration point xi. These vectors have a length 9 (the total num-
ber of degrees of freedom for this element), and are relatively sparse. This causes some
numerical overhead, but in this manner, the mapping from the degree of freedom can be
done automatically. As an example, the implementation of the function getBu is shown
here:

〈Kirchhoff beam class utility functions 〉≡ 317

def getBu( self , l0 , xi ):

Bu = zeros( 9 )

Bu[0] = -1.0/l0
Bu[3] = -4.0*xi/l0
Bu[6] = 1.0/l0

return Bu

When the axial strain and the curvature are known, the normal force N and bending moment
M can be computed according to Equation (9.20):

〈Kirchhoff beam class main functions 〉+≡ 319

N = self.EA * epsl
M = self.EI * chi

wght = jac * alpha

fint += N * bu * wght
fint += ( N * dot( bw , a_bar ) * bw + M * c ) * wght
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320 Non-linear Finite Element Analysis of Solids and Structures

The weight factor is equal to the integration weight alpha times the determinant of the
Jacobian matrix jac. The internal force vector is computed according to Equation (9.23).
Because of the sparse structure of the arrays bu, bw and c, the terms of the internal force vector
end up in the correct position automatically. The stiffness matrix is constructed according to
Equation (9.25):

〈Kirchhoff beam class main functions 〉+≡ 319

stiff += self.EA * outer( bu , bu ) * wght
stiff += self.EA * dot( bw , a_bar ) * outer( bu , bw ) * wght
stiff += self.EA * dot( bw , a_bar ) * outer( bw , bu ) * wght
stiff += ( self.EI * outer( c , c ) + \

self.EA * (dot( bw , a_bar ))**2 * outer( bw , bw ) + \
N * outer( bw , bw ) ) * wght

Note that the third line in the fragment has been added to calculate the term Kwa = KT
aw.

When the loop over the integration points has been completed, the internal force vector and
stiffness matrix have been calculated. However, the fourth and fifth terms in them belong to
a dummy degree of freedom, and contain only zeros. To prevent ill-conditioning, these terms
must be constrained manually. As a simple solution a unit value has been put on the diagonal
of these terms:

〈Kirchhoff beam class main functions 〉+≡ 320

stiff[4:5,4:5] = eye(2)

elemdat.fint = self.elem2Glob( fint , elemdat.coords )
elemdat.stiff = self.elem2Glob( stiff , elemdat.coords )

The function is completed by transforming the internal force vector and the stiffness matrix
back to the global coordinate system and storing the values in the elemdat container.

The performance of the Kirchhoff beam element is now demonstrated through the simulation
of the buckling of a simply supported, slender column shown in Figure 9.4(a). The column has
length L = 200 and a uniform cross section with an area A = 6 and a moment of inertia I = 2.
The Young’s modulus is E = 7.2 × 106. Both ends of the column are simply supported and
the column is loaded by a point load P . The input file is KirchhoffEuler.pro and can
be found in the directory examples/ch09. The beam has been discretised by ten Kirchhoff
beam elements. The equilibrium path is obtained using Riks’ arc-length method, see Chapter 4.
In order to trigger the correct buckling mode, a small sinusoidal imperfection has been assumed,
with an amplitude h that varies from 0.001 to 0.1.

The buckling load Pcr, at which loss of stability occurs, follows from the classical analytical
relation:

Pcr = π2EI

L2 (9.49)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Beams and Arches 321

0

500

1000

1500

2500

3000

43.532.521.510.50
v

3500

4000

h = 0.001

h = 0.01

h = 0 .1

2000
P

P

v

L

h

(a) (b)

Figure 9.4 Euler buckling of a slender beam under compression. (a) Geometry and boundary conditions
of the specimen. The beam has a sinusoidal imperfection with an amplitude h. (b) The applied load P vs
the lateral displacement v of the beam for different amplitudes of the geometric imperfection.

For the given dimensions and material parameters, Pcr = 3553. From the graph in Figure 9.4(b)
it is observed that all the simulations converge to this buckling load.

9.3 Corotational Elements

Corotational formulations have been addressed in relation to truss elements and to continuum
elements in Chapter 3. The origins of the corotational formulation can be traced back to
Belytschko and Glaum (1979), Belytschko and Hsieh (1973) and Wempner (1969), and also
to the ‘natural approach’ (Argyris et al. 1979), which has much in common with corotational
formulations. The terminology ‘corotational’ has been used in different contexts, but will be
reserved here to describe the situation of a single element frame that continuously rotates
with the element. In this coordinate frame the hypothesis of small strains is normally applied.
In Chapter 11 we will show how large strains can be accommodated within the corotational
framework in an approximate manner.

Since much of the early work was directed towards high-speed dynamics calculations,
tangential stiffness matrices were often not derived explicitly. As also has become clear in
Chapter 3 when deriving corotational formulations for truss elements and (two-dimensional)
continuum elements, the key to a consistent linearisation in a corotational framework is the
proper introduction of the variation of the local-global transformation matrices (Oran 1973;
Oran and Kassimali 1976).

9.3.1 Kirchhoff Theory

Herein we will first describe a two-dimensional corotational beam element based on the Kirch-
hoff assumption. Simple engineering concepts will be used without recourse to shape functions.
Throughout, an overbar will be used to denote a quantity that is referred to local coordinates.
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322 Non-linear Finite Element Analysis of Solids and Structures
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Figure 9.5 Stretch and local slopes in the corotational formulation

The elongation of an element follows that of the truss elements in Chapter 3 and the local
axial strain reads, cf. Box 3.1:

ū = � − �0 =
√

(�0 + ū21)2 + w̄2
21 − �0 (9.50)

where, as in Chapter 3, the abbreviated notation ū21 = ū2 − ū1 etc. has been used. Assuming
a homogeneous cross section – i.e. no layers – for the present, the normal force follows from
Equation (9.20a):

N = EA

�0
ū (9.51)

With respect to bending the standard engineering beam theory relations are assumed to
apply in the local coordinate system, so that with the local transverse displacements being zero
(Figure 9.5): (

M̄1

M̄2

)
= 2EI

�0

[
2 1

1 2

](
θ̄1

θ̄2

)
(9.52)

where the local slopes are according to the Kirchhoff hypothesis given by:

θ̄ = dw̄

dx̄

and are related to the slope in the global system, θ, the rigid rotation of the bar, φ, and the
initial slope in the local system, θ̄0, through:

θ̄ = θ − φ − θ̄0 (9.53)
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Beams and Arches 323

Expanding Equation (9.52) to include the linear-elastic relation in the axial direction, N̄ = EA
�0

,
yields:  N̄

M̄1

M̄2

 =


EA
�0

0 0

0 4EI
�0

2EI
�0

0 2EI
�0

4EI
�0


 ū

θ̄1

θ̄2

 (9.54)

Assembling the internal forces in the local coordinate system as:

f̄T
int = (

N̄, M̄1, M̄2
)

(9.55)

and the generalised displacements in the local coordate system as:

āT = (ū, θ̄1, θ̄2) (9.56)

we can write Equation (9.54) in a compact manner as:

f̄int = D̄eā (9.57)

with

D̄e =


EA
�0

0 0

0 4EI
�0

2EI
�0

0 2EI
�0

4EI
�0

 (9.58)

the elastic relation between the generalised internal forces and generalised displacements
expressed in the local coordinate system.

In principle, the virtual strains can be derived from Equation (3.11). Alternatively, an ap-
proach can be followed as in Chapter 3. Referring to Figure 3.3, see also Box 3.2, we have:

δū =
(

cos φ

sin φ

)T

δu21 = eT
1 δu21 (9.59)

where, as in Chapter 1, the unit vector eT
1 = (cos φ, sin φ) is directed along the axis of the beam

in the current configuration. Assembling the unknowns in the global coordinate frame as:

aT = (u1, w1, θ1, u2, w2, θ2) (9.60)

we can rewrite Equation (9.59) as:

δū = vTδa (9.61)

with

vT = (− cos φ, − sin φ, 0, cos φ, sin φ, 0) (9.62)

Next, we use the unit vector eT
2 = (− sin φ, cos φ), which is normal to the beam axis in the

current configuration, to express the variation of the rigid rotation of the beam, see also Box 3.2,
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324 Non-linear Finite Element Analysis of Solids and Structures

as:

δφ = 1

�
eT

2 δu21 (9.63)

or, using a,

δφ = 1

�
zTδa (9.64)

with

zT = (sin φ, − cos φ, 0, − sin φ, cos φ, 0) (9.65)

Combining this identity with Equation (9.53) leads to:(
θ̄1

θ̄2

)
=
([

0 0 1 0 0 0

0 0 0 0 0 1

]
− 1

�

[
zT

zT

])
δa (9.66)

In view of Equation (9.56) the latter equation can be combined with Equation (9.61) to give:

δā = Bδa (9.67)

with

B =

 0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

+

 vT

− 1
�
zT

− 1
�
zT

 (9.68)

Equating the internal virtual work in the local and the global coordinate systems gives:

δāT f̄int = δaTfint (9.69)

while making use of Equation (9.67) results in:

δaTfint = δaTBT f̄int (9.70)

Equating both right-hand sides, and considering that the result must hold for arbitrary δa, we
derive for the internal force vector:

fint = BT f̄int (9.71)

The tangential stiffness matrix can be derived directly from Equation (9.71), by taking the
variation:

δfint = BTδf̄int + δBT f̄int (9.72)

Using Equations (9.57) and (9.67), the first term can be elaborated as:

BTδf̄int = BTD̄eBδa (9.73)
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Beams and Arches 325

For the second term we can write:

δBT f̄int = N̄δv − M̄1 + M̄2

�
δz + M̄1 + M̄2

�2 zδ�

= N̄zδφ + M̄1 + M̄2

�
vδφ + M̄1 + M̄2

�2 zδū (9.74)

which, using Equations (9.61) and (9.64), gives

δBT f̄int =
(

N̄

�
zzT + M̄1 + M̄2

�2 vzT + M̄1 + M̄2

�2 zvT
)

δa (9.75)

and the tangential stiffness matrix has been derived as:

K = BTD̄B + N̄

�
zzT + M̄1 + M̄2

�2

(
vzT + zvT) (9.76)

Whereas a direct, engineering approach has been used in the preceding derivation, a more
formal, conventional finite element formulation that utilises shape functions, is also possible.
To this end, the local displacement, ū(ξ), is expressed as:

ū(ξ) = 1

2
(1 + ξ)(ū2 − ū1) (9.77)

and

x̄(ξ) = 1

2
(1 + ξ)�0 (9.78)

so that the local, axial strain is obtained as:

ε̄ = dū

dx̄
= dū

dξ

dξ

dx̄
= ū2 − ū1

�0
(9.79)

and the axial force is given by substituting this expresion into Equation (9.20a), resulting in
Equation (9.51). The local transverse displacement is assumed to be given by a conventional
cubic interpolation

w̄(ξ) = �0

8

(
(ξ2 − 1)(ξ − 1), (ξ2 − 1)(ξ + 1)

)( θ̄1

θ̄2

)
(9.80)

which is such that w̄ vanishes at both ends (Figure 9.5). Straightforward differentation leads
to the local rotation:

θ̄(ξ) = dw̄

dx̄
= 1

4

(
−1 − 2ξ + 3ξ2, −1 + 2ξ + 3ξ2

)( θ̄1

θ̄2

)
(9.81)

while further differentation results in the curvature:

χ̄(ξ) = dθ̄

dx̄
= bTθ̄ (9.82)
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326 Non-linear Finite Element Analysis of Solids and Structures

with

b = 1

�0
(−1 + 3ξ, 1 + 3ξ) (9.83)

and θ̄T = (θ̄1, θ̄2). From Equation (9.20b) we then obtain the expression for the bending mo-
ment:

M = EIχ = EIbTθ̄ (9.84)

The virtual work equation can now readily be expressed as:

δāT f̄int =
∫

�0

(
N

δū

�0
+ Mδχ

)
dx (9.85)

= Nδū + θ̄T
(∫

�0

EIbbTdx

)
δθ̄ (9.86)

or after integration, and noting that the result must hold for arbitrary δā:

f̄int = D̄eā (9.87)

with D̄e as in Equation (9.58). The latter equation coincides with Equation (9.57), and the
internal force vector is identical for both formulations. It follows that the tangential stiffness
matrices also coincide.

Equation (9.51) is based on the approximation that the axial strain in the beam is equal to the
relative axial deformation of the ends divided by the original length. This assumption does not
allow for straining caused by the beam shape departing from a straight line. Such an effect can
be incorporated by introducing the local shallow-arch terms (Belytschko and Glaum 1979).
A general approach is offered by invoking the Green–Lagrange strain relative to the rotating
coordinate system. When θ̄0 denotes the effect of initial slopes for a shallow arch, the strain is
obtained as:

ε̄ = dū

dx̄
+ 1

2

(
dū

dx̄

)2

+ 1

2
θ̄2 − 1

2
θ̄2

0 (9.88)

instead of Equation (9.79).

9.3.2 Timoshenko Beam Theory

The preceding derivation for a corotational beam element based on Kirchhoff’s assumptions
can be modified easily to incorporate shear deformation, hence to arrive at a corotational
Timoshenko beam theory. While the description of the stretching of the beam is unaffected,
the expressions for the bending moment and the shear force change into:

M̄ = EIχ̄ = −EI

�0
(θ̄2 − θ̄1) = −EI

�0
(θ2 − θ1) (9.89)
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Beams and Arches 327

and

Q̄ = GAγ = −GA

(
θ̄2 + θ̄1

2

)
= −GA

(
θ2 + θ1

2
− φ

)
(9.90)

The minus signs are required in order to maintain the sign convention adopted for the shallow
arch in the previous section. Note that in Equations (9.89) and (9.90) possible initial curvatures
have been omitted.

From Equations (9.89) and (9.90) and using Equations (9.61) and (9.64) we can formally
relate the variations of the generalised displacements in the local and in the global reference
frames as in Equation (9.67),

δā = Bδa

but with the generalised displacements given by:

aT = (ū, �0χ, �0γ) (9.91)

and the B matrix given by:

B =

 0 0 0 0 0 0

0 0 1 0 0 −1

0 0 − �0
2 0 0 − �0

2

+

 vT

0T

− �0
�

zT

 (9.92)

in lieu of Equation (9.68). Equating the internal virtual work in the local and in the global
reference frame yields again Equation (9.69), but the local internal force vector now reads:

f̄T
int = (N̄, M̄, Q̄) (9.93)

On account of Equation (9.69) the relation between the internal force vectors expressed in the
local and in the global coordinate systems formally still reads as in Equation (9.71), but with
the B matrix now as in Equation (9.92).

Taking the variation of the internal force formally leads to Equation (9.72):

δfint = BTδf̄int + δBT f̄int

For an elastic Timoshenko beam, the constitutive relation becomes: N̄

M̄

Q̄

 =

EA 0 0

0 EI 0

0 0 GA


 ū

�0χ

�0γ

 (9.94)

so that the elastic constitutive matrix expressed in the local coordinate system reads:

D̄e =

EA 0 0

0 EI 0

0 0 GA

 (9.95)

The first term of Equation (9.72) leads to the ‘material’ contribution in the tangential stiffness
matrix, while the geometric contribution can be elaborated in the same manner as for the
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328 Non-linear Finite Element Analysis of Solids and Structures

Kirchhoff beam, leading to:

K = 1

�0
BTD̄eB + N̄

�
zzT − Q̄�0

�2

(
vzT + zvT) (9.96)

9.4 A Two-dimensional Isoparametric Degenerate Continuum Beam
Element

Figure 9.6 shows a two-dimensional three-noded isoparametric degenerate continuum beam
element. For the linear theory the reader is referred to, for example, Bathe (1982) and Crisfield
(1986). The non-linear formulation that follows, relates to a general non-linear isoparametric
beam element (Bathe and Bolourchi 1975; Surana 1983b; Wood and Zienkiewicz 1977). Note
that the element is formulated in the x, y-plane, which follows the two-dimensional continuum
formulations of Chapter 3, but marks a departure from the beam formulations in the above,
which are formulated in the x, z-plane.

Following standard degenerate-continuum techniques, the displacements can be interpolated
as:

u(ξ) =
n∑

k=1

hk(ξ)uk + ζ

2

n∑
k=1

hk(ξ)tk cos φk (9.97a)

v(ξ) =
n∑

k=1

hk(ξ)vk + ζ

2

n∑
k=1

hk(ξ)tk sin φk (9.97b)

with −1 ≤ ξ ≤ +1, −1 ≤ ζ ≤ +1 the isoparametric coordinates along the beam axis and
perpendicular to the axis, respectively, tk is the thickness at node k, and uk and vk are the
nodal displacements of the centreline. Furthermore, cos φk and sin φk are the components of
the normalised director that connects the positions of node k at the top and the bottom of the
beam:

dk = (xk)top − (xk)bottom∥∥(xk)top − (xk)bottom
∥∥ (9.98)

x

y
ζ

ξ

3

φ3

1

d 1
t1

2

Figure 9.6 Three-noded degenerate continuum arch element
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Beams and Arches 329

In the isoparametric concept, the geometry is interpolated in the same manner, thus:

x(ξ) =
n∑

k=1

hk(ξ)xk + ζ

2

n∑
k=1

hk(ξ)tk cos φk (9.99a)

y(ξ) =
n∑

k=1

hk(ξ)yk + ζ

2

n∑
k=1

hk(ξ)tk sin φk (9.99b)

where xk and yk are the nodal coordinates at the centreline. The derivatives with respect to the
isoparametric coordinates, ∂u

∂ξ
etc., can be obtained by straightforward differentiation, and the

derivatives with respect to the global coordinates x, y then follow, cf. Chapter 2, from:(
∂u
∂x
∂u
∂y

)
= J−1

(
∂u
∂ξ

∂u
∂ζ

)
,

(
∂v
∂x
∂v
∂y

)
= J−1

(
∂v
∂ξ

∂v
∂ζ

)
, (9.100)

with J the standard Jacobian, Equation (2.22). We define

aT = (u1, v1, u2, v2, . . . , un, vn) (9.101)

as the array that contains the nodal displacements,

H =
[

h1 0 h2 0 . . . . . . hn 0

0 h1 0 h2 . . . . . . 0 hn

]
(9.102)

as the matrix that contains the shape functions hk, and

v =
(

1

2
t1 cos φ1,

1

2
t1 sin φ1,

1

2
t2 cos φ2,

1

2
t2 sin φ2, . . . ,

1

2
tn cos φn,

1

2
tn sin φn

)
(9.103)

as the array that contains the thickness at the nodes and the components of the directors, cos φk

and sin φk. Equation (9.97) can then be rewritten in matrix-vector format:

u = H (a + ζv) (9.104)

and the virtual displacements, needed in the subsequent derivations, follow directly as:

δu = H (δa + ζVδφ) (9.105)

with

V =



− 1
2 t1 sin φ1 0 . . . 0

+ 1
2 t1 cos φ1 0 . . . 0

0 − 1
2 t2 sin φ2 . . . 0

0 + 1
2 t2 cos φ2 . . . 0

...
...

. . .
...

0 0 . . . − 1
2 tn sin φn

0 0 . . . + 1
2 tn sin φn


(9.106)
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330 Non-linear Finite Element Analysis of Solids and Structures

and

φT = (φ1, φ2, . . . , φn) (9.107)

Defining the array â that contains all nodal variables of the beam element,

â =
(

a

φ

)
(9.108)

we can rewrite Equation (9.105) as:

δu = [H, ζHV] δâ (9.109)

For a Lagrange formulation we depart from Equation (3.86)∫
V0

δγTτt+�tdV0 =
∫

S0

δuTt0dS0 +
∫

V0

ρ0δuTgdV0

where, because of the beam assumption the normal stress perpendicular to the centreline must
vanish, τyy, so that τxx , τxy, referred to a local coordinate system attached to the centreline, are
the only non-vanishing components of the Second Piola–Kirchhoff stress tensor. The relevant
components of the Green–Lagrange strain tensor are therefore, cf. Equation (3.61):

γxx = ∂u

∂ξ1
+ 1

2

((
∂u

∂ξ1

)2

+
(

∂v

∂ξ1

)2
)

(9.110a)

γxy = ∂u

∂ξ2
+ ∂v

∂ξ1
+ ∂u

∂ξ1

∂u

∂ξ2
+ ∂v

∂ξ1

∂v

∂ξ2
(9.110b)

where it is noted that the engineering definition of the shear strain component has been used.
Attention is drawn to the fact that in Equations (9.110), ξ1 and ξ2 are the local material
coordinates, pointing along and perpendicular to the centreline, respectively, and are not to
be confused with ξ, the isoparametric coordinate. Because of the assumption of small strains
an incrementally linear relation holds between the increments of the Green–Lagrange strain
tensor, �γ , and the increment of the Second Piola–Kirchhoff stress tensor:

�τ = D�γ

Because of the beam assumption the normal stress perpendicular to the centreline must vanish,
and D attains the following format for linear elasticity:

D =
[

E 0

0 kG

]
(9.111)

with k, as before, the shear stress correction factor.
As in the treatment for continuum elements in Chapter 3, the Second Piola–Kirchhoff stress

at t + �t can be decomposed into its value at t and an increment �τ. Use of the linear relation
between the increments of the Second Piola–Kirchhoff stress tensor and the Green–Lagrange
strain tensor, and decomposing the increment of the Green–Lagrange strain tensor into a part
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Beams and Arches 331

that is linear in the generalised displacement increments, �e, and a part that is non-linear in
the generalised displacement increments, �η:

�γ = �e + �η

permits a linearisation of the virtual work equation, Equation (3.86), to give:∫
V0

δeTD�edV0 +
∫

V0

δηTτtdV0 =∫
S0

δuTt0dS0 +
∫

V0

ρ0δuTgdV0 −
∫

V0

δeTτtdV0

(9.112)

which is identical to Equation (3.92).
From Equations (9.110) the increments of the strain components can be derived:

�γxx = F11
∂�u

∂ξ1
+ F21

∂�v

∂ξ1
+ 1

2

((
∂�u

∂ξ1

)2

+
(

∂�v

∂ξ1

)2
)

(9.113a)

�γxy = F11
∂�u

∂ξ2
+ F12

∂�u

∂ξ1
+ F21

∂�v

∂ξ2
+ F22

∂�v

∂ξ1
+ ∂�u

∂ξ1

∂�u

∂ξ2
+ ∂�v

∂ξ1

∂�v

∂ξ2
(9.113b)

with Fij the components of the deformation gradient, Equation (3.54). The part of the strain
increment that is linear in the displacement increments thus becomes:

�e = L�u

with

L =
[

F11
∂

∂ξ1
F21

∂
∂ξ1

F11
∂

∂ξ2
+ F12

∂
∂ξ1

F21
∂

∂ξ2
+ F22

∂
∂ξ1

]
(9.114)

By straightforward differentiation a similar expression results for the variation of the linear
part of the strain increment:

δe = Lδu

Substitution of Equation (9.109) yields

δe = B̂Lδâ (9.115)

with

B̂L = [BL, ζBLV] (9.116)

where

BL =
[

F11
∂h1
∂ξ1

F21
∂h1
∂ξ1

. . .

F11
∂h1
∂ξ2

+ F12
∂h1
∂ξ1

F21
∂h1
∂ξ2

+ F22
∂h1
∂ξ1

. . .

]
(9.117)
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332 Non-linear Finite Element Analysis of Solids and Structures

Finally, the non-linear parts of the strain increments read according to Equations (9.113a and b):

�ηxx = 1

2

((
∂�u

∂ξ1

)2

+
(

∂�v

∂ξ1

)2
)

(9.118a)

�ηxy = ∂�u

∂ξ1

∂�u

∂ξ2
+ ∂�v

∂ξ1

∂�v

∂ξ2
(9.118b)

so that we obtain for the variations of the non-linear parts:

δηxx = ∂δu

∂ξ1

∂�u

∂ξ1
+ ∂δv

∂ξ1

∂�v

∂ξ1
(9.119a)

δηxy = ∂δu

∂ξ1

∂�u

∂ξ2
+ ∂δu

∂ξ2

∂�u

∂ξ1
+ ∂δv

∂ξ1

∂�v

∂ξ2
+ ∂δv

∂ξ2

∂�v

∂ξ1
(9.119b)

Substition of the expressions for δe and �e into the first term on the left-hand side of the
linearised virtual work equation, Equation (9.112), and into the last term on the right-hand side
of this equation yields the first part of the tangential stiffness matrix

KL =
∫

V0

B̂T
LDB̂LdV0 (9.120)

and the internal force vector

f t
int =

∫
V0

B̂T
LτtdV0 (9.121)

respectively.
Similar to Chapter 3 the second term of Equation (3.92) can formally be rewritten as:∫

V0

(δη)TτtdV0 = (δâ)TKNL�â (9.122)

where the geometric part of the tangential stiffness matrix is now given by:

KNL =
∫

V0

B̂T
NLT̂ tB̂NLdV0 (9.123)

The matrix form of the Second Piola–Kirchhoff stress, T , is identical to the expression of
Equation (3.103), except for the vanishing of τyy:

T =


τxx τxy 0 0

τxy 0 0 0

0 0 τxx τxy

0 0 τxy 0

 (9.124)
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Beams and Arches 333

In consideration of Equation (9.109) the matrix B̂NL is defined such that:

B̂NL = [BNL, ζBNLV] (9.125)

with BNL as in Equation (3.104).
Similar to the truss and continuum elements we derive that

(δâ)T(KL + KNL)�â = (δâ)T (f t+�t
ext − f t

int

)
(9.126)

with the external force vector defined as:

f t+�t
ext =

∫
S0

(
HTt0

0

)
dS0 +

∫
V0

(
ρ0HTg

0

)
dV0 (9.127)

when it is assumed that no external loads act on the rotational degrees of freedom φk. Iden-
tity (9.126) must hold for any virtual displacement increment δâ, whence

(KL + KNL)�â = f t+�t
ext − f t

int (9.128)

Although the above derivation is for a homogeneous cross section, different material behaviour
through the depth of the beam can be accommodated in a straightforward manner, similar to
the treatment of the shallow arch. Also, enhancements in terms of element technology can be
made, e.g. in order to improve the performance with respect to membrane locking and shear
locking (Bischoff et al. 2004).

9.5 A Three-dimensional Isoparametric Degenerate Continuum Beam
Element

The derivation of a three-dimensional degenerate continuum beam element shows similarities
to that of the two-dimensional beam element discussed in the preceding section. A compli-
cation arises, however, from the fact that we now have two directors at each node, vk and wk

(Figure 9.7). The motion of these directors can be chacterised by rotations. However, finite
rotations are of a non-vectorial nature, and they cannot be added like displacements. When the
rotation increments are small, the error that is committed, can be acceptable, but this is not
so for large rotation increments. Moreover, when the latter effect is properly accounted for,
a consistent linearisation introduces additional terms in the geometric part of the tangential
stiffness. Neglecting these terms normally causes a loss of the quadratic convergence of the
Newton–Raphson method.

For a three-dimensional isoparametric beam element the displacements are interpolated
as (Bathe and Bolourchi 1975; Dvorkin et al. 1988):

u(ξ) =
n∑

k=1

hk(ξ)ak + +η

2

n∑
k=1

hk(ξ)bk

(
vk − v0

k

)
+ ζ

2

n∑
k=1

hk(ξ)tk
(

wk − w0
k

)
(9.129)

with −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1, −1 ≤ ζ ≤ +1 the isoparametric coordinates along the
beam axis and perpendicular to the axis, respectively, while the width and the thickness of
the beam at node k are bk and tk, respectively. The array aT

k = ((ux)k, (uy)k, (uz)k) assembles
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Figure 9.7 Three-dimensional degenerate continuum beam element

the displacements of node k at the centreline, and vk and wk are the normalised directors,
which are measured with respect to their initial direction, denoted by a superscript 0. In an
incremental format Equation (9.129) becomes:

�u(ξ) =
n∑

k=1

hk(ξ)�ak + +η

2

n∑
k=1

hk(ξ)bk�vk + ζ

2

n∑
k=1

hk(ξ)tk�wk (9.130)

The directors v and w are assumed to have a unit length throughout the deformation process.
Together with a unit vector at node k that points in the axial direction of the beam, they form
an orthonormal triad, that rotates without deforming. As a consequence their motion can be
described by: {

vk = Rkv0
k

wk = Rkw0
k

(9.131)

and an identical relation holds for the update of vk, wk from time t to t + �t. The rotation
matrix R can be expanded as follows (Argyris 1982; Atluri and Cazzani 1995):

R = I + � + 1

2!
�2 + 1

3!
�3 + . . . (9.132)

with

� =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 (9.133)
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Beams and Arches 335

where the axial vector θ, which points in the direction of the axis of rotation, contains the
components θ1, θ2, θ3:

θT = (θ1, θ2, θ3) (9.134)

Since two angles are sufficient to fully characterise a vector in the three-dimensional
space, it follows that the components of θ are not independent. Limiting the expansion of
Equation (9.132) to the linear and the quadratic contributions, the increments of the directors
for a finite step can be written as:{

�vk = ��kvt
k + 1

2 (��k)2vt
k

�wk = ��kwt
k + 1

2 (��k)2wt
k

(9.135)

where ��k contains the incremental rotations (θ1, θ2, θ3) at node k. Using the axial vector θk

we can alternatively write:
�vk = �θk × vt

k + 1
2�θk × (�θk × vt

k)

= −vt
k × �θk + 1

2 (vt
k × �θk) × �θk

�wk = �θk × wt
k + 1

2�θk × (�θk × wt
k)

= −wt
k × �θk + 1

2 (wt
k × �θk) × �θk

(9.136)

We next substitute Equation (9.136) into Equation (9.130) and decompose the incremental
displacements into a contribution that depends linearly on the rotation increments, �uL, and
a contribution �uNL, that is quadratic in the rotation increments:

�u(ξ) = �uL(ξ) + �uNL(ξ) (9.137)

where

�uL(ξ) =
n∑

k=1

hk(ξ)�ak − η

2

n∑
k=1

hk(ξ)bkvt
k × �θk − ζ

2

n∑
k=1

hk(ξ)tkwt
k × �θk (9.138)

and

�uNL(ξ) = η

4

n∑
k=1

hk(ξ)bk(vt
k × �θk) × �θk + ζ

4

n∑
k=1

hk(ξ)tk(wt
k × �θk) × �θk (9.139)

We next define the array â that contains all nodal variables of the beam element,

â =
(

a

θ

)
(9.140)

where a assembles the translational degrees of freedom,

aT = (
(ux)1, (uy)1, (uz)1, . . . , (ux)n, (uy)n, (uz)n

)
(9.141)

and θ assembles the rotation components,

θ = ((θ1)1, (θ2)1, (θ3)1, . . . , (θ1)n, (θ2)n, (θ3)n) (9.142)
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336 Non-linear Finite Element Analysis of Solids and Structures

Further,

H =

h1 0 0 h2 0 0 . . . . . . hn 0 0

0 h1 0 0 h2 0 . . . . . . 0 hn 0

0 0 h1 0 0 h2 . . . . . . 0 0 hn


cf. Equation (2.11), is the matrix that contains the hk(ξ). With the block-diagonal matrix

V =


V1 . . . 0
...

. . .
...

0 . . . Vn

 (9.143)

where

Vk =

 0 − ηbk

2 (v3)k − ζtk
2 (w3)k

ηbk

2 (v2)k + ζtk
2 (w2)k

ηbk

2 (v3)k + ζtk
2 (w3)k 0 − ηbk

2 (v1)k − ζtk
1 (w2)k

− ηbk

2 (v2)k − ζtk
2 (w2)k

ηbk

2 (v1)k + ζtk
1 (w1)k 0

 (9.144)

Equation (9.138) can be rewritten in matrix-vector format:

�uL = [H, HV] �â (9.145)

Taking the variation gives directly:

δuL = [H, HV] δâ (9.146)

since δV vanishes.
Because of the beam assumption the normal stresses perpendicular to the centreline must

vanish, τyy and τzz, as well as the shear stress τyz, so that τxx , τxy and τxz, referred to the local
coordinate system attached to the centreline, are the non-vanishing components of the Second
Piola–Kirchhoff stress tensor. The relevant components of the Green–Lagrange strain tensor
are therefore, cf. Equation (3.61):

γxx = ∂u

∂ξ1
+ 1

2

((
∂u

∂ξ1

)2

+
(

∂v

∂ξ1

)2

+
(

∂w

∂ξ1

)2
)

(9.147a)

γxy = ∂u

∂ξ2
+ ∂v

∂ξ1
+ ∂u

∂ξ1

∂u

∂ξ2
+ ∂v

∂ξ1

∂v

∂ξ2
+ ∂w

∂ξ1

∂w

∂ξ2
(9.147b)

γxz = ∂u

∂ξ3
+ ∂w

∂ξ1
+ ∂u

∂ξ1

∂u

∂ξ3
+ ∂v

∂ξ1

∂v

∂ξ3
+ ∂w

∂ξ1

∂w

∂ξ3
(9.147c)

where the engineering definition of the shear strain component has again been used, and
material coordinates ξi should not be confused with ξ, the isoparametric coordinate along the
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Beams and Arches 337

beam axis. The components of the strain increments can be derived from Equations (9.147):

�γxx = F11
∂�u

∂ξ1
+ F21

∂�v

∂ξ1
+ F31

∂�w

∂ξ1

+ 1

2

((
∂�u

∂ξ1

)2

+
(

∂�v

∂ξ1

)2

+
(

∂�w

∂ξ1

)2
)

(9.148a)

�γxy = F11
∂�u

∂ξ2
+ F12

∂�u

∂ξ1
+ F21

∂�v

∂ξ2
+ F22

∂�v

∂ξ1
+ F31

∂�w

∂ξ2
+ F32

∂�w

∂ξ1

+ ∂�u

∂ξ1

∂�u

∂ξ2
+ ∂�v

∂ξ1

∂�v

∂ξ2
+ ∂�w

∂ξ1

∂�w

∂ξ2
(9.148b)

�γxz = F11
∂�u

∂ξ3
+ F13

∂�u

∂ξ1
+ F21

∂�v

∂ξ3
+ F23

∂�v

∂ξ1
+ F31

∂�w

∂ξ3
+ F33

∂�w

∂ξ1

+ ∂�u

∂ξ1

∂�u

∂ξ3
+ ∂�v

∂ξ1

∂�v

∂ξ3
+ ∂�w

∂ξ1

∂�w

∂ξ3
(9.148c)

so that the part of the strain increment that is linear in the generalised displacement increments
attains the format:

�e = L�uL

with L defined as:

L =


F11

∂
∂ξ1

F21
∂

∂ξ1
F31

∂
∂ξ1

F11
∂

∂ξ2
+ F12

∂
∂ξ1

F21
∂

∂ξ2
+ F22

∂
∂ξ1

F31
∂

∂ξ2
+ F32

∂
∂ξ1

F13
∂

∂ξ1
+ F11

∂
∂ξ3

F23
∂

∂ξ1
+ F21

∂
∂ξ3

F33
∂

∂ξ1
+ F31

∂
∂ξ3

 (9.149)

Substitution of Equation (9.145) yields:

�e = B̂L�â (9.150)

with

B̂L = [BL, BLV] (9.151)

where

BL =


F11

∂h1
∂ξ1

F21
∂h1
∂ξ1

F31
∂h1
∂ξ1

. . .

F11
∂h1
∂ξ2

+ F12
∂h1
∂ξ1

F21
∂h1
∂ξ2

+ F22
∂h1
∂ξ1

F31
∂h1
∂ξ2

+ F32
∂h1
∂ξ1

. . .

F13
∂h1
∂ξ1

+ F11
∂h1
∂ξ3

F23
∂h1
∂ξ1

+ F21
∂h1
∂ξ3

F33
∂h1
∂ξ1

+ F31
∂h1
∂ξ3

. . .

 (9.152)

and the same relation holds for the variation δe, cf. Equation (9.146).
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338 Non-linear Finite Element Analysis of Solids and Structures

The non-linear part of the strain increment that results from the terms in Equation (9.148a)
that are quadratic in the gradients of the displacement increments reads:

�ηxx = 1

2

((
∂�u

∂ξ1

)2

+
(

∂�v

∂ξ1

)2

+
(

∂�w

∂ξ1

)2
)

�ηxy = ∂�u

∂ξ1

∂�u

∂ξ2
+ ∂�v

∂ξ1

∂�v

∂ξ2
+ ∂�w

∂ξ1

∂�w

∂ξ2
(9.153)

�ηxz = ∂�u

∂ξ1

∂�u

∂ξ3
+ ∂�v

∂ξ1

∂�v

∂ξ3
+ ∂�w

∂ξ1

∂�w

∂ξ3

so that we obtain for the variations:

δηxx = ∂δu

∂ξ1

∂�u

∂ξ1
+ ∂δv

∂ξ1

∂�v

∂ξ1
+ ∂δw

∂ξ1

∂�w

∂ξ1

δηxy = ∂δu

∂ξ1

∂�u

∂ξ2
+ ∂δu

∂ξ2

∂�u

∂ξ1
+ ∂δv

∂ξ1

∂�v

∂ξ2
+ ∂δv

∂ξ2

∂�v

∂ξ1
(9.154)

+ ∂δw

∂ξ1

∂�w

∂ξ2
+ ∂δw

∂ξ2

∂�w

∂ξ1

δηxz = ∂δu

∂ξ1

∂�u

∂ξ3
+ ∂δu

∂ξ3

∂�u

∂ξ1
+ ∂δv

∂ξ1

∂�v

∂ξ3
+ ∂δv

∂ξ3

∂�v

∂ξ1

+ ∂δw

∂ξ1

∂�w

∂ξ3
+ ∂δw

∂ξ3

∂�w

∂ξ1

However, there is another contribution that is non-linear in the generalised displacement in-
crements. It stems from the contribution to the displacement increment that is quadratic in
terms of the rotation increments, �uNL, defined in Equation (9.139). When substituted into
the Green–Lagrange strain increment, this contribution also gives rise to non-linear terms.

As in the previous section we take the virtual work balance, Equation (3.86), as the point of
departure for the derivation of the internal force and the tangential stiffness matrix:∫

V0

δγTτt+�tdV0 =
∫

S0

δuTt0dS0 +
∫

V0

ρ0δuTgdV0

We decompose the Second Piola–Kirchhoff stress tensor τt+�t into τt and �τ, and relate the
stress increment to the increment of the Green–Lagrange strain tensor using the small-strain
assumption: �τ = D�γ , where, for linear elasticity:

D =

E 0 0

0 kG 0

0 0 kG

 (9.155)

with k the shear stress correction factor. Subsequently, we linearise and write the right-hand
side in a compact format to arrive at:∫

V0

δeTD�edV0 +
∫

V0

δηTτtdV0 +
∫

V0

δη̃TτtdV0 = δâTf t+�t
ext −

∫
V0

δeTτtdV0 (9.156)
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Beams and Arches 339

where the external force vector is as defined in Equation (9.127). Elaboration of the first term
on the left-hand side and of the last term on the right-hand side of Equation (9.156) results in
the first part of the tangential stiffness matrix, Equation (9.120), and the internal force vector
Equation (9.121), respectively. They are formally similar to the two-dimensional case, except
for the redefinition of B̂L and D, which are now given by Equations (9.151) and (9.155),
respectively.

The geometric stiffness matrix is now composed of two contributions. The first part is
obtained by elaborating the second term on the left-hand side of Equation (9.156), and is
similar to the geometric part of the tangential stiffness matrix that has been derived in the
preceding section, Equation (9.123). Similar to Equation (9.125) the matrix B̂NL is defined
such that:

B̂NL = [BNL, BNLV] (9.157)

with BNL as in Equation (3.106). Similarly, the matrix form of the Second Piola–Kirchhoff
stress, T , is identical to the expression of Equation (3.105), except for the fact that τyy, τzz

and τyz vanish:

T =



τxx τxy τxz 0 0 0 0 0 0

τxy 0 0 0 0 0 0 0 0

τxz 0 0 0 0 0 0 0 0

0 0 0 τxx τxy τxz 0 0 0

0 0 0 τxy 0 0 0 0 0

0 0 0 τxz 0 0 0 0 0

0 0 0 0 0 0 τxx τxy τxz

0 0 0 0 0 0 τxy 0 0

0 0 0 0 0 0 τxz 0 0


(9.158)

The second contribution to the geometric stiffness matrix stems from the variation of the
linear part of the Green–Lagrange strain tensor which operates on the part of the displacement
increment that is quadratic in terms of the rotation increments:

δη̃ = LδuNL (9.159)

where, in consideration of Equation (9.139),

δuNL = [0, HW]δâ (9.160)

with 0 a 3 × 3n matrix and

W =


W1 . . . 0

...
. . .

...

0 . . . Wn

 (9.161)
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340 Non-linear Finite Element Analysis of Solids and Structures

a block-diagonal matrix with the submatrices Wk defined as:

Wk = ηbk

4

 (v2)k(�θ2)k + (v3)k(�θ3)k (v2)k(�θ1)k − 2(v1)k(�θ2)k
(v1)k(�θ2)k − 2(v2)k(�θ1)k (v3)k(�θ3)k + (v1)k(�θ1)k
(v1)k(�θ3)k − 2(v3)k(�θ1)k (v2)k(�θ3)k − 2(v3)k(�θ2)k

(v3)k(�θ1)k − 2(v1)k(�θ3)k
(v3)k(�θ2)k − 2(v2)k(�θ3)k
(v1)k(�θ1)k + (v2)k(�θ2)k


+ζtk

4

 (w2)k(�θ2)k + (w3)k(�θ3)k (w2)k(�θ1)k − 2(w1)k(�θ2)k
(w1)k(�θ2)k − 2(w2)k(�θ1)k (w3)k(�θ3)k + (w1)k(�θ1)k
(w1)k(�θ3)k − 2(w3)k(�θ1)k (w2)k(�θ3)k − 2(w3)k(�θ2)k


(w3)k(�θ1)k − 2(w1)k(�θ3)k
(w3)k(�θ2)k − 2(w2)k(�θ3)k
(w1)k(�θ1)k + (w2)k(�θ2)k

 (9.162)

Substitution of Equation (9.160) into Equation (9.159) gives:

δη̃ = [0, BLW]δâ (9.163)

This expression for δη̃ can be substituted into the third term of Equation (9.156), which then
becomes:

∫
V0

δη̃TτtdV0 =
∫

V0

(
δη̃xxτ

t
xx + δη̃xyτ

t
xy + δη̃xzτ

t
xz

)
dV0 = δâTK∗

NL�â (9.164)

with

K∗
NL =

[
0 0

0 τxxK∗
xx + τxyK∗

xy + τxzK∗
xz

]
(9.165)

the second contribution to the geometric stiffness matrix, which results from the multiplication
of BL and W, followed by factoring out δθ from the product, and 0 are 3n × 3n matrices. As
an example we elaborate the submatrix K∗

xx, which, like W, has a block-diagonal structure:

K∗
xx =


(K∗

xx)1 . . . 0
...

. . .
...

0 . . . (K∗
xx)n

 (9.166)
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Beams and Arches 341

with the submatrices:

(K∗
xx)k =

∫
V0

ηbk

4

∂hk

∂ξ1

−2F21(v2)k − 2F31(v3)k F11(v2)k + F21(v1)k
F11(v2)k + F21(v1)k −2F11(v2)k − 2F31(v3)k
F11(v3)k + F31(v1)k F21(v3)k + F31(v2)k

F11(v3)k + F31(v1)k
F21(v3)k + F31(v2)k

−2F11(v1)k − 2F21(v2)k

 dV0

+
∫

V0

ζtk

4

∂hk

∂ξ1

−2F21(w2)k − 2F31(w3)k F11(w2)k + F21(w1)k
F11(w2)k + F21(w1)k −2F11(w2)k − 2F31(w3)k
F11(w3)k + F31(w1)k F21(w3)k + F31(w2)k

F11(w3)k + F31(w1)k
F21(w3)k + F31(w2)k

−2F11(w1)k − 2F21(w2)k

 dV0 (9.167)

which is symmetric. The above derivation resembles that of Dvorkin et al. (1988), but other
derivations exist that take into account the effect of finite rotation increments (Surana 1983;
Simo 1985; Simo and Quoc 1986). They result in different formulations for the tangential
stiffness matrix. It is remarked that, while the displacements are updated in a standard vectorial
manner,

at+�t = at + �a

the update of the rotations follows in a multiplicative sense:

Rt+�t = �RRt

It is finally noted that the above derivation is for a rectangular and homogeneous cross section,
and for linear elasticity, but other cross-sectional shapes and different material behaviour can be
accommodated by subdividing the cross section of the beam in a number of fibres, which is the
equivalent of the layered structure of the two-dimensional beam. Evidently, Simpson, Lobatto
or Newton–Cotes integration now has to be carried out in both cross-sectional directions of
the beam.
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10
Plates and Shells

Probably, the majority of the work on non-linear shell elements has followed the seminal
paper of Ahmad et al. (1970), in which the linear, degenerate continuum shell element was
introduced (Bathe and Bolourchi 1980; Büchter and Ramm 1992; Dvorkin and Bathe 1984;
Hughes and Liu 1981; Parisch 1981; Stander et al. 1989; Surana 1983). As noted in Chapter 9,
structural elements can suffer from various forms of locking, such as membrane locking and
shear locking. An early remedy has been the use of reduced integration (Zienkiewicz et al.
1971), while assumed strain approaches form a more recent solution. For a comprehensive
overview the reader is referred to Bischoff et al. (2004) and references therein.

The isoparametric degenerate continuum concept adopts shape functions for the components
of the displacement in a fixed rectangular Cartesian system. Consequently, it allows for the
exact satisfaction of rigid-body modes, even when the plane sections remain plane constraint
is applied in the thickness direction (Crisfield 1986).

Considerable savings in computer time can be gained by resorting to shell elements where
the through-the-depth integration is done directly instead of through numerical integration. As
discussed in Chapter 9 for beams and shallow arches, the ensuing formulations employ the
membrane strain, ε�, and the curvature, χ, along with the corresponding stress resultants, N
and M (Milford and Schnobrich 1986). For materially non-linear behaviour, the constitutive
relations must then also be phrased in terms of stress resultants, which can be non-trivial
(Burgoyne and Brennan 1993; Ilyushin 1956), or sometimes even impossible, for example
when the behaviour in compression differs from that in tension, since the neutral line then
shifts upon subsequent loadings. But even when a direct approach is feasible, the accuracy is
considerably lower than that of a layered approach, because the yielding of the outermost fibres
is not represented at occurrence, but delayed, since the yielding of the entire cross section will
take place later. Nevertheless, considerable work has been done in developing stress-resultant
shell elements (Simo and Fox 1989; Simo and Kennedy 1992; Simo et al. 1989, 1990).

An anomaly with traditional shell elements, including those based on the degenerate con-
tinuum concept, is that the normal stress perpendicular to the shell mid-surface is assumed to
vanish. For materially non-linear analysis this poses the problem that the full three-dimensional
constitutive equations cannot be used, and have to be reduced somehow. Such a reduced set

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
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344 Non-linear Finite Element Analysis of Solids and Structures

of constitutive equations can be less trivial to handle numerically. For instance, the return-
mapping algorithms that have been described in Chapter 7 for handling elasto-plasticity may
have to be modified in order to properly account for this constraint. Alternatively, a standard
algorithm for a three-dimensional stress state can be used, whereafter a compression is applied
to enforce the zero normal-stress condition. The expansion of the reduced stress state to a full
three-dimensional stress state at the next iteration then follows using the linearised tangent
moduli (de Borst 1991). A rigorous approach is to develop shell elements that incorporate
a non-zero normal stress in the thickness direction. Key to these solid-like shell elements, or
solid-shell elements, is the inclusion of the stretch in the thickness direction (Braun et al. 1994;
Büchter et al. 1994; Hauptmann and Schweizerhof 1998; Kühhorn and Schoop 1992; Parisch
1995; Sansour 1995). An important feature is that only translational degrees of freedom can
be employed, which is advantageous when coupling such a rotation-free shell element to solid
elements, or when employing them in a stacked manner, e.g. for layered structures where a
single element with a through-the-thickness integration no longer suffices.

10.1 Shallow-shell Formulations

Similar to the previous chapter, where first a shallow-arch formulation was outlined, we will
start this chapter with a shallow-shell formulation. At variance with the previous chapter, we
will not start with a shallow-shell formulation based on the Kirchhoff assumption, but will
directly adopt a Reissner–Mindlin formulation (Crisfield 1986). This formulation includes
the case without shear deformation when the so-called discrete Kirchhoff constraints are en-
forced (Crisfield 1983, 1984, 1986). As we have seen in the previous chapter, the Reissner–
Mindlin formulation is favourable in the context of finite element formulations, since no
higher-order continuity is required. In Chapter 15 we will revisit the Kirchhoff–Love formula-
tion in the framework of isogeometric analysis, an element technology that creates higher-order
continuous shape functions in a rigorous manner.

Assuming that plane sections remain plane, Equation (9.5) can be extended to give:

ε = ε� + z�χ (10.1)

where the subscript � refers to the reference plane, which can but need not be the centre plane
of the shell. The array ε contains the in-plane strains

εT = (εxx, εyy, εxy

)
so that the ε� is given by:

ε� =


∂u�

∂x
∂v�

∂y

∂u�

∂y
+ ∂v�

∂x

+


1
2

(
∂w′
∂x

)2 − 1
2

(
∂z
∂x

)2
1
2

(
∂w′
∂y

)2 − 1
2

(
∂z
∂y

)2

∂w′
∂x

∂w′
∂y

− ∂z
∂x

∂z
∂y

 (10.2)

where z is the initial vertical coordinate of the shell reference plane, w is the displacement
measured with respect to the reference plane, and w′ = w + z, cf. Figure 9.1. Note that it

has been assumed that the in-plane strains remain small:
(

∂u
∂x

)2 � ( ∂w
∂x

)2
etc., and that the
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x

z

y

xθ

θy

dw
xd

Figure 10.1 Coordinate system for a shallow shell

out-of-plane normal strain, εzz, has been assumed to vanish. Using a Reissner–Mindlin ap-
proach, the curvatures are given by:

χ =

 χx

χy

χxy

 =


∂θx

∂x
∂θy

∂y

∂θx

∂y
+ ∂θy

∂x

 (10.3)

where θx and θy are the rotations of the normal (Figure 10.1). The out-of-plane shear strains
follow a standard format, cf. Equation (9.35):

γ =
(

γxz

γyz

)
=
(

θx

θy

)
+
(

∂w
∂x
∂w
∂y

)
(10.4)

where it is emphasised that γ as in Equation (10.4) should not be confused with the Green–
Lagrange strain tensor.

The variations of the strains and the strain increments follow in a standard manner. For the
variations of the in-plane strains we have:

δε = δε� + z�δχ (10.5)

where

δε� =


∂δu�

∂x
∂δv�

∂y

∂δu�

∂y
+ ∂δv�

∂x

+


∂w′
∂x

∂δw
∂x

∂w′
∂y

∂δw
∂y

∂w′
∂x

∂δw
∂y

+ ∂w′
∂y

∂δw
∂x

 (10.6)

and

δχ =


∂δθx

∂x
∂δθx

∂y

∂δθx

∂y
+ ∂δθy

∂x

 (10.7)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



346 Non-linear Finite Element Analysis of Solids and Structures

while the strain increment reads:

�ε = �ε� + z��χ (10.8)

where

�ε� =


∂�u�

∂x
∂�v�

∂y

∂�u�

∂y
+ ∂�v�

∂x

+


∂w′
∂x

∂�w
∂x

+ 1
2

(
∂�w
∂x

)2
∂w′
∂y

∂�w
∂y

+ 1
2

(
∂�w
∂y

)2

∂w′
∂x

∂�w
∂y

+ ∂w′
∂y

∂�w
∂x

+ ∂�w
∂x

∂�w
∂y

 (10.9)

and �χ has a format similar to δχ, Equation (10.7). The variations of the out-of-plane shear
strains become, Equation (10.4):

δγ =
(

δθx

δθy

)
+
(

∂δw
∂x
∂δw
∂y

)
(10.10)

while a similar equation ensues for �γ , the out-of-plane shear strain increment.
In a shell we have five non-vanishing stress components, the in-plane normal stresses, σxx

and σyy, the in-plane shear stress σxy, and the out-of-plane shear stresses σxz and σyz. It is
noted that under the assumption for the strain in the thickness direction, the use of a full
three-dimensional isotropic elasticity relation as in Equation (1.115) does not result in this
assumed stress state. This inconsistency can be remedied in an ad-hoc manner by modifying
the constitutive relation.

These can be integrated through the depth to form generalised stresses, in particular the
normal forces:

N =

Nx

Ny

Nxy

 =
∫ +h/2

−h/2

σxx(z�)

σyy(z�)

σxy(z�)

 dz� (10.11)

the bending moments,

M =

Mx

My

Mxy

 =
∫ +h/2

−h/2

σxx(z�)

σyy(z�)

σxy(z�)

 z�dz� (10.12)

and the out-of-plane shear forces:

Q =
(

Qx

Qy

)
=
∫ +h/2

−h/2

(
σxz(z�)

σyz(z�)

)
dz� (10.13)

Figure 10.2 shows the normal forces and bending moments that act on a structural element.
As in the shallow-arch formulation we allow for material non-linearity, and model the spread

through the depth via a layered approach. Using the assumption that the strains remain small,
we can relate the rate (or increment) of the in-plane components of the stress tensor σ to the
strain tensor ε (which can be conceived as a degenerated version of the Green–Lagrange strain
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Figure 10.2 Normal forces and bending moments that act on a shell element

tensor), according to:  σ̇xx

σ̇yy

σ̇xy

 = D

 ε̇xx

ε̇yy

ε̇xy

 (10.14)

where, for linear elasticity, D specialises to:

D = De = E

1 − ν2

 1 ν 0

ν 1 0

0 0 1−ν
2

 (10.15)

In a manner similar to that employed in Chapter 9, cf. Equations (9.27) and (9.28), we obtain
for the rates of the in-plane forces:

Ṅ =
(∫ +h/2

−h/2
D(z�)dz�

)
︸ ︷︷ ︸

Dm

ε̇� +
(∫ +h/2

−h/2
D(z�)z�dz�

)
︸ ︷︷ ︸

Dc

χ̇ (10.16)

and for the rates of the bending moments:

Ṁ =
(∫ +h/2

−h/2
D(z�)z�dz�

)
︸ ︷︷ ︸

Dc

ε̇� +
(∫ +h/2

−h/2
D(z�)z2

�dz�

)
︸ ︷︷ ︸

Db

χ̇ (10.17)

with Dm and Db the tangential constitutive matrices for membrane action and for bending,
respectively, and Dc the tangential cross-coupling matrix. To supplement these tangential
relations for the stress resultants N and M we take for the rate of the shear forces

Q̇ =
(∫ +h/2

−h/2
Gtan(z�)Idz�

)
︸ ︷︷ ︸

Ds

γ̇ (10.18)
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348 Non-linear Finite Element Analysis of Solids and Structures

with I the 2 × 2 identity matrix, and Gtan a tangential shear modulus. For linear elasticity this
equation reduces to: (

Q̇x

Q̇y

)
=
[

µ 0

0 µ

](
γ̇xz

γ̇yz

)
(10.19)

with Gtan = µ the elastic shear modulus. The expressions for rates of the the stress resultants
can be combined to give:  Ṅ

Ṁ

Q̇

 =

Dm Dc 0

Dc Db 0

0 0 Ds


︸ ︷︷ ︸

Dshell

 ε̇�

χ̇

γ̇

 (10.20)

The shallow shell theory of this section can be applied to a range of shell formulations,
but herein we will adhere to a standard Reissner–Mindlin formulation with isoparametric
interpolation functions. As in the Timoshenko beam element of Chapter 9, the basic variables,
u�, v�, w, θx, θy, are expanded using the same shape functions h1, . . . , hn, collected in the
array h. Defining

H =
[

h1 0 h2 0 . . . . . . hn 0

0 h1 0 h2 . . . . . . 0 hn

]
as in Equation (9.102), and assembling the in-plane nodal displacements in a and the nodal
rotations in θ, as follows:

a =



(u�)1

(v�)1

. . .

. . .

(u�)n
(v�)n


, θ =



(θx)1

(θy)1

. . .

. . .

(θx)n
(θy)n


(10.21)

we then have: (
u�

v�

)
= Ha , w = hTw ,

(
θx

θy

)
= Hθ (10.22)

The shape functions h1, . . . , hn either belong to the serendipity family, or to the Lagrange
family of interpolants, cf. Bathe (1982), Crisfield (1986) and Hughes (1987). It can be ad-
vantageous to formulate the shape function in an hierarchic manner, since this facilitates the
implementation of constraints, for instance to remedy shear locking (Crisfield 1983, 1984).

We next invoke the definition of the variation of the in-plane strains, Equation (10.6), to
derive the discretised expression:

δε� = Bδa + (BW ′)Bwδw (10.23)
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with B the conventional strain-nodal displacement matrix for small displacement gradients:

B =


∂h1
∂x

0 . . . . . . ∂hn

∂x
0

0 ∂h1
∂y

. . . . . . 0 ∂hn

∂y

∂h1
∂y

∂h1
∂x

. . . . . . ∂hn

∂y
∂hn

∂x


cf. Equation (3.128),

W ′ =



w′
1 0

0 w′
1

...
...

w′
n 0

0 w′
n


(10.24)

and

Bw =
[

∂h1
∂x

. . . ∂hn

∂x
∂h1
∂y

. . . ∂hn

∂y

]
(10.25)

The discretised expressions for the variation of the curvature, δχ, and for the variation of the
out-of-plane shear strains, δγ , become

δχ = Bδθ (10.26)

and

δγ = Hδθ + Bwδw (10.27)

The starting point for the derivation of the internal force vector and the tangential stiffness
matrix is the virtual work equation, Equation (2.37), at t + �t, which for the case of a shallow
shell can be written as: ∫

V

(δεt+�t)Tσt+�tdV = (δut+�t)Tf t+�t
ext

Using the kinematic assumption (10.1), considering that σzz vanishes, adopting that for the
shell surface A ≈ A0, and integrating through the depth, this equation can be modified to give:∫

A

(
(δεt+�t

� )TNt+�t + (δχt+�t)TMt+�t + (δγ t+�t)TQt+�t
)

dA = (δut+�t)Tf t+�t
ext (10.28)

Decomposing the generalised stresses N, M and Q into their values after iteration j and the
iterative correction during iteration j + 1, substituting the expressions for the variations, Equa-
tions (10.23), (10.26) and (10.27), and linearising gives:∫

A

[
δaTBTdN + δθTBTdM + (δθTHT + δwTBT

w

)
dQ + δwTBT

w(BdW ′)TN
]

dA

= δaT (fa
ext − fa

int

)+ δwT (fw
ext − fw

int

)+ δθT
(

fθ
ext − fθ

int

)
(10.29)
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350 Non-linear Finite Element Analysis of Solids and Structures

with the internal force vectors defined as:

fa
int =

∫
A

BTNdA

fw
int =

∫
A

BT
w

(
(BW ′)TN + Q

)
dA (10.30)

fθ
int =

∫
A

(
BTM + HTQ

)
dA

where the superscripts t + �t to the external force vectors and the subscript j to the internal
force vectors have been dropped for notational simplicity. Inserting the constitutive relation
for the shallow shell, Equation (10.20), and requiring that Equation (10.29) holds for arbitrary
(δa, δw, δθ) yields the following set of equations: Kaa Kaw Kaθ

KT
aw Kww Kwθ

KT
aθ KT

wθ Kθθ


 da

dw

dθ

 =

 fa
ext − fa

int

fw
ext − fw

int

fθ
ext − fθ

int


which formally resembles those for the shallow arch using the Timoshenko assumption, Equa-
tion (9.43), but now with the submatrices of the tangential stiffness matrix defined as:

Kaa =
∫

A

BTDmBdA

Kaw =
∫

A

BTDm(BW ′)BwdA

Kaθ =
∫

A

BTDcBdA

Kww =
∫

A

BT
wDsBwdA +

∫
A

BT
w(BW ′)TDm(BW ′)BwdA

+
∫

A

BT
wN BwdA (10.31)

Kwθ =
∫

A

BT
wDsHdA +

∫
A

BT
w(BW ′)TDcBdA

Kθθ =
∫

A

BTDbBdA +
∫

A

HTDsHdA

The third contribution to Kww can be identified as the geometric contribution to the tangential
stiffness matrix, and stems from the last term on the left-hand side of Equation (10.29), which
can be rewritten as:∫

A

δwTBT
w(BdW ′)TNdA =

∫
A

δwTBT
w

(
Nx

∂dw
∂x

+ Nxy
∂dw
∂y

Ny
∂dw
∂y

+ Nxy
∂dw
∂x

)
dA (10.32)

= δwT
(∫

A

BT
wN BwdA

)
dw (10.33)
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Plates and Shells 351

where N assembles the normal forces in a matrix:

N =
(

Nx Nxy

Nxy Ny

)
(10.34)

10.2 An Isoparametric Degenerate Continuum Shell Element

The derivation of an isoparametric degenerate continuum shell element runs along similar lines
as those for the degenerate continuum beam elements in Chapter 9. For a k-noded degenerate
continuum element, the displacements can be interpolated as:

u(ξ, η) =
n∑

k=1

hk(ξ, η)uk + ζ

2

n∑
k=1

hk(ξ, η)tk cos φk

v(ξ, η) =
n∑

k=1

hk(ξ, η)vk + ζ

2

n∑
k=1

hk(ξ, η)tk sin φk cos ψk (10.35)

w(ξ, η) =
n∑

k=1

hk(ξ, η)wk + ζ

2

n∑
k=1

hk(ξ, η)tk sin φk sin ψk

with −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1 the isoparametric coordinates tangential to the shell sur-
face, and −1 ≤ ζ ≤ +1 the isoparametric coordinate perpendicular to the surface (Figure 10.3).
Figure 10.3 shows that tk is the thickness at node k, while uk, vk and wk are the nodal displace-
ments of the centre surface. The angles φk and ψk (Figure 10.4), describe the position of the
normalised director vector dk that connects the positions of node k at the top and the bottom
of the shell, Equation (9.98). In the isoparametric concept, the geometry is interpolated in the

z

y

x

ξ

ζ
d

t

η

1

2
3

4

5
6

87

7

Figure 10.3 An eight-noded degenerate continuum shell
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x

ψ

cos φ

d

z

y

ψ
si

n
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n
φ

φ

φsin

sin φ cos ψ

Figure 10.4 Spatial angles φk and ψk that define the director vector dk. Note that the subscript k has
been omitted in the figure

same manner, thus:

x(ξ, η) =
n∑

k=1

hk(ξ, η)xk + ζ

2

n∑
k=1

hk(ξ, η)tk cos φk

y(ξ, η) =
n∑

k=1

hk(ξ, η)yk + ζ

2

n∑
k=1

hk(ξ, η)tk sin φk cos ψk (10.36)

z(ξ, η) =
n∑

k=1

hk(ξ, η)zk + ζ

2

n∑
k=1

hk(ξ, η)tk sin φk sin ψk

where xk, yk and zk are the nodal coordinates at the centre surface. The derivatives with respect
to the isoparametric coordinates, ∂u

∂ξ
etc. can be obtained by straightforward differentiation, and

the derivatives with respect to the global coordinates x, y, z then follow in a standard manner
(Chapters 2 and 9).

We define

aT = (u1, v1, w1, . . . , . . . , . . . , un, vn, wn)

as the array that contains the nodal displacements and H as the matrix that contains the shape
functions hk, cf. Equation (2.11). The array

v = (
1

2
t1 cos φ1,

1

2
t1 sin φ1 cos ψ1,

1

2
t1 sin φ1 sin ψ1, . . . ,

1

2
tn cos φn,

1

2
tn sin φn cos ψn,

1

2
tn sin φn sin ψn) (10.37)
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Plates and Shells 353

contains the thickness at the nodes and the components of the directors, cos φk, sin φk cos ψk

and sin φk sin ψk. Equation (10.35) can then be rewritten in matrix-vector format:

u = H (a + ζv)

which is formally identical to that of the degenerate continuum beams, Equation (9.104), and
the virtual displacements, needed in the subsequent derivations, follow directly as:

δu = H (δa + ζVδθ)

This identity resembles Equation (9.105), but with V defined as:

V =



− 1
2 t1 sin φ1 0 . . . 0 0

1
2 t1 cos φ1 cos ψ1 − 1

2 t1 sin φ1 sin ψ1 . . . 0 0
1
2 t1 cos φ1 sin ψ1 − 1

2 t1 sin φ1 sin ψ1 . . . 0 0

...
...

. . .
...

...

0 0 . . . − 1
2 tn sin φn 0

0 0 . . . 1
2 tn cos φn cos ψn − 1

2 tn sin φn sin ψn

0 0 . . . 1
2 tn cos φn sin ψn − 1

2 tn sin φn sin ψn


(10.38)

and

θT = (φ1, ψ1, . . . , φn, ψn) (10.39)

Defining â as the array that contains all the nodal variables of the shell element:

â =
(

a

θ

)
(10.40)

we obtain:

δu = [H, ζHV] δâ (10.41)

cf. Equation (9.109).
For deriving the discretised equations we depart, as usual, from Equation (3.86)∫

V0

δγTτt+�tdV0 =
∫

S0

δuTt0dS0 +
∫

V0

ρ0δuTgdV0

where, because of the shell assumption the normal stress orthogonal to the shell surface must
vanish, τzz, and γxx, γyy, γxy, γyz, γzx are the relevant components of the Green–Lagrange
strain tensor, Equation (3.61). Because of the assumption of small strains an incrementally
linear relation holds between the increments of the Green–Lagrange strain tensor, dγ , and the
increment of the Second Piola–Kirchhoff stress tensor:

dτ = D̃dγ
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354 Non-linear Finite Element Analysis of Solids and Structures

where, for linear elasticity, D̃ attains the following format:

D̃ = E

1 − ν2



1 ν 0 0 0

ν 1 0 0 0

0 0 1
2k(1 − ν) 0 0

0 0 0 1
2k(1 − ν) 0

0 0 0 0 1
2k(1 − ν)


(10.42)

with, as for the Timoshenko beam, k the shear correction factor.
As in the preceding chapters, the Second Piola–Kirchhoff stress is decomposed into its

value at iteration j and a correction dτ. Use of the linear relation between the increments of the
Second Piola–Kirchhoff stress tensor and the Green–Lagrange strain tensor, and decomposing
the increment of the Green–Lagrange strain tensor into a part that is linear in the generalised
displacement increments, de, and a part that is non-linear in the generalised displacement
increments, dη:

dγ = de + dη

permits a linearisation of the virtual work equation, Equation (3.86), to give:∫
V0

δeTDdedV0 +
∫

V0

δηTτjdV0 =∫
S0

δuTt0dS0 +
∫

V0

ρ0δuTgdV0 −
∫

V0

δeTτjdV0

which is identical to Equation (3.92).
By straightforward differentiation the variation of the linear part of the strain increment can

be derived:

δe = Lδu

with, for the degenerate continuum shell:

L =



F11
∂

∂ξ1
F21

∂
∂ξ1

F31
∂

∂ξ1

F12
∂

∂ξ2
F22

∂
∂ξ2

F32
∂

∂ξ2

F11
∂

∂ξ2
+ F12

∂
∂ξ1

F21
∂

∂ξ2
+ F22

∂
∂ξ1

F31
∂

∂ξ2
+ F32

∂
∂ξ1

F12
∂

∂ξ3
+ F13

∂
∂ξ2

F22
∂

∂ξ3
+ F23

∂
∂ξ2

F32
∂

∂ξ3
+ F33

∂
∂ξ2

F13
∂

∂ξ1
+ F11

∂
∂ξ3

F23
∂

∂ξ1
+ F21

∂
∂ξ3

F33
∂

∂ξ1
+ F31

∂
∂ξ3


(10.43)

and Fij the components of the deformation gradient. Substitution of Equation (10.41) yields

δe = B̂Lδâ (10.44)

with

B̂L = [BL, ζBLV] (10.45)
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Plates and Shells 355

where

BL =



F11
∂h1
∂ξ1

F21
∂h1
∂ξ1

F31
∂h1
∂ξ1

. . .

F12
∂h1
∂ξ2

F22
∂h1
∂ξ2

F32
∂h1
∂ξ2

. . .

F11
∂h1
∂ξ2

+ F12
∂h1
∂ξ1

F21
∂h1
∂ξ2

+ F22
∂h1
∂ξ1

F31
∂h1
∂ξ2

+ F32
∂h1
∂ξ1

. . .

F12
∂h1
∂ξ3

+ F13
∂h1
∂ξ2

F22
∂h1
∂ξ3

+ F23
∂h1
∂ξ2

F32
∂h1
∂ξ3

+ F33
∂h1
∂ξ2

. . .

F13
∂h1
∂ξ1

+ F11
∂h1
∂ξ3

F23
∂h1
∂ξ1

+ F21
∂h1
∂ξ3

F33
∂h1
∂ξ1

+ F31
∂h1
∂ξ3

. . .


(10.46)

which is, of course, a degenerated form of Equation (3.98). Substition of the expressions for δe
and de into the first term on the left-hand side of the linearised virtual work equation, and into
the last term on the right-hand side of this equation yields the first part of the tangential stiffness
matrix, which, with the appropriate definitions for BL and D is given by Equation (9.120), and
the internal force vector by Equation (9.121), but, again with a redefinition of BL and τ.
Furthermore, the second term of Equation (3.92) can be rewritten as:∫

V0

(δη)TτtdV0 = (δâ)TKNLdâ

where the geometric part of the tangential stiffness matrix is now given by:

KNL =
∫

V0

B̂T
NLT̂ jB̂NLdV0 (10.47)

The matrix form of the Second Piola–Kirchhoff stress, T̂ , is identical to the expression of
Equation (3.105), except for the fact that τzz = 0:

T̂ =



τxx τxy τzx 0 0 0 0 0 0

τxy τyy τyz 0 0 0 0 0 0

τzx τyz 0 0 0 0 0 0 0

0 0 0 τxx τxy τzx 0 0 0

0 0 0 τxy τyy τyz 0 0 0

0 0 0 τzx τyz 0 0 0 0

0 0 0 0 0 0 τxx τxy τzx

0 0 0 0 0 0 τxy τyy τyz

0 0 0 0 0 0 τzx τyz 0


(10.48)

In consideration of Equation (10.41) the matrix B̂NL is defined such that:

B̂NL = [BNL, ζBNLV]

with BNL given by Equation (3.106).
As with the truss, continuum and beam elements we have for the discretised weak form:

(δâ)T(KL + KNL)dâ = (δâ)T (f t+�t
ext − fint,j

)
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356 Non-linear Finite Element Analysis of Solids and Structures

with the external force vector defined as in Equation (9.127). The above weak form must hold
for any virtual displacement increment δâ, whence

(KL + KNL)dâ = f t+�t
ext − fint,j (10.49)

Although the above derivation is for a shell element that has homogeneous properties through
the depth, different material behaviour, or material non-linearity, can be accommodated in a
straightforward manner by adopting a layered approach, similar to the case of the degenerate
continuum beam. Similarly, improvements can be made in terms of element technology, e.g.
with respect to membrane locking and shear locking (Bischoff et al. 2004).

10.3 Solid-like Shell Elements

The degenerate continuum shell elements are widely used in linear and non-linear finite element
analysis, but suffer from the drawback that the normal strain in the thickness direction is zero.
In solid-like shell elements, or solid-shell elements, an additional set of internal degrees of
freedom is supplied which provides a quadratic term in the displacement field in the thickness
direction, which leads to a stretching in the thickness direction. Since the strain normal to the
shell surface is now non-zero, a normal stress that is perpendicular to the shell surface can now
meaningfully be computed via the full three-dimensional stress–strain relation. In particular
for material non-linearities this is an advantage. Moreover, the conditioning of the stiffness
matrix tends to be superior to that of degenerate continuum shell elements.

We consider the shell shown in Figure 10.5. The position of a material point in the shell
in the undeformed configuration can be written as a function of the curvilinear coordinates
(ξ, η, ζ):

ξ(ξ, η, ζ) = ξ0(ξ, η) + ζd(ξ, η) (10.50)

mid surface

top surface

bottom surface

u0

x

u1

u2
ζ

top

mid

η

demrofeddemrofednu

bottom

ξ

d

d

ξξξ

ξξξ
0

x1

x2

x3

Figure 10.5 Kinematic relations of a solid-like shell element
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Plates and Shells 357

where ξ0(ξ, η) is the projection of the point on the mid-surface of the shell and d(ξ, η) is the
thickness director at this point:

ξ0(ξ, η) = 1

2

(
ξtop(ξ, η) + ξbottom(ξ, η)

)
(10.51)

d(ξ, η) = 1

2

(
ξtop(ξ, η) − ξbottom(ξ, η)

)
(10.52)

Note that the thickness director vector d, in contrast to the treatment for the degenerate con-
tinuum shell, has not been normalised. The position of a material point in the deformed con-
figuration x(ξ, η, ζ) is related to ξ(ξ, η, ζ) via the displacement field û(ξ, η, ζ) according to:

x(ξ, η, ζ) = ξ(ξ, η, ζ) + û(ξ, η, ζ) (10.53)

where

û(ξ, η, ζ) = u0(ξ, η) + ζu1(ξ, η) + (1 − ζ2)u2(ξ, η) (10.54)

Herein, u0 and u1 are the displacements of a material point on the shell mid-surface, ξ0, and
of the thickness director vector d:

u0(ξ, η) = 1

2

(
utop(ξ, η) + ubottom(ξ, η)

)
(10.55)

and

u1(ξ, η) = 1

2

(
utop(ξ, η) − ubottom(ξ, η)

)
(10.56)

respectively. The displacement field u2(ξ, η) provides the stretching in the thickness direction
of the element, and is co-linear with the thickness director vector in the deformed configuration.
It is a function of the stretch parameter w:

u2(ξ, η) = w(ξ, η) (d(ξ, η) + u1(ξ, η)) (10.57)

The displacement field û is thus a function of two types of variables: the ordinary displacement
field u, which is split in a displacement of the top and bottom surfaces utop and ubottom, and
the internal stretch parameter w: û = û(utop, ubottom, w). The derivation of the strains is quite
lengthy and the reader is referred to Parisch (1995), which also gives details on the finite
element implementation, see also Remmers et al. (2003b).

10.4 Shell Plasticity: Ilyushin’s Criterion

While a layerwise approach is the most accurate way to handle plasticity and other non-linear
material models in structural elements such as beams, plates and shells, one can also directly
operate on the stress resultants, i.e. the normal forces, the bending moments and the shear
forces. Such an approach usually results in an overstiff structural response after the onset of
non-linear behaviour, since the outer fibres are assumed to remain elastic in such an approach,
while in practice they are already yielding, damaging or showing other kinds of material non-
linear behaviour. The advantage is the reduction in computer time, which can be significant,
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358 Non-linear Finite Element Analysis of Solids and Structures

since there is no integration through the depth, and the time spent in evaluating the stress–strain
relation and setting up the tangent stiffness matrix in integration points, constitutes the major
share of the total computing time in large-scale non-linear computations. With the increase of
computer power, this advantage has decreased in importance.

One of the most important and more widely used yield criteria for shell structures that is
formulated in terms of stress resultants is due to Ilyushin (1956), and departs from the von
Mises yield criterion. Normally, and also herein, the so-called approximate Ilyushin yield
function is employed, which is given by:

f = N

N2
0

+ M

M2
0

+ s√
3

MN

M0N0
− 1 (10.58)

with

N = N2
x + N2

y − NxNy + 3N2
xy

M = M2
x + M2

y − MxMy + 3M2
xy (10.59)

MN = MxNx + MyNy − 1

2
(MxNy + MyNx) + 3MxyNxy

see also Figure 10.2 for the definition of the normal force components and the moment com-
ponents, and

N0 = σ̄t

is the uniaxial yield force,

M0 = 1

4
σ̄t2

is the uniaxial yield moment, and

s = MN

|MN| (10.60)

The yield criterion of Equation (10.58) is an approximation to the original proposal of Ilyushin,
since the latter is rather complicated to implement, while Equation (10.58) gives a yield contour
that is close to the original formulation (Figure 10.6), in which both yield contours are visualised
in the N, M-space (Burgoyne and Brennan 1993; Skallerud and Haugen 1999).

As with continuum plasticity, it has advantages to reformulate the Ilyushin yield criterion
in the following compact format:

f =
√

σTPσ − σ̄(κ) (10.61)

where the dependence of the yield strength σ̄ on a history parameter κ has now been made
explicit. The vector σ contains the generalised stresses:

σ =
(

N

M

)
(10.62)
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M

N

yield contour

Ilyushin
yield contour

approximate Ilyushin

Figure 10.6 Illyushin’s yield criterion

and P is given by:

P =
[

3
2 t2P̄ st

√
3P̄

st
√

3P̄ 24P̄

]
(10.63)

where P̄ is composed of the rows and columns that correspond to the ‘in-plane’ entries of the
projection matrix P introduced in Equation (7.33) for the von Mises yield criterion:

P̄ =


2
3 − 1

3 0

− 1
3

2
3 0

0 0 2

 (10.64)

We note that the form of Equation (10.61) for the Ilyushin approximate yield function differs
from that given by Skallerud and Haugen (1999), since the present format tends to result in
a faster convergence to satisfaction of the yield function at the end of the step, as is required
in Euler backward procedures for the integration of the plasticity rate equations (de Borst and
Feenstra 1990).

Considering that the Ilyushin yield criterion has been constructed on the basis of the von
Mises yield criterion, which is primarily applicable to metals, and therefore usually used in
conjunction with an associated flow rule, it is reasonable to now also utilise an associated flow
rule:

ε̇p = λ̇n
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360 Non-linear Finite Element Analysis of Solids and Structures

where the plastic strain rate vector contains generalised plastic strains that are conjugate to the
generalised stresses in σ, so that:

ε =
(

ε�

χ

)
(10.65)

Elaboration then gives:

ε̇p = λ̇
Pσ

σ̄(κ)
(10.66)

where the identity f = 0 has been used, with f according to Equation (10.61). An Euler
backward integration scheme follows straightforwardly along the lines laid out in Chapter 7,
and is given by:

σj+1 = A−1σe (10.67)

with σe the ‘elastic’ trial stress, and

A = I + �λDeP
σ̄(κ(λj+1))

(10.68)

where the fact has been used that the hardening parameter κ can be written as a function of
λ for common hardening hypotheses, cf. Chapter 7. Given that σ and ε contain generalised
stresses and generalised strains, respectively, De reads:

De =
[

tDe 0

0 t3

12 De

]
(10.69)

with the submatrix De defined as in Equation (10.15). Substitution of Equation (10.67) into
the yield function, Equation (10.61), and requiring f = 0 yields:√

σT
e A−TPA−1σe − σ̄(κ(λ0 + �λ)) = 0 (10.70)

This non-linear algebraic equation in �λ can be solved using standard procedures, e.g. a local
Newton–Raphson or a local Quasi-Newton method.

The consistent tangent stiffness matrix is subsequently derived by a standard procedure, cf.
Chapter 7, through differentiation of the Euler backward integration scheme, and reads:

D = H − HnnTH
h + nTHn

(10.71)

cf. Equation (7.130), where for structural plasticity,

H = A−1De (10.72)

with A and De defined in Equations (10.68) and (10.69), respectively.
We observe from Equation (10.66) with P defined as in Equation (10.63) that the ap-

proximate Ilyushin yield contour is non-smooth in the six-dimensional space spanned by
(Nx, Ny, Nxy, Mx, My, Mxy), as the gradients to the yield function f are discontinuous when s
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Plates and Shells 361

switches sign, although it may be smooth in the N, M-space (Figure 10.6). At points where the
gradient to the yield surface is discontinuous, the procedure must be utilised that is described
in Chapter 7 for treating singularities in the yield surface, where it is noted that the Koiter’s
generalisation equally holds for yield functions that are expressed in terms of generalised
stresses. As with the Tresca, Mohr–Coulomb, and Rankine yield functions, the singularity of
the Ilyushin yield surface requires distinction between the smooth parts of the yield surface
and the corner regimes. This is most conveniently done by first assuming that the stress point
is on a smooth part of the yield surface and to apply the procedure for a single active yield
mechanism. Subsequently, it is checked whether s has the same value for the trial stress σe and
for the final stress σj+1 at this iteration, i.e. j + 1. If this is the case, the assumption has been
correct, otherwise the return-mapping procedure has to be repeated under the assumption that
two plastic mechanisms are active.
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Ilyushin AA 1956 Plasticité (Deformation elasto-plastiques). Editions Eyrolles.
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11
Hyperelasticity

In the first chapter we have recapitulated some basic notions of continuum mechanics, while
in Chapter 3 an extension has been made to non-linear kinematics. However, in that chapter
restriction was made to small strains. This limitation will be relaxed in the present chapter,
in which hyperelastic material models will be discussed, which are often used to describe the
mechanical behaviour of rubberlike materials. To provide a proper setting, we will commence
this chapter by a presentation of additional topics from continuum mechanics, which have not
been discussed before, but which are necessary for a proper discussion of large elastic strains –
the topic of this chapter – and of large elasto-plastic strains (Chapter 12).

11.1 More Continuum Mechanics

11.1.1 Momentum Balance and Stress Tensors

As point of departure we take the balance of momentum in the current configuration,
Equation (2.4). Since the discussion in this chapter and in Chapter 12 will be limited to
quasi-static deformations, it is recalled here without the inertia term:

∇ · σ + ρg = 0 (11.1)

with σ the Cauchy stress tensor and ρ the mass density in the current configuration. In com-
ponent form Equation (11.1) reads:

∂σij

∂xi

+ ρgj = 0

The weak form of the equilibrium equation (11.1) can be obtained through multiplication by
a test function, δu, which can be interpreted as a virtual displacement field. After integration
over the domain V currently occupied by the body, so that,∫

V

δu · (∇ · σ + ρg)dV = 0 (11.2)

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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366 Non-linear Finite Element Analysis of Solids and Structures

and utilising the divergence theorem, one obtains:∫
V

∇(δu) : σdV =
∫

V

δu · ρgdV +
∫

S

δu · tdS (11.3)

with t = n · σ the stress vector in the current configuration, cf. Equation (1.75).
From Equation (11.3) we infer that the Cauchy stress tensor and the gradient of the virtual

displacement field are energetically conjugate. This is a property that is shared by several pairs
of stress tensors and deformation measures. To show this, we will transform Equation (11.3) to
the undeformed configuration, denoted by the subscript 0. The transformation of an elementary
volume dV to that in the undeformed configuration, dV0, is straightforward using conservation
of mass, Equation (3.74). Such a transformation is less easy for the transformation of an
elementary surface dS0. Denoting the normal vectors of the elementary surfaces dS0 and dS

by n0 and n, respectively, and defining an arbitrary vector d�0, that transforms into d� and is not
orthogonal to n0, then there exists an elementary volume dV0 = d�0 · n0dS0 which transforms
into dV = d� · ndS. Since d� = F · d�0 and ρdV = ρ0dV0, cf. Equation (3.74), one obtains:

ρn · F · d�0dS = ρ0n0 · d�0dS0

This identity must hold for arbitrary d�0, which results in Nanson’s formula for the transfor-
mation of surface elements:

ndS = ρ0

ρ
n0 · F−1dS0 (11.4)

or in component form:

nidS = ρ0

ρ
(n0)j(F−1)jidS0

Considering Equation (3.76) we can also write Equation (11.4) as:

ndS = det F n0 · F−1dS0 (11.5)

Using Equations (1.75), (3.74) and (11.4) we can rewrite Equation (11.3) as:∫
V0

ρ0

ρ
∇(δu) : σdV =

∫
V0

δu · ρ0gdV +
∫

S0

δu ·
(

ρ0

ρ
n0 · F−1 · σ

)
dS (11.6)

From the surface integral we can define the stress tensor p that relates the nominal traction t0,
which is the force per surface area in the undeformed configuration, to the normal n0 of the
surface in the undeformed configuration:

t0 = n0 · p (11.7)

where the nominal stress tensor p relates to the Cauchy stress tensor σ through:

p = ρ0

ρ
F−1 · σ (11.8)

or inversely:

σ = ρ

ρ0
F · p (11.9)
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Hyperelasticity 367

The components of the nominal stress tensor can hence be interpreted as the stresses that result
from a force that acts on a surface in the undeformed configuration. The nominal stress tensor
is the transpose of the First Piola–Kirchhoff stress tensor, p∗, defined in Box 3.3, which can
be shown as follows (Ogden 1984):

pT = ρ0

ρ

(
F−1 · σ

)T = ρ0

ρ
σT · (F−1)T = ρ0

ρ
σ · (F−1)T = p∗

Using Equation (11.8) the left-hand side of the weak form of the equilibrium equation (11.6)
can be recast as:∫

V0

ρ0

ρ
∇(δu) : σdV =

∫
V0

(∇(δu) · F) : pdV =
∫

V0

∇0(δu) : pdV =
∫

V0

δF : pdV (11.10)

so that the nominal stress tensor is energetically conjugate to the variation of the deformation
gradient. In deriving Equation (11.10) use has been made of the identity:

∇0u = ∇u · F

Using Equations (11.7) and (11.8) we subsequently can write the weak form of the equilibrium
equation in the undeformed configuration as:∫

V0

∇0(δu) : pdV =
∫

V0

δu · ρ0gdV +
∫

S0

δu · t0dS (11.11)

This identity must hold for any variation of the displacement field δu. Use of the divergence
theorem then yields the equilibrium equation in the original, undeformed configuration:

∇0 · p + ρ0g = 0 (11.12)

A disadvantage of the nominal stress tensor is its asymmetry, which makes it less suitable
for computations. For this reason the Second Piola–Kirchhoff stress tensor is more frequently
used in finite element analysis, in particular when using a Lagrangian framework. We recall
the definition of the Second Piola–Kirchhoff stress tensor, Equation (3.73):

σ = ρ

ρ0
F · τ · FT

or in its inverse form:

τ = ρ0

ρ
F−1 · σ · (F−1)T (11.13)

Using this identity, the left-hand side of the equilibrium equation in the reference configuration,
Equation (11.6) can be recast as:∫

V0

ρ0

ρ
∇(δu) : σdV =

∫
V0

tr(∇(δu) · F · τ · FT)dV =
∫

V0

tr(δF · τ · FT)dV

and further, using the expression for the variation of the Green–Lagrange strain tensor δγ , cf.
Equation (3.79), and the symmetry of the Second Piola–Kirchhoff stress tensor,∫

V0

ρ0

ρ
∇(δu) : σdV =

∫
V0

δγ : τdV
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368 Non-linear Finite Element Analysis of Solids and Structures

Clearly, the Second Piola–Kirchhoff stress tensor is energetically conjugate to the variation of
the Green–Lagrange strain tensor. The weak form of the equilibrium equation in the reference
configuration expressed with aid of the Second Piola–Kirchhoff stress tensor thus reads:∫

V0

δγ : τdV =
∫

V0

δu · ρ0gdV0 +
∫

S0

δu · t0dS (11.14)

As shown in Chapter 3, the Second Piola–Kirchhoff stress tensor is a suitable point of departure
for finite element formulations.

A further stress measure that is encountered in the literature is the Kirchhoff stress tensor,
defined as

κ = ρ0

ρ
σ = detF σ (11.15)

which is, in view of Equation (11.6), energetically conjugate to the gradient of the deformation
rate with respect to the initial volume. Finally, we mention the Biot stress tensor T which
is energetically conjugate to the variation of the right stretch tensor U with respect to the
initial volume (Bonet and Wood 1997). This can be seen by departing from the last identity of
Equation (11.10). Inserting the polar decomposition, Equation (3.58) gives:∫

V0

δF : pdV =
∫

V0

p : (R · δU + δR · U)dV =
∫

V0

(p · R) : (δU + RT · δR · U)dV

Noting that by taking the variation of the identity RT · R = I it can be shown that the tensor
RT · δR is antisymmetric, whereas the right stretch tensor U is symmetric, we observe that the
second term cancels, so that:∫

V0

δF : pdV =
∫

V0

δU : (p · R)dV (11.16)

from which the Biot stress tensor

T = p · R (11.17)

can be identified as the work conjugate to the variation of the right stretch tensor U. In general,
the Biot stress tensor is unsymmetric, like the nominal stress tensor. Using Equations (11.8)
and (11.13), and using the identity RT · R = I, the Biot stress can also be written as:

T = τ · U (11.18)

For isotropic material behaviour the Second Piola–Kirchhoff stress tensor τ and the right stretch
tensor U are coaxial, and therefore, commute. Consequently, under these circumstances, their
product T is symmetric. The Biot stress tensor will be used later in this chapter within the
context of corotational formulations for continuum elements subjected to large strains.

11.1.2 Objective Stress Rates

The mechanical behaviour of rubbers, which will be the focus of the next section, is charac-
terised by a unique relation between the stress and the strain state: upon unloading the stress
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Hyperelasticity 369

response is virtually identical to that in loading. In other words, rubbers show almost no history
dependence. Indeed, for most practical applications rubbers can be considered as instantly and
fully recoverable upon unloading. Such a behaviour can be captured with hyperelastic models,
where the stress at any state can be derived directly by differentiating a strain energy function
with respect to a suitable strain measure.

Most materials, however, show a history dependence, and in Chapters 6–8 we have discussed
a host of damage, plasticity and time-dependent models that can accommodate this behaviour.
A common and essential denominator of these models is that the stress cannot be derived
solely from the current strain state, but is also dependent on one or more history variables, e.g.
the plastic strain tensor. This can be accommodated by casting the constitutive relation in a
rate format, i.e. a linear relation is postulated between the strain rate tensor and the stress rate
tensor, and this relation is integrated along the loading path to obtain the current stress state.
When formulating such relations for materials that undergo large deformations, as we will do
in Chapter 12 for elasto-plasticity, the issue arises whether the stress rate that is used in the
constitutive relation is objective.

Any constitutive relation must satisfy the principle of objectivity, i.e. the mechanical re-
sponse of a system must be the same irrespective of the frame of reference that is being used.
We consider two coordinate systems, which for the sake of simplicity, are both Cartesian,
but one is fixed in space, while the other coordinate system is rotating. A vector n will then
have components ni in the fixed x, y, z-coordinate frame, and components n̄i in the x̄, ȳ, z̄-
coordinate system. According to Equation (1.50), the components of the vector represented in
the rotating coordinate system can be obtained from those in the fixed coordinate system by:

n̄ = R · n

with R the rotation tensor. Because R is an orthogonal tensor, R−1 = RT and the inverse
relation becomes:

n = RT · n̄

Differentiation of Equation (1.50) with respect to time gives:

˙̄n = R · ṅ + Ṙ · n (11.19)

Back-transformation to the fixed reference frame through pre-multiplication with RT, using
the property of orthogonal tensors and defining:

� = ṘT · R = −RT · Ṙ (11.20)

then results in the following, objective derivative of a vector:

�
n= RT · ˙̄n = ṅ − � · n (11.21)

which represents the temporal change of the vector n in the rotating coordinate system, but
with its components expressed in the fixed reference frame.

The concept of an objective derivative straightforwardly generalises to second and higher-
order tensors. Differentiating Equation (1.55),

C̄ = R · C · RT
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370 Non-linear Finite Element Analysis of Solids and Structures

with C an arbitrary second-order tensor with respect to time yields:

˙̄C = Ṙ · C · RT + R · Ċ · RT + R · C · ṘT (11.22)

Back-transformation of ˙̄C to the fixed reference frame, i.e. pre-multiplying this expression
by RT and post-multiplication by R, exploiting the property of orthogonal tensors and using
definition (11.20) results in:

�
C= RT · ˙̄C · R = Ċ − � · C + C · � (11.23)

which defines the Green–Naghdi rate of a second-order tensor. Accordingly, the Green–Naghdi
derivative of the Cauchy stress tensor reads:

�
σ= RT · ˙̄σ · R = σ̇ − � · σ + σ · � (11.24)

The material derivative of the Cauchy stress tensor, σ̇, is therefore not an objective stress rate,
and cannot be used directly in constitutive relations. This also holds for the Kirchhoff stress κ

for which the Green–Naghdi derivative reads in a similar manner:

�
κ= RT · ˙̄κ · R = κ̇ − � · κ + κ · � (11.25)

Another commonly used objective derivative is that proposed by Jaumann (1911). For its
derivation we first define the velocity gradient � as:

� = ∇ẋ (11.26)

For the time derivative of the deformation gradient we have:

Ḟ = ∇ẋ · F

so that the velocity gradient can alternatively be expressed as:

� = Ḟ · F−1 (11.27)

or, using the time derivative of the identity F · F−1 = I,

� = −F · Ḟ−1 (11.28)

The velocity gradient can be decomposed into the symmetric rate of deformation tensor, or
stretching tensor ε̇ and the antisymmetric spin tensor w:

� = ε̇ + w (11.29)

where, by definition:

ε̇ = 1

2
(� + �T) (11.30)

and

w = 1

2
(� − �T) (11.31)
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Hyperelasticity 371

Accordingly, the spin tensor can be elaborated as:

w = 1

2

(
ḞF−1 − (ḞF−1)T

)
(11.32)

Substitution of the polar decomposition of F, Equation (3.58), using the time derivative of the
identity RT · R = I, and definition (11.20) finally yields:

w = � + 1

2
R ·

(
U̇ · U−1 − U−1 · U̇

)
· RT (11.33)

Evidently, the second term vanishes for rigid body motions. Since the second term in
Equation (11.33) is objective, it can be used in the definition of objective stress rates. Hence,
� can be replaced by w, which results in the Jaumann rate of the Cauchy stress:

◦
σ= σ̇ − w · σ + σ · w (11.34)

and the Jaumann rate of the Kirchhoff stress:
◦
κ= κ̇ − w · κ + κ · w (11.35)

In contrast to the Cauchy and Kirchhoff stress tensors, the Second Piola–Kirchhoff stress
tensor is intrinsically independent of rigid body rotations. Indeed, time differentiation of
Equation (11.13) yields:

τ̇ = ρ0

ρ
Ḟ−1 · σ · (F−1)T + ρ0

ρ
F−1 · σ̇ · (F−1)T

+ρ0

ρ
F−1 · σ · (Ḟ−1)T + ˙̄ρ0

ρ
F−1 · σ · (F−1)T

Back-transformation then yields the Truesdell rate of the Cauchy stress tensor:

�
σ= ρ

ρ0
F · τ̇ · FT = σ̇ − � · σ − σ · �T + (tr�)σ (11.36)

since tr� = dV̇ /dV0 = ρ/ρ̇. The Truesdell stress rate is objective as it can be shown straight-

forwardly that
�
σ̄= R· �

σ ·RT (Bonet and Wood 1997). In a similar manner the Truesdell rate
of the Kirchhoff stress can be derived:

�
κ= F · τ̇ · FT = κ̇ − � · κ − κ · �T (11.37)

Even though all the stress rates discussed in the preceding are objective, they give different
responses. This can be shown for instance when a block of material is subjected to pure shear. To
bring out the differences most clearly the material is assumed to be elastic. More specifically,
a hypoelastic relation is assumed, which implies that there is a linear relation between an

objective stress rate, say
◦
σ, and the rate of deformation tensor ε̇:

◦
σ= De : ε̇ (11.38)

with De the standard elastic stiffness tensor. Integrating this equation, and using the Green–
Naghdi rate, Equation (11.24), the Jaumann rate, Equation (11.34) and the Truesdell rate,
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σ

u
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Green−Naghdi rate

Jaumann rate

Truesdell rate

Figure 11.1 Shear stress response of a block of hypoelastic material for various stress rate definitions.
Source: en.wikiversity.org

Equation (11.36), of the Cauchy stress tensor, yields the shear stress response that is shown in
Figure 11.1. The oscillatory, non-physical behaviour of the Jaumann stress rate has been the
subject of an intensive debate in the literature (Dienes 1979, 1986; Johnson and Bamman 1984;
Nagtegaal and de Jong 1982). It can be remedied, for instance, by reverting to the Green–Naghdi
or Truesdell rates (Figure 11.1) but certain objections apply to all hypoelastic formulations
when very large strains and rotations occur. For instance, Simo and Pister (1984) have pointed
out that for other stress rates energy dissipation can occur during a closed cycle when using
a purely elastic constitutive relation, which is at variance with the very notion of elasticity.
Although these effects are usually less important in large-scale analyses, which only seldom
show such large strains that these anomalous effects become significant, there has been a trend
to move away from hypoelastic relations and to use hyperelastic relations instead. Indeed,
hyperelasticity will be adopted in the next section, where a number of strain energy functions
for modelling rubberlike behaviour will be discussed. But also in large-strain elasto-plasticity,
which will be the subject of Chapter 12, there has been a tendency to adopt hyperelasticity for
the elastic part of the deformation, and to use a multiplicative decomposition of the deformation
gradient into an elastic contribution and a plastic contribution, and thus bypassing the need to
use stress rates, rather than using constitutive equations that are framed within a hypoelastic
concept a priori.

11.1.3 Principal Stretches and Invariants

Each of the stress tensors introduced in the preceding section can be decomposed into volu-
metric and deviatoric components, cf. Chapter 1, and invariants and principal stresses can be
computed. The principal values Ci of the right Cauchy–Green deformation tensor C can be
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Hyperelasticity 373

computed from:

C3
i − IC

1 C2
i + IC

2 Ci − IC
3 = 0 (11.39)

with IC
i the invariants of the right Cauchy–Green deformation tensor,

IC
1 = Cxx + Cyy + Czz

IC
2 = CxxCyy + CyyCzz + CzzCxx + C2

xy + C2
yz + C2

zx

IC
3 = CxxCyyCzz + 2CxyCyzCzx − CxxC

2
yz − CyyC

2
zx − CzzC

2
xy

(11.40)

In view of the definition of the right Cauchy–Green deformation tensor, Equation (3.60), the
principal values Ci are the squares of the principal stretches λi, which, in turn, are defined
as the quotient of the length of an elementary cube in the deformed state �i and that in the
undeformed state �i0:

Ci = λ2
i =

(
�i

�i0

)2

(11.41)

Similar to the small-strain tensor ε, the right Cauchy–Green deformation tensor can be
decomposed into a volumetric and a deviatoric contribution. For this purpose, it is first noted
that the volumetric deformation is fully characterised by the third invariant IC

3 , which, in the
principal directions, reduces to:

IC
3 = C1C2C3 = (λ1λ2λ3)2 (11.42)

Since for an elementary volume, λ1λ2λ3 = dV/dV0 , IC
3 sets the ratio between the volume in

the deformed configuration dV and the volume in the undeformed configuration dV0:

IC
3 =

(
dV

dV0

)2

(11.43)

or, using the deformation gradient F,

IC
3 = (det F)2 (11.44)

In contrast to IC
3 , the invariants IC

1 and IC
2 depend on the volumetric as well as on the devia-

toric deformation. In order to be able to define strain energy functions that are separable into
volumetric and deviatoric parts, we decompose the deformation gradient in a multiplicative
sense:

F = Fvol · F̃ = F̃ · Fvol (11.45)

where

Fvol = (det F)
1
3 I (11.46)

describes the purely volumetric deformation and F̃ captures the isochoric or volume-preserving
deformation (Simo et al. 1985; Moran et al. 1990), as can be shown by the simple consideration

det Fvol =
(

(det F)
1
3

)3 × det I = det F
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374 Non-linear Finite Element Analysis of Solids and Structures

and therefore,

det F̃ = (det Fvol)
−1 × det F = (det F)−1 × det F = 1 (11.47)

The modified right Cauchy–Green deformation tensor can subsequently be defined as:

C̃ = F̃TF̃ (11.48)

which, in view of Equation (11.47), has a purely deviatoric character. From Equations (11.44),
(11.45) and (11.46) we derive that it is related to the right Cauchy–Green deformation tensor
via:

C̃ = (
IC

3

)− 1
3 C (11.49)

and the following set of invariants can be derived for the modified right Cauchy–Green defor-
mation tensor (Penn 1970):

JC
1 = IC

1

(
IC

3

)− 1
3

JC
2 = IC

2

(
IC

3

)− 2
3

JC
3 = (

IC
3

) 1
2

(11.50)

These invariants are normally used for the definition of strain energy functions of slightly
compressible rubberlike materials. In a similar manner the principal values of the modified
right Cauchy–Green deformation tensor can be derived as:

C̃i = Ci

(
IC

3

)− 1
3 (11.51)

which satisfy the characteristic equation

C̃3
i − JC

1 C̃2
i + JC

2 C̃i − 1 = 0 (11.52)

and the modified principal stretches become:

λ̃i = λi

(
IC

3

)− 1
6 (11.53)

11.2 Strain Energy Functions

The most notable mechanical properties of rubbers are their ability to undergo very large
deformations, up to several hundred percent, without tearing and with almost instantaneously
recoverable strains. For these reasons, rubbers are sometimes termed ‘ideally elastic’ materials.
An ideally elastic material is defined by a unique relation between stress and strain, the stress
being dependent only on the current strain state and not on the deformation history as is the case
in damage or plasticity. Properties like a unique relation between stress and strain and no energy
dissipation in a closed cycle of application and removal of stress, can be ensured by requiring the
strain energy density e to be a function of the strain tensor γ only, which characterises the class
of hyperelastic materials. In consideration of the relation between the Green–Lagrange strain
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Hyperelasticity 375

tensor and the right Cauchy–Green deformation tensor, Equation (3.61), we can equivalently
require e to be a single-valued function of the right Cauchy–Green deformation tensor C:

e = e(C) (11.54)

In a purely mechanical theory, i.e. without the consideration of thermal effects, an equilib-
rium state is characterised by the vanishing of the first variation of the difference of the total
deformation energy E of the body and the potential energy U of the loads:

δ(E − U) = 0 (11.55)

In the current configuration E is given by:

E =
∫

V

ρe(C)dV (11.56)

while for the potential energy U we have in a standard manner:

U =
∫

V

ρx · gdV +
∫

S

x · tdS (11.57)

Since e is a function of the right Cauchy–Green deformation tensor only, the variation of the
strain energy density is given by:

δe = 2tr

(
δF · ∂e

∂C
· FT

)
(11.58)

so that, assuming that the loads are conservative:∫
V

2ρtr

(
δF · ∂e

∂C
· FT

)
=

∫
V

ρδx · gdV +
∫

S

δx · tdS (11.59)

Invoking the divergence theorem for the first integral,∫
V

tr

(
δF · ∂e

∂C
· FT

)
dV =∫

S

δx ·
(

F · ∂e

∂C
· FT

)
· ndS −

∫
V

δx · ∇ ·
(

F · ∂e

∂C
· FT

)
dV

(11.60)

substitution of this result into Equation (11.59), and noting that the result must hold for all
admissible δx, then yields

∇ ·
(

2ρF · ∂e

∂C
· FT

)
+ ρg = 0 (11.61)

in each material point within the body. A comparison with the equilibrium equation in the
current configuration shows that the expression in parentheses can be identified as the Cauchy
stress tensor σ, whence, use of relation (3.73) between the Cauchy stress tensor σ and the
Second Piola–Kirchhoff stress tensor τ yields:

τ = 2ρ0
∂e

∂C
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376 Non-linear Finite Element Analysis of Solids and Structures

When we define

W = ρ0e (11.62)

as the strain energy function, the simple relation

τ = 2
∂W
∂C

(11.63)

ensues. When the material is isotropic, the strain energy function W becomes only a function
of the stretch invariants IC

1 , IC
2 and IC

3 of the right Cauchy–Green deformation tensor C:

W = W(
IC

1 , IC
2 , IC

3

)
(11.64)

with W(3, 3, 1) = 0 since W must vanish in the undeformed state, Equation (11.40) with
C = I. For the Second Piola–Kirchhoff stress tensor we then obtain:

τ = 2

(
∂W
∂IC

1

∂IC
1

∂C
+ ∂W

∂IC
2

∂IC
2

∂C
+ ∂W

∂IC
3

∂IC
3

∂C

)
(11.65)

11.2.1 Incompressibility and Near-incompressibility

The task of constructing a function W that accurately captures experimental data, is further
alleviated when the assumption is made that the strain energy is separable into a volumetric part
that is purely dependent on the volumetric deformations, and a deviatoric part that is a function
of the distortion. As a first step in writing W as the sum of a volumetric and a deviatoric part,
we will decompose W into W∗(IC

1 , IC
2 ) and fp(IC

3 ):

W = W∗(IC
1 , IC

2

) + fp

(
IC

3

)
such that W∗(3, 3) = 0 and fp(1) = 0. A problem for the identification of fp(IC

3 ) is that
W∗ is also affected by purely volumetric deformations. Using the modified invariants of the
right Cauchy–Green deformation tensor, Equation (11.50), we can formulate the strain energy
function as (Penn 1970; Peng and Landel 1975):

W = W∗(JC
1 , JC

2

) + fp

(
JC

3 − 1
)

(11.66)

which provides a complete separation of the distortional and the volumetric work. It is noted
that by making fp a function of JC

3 − 1 rather than of JC
3 , the argument of fp vanishes in

the undeformed state. When using Equation (11.66) as the strain energy function of a slightly
compressible solid instead of Equation (11.64), the Second Piola–Kirchhoff stress becomes:

τ = 2

(
∂W∗(JC

1 , JC
2 )

∂C
+ f ′

p

∂JC
3

∂C

)
(11.67)

where f ′
p denotes differentiation of fp(JC

3 − 1) with respect to JC
3 .
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Hyperelasticity 377

A simple form for fp, which is convenient for numerical implementation, is obtained by
assuming a linear relation between the hydrostatic pressure p and the volume change �V :

p = K
�V

V0
(11.68)

with K the bulk modulus. Experimental evidence suggests that K is independent of JC
3 for a

wide range of pressures (Peng and Landel 1975; Penn 1970). In view of the definition of JC
3 ,

Equation (11.68) can be rewritten as:

p = K
(
JC

3 − 1
)

(11.69)

The hydrostatic pressure is defined as one-third of the trace of the Cauchy stress tensor σ, cf.
Equation (1.79). For purely volumetric deformations, all principal stretches are equal to λ, so
that for the deformation gradient we have F = λI. Accordingly, relation (3.73) between the
Cauchy stress tensor and the Second Piola–Kirchhoff stress tensor simplifies to:

σ = λ−1τ (11.70)

and the hydrostatic pressure is given by

p = 1

3
λ−1trσ (11.71)

Furthermore, the contribution of the deviatoric part W∗ of the strain energy vanishes under an
all-round uniform pressure p, so that in view of Equation (11.67), the Second Piola–Kirchhoff
stress tensor reduces to:

τ = 2f ′
p

∂JC
3

∂C
(11.72)

and, under purely volumetric deformations, the following expression for the hydrostatic pres-
sure p ensues:

p = f ′
p (11.73)

Equating expressions (11.69) and (11.73) results in K(JC
3 − 1) = f ′

p which, considering that

fp must vanish for JC
3 − 1 = 0, can be solved to yield:

fp = 1

2
K
(
JC

3 − 1
)2 (11.74)

Substitution of Equation (11.74) into Equation (11.67) results in the following strain energy
function:

W = W∗(JC
1 , JC

2

) + 1

2
K
(
JC

3 − 1
)2 (11.75)

Simo and Taylor (1982) have shown that definition (11.74) produces an instability in the
compressive regime, and have proposed to replace it by:

f
(
JC

3 − 1
) = 1

2
K

((
JC

3 − 1
)2 + ln2 (JC

3

))
(11.76)
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378 Non-linear Finite Element Analysis of Solids and Structures

The full expression for the strain energy function then changes accordingly:

W = W∗(JC
1 , JC

2

) + 1

2
K

((
JC

3 − 1
)2 + ln2 (JC

3

))
(11.77)

When the bulk modulus K is set equal to infinity, JC
3 − 1 and ln(JC

3 ) vanish, and since
(JC

3 − 1)2 + ln2(JC
3 ) approaches zero faster than K tends to infinity, the second term in Equa-

tion (11.77) also vanishes, and the strain energy function reduces to:

W = W∗(JC
1 , JC

2

)
(11.78)

or, since IC
1 = JC

1 , IC
2 = JC

2 for JC
3 − 1 = 0,

W = W(
IC

1 , IC
2

)
(11.79)

Most early finite element calculations assume the incompressible formulation (11.79) to model
rubber behaviour (Scharnhorst and Pian 1978; Cescotto and Fonder 1979; Jankovich et al. 1981;
Sussmann and Bathe 1987; Glowinski and Tallec 1985). Yet, the assumption of incompress-
ibility may be too crude for industrial rubbers and finite element analyses that a priori assume
incompressibility will not always give a realistic prediction of the stresses and especially the
deformations of rubber components.

11.2.2 Strain Energy as a Function of Stretch Invariants

The first proposals for strain energy functions that can capture the mechanical behaviour of
rubberlike materials used the assumption of incompressibility and were formulated using the
strain invariants of the right Cauchy–Green deformation tensor. Mooney (1940) was the first
to propose a strain energy function of the form (11.79) and Rivlin (1948) generalised this to
include higher-order terms and postulated the finite series:

W =
l∑

i=0

m∑
j=0

Kij

(
IC

1 − 3
)i(

IC
2 − 3

)j (11.80)

where the model parameters l and m are natural numbers. The constant K00 stands for the
energy level in the reference configuration and is normally set equal to zero. However, its
choice is irrelevant, since it vanishes upon differentiation with respect to the right Cauchy–
Green deformation tensor, i.e. when calculating the stress tensor. For the analysis of rubber
components often only the linear terms are retained. Setting l = m = 1, K11 = 0, K10 = K1,
and K01 = K2 results in the simple Mooney–Rivlin model:

W = K1
(
IC

1 − 3
) + K2

(
IC

2 − 3
)

(11.81)

A further simplification occurs when K2 is also assumed to vanish. This gives the so-called
neo-Hookean model:

W = K1
(
IC

1 − 3
)

(11.82)

Although the Mooney–Rivlin model was originally proposed for strictly incompressible
rubbers, it can be used equally well to model the distortional response of a compressible
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Hyperelasticity 379

rubber. For this purpose, Equation (11.81) is replaced by

W∗ = K1
(
JC

1 − 3
) + K2

(
JC

2 − 3
)

(11.83)

Strictly speaking, the constants K1 and K2 should be modified when replacing Equation (11.81)
by Equation (11.83), but the observation that JC

3 − 1 hardly ever exceeds 10−4 justifies the
assumption to use the same values for K1 and K2, irrespective of whether Equation (11.81) or
Equation (11.83) is used. Addition of the volumetric part of the strain energy, Equation (11.74),
subsequently gives the complete expression for the strain energy:

W = K1
(
JC

1 − 3
) + K2

(
JC

2 − 3
) + 1

2
K
(
JC

3 − 1
)2 (11.84)

so that the Second Piola–Kirchhoff stresses are given by:

τ = 2

(
K1

∂JC
1

∂C
+ K2

∂JC
2

∂C
+ K

(
JC

3 − 1
)∂JC

3

∂C

)
(11.85)

When elaborating this equation for pure shear conditions, one obtains that 2(K1 + K2) → µ,
with µ the ground-state shear modulus, i.e. the shear modulus for small strains (de Borst et al.
1988). For a given strain the stress can thus be computed in a straightforward manner, and the
internal force vector follows directly from Chapter 3, see Box 11.1.

The tangential stiffness tensor, needed for equilibrium iterations within the Newton–
Raphson method, can be obtained in a regular manner by differentiating the Second Piola–
Kirchhoff stress tensor with respect to the Green–Lagrange strain tensor:

D = ∂τ

∂γ
= 2

∂τ

∂C
(11.86)

which results in:

D = 4

(
K1

∂2JC
1

∂C2 + K2
∂2JC

2

∂C2 + K
(
JC

3 − 1
)∂2JC

3

∂C2 + K
∂JC

3

∂C
⊗ ∂JC

3

∂C

)
(11.87)

The terms in this equation have been elaborated in Box 11.2.
The Mooney–Rivlin strain energy function has been used frequently for calculations in

engineering practice. An example is the application of shock cells in the lock gates of the
Eastern Scheldt storm surge barrier in The Netherlands, which was constructed in the early
1980s. These shock cells have been used to prevent damage accumulation between the steel
lock gates and the concrete structure due to forces generated by incoming waves. Figure 11.2
shows the function and the position of the shock cell in the structure.

The shock cell consists of two enclosing steel cylinders of different diameters. The cylinders,
which can move with respect to each other along the axis of symmetry, are connected by a
rubber structure according to Figure 11.3. The inner cylinder is supported by the barrier, while
the outer cylinder is loaded by the wave attacks on the gates. This load case has been modelled
by applying a prescribed displacement to the outer cylinder parallel to the axis of symmetry.
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380 Non-linear Finite Element Analysis of Solids and Structures

Box 11.1 Algorithmic treatment for compressible Mooney–Rivlin hyperelasticity

For a given correction to the displacement increment in iteration j + 1, daj+1:

1. Update the nodal displacements: aj+1 = aj + daj+1

2. Compute the deformation gradient in each integration point: F = I + ∑n
i=1 ai

∂hi

∂ξ
, with

n the number of nodes in the element
3. Compute the Green–Lagrange strain tensor C = FTF
4. Compute the derivatives of the invariants with respect to C (in Voigt notation):

∂IC
1

∂C
=




1

1

1

0

0

0




,
∂IC

2

∂C
=




Cxx + Cyy

Cyy + Czz

Czz + Cxx

−Cxy

−Cyz

−Czx




,
∂IC

3

∂C
=




CyyCzz − C2
yz

CzzCxx − C2
zx

CxxCyy − C2
xy

CyzCzx − CzzCxy

CzxCxy − CxxCyz

CxyCyz − CyyCzx




5. Compute the derivates of the modified invariants:


∂JC
1

∂C = (IC
3 )−1/3 ∂IC

1
∂C − 1

3IC
1 (IC

3 )−4/3 ∂IC
3

∂C

∂JC
2

∂C = (IC
3 )−2/3 ∂IC

2
∂C − 2

3IC
2 (IC

3 )−5/3 ∂IC
3

∂C

∂JC
3

∂C = 1
2 (IC

3 )−1/2 ∂IC
3

∂C

6. Compute the Second Piola–Kirchhoff stress tensor τj+1 from Equation (11.85)
7. Update the internal force vector: fint,j+1 = ∫

V0
BT

Lτj+1dV

Note that the computational flow is somewhat more compact than that of Equation (2.52),
which is possible because hyperelasticity is a total stress–strain relation, and involves no
path dependency, so that there is no integration of a rate constitutive equation along the
strain path.

In the calculations for the shock cell the incompressible Mooney–Rivlin model has been
used. The material parameters have been determined for a virgin material as well as for a pre-
stressed rubber. A difference is observed between both parameter identifications, but for the
type of deformation to which the shock cell is subjected (mainly shear) only the sum of K1 and
K2 is of interest, and then only a slight difference remains between both identifications (de Borst
et al. 1988).

First, a finite element analysis has been made for an undamaged shock cell (Figure 11.4).
Since the maximum tensile stresses in the left-lower corner exceeded the permissible tensile
stress for the used rubber compound, a second calculation was made in which a pre-defined
crack was inserted. A comparison of the global load–displacement curves with an experimental
measurement is shown in Figure 11.4.
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Hyperelasticity 381

Box 11.2 Tangent stiffness matrix for compressible Mooney–Rivlin hyperelasticity

1. Compute the second derivatives of the invariants with respect to the right Cauchy–Green
deformation tensor:

∂2IC
1

∂C2 = 0

∂2IC
2

∂C2 =




0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 − 1
2 0 0

0 0 0 0 − 1
2 0

0 0 0 0 0 − 1
2




∂2IC
3

∂C2 =




0 Czz Cyy 0 −Cyz 0

Czz 0 Cxx 0 0 −Czx

Cyy Cxx 0 −Cxy 0 0

0 0 −Cxy −Czz/2 Czx/2 Cyz/2

−Cyz 0 0 Czx/2 −Cxx/2 Cxy/2

0 −Cyz 0 Czx/2 Cxy/2 −Cyy/2




2. Compute the second derivatives of the modified invariants:


∂2JC
1

∂C2 = I
−1/3
3

∂2IC
1

∂C2 + 4
9I1I

−7/3
3

∂IC
3

∂C

(
∂IC

3
∂C

)T

− 1
3I

−4/3
3

[
∂IC

1
∂C

(
∂IC

3
∂C

)T

+ I1
∂2IC

3
∂C2 + ∂IC

3
∂C

(
∂IC

1
∂C

)T
]

∂2JC
2

∂C2 = I
−2/3
3

∂2IC
2

∂C2 + 10
9 I2I

−8/3
3

∂IC
3

∂C

(
∂IC

3
∂C

)T

− 2
3I

−5/3
3

[
∂IC

2
∂C

(
∂IC

3
∂C

)T

+ I2
∂2IC

3
∂C2 + ∂IC

3
∂C

(
∂IC

2
∂C

)T
]

∂2JC
3

∂C2 = 1
2I

−1/2
3

∂2IC
3

∂C2 − 1
4I

−3/2
3

∂IC
3

∂C

(
∂IC

3
∂C

)T

3. Compute the tangential stiffness matrix D according to Equation (11.87).
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North Sea

Eastern Scheldt

attacks
waveShock cells

Shock cells

42 m

Figure 11.2 Top view of a lock gate of the Easter Scheldt storm surge barrier

12
6

steel

rubber

325

Figure 11.3 Geometry of the shock cell (dimensions in millimetre)

11.2.3 Strain Energy as a Function of Principal Stretches

Strain energy functions that are expressed in terms of stretch invariants can be less accurate for
very large stretches. It appears that expressing the strain energy function in terms of principal
stretches offers more flexibility and makes it easier to accurately capture the constitutive
behaviour for stretches λ ≥ 2 (Figure 11.5). The first proposal along this line was formulated
by Varga (1966). This approach was generalised by Valanis and Landel (1967), who formulated
the strain energy function for incompressible materials as a symmetric function of the principal

Experiment

Analysis of undamaged cell

Analysis of damaged cell

600

400

200

200100

(kN)F

u (mm)

Figure 11.4 Computed and experimentally determined axial force in the shock cell
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F

λ0.5 1.5 2.0 2.5

Ogden, experiments
Mooney−Rivlin

Figure 11.5 Rubber in uniaxial tension: the Mooney–Rivlin and Ogden models vs observed rubber
behaviour

stretches:

W = w(λ1) + w(λ2) + w(λ3) (11.88)

Within this formalism Ogden (1972) postulated the following series of functions in the principal
stretches:

W =
nr∑

r=1

µr

αr

(
λ

αr

1 + λ
αr

2 + λ
αr

3 − 3
)

(11.89)

in which µr and αr are model parameters, which satisfy the relation

nr∑
r=1

µrαr = 2µ (11.90)

with µ the ground-state shear modulus. Equivalently, the strain energy function can be ex-
pressed in terms of the principal values of the right Cauchy–Green deformation tensor:

W =
nr∑

r=1

µr

αr

(
C

αr/2
1 + C

αr/2
2 + C

αr/2
3 − 3

)
(11.91)

The Ogden model incorporates a number of other formulations, including the Mooney–Rivlin
model, which is obtained by setting nr = 2, α1 = 2 and α2 = −2, and the neo-Hookean model,
which results when nr = 1, α1 = 2. As with the Mooney–Rivlin model a model for compress-
ible rubbers can be obtained by simply replacing Equation (11.89) by:

W∗ =
nr∑

r=1

µr

αr

(
λ̃

αr

1 + λ̃
αr

2 + λ̃
αr

3 − 3
)

(11.92)
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384 Non-linear Finite Element Analysis of Solids and Structures

with λ̃i the modified principal stretches, Equation (11.53). Again, a reformulation in terms of
the principal values of the modified right Cauchy–Green tensor is possible:

W∗ =
nr∑

r=1

µr

αr

(
C̃

αr/2
1 + C̃

αr/2
2 + C̃

αr/2
3 − 3

)
(11.93)

Addition of the volumetric contribution, Equation (11.74), gives the complete expression for
the strain energy, similar to the Mooney–Rivlin model in Equation (11.84):

W =
nr∑

r=1

µr

αr

(
C̃

αr/2
1 + C̃

αr/2
2 + C̃

αr/2
3 − 3

)
+ 1

2
K
(
JC

3 − 1
)2 (11.94)

so that the Second Piola–Kirchhoff stress is given by:

τ = 2

[
3∑

i=1

τ̃i

(
∂C̃i

∂JC
1

∂JC
1

∂C
+ ∂C̃i

∂JC
2

∂JC
2

∂C
+ ∂C̃i

∂JC
3

∂JC
3

∂C

)
+ K

(
JC

3 − 1
)∂JC

3

∂C

]
(11.95)

with

τ̃i = ∂W∗

∂C̃i

=
nr∑

r=1

µr

2
C̃

(αr/2)−1
i (11.96)

the principal values of the deviatoric part of the Second Piola–Kirchhoff stress tensor. The
most convenient method to compute the derivatives of the principal values with respect to
the invariants makes use of the implicit function theorem (Peng 1979). For this purpose the
characteristic equation (11.52) is denoted by f = f (JC

1 , JC
2 , JC

3 , C̃i(JC
1 , JC

2 , JC
3 )), and

∂f

∂JC
j

+ ∂f

∂C̃i

∂C̃i

∂JC
j

= 0

which results in:

∂C̃i

∂JC
1

= C̃2
i

3C̃2
i − 2JC

1 C̃i + JC
2

∂C̃i

∂JC
2

= −C̃i

3C̃2
i − 2JC

1 C̃i + JC
2

(11.97)

∂C̃i

∂JC
3

= 0
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Hyperelasticity 385

The tangential stiffness matrix can be obtained in a manner similar to that for the Mooney–
Rivlin model, cf. Equation (11.87):

D = 4
3∑

i=1

[
∂τ̃i

∂C̃i

(
∂C̃i

∂JC
1

∂JC
1

∂C
+ ∂C̃i

∂JC
2

∂JC
2

∂C
+ ∂C̃i

∂JC
3

∂JC
3

∂C

)
⊗

(
∂C̃i

∂JC
1

∂JC
1

∂C
+ ∂C̃i

∂JC
2

∂JC
2

∂C
+ ∂C̃i

∂JC
3

∂JC
3

∂C

)

+τ̃i

(
∂2C̃i

∂(JC
1 )2

∂JC
1

∂C
+ ∂2C̃i

∂JC
1 ∂JC

2

∂JC
2

∂C
+ ∂2C̃i

∂JC
1 ∂JC

3

∂JC
3

∂C

)
⊗ ∂JC

1

∂C

+τ̃i

(
∂2C̃i

∂JC
2 ∂JC

1

∂JC
1

∂C
+ ∂2C̃i

∂(JC
2 )2

∂JC
2

∂C
+ ∂2C̃i

∂JC
2 ∂JC

3

∂JC
3

∂C

)
⊗ ∂JC

2

∂C

+τ̃i

(
∂2C̃i

∂JC
3 ∂JC

1

∂JC
1

∂C
+ ∂2C̃i

∂JC
3 ∂JC

2

∂JC
2

∂C
+ ∂2C̃i

∂(JC
3 )2

∂JC
3

∂C

)
⊗ ∂JC

3

∂C

+τ̃i

(
∂C̃i

∂JC
1

∂2JC
1

∂C2 + ∂C̃i

∂JC
2

∂2JC
2

∂C2 + ∂C̃i

∂JC
3

∂2JC
3

∂C2

)]

+4

(
K(JC

3 − 1)
∂2JC

3

∂C2 + K
∂JC

3

∂C
⊗ ∂JC

3

∂C

)

(11.98)

where the derivatives of the principal deviatoric stresses with respect to the principal values of
the modified Green–Lagrange deformation tensor are given by:

∂τ̃i

∂C̃i

=
nr∑

r=1

1

4
(µrαr − 2µr)C̃

(αr/2)−2
i (11.99)

and the second derivatives of the principal values C̃i with respect to the invariants are again
computed using the implicit function theorem, resulting in:

∂2C̃i

∂(JC
1 )2

= 2C̃3
i (3C̃2

i − 3JC
1 C̃i + 2JC

2 )

(3C̃2
i − 2JC

1 C̃i + JC
2 )3

∂2C̃i

∂JC
1 ∂JC

2

= − C̃2
i (3C̃2

i − 4JC
1 C̃i + 3JC

2 )

(3C̃2
i − 2JC

1 C̃i + JC
2 )3

(11.100)

∂2C̃i

∂(JC
2 )2

= − 2C̃i(JC
c C̃i − JC

2 )

(3C̃2
i − 2JC

1 C̃i + JC
2 )3

The approach in which the strain energy function (11.93) is transformed and expressed in
terms of invariants can be less robust, since singularities occur when two or more principal
values become equal. Indeed, when C1 = C2 = C, IC

1 = 2C + C3, IC
2 = C2 + 2CC3, and the

denominators of Equation (11.97) become zero. Although limits can be computed which ren-
der the full expression for τ finite, a more convenient approach is to directly compute the
principal values of the deviatoric part of the Second Piola–Kirchhoff stress tensor according
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386 Non-linear Finite Element Analysis of Solids and Structures

to Equation (11.96), whereafter the stresses in the x, y, z-system are obtained through eigen-
projections, as outlined in Box 11.3 (de Souza Neto et al. 2008). This algorithm rests upon the
property that the eigenvectors of the (modified) right Cauchy–Green deformation tensor and
the (deviatoric part of the) Second Piola–Kirchhoff stress tensor are coaxial.

As discussed in Chapter 7 the use of eigenprojections is closely related to an approach in
which the strain tensor is expressed in principal directions via (in Voigt notation) C̄ = TεC,
followed by a computation of the principal values τ̃i according to Equation (11.96). The stresses
in the x, y, z-system are subsequently obtained by back-transformation using Tσ :

τ = TσDτ̃ + 2K(JC
3 − 1)

∂JC
3

∂C
(11.101)

where

Dτ̃ =



∑nr

r=1
µr

2 C̃
(αr/2)−1
1 0 0

0
∑nr

r=1
µr

2 C̃
(αr/2)−1
2 0

0 0
∑nr

r=1
µr

2 C̃
(αr/2)−1
3


 (11.102)

The approach is warranted because of the material isotropy, and a similar approach has been
followed for Mohr–Coulomb plasticity in Chapter 7. The tangential stiffness matrix is obtained
in a manner similar to that for the Mohr–Coulomb yield criterion, Equation (7.187), or for the
rotating crack model (Box 6.3).

11.2.4 Logarithmic Extension of Linear Elasticity: Hencky Model

In Equation (11.54) the strain energy density e has been defined as a function of the right
Cauchy–Green deformation tensor C. Equivalently, the strain energy density can be made a
function of the left Cauchy–Green deformation tensor B. Instead of Equation (11.56) we now
have:

E =
∫

v

ρe(B)dV (11.103)

and the variation of the strain energy density becomes:

δe = 2tr

(
δFT · ∂e

∂B
· F

)
(11.104)

Invoking the divergence theorem now yields:

∫
V

tr

(
δFT · ∂e

∂B
· F

)
dV =∫

S

δx ·
(

∂e

∂B
· B

)
· ndS −

∫
V

δx · ∇ ·
(

∂e

∂B
· B

)
dV

(11.105)
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Hyperelasticity 387

Box 11.3 The computation of deviatoric stresses and the deviatoric part of the tangential
stiffness matrix for strain energy functions that are expressed in terms of principal stretches

1. For C̃, compute the principal values C̃i

2. Compute the principal stresses τ̃i using Equation (11.96)
3. Compute the eigenprojections:

(a) Ei = C̃i

2C̃3
i
−JC

1 C̃2
i
+JC

3

(
C̃2 − (JC

1 − C̃i)C̃ + JC
3

C̃i
I
)

, C̃1 /= C̃2 /= C̃3

(b) E1 as under (a), E2 = I − Ei , C̃1 /= C̃2 = C̃3
(c) Ei = I , C̃1 = C̃2 = C̃3

4. Compute the Second Piola–Kirchhoff stress tensor: τ = ∑3
i=1 τiEi

5. Compute the derivatives in the principal stress space ∂τ̃i

∂C̃i
from Equation (11.99)

6. Compute, using cyclic permutation for i, the deviatoric tangential stiffness tensor:

(a) D̃ = ∑3
i=1

[
τ̃i

(C̃i−C̃i+1)(C̃i−C̃i+2)

(
dC̃2

dC̃
− (C̃i+1 + C̃i+2)I

−(2C̃i − C̃i+1 − C̃i+2)Ei ⊗ Ei

−(C̃i+1 − C̃i+2)(Ei+1 ⊗ Ei+1 − Ei+2 ⊗ Ei+2)
)

+ ∂τ̃i

∂C̃i
Ei ⊗ Ei

]
, C̃1 /= C̃2 /= C̃3

(b) D̃ = s1
dC̃2

dC̃
−s2I−s3C̃ ⊗ C̃+s4(C̃ ⊗ I)sym−s5I ⊗ I , C̃1 /= C̃2 = C̃3

(c) D̃ = ∂τ̃1
∂C̃1

I , C̃1 = C̃2 = C̃3

The scalars s1, . . . , s5 are defined as:


s1 = τ̃i−τ̃i+2
(C̃i−C̃i+2)2 − 1

C̃i−C̃i+2

∂τ̃i+2
∂C̃i+2

s2 = 2C̃i+2
τ̃i−τ̃i+2

(C̃i−C̃i+2)2 − C̃i+C̃i+2
C̃i−C̃i+2

∂τ̃i+2
∂C̃i+2

s3 = 2 τ̃i−τ̃i+2
(C̃i−C̃i+2)3 − 1

(C̃i−C̃i+2)2

(
∂τ̃i

∂C̃i
+ ∂τ̃i+2

∂C̃i+2

)
s4 = 2s3C̃i+2

s5 = s3C̃
2
i+2

while (
dC̃2

dC̃

)
ijkl

= 1

2

(
δikC̃lj + δilC̃kj + δjlC̃ik + δkjC̃il

)

Substitution of this expression into Equation (11.55), use of Equation (11.57), and noting that
the result must hold for all admissible δx thus gives:

∇ ·
(

2ρ
∂e

∂B
· B

)
+ ρg = 0 (11.106)
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388 Non-linear Finite Element Analysis of Solids and Structures

The expression in parentheses can be identified as the Cauchy stress tensor σ. Using rela-
tion (11.15) between the Cauchy and the Kirchhoff stress tensor, and using definition (11.62)
for the strain energy function W , the following relation between the Kirchhoff stress tensor κ

and the left Cauchy–Green deformation tensor B can be derived:

κ = 2
∂W
∂B

· B (11.107)

In passing from Equation (11.92) to Equation (11.93), we expressed the strain energy func-
tionW in terms of the principal values of the right Cauchy–Green deformation tensor C instead
of in terms of the right stretch tensor U. Accordingly, the strain energy function, which for
the Mooney–Rivlin class of strain energy functions of Equation (11.80) has been expressed
in terms of (the invariants of) the right Cauchy–Green deformation tensor, can equally be ex-
pressed in terms of (the invariants of) the right stretch tensor, so that W = W(U). Indeed, any
objective deformation measure can be used to define the strain energy function, but also func-
tions of objective deformation measures can be used for this purpose. An often used function
is the logarithm of the left stretch tensor V:

ε = ln V (11.108)

which is coaxial with the left stretch tensor since taking the logarithm is an isotropic tensor
function, and the principal values of ε are obtained as ln λi, with λi the principal stretches. By
virtue of Equation (3.66), this so-called Eulerian logarithmic strain tensor can also be expressed
as:

ε = 1

2
ln B (11.109)

A particularly convenient expression for the strain energy function is given by:

W(ε) = 1

2
ε : De : ε (11.110)

which is due to Hencky (1933), and can be considered as the finite (logarithmic) strain extension
of small-strain elasticity. Indeed, the format of Hencky’s strain energy function resembles
that of classical, infinitesimal elasticity theory, with De the standard elastic stiffness tensor,
Equation (1.109).

Noting that the Hencky strain energy function is defined in terms of the Eulerian logarithmic
strain ε, Equation (11.107) can be reworked as:

κ = ∂W
∂ε

· ∂ ln B
∂B

· B (11.111)

Since we have material isotropy, and since ln B is an isotropic tensor function of B, the oper-
ation ∂ ln B

∂B · B can be carried out in any coordinate system. In the coordinate system with the
axes aligned with the eigenvectors, this operation becomes particularly simple. In each of the
principal directions we have:

∂ ln(λ2
i )

∂λ2
i

λ2
i = 1

λ2
i

λ2
i = 1
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Hyperelasticity 389

whence

∂ ln B
∂B

· B = I

For the Hencky definition of the strain energy function W , Equation (11.110), we obtain a
linear relation between the Kirchhoff stress tensor κ and the Eulerian logarithmic strain ε:

κ = De : ε (11.112)

11.3 Element Technology

When the ratio of the bulk modulus over the ground-state shear modulus K/µ tends to infinity,
i.e. when the limiting case of incompressibility is approached, volumetric locking can occur,
similar to the element behaviour for isochoric/dilatant plasticity, as described in Chapter 7. In
principle, the same strategies can be applied to ameliorate the behaviour of finite elements.
However, the strategies that have been advocated in small-strain elasto-plasticity cannot al-
ways be carried over straightforwardly to incompressible hyperelasticity – and therefore also
not to large-strain elasto-plasticity. The classical strategies that use crossed triangular ele-
ments (Nagtegaal et al. 1974) and reduced integration (Doll et al. 2000) apply directly in
the large-strain regime. Mixed formulations that use independent interpolations of displace-
ments and pressures, usually with a pressure field that is condensed at the element level, can
also be extended in a rather straightforward manner to large strains (Brink and Stein 1996;
de Borst et al. 1988; Sussmann and Bathe 1987; van den Bogert et al. 1991). The same holds,
in principle, for enhanced assumed strain methods (Simo and Armero 1992), but instabilities
have been detected in the large-strain regime (de Souza Neto et al. 1995; Wriggers and Reese
1996). Strategies that can remedy the anomalous behaviour have been proposed by Glaser
and Armero (1997), Korelc and Wriggers (1996), Reese and Wriggers (2000), Wall et al.
(2000). An extension to large deformations of the B̄-concept has been proposed by Moran
et al. (1990), while de Souza Neto et al. (1996, 2005, 2008) have proposed a related concept
that utilises a volumetric/deviatoric split of the deformation gradient F. Finally, Crisfield and
Moita (1996); Moita and Crisfield (1996) have extended the corotational approach to large
strains of two-dimensional and three-dimensional continuum elements, while enhancing the
element performance using the incompatible modes technique.

11.3.1 u/p Formulation

In the u/p formulation the pressure field is interpolated in addition to the displacement field.
Since the pressure enters as an independent variable, Equation (11.67) is rewritten using ex-
pression (11.73), to give:

τ = 2

(
∂W∗(JC

1 , JC
2 )

∂C
+ p

∂JC
3

∂C

)
(11.113)
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390 Non-linear Finite Element Analysis of Solids and Structures

which can be differentiated to give the material tangential stiffness relation:

τ̇ = D : γ̇ + 2
∂JC

3

∂C
ṗ (11.114)

with

D = 4

(
∂2W∗

∂C2 + p
∂2JC

3

∂C2

)
(11.115)

We next consider the virtual work expression (3.86) at iteration j + 1:∫
V0

δγTτj+1dV

∫
S0

δuTtdS +
∫

V0

ρ0δuTgdV (11.116)

and the weak form of the hydrostatic pressure–volume change relation (11.73):∫
V0

δp
(
pj+1 − f ′

p

)
dV = 0 (11.117)

Decomposing τj+1 additively in τj and the correction dτ during the iteration, and substitution
of Equation (11.114) in an incremental format results in:∫

V0

δγTDdγdV +
∫

V0

δγTτjdV +
∫

V0

δγT

(
2
∂JC

3

∂C

)
dpdV

=
∫

S0

δuTtdS +
∫

V0

ρ0δuTgdV

(11.118)

By a similar decomposition with respect to the pressure we can rewrite (11.117) as:

−
∫

V0

δp

(
2f ′′

p

∂JC
3

∂C

)
dγdV +

∫
V0

δpdpdV +
∫

V0

δp
(
pj − f ′

p

)
dV = 0 (11.119)

where for the choice (11.74) obviously f ′′
p = K. Applying a linearisation of Equation (11.118)

similar to that after Equation (3.91), premultiplying Equation (11.119) with −f ′′
p , and rear-

ranging yields: ∫
V0

δeTDdedV +
∫

V0

δηTτjdV +
∫

V0

δeT

(
2
∂JC

3

∂C

)
dpdV

=
∫

S0

δuTtdS +
∫

V0

ρ0δuTgdV −
∫

V0

δeTτjdV

(11.120)

and∫
V0

δp

(
2
∂JC

3

∂C

)
dedV −

∫
V0

(f ′′
p )−1δpdpdV =

∫
V0

(f ′′
p )−1δp

(
pj − f ′

p

)
dV (11.121)

Since the pressure has been assumed to be an independent variable a separate interpolation is
necessary for p. Because of its origin as an additional constraint no explicit boundary conditions
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Hyperelasticity 391

are required for the pressure field and a wider range of interpolations is permissible than for the
displacement field. Furthermore, the pressure degrees of freedom can be introduced either as
system or element degrees of freedom. The latter approach, which is more customary, allows the
condensation of the pressure degrees of freedom at the element level (Box 6.2), and implies
a discontinuous pressure field across the element boundaries. Assembling the interpolation
polynomials for the pressure degrees of freedom in a matrix Hp, we have:

p = Hpp (11.122)

where p contains the values of the nodal pressures. Substitution of the relations (3.96)–(3.104)
and (11.122) into Equations (11.120) and (11.121), and considering that the resulting equations
must hold for any admissible variation of the displacements and the pressures, gives:[

Kaa Kap

KT
ap Kpp

](
da

dp

)
=

(
fa
ext − fa

int

fp
int

)
(11.123)

with fa
int and fp

int given by:

fa
int =

∫
V0

BT
LτjdV (11.124)

fp
int =

∫
V0

(f ′′
p )−1HT

p

(
pj − f ′

p

)
dV (11.125)

while the stiffness matrices are given by:

Kaa =
∫

V0

BT
LDBLdV +

∫
V0

BT
NLT tBNLdV (11.126)

Kap =
∫

V0

BT
L

(
2
∂JC

3

∂C

)
HpdV (11.127)

Kpp = −
∫

V0

(f ′′
p )−1HT

pHpdV (11.128)

with T the matrix representation of the Second Piola–Kirchhoff stress tensor, and BL and
BNL the ‘linear’ and ‘non-linear’ B matrices, cf. Equations (3.97), (3.103) and (3.104) for the
two-dimensional representation.

For the calculation of the element stiffness matrix in Equation (11.123) different interpolation
polynomials can be chosen for the displacement and pressure field. An arbitrary combination
of interpolation functions, however, may lead to a poor numerical performance. For mixed
finite elements a sound mathematical theory is available through the Ladyzenskaya–Babuška–
Brezzi (LBB) condition (Hughes 1987). Unfortunately, proof that an element passes the LBB
condition is usually rather difficult. Instead, a simple and heuristic method, based on constraint
counting (Nagtegaal et al. 1974) is often applied to mixed elements with a discontinuous
pressure field for a first assessment of their suitability for the analysis of (nearly) incompressible
media.

To provide a proper setting, the fundamental difficulty in (nearly) incompressible elasticity
is recalled by means of Figure 7.24(a), in which a four-noded, quadrilateral two-dimensional
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392 Non-linear Finite Element Analysis of Solids and Structures

element is plotted with eight displacement degrees of freedom. At the left and bottom edges
the displacements have been prescribed to zero, so that the model possesses just two degrees of
freedom. We may now envisage a model composed of an arbitrary number of these basic ele-
ments. Each element that is added in either direction increases the total number of displacement
degrees of freedom by two. The assumption of incompressibility implies a constant surface of
the element, and, as a consequence, a restricted movement of the free node along a line with
an angle of −45◦. The remaining degree of freedom is determined by an equation with one
pressure degree of freedom as an additional unknown. When two or more pressure points are
specified no displacement degrees of freedom are left, which causes volumetric locking. When,
on the other hand, no pressure degrees of freedom are introduced, spurious kinematic modes,
such as hour-glass modes, see also Chapter 7, can arise during the numerical simulation. For
two-dimensional elements the optimal ratio r = na/np of the number of displacement degrees
of freedom na over the number of pressure degrees of freedom np therefore equals two, while
for three-dimensional elements the optimal ratio r = 3. The method outlined above has been
applied to determine the optimal number of pressure points in three-dimensional hexahedral
elements in Box 11.4.

The method suggests an influence of the boundary conditions on the number of constraint
conditions. In fact, the ratio r of the entire finite element model should be considered when
calculating the optimal number of pressure degrees of freedom. Ideally, also the number of
constraint conditions should be distributed inhomogeneously over the mesh in order to arrive
at a locally optimal ratio: fewer pressure degrees of freedom near edges with a prescribed
displacement and more pressure degrees of freedom near edges with a prescribed boundary
traction.

11.3.2 Enhanced Assumed Strain Elements

Simo and Rifai (1990) have developed a rigorous framework for the enrichment of the kine-
matics of displacement-based finite elements, the enhanced assumed strain approach. Since
the resulting elements are displacement based, the standard methodology for handling inelastic
constitutive laws like plasticity and damage, discussed in Chapters 6–8, holds. This is unlike
the u/p formulation discussed in Section 11.3.1, and is a major advantage. The methodology
was extended to geometrical non-linearity by Simo and Armero (1992). We take the balance
of momentum in the current configuration, Equation (11.1), as the starting point, multiply it
by the variation of the displacement field, δu, utilise the divergence theorem and transform
the result to the original configuration to yield Equation (11.6). Using expressions (11.7) and
(11.8) we obtain:

∫
V0

ρ0

ρ
∇(δu) : σdV =

∫
V0

δu · ρ0gdV +
∫

S0

δu · t0dS (11.129)

which is complemented by the weak forms of the kinematic and the constitutive equations:

∫
V0

δτ :

(
1

2
(FT · F − I) − γ

)
dV = 0 (11.130)
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Hyperelasticity 393

Box 11.4 Shape functions for three-dimensional u/p elements

Three-dimensional tetrahedral elements which have a constant interpolation polynomial for
the pressure field are the 8/1 elements, which have a trilinear displacement interpolation
with 8 degrees of freedom, and the 20/1 elements, which have a quadratic, serendipity
interpolation for the displacements. For the 8/1 element na = 3 and np = 1, so that r = 3,
which is optimal. For the 20/1 element, however, the ratio r = 12, which implies that
spurious kinematic modes can arise rather easily. An optimal element is therefore the
20/4 element, for which r = 12/4 = 3. In the three-dimensional space it needs a linear
interpolation with four parameters, which can be derived by degeneration of the trilinear
shape functions, which are for instance used to describe the displacement field within
the 8/1 element. Let ξ = (ξ, η, ζ) be the place vector in the isoparametric coordinates and
x = (x, y, z) be the place vector in the model coordinates. Then, the mapping of a point
from model to isoparametric coordinates is defined by the shape functions hi according to

x(ξ) =
n∑

i=1

hi(ξ)xe
i

where xe
i are the model coordinates of node i of element e. The degeneration process implies

the mapping of more than one point in the isoparametric ξ-space onto a point in the x-space.
A proper linear shape function is obtained when four independent parameters are used to
span a three-dimensional space. To meet this requirement and to obtain a symmetric set of
polynomials the following degeneration can be employed:

h∗
1 = h1 + h2 = 1

4
(1 − η)(1 − ζ)

h∗
3 = h3 + h4 = 1

4
(1 + η)(1 − ζ)

h∗
6 = h6 + h7 = 1

4
(1 + ξ)(1 + ζ)

h∗
8 = h8 + h5 = 1

4
(1 − ξ)(1 + ζ)

This interpolation scheme satisfies the basic convergence requirements with respect to the
smoothness and completeness on the element domain (Bathe 1982; Hughes 1987), but
continuity across the element boundaries is lost due to the degeneration process. Because
of the assumed element-wise condensation of the pressure degrees of freedom this is of no
further consequence.

and ∫
V0

δγ : (τ − τγ )dV = 0 (11.131)

with F the deformation gradient that is derived from the displacement field u,

δτγ = ∂τ

∂γ
: δγ = D : δγ
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394 Non-linear Finite Element Analysis of Solids and Structures

the stress that is derived from the constitutive relation, and τ and γ independent stress and
strain fields. Equations (11.129)–(11.131) are the stationarity conditions of the three-field
Hu–Washizu variational principle, cf. Wall et al. (2000). Substitution of the relation between
the Cauchy and Second Piola–Kirchhoff stress tensors, Equation (11.13), the variation of the
Green–Lagrange strain tensor, Equation (3.79), and exploiting the symmetry of the Second
Piola–Kirchhoff stress tensor, transform Equation (11.129) into:∫

V0

tr(δFT · τ · F)dV =
∫

V0

δu · ρ0gdV +
∫

S0

δu · t0dS (11.132)

The enhanced assumed strain methodology rests on the decomposition of the strain field
into a part γ̄ which is derived from the (continuous) displacement field u and an additional
strain field γ̃:

γ = 1

2
(FT · F − I)︸ ︷︷ ︸

γ̄

+ γ̃ (11.133)

Substitution into Equations (11.132), (11.130) and (11.131) results in:∫
V0

tr(δFT · τγ · F)dV =
∫

V0

δu · ρ0gdV +
∫

S0

δu · t0dS (11.134)

∫
V0

δτ : γ̃dV = 0 (11.135)

and ∫
V0

δγ̃ : (τ − τγ )dV = 0 (11.136)

In the enhanced assumed strain approach (Simo and Rifai 1990; Simo and Armero 1992)
the variations of the stress field and that of the enhanced part of the strain field are assumed to
be orthogonal in an L2-sense: ∫

V0

δτ : δγ̃dV = 0 (11.137)

which can be satisfied for a proper choice of the trial functions for γ̃ and τ. Equation (11.137)
satisfies Equation (11.135) for δγ̃ = γ̃ and, for δτ = τ, reduces Equation (11.136) to:∫

V0

δγ̃ : τγdV = 0 (11.138)

We interpolate the continuous part of the displacements in a standard manner,

u = Ha

while the enhanced strains can be interpolated via

γ̃ = Gα (11.139)
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Hyperelasticity 395

with α the array that contains the discrete parameters that govern the magnitude of the en-
hanced strains at the element level. The (non-square) matrix G depends on how the enhanced
strains are formulated. Examples are the strain enrichment to accommodate a discontinuity
in Equation (6.70) and the strain enrichment in the modified incompatible modes element of
Taylor et al. (1976), see Equation (7.219) for the enhanced normal strains of this element. Sub-
stitution of these interpolations into Equations (11.134) and (11.138), elaborating the resulting
equations in a manner similar to that between Equations (3.86) and (3.104), and requiring that
the results hold for all admissible variations, yields the following linearised set of coupled
algebraic equations: [

Kaa Kaα

KT
aα Kαα

](
da

dα

)
=

(
fa
ext − fa

int

−fα
int

)
(11.140)

with fa
ext the standard external load vector, and the internal force vectors fa

int, fα
int given by

fa
int =

∫
V0

BT
LτγdV (11.141)

fα
int =

∫
V0

GTτγdV (11.142)

with BL defined in Equation (3.21). The stiffness matrices are given by:

Kaa =
∫

V0

BT
LDBLdV +

∫
V0

BT
NLT BNLdV (11.143)

Kaα =
∫

V0

BT
LDGdV (11.144)

Kαα =
∫

V0

GTDGdV (11.145)

with T and BNL defined in Equations (3.103) and (3.104), respectively. Since the enhanced
strains γ are discontinuous across element boundaries, the array of discrete parameters α

resides at the element level, and can be condensed prior to assembling the stiffness matrix at
the structural level (Box 6.2).

Several authors (de Souza Neto et al. 1995; Wriggers and Reese 1996) have reported that
enhanced assumed strain elements are not necessarily stable for large deformations, and reme-
dies have been proposed by Glaser and Armero (1997), Korelc and Wriggers (1996) and Reese
and Wriggers (2000). Wall et al. (2000) have presented an in-depth analysis of the problem and
have proposed a stabilised finite element method based on concepts advocated in computational
fluid dynamics.

11.3.3 F -bar Approach

A straightforward method to avoid volumetric locking effects in finite strain analyses is the F̄-
concept. The idea behind this method is simple: use the multiplicative decomposition (11.45)
which splits the deformation gradient F into an isochoric contribution Fiso and a volumetric

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



396 Non-linear Finite Element Analysis of Solids and Structures

contribution Fvol to define a modified deformation gradient

F̄ = Fiso · (Fvol)0 (11.146)

in each integration point, where (Fvol)0 is computed at the element centroid, i.e. at ξ = ξ0. The
Second Piola–Kirchhoff stress tensor is subsequently calculated using the modified deforma-
tion gradient: τj+1 = τ(F̄j+1) and the internal force vector follows conventionally from:

fint,j+1 =
∫

V0

BT
Lτj+1dV

The F̄-approach bears similarity to the B̄-concept that has been advocated by Hughes (1980)
to avoid volumetric locking effects in small-strain elasticity and plasticity, see Chapter 7.
Indeed, a deviatoric–volumetric split is made in both cases, where the volumetric contribution
is evaluated at the centroid of the element. Nevertheless, the elaboration is rather different,
since in the B̄-approach the discrete strain displacement is modified through a redefinition of
the B matrix, cf. Equation (7.215). By contrast, no direct modification to the discrete strain-
displacement operators is made for the F̄-approach, since only the Green–Lagrange stress
tensor is evaluated in a non-standard manner, namely from the modified deformation gradient
F̄, and not from F.

The modification to the computation of the stress tensor shows up in the expression for
the tangent stiffness matrix (de Souza Neto et al. 1996, 2005, 2008). The derivation is quite
lengthy, and results in:

K =
∫

V0

BT
LDBLdV +

∫
V0

BT
NLT BNLdV +

∫
V0

BTQ(B0 − B)dV (11.147)

The matrix B0 is as B, cf. Equation (2.19), but evaluated at the element centroid, while Q is
given by:

Q =




E
3(1−2ν) − 1

3τxx
E

3(1−2ν) − 1
3τxx

E
3(1−2ν) − 1

3τxx 0 0 0
E

3(1−2ν) − 1
3τyy

E
3(1−2ν) − 1

3τyy
E

3(1−2ν) − 1
3τyy 0 0 0

E
3(1−2ν) − 1

3τzz
E

3(1−2ν) − 1
3τzz

E
3(1−2ν) − 1

3τzz 0 0 0

− 1
3τxy − 1

3τxy − 1
3τxy 0 0 0

− 1
3τyz − 1

3τyz − 1
3τyz 0 0 0

− 1
3τzx − 1

3τzx − 1
3τzx 0 0 0




(11.148)

The first two terms in Equation (11.147) are standard, cf. Chapter 3, but the third term is
additional and originates from the modification of the stress computation. It is evident that the
tangent stiffness matrix for the F̄ method becomes non-symmetric, which is due to the fact
that the F̄-approach does not have a proper variational basis.

11.3.4 Corotational Approach

Corotational approaches have been used primarily for structural elements like truss elements
(Chapter 3), beam elements or plate and shell elements (Chapters 9 and 10). Crisfield and
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Hyperelasticity 397

Moita (1996); Moita and Crisfield (1996) have developed a corotational formulation for two-
and three-dimensional continuum elements, which allows for the use of simple, low-order ele-
ments such as four-noded quadrilaterals, or eight-noded brick elements in large-strain analyses
by incorporating them in a corotating framework. One advantage of the corotational formula-
tion is its conceptual simplicity. Another advantage is that concepts that have been derived for
small displacement gradients, can be included straightforwardly, without complications. An
example is the incompatible modes element for improving the bending behaviour and for miti-
gating volumetric locking of four-noded two-dimensional, and eight-noded three-dimensional
elements (Crisfield and Moita 1996).

Hyperelasticity can be introduced in the corotational formulation as follows. In the centroid
of the element we have:

F0 = R0 · U0 (11.149)

where the local rotating base vectors n̄i constitute the columns of the rotation matrix R0, as can
be observed from Figure 3.7. Equation (11.149) can be conceived as the polar decomposition
in the centroid of the element, and U0 therefore serves as the right stretch tensor at this point.
Its principal values, the stretches λi, minus one can be identified as the principal values ε̄i of
the local engineering strain tensor ε̄:

ε̄i = λi − 1 (11.150)

Hence, we have the following relation between the local engineering strain and the right stretch
tensor at the element centroid:

ε̄ = U0 − I (11.151)

where the right-hand side can be identified as the Biot strain tensor at the centroid. Accordingly,
the Biot strain tensor U − I reduces to the local engineering strain ε̄ in the centre of the element.
It is emphasised that this holds only at the centroid, but for gradually varying strain fields the
local engineering strain serves as a good approximation of the Biot strain also elsewhere within
the element.

Since the Biot stress tensor T is energetically conjugate to the right stretch tensor U,
Equation (11.16), it can be derived from a strain energy function W , as follows:

T = ∂W
∂U

(11.152)

or, in the principal directions,

T =
3∑

i=1

∂W
∂λi

Ei =
3∑

i=1

∂W
∂λi

ei ⊗ ei (11.153)

with ei the eigenvectors of the right stretch tensor U, or equivalently, of the Biot strain tensor.
As a further approximation the Biot stress tensor can be replaced by the local Cauchy stress
tensor:

σ̄ =
3∑

i=1

σ̄i ai ⊗ ai, σ̄i = ∂W
∂λi

(11.154)
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398 Non-linear Finite Element Analysis of Solids and Structures

where ai are the eigenvectors of the local engineering strain ε̄. In a similar manner, the com-
ponents of the material tangential stiffness tensor can be approximated by:




Diijj = ∂Ti

∂λj
, i = j

Dijij = Dijji = Djiij = Djiji = Ti−Tj

2(λi−λj) , i /= j
(11.155)
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12
Large-strain Elasto-plasticity

In Chapter 3 large-displacement formulations have been developed for continuum elements.
Although there is no limitation from the kinematics, these formulations were limited to small
strains because of the constitutive assumption, namely that the rate of the Second Piola–
Kirchhoff stress could be related to the rate of the Green–Lagrange strain tensor. In Chapter 11
this limitation was relaxed for hyperelastic materials, and the existence of a strain energy func-
tion W then allowed the Second Piola–Kirchhoff stress to be obtained by direct differentiation
of the strain energy function in a physically meaningful manner. The existence of a strain
energy function is, however, limited to hyperelastic materials, and excludes path dependence,
as in plasticity or damage theories. As we have seen in Chapters 6 and 7, constitutive rela-
tions are then phrased as a (linear) relation between the stress rate and the strain rate. In a
large-strain context such a constitutive relation – sometimes, but not entirely correctly, called a
hypoelastic relation – must be generalised to a relation between an objective stress rate and the
rate of deformation, see Chapter 11. Since the real, or ‘true’, stresses are related to the actual
deformation there are advantages of formulating the finite element equations in the current
configuration, thus using an Eulerian approach, rather than a Lagrangian approach.

Indeed, the pioneering works of Hibbit et al. (1970), McMeeking and Rice (1975), Nagtegaal
(1982), and Nagtegaal and de Jong (1981) have exploited such an approach. Since then, there
has been a plethora of publications related to large elasto-plastic strains. Although we shall
focus on the formulation of proper algorithms and discretisations in this chapter, we note that a
large body of literature has, necessarily, focused on the correct representation of the underlying
physics (Asaro 1983; Atluri 1984; Dafalias 1984, 1985, 1998; Kratochvil 1973; Mandel 1974;
Nemat-Nasser 1982; Rice 1975), including the issue of the so-called ‘plastic’ spin.

When adopting an Eulerian approach, and a ‘hypoelastic’ format for the relation between the
stress rate and the rate of deformation, the issue arises as to which objective stress rate is best
used. In the preceding chapter we have discussed a number of possibilities, including some of
the anomalies that may arise, for instance when shearing an elementary cube of material. An
oscillatory behaviour can be observed already for elastic constitutive relations – indeed a true
hypoelastic relation was used in Equation (11.38) to arrive at the results in Figure 11.1 – which
can be aggravated when using a kinematic-hardening elasto-plastic relation. But, irrespective

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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402 Non-linear Finite Element Analysis of Solids and Structures

of the choice of the objective stress rate, it proved difficult to ensure objectivity under finite
rotations, including the avoidance of ‘self-straining’ under rigid rotations. While this issue
may be not so prominent in explicit dynamics codes, see Chapter 5, where time steps have
to be taken very small anyway, approaches have been pursued to minimise ‘self-straining’
under rigid rotations and to ensure objectivity for finite increments (Flanagan and Taylor 1987;
Hughes and Winget 1980; Key and Krieg 1982; Pinsky et al. 1983).

The difficulties that are associated with the use of ‘hypoelastic’ type constitutive models for
the analysis of large elasto-plastic strains have led to an alternative, more rigorous approach,
which is based on a multiplicative decomposition of the deformation gradient into a deformation
gradient that describes the elastic deformations, and a deformation gradient that captures the
plastic component (Atluri 1983; Lee 1969; Nemat-Nasser 1983). Early work on large-strain
finite element implementations that exploit the multiplicative elasto-plastic decomposition
includes that by Armero (2004), de Souza Neto et al. (2008), Healey and Dodds (1992),
Moran et al. (1990), Simo (1985, 1988a,b), Simo and Hughes (1998) and Simo and Ortiz
(1985). Typically, a hyperelastic constitutive relation governs the elastic deformations, but the
main purpose of this approach is to by-pass the integration of the stress rates in the plasticity part,
rather than considering large elastic strains. Indeed, most approaches that have been presented
assume that the elastic strains remain small, at least compared with the plastic strains.

In this chapter we will first outline the Eulerian approach discussed above, and then directly
proceed with the multiplicative decomposition. From this decomposition, the relation to rate
formulations will be made, and algorithms will be described that build upon this decomposition.

12.1 Eulerian Formulations

An Eulerian finite element formulation is most conveniently developed starting from the virtual
work expression in the current configuration, Equation (2.37):

∫
V

δε : σdV =
∫

V

ρδu · gdV +
∫

S

δu · tdS (12.1)

Using Equations (3.74) and (11.15) this identity can also be expressed in terms of the Kirchhoff
stress tensor:

∫
V0

δε : κdV =
∫

V0

ρ0δu · gdV +
∫

S0

δu · t0dS (12.2)

which has the advantage that the integration can now be carried out for the known volume V0.
As with the Lagrange formulations we use the kinematic relation between the virtual strains
and the virtual displacements, Equation (2.36), and the discretisation, Equation (2.12), to arrive
at:

δε = Bδa (12.3)
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Large-strain Elasto-plasticity 403

where for notational simplicity, the element index e has been omitted. For general three-
dimensional conditions we have

B = J−1



∂h1
∂ξ

0 0 . . . . . . . . . ∂hn

∂ξ
0 0

0 ∂h1
∂η

0 . . . . . . . . . 0 ∂hn

∂η
0

0 0 ∂h1
∂ζ

. . . . . . . . . 0 0 ∂hn

∂ζ

∂h1
∂η

∂h1
∂ξ

0 . . . . . . . . . ∂hn

∂η
∂hn

∂ξ
0

0 ∂h1
∂ζ

∂h1
∂η

. . . . . . . . . 0 ∂hn

∂ζ
∂hn

∂η

∂h1
∂ζ

0 ∂h1
∂ξ

. . . . . . . . . ∂hn

∂ζ
0 ∂hn

∂ξ


(12.4)

with J−1 the 6 × 6 inverse of the Jacobian matrix, see also Box 2.2. Substitution of the discrete
kinematic relation, and requiring that the resulting discrete equations hold for any virtual nodal
displacement δa, yields the discrete equilibrium equation:

fint = fext (12.5)

and, for the Cauchy stress tensor, the internal force vector reads:

fint =
∫

V

BTσdV (12.6)

whereas for the Kirchhoff stress tensor we have:

fint =
∫

V0

BTκdV (12.7)

The tangential stiffness matrix can be obtained in a standard manner, namely by differenti-
ating the internal virtual work. For the Kirchhoff stress this results in:∫

V0

˙δε : κdV =
∫

V0

δε̇ : κdV +
∫

V0

δε : κ̇dV =
∫

V0

δ� : κdV +
∫

V0

δε : κ̇dV (12.8)

where the latter equality sign holds because of the symmetry of the Kirchhoff stress tensor.
We now elaborate δ� and first note that because ξ is fixed,

δ

(
∂ẋ
∂ξ

)
= δ

(
∂ẋ
∂x

)
· ∂x
∂ξ

+ ∂ẋ
∂x

· δ

(
∂x
∂ξ

)
= 0

so that, using Equation (11.26):

δ� = −� · δ

(
∂x
∂ξ

)
·
(

∂x
∂ξ

)−1

= −� · ∂δx
∂ξ

·
(

∂x
∂ξ

)−1

= −� · ∂δu
∂x

(12.9)

Next, we choose the Truesdell rate of the Kirchhoff stress as the objective stress rate,
Equation (11.37), and relate this stress rate to the rate of deformation tensor via the mate-
rial tangential stiffness tensor DTK, where the superscript ‘TK’ stands for the Truesdell rate of
the Kirchhoff stress tensor, so that:

κ̇ = DTK : ε̇ + � · κ + κ · �T (12.10)
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404 Non-linear Finite Element Analysis of Solids and Structures

Note that the superscript ‘T’ continues to denote the transpose of a quantity. We next substitute
Equation (12.9) and this identity into Equation (12.8) to obtain:∫

V0

˙δε : κdV = −
∫

V0

(
� · ∂δu

∂x

)
: κdV +

∫
V0

δε :
(
DTK : ε̇ + � · κ + κ · �T) dV (12.11)

Exploiting the symmetry of the Kirchhoff stress tensor this identity can be reworked to give:∫
V0

˙δε : κdV =
∫

V0

δε : DTK : ε̇dV +
∫

V0

(
∂δu
∂x

)T

· κ · � dV (12.12)

This equation can be discretised in a straightforward manner, yielding:∫
V0

δε : DTK : ε̇dV +
∫

V0

(
∂δu
∂x

)T

· κ · � dV = δaTKȧ

with

K =
∫

V0

BTDTKBdV +
∫

V0

GTKGdV (12.13)

the tangential stiffness matrix, and B given in Equation (12.4), while K and G are given by

K =



κxx κxy κzx 0 0 0 0 0 0

κxy κyy κyz 0 0 0 0 0 0

κzx κyz κzz 0 0 0 0 0 0

0 0 0 κxx κxy κzx 0 0 0

0 0 0 κxy κyy κyz 0 0 0

0 0 0 κzx κyz κzz 0 0 0

0 0 0 0 0 0 κxx κxy κzx

0 0 0 0 0 0 κxy κyy κyz

0 0 0 0 0 0 κzx κyz κzz


(12.14)

and

G =



∂h1
∂x1

0 0 ∂h2
∂x1

0 0 . . . . . . . . .

∂h1
∂x2

0 0 ∂h2
∂x2

0 0 . . . . . . . . .

∂h1
∂x3

0 0 ∂h2
∂x3

0 0 . . . . . . . . .

0 ∂h1
∂x1

0 0 ∂h2
∂x1

0 . . . . . . . . .

0 ∂h1
∂x2

0 0 ∂h2
∂x2

0 . . . . . . . . .

0 ∂h1
∂x3

0 0 ∂h2
∂x3

0 . . . . . . . . .

0 0 ∂h1
∂x1

0 0 ∂h2
∂x1

. . . . . . . . .

0 0 ∂h1
∂x2

0 0 ∂h2
∂x2

. . . . . . . . .

0 0 ∂h1
∂x3

0 0 ∂h2
∂x3

. . . . . . . . .



(12.15)
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Large-strain Elasto-plasticity 405

Please note the similarity with the matrices T and BNL of the Lagrange approach,
Equations (3.105) and (3.106), respectively.

Evidently, the choice of the Truesdell rate of the Kirchhoff stress yields a particularly simple
expression for the tangential stiffness matrix. This is not so for other choices of the objective
stress rate and the stress tensor. For instance, if we take the Jaumann rate in conjunction with
the Kirchhoff stress tensor, the resulting expression for the tangential stiffness matrix is:

K =
∫

V0

BT (DJK − KJK)BdV +
∫

V0

GTKGdV (12.16)

where the superscript ‘JK’ at the constitutive matrix DJK denotes the Jaumann derivative of the
Kirchhoff stress. Considering the definitions of the Truesdell rate and the Jaumann rate of the
Kirchhoff stress, Equations (11.35) and (11.37), and using the fact that w is anti-symmetric,
we have

�
κ + � · κ + κ · �T = ◦

κ + w · κ + w · κT

see Section 11.1.2 for the definitions of the symbols � and ◦. Using the decomposition of the
velocity gradient, Equation (11.29), and exploiting the symmetry of the rate of deformation,
we can explicitly express the Kirchhoff stress rate in terms of the Jaumann stress rate:

�
κ = ◦

κ − ε̇ · κ − κ · ε̇ (12.17)

Substitution of the constitutive matrices then gives,

DTK : ε̇ = DJK : ε̇ − ε̇ · κ − κ · ε̇ (12.18)

so that, in index notation, both constitutive matrices are related through:

DTK
ijkl = DJK

ijkl − 1

2

(
κilδjk + κjlδik + κikδjl + κjkδil

)
(12.19)

where it is noted that expressing one objective stress rate into another through a modification
of the constitutive matrix is always possible. Rewriting in matrix-vector format yields:

DTK = DJK − KJK (12.20)

which explains Equation (12.16), with

KJK =



2κxx 0 0 0 κzx κxy

0 2κyy 0 κyz 0 κxy

0 0 2κyy κyz κzx 0

0 κyz κyz
1
2 (κyy + κzz) κxy κzx

κzx 0 κzx κxy
1
2 (κzz + κxx) κyz

κxy κxy 0 κzx κyz
1
2 (κzz + κxx)


(12.21)

Using a similar procedure the tangential stiffness matrices for other objective rates in con-
junction with different stress measures can be derived. For instance, when using the Jaumann
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406 Non-linear Finite Element Analysis of Solids and Structures

rate for the Cauchy stress tensor, one arrives at (McMeeking and Rice 1975):

K =
∫

V

BT
(

DJC − SJK + SJC
)

BdV +
∫

V

GTSGdV (12.22)

with

S =



σxx σxy σzx 0 0 0 0 0 0

σxy σyy σyz 0 0 0 0 0 0

σzx σyz σzz 0 0 0 0 0 0

0 0 0 σxx σxy σzx 0 0 0

0 0 0 σxy σyy σyz 0 0 0

0 0 0 σzx σyz σzz 0 0 0

0 0 0 0 0 0 σxx σxy σzx

0 0 0 0 0 0 σxy σyy σyz

0 0 0 0 0 0 σzx σyz σzz


(12.23)

and SJK as KJK, Equation (12.21), but with Cauchy stresses in lieu of Kirchhoff stresses.
The matrix SJC is derived from the relation between the Jaumann rates of the Cauchy and the
Kirchhoff stress tensors, Equations (11.34) and (11.35), resulting in:

DJK : ε̇ = det F
(

DJC : ε̇ + σ tr(ε̇)
)

(12.24)

In index notation, this equation can be reworked to give:

DJK
ijkl = det F

(
DJC

ijkl + σijδkl

)
(12.25)

so that we finally obtain the matrix:

SJC =



σxx σxx σxx 0 0 0

σyy σyy σyy 0 0 0

σzz σzz σzz 0 0 0

σxy σxy σxy 0 0 0

σyz σyz σyz 0 0 0

σzx σzx σzx 0 0 0


(12.26)

where one can note a resemblance with the matrix Q employed in the F̄-approach,
Equation (11.148), but, by contrast, in the present case, the matrix SJC does not necessar-
ily cause a non-symmetry of the system. Indeed, the non-symmetry in SJC can be balanced
by a non-symmetry in DJC, which, for instance, is the case when a hyperelastic constitutive
relation is adopted.

By contrast, the use of the Truesdell rate of the Cauchy stress does not result in a non-
symmetric tangential stiffness matrix. Indeed, from Equations (11.36) and (11.37) we obtain:

DTK : ε̇ = det F DTC : ε̇ (12.27)
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Large-strain Elasto-plasticity 407

Inserting this identity into Equation (12.13) and using the relation between the Cauchy and the
Kirchhoff stress tensors, Equation (11.15), yields the tangential stiffness matrix:

K =
∫

V

BTDTCBdV +
∫

V

GTSGdV (12.28)

12.2 Multiplicative Elasto-plasticity

The multiplicative elasto-plastic decomposition originates from Lee (1969), and assumes the
existence of three configurations: the initial, undeformed configuration, with a line segment dξ,
which is first moved, by a purely plastic deformation, into an intermediate configuration dx̂, and
subsequently, into the final configuration dx through a pure elastic deformation (Figure 12.1).
In keeping with the notation introduced in Chapter 3 we then have

dx̂ = ∂x̂
∂ξ

· dξ → Fp = ∂x̂
∂ξ

(12.29)

for the mapping from the initial state to the intermediate configuration, with Fp the plastic part
of the deformation gradient, and

dx = ∂x
∂x̂

· dx̂ → Fe = ∂x
∂x̂

(12.30)

the mapping from the intermediate state to the final configuration, with the elastic part of the
deformation gradient, which, in standard manner, can be decomposed into a rotational part,

F F
p e

(a)
F=F    F

e p

(c)

(b)

Figure 12.1 The multiplicative elasto-plastic decomposition: (a) initial state; (b) intermediate state;
and (c) final state
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408 Non-linear Finite Element Analysis of Solids and Structures

Re and a contribution that stems from a pure deformation, Ue, as follows:

Fe = Re · Ue (12.31)

Subsequently, definition (12.30) can be used to define the right Cauchy–Green deformation
tensor referred to the intermediate, elastic reference state x̂,

Ce = (Fe)T · Fe (12.32)

the ‘elastic’ Green–Lagrange strain tensor based upon Ce,

γe = 1

2

(
Ce − I

)
(12.33)

and the left Cauchy–Green deformation tensor referred to the intermediate, elastic reference
state:

Be = Fe · (Fe)T (12.34)

Considering the definition of the deformation gradient, Equation (3.54), and combining
Equations (12.29) and (12.30) gives the multiplicative decomposition of the deformation
gradient for elasto-plastic deformations:

F = ∂x
∂ξ

= ∂x
∂x̂

· ∂x̂
∂ξ

= Fe · Fp (12.35)

For the one-dimensional case, Equation (12.35) particularises as:

λ = �

�0
= �

�p

�p

�0
= λeλp (12.36)

with λ the stretch ratio, which is multiplicatively decomposed into an elastic and a plastic
stretch ratio, λe and λp, respectively.

The multiplicative decomposition for elasto-plasticity is not unique. For instance, it would
be equally possible to rotate the intermediate configuration by R, such that:

dx̄ = ∂x̄
∂x̂

· dx̂ → R = ∂x̄
∂x̂

(12.37)

whence, using Equation (12.29),

dx̄ = ∂x̄
∂x̂

· ∂x̂
∂ξ

· dξ = R · Fp · dξ → F̄p = R · Fp (12.38)

We next invoke Equation (12.30) to write:

dx = ∂x
∂x̂

· ∂x̂
∂x̄

· dx̄ = Fe · RT · dx̄ → F̄e = Fe · RT (12.39)

and we straightforwardly arrive at the following, alternative elasto-plastic multiplicative de-
composition:

F = ∂x
∂x̄

· ∂x̄
∂ξ

= F̄e · F̄p (12.40)
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Large-strain Elasto-plasticity 409

which is equivalent to the decomposition of Equation (12.35), since

F̄e · F̄p = Fe · RT · R · Fp = Fe · Fp

For crystalline materials, it is physically reasonable to consider that the plastic deformation
gradient Fp purely represents the plastic sliding between crystals, while the elastic deformation
gradient Fe includes the distortion of the crystal lattice and its rotation (Asaro 1983; Peirce
et al. 1982; Rice 1971). This is represented by the decomposition of Equation (12.35) and is
shown graphically in Figure 12.1.

Unfortunately, the Second Piola–Kirchhoff stress tensor τ cannot be related generally to the
Green–Lagrange strain tensor γe that can be constructed on the basis of the elastic deformation
gradient (Lubliner 1990):

γe = 1

2

(
(Fe)T · Fe − I

)
since it is not invariant with respect to a rotation of the intermediate configuration. In particular,
using Equation (12.39), one obtains:

γ̄e = R · γe · RT

For the special case of isotropy, one also has

τ̄ = R · τ · RT

and the stress is not affected by the frame in which the intermediate configuration is represented.
The important consequence of the decomposition of Equation (12.35) is that, although the

elastic and plastic deformations are decomposed in a multiplicative sense, this is not so for the
strain rates (Atluri 1983; Nemat-Nasser 1983). From Equations (11.27) and (12.35) we infer:

� = Ḟe · Fp · F−1 + Fe · Ḟp · F−1 = Ḟe · (Fe)−1︸ ︷︷ ︸
�e

+ Fe · Ḟp · F−1︸ ︷︷ ︸
�p

(12.41)

where, in view of the definition of the velocity gradient, Equation (11.26), the additively
decomposed elastic and plastic velocity gradients, �e and �p, refer to the current configuration.
It is emphasised that this additive decomposition of the velocity gradient depends crucially on
the definition for �p as given in Equation (12.41). For instance, when

Lp ≡ Ḟp · (Fp)−1 (12.42)

is substituted for �p, which would then be similar to the definition of �e, an additive decompo-
sition is not obtained. Nevertheless, the symmetric part of L,

Dp = 1

2

(
Lp + (Lp)T) (12.43)

is a measure for the plastic stretching, as the eigenvalues D
p
i of the spectral decomposition,

Dp =
3∑

i=1

D
p
i ei ⊗ ei
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410 Non-linear Finite Element Analysis of Solids and Structures

see Equation (1.69), represent the principal, instantaneous rates of plastic stretching of the
intermediate configuration. The anti-symmetric part of Lp is named the plastic spin tensor,

Wp = 1

2

(
Lp − (Lp)T) (12.44)

and represents the instantaneous rate of plastic spin of the intermediate configuration. In prin-
ciple, a constitutive equation must be postulated for the plastic spin tensor (Dafalias 1984,
1985, 1998; Kratochvil 1973), but in this treatment the hypothesis is made that the plastic spin
vanishes:

Wp = 0 (12.45)

This hypothesis holds rigorously for plastic isotropy, but not necessarily for plastic anisotropy.
Using the hypothesis of Equation (12.45) it directly follows that:

Dp = Lp (12.46)

Using the definition of Equation (12.42), the plastic strain rate in the current configuration
can be written as:

ε̇p = (�p)sym = 1

2

(
Fe · Lp · (Fe)−1 + (Fe)−T · (Lp)T · (Fe)T

)
(12.47)

and, exploiting a transformation similar to that in Equation (3.80), an equivalent expression
can be obtained in the intermediate configuration:

γ̇p = (Fe)T · ε̇p · Fe = 1

2

(
(Ce)T · Lp + (Lp)T · Ce) (12.48)

with Ce as in Equation (12.32). Clearly, there is no unequivocal definition for the plastic
strain rate, neither in the current configuration, nor in the intermediate configuration (Lubliner
1990). For instance, under the assumption that the elastic strains remain small, so that Ce ≈ I,
Equation (12.48) can be approximated as:

γ̇p ≈ 1

2

(
Lp + (Lp)T) ≡ Dp (12.49)

which, using Equation (3.80), becomes in the current configuration:

ε̇p = (Fe)−T · Dp · (Fe)−1 (12.50)

A similar rate has been proposed by Simo (1992):

ε̇p = Fe · Dp · (Fe)−1 (12.51)

which can also be derived as the Lie derivative of the ‘elastic’ left Cauchy–Green deformation
tensor Be (Marsden and Hughes 1983). When the elastic strains remain small, Ue ≈ I, and
using Equation (12.31), Fe ≈ Re and (Fe)−T ≈ (Re)−T = Re. With these approximations, the
definitions for ε̇p, Equations (12.47), (12.50) and (12.51) coincide, and reduce to:

ε̇p = Re · Dp · (Re)T (12.52)
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Large-strain Elasto-plasticity 411

which can be interpreted as the plastic stretching Dp which is transformed to the deformed
configuration through the elastic rotation.

12.3 Multiplicative Elasto-plasticity versus Rate Formulations

As discussed earlier in this chapter, most early large-strain finite element formulations are
rooted in a rate formulation, usually based on the Jaumann rate. Such rate formulations can be
related to approaches that are based on the multiplicative decomposition (Needleman 1985).
The point of departure is that we assume the existence of a strain energy function W , so that
the Second Piola–Kirchhoff stress tensor can be derived as:

τ = 2
∂W
∂Ce (12.53)

or, equivalently,

τ = ∂W
∂γe

Assuming no coupling between the plastic strains and the elastic moduli, the elastic tangential
stiffness tensor can be derived as:

De = ∂2W
∂γe∂γe (12.54)

In consideration of Equations (3.73) and (11.15) the Kirchhoff stress can be expressed as:

κ = Fe · τ · (Fe)T (12.55)

The Truesdell rate of the Kirchhoff stress tensor with respect to the intermediate configuration
can now be expressed as, cf. Equation (11.37):

�
κ= κ̇ − �e · κ − κ · (�e)T (12.56)

or, using the tangential stiffness tensor DTK that sets the relation between the Truesdell rate of
the Kirchhoff stress and the elastic deformation rate ε̇e and rearranging,

κ̇ = DTK : ε̇e − �e · κ − κ · (�e)T (12.57)

From the first equality sign in Equation (11.37) and from the relation between the rate of defor-
mation and the rate of the Green–Lagrange strain tensor, Equation (3.80), the following relation
can be inferred between DTK and the tangential stiffness tensor defined in Equation (12.54):

DTK
ijkl = F e

imF e
jnF

e
koF

e
lpDe

mnop (12.58)

Next, use of Equation (12.19),

DJK
ijkl = DTK

ijkl + 1

2

(
κilδjk + κjlδik + κikδjl + κjkδil

)
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412 Non-linear Finite Element Analysis of Solids and Structures

which sets the relation between the constitutive matrices DTK and DJK that are used in the
Kirchhoff rate and the Jaumann rate of the Kirchhoff stress tensor, respectively, gives a relation
between De and DJK. For most materials, the stresses are small compared with the elastic
moduli, and Equation (12.19) can be approximated as

DJK ≈ DTK (12.59)

If, in addition, it is assumed that the elastic strains remain small, we have Ue ≈ I, so that
Fe ≈ Re. Assuming, furthermore, elastic isotropy, the latter has no effect, so that

DTK ≈ De (12.60)

and we have the approximate relation:

κ̇ = De : ε̇e + we · κ − κ · we (12.61)

Finally, it is assumed that w = we, which implies that the plastic spin Wp = 0, and we
arrive at:

κ̇ = De : ε̇e + w · κ − κ · w (12.62)

which is at the basis of the Eulerian finite element formulation derived at the beginning of this
chapter.

We proceed with the plasticity part of the model. As the Cauchy stresses are the ‘true’ stresses,
they enter the yield criterion, flow rule and hardening model. However, as shown before,
Equations (12.22) and (12.26), the use of the Jaumann rate of the Cauchy stress tensor usually
leads to a non-symmetric tangential stiffness matrix. By contrast, the objective stress rates, like
those of Jaumann and Truesdell, of the Kirchhoff stress tensor result in symmetric tangential
stiffness matrices. Now, for the von Mises and Tresca yield functions with an associated
flow rule, the plastic deformations are isochoric – see the text after Equation (7.55) – so that
det Fp = 1, and,

det F = det Fe · det Fp = det Fe

Hence, again relying on the assumption that the elastic strains remain small, we have that
det F ≈ 1. Considering the relation between the Cauchy and the Kirchhoff stress tensors,
Equation (11.15), we observe that we can, under the assumptions made above, replace the
Cauchy stress by the Kirchhoff stress, with all the computational conveniences that come with
it (Nagtegaal and de Jong 1981).

Accordingly, we can express the yield function f in terms of the Kirchhoff stress and the
hardening variables α – note that in order to avoid confusion, the symbol α is now used, instead
of κ, which was used consistently in Chapter 7:

f = f (κ, α)

This format of the yield function is limited to isotropic hardening plasticity. The generalisation
to kinematic hardening, however, is straightforward, and runs along the lines indicated in
Chapter 7. Following Equation (12.41) we adopt an additive decomposition of the rate of
deformation:

ε̇ = ε̇e + ε̇p (12.63)
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Large-strain Elasto-plasticity 413

and a flow rule as in Equation (7.43), but now phrased in terms of Kirchhoff stresses:

ε̇p = λ̇m , m = ∂g

∂κ
(12.64)

with g the plastic potential function, see Chapter 7. Substitution of the additive decomposition
of the strain rates and the flow rule into Equation (12.62) yields:

κ̇ = De : (ε̇ − λ̇m) + w · κ − κ · w (12.65)

With n the gradient to the yield surface, cf. Equation (7.45), but also expressed in Kirchhoff
stresses, Prager’s consistency condition ḟ = 0 becomes:

n : κ̇ − hλ̇ = 0 (12.66)

with h the hardening modulus, Equation (7.74). A double contraction of κ̇ as expressed in
Equation (12.65) by n, and exploiting the consistency condition gives:

hλ̇ = n : De : (ε̇ − λ̇m) + n : (w · κ − κ · w) (12.67)

This equation can be brought into a small-strain format, i.e.

hλ̇ = n : De : (ε̇ − λ̇m) (12.68)

under the condition that

n : (w · κ − κ · w) = 0 (12.69)

Since the second-order tensors n and κ are symmetric, and since w is anti-symmetric, this
relation indeed holds true. In fact, this requirement is satisfied for any objective stress rate of
this format where w is replaced by another anti-symmetric second-order tensor. For instance,
the Green–Naghdi rate, Equation (11.25), would also be suitable but the Truesdell rate would
not. Noting that a comparison of Equations (11.35) and (12.62) results in the following relation
between the Jaumann rate of the Kirchhoff stress, and the elastic part of the rate of deformation,

◦
κ= De : ε̇e

we can derive the tangential stiffness expression:

◦
κ= D : ε̇ (12.70)

where the tangential stiffness matrix

D = De − (De : m) ⊗ (De : n)

h + n : De : m
(12.71)

has the same format as in small-strain plasticity, cf. Equation (7.76).
In the preceding it has been shown that results that are based on the multiplicative decompo-

sition should be close to results of formulations that are based on the Jaumann rate, provided
that the elastic strains remain small. This will now be illustrated for the case of a square ele-
ment that is subjected to simple shear, as in Figure 11.1. Closed-form expressions for various
rates – including the Jaumann rate, the Truesdell rate and the Green–Naghdi rate – have been
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414 Non-linear Finite Element Analysis of Solids and Structures

12
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Figure 12.2 Normalised normal stress as a function of the shear strain. The dashed lines give the results
for the multiplicative decomposition

12
F2 4 6
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Jaumann
Truesdell

Green−Naghdi1.732

1.728

12

F
=0.01

12
F∆

12=0.025∆

Figure 12.3 Normalised shear stress as a function of the shear strain. The dashed lines give the results
for the multiplicative decomposition

derived by Moss (1984). For simplicity, and without loss of generality, the shear modulus µ

has been set to unity, the yield strength σ̄ = 0.1 N/mm2, and hardening is omitted. Since the
deformation is isochoric, the value of the bulk modulus is irrelevant, and also, there is no
difference between the Cauchy stress and the Kirchhoff stress. While the solutions for the rates
are exact, the solutions that are based on the multiplicative decomposition referenced to the
current configuration have been integrated numerically. Figures 12.2 and 12.3 show that, as
expected, they converge towards the solution based on the Jaumann rate, upon refinement of
the step size, here �F12, which is taken as measure of the shear strain increment.

12.4 Integration of the Rate Equations

In the previous section, we have shown that for small elastic strains, a Jaumann rate formulation
is effectively equivalent to a multiplicative decomposition approach (Needleman 1985). How-
ever, unless the increments are very small, the integration of the resulting rate equations can
entail large errors. This is exactly the case for explicit dynamics computations, where stability
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Large-strain Elasto-plasticity 415

requirements impose a strict upper bound to the allowable time step, see Chapter 5. For such
codes, an explicit scheme as shown in Box 5.2 is usually applied, so that the nodal velocities
are known at the mid-interval, and the stresses and displacements are known at the interval
borders; see Box 12.1 for an algorithm that is based on the Jaumann rate of the Cauchy stress.

Box 12.1 Integration of the rate equations for explicit dynamics

1. For given ȧt+ 1
2 �t compute �t+ 1

2 �t =∑n
k=1

(
∂hk

∂x

)t

ȧ
t+ 1

2 �t

k

2. Using Equations (11.30) and (11.31), compute:

ε̇t+ 1
2 �t = 1

2 (�t+ 1
2 �t + (�t+ 1

2 �t)T)

wt+ 1
2 �t = 1

2 (�t+ 1
2 �t − (�t+ 1

2 �t)T)

3. Using D from Equation (12.71), compute the stress rate at the midpoint:

σ̇t+ 1
2 �t = D(σt , κt) ε̇t+ 1

2 �t

4. Compute the stress increment:

�σ = �t σ̇t+ 1
2 �t

5. Update the stress at the end of the time step:

σt+�t = σt + �σ + �t
(
wt+ 1

2 �tσt − σtwt+ 1
2 �t
)

6. Compute the internal force vector:

f t+�t
int = ∫

V t+�t BT(xt+�t)σt+�tdV

As an alternative to steps 3 and 4 a small-strain return-mapping algorithm can be adopted,
see Chapter 6.

For cases other than in explicit dynamics the integration of the rate equations must be
approached in a more rigorous way. In addition to the accurate integration of the plastic flow,
which is already important in small-strain plasticity, see Chapter 7, the accurate treatment of
the rotation becomes an issue for large strains. The purpose of objective stress rates such as the
Jaumann rate is to obviate the emergence of straining under pure rotations. While the use of
an objective stress rate guarantees this for infinitesimal rotations, this is not necessarily so for
finite rotation increments. The development of algorithms that set out to achieve incremental
objectivity has been the subject of a considerable body of work (Flanagan and Taylor 1987;
Hughes and Winget 1980; Key and Krieg 1982; Pinsky et al. 1983).

Herein, we will outline the algorithm proposed by Hughes and Winget (1980), which starts
from the assumption that the update process can be additively decomposed in a rotation and in a
stress update in a fixed coordinate frame. In keeping with Equation (1.55) for the transformation
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416 Non-linear Finite Element Analysis of Solids and Structures

of second-order tensors, we have for the Cauchy stress tensor:

σ̄ = R · σ · RT

while the stress update follows from:

�σ = �tD : ε̇ (12.72)

with D the tangential stiffness tensor, Equation (12.71). Accordingly, the stress at t + �t is
found as the sum of both operations:

σt+�t = R · σt · RT + �tD : ε̇ (12.73)

In the algorithm proposed by Hughes and Winget (1980), Equation (12.73) is replaced by:

σt+�t = R̂(θm) · σt · R̂T(θm) + D : �εm (12.74)

where R̂(θm) is an approximation to R, and is a function of the angle θ at the midpoint of the
time interval, i.e. at t + 1

2�t. When the incremental motion involves a pure rotation, we must

have that R̂(θm) → R. Defining:

��m =
(

∂�u
∂x

)
m

(12.75)

or

��m =
n∑

k=1

(
∂hk

∂x

)
m
�ak (12.76)

the incremental quantities �εm and �wm can be computed, cf. Equations (11.30) and (11.31),
as:

�εm = 1

2

(
��m + ��T

m

)
(12.77)

and

�wm = 1

2

(
��m − ��T

m

)
(12.78)

For incremental objectivity we must ensure that under a rigid body motion, no straining
occurs, and that R̂(θm) → R. For such a rigid rotation we have:

xt+�t = R · xt (12.79)

With

xm = 1

2

(
xt + xt+�t

) = 1

2
(R + I) · xt (12.80)

we obtain

�u = (R − I) · xt = 2 (R − I) · (R + I)−1 · xm (12.81)
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Large-strain Elasto-plasticity 417

so that:

��m = 2 (R − I) · (R + I)−1 (12.82)

Substitution into Equation (12.77) then gives after elaboration:

�εm = R · (R + I)−1 − (R + I)−T + (R + I)−T · RT − (R + I)−1 (12.83)

By virtue of the fact that R is anti-symmetric, we have

(R + I)−T = (RT + I
)−1 = (RT + R · RT)−1 = ((I + R) · RT)−1 = R · (R + I)−1

and, hence, in Equation (12.83) the first two terms cancel each other, as well as the last two
terms. The requirement that a pure rigid rotation does not produce straining is thus satisfied.

With �εm = 0, we can elaborate Equation (12.78) as:

�wm = ��m = 2(R̂ − I) · (R̂ + I)−1 (12.84)

cf. Equation (12.82). This equation can be solved for R to give:

R̂ =
(

I − 1

2
�wm

)−1

·
(

I + 1

2
�wm

)
(12.85)

Using �θm, the axial vector of �wm, cf. Equations (9.133) and (9.134), an alternative expres-
sion can be constructed that obviates the matrix inversions of the preceding equation:

R̂ = I + �wm

1 + 1
4�θm · �θm

·
(

I + 1

2
�wm

)
(12.86)

While the Hughes–Winget algorithm gives the correct solution for a pure rotation, it can
introduce inaccuracies when the incremental motion involves stretching as well as rotation.
More sophisticated midpoint procedures have therefore been advocated by Hughes and Winget
(1980) and Key and Krieg (1982); see de Souza Neto et al. (2008) for an overview. In essence,
these techniques involve first rotating the stresses to the midpoint configuration, then applying
the stress update, for instance using a standard small-strain return-mapping algorithm, and
finally rotating on to the final configuration. Such a technique therefore requires the midpoint

rotation matrix. For the rotation matrix R this implies that the matrix R
1
2 is required, such that:

R
1
2 R

1
2 = R (12.87)

For a two-dimensional configuration the rotation matrix can be expressed as

R =
[

cos φ − sin φ

sin φ cos φ

]

and R
1
2 then follows from:

R
1
2 =

[
cos(φ/2) − sin(φ/2)

sin(φ/2) cos(φ/2)

]
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418 Non-linear Finite Element Analysis of Solids and Structures

In three dimensions, the most straightforward way to obtain R
1
2 is through the use of quater-

nions.

12.5 Exponential Return-mapping Algorithms

We return to the multiplicative elasto-plastic decomposition of the deformation gradient, and
pick up the discussion at the elastically rotated plastic stretching. We will henceforth limit
the discussion to isotropy, so that the plastic spin tensor vanishes rigorously: Wp = 0, cf.
Equation (12.45). Consequently, Equation (12.52) can be rewritten as:

ε̇p = Re · Lp · (Re)T (12.88)

Using Equation (12.42) and rearranging gives:

Ḟp · (Fp)−1 = (Re)T · ε̇p · Re (12.89)

or, upon substitution of the flow rule, Equation (12.64), but rewritten in tensor notation instead
of in Voigt notation,

ε̇p = λ̇M , M = ∂g

∂κ
(12.90)

we obtain:

Ḟp · (Fp)−1 = (Re)T · (λ̇M) · Re (12.91)

This evolution equation for the plastic flow can be integrated accurately using exponential map
integrators (Cuitino and Ortiz 1992; Eterovic and Bathe 1990; Perić et al. 1992; Simo 1992;
Weber and Anand 1990), and, at iteration j + 1 of the time step t → t + �t, for a backward
exponential integrator, results in:

Fp
j+1 = exp

(
(Re

j+1)T · (�λMj+1) · Re
j+1

) · Fp
0 (12.92)

where, as usual, the subscript ‘0’ denotes the value of Fp at time t. Assuming isotropy, this
equation can be simplified to:

Fp
j+1 = (Re

j+1

)T · exp
(
�λMj+1

) · Re
j+1 · Fp

0 (12.93)

For metals, the plastic flow is isochoric, as in von Mises and Tresca plasticity, see Chap-
ter 7. This property is exactly preserved by the integrator of Equation (12.93), since then
det[exp(�λM)] = 1, so that

det
[
Fp

j+1

] = det
[(

Re
j+1

)T] · det
[

exp
(
�λMj+1

)] · det
[
Re

j+1

] · det
[
Fp

0

] = det
[
Fp

0

]
where, for isochoric plastic flow, also det[Fp

0] = 1. This favourable property is not obtained
for a standard Euler backward method, where

Fp
j+1 =

(
I − �λ(Re

j+1)T · Mj+1 · Re
j+1

)−1 · Fp
0 (12.94)
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Large-strain Elasto-plasticity 419

It is noted that, while most work has been directed towards J2-plasticity, applications to crystal
plasticity (Miehe 1996; Miehe and Schotte 2004), and to cohesive-frictional materials, which
are plastically dilatant or contractant, rather than plastically volume-preserving, have been
reported as well (Meschke and Liu 1999; Rouainia and Wood 2000).

We next substitute the exponential update formula, Equation (12.93), into the multiplicative
elasto-plastic decomposition, Equation (12.35). After inversion, using the property that

(exp(A))n = exp(nA) (12.95)

with n an integer, and introducing

�F = ∂xt+�t

∂xt
= I + ∂�u

∂xt
(12.96)

as the deformation gradient that maps the configuration at t onto that at t + �t, we obtain for
the update of the elastic deformation gradient (for n = −1):

Fe
j+1 = �F · Fe

0 · (Re
j+1

)T · exp
(−�λMj+1

) · Re
j+1 (12.97)

Equation (12.97), together with the evolution law for the internal variables α, the elastic relation
between the Kirchhoff stress tensor and the logarithmic strain tensor ε, cf. Equation (11.112),

κj+1 = De : εe
j+1 (12.98)

and the kinematic relation,

εe
j+1 = 1

2
ln Be

j+1 = 1

2
ln
(

Fe
j+1 · (Fe

j+1

)T) (12.99)

cf. Equation (11.109), completely define the incremental update problem, where it is noted
that the elastic rotation can be obtained directly from the elastic deformation gradient Fe

j+1 via

Re
j+1 = (Be

j+1

)− 1
2 · Fe

j+1 =
(

Fe
j+1 · (Fe

j+1

)T)− 1
2 · Fe

j+1 (12.100)

We next note that the elastic deformation gradient

Fe
e = �F · Fe

0 (12.101)

can be conceived as the elastic deformation gradient in the trial state, since the Kirchhoff stress
that is computed on basis of it,

κe = De : εe
e = 1

2
De : ln

(
Fe

e · (Fe
e)T) (12.102)

plays the role of the trial stress that enters the yield function f = f (κe, α0) to check whether
plasticity occurs in an integration point. If f (κe, α0) ≥ 0 plastic flow can occur, and an iterative
procedure is invoked to solve the local set of non-linear equations: rFe

rα

rf

 = 0 (12.103)
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420 Non-linear Finite Element Analysis of Solids and Structures

with the local residuals defined as:
rFe = Fe

j+1 − Fe
e · (Re

j+1)T · exp
(−�λMj+1

) · Re
j+1

rα = αj+1 − α0 − �λp(κj+1, αj+1)

rf = f (κj+1, αj+1)

(12.104)

When f (κe, α0) < 0 we have purely elastic behaviour, and the update follows simply as κj+1 =
κe and αj+1 = α0.

A further simplification can be obtained by solving for the elastic logarithmic strain εe
j+1,

rather than solving for the elastic deformation gradient Fe
j+1 (de Souza Neto et al. 2008). To

this end we post-multiply Equation (12.97) by Re
j+1 and, subsequently, by exp

(−�λMj+1
)
.

Again making use of the property in Equation (12.95) we obtain:

Ve
j+1 · exp

(
�λMj+1

) = Fe
e · (Re

j+1)T (12.105)

A post-multiplication of each side of this equation by its transpose, and exploiting
Equation (12.95) for n = 2 yields:

Ve
j+1 · exp

(
2�λMj+1

) · Ve
j+1 = Fe

e · (Fe
e)T (12.106)

The tensors Ve and M are coaxial because of the assumed elastic and plastic isotropy, and
therefore commute. Making use of this property, taking the square root, and solving for Ve

j+1
gives:

Ve
j+1 = Ve

e · exp
(−�λMj+1

)
(12.107)

The logarithm of this expression

εe
j+1 = εe

e − �λMj+1 (12.108)

has a format that is identical to that in small-strain plasticity. The similarity can be brought
out even more clearly by transforming Equation (12.108) into the (Kirchhoff) stress space by
pre-multiplying by De, so that, using Equation (11.112),

τe
j+1 = τe

e − �λDe : Mj+1 (12.109)

It is emphasised that the simplicity of the approach crucially depends on the assumed elastic
and plastic isotropy. If these conditions are not fulfilled a more complicated algorithm evolves.
An algorithm based on this derivation is shown in Box 12.2.

The ‘material’ part of the tangential stiffness matrix that is consistent with the update al-
gorithm based on the preceding derivation, and summarised in Box 12.2, can be obtained by
straightforward differentiation. The Kirchhoff stress is obtained from the elastic logarithmic
trial strain and from the internal variables, hence:

κj+1 = κ(εe
e, α0) (12.110)

From Equation (11.109) the elastic logarithmic trial strain derives from the elastic trial left
Cauchy–Green deformation tensor Be

e, and therefore, from the deformation gradient Fj+1,
since the plastic part, FF

0 , is ‘frozen’, and does not change during the trial step. Accordingly,
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Large-strain Elasto-plasticity 421

Box 12.2 Stress update for multiplicative finite strain plasticity

1. Initialise:
– Deformation gradient F0 = Ft

– Elastic deformation gradient Fe
0 = (Fe)t

– Hardening variables: α0 = αt

2. Compute �F = ∂xt+�t

∂xt = I + ∂�u
∂xt , Ft+�t = �F · F0

3. Compute the trial elastic deformation gradient: Fe
e = �F · Fe

0
4. Compute the trial stress, Equation (12.102): κe = De : εe

e = 1
2 De : ln

(
Fe

e · (Fe
e)T
)

5. Compute the Kirchhoff stress κj+1, the hardening variables αj+1 and the plastic
flow increment �λ according to a (small-strain) return-mapping algorithm:

If f (κe, α0) ≥ 0:

– Solve the system of local residuals:

 rκ

rα

rf

 = 0

using a local iterative procedure with j = 0, . . . , n, cf. Equation (7.96):
rκ = κj+1 − κe + �λDeM(κj+1, αj+1)

rα = αj+1 − α0 − �λp(κj+1, αj+1)

rf = f (κj+1, αj+1)

Else κn+1 = κe , αn+1 = α0
6. Compute the elastic deformation gradient: (Fe)t+�t = exp

(
(De)−1 : κn+1

)
7. Compute the Cauchy stress tensor: σt+�t = (det Ft+�t)−1κn+1

we have for the material part of the tangential stiffness tensor:

∂κ

∂Fj+1
= D :

∂εe
e

∂Be
e

:
∂Be

e

∂Fj+1
(12.111)

where

D = ∂κ

∂εe
e

(12.112)

is the small-strain elasto-plastic consistent tangent operator, cf. Equation (12.71),

∂εe
e

∂Be
e

= 1

2

∂ ln[Be
e]

∂Be
e

(12.113)
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422 Non-linear Finite Element Analysis of Solids and Structures

and the components of ∂Be
e

∂Fj+1
are given by:[

∂Be
e

∂Fj+1

]
ijkl

= δik(Be
e)jl + δjk(Be

e)il (12.114)

Clearly, only D is dependent on the constitutive model, since the other factors derive from the
large-strain effects.

Alternatively, we can define the elastic left Cauchy–Green deformation tensor in the principal
directions. To this end, we consider its spectral decomposition in the trial state:

Be
e =

3∑
i=1

(λe
e)2

i (ee)i ⊗ (ee)i (12.115)

and in the state after the return map:

Be
j+1 =

3∑
i=1

(λe
j+1)2

i ei ⊗ ei (12.116)

with
(
λe

e

)
i
,
(
λe

j+1

)
i

the principal elastic stretches in the trial and the final state, respectively.

As in the small-strain case, cf. Chapter 7, the (Kirchhoff) stress in the trial state, κe, is coaxial
with the trial elastic left Cauchy–Green strain tensor, Be

e, by virtue of isotropy, and since
coaxiality also holds between the stress tensor and the plastic flow tensor M for coaxial flow
rules, by the same reasoning as in Chapter 7 we arrive at the conclusion that κj+1 and Be

e are
coaxial, and hence: (ee)i = ei. The return map can therefore be carried out fully in the principal
space, and using the spectral decomposition, the Kirchhoff stress tensor can be recovered,
and subsequently by a standard transformation, the Cauchy stress tensor. The algorithmic
development in the principal space can bring complications, for instance when two or more
principal stretches coincide, where it is recalled that similar problems arise in (small-strain)
plasticity with singular yield surfaces, e.g. Box 7.8, or in hyperelasticity when the strain energy
function is phrased in terms of principal stretches, such as for the Ogden model (Box 11.3).
For details regarding the implementation of large-strain elasto-plasticity in the principal space,
including the construction of consistently linearised tangential stifness matrices, reference is
made to Miehe (1998), Rosati and Valoroso (2004) and Simo (1998); see Simo and Hughes
(1998) for an overview.
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13
Interfaces and Discontinuities

Interfaces occur in a wide range of structures. In civil engineering they are for instance en-
countered in reinforced soils, as the intermediate layer between rock and concrete, or in the
analysis of rock joints (Goodman et al. 1968). Applications in reinforced and prestressed con-
crete include the modelling of discrete cracking (Ingraffea and Saouma 1985; Rots 1991),
and aggregate interlock and bond between concrete and reinforcement (Feenstra et al. 1991).
In rubber parts interfaces can be of importance when disintegration of rubber and texture
is concerned such as in conveyor belts. Furthermore, interfaces occur in delamination and
fibre pull-out of composite structures (Allix and Ladevèze 1992; Schellekens and de Borst
1993a, 1994), frictional contact in forming processes (Qiu et al. 1991; Wriggers 2006), and in
coatings (van den Bosch et al. 2007, 2008).

Often, there is a discontinuity in the material properties at an interface, such as the elastic
stiffness or other physical properties such as conductivity. Such discontinuities tend to be
among the most critical parts in a structure, and can act as a precursor to failure. Two types of
fracture analyses can be distinguished. The first class of methods considers the computation of
fracture properties for a given, stationary crack. Typically, this relates to properties like stress
intensity factors or to the J-integral. Often, linear elastic fracture mechanics is used as the
underlying theory. With the proper knowledge of these quantities, fracture mechanics makes
it possible to determine if a crack will propagate, in which direction – although a number of
different hypotheses exist – and, for dynamic problems, at what speed the crack will propagate.
Since the stress field is singular at the crack tip in linear elastic fracture mechanics, tailored
numerical schemes have been developed for capturing this singularity, especially for coarse
discretisations (Barsoum 1976; Henshell and Shaw 1976).

More difficult is the simulation of crack propagation. In the first approaches, a stress intensity
factor was computed, and on the basis of this information it was decided whether, and if
yes, how much, the crack would propagate. After propagation of the crack, a new mesh was
generated for the new geometry and the process was repeated (Ingraffea and Saouma 1985).
This approach consists of a series of computations for a stationary crack using linear-elastic
fracture mechanics, and can be useful if the direction of crack propagation is known, and if the
fracture process zone is sufficiently small compared with the structural dimensions. Evidently,

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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428 Non-linear Finite Element Analysis of Solids and Structures

the remeshing procedures that are inherent in this approach can be difficult and cumbersome,
especially for three-dimensional analyses.

13.1 Interface Elements

When the fracture process zone is not small compared with the structural dimensions, cohesive-
zone models have to be used to properly simulate crack propagation. To accommodate cohesive-
zone models in finite element analysis, interface elements have found widespread use. Interface
elements have to be inserted a priori in the finite element mesh. When the direction of crack
propagation is known interface elements can be used in a straightforward manner (Rots 1991).
An example where interface elements have been used successfully, fully exploiting the potential
of cohesive-zone models, is the analysis of delamination in layered composite materials (Allix
and Corigliano 1999; Allix and Ladevèze 1992; Schellekens and de Borst 1993a, 1994). Since
the propagation of delaminations is then restricted to the interfaces between the plies, inserting
interface elements at these locations can capture the kinematics of the failure mode in an exact
manner.

To allow for a more arbitrary direction of crack propagation Xu and Needleman (1994, 1996)
have inserted interface elements equipped with a cohesive zone model between all continuum
elements. A related method, using remeshing, was proposed by Camacho and Ortiz (1996).
Although such analyses provide much insight, they suffer from a certain mesh bias, since the
direction of crack propagation is not entirely free, but is restricted to interelement boundaries.
This has been demonstrated in Tijssens et al. (2000), where the single-edge notched beam of
Figure 6.13 has also been analysed, but now with a finite element model in which interface
elements equipped with a quasi-brittle decohesion relation were inserted between all continuum
elements (Figure 13.1).

The governing kinematic quantities in continuous interface elements are a set of mutually
orthogonal, relative displacements: vn, vs, vt for the normal and the two sliding modes, re-
spectively. When collecting the relative displacements in a relative displacement vector v, they
can be related to the displacements at the upper (+) and the lower sides (−) of the interface,
u−

n , u+
n , u−

s , u+
s , u−

t , u+
t , via (Figure 13.2)

v = Lu (13.1)

with

uT = (u−
n , u+

n , u−
s , u+

s , u−
t , u+

t ) (13.2)

and

L =




−1 +1 0 0 0 0

0 0 −1 +1 0 0

0 0 0 0 −1 +1


 (13.3)
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Interfaces and Discontinuities 429

Figure 13.1 Crack patterns for different discretisations using interface elements between all solid
elements. Only the part of the single-edge notched beam near the notch is shown (Tijssens et al. 2000)
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Figure 13.2 Planar interface element between two three-dimensional finite elements
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430 Non-linear Finite Element Analysis of Solids and Structures

an operator matrix. For each side of the interface element, the displacements contained in u
are interpolated in a standard manner, see Chapter 2, as

u = Ha

with a the nodal displacement array,

a = (
(a−

n )1, ..., (a−
n )n, (a−

s )1, ..., (a−
s )n, (a−

t )1, ..., (a−
t )n,

(a+
n )1, ..., (a+

n )n, (a+
s )1, ..., (a+

s )n, (a+
t )1, ..., (a+

t )n
)T

and

H =




h 0 0 0 0 0

0 h 0 0 0 0

0 0 h 0 0 0

0 0 0 h 0 0

0 0 0 0 h 0

0 0 0 0 0 h




(13.4)

with h a 1 × n matrix containing the shape functions h1, ..., hn. It is noted that some confusion
can arise from this notation, since the first subscript n relates to the normal direction, while the
second subscript n denotes the number of node pairs (one node at each side) of the interface
element. The relation between the nodal displacements and the relative displacements for
interface elements is now derived as:

v = LHa = Bda (13.5)

where the relative displacement–nodal displacement matrix Bd for the interface element reads:

Bd =




−h +h 0 0 0 0

0 0 −h +h 0 0

0 0 0 0 −h +h


 (13.6)

For an arbitrarily oriented interface element the matrix Bd subsequently has to be transformed
to the local coordinate system of the parent interface element.

Conventional interface elements have to be inserted in the finite element mesh at the begin-
ning of the computation, and therefore, a finite stiffness must be assigned in the pre-cracking
phase with at least the diagonal elements being non-zero. Prior to crack initiation, the stiffness
matrix in the interface element therefore reads:

Dd =




dn 0 0

0 ds 0

0 0 dt


 (13.7)

with dn the stiffness normal to the interface and ds and dt the tangential stiffnesses. With the
material tangential stiffness matrix Dd the element tangential stiffness matrix can be derived
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Interfaces and Discontinuities 431

in a straightforward fashion, leading to:

K =
∫

Sd

BT
d DdBddS (13.8)

where the integration domain extends over the surface of the interface Sd . With the aim of
numerical integration the integral of Equation (13.8) is replaced by an integral over the isopara-
metric coordinates ξ, η, cf. Equation (2.21) for the internal force vector of a continuum element.
Then, the element stiffness matrix becomes:

K =
∫ +1

−1

∫ +1

−1
(det J)BT

d DdBddξdη (13.9)

with J the Jacobian matrix. Numerical integration subsequently results in:

K =
ni∑

i=1

wi det Ji(BT
d )i(Dd)i(Bd)i (13.10)

with wi the weight factor of integration point i, and ni the number of integration points in the
interface element.

For comparison with other approaches and to elucidate the phenomenon of traction os-
cillations in numerically integrated interface elements we expand the stiffness matrix in the
pre-cracking phase as (Schellekens and de Borst 1993b):

K =




Kn 0 0

0 Ks 0

0 0 Kt


 (13.11)

with the submatrices Kπ, π = n, s, t defined as:

Kπ = dπ

[
hTh −hTh

−hTh hTh

]
(13.12)

with dπ the stiffnesses in the interface prior to crack initiation. For example, when using a
2 × 2 Gauss integration scheme for a linear, plane interface element with four node pairs and
a surface A, one obtains:

hTh = A

36




4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4


 (13.13)

A basic requirement of interface elements is that during the elastic stage of the loading
process no significant additional deformations occur due to the presence of these elements in
the finite element model. Therefore, sufficiently high initial stiffnesses dπ have to be supplied
for the interface elements. Depending on the applied numerical integration scheme, however,
this high dummy stiffness can result in undesired spurious oscillations of the stress field. The
off-diagonal coupling terms of the submatrix hTh that features in the stiffness matrix of the
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432 Non-linear Finite Element Analysis of Solids and Structures
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Figure 13.3 (a) Geometry of a symmetric, notched, three-point bending beam. (b) Traction profiles
ahead of the notch using linear interface elements with Gauss integration. Results are shown for different
values of a ‘dummy’ normal stiffness dn in the pre-cracking phase (Schellekens and de Borst 1993b)

interface elements, cf. Equation (13.12), can lead to spurious traction oscillations in the pre-
cracking phase for high stiffness values (Schellekens and de Borst 1993b). An example of an
oscillatory traction pattern ahead of a notch is given in Figure 13.3. When analysing dynamic
fracture, spurious wave reflections can occur as a result of the introduction of artificially high
stiffness values prior to the onset of delamination.

The traction oscillations shown in Figure 13.3 are typical when Gauss integration is used
for the numerical integration of the stiffness matrix and the internal force vector of interface
elements. More precisely, it is the combination of high traction gradients and a Gauss integration
scheme in interface elements which causes the oscillations. Experience shows that oscillations
disappear when Newton–Cotes integration or Lobatto integration – which is identical for
low-order schemes – is used instead. This can be shown rather easily for the linear, plane
interface element with four node pairs. Eigenvalue analyses show that the coupling between
the degrees of freedom present for Gauss integration then disappears. For interface elements
with a quadratic interpolation an improved behaviour is also observed, although this cannot
be explained readily from eigenvalue analyses (Schellekens and de Borst 1993b). To further
investigate the relatively good performance of Newton–Cotes integration in this case, the
submatrix hTh of a quadratic, plane interface element is elaborated as:

hTh = A

180




10 −10 5 −10 5 −10 5 −10

−10 40 −10 20 −10 20 −10 20

5 −10 10 −10 5 −10 5 −10

−10 20 −10 40 −10 20 −10 20

5 −10 5 −10 10 −10 5 −10

−10 20 −10 20 −10 40 −10 20

5 −10 5 −10 5 −10 10 −10

−10 20 −10 20 −10 20 −10 40




(13.14)
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Interfaces and Discontinuities 433

This submatrix is subsequently decomposed in a matrix which contains the contributions of
the integration points that coincide with the element nodes:

(
hTh

)
1 = A

180




5 0 0 0 0 0 0 0

0 20 0 0 0 0 0 0

0 0 5 0 0 0 0 0

0 0 0 20 0 0 0 0

0 0 0 0 5 0 0 0

0 0 0 0 0 20 0 0

0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 20




(13.15)

and a matrix that contains the contribution of the integration point located in the centre of the
element:

(
hTh

)
2 = A

180




5 −10 5 −10 5 −10 5 −10

−10 20 −10 20 −10 20 −10 20

5 −10 5 −10 5 −10 5 −10

−10 20 −10 20 −10 20 −10 20

5 −10 5 −10 5 −10 5 −10

−10 20 −10 20 −10 20 −10 20

5 −10 5 −10 5 −10 5 −10

−10 20 −10 20 −10 20 −10 20




(13.16)

which confirms that the coupling is entirely due to the contribution to the stiffness matrix of
the centre integration point. Evidently, the fact that only a single integration point causes a
coupling effect, significantly reduces the oscillations when compared with Gauss integration,
where all integration points contribute to this undesired phenomenon. The good performance
of the Newton–Cotes scheme in the case of two-dimensional, quadratic interface elements,
which is often observed, is also caused by the following property. The part of the B matrix that
stems from the centre integration point, and which relates nodal displacements normal to the
element to the normal relative displacements in the integration point is proportional to:

B∗ ∼




− 1
4

1
2 − 1

4
1
2 − 1

4
1
2 − 1

4
1
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


 (13.17)

The relation between the non-zero components in the B matrix is therefore such that when a
displacement field over an element has a gradient in either the ξ- or in the η-direction, the nodes
in the direction in which the displacement field varies do not have a resulting contribution to the
tractions and relative displacements in the central integration point. The tractions and relative
displacements in the central point of the element are only dependent on the nodal values of the
nodes which are located in the direction in which no gradient exists. In this special case the
element acts as if no coupling between the node pairs exists and no oscillations will occur.
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434 Non-linear Finite Element Analysis of Solids and Structures

As an alternative interface elements with lumped integration have been used frequently. In
this class of interface elements relative displacements at the n node pairs are used instead of
an interpolated relative displacement field in integration points. The element stiffness matrix
is now expanded as:

K =
ni∑

i=1

Ai(BT
d )i(Dd)i(Bd)i (13.18)

where the relative displacement–nodal displacement matrix (Bd)i for the interface element at
node set i reads:

(Bd)i =




−1 +1 0 0 0 0

0 0 −1 +1 0 0

0 0 0 0 −1 +1


 (13.19)

and Ai, is the surface that can be attributed to the node set i. Upon elaboration the submatrix
Kπ for a linear, plane interface element with four node pairs and a surface A now becomes:

Kπ = Adπ

4




1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

−1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0

0 0 −1 0 0 0 1 0

0 0 0 −1 0 0 0 1




(13.20)

Evidently, no coupling exists between the degrees of freedom of the different node pairs. It
is noted that interface elements with lumped integration are close to so-called nodal or point
interface elements (Ngo and Scordelis 1967), which can, in a mechanical sense, be interpreted
as interfaces that are connected by (non-linear) springs at the nodes.

As a further example of the use of interface elements to simulate fracture we consider the
cantilever beam of Figure 13.4. The beam is 7.5 mm long and 1 mm thick, and is perforated
across its entire length by holes with a diameter of 0.2 mm and a spacing of 0.375 mm. The
beam is loaded by two forces λf̂ as shown in the figure. The problem is discretised using 9688
six-noded triangles with a seven-point Gauss integration scheme. Plane-strain conditions have
been assumed, with linear elasticity prior to fracture with a Young’s modulus E = 100 N/mm2

and a Poisson’s ratio ν = 0.3. Because of symmetry with respect to the x-axis, it is assumed
that mode-I fracture takes place along this axis. This predefined interface is discretised using
161 six-noded interface elements with a three-point Newton–Cotes integration scheme. Prior to
cracking, a dummy stiffness dn = 1.0 × 104 N/mm3 has been adopted. The ultimate traction is
tult = 1 N/mm2, and a bilinear decohesion relation has been adopted with a fracture toughness
Gc = 2.5 × 10−3 N/mm.

The path-following method based on the energy release rate, Equation (4.32), has been
used at turning points in the load–displacement curve. However, since fracture propagation
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Interfaces and Discontinuities 435
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Figure 13.4 Geometry and loading conditions of a perforated cantilever beam

between two holes is followed by a traject without energy dissipation, this constraint cannot be
used throughout the simulation. A force control has been used initially. When the dissipation
increment exceeds a threshold value, the solver switches to the energy release constraint. When
the energy release constraint is active, the step size is adjusted by aiming for five Newton–
Raphson iterations per step (Verhoosel et al. 2009). The algorithm switches back to force
control when the dissipation increment falls below another threshold.

The part of the force–displacement curve that describes the fracture of the first four segments
is shown in Figure 13.5. The shaded area corresponds to half the amount of energy that is
dissipated during the complete fracture of a segment between two consecutive holes, which
equals the length of a segment times the fracture toughness: 0.175 · Gc = 4.375 × 10−4 N/mm.
The dashed lines A, B and C represent the elastic load–displacement curves for the cases where
the crack has propagated through one, two and three segments, respectively; see Figure 13.6
for a partially fractured beam.
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Figure 13.5 Load–displacement curve of the perforated cantilever beam

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



436 Non-linear Finite Element Analysis of Solids and Structures

Figure 13.6 Deformation of a perforated beam after 200 steps (scaled by a factor 5)

13.2 Discontinuous Galerkin Methods

Discontinuous Galerkin methods have classically been employed for the computation of fluid
flow (Cockburn 2004). More recently, attention has been given to their potential use in solid
mechanics, and especially for problems involving cracks (Mergheim et al. 2004), or for con-
stitutive models that incorporate spatial gradients (Wells et al. 2004). Finally, the use of a dis-
continuous Galerkin formalism can be a way to avoid traction oscillations in the pre-cracking
phase.

For a discussion on the application of spatially discontinuous Galerkin to fracture it suffices
to divide the domain into two subdomains, V− and V+, separated by an interface Sd . In a
standard manner, the balance of linear momentum (2.4) is multiplied by test functions δu, and
after application of the divergence theorem, we obtain:

∫
V/Sd

∇δu : σdV −
∫

Sd

δu+ · t+d dS −
∫

Sd

δu− · t−d dS =∫
V

δu · ρgdV +
∫

S

δu · tdS

(13.21)

where the surface (line) integral on the external boundary S has been explicitly separated from
that on the interface Sd . Note that restriction has been made to quasi-static loading conditions,
but this is not essential. Prior to crack initiation, continuity of displacements and tractions must
be enforced along Sd , at least in an approximate sense:

u+ − u− = 0

t+d + t−d = 0
(13.22)

with t+d = n+
Sd

· σ+ and t−d = n−
Sd

· σ−. Assuming small displacement gradients, we can set

nSd
= n+

Sd
= −n−

Sd
, so that the expressions for the interface tractions reduce to t+d = nSd

· σ+

and t−d = −nSd
· σ−.

A classical procedure to enforce conditions (13.22) is to use Lagrange multipliers. Then,

λ = t+d = −t−d (13.23)

along Sd , and Equation (13.21) transforms into:

∫
V/Sd

∇δu : σdV −
∫

Sd

(δu+ − δu−) · λdS =
∫

V

δu · ρgdV +
∫

S

δu · tdS (13.24)
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Interfaces and Discontinuities 437

augmented with: ∫
Sd

δλ · (u+ − u−)dS = 0 (13.25)

δλ being the test function for the Lagrange multiplier field λ. After discretisation, Equa-
tions (13.24) and (13.25) result in a set of algebraic equations that are of a standard mixed
format and therefore can give rise to difficulties. For this reason, alternative expressions are
often sought, in which λ is directly expressed in terms of the interface tractions t−d and t+d . One
such possibility is to enforce Equation (13.22) pointwise, so that Equation (13.23) is replaced
by:

λ = −td (13.26)

and one obtains:∫
V/Sd

∇δu : σdV −
∫

Sd

(δu+ − δu−) · tddS =
∫

V

δu · ρgdV +
∫

S

δu · tdS (13.27)

With the aid of relation (13.5) between the relative displacements v = u+ − u− and the nodal
displacements at both sides of the interface Sd , and the linearised interface traction–relative
displacement relation (6.74), the second term on the left-hand side can be elaborated in a
discrete format as: ∫

Sd

(δu+ − δu−) · tddS = δaT
(∫

Sd

BT
d DdBddS

)
a (13.28)

which, not surprisingly, has exactly the same format as obtained for a conventional inter-
face element. An example of a calculation using cohesive zones within the framework of a
discontinuous Galerkin method is given in Figure 13.7.

Another possibility for the replacement of λ by an explicit function of the tractions is to take
the average of the stresses at both sides of the interface:

λ = 1

2
nSd

· (σ+ + σ−) (13.29)

The surface integrals for the interface in Equation (13.24) can now be reworked as:∫
Sd

(δu+ − δu−) · λdS =
∫

Sd

1

2
(δu+ − δu−) · nSd

· (σ+ + σ−)dS (13.30)

To ensure a proper conditioning of the discretised equations, one has to add Equation (13.25),
so that the modified form of Equation (13.21) finally becomes:∫

V/Sd

∇δu : σdV −
∫

Sd

1

2
(δu+ − δu−) · nSd

· (σ+ + σ−)dS−

α

∫
Sd

1

2
(∇symδu+ + ∇symδu−) : De · nSd

· (u+ − u−)dS =∫
V/Sd

δu · ρgdS +
∫

S

δu · tdS

(13.31)
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438 Non-linear Finite Element Analysis of Solids and Structures

Figure 13.7 Three-dimensional simulations of crack propagation using a cohesive-zone model and a
discontinuous Galerkin method

To ensure symmetry, α = 1, but then a diffusionlike term,
∫
Sd

τ(δu+ − δu−) · (u+ − u−)dS

has to be added to ensure numerical stability (Nitsche 1970). The numerical parameter τ =
O(|k|/w), with |k| a suitable norm of the diffusionlike matrix that results from elaborating this
term and w a measure of the grid density. For the unsymmetric choice α = −1, addition of a
diffusionlike term may not be necessary (Baumann and Oden 1999).

With a standard interpolation on both V− and V+ and requiring that the resulting equations
hold for any admissible δa, we obtain the discrete format:

∫
V−

BTσdV +
∫

Sd

1

2
HTnT

Sd
(σ+ + σ−)dS − α

∫
Sd

1

2
BTDenT

Sd
(u+ − u−)dS =∫

V−
BTρgdV +

∫
S

HTtdS∫
V+

BTσdV −
∫

Sd

1

2
HTnT

Sd
(σ+ + σ−)dS − α

∫
Sd

1

2
BTDenT

Sd
(u+ − u−)dS =∫

V+
BTρgdS +

∫
S

HTtdS

(13.32)
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with nSd
written in a matrix form:

nT
Sd

=




nx 0 0 ny 0 nz

0 ny 0 nx ny 0

0 0 nz 0 nz nx


 (13.33)

where nx, ny, nz are the components of the vector nSd
. After linearisation, one obtains:

[
K−− K−+

K+− K++

](
da−

da+

)
=

(
fa−
ext − fa−

int

fa+
ext − fa+

int

)
(13.34)

with a+, a− arrays that contain the nodal values of the displacements at the minus and the plus
side of the interface, respectively, with fa−

ext, fa+
ext and fa−

int , fa+
int the right-hand and left-hand sides

of Equations (13.32), respectively, and the submatrices defined by:

K−− =
∫

V−
BTDeBdV + 1

2

∫
Sd

HTnT
Sd

DeBdS + 1

2
α

∫
Sd

BTDenSd
HdS

K−+ = 1

2

∫
Sd

HTnT
Sd

DeBdS − 1

2
α

∫
Sd

BTDenSd
HdS

K+− = 1

2
α

∫
Sd

BTDenSd
HdS − 1

2

∫
Sd

HTnT
Sd

DeBdS

K++ =
∫

V+
BTDeBdV − 1

2

∫
Sd

HTnT
Sd

DeBdS − 1

2
α

∫
Sd

BTDenSd
HdS

(13.35)
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14
Meshless and Partition-of-unity
Methods

The basic idea of the finite element method is to divide a body into a number of elements.
Within each element the primal variable, e.g. the displacement u(x), is interpolated according
to Equation (2.9). Outside the element the interpolant is defined to be strictly zero. Typically,
and this is advantageous for imposing essential boundary conditions, the shape functions are
defined such that they attain a unit value at the node to which they are attached, while they
are zero at all other nodes. The part of the body on which the interpolants are non-zero is
called the domain of influence or the support of a node. In the finite element method the
support of a node is compact, which leads to stiffness matrices with a narrow bandwidth. This
is advantageous for the Gauss elimination process, which can then be carried out efficiently.

While the finite element method is generally considered as the most versatile approximation
method for stress analysis, it suffers from certain drawbacks. First, there is the low accuracy
of finite elements when steep stress gradients have to be approximated. This is a drawback,
especially in linear elastic fracture mechanics, since the elasticity solution exhibits a singularity
at edges in the domain and at the tip of a crack. Evidently, the low-order polynomials that are
used in the finite element method cannot describe such a singularity accurately. Accordingly,
crack initiation is usually not well predicted when using standard finite elements. To ameliorate
this poor performance, modifications have been proposed, such as the use of quarter-point
elements (Barsoum 1976; Henshell and Shaw 1976). In these elements, the singularity enters
the interpolant as a consequence of a shift of the mid-side nodes to a quarter of the side.

For crack propagation there is the additional problem that, when a crack has been advanced
in the simulation, a new discretisation has to be set up because, essentially, the geometry
of the body has changed. This necessitates meshing of the new domain, where care should
be taken that a sufficiently fine mesh is applied around the crack tip. Sophisticated meshing
and remeshing algorithms have been developed, but problems persist, in particular for three-
dimensional problems, or when inelastic effects have to be taken into account. The transport of
state variables which is then necessary, tends to diffuse the solution and to cause a temporary
loss of satisfaction of the equilibrium equations.

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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442 Non-linear Finite Element Analysis of Solids and Structures

(a) (b)

Figure 14.1 Typical domains of influence in a numerical method with nodal connectivity (a) and a
meshless method (b). The domains of influence of the solid nodes are shaded

In view of the above limitations, discretisation methods have been sought that facilitate an
improved resolution in the presence of stress singularities for crack initiation and that obviate
the need for remeshing after crack propagation.

14.1 Meshless Methods

Meshless or meshfree methods do not require an explicitly defined connectivity between nodes
for the definition of the shape functions. Instead, each node has a domain of influence which
does not depend on the arrangement of the nodes. The domain of influence of a node is the part
of the domain over which the shape function of that specific node is non-zero. In finite element
methods the domain of influence is set by node connections, whereas in a meshless method the
domain of influence can have more arbitrary shapes. Figure 14.1 shows the domains of influence
of nodes for a (finite element) method that requires a nodal connectivity [Figure 14.1(a)] and
for a meshless method [Figure 14.1(b)]. A host of meshless methods have been proposed, e.g.
the element-free Galerkin method (Belytschko et al. 1994, 1996; Nayroles et al. 1992), the
material point method (Sulsky et al. 1994), the reproducing kernel particle method (Liu et al.
1995), hp-clouds (Duarte and Oden 1996), finite spheres (De and Bathe 2000), the finite point
method (Onate et al. 1996), and the natural neighbour Galerkin method (Sukumar et al. 2001;
Yvonnet et al. 2004; Chinesta et al. 2010). Atluri and Zhu (1998, 2000) have developed a
meshless method departing from a Petrov–Galerkin approach, in which the shape functions
and the test functions are chosen from different spaces. The partition-of-unity method (Babuška
and Melenk 1997; Melenk and Babuška 1996) was originally considered as a meshless method,
but has opened ways to reconsider finite element methods, see Section 14.2.

14.1.1 The Element-free Galerkin Method

In the element-free Galerkin method shape functions are formulated by applying a moving
least squares approximation (Lancaster and Salkauskas 1981). The approximation function for
a node, u(x), is restricted to its domain of influence and is expressed as the inner product of a
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Meshless and Partition-of-unity Methods 443

vector p(x) and a vector a(x),

u(x) = pT(x)a(x) (14.1)

in which p(x) contains basis terms that are functions of the coordinates x. Normally, monomials
such as 1, x, y, z, x2, xy, . . . are chosen, although also more sophisticated functions can be
taken. The array a(x) contains the coefficients of the basis terms. In a moving least squares
interpolation each node k is assigned a weight function wk which renders the coefficients
non-uniform. These weight functions appear in the sum Jmls as:

Jmls =
n∑

k=1

wk(x)
(
pT(xk)a(x) − uk

)2
(14.2)

with uk the value of u(x) at node k, and Jmls has to be minimised with respect to a(x). Typical
choices for the weight functions are Gauss distributions or splines, whereby the domain of
influence may take the shape of a disc (sphere) or rectangle (brick) in two (three) dimensions.
Elaboration of the stationarity requirement of Jmls with respect to a(x) gives:

∂Jmls

∂a(x)
=

n∑
k=1

wk(x)
[
2p(xk)pT(xk)a(x) − 2p(xk)uk

] = 0 (14.3)

Thus, a(x) can be obtained as

a(x) = A−1(x)C(x)u (14.4)

where u contains all uk, and

A(x) =
n∑

k=1

wk(x)p(xk)pT(xk) (14.5a)

C(x) = [
w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)

]
(14.5b)

Equation (14.4) is substituted into Equation (14.1), which leads to:

u(x) = pT(x)A−1(x)C(x)︸ ︷︷ ︸
H(x)

u (14.6)

and the matrix H(x) that contains the shape functions can be identified as:

H(x) = pT(x)A−1(x)C(x) (14.7)

Shape functions which are generated in this manner, are usually not of a polynomial form,
even though p(x) contains only polynomial terms. When moving least squares shape functions
are used, the weight functions that are attached to each node determine the degree of continuity
of the interpolants and the extent of the support of the node. A high degree of continuity can
thus be achieved, and steep stress gradients can be captured accurately, which is beneficial for
the proper prediction of crack initiation. The fact that the extent of the support is determined by
the weight function wk stands in contrast to the finite element method. Consequently, there are
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444 Non-linear Finite Element Analysis of Solids and Structures

Box 14.1 Algorithm to compute shape functions in the element-free Galerkin method

Loop on integration points, counter i:
Set A(xi) and B(xi) equal to zero
Loop on nodes, counter k:

Extract size of support dk for node k

Compute s = ||xk − xi||:
If s ≤ dk:

Compute wk(s)
Evaluate p(xk)
Compute contributions to A(xi), B(xi)

End if
Evaluate p(xi)
Compute H(xi) = pT(xi)A−1(xi)B(xi)

End loop
End loop

no elements needed to define the support of a node. A mesh is not necessary and approximation
methods based on moving least squares functions therefore belong to the class of meshless
or meshfree methods. The support of one node normally includes several other nodes and is
therefore less compact than with finite element methods, and leads to a larger bandwidth of
the system of equations.

Specific routines must be programmed for the construction of the shape functions in an
element-free Galerkin method. As with the calculation of finite element shape functions, dis-
tinction must be made between the reference point of the shape function, i.e. the node, and the
point at which the shape function is evaluated, usually an integration point. Herein, the index
k will be used to denote a node, and the index i will denote an integration point. A generic
algorithm to compute the shape functions within an element-free Galerkin method is given in
Box 14.1, see also Krysl and Belytschko (2001). Similar to routines for the construction of fi-
nite element shape functions, the algorithm is ‘integration point’ based. Within a finite element
method it is known a priori which nodes have non-zero shape functions at an integration point.
This facilitates storage, and efficient programming can be done on an element-by-element ba-
sis. In a meshless method the situation is different, and an efficient manner to store the shape
functions is less straightforward.

The shape functions that arise in the element-free Galerkin approach are not interpolating,
and the nodal parameters uk contained in the array u in Equation (14.4) are not the nodal
values of the approximant function u(x). Therefore, the imposition of essential boundary
conditions, constraint equations and point loads is not trivial. A range of methods have been
proposed in the literature, such as modified collocation methods (Atluri and Zhu 1999; Chen
and Wang 2000; Wagner and Liu 2000; Wu and Plesha 2002), where the nodal parameter
uk is expressed in terms of the value of the approximant function at the node u(xk), the
weak imposition of essential boundary conditions via additional integrals in the Galerkin
formulation, Lagrange multipliers (Belytschko et al. 1994; Wu and Plesha 2002), the use
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Figure 14.2 Shape functions that arise in the element-free Galerkin method. (a) A monomial base
vector with d/h = 2 (solid line), d/h = 3 (dashed line), and d/h = 4 (dash-dotted line). (b) A quadratic
monomial base vector with d/h = 3 (solid line), d/h = 4 (dashed line), and d/h = 5 (dash-dotted line)

of a modified variational principle in which the Lagrange multipliers are replaced by the
tractions on the boundary (Lu et al. 1994), penalty formulations (Gavete et al. 2000), and
the augmented Lagrangian approach (Ventura 2002), which eliminates the shortcomings of
Lagrange multipliers and penalty functions, while preserving their respective advantages.

A common expression for circular domains of influence is the exponential weight func-
tion (Belytschko et al. 1994; Krysl and Belytschko 1999)

wk(s) =
exp

(
− s2

α2

)
− exp

(
− 1

α2

)
1 − exp

(
− 1

α2

) (14.8)

with s = ||x − xk||/d ≤ 1, and with α the relative weights inside the domain of influence. In
Figure 14.2 the effects of the size of the domain of influence d relative to the nodal spacing
h are given for base vectors p(x) that contain up to linear and up to quadratic monomials,
respectively. Figure 14.2(a) gives the shape functions for a base vector p(x) = (1, x)T, for
which dmin/h = 1, and Figure 14.2(b) is for p(x) = (1, x, x2)T, where dmin/h = 2. Small
values of d/h result in shape functions that are very similar to finite element shape functions,
and are almost interpolating. Evidently, the differences between the shape functions that stem
from a linear and from a quadratic base vector become smaller for larger values of d/h.

Clearly, the size of the support of a node relative to the nodal spacing determines the proper-
ties of a meshfree method, and largely influences the quality and the efficiency of the resolution.
When the support is made equal to the nodal spacing, shape functions obtained in meshfree
methods can become identical to finite element shape functions, thus showing that meshfree
methods encompass finite element methods. On the other hand, a larger support leads to shape
functions in meshfree methods that can be similar to higher-order polynomials, even if the
base vector p(x) contains only constant and linear terms. When the weight function extends
to infinity, the moving least squares approximation degenerates to the classical least squares
approximation. The optimal choice is an intermediate size of the domain of influence, so that
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446 Non-linear Finite Element Analysis of Solids and Structures

the shape functions are richer than finite element shape functions, but more spatial variation is
permitted compared with classical least squares approximations. When such a more compact
support is used within a Galerkin formulation, a smaller bandwidth of the stiffness matrix is
obtained. A classical least squares approach would lead to a full stiffness matrix.

Since the shape functions in meshless methods can be rational functions, they normally
cannot be integrated analytically. In the first studies, a background cell structure was used,
whereby in each cell Gauss integration was applied (Belytschko et al. 1994), which is the most
widely used integration method in applications of the element-free Galerkin method. Two key
considerations are the size of the integration cells, and the number of integration points per
cell. Obviously, these issues are related to the number of nodes used. At least conceptually,
the integration cell structure violates the original idea of a meshless method. Therefore, alter-
native integration methods have been studied, such as nodal integration methods (Beissel and
Belytschko 1996; Chen et al. 2001) and Gauss integration methods that avoid the need for an
underlying cell structure by employing the support of the node as the integration domain (Atluri
and Zhu 1998, 2000). The latter class of methods has been denoted as truly meshless, since no
mesh is needed for the formulation of the shape functions or for the evalution of the integrals.
However, the constraints that are imposed on the background mesh of cells with integration
points are much less strict than those on a finite element mesh. For instance, compatibility is not
needed. Therefore, the differences between a truly meshless method and a meshless method
that uses a grid of integration cells are perhaps smaller than they may seem at first sight.

The numerical integration scheme that is to be preferred largely depends on the application.
When the element-free Galerkin method is chosen to benefit from the high continuity of its
shape functions, then Gauss integration seems to be the most robust and flexible option. When
the meshing of complicated, three-dimensional structures is to be avoided, the shape functions
of a meshless method can still be integrated by means of Gauss quadrature, since the only
constraint put on the integration cells is that they cover the whole domain. By contrast, when
propagating discontinuities are to be modelled, the subdivision of integration cells can become
a cumbersome task, and nodal integration can offer more flexibility.

14.1.2 Application to Fracture

Discontinuous shape functions for use in fracture mechanics applications can be obtained in
a straightforward manner by truncating the appropriate weight functions. Implicitly, the same
procedure is applied as for nodes close to the boundary of the domain: the part of the domain
of influence that falls outside the computational domain is simply not taken into account in the
integration.

A different situation arises when the crack does not pass completely through a domain of
influence, so that the crack tip lies inside the support. Figure 14.3 illustrates three different
procedures on how to truncate the domain of influence in the case of intersection by a crack,
see also Fleming et al. (1997). In the visibility criterion the connectivity between an integration
point and a node is taken into account if and only if a line can be drawn that is not intersected
by a non-convex boundary. The resulting shape functions are not only discontinuous over the
crack path, but also over the line that connects the node and crack tip. Although convergent
results can be obtained, the presence of discontinuities in the shape functions beyond the crack
path is less desirable. As an alternative, it has been suggested to redefine the weight function.
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Meshless and Partition-of-unity Methods 447

(a) (b) (c)

Figure 14.3 Domains of influence intersected by a crack or the crack tip: truncation of the weight
function according to the visibility criterion (a), the diffraction criterion (b) and the see-through criterion
(c) – the shaded areas denote the neglected part of the domain of influence

For instance, the line that connects the node and integration point can be wrapped around the
crack tip, in a similar way to light diffracting around sharp edges – hence the name diffraction
criterion – or, the visibility criterion can be adapted such that some transparency is assigned
to the part of the crack close to the crack tip. In either way, shape functions are obtained that
are smooth and continuous for the part of the domain not intersected by the crack. In the see-
through or continuous path criterion, truncation of the weight function only occurs when the
domain of influence is completely intersected by the crack path. In this manner, the effect of
the crack propagation is delayed, and inaccuracies have been reported (Fleming et al. 1997).

Another issue is the spatial resolution around the crack path and the crack tip. For linear
elastic fracture mechanics applications, the shape functions should properly capture the r−1/2–
stress singularity near the crack tip in order to accurately compute the stress intensity factors.
Apart from a nodal densification around the crack tip, this can be achieved by locally enriching
the base vector p through the addition of the set

ψ = (√
r cos(θ/2) ,

√
r sin(θ/2) ,

√
r sin(θ/2) sin(θ) ,

√
r cos(θ/2) sin(θ)

)T (14.9)

with r the distance from the crack tip and θ is measured from the current direction of crack
propagation (Fleming et al. 1997). Alternatively, these functions can be added to the sum of
Equation (14.2). This is possible by virtue of the fact that, similar to conventional finite element
shape functions, shape functions obtained from a moving least squares approximation satisfy
the partition-of-unity property, an issue which we will return to in the next section.

As an example of a meshfree simulation of crack propagation using linear elastic fracture
mechanics, dynamic crack extension in a three-dimensional cube is considered (Krysl and
Belytschko 1999). A penny-shaped crack is initially present, which extends internally in the
cube. When the crack reaches the free surfaces of the cube, a full separation of the cube
takes place. In Figure 14.4 the development of the crack is plotted for eight successive stages.
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448 Non-linear Finite Element Analysis of Solids and Structures

Figure 14.4 Cube with an initial penny-shape crack: propagation of the crack towards the free surfaces
of the specimen (Krysl and Belytschko 1999)

It shows the ability of meshfree methods to describe not only cracks as line segments, but also
as faces in three-dimensional analyses.

14.1.3 Higher-order Damage Mechanics

The high degree of continuity that is incorporated in meshfree methods makes them ideally
suited for localisation and failure analyses that adopt higher-order continuum models. Also,
the flexibility is increased compared with conventional finite element methods, since there
is no direct connectivity, which makes placing additional nodes in regions with high strain
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Figure 14.5 (a) Three-point bending beam and node distribution (for half of the symmetric beam).
(b) Load–displacement curves for three-point bending beam. Comparison between the second-order
implicit gradient damage model (dashed line) and the fourth-order implicit gradient damage model (solid
line) (Askes et al. 2000)

gradients particularly simple. An example is offered in Figure 14.5 for a fourth-order gradient
damage model, in which the non-local equivalent strain ε̄ follows from the solution of the
partial differential equation:

ε̄ − c1∇2ε̄ − c2∇4ε̄ = ε̃ (14.10)

where ∇4 is a short-hand notation for ∂4

∂x4 + ∂4

∂x2∂y2 + ∂4

∂y4 , and c1 and c2 are material parameters.
Equation (14.10) is assumed to hold on the entire domain. Evidently, even after order reduction
by partial integration, C1-continuous shape functions are necesary for the interpolation of the
non-local strain ε̄, with all the computational inconveniences that come with it when finite
elements are employed. Here, meshfree methods offer a distinct advantage, since they can be
easily constructed such that they incorporateC∞-continuous shape functions. In Figure 14.5 the
element-free Galerkin method has been used to solve the damage evolution that is described
by the fourth-order gradient scalar damage model of Equations (6.12), (6.16), (6.147) and
(14.10) to predict the damage evolution in a three-point bending beam (Askes et al. 2000). In
both cases, a quadratic convergence behaviour of the Newton–Raphson iterative method was
obtained when using a properly linearised tangent stiffness matrix. The differences between
the fourth-order and the second-order (c2 = 0) gradient damage models appear to be minor,
an issue which we will come back to in the next chapter.

We finally remark that the larger connectivity that is inherent in meshless methods tends
to diffuse and broaden bands of localised deformations. However, as explained in Chapter 6
it would be incorrect to conclude that meshless methods have a regularising influence. In-
deed, Pamin et al. (2003) have shown that meshless methods exhibit the same mesh depen-
dence as finite element methods when strain softening is introduced in constitutive models
without regularisation (Figure 6.9).
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450 Non-linear Finite Element Analysis of Solids and Structures
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Figure 14.6 Load–displacement curves for a plane-strain cantilever beam

14.1.4 Volumetric Locking

It has been shown in Chapters 7 and 11 that low-order displacement based finite elements
exhibit volumetric locking, i.e. an overstiff response is obtained for incompressible or, in the
case of plasticity, also for dilatant/contractant material behaviour. An overly stiff behaviour
also occurs in linear elastic planar problems where bending is dominant (shear locking), and in
shells, where the difference in the order of approximation of the transverse and the membrane
strains can lead to membrane locking, see Chapters 9 and 10. In Belytschko et al. (1994) and
Krysl and Belytschko (1996) it has been shown that the higher-order shape functions of the
element-free Galerkin method make it possible for shear locking and membrane locking to be
avoided in elasticity, while Askes et al. (1999) and Dolbow and Belytschko (1999) have shown
that this favourable property also holds for volumetric locking in incompressible elasticity
and elasto-plasticity. Later, this property was investigated in greater detail by, among others,
González et al. (2004) and Huerta and Fernández-Méndez (2001).

As a first example we take the plane-strain cantilever beam of Figure 14.6, which has been
used by Belytschko et al. (1994) to demonstrate that the element-free Galerkin method can
avoid shear locking. In Askes et al. (1999) the same beam has been used in an elasto-plastic
analysis to show that volumetric locking can be avoided as well. Incompressibility was enforced
both in the elastic regime (with Poisson’s ratio ν = 0.4999) and in the elasto-plastic regime,
where a von Mises associated plasticity model was used. Two different discretisations were
used, a coarse one with 5 nodes over the height and 20 nodes along the beam, and a finer
discretisation with 10 × 40 nodes. Background meshes of 10 × 40 and 20 × 40 integration
cells have been used for the coarser and for the finer discretisation, respectively. For the coarser
mesh the effect of the size of the support has been studied, and analyses have been carried out for
d/h ≈ 1.8 and for d/h ≈ 3.6. A clear limit load is obtained for the larger support (d/h ≈ 3.6).
Its correctness has been verified by the analysis with the finer discretisation and by a finite
element analysis with a mesh of 5 × 40 quadratic triangles in a crossed configuration (resulting
in 800 quadratic triangles). The analysis with the coarse discretisation and the smaller support
also shows an overstiff behaviour in the elastic regime, which is mainly due to shear locking.

A second example concerns the elasto-plastic analysis of a infinite strip that is pushed into a
half-space (Figure 14.7) (Askes et al. 1999). With a Poisson’s ratio of ν = 0.49 and a von Mises
plasticity model with an associated flow rule (nearly) incompressible conditions are present
in the elastic and in the elasto-plastic regime. The half-space has been modelled using 17 × 9
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Figure 14.7 Load–displacement curves for a strip foundation on an elasto-plastic, cohesive soil

nodes and 64 × 32 integration cells. For a smaller support (d/h = 1.5) volumetric locking
is observed again, which disappeared for a larger domain of influence (d/h = 3), where a
clear limit load was found that is within the bounds of the analytical solution. A computation
with a mesh of 2048 quadratic triangular elements in a crossed configuration confirmed the
correctness of the limit load.

14.2 Partition-of-unity Approaches

A unifying approach to discretisation methods that accommodates crack initiation and crack
propagation is enabled by the partition-of-unity concept (Babuška and Melenk 1997; Melenk
and Babuška 1996). A collection of functions hk, associated with node k, form a partition of
unity if

n∑
k=1

hk(x) = 1 (14.11)

with n the number of discrete nodal points. For a set of shape functions hk that satisfy the
partition-of-unity property, a field u can be interpolated as follows:

u(x) =
n∑

k=1

hk(x)

(
āk +

m∑
l=1

ψl(x)âkl

)
(14.12)

with āk the ‘regular’ nodal degrees of freedom, ψl(x) the enhanced basis terms, and âkl the
additional degrees of freedom at node k, which represent the amplitudes of the l-th enhanced
basis term ψl(x). A basic requirement of the enhanced basis terms ψl is that they are linearly
independent, mutually, but also with respect to the set of functions hk. For completeness, we
note that this requirement also holds for the enrichment functions that were used in meshless
methods to account for the singularities in linear-elastic fracture mechanics, Equation (14.9).
This is because the basis functions used in meshless methods also form a partition of unity.

In conventional finite element notation we thus interpolate a displacement field as:

u = H(ā + �â) (14.13)

where H contains the standard shape functions, and � the enhanced basis terms. The arrays
ā and â collect the standard and the additional nodal degrees of freedom, respectively. A dis-
placement field that contains a single discontinuity can be represented by choosing (Belytschko
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452 Non-linear Finite Element Analysis of Solids and Structures

Enhanced node

Regular node

V
+

V
−

Figure 14.8 Two-dimensional finite element mesh with a discontinuity denoted by the bold line. The
grey elements contain additional terms in the stiffness matrix and the internal force vector.

and Black 1999; Hansbo and Hansbo 2004; Moës et al. 1999; Wells and Sluys 2001):

� = HSd
I (14.14)

with HSd
the Heaviside function, which separates the V−-domain from the V+-domain

(Figure 14.8). Substitution into Equation (14.13) gives:

u = Hā︸︷︷︸
ū

+HSd
Hâ︸︷︷︸

û

(14.15)

Identifying the continuous fields ū = Hā and û = Hâ we observe that Equation (14.15) ex-
actly describes a displacement field that is crossed by a single discontinuity, but is otherwise
continuous. Accordingly, the partition-of-unity property of finite element shape functions can
be used in a straightforward fashion to incorporate discontinuities in a continuum such that
their discontinuous character is preserved.

We take the balance of momentum, Equation (2.4), as point of departure, so that, neglecting
inertia and body forces, we have:

∇ · σ = 0

We multiply this identity by test functions δu, and take them from the same space as the trial
functions for u:

δu = δū + HSd
δû (14.16)

Applying the divergence theorem and requiring that this identity holds for arbitrary δū and δû
yields the following set of coupled equations:∫

V

∇(δū) : σdV =
∫

S

δū · tdS (14.17a)

∫
V+

∇(δû) : σdV +
∫

Sd

δû · tddS =
∫

S

HSd
δû · tdS (14.17b)
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Meshless and Partition-of-unity Methods 453

where in the volume integrals the Heaviside function has been eliminated by a change of the
integration domain from V to V+. Interpolating the trial and the test functions in the same
space, {

ū = Hā , û = Hâ

δū = Hδā , δû = Hδâ
(14.18)

and requiring that the resulting equations must hold for any admissible δā and δâ, we obtain
the discrete format: ∫

V

BTσdV =
∫

S

HTtdS (14.19a)

∫
V+

BTσdV +
∫

Sd

HTtddS =
∫

S

HSd
HTtdS (14.19b)

After linearisation, the following matrix-vector equation is obtained:[
Kāā Kāâ

KT
āâ Kââ

] (
dā

dâ

)
=

(
f ā
ext − f ā

int

f â
ext − f â

int

)
(14.20)

with f ā
int, f â

int given by the left-hand sides of Equations (14.19), with f ā
ext, f â

ext given by the
right-hand sides of Equations (14.19), and

Kāā =
∫

V

BTDBdV

Kāâ =
∫

V+
BTDBdV (14.21)

Kââ =
∫

V+
BTDBdV +

∫
Sd

HTDdHdS

If the material tangential stiffness matrices of the bulk and the interface, D and Dd , respectively,
are symmetric, the total tangential stiffness matrix remains symmetric. It is emphasised that in
this concept, the additional degrees of freedom cannot be condensed at element level, if one
wishes to represent a discontinuity that it is continuous at interelement boundaries.

When the discontinuity coincides with a side of the element, the formulation of Chapter 13
for interface elements is retrieved. For this, we expand the term in Kââ which relates to the
discontinuity as:

∫
Sd

HTDdHdSd =


 Kn 0 0

0 Ks 0

0 0 Kt


 (14.22)

with Kπ = dπhTh (Simone 2004), which closely resembles Equations (13.11) and (13.12).
Defining the sum of the nodal displacements ā and â as primary variable a on the + side of the
interface and setting a = ā on the – side and rearranging then leads to the standard interface
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454 Non-linear Finite Element Analysis of Solids and Structures

formulation. However, even though formally the matrices can coincide for the partition-of-
unity based method and the conventional interface formulation, the former does not share
the disadvantages of traction oscillations and spurious wave reflections prior to the onset of
decohesion, simply because the partition-of-unity concept permits the placement of cohesive
surfaces in the mesh only at onset of decohesion, thereby by-passing the whole problem of
having to assign a high (dummy) stiffness to the interface prior to crack initiation.

We next consider a structured mesh, composed of four-noded elements, shown in Figure 14.8.
In the finite element model, the nodes with a support that is crossed by a discontinuity are en-
hanced. These are marked by filled circles. The other nodes, denoted by open circles, remain
unchanged. Since only the nodes of elements that are crossed by the discontinuity have ad-
ditional degrees of freedom â, the total number of degrees of freedom of the system is just
marginally higher than without a discontinuity. When an element is supported by one or more
enhanced nodes, the additional terms will emerge in the stiffness matrix and the force vector,
Equation (14.19). The elements that contain a discontinuity will also be augmented with the
surface integrals for the cohesive behaviour.

The integrals in the equilibrium equations, Equations (14.19) are integrated numerically,
e.g. using Newton–Cotes or Gauss integration. A requirement for the use of a Gauss scheme
is that the field is continuous and smooth. In the present case, the stress field in the elements
that are crossed by a discontinuity is only piecewise continuous. Although the accuracy will
increase when more sampling points are used, the result of the numerical procedure will not be
exact, and many integration points are needed to obtain good accuracy. Since the stress field
is continuous and smooth on either side of a discontinuity within an element, and since the
position of the discontinuity is known, the terms in the equilibrium equation can be integrated in
parts. The element is divided into a number of triangular or quadrilateral subelements, which
are integrated in a standard manner, e.g. using a Gauss integration scheme (Figure 14.9).
The integration of the contributions due to the discontinuity at Sd in Equations (14.19) is
straightforward. For instance, for a two-dimensional situation, the discontinuity is represented
by a straight line and is integrated using a one or two-point Gauss integration scheme.

(a) (b)

Figure 14.9 Numerical integration of quadrilateral elements crossed by a discontinuity (bold line). (a)
The sample points are denoted by a +. (a) The element is split into a sub element with five vertices and
one with three vertices. The first part is triangulated into five areas, denoted by the dashed lines. Each of
these areas is integrated using a standard one-point integration scheme. (b) The element is split into two
quadrilateral sub elements. Each of these parts can be integrated with a standard 2 × 2 Gauss integration
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Meshless and Partition-of-unity Methods 455

Figure 14.10 An element is crossed by a discontinuity near one of the nodes

The introduction of the enhanced basis terms deteriorates the condition of the stiffness
matrix. In particular when the discontinuity crosses an element in the vicinity of a node
(Figure 14.10), the contributions of the various terms in the stiffness matrix will have dif-
ferent magnitudes, which can lead to a stiffness matrix that is less well-conditioned. This
problem can be ameliorated by only enhancing a node when it has a significant contribution
to the stiffness matrix. Therefore, when the discontinuity splits an element such that a part of
the element is much smaller than the other part, the node that supports the smallest part is not
enhanced if (Wells and Sluys 2001):

min(V+, V−)

V
< ε (14.23)

with ε a tolerance. Evidently, this will affect the computational results, but for reasonable
values of ε, e.g. ε ≈ 0.05, numerical experience shows that these effects are small.

14.2.1 Application to Fracture

An important advantage of the partition-of-unity approach is the possibility to extend a crack
during a calculation, unbiased by the original discretisation (Figure 14.8). This provides an
increased flexibility compared with the use of classical (predefined) interface elements. More-
over, as noted before, it eliminates the necessity to use dummy stiffnesses prior to crack
initiation, since the enhanced degrees of freedom are generated only upon crack propagation,
i.e. in the course of the computation.

Two approaches to crack initiation and crack propagation can be followed. In linear elastic
fracture mechanics singular terms arise. As in the element-free Galerkin approach, the partition-
of-unity property of the shape functions allows for the addition of functions at the crack tip that
capture the stress singularity, Equation (14.9). For the description of this singular field a second
set of enhanced nodes is necessary in addition to the enhancement of the nodes in the wake
of the crack tip, that support a traction-free discontinuity (Belytschko and Black 1999; Moës
et al. 1999). In this model, the exact moment of crack extension is important, and therefore,
a stress criterion must be used that is based on the full singular stress field around the crack
tip. Along this line of reasoning the precise location of the crack tip is also of importance.
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456 Non-linear Finite Element Analysis of Solids and Structures

(a)

(b)

Figure 14.11 (a) Geometry of a block that contains a stationary, kinked crack. (b) Nodes enhanced
with jump functions (squares), or with crack-tip functions (circles)

To enable the use for relatively coarse discretisations it is therefore necessary to be able to
advance the crack tip to any position within an element. This can be achieved using a level set
function to track the exact location of the crack tip (Gravouil et al. 2002), which, however, is
at the expense of the solution of an additional problem.

To illustrate the potential of the method for linear elastic fracture mechanics problems, we
consider a block that contains a stationary, kinked crack (Figure 14.11) (Askes et al. 2003).
When utilising linear elastic fracture mechanics, the nodes for which the support is crossed
by a crack are enhanced with a Heaviside function and those for which the support contains a
crack tip are enhanced by near-tip terms as in Equation (14.9), similar to the procedure used
in meshfree methods, see also Figure 14.11. The problem has been analysed with a relatively
coarse mesh with a uniform element size, and with a finer, reference mesh, with the crack
explicitly built in the mesh and refined around the crack tip. The bottom edge of the block is
restrained and a uniformly distributed load p is applied to the top edge. The deformed meshes
that result from the computations are shown in Figure 14.12, which also gives the contours of
the normal stress in the y-direction. The general form of the contour plot is the same for both
computations. The resolution of the contours for the enhanced mesh is smaller, since stresses
have been post-processed at nodal points only. This has a smoothing effect, with the stress
singularity obvious only when the crack tip lies close to an element node.

The use of linear elastic fracture mechanics suffers from a certain overhead in the compu-
tational costs, because it requires the temporary enhancement of nodes to accommodate the
singular terms in the stress field in addition to the enhancement needed to describe the dis-
continuity, and is less general since it cannot accommodate non-linear behaviour of the bulk
material. A more general approach is to use cohesive zone models (Chapter 6). When applying
the partition-of-unity approach to cohesive crack propagation the discontinuity is normally
extended across an element, such that the tip touches the boundary of the next element (Wells
and Sluys 2001). In order to enforce a zero displacement jump at the tip, the nodes which
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Meshless and Partition-of-unity Methods 457

(a) (b) (c) (d)

Figure 14.12 Deformed configurations for enhanced mesh (a) and reference mesh with explicit
discontinuity (b), and contour plots of σyy for enhanced (c) and reference mesh with explicit
discontinuity (d)

support this boundary are not enhanced (Figure 14.13). Since, in the cohesive approach, the
stress field is non-singular at the crack tip, there is no need to enhance the nodes around the
crack tip with terms that accommodate the r−1/2–stress singularity, and standard polynomial
shape functions suffice. Nevertheless, Karihaloo and Xiao (2010), Moës and Belytschko (2002)
and Xiao and Karihaloo (2006) have augmented the displacement field near cohesive cracks
in order to improve the stress prediction. This can be beneficial for properly determining the
direction of crack propagation. Indeed, in the cohesive approach the onset of crack initiation is
less critical, as crack propagation is governed by the fracture energy Gc. Crack initiation that is
slightly too early, or slightly too late, will be corrected during propagation. A wrong estimate
of the direction of crack propagation, however, is not corrected in later stages of the fracture
process. In Wells and Sluys (2001) it has been assumed that the crack is extended when the
major principal stress exceeds the tensile strength, with a crack propagation direction that is

(a) (b)

Figure 14.13 Extension of a discontinuity. (a) When the stress in the sample point that is denoted by
⊗ exceeds the threshold value, the crack is extended into the next element. (b) The hashed nodes and
elements have been enhanced. The nodes that support the current crack tip are not enhanced in order to
enforce a zero opening at the crack tip
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458 Non-linear Finite Element Analysis of Solids and Structures

normal to the corresponding principal axis. To improve the stress that is used in the criteria for
crack initiation and for the direction of crack propagation, the stress at the tip is computed as
the weighted sum of the stresses in the neighbouring integration points:

σtip =
∑ni

i=1 σi exp

(
− r2

i

2�2
e

)
∑ni

i=1 exp

(
− r2

i

2�2
e

) (14.24)

where ni is the total number of integration points in the domain, σi the stress in integration
point i, ri the distance between integration point i and the crack tip, and �e a parameter
with the dimension of length which determines the decay of the influence of an integration
point. In Wells and Sluys (2001) �e has been taken to be approximately equal to three times
a characteristic element size h. With this modification the stress that is used in the criterion
for crack initation is usually smaller than the actual tip stress. As a result, the crack can be
extended slightly too late.

Using the interpolation of Equation (14.15) the relative displacement at the discontinuity Sd

is obtained as:

v = û |x∈Sd
(14.25)

When using a cohesive zone model, the tractions td at the discontinuity Sd can directly be
derived from Equation (6.46).

The objectivity of computations with respect to mesh refinement is now demonstrated for a
three-point bending beam of unit thickness. The beam is loaded quasi-statically by means of
an imposed displacement at the centre of the beam on the top edge. The geometric and material
data can be found in Wells and Sluys (2001). Figure 14.14 shows the crack after propagation

3

55

P

Figure 14.14 Crack path at the final stage of loading for the coarse mesh (523 elements) and the fine
mesh (850 elements) (Wells and Sluys 2001)
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Figure 14.15 Load–displacement diagrams for the analysis of the symmetrically loaded beam using
two meshes (Wells and Sluys 2001)

throughout the beam. Two meshes are shown, one with 523 elements and the other with 850
elements. Clearly, in both cases the crack propagates from the centre at the bottom of the
beam in a straight line towards the loading point, and is not influenced by the mesh structure.
The load–displacement responses of Figure 14.15 confirm objectivity with respect to mesh
refinement. From the curve for the coarser mesh the energy dissipation is calculated as 0.308 J,
which only slightly exceeds the fracture energy multiplied by the depth and the thickness of the
beam (0.3 J). Some small irregularities are observed in the load–displacement curve, especially
for the coarser mesh. These are caused by the fact that in this implementation a cohesive zone
is inserted entirely in an element when the tensile strength has been exceeded.

The requirement that the crack path is not biased by the direction of the mesh lines is
normally even more demanding than the requirement of objectivity with respect to mesh
refinement. Figure 14.16 shows that the approach also fully satisfies this requirement, since
the numerically predicted crack path of the single-edge notched beam of Figure 6.13 is in
excellent agreement with experimental observations.

Figure 14.16 Crack path that results from the analysis of the single-edge notched beam using the
partition-of-unity method (Wells and Sluys 2001)
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460 Non-linear Finite Element Analysis of Solids and Structures

In the above examples, growth of a single, continuous cohesive crack was simulated.
Crack propagation in heterogeneous materials, but also fast crack growth in more homo-
geneous materials are often characterised by the nucleation of microcracks at several lo-
cations, which can grow, branch and eventually link up to form macroscopically observ-
able cracks. To accommodate this observation, the concept of cohesive segments has been
proposed in Remmers et al. (2003a, 2008). Exploiting the partition-of-unity property of
finite element shape functions, crack segments equipped with a cohesive law are placed
over a patch of elements when a loading criterion is met at an integration point. Since
the cohesive segments can grow and eventually coalesce, they can also simulate a single,
dominant crack.

The partition-of-unity approach to cohesive fracture has a number of advantages over in-
terface elements. The cohesive surface can be placed as a discontinuity anywhere in the
model, irrespective of the structure of the underlying finite element mesh. Moreover, it is
possible to extend a cohesive surface during the simulation by adding additional degrees of
freedom. This avoids the use of high dummy stiffnesses to model a perfect bond prior to
cracking and prevents numerical problems such as stress oscillations (Chapter 13), or spuri-
ous stress wave reflections in structural dynamics. Since degrees of freedom are only added
when a cohesive surface is extended, the additional number of degrees of freedom remains
limited.

14.2.2 Extension to Large Deformations

The partition-of-unity approach to model crack propagation can be extended to large deforma-
tions in an elegant manner that naturally fits within standard continuum mechanics concepts.
As point of departure we take the balance of momentum in the current configuration, transform
it to a weak format, substitute the trial and test functions in the form of (14.15) and (14.16),
and require that the resulting identity holds for all test functions δū and δû. This results in
Equations (14.17).

In this derivation Equation (1.75) has been used, and the product of the normal vector n and
the Cauchy stress tensor σ has been replaced by the stress vector t. At the (external) boundary
S of the body B the normal is defined unambiguously, also for large displacements. This is not
so for the internal boundary, where the original surface Sd,0 is split into two distinct surfaces,
S−

d and S+
d , with different normals, n−

d and n+
d , respectively (Figure 14.17). Noting that for

the position vector we can write:

x = ξ + ū + HSd,0 û (14.26)

whereHSd,0 is the Heaviside function centred at the discontinuity Sd,0, the deformation gradient
can be derived as:

F = I + ∂ū
∂ξ

+ HSd,0

∂û
∂ξ

+ δSd,0 û ⊗ nd,0 (14.27)
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Figure 14.17 An interface length associated with an integration point in the reference and the current
configurations. The solid dot represents the integration point

with δSd,0 the Dirac function centred at Sd,0. The deformation gradient on the − side denoted
by F− and that on the + side denoted by F+, therefore read:{

F− = I + ∂ū
∂ξ

F+ = I + ∂ū
∂ξ

+ ∂û
∂ξ

(14.28)

Using Nanson’s formula, Equation(11.5), the normal on the − side and that on the + side, n−
d

n+
d , respectively, can now be related to that in the original configuration nd,0, as follows:


n−

d = det(F−)nd,0 · (F−)−1 dSd,0

dS−
d

n+
d = det(F+)nd,0 · (F+)−1 dSd,0

dS+
d

(14.29)

In a cohesive zone model it is not trivial to relate cohesive forces on surfaces with different
normals. For this reason Wells et al. (2002) have assumed that they work on an intermediate
surface S∗

d (Figure 14.17), with a normal n∗
d defined as an average of n−

d and n+
d :

n∗
d = det(F∗)nd,0 · (F∗)−1 dSd,0

dS∗
d

(14.30)

where {
dS∗

d = 1
2 (dS−

d + dS+
d )

F∗ = 1
2

(
F− + F+) (14.31)

We now take the Eulerian finite element formulation outlined in Chapter 12 as point of
departure, and we employ the version in which the Truesdell rate of the Cauchy stress tensor
is used. The rationale for preferring the Cauchy stress is that for a proper prediction of delam-
ination and crack growth this stress enters the crack initiation criterion. Also, different from
isochoric plasticity, it cannot be replaced by the Kirchhoff stress, since we now cannot exploit
the incompressibility property which makes det F ≈ 1. Partitioning as in Equation (14.19) we
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462 Non-linear Finite Element Analysis of Solids and Structures

obtain the following set of linearised equations:

[
Kāā Kāâ

Kâā Kââ

] (
dā

dâ

)
=

(
f ā
ext − f ā

int

f â
ext − f â

int

)
(14.32)

with external force vectors

{
f ā
ext = ∫

S
HTtdS

f â
ext = ∫

S
HSd

HTtdS
(14.33)

the internal force vectors

{
f ā
int = ∫

V
BTσdV

f â
int = ∫

V+ BTσdV + ∫
Sd

HTtddS
(14.34)

and the tangential stiffness submatrices, cf. Equation (12.28):

Kāā =
∫

V

BTDTCBdV +
∫

V

GTSGdV

Kāâ =
∫

V+
BTDTCBdV +

∫
V+

GTSGdV (14.35)

Kâā =
∫

V+
BTDTCBdV +

∫
V+

GTSGdV +
∫

Sd

HTGdS

Kââ =
∫

V+
BTDTCBdV +

∫
V+

GTSGdV + 1

2

∫
Sd

HTGdS

with the matrices B, G and S given by Equations (12.4), (12.15) and (12.23), respectively,

H =




h1 0 0 . . . 0 0 0

0 h1 0 . . . 0 0 0

0 0 h1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . hn 0 0

0 0 0 . . . 0 hn 0

0 0 0 . . . 0 0 hn




(14.36)
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Meshless and Partition-of-unity Methods 463

and

T =




tx ty tz 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 tx ty tz 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 tx ty tz

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(14.37)

containing the shape functions hk and the nominal stresses tx, ty and tz, respectively. The third
contribution to the tangential submatrices Kâā and Kââ stems from the consistent linearisation
of the traction at the discontinuity Sd (Wells et al. 2002). Attention is drawn to the factor 1

2
which arises because of the definition of n∗

d , Equation (14.30). The third term in Kâā causes
the tangential stiffness matrix to be non-symmetric. However, numerical experience indicates
that the effect of the non-symmetric terms on the convergence speed of the Newton–Raphson
method is usually not significant (Wells et al. 2002).

To test the geometrically non-linear model a double-cantilever beam, shown in Figure 14.18,
is analysed. The beam consists of two layers of the same material. The dashed line in
Figure 14.18 shows the interface between the two layers. The parameter a is the initial delami-
nation length (a = 1 mm), where the interface is assumed to be traction-free. The following
material properties have been adopted: Young’s modulus E = 100 MPa and Poisson’s ratio
ν = 0.3 for the continuum and at the interface a tensile strength ft = 1 MPa and fracture
energy Gc = 0.05 N/mm have been adopted.

To test the objectivity of the model with respect to spatial discretisation, the peel test is
analysed using two different, unstructured meshes. The first mesh consists of 781 elements,
and the second mesh is composed of 2896 elements. The deformed configurations for both
discretisations are shown for a displacement u = 6 mm in Figure 14.19. Please note that the
actual strains are small, since the majority of the deformation concerns the crack opening at the
discontinuity. The load–displacement responses for the two meshes are shown in Figure 14.20.

2 h

P

P

l

a

Figure 14.18 Peel test geometry for a two-layer laminate. The dashed line is the interlaminar boundary
and the initial delamination length is denoted by a
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464 Non-linear Finite Element Analysis of Solids and Structures

(a) (b)

Figure 14.19 Peel test in the deformed configuration at different displacements with (a) 781 elements
and (b) 2896 elements. The deformations are not magnified (Wells et al. 2002)

The roughness of the response for the coarser mesh is due to the extension of a discontinuity
through an entire element and the ‘jumping’ of inelastic deformation from integration point
to integration point. Nevertheless, a properly converged solution was obtained for all load
increments. The stress ahead of the delamination tip is complex, and has a high gradient. As
the mesh is refined, the response becomes smoother. Although the response is rough for the
coarse mesh, the response generally follows the response for the finer mesh, indicating that
the computed result is not dependent on the spatial discretisation.

Next, a combination of delamination growth and structural instability is considered (Allix
and Corigliano 1999; Remmers et al. 2003b; Wells et al. 2002). The double cantilever beam
in Figure 14.21 has an initial delamination length of a0 = 10 mm and is subjected to an axial
compressive load 2P . Two small forces, denoted by P0, are applied to trigger the buckling
mode. Both layers are made of the same material with a Young’s modulus E = 135 GPa and
a Poisson’s ratio ν = 0.18. Due to symmetry in the geometry of the model and in the applied

0

0.04

0.08

0.12

0.16

0 1 2 3 4 5 6

781 elements
2896 elements

P (N)

(mm)u

Figure 14.20 Load–displacement response for the peel test with progressive delamination (Wells et al.
2002)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Meshless and Partition-of-unity Methods 465

P0

P0, u

l = 20mm

a0 = 10mm

b = 1 mm

P

P

h = 0.2mm

Figure 14.21 Geometry of a double cantilever beam with initial delamination a0 under compression

loading, delamination propagation can be modelled with an exponential mode-I decohesion
law. The tensile strength ft is equal to 50 N/mm2, and the fracture energy is Gc = 0.8 N/mm.
The finite element mesh is composed of eight-noded enhanced solid-like shell elements
(Figure 14.22) (Remmers et al. 2003b). It consists of just one element in the thickness di-
rection, but is locally refined to capture delamination growth correctly. Figure 14.22 shows the
lateral displacement u of the beam as a function of the external force P . The load–displacement
response for a specimen with perfect bond (no delamination growth) is given as a reference.

14.2.3 Dynamic Fracture

In Chapter 5 the basic solution algorithms for non-linear dynamics have been laid out. We will
now apply the partition-of-unity approach to dynamic fracture. The acceleration can then be
found by differentiating the displacement field, Equation (14.15), twice with respect to time:

ü = ¨̄u + HSd
¨̂u (14.38)

Inserting this expression into the equation of motion, Equation (2.4), multiplying by the cor-
responding test functions, Equation (14.16), integrating over the domain V , applying the

0

0.5

1

1.5

2

2.5

3

(a) (b)

0 1 2 3 4 5 6

Perfect bond

Debonding (Gc = 0.8)

u (mm)

P
(
N

)

Figure 14.22 Delamination buckling test. (a) Tip displacement as a function of the applied axial load
P . (b) Deformation in final state (Remmers et al. 2003b)
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466 Non-linear Finite Element Analysis of Solids and Structures

x

y

2 W

2 L

traction-free discontinuity

Figure 14.23 Geometry and loading condition of the block with a traction-free discontinuity

divergence theorem, discretising according to Equation (14.18), and requiring that the re-
sult holds for all admissible δā and δâ results in the semi-discrete set of balance of momentum
equations: [

Māā Māâ

Māâ Mââ

] (
d¨̄a

d¨̂a

)
=

(
f ā
ext − f ā

int

f â
ext − f â

int

)
(14.39)

where the internal force vectors, f ā
int and f â

int and the external force vectors, f ā
ext and f â

ext, follow
from Equation (14.19), as for the quasi-static simulation, and the mass matrices are given by:

Māā =
∫

V

ρHTHdV

Māâ = Mââ =
∫

V+
ρHTHdV (14.40)

For fast crack propagation, explicit time integration schemes are often preferred. To fully
exploit their efficiency, they are normally used in conjuction with a lumped mass matrix,
see Chapter 5. The off-diagonal submatrix Māâ contains terms that couple the regular and
the additional degrees of freedom. By lumping the mass matrix, this information is lost. The
effects of this loss of information have been assessed for the block of Figure 14.23 (Remmers
et al. 2008), which has been used in Chapter 5 to demonstrate the explicit solver.

For the present purpose the block is divided into two parts by means of a horizontal crack
at y = 0, which crosses the entire width of the specimen (Figure 14.23). In the finite element
analysis, the crack is represented as traction-free by exploiting the partition-of-unity property of
the shape functions. In the simulations, the stress wave that carries the tensile stress of 25 MPa
propagates from the top of the specimen, and reaches the discontinuity after t ≈ 2 µs. Since the
crack acts as a traction-free (internal) boundary, the wave reflects at y = 0 and subsequently
travels back to the top. Obviously, the stresses in the lower part of the specimen should remain
zero throughout the simulation.

Figure 14.24 shows the values of σyy along the vertical centre line of the specimen for a
consistent mass matrix and for a lumped mass matrix when the stress wave has been reflected by
the traction-free crack. The simulations are compared with a benchmark calculation in which
the slit is modelled by disconnecting adjacent elements. The simulation with the consistent
mass matrix shows an excellent agreement with the benchmark simulation [Figure 14.24(a)].
The stress wave is properly reflected and, more importantly, the lower part of the specimen
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(a) (b)

Figure 14.24 σyy as a function of y along the centre line of the specimen at t = 3 µs. (a) Consistent
mass matrix. (b) Lumped mass matrix. The traction-free crack (dotted line) is modelled using a Heaviside
function

remains stress free. This is not so for a lumped mass matrix [Figure 14.24(b)]. A considerable
amount of the energy is transferred across the crack, which results in a stress wave in the lower
part of the specimen, and a very high stress of over 42 MPa in the integration points just below
the discontinuity.

The simulations have been repeated with a different jump function. Instead of the Heaviside
function a symmetric jump function is used, H− = −1 and H+ = +1. The corresponding
traction profiles are shown in Figure 14.25. The spurious stress wave reflections in the simula-
tions with the lumped mass matrix representation have disappeared [Figure 14.25(b)] and the
stresses in the lower part of the specimen remain zero.

benchmark

cohesive segments

discontinuity discontinuity
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Figure 14.25 σyy as a function of y along the centre line of the specimen at t = 3 µs. (a) Consistent mass
matrix. (b) Lumped mass matrix. The traction-free crack (dotted line) is modelled using a symmetric
jump function
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468 Non-linear Finite Element Analysis of Solids and Structures

hle

le

Figure 14.26 Artificial deflection of a crack which would otherwise cross a supporting node within a
distance h�e. The dashed line denotes the original position of the discontinuity

The use of an explicit time integration scheme has another consequence. When an element
is crossed by a discontinuity, the two parts can be considered as individual elements, each
with a smaller effective length �e than the original element. An element can be crossed by
a discontinuity in such a way that one of the two resulting parts of the element becomes so
small that the critical time step for a stable solution procedure will almost become zero, cf.
Chapter 5. To avoid this situation, a discontinuity is not allowed to cross an element boundary
when the distance to a node is less than h�e, with h an offset factor (Figure 14.26). Although
the position, and therefore the further crack extension, is slightly modified, the deflection turns
out to be minimal for small values of the offset factor, e.g. h ≈ 0.1, typically in the order of a
few degrees only. Because of the nearly linear relation between the critical time step and the
distance between the discontinuity, the stability requirement can now be expanded as:


t = α
h�e

cd

(14.41)

where α < 1. In the above calculations α = 0.1.

14.2.4 Weak Discontinuities

While discontinuities like cracks involve a jump in the displacement, other physical phenom-
ena exist for which the displacements at the discontinuity remain continuous, but for which
the displacement gradient experiences a finite jump. Typical examples are solid–solid phase
boundaries, e.g. between martensite and austenite, or between blades in twinned martensite
[Figure 14.27(a)] (Bhattacharya 2003). In such cases, the interface conditions are characterised
by:

[[∇u]] = c ⊗ nd (14.42)

with c a non-zero vector. Instead of taking the Heaviside function HSd
at the discontinuity Sd

as the enhanced basis function ψl, the distance function DSd
is substituted for ψl (Belytschko

et al. 2001). This function is continuous at the discontinuity Sd , but its normal derivative is
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F1
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F2 1
E

2E

σ

discontinuity

(a) (b)

Figure 14.27 (a) Twinning in martensite as an example of a solid–solid phase boundary. (b) Plate under
uniaxial tension with different stiffness moduli

discontinuous and equal to HSd
:

nSd
· ∇DSd

= HSd
(14.43)

thus meeting condition (14.42). The enhanced displacement field is subsequently obtained by
substituting ψl = DSd

into Equation (14.13), so that:

u = Hā︸︷︷︸
ū

+DSd
Hâ︸︷︷︸

û

(14.44)

A simple example of a weak discontinuity is given in Figure 14.27(b), which shows a plate
subjected to a uniaxial stress. Because of the different values of Young’s modulus on the left
and the right parts of the plate, there will be a discontinuity in the displacement gradient. In
standard finite element analysis this discontinuity is captured by letting it coincide with the
boundaries of C0-continuous finite elements. However, the enhanced displacement interpola-
tion of Equation (14.44) can capture this weak discontinuity in an exact manner without the
need to align the boundaries of finite elements with the discontinuity. Indeed, this concept
can be taken further to the limiting case that one of the Young’s moduli vanishes. Then, the
boundary of a structure can be modelled without the need to align finite element boundaries
with the structure boundaries. This advantage can be exploited to model complex geometries
and microstructures while avoiding the need to carry out a complicated meshing operation,
e.g. Moës et al. (2003), where the complex geometry of a woven composite has been modelled
in three dimensions using the partition-of-unity approach.

While the example of Figure 14.27 is simple and can be solved using a standard interpolation,
this is not so for evolving discontinuities as solid–solid phase boundaries. Level sets (Gravouil
et al. 2002; Hou et al. 1999; Osher and Paragios 2003) are the most common approach to track
the propagating discontinuities. The idea is that the position of the discontinuity Sd coincides
with the zero level set of a smooth, scalar-valued function f ,

Sd = {x ∈ V : f (x, t) = 0} (14.45)
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470 Non-linear Finite Element Analysis of Solids and Structures

The distance function of Equation (14.43) can be chosen as a level set function: f = DSd
, and

its evolution is then governed by the Hamilton–Jacobi equation:

ḊSd
(x, t) + vn‖∇DSd

(x, t)‖ = 0 (14.46)

with vn the normal component of the propagation velocity of the discontinuity Sd . This equation
needs to be solved for every time step, and its solution gives the position of the discontinuity,
see Valance et al. (2008) for a finite element implementation. Subsequently, the enhanced
displacement interpolation of Equation (14.44) can be used to carry out the stress analysis on
a fixed grid.
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15
Isogeometric Finite Element
Analysis

Finite element methods are nowadays used for the analysis of (engineering) structures of
tremendous complexity. The difficulties associated with transforming complex design models
into analysis models has led to the development of an innovative design-through-analysis
concept (Cottrell et al. 2009). Isogeometric analysis was proposed by Hughes et al. (2005) as
a novel analysis strategy that integrates computer aided geometric design and finite element
analyses, and thereby rigorously eliminates the difficulties in creating suitable analysis models
for complex designs.

The fundamental idea of isogeometric analysis is to directly use the design model for analysis
purposes, thereby by-passing the need for geometry clean-up or meshing operations. The
current industry standard in design is based on non-uniform rational B-splines (NURBS), a
technology that has superseded the earlier developments in B-splines. In recent years, T-splines
have been introduced to overcome some deficiencies in the analysis of NURBS. Whereas
B-splines, NURBS and T-splines form a hierarchy of design-oriented spline technologies,
alternative techniques such as subdivision surfaces have their own merits and can be preferred
for specific applications. However, for engineering design, B-splines, NURBS and T-splines
are the dominant technology. For this reason we restrict ourselves to these spline technologies
in the remainder of this chapter.

15.1 Basis Functions in Computer Aided Geometric Design

As we have seen in Chapter 2 the parametrisation of the geometry is a fundamental aspect
of finite element methods. In finite elements it is customary to employ C0-continuous basis
functions to parametrise the geometry, see Equation (2.24), and isoparametric elements, where
the same basis functions are used for the geometry parametrisation and for the trial and test
spaces, are predominantly present in analyses.

Historically, the research in geometry parametrisation is attributed to the field of computer
aided geometric design. Although the requirements that derive from design differ from those

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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474 Non-linear Finite Element Analysis of Solids and Structures

for analysis, the conceptual idea of many geometry parametrisation methods employed in
computer aided geometric design resembles that of finite element analysis. In both fields, the
geometry is parametrised by a linear combination of N global basis functions:

x(ξ) =
N∑

k=1

hk(ξ)pk (15.1)

with the basis function hk : V̂ → V mapping a coordinate ξ in the parameter domain V̂ , which
has the dimension dp, onto a coordinate in the physical domain V , with dimension ds. The
coefficients assembled in pk are referred to as control points. For notational convenience we
re-express Equation (15.1) using matrix-vector notation as:

x(ξ) = PTh(ξ) (15.2)

with

P =


pT

1
...

pT
N

 h =


h1

...

hN

 (15.3)

with P a N × ds matrix. The matrix-vector product of Equation (15.2) implies that the physical
coordinate x and the vectors that contain the control points pk are defined as column vectors.
The control points play a role that is similar to the nodes in finite element simulations, see
Equation (2.24). The structured collection of control points is referred to as the control net,
which can be interpreted as the equivalent of the mesh in finite elements.

It is noted that a distinction is made between the dimension ds of the physical domain, and
the dimension dp of the parameter domain. For many problems this distinction is not necessary,
since the dimensions of the parameter domain and physical domain coincide. However, there
are problems for which both dimensions differ, the most important class for which this holds
being thin-walled structures such as beams, shells and plates, see Chapters 9 and 10. In order
to avoid confusion, we exclusively use the term ‘dimension’ in relation to the physical domain.
For the parameter domain, we will use the terminology univariate for one ‘dimension’, bivariate
for two ‘dimensions’ and trivariate for three ‘dimensions’.

15.1.1 Univariate B-splines

The fundamental building block of isogeometric analysis is the univariate B-spline (Cottrell
et al. 2009; Rogers 2001). A univariate B-spline is a parametrised curve, according to Equa-
tion (15.1), with piecewise polynomial basis functions {hk,p(ξ)}Nk=1, with N and p denoting
the number and order of global basis functions, respectively. The basis functions are defined
over a knot vector � = {

ξ1, ξ2, . . . , ξN+p+1
}

. The knot values ξk are non-decreasing with
increasing knot index k, i.e. ξ1 ≤ ξ2 ≤ . . . ≤ ξN+p+1. Consequently, the knots divide the pa-
rameter domain V̂ = [

ξ1, ξN+p+1
]

in knot intervals of non-negative length. In the remainder
of this chapter we will restrict the discussion to open B-splines, the class of B-splines which is
created using knot vectors in which the first and the last knot values are repeated p + 1 times,
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Isogeometric Finite Element Analysis 475

Box 15.1 Univariate B-spline

The third-order B-spline basis functions constructed over the knot vector � =
{0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4} are shown in the left-hand figure below. Since the first
and last knot values are repeated p + 1 times, this is an open B-spline. Although the internal
knot values are equally spaced, their repetition makes this B-spline non-uniform. Using this
basis, a B-spline (the smooth curve in the right-hand figure) can be constructed using the
(non-smooth) control net.
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see also Box 15.1. Open B-splines are called uniform when based on a knot vector with equally
distributed knots, so that �e = ξk+1 − ξk is a constant for k = p + 1, . . . , N. Otherwise, we
speak of a non-uniform B-spline. For a univariate B-spline, the elements are defined as the
knot intervals of positive length. See the next section for a more detailed discussion on the
element definition for splines. The number of elements is ne.

The B-spline basis {hk,p(ξ)}Nk=1 is defined recursively, starting with piecewise constant
(p = 0) functions:

hk,0(ξ) =
{

1 ξk ≤ ξ < ξk+1

0 otherwise
(15.4)

from which the higher-order (p = 1, 2, . . .) basis functions follow from the Cox–de Boor
recursion formula (Cox 1972; de Boor 1972):

hk,p(ξ) = ξ − ξk

ξk+p − ξk

hk,p−1(ξ) + ξk+p+1 − ξ

ξk+p+1 − ξk+1
hk+1,p−1(ξ) (15.5)

Efficient and robust algorithms have been developed for the evaluation of these basis functions
and their derivatives (Piegl and Tiller 1997). The definition of the linear B-spline basis functions
(p = 1) results in the first-order Lagrange elements. As a result, first-order B-splines are
identical to standard linear finite elements. C0-continuous B-splines, that is splines for which all
the internal knots have a multiplicity p, span the same space as p-order Lagrange polynomials.
Accordingly, they share many characteristics with standard finite elements. However, B-spline
basis functions possess some properties which differ fundamentally from those of Lagrange
elements commonly used in finite element formulations. They are listed in the following, where
it is emphasised that we restrict our discussion to open B-splines.
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476 Non-linear Finite Element Analysis of Solids and Structures

15.1.1.1 Non-negativity

All spline basis functions are non-negative over the whole parameter domain V̂ :

hk,p(ξ) ≥ 0 (15.6)

with p ≥ 0. This is an advantage when constructing lumped mass matrices in (explicit) dynamic
analysis, as the resulting entries in these matrices are positive by definition, and hence the
matrices are positive definite (Cottrell et al. 2009). Accordingly, the possible occurrence of
non-positive lumped mass matrices encountered in some lumping schemes for higher-order
Lagrange elements is completely avoided, see Chapter 5 and references therein.

15.1.1.2 Support

By virtue of the recursive definition of the basis functions, the support of each basis function
increases with increasing spline order:

V̂A = (ξA, ξA+p+1) (15.7)

with A ∈ {1, . . . , N}. We also refer to this domain as the local basis function domain. The
number of basis functions which have a support over each knot interval, and thus over each
element, equals p + 1. In this sense, univariate B-splines do not differ from Lagrange elements.
Since the dimensions of the element matrices, and thus, the bandwidth of the global matrix,
depend on the number of basis functions supported per element, this is an important similarity.

15.1.1.3 Continuity

By virtue of the construction of the basis functions, the continuity of the piecewise polynomial
basis functions is reduced at the element intersections. Obviously, the zero-order functions
are discontinuous. In the case of an increasing internal knot vector – ξp+1 < ξp+2 < . . . <

ξN+1 – the shape functions are (p − 1)-times continuously differentiable: hk(ξ) ∈ Cp−1. The
continuity of splines is controlled by the knot multiplicities. If a knot value is repeated m

times, the continuity of the basis functions at that coordinate is Cp−m. Open B-splines are
therefore C−1, or discontinuous, at the domain boundaries. From an analysis perspective this
is a prerequisite as the interpolatory basis functions at the boundaries are suitable for the
application of essential boundary conditions.

15.1.1.4 Partition-of-unity Property

Univariate B-spline basis functions satisfy the partition-of-unity property:

N∑
k=1

hk,p(ξ) = 1 (15.8)

for open B-splines. This property is a consequence of the repeated boundary knot values, and,
from the vantage of analysis, is required to permit affine transformations of the B-spline.
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x
2.51.50.5-0.5-1.5-2.5

1

0

Figure 15.1 Interpolation of discontinuous data (squares) by a fifth-order B-spline (solid line) and a
fifth-order Lagrange polynomial (dashed line). The oscillatory behaviour of the Lagrange interpolation
is absent in the B-spline interpolation

15.1.1.5 Variation Diminishing Property

B-splines are variation diminishing in the neighbourhood of discontinuous data (Farin 1993).
Most importantly, the Gibbs effect observed with Lagrange elements is not present. This
property is illustrated in Figure 15.1, and generally results in more stable discretisations,
particularly in the presence of sharp gradients.

15.1.1.6 Refinement

B-splines can be refined in various ways. First, the number of basis functions can be increased
by inserting additional knots in the knot vector. Adding a single knot increases the number
of basis functions by one. As this effectively subdivides an element, at least in the case that a
unique knot is inserted, the process of knot insertion is closely related to h-refinement in finite
elements. A second refinement strategy is provided by first increasing the multiplicity of all
existing knots and subsequently increasing the polynomial order by one. In this way, a basis
function is added for each element. This refinement strategy, referred to as order elevation, is
closely related to p-refinement.

Knot insertion and order elevation are hierarchical refinement schemes. That is, each original
basis function can be represented by a linear combination of refined basis functions. In addition,
isogeometric analysis provides a third ‘refinement’ strategy, referred to as k-refinement, which
does not create a nested sequence of spaces. In this strategy, an increase of the spline order is
followed by the insertion of knots. This scheme adds fewer basis functions than order elevation.
In contrast to p-refinement the continuity, or smoothness, of the basis functions is affected by
this strategy. In fact, the continuity (using pure k-refinement) is increased by an order from
Cp−1 to Cp, with p the order of the original spline.

Efficient and robust algorithms exist for performing the various refinement operations. These
algorithms compute the control points corresponding to the refined basis. In the case of knot
insertion and order elevation, the newly computed control point positions yield exactly the
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478 Non-linear Finite Element Analysis of Solids and Structures

same parametrisation of the geometry as the unrefined B-spline. In the case of k-refinement,
this is generally not possible, and some approximation needs to be made.

15.1.2 Univariate NURBS

A drawback of B-splines is their inability to exactly represent a number of objects that are
of engineering interest, for instance, conic sections (Box 15.2). For this reason, NURBS,
which are a rational generalisation of B-splines, have superseded B-splines in computer aided
geometric design, and have become the industry standard. NURBS parametrise geometric
objects according to Equation (15.1), with basis functions:

rk(ξ) = hk(ξ)Wk

w(ξ)
(15.9)

where w(ξ) = ∑N
k=1 hk(ξ)Wk is the weighting function. Defining a NURBS requires the con-

trol net {pk}Nk=1 to be supplemented with a set of scalar control point weights, {Wk}Nk=1. Sin-
gularities in the rational basis functions are avoided by requiring all control point weight to
be positive, which we will adhere to in the remainder of the chapter. In the special case that
Wk = c, where c is an arbitrary positive real number, the NURBS basis reduces to the B-spline
basis. NURBS share the properties of B-splines discussed in the previous section. Note that
for the sake of notational convenience we will omit the order of the basis function. The basis
function hk,p(ξ) will therefore simply be denoted as hk(ξ), and the order will be clear from the
context.

15.1.3 Multivariate B-splines and NURBS Patches

Multivariate B-splines are created by means of a tensor product structure. Surfaces and
volumes constructed in this way using the parametric map, Equation (15.1), are referred
to as bivariate and trivariate patches, respectively. The required bivariate basis functions
defined over the parameter domain V̂ ⊂ R2 with parametric coordinate ξ = (ξ, η) are
given by:

ha(ξ) = hk(ξ)hl(η) (15.10)

with a = (l − 1)N2 + k and univariate B-spline basis functions hk(ξ) and hl(η) defined over
the knot vectors �ξ and �η, respectively. Note that we distinguish the bivariate basis functions,
{ha(ξ)}Na=1, from the univariate functions {hk(ξ)}N1

k=1 and {hl(η)}N2
l=1, by means of its argument,

which is a scalar in the latter case, and a vector in the former case. By extension, the trivariate
basis functions defined over the parameter domain V̂ ⊂ R3 with parametric coordinate ξ =
(ξ, η, ζ) are

ha(ξ) = hk(ξ)hl(η)hm(ζ) (15.11)

with a = (m − 1)N1N2 + (l − 1)N2 + k, and univariate B-spline basis function hm(ζ) defined
over the knot vector �ζ .

Supplemented with a control net, {pk}Nk=1, the mapping of Equation (15.1) can be used
to parametrise a wide range of surfaces and volumes by bivariate and trivariate splines,
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Isogeometric Finite Element Analysis 479

Box 15.2 Quarter circle and quarter hemisphere

A quarter of a circle with radius R can be represented exactly by defining a second-
order NURBS over the knot vector � = {0, 0, 0, 1, 1, 1} with control points P =
{(R, 0), (R, R), (0, R)} and corresponding weights w = {1, 1

2

√
2, 1}. The exact NURBS

representation is shown in the left-hand figure below by the solid curve. The approximate
B-spline representation is shown for comparison, and is represented by the dashed curve.

The quarter hemisphere shown in the right-hand figure below is exactly parametrised
by a bivariate second-order NURBS patch with knot vectors �ξ = {0, 0, 0, 1, 1, 1}
and �η = {0, 0, 0, 1, 1, 1}, control net {(R, 0, 0), (R, R, 0), (0, R, 0), (R, 0, R), (R, R, R),
(0, R, R), (0, 0, R), (0, 0, R), (0, 0, R)}, and control point weights {1, 1

2

√
2, 1, 1

2

√
2,

1
2 , 1

2

√
2, 1, 1

2

√
2, 1}. Note that at x = (0, 0, R) three control points coincide.

respectively. Together with control point weights, the NURBS functions can then be con-
structed as:

rk(ξ) = hk(ξ)Wk

w(ξ)
(15.12)

which, except for its vector argument, equals the univariate definition in Equation (15.9).
By virtue of the tensor product structure of NURBS patches, the parameter domain is a

square, or a cube in three dimensions. Although the physical domain can attain significant
geometric complexity by the parametric map of Equation (15.1), the objects that can be de-
scribed by a single patch need to be topologically equivalent to a square or a cube. Geometric
objects topologically different from squares or cubes, including many engineering designs,
can be represented by an assembly of multiple NURBS patches. Morever, the use of multiple
NURBS patches has other advantages, the most important the ability to perform local refine-
ments. Local refinement is not possible in a single patch due to the tensor product structure,
but can be achieved by combining multiple patches, as illustrated in Figure 15.2.

There is, however, a disadvantage to combining multiple NURBS patches. If two NURBS
patches – and, by induction, multiple patches – are conforming, so that the parametrisation
of the connecting boundaries matches, a C0-continuous connection can easily be established
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480 Non-linear Finite Element Analysis of Solids and Structures

(a) (b)

Figure 15.2 Single-patch (a) vs multi-patch (b) refinement. The thick lines indicate patch boundaries.
In the single-patch case, the refinements applied to the upper-left quadrant propagate into the adjacent
quadrants, whereas in the multi-patch case the refinement remains local

by putting linear constraints on the boundary control points. In the simplest case, two control
points can be merged. Higher-order continuity requirements across patch boundaries can be
established similarly, but the required implementation can be cumbersome, and the range of
possibilities is limited. When parametrisations mismatch, the possibilities for obtaining the re-
quired level of smoothness over patch boundaries are limited. In fact, the difficulties associated
with merging multiple NURBS patches have been identified as one of the major challenges
in computer aided geometric design (Kasik et al. 2005). Fixing tools are commonly used in
computer aided geometric design software to reduce the mismatch in boundary compatibility.
However, the problems associated with this deficiency of NURBS patches are more fundamen-
tal for analysis, and cannot be fixed heuristically. For example, a gap between two NURBS
patches can be reduced by refinement of the patches, such that it is no longer visible to the
naked eye. Such a fix can be sufficient in design, but is not good enough for analysis as it fails
to resolve the fundamental compatibility problem, and consequently, such a NURBS mesh is
unsuitable for analysis purposes.

15.1.4 T-splines

The difficulties associated with the tensor product structure of NURBS patches have led to the
development of T-splines, a spline technology that rigorously resolves these problems (Seder-
berg et al. 2003). Abandoning the global tensor product structure of NURBS, T-splines can
represent geometric objects of arbitrary topological complexity without the need for multiple
patches. Furthermore, T-splines can be refined locally. These advantages make T-splines ideal
for isogeometric finite element analysis. It is important to note that T-splines are a generalisation
of NURBS, or, put differently, NURBS are a special form of T-splines.

We introduce the fundamentals of T-splines based on Scott et al. (2011a). This is because
T-splines as introduced in Scott et al. (2011a) more naturally connect to standard finite element
technology. As T-splines are rooted in computer aided geometric design, they have so far only
been used as a technology to represent surfaces, i.e. dp = 2 and ds = 3. Although there are
no roadblocks to extending the technology to the volumetric case, dp = 3, we restrict the
discussion to bivariate T-splines.
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Isogeometric Finite Element Analysis 481

(a) (b)

Figure 15.3 (a) A bivariate T-mesh with multiple T-junctions. Knot intervals are assigned to all edges
in the T-mesh. (b) T-mesh face zoom. The knot intervals sum up to the same value on opposing sides of
the the T-mesh faces

A T-spline is constructed from a T-mesh or T-spline control mesh, a mesh of quadrilateral
faces with four corner vertices and an arbitrary number of vertices at each side of the quadri-
lateral (Figure 15.3). The T-mesh contains the topology information of the T-spline. As for
NURBS patches, a control point coordinate pk and control point weight Wk are assigned to
each vertex in the T-spline control mesh.

The name T-splines is derived from the T-junctions that appear at the vertices on the sides of
the quadrilaterals. We restrict the discussion here to T-meshes with valence four corner vertices,
i.e. four quadrilaterals come together at every corner vertex in the interior of the mesh, and
T-junction vertices.

From the viewpoint of isogeometric analysis it is sufficient to consider a subset of T-splines,
referred to as analysis-suitable T-splines (Scott et al. 2011b). Analysis-suitable T-splines are
constructed over T-meshes with some minor restrictions on their topology, referred to as
analysis-suitable T-meshes. Analysis-suitable T-splines guarantee the most important proper-
ties of B-splines discussed in Section 15.1.1 and, most importantly, guarantee linear indepen-
dence of the T-spline basis. The minor restrictions imposed on the topology of analysis-suitable
T-splines are in practice irrelevant.

As for any of the spline technologies discussed in this chapter, T-splines are based on the
parametric map of Equation (15.1). With the introduction of the control points, {pk}Nk=1, only
the definition of the T-spline basis, {hk(ξ)}Nk=1, remains. To this end we supplement the T-mesh
with knot intervals, non-negative real numbers assigned to each segment between two vertices
(Figure 15.3). In order to obtain the basis functions, knot intervals need to sum up to the same
value on opposing sides of the quadrilaterals.

Using the T-mesh supplemented with knot intervals, so-called local knot interval vectors
{��k}Nk=1 can be assigned to all vertices. For T-spline bases of an odd polynomial order, these
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482 Non-linear Finite Element Analysis of Solids and Structures

(a) (b)

Figure 15.4 (a) Local knot interval construction for two vertices for the T-mesh in Figure 15.3. (b) The
local basis function domains and corresponding basis functions

local knot interval vectors are constructed by traversing the mesh in each of the four directions
of the mesh, until 1

2 (p + 1) vertices or sides are intersected. Figure 15.4 shows this process
for the T-mesh introduced in Figure 15.3. The local knot interval vectors corresponding to the
vertices A and B are found as

��A =
{(

0,
1

2
,

1

8
,

1

8

)
,

(
0, 0, 0, 1

)}
��B =

{(
1

8
,

1

8
,

1

2
, 0

)
,

(
1,

4

5
,

1

25
,

1

25

)} (15.13)

We restrict our discussion to T-splines of an odd polynomial order, where the basis functions
can be regarded as vertex-centred, since 1

2 (p + 1) knot intervals are found in each direction
starting from the central vertex. By contrast, basis functions for even-order T-splines can be
regarded as face-centred. A study of the use of even-order T-splines in isogeometric analysis
can be found in Bazilevs et al. (2010).

Setting the origin to (0, 0), the knot interval vectors can be transformed into local knot
vectors, {�k}Nk=1, which define the local basis function domains {V̂k}Nk=1. For the two cases in
(15.13) we then obtain the knot vectors

�A =
{(

0, 0,
1

2
,

5

8
,

3

4

)
,

(
0, 0, 0, 0, 1

)}
�B =

{(
0,

1

8
,

1

4
,

3

4
,

3

4

)
,

(
0, 1,

9

5
,

46

25
,

47

25

)} (15.14)

Using these knot vectors of length p + 2, we can use the Cox–de Boor recursion formula,
Equation (15.5), to obtain a single basis function associated with the central vertex with support
over the local basis function domains, V̂A = [0, 3

4 ] ⊗ [0, 1] and V̂B = [0, 3
4 ] ⊗ [0, 47

25 ]. The
basis functions constructed for the vertices A and B are shown in Figure 15.4. Since the T-
spline basis functions are constructed in the same way as B-spline basis functions, T-splines
inherit the properties of B-splines as discussed in Section 15.1.1.

Using the control point weights assigned to all vertices, {Wk}Nk=1, the T-spline basis functions
can be made rational using Equation (15.9) in exactly the same way as was done for B-spline
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Isogeometric Finite Element Analysis 483

Figure 15.5 Third-order T-spline representation of a stiffener based on the T-mesh shown in Figure 15.3

basis functions. In combination with the parametric map of Equation (15.1) the control points,
{pk}Nk=1, then define the T-spline. The T-spline resulting from the T-mesh in Figure 15.3 is
shown in Figure 15.5.

15.2 Isogeometric Finite Elements

So far, spline basis functions have been considered from a global perspective. That is, to
construct a spline basis function we relied on the definition of global knot vectors or T-spline
meshes. This is in contrast to the way in which we normally construct finite element basis
functions, which we induce from a canonical set of shape functions defined over a parent
element. The availability of an element (data) structure for splines is of pivotal importance for
the success of isogeometric analysis, as it provides a unified approach to spline technologies
that is compatible with standard finite element technology.

15.2.1 Bézier Element Representation

To develop an element structure for splines, we need a precise definition of an ‘element’.
Henceforth, we shall refer to an element as a region in the physical space with a volume, Ve,
which is mapped from a parametric element domain, V̂e, that is bounded by lines of reduced
continuity. This means that the basis functions on an element are C∞-continuous functions.
The union of all parametric elements constitutes the parameter domain, and, as a consequence,
the union of all elements yields the physical domain.

This definition encapsulates the elements used in traditional C0-continuous finite elements,
where C∞-continuous polynomials are used as the basis functions which are restricted to an
element. These C∞-continuous regions are bounded by mesh lines with C0-continuity. By
virtue of the construction of univariate B-spline basis functions discussed in Section 15.1.1,
lines of reduced continuity can be inserted at the parametric coordinates that correspond to the
knot values. As a result, a univariate B-spline element is defined as a curve segment of positive
length in physical space mapped onto from a knot interval, which is also of positive length.
As in standard finite elements, the basis functions restricted to the elements are polynomials.
NURBS elements are essentially not different from B-spline elements, and the tensor product
structure of multivariate splines provides a natural definition of elements in NURBS patches.
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Figure 15.6 Restrictions of the B-spline basis functions in Box 15.1 to the elements. The restricted
basis functions are plotted over the parent element domain V̂e = [−1, 1]. In contrast to traditional finite
elements the restricted basis functions generally differ per element

As a consequence of their construction, however, the definition of T-spline elements contains
some subtleties (Scott et al. 2011a).

B-spline basis functions, either univariate or multivariate, are piecewise polynomials defined
over the parameter domain. In contrast to standard finite elements, the restrictions of these
functions to the elements are not the same for all elements. This lack of a canonical set of
parent element basis functions is illustrated in Figure 15.6 for the B-spline basis shown in
Box 15.1. It is, however, possible to restrict the basis functions with a support over an element
to that element, and to express them as a linear combination of a canonical set of basis functions

he = CeB (15.15)

For reasons that will be discussed in the next section, we will use Bernstein polynomials of
order p, collected in B, as the canonical set of element basis functions. Any other set that
spans the same space, such as Lagrange polynomials of order p, is, in principle, equally suited.
We refer to the matrix Ce as the element extraction operator. The element extraction operator
lumps all global information onto the element. A schematic representation of the action of the
element extraction operators is shown in Figure 15.7 for the univariate B-spline basis functions
introduced in Box 15.1. In standard finite element technology, all extraction operators equal
the identity matrix, and normally do not appear in the formulation. We note that the element
extraction operators can be interpreted as matrices that establish linear constraints between
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Figure 15.7 Schematic representation of the Bézier extraction operator
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Isogeometric Finite Element Analysis 485

the shape functions in adjacent elements. By supplying the correct constraints, interelement
smoothness can be obtained.

When the element extraction operators are available, the basis functions can be constructed
from the canonical set of elements. This makes isogeometric analysis a real element technology,
suitable to integrate in existing finite element codes. All information required for carrying out
an analysis is assembled in a Bézier mesh, which contains:

• The (global) control net, {pk}Nk=1, supplemented with control point weights, {Wk}Nk=1, in the
case of NURBS.

• A set of Bézier elements, each supplemented with a list containing the global indices of
the basis functions with support over the element (commonly referred to as the connectivity
array), and an element extraction operator, Ce.

The Bézier mesh can be regarded as an extension of the mesh used in standard finite element
analysis, in which the control point weights and Bézier extraction operators are generally
omitted.

In the next section we will introduce Bézier extraction as a tool for obtaining the extraction
operators. It is emphasised that the Bézier representation decouples the geometry problem
from the analysis problem. In fact, Bézier meshes can already be obtained from computer
aided geometric design software. An additional advantage of the Bézier representation is
that it provides a unified interface to a variety of spline technologies, which prevents ad-hoc
implementations on the analysis side.

15.2.2 Bézier Extraction

We refer to the process of obtaining the Bézier mesh from a spline object as Bézier extraction.
The extraction process is best illustrated by a univariate B-spline. We again consider the third-
order B-spline basis of Box 15.1, which was constructed using the knot vector � = {0, 0, 0,

0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4}. In combination with the control points {pk}Nk=1 this basis defines
the B-spline curve shown in Box 15.1.

The corner stone of Bézier extraction is the process of knot insertion. With the insertion of
a knot value ξ̄ in the knot vector �, the control points change according to

P̄ = [C1]TP (15.16)

in order to preserve the parametrisation; see Piegl and Tiller (1997) for general knot insertion
algorithms to determine the operator C1, and Borden et al. (2011) for knot algorithms that are
designed for knot multiplication, where an existing knot value is repeated. We now use knot
insertion to express the control point positions, {p̄k}N̄k=1, with N̄ = nep + 1, for the knot vector
�̄ = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4} with all internal knot values repeated p times
as

P̄ = [CN̄−N ]T[CN̄−N−1]T . . . [C2]T[C1]TP = CTP (15.17)
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486 Non-linear Finite Element Analysis of Solids and Structures
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Figure 15.8 B-spline basis after the knot insertion process

The parametrisation of the B-spline remains unchanged upon the insertion of additional knots.
In accordance with Equation (15.2) this is expressed by the equality:

PTh = P̄Th̄ (15.18)

with {h̄k}N̄k=1 the B-spline basis in accordance with the knot vector �̄. Substitution of P̄ as in
Equation (15.17) then yields:

PTh = PTCh̄ (15.19)

Since this equality holds for arbitrary control points, the B-spline basis {h̄k}N̄k=1 is related to
the original basis {hk}Nk=1 through

h = Ch̄ (15.20)

Hence, every original basis function can be expressed as a linear combination of refined basis
functions. Figure 15.8 shows the basis {h̄k}N̄k=1 according to the knot vector �̄. In contrast
to the original B-spline basis, {hk}Nk=1, this refined basis is comprised of a canonical set of
element basis functions, the Bernstein polynomials. We now define the operators Ze and Z̄e to
select the basis function he and h̄e with support over V̂e, to obtain:

he = Zeh = ZeCZ̄T
e h̄e (15.21)

Since h̄e contains the same set of Bernstein polynomials for every element, we can elaborate
the element extraction operator introduced in Equation (15.15) as:

Ce = ZeCZ̄T
e (15.22)

By virtue of their tensor product structure, multivariate B-spline extraction operators can
be inferred directly from the univariate operators in the independent directions. For instance,
we consider the bivariate basis functions in Equation (15.10), and let [Ce]1 and [Ce]2 be the
extraction operators in the ξ- and η-directions, respectively. Note that we consider the basis
functions over the parent element domain V̂e = [−1, 1] ⊗ [−1, 1] (with coordinate ξ̃ = (ξ̃, η̃)).
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Isogeometric Finite Element Analysis 487

Considering the local element basis functions

he,a(ξ̃) = he,k(ξ̃)he,l(η̃) (15.23)

with a = (l − 1)(p + 1) + k, we obtain

he,a(ξ̃) = [Ce]abBb(ξ̃) (15.24)

with [Ce]ab the bivariate extraction operator:

[Ce]ab = [Ce]1,km[Ce]2,ln (15.25)

and b = (n − 1)(p + 1) + m. Since the Bézier extraction provides an element-based construc-
tion of the global B-spline basis functions, the global NURBS basis functions can be constructed
subsequently. That is, the Bézier representation is used to construct the global B-spline basis
functions restricted to the elements, he, from which the NURBS basis functions restricted to
the elements, re, are then obtained using Equation (15.9).

The extraction process for T-splines does not differ fundamentally from the process for
B-splines, but requires consideration of some details that are specific for T-splines. A partic-
ularly interesting aspect is that Bézier elements in T-splines can support more global basis
functions than its number of Bernstein polynomials. This property, which is a consequence of
the appearance of T-junctions, results in non-square element extraction operators (Scott et al.
2011a).

15.3 PyFEM: Shape Functions for Isogeometric Analysis

The Bézier representation of the B-spline shape functions is implemented in the file
BezierShapeFunctions.py which can be found in the directory pyfem/util. The
main structure of the file is as follows:

〈Bézier shape functions 〉≡
〈Bézier shape function algorithms 488〉
〈Bézier shape function main routine 488〉

The fragment 〈Bézier shape function algorithms〉 contains the implementation of the shape
function routines for various integration orders, both for univariate and bivariate B-
splines. The fragment 〈Bézier shape function main routine〉 contains a single function
getElemBezierData, which calculates the shape functions and their derivatives for a
single Bézier element. This function is similar to the function getElemShapeData on
page 39 apart from the fact that in this case, the element extraction operator Ce is needed as
input:
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488 Non-linear Finite Element Analysis of Solids and Structures

〈Bézier shape function main routine 〉≡ 487

def getElemBezierData( elemCoords , C , order = 0 , \
method = ’Gauss’ , elemType = ’default’ ):

elemData = elemShapeData() 38
〈Calculation of Bézier shape functions in all integration points〉
elemData.sData.append( sData ) 38

return elemData

The extraction operator is passed as a two-dimensional array C. The other arguments of
the function have the same purpose as in the function getElemShapeData. The shape
functions and their derivatives in a single integration point are stored in the data container
sData. The integration point data are collected in the instance elemData. The classes
shapeData and elemShapeData are implemented in the file shapeFunctions.py.

The shape functions and their derivatives are calculated in a collection of routines, which are
implemented in the fragment〈Bézier shape function utility routines〉. The shape functions for a
third-order, univariate B-spline are calculated in the function getBezierLine4, where the
number 4 refers to the number of supported shape functions by a single element:

〈Bézier shape function algorithms 〉≡ 487

def getBezierLine4( xi , C ):

sData = shapeData() 38
sData.xi = xi

B = empty( 4 )
dBdxi = empty( shape = (4,1) )

In addition to the parametric coordinate xi, the element extraction matrix C is also an ar-
gument. The Bézier shape functions and derivatives are stored in temporary arrays B and
dBdxi which are initialised as arrays of length 4. The actual values of the shape functions
are calculated next:

〈Bézier shape function algorithms 〉+≡ 488

B[0] = -0.125*(xi-1.)**3
B[1] = 0.375*(xi-1.)**2*(xi+1.)
B[2] = -0.375*(xi-1.)*(xi+1.)**2
B[3] = 0.125*(xi+1.)**3

dBdxi[0,0] = -0.375*(xi-1.)**2
dBdxi[1,0] = 0.75 *(xi-1.) * (xi+1.) + 0.375*(xi-1.)**2
dBdxi[2,0] = -0.375*(1.+xi)**2 - 0.75*(1.+xi)*(xi-1.)
dBdxi[3,0] = 0.375*(xi+1.)**2
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Isogeometric Finite Element Analysis 489

The final step is the calculation of the value of the B-spline shape functions over the element
by means of Equation (15.15):

〈Bézier shape function algorithms 〉+≡ 488

sData.h = dot( C , B )
sData.dhdxi = dot( C , dBdxi )

return sData

The shape functions h and their parametric derivatives dhdxi are stored in the container
sData and are returned to the main function. Here, additional data are processed, such as the
derivative with respect to the physical coordinates, and the physical integration weight. This
is identical to the process described in fragment〈Shape function main routine〉 on page 39.

The Bézier shape function utility is demonstrated in the program beziertest.py in
the directory examples/ch15. In this example, the curve shown in Box 15.1 is constructed
using a Bézier mesh. The curve in this box is defined by a control net that consists of 10 control
points, and is represented by 4 Bézier elements. Each element, e, supports 4 shape functions.
The corresponding extraction matrices Ce are:

C0 =


1 0 0 0

0 1 1
2

1
4

0 0 1
2

1
2

0 0 0 1
4

 C1 =


1
4 0 0 0
1
2

1
2 0 0

1
4

1
2 1 1

2

0 0 0 1
2

 C2 =


1
2 0 0 0
1
2 1 0 0

0 0 1 0

0 0 0 1

 C3 =

 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The structure of the file beziertest.py is given by:

〈Bézier curve example 〉≡
〈Bézier extraction example initialisation 489〉
〈Bézier extraction example main calculation 490〉
〈Bézier extraction example print curve〉

The geometry of the curve is specified in the fragment〈Bézier extraction example initialisation〉.

〈Bézier curve example initialisation 〉≡ 489

〈Initialisation of control net coordinates〉
〈Initialisation of element connectivity〉
〈Initialisation of extraction matrices〉

The control net coordinates, the element connectivity and the extraction operators are stored
as arrays coords, elems and C, respectively. The positions of the points x as a function of
the parametric coordinate ξ are obtained by a nested loop over the elements and the integration
points:
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490 Non-linear Finite Element Analysis of Solids and Structures

〈Bézier curve example main calculation 〉≡ 489

for elemNodes,Celem in zip(elems,C):

sdata = getElemBezierData ( coords[elemNodes,:] , Celem , \ 488
order = 100 , elemType = "line4" )

for idata in sdata:
x = dot( idata.h , coords[ elemNodes , : ] )
output.append( x )
length += idata.weight

For each element, the element coordinates and the element extraction operator Celem are
used to determine the element shape function data. In this case, we indicate that each element
contains 100 integration points. Since the dimensions of the physical and parameter domain
are different, we have to explicitly indicate that a ’Line4’ integration scheme is required.
The position of a point x on the curve is determined by multiplying the shape function and
the element coordinates according to Equation (15.1). This position is appended to the list
output. The weight idata.weight is a measure for the length of the section of the curve
corresponding to an integration point. As a result, the sum of all integration weights is equal
to the total length of the curve. The length and a graph of the curve are printed to the screen
in the fragment〈Bézier extraction example print curve〉.

15.4 Isogeometric Analysis in Non-linear Solid Mechanics

The fundamental idea of isogeometric analysis is to use spline basis functions for both the
geometry parametrisation and for the discretisation of the approximate solutions. Hence, the
elements provided by a Bézier mesh are isoparametric. Indeed, isogeometric analysis merely
provides a basis for Galerkin discretisations, and, as such, does not differ from standard finite
elements regarding the way they are used for the discretisation of weak forms. The availability
of a proper element definition in conjunction with the Bézier element data structure provides an
interface to isogeometric analysis that is compatible with standard finite element technology.

The advantages of isogeometric analysis compared with standard finite element technology
are twofold. First, the possibility to directly use computer aided geometric design models for
the analysis streamlines the design-through-analysis concept. This is particularly useful for
complex geometries. In Section 15.4.1 we will illustrate this advantage for the design and the
analysis of shell structures. The other advantage of isogeometric analysis results from the funda-
mentally different nature of the spline basis functions compared with Lagrange basis functions.
The control over inter-element continuity allows for the direct discretisation of higher-order
differential equations, such as the Kirchhoff–Love shells considered in Section 15.4.1 or the
higher-order gradient damage models in Section 15.4.2, see also Chapters 6 and 14 for finite
element and meshless solutions to the latter problem. At the same time, splines allow for the
flexible insertion of discontinuities, making it a viable discretisation tool for fracture models,
including cohesive zone approaches, which will be discussed in Section 15.4.3.
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Isogeometric Finite Element Analysis 491

With the examples of isogeometric analysis for non-linear solid mechanics problems dis-
cussed in the remainder of this chapter we give a flavour of its possibilities. By no means is this
overview meant to be complete. Solid mechanics problems for which isogeometric analysis
has been shown to have advantages also include contact and friction problems (Temizer et al.
2011) and structural optimization problems (Wall et al. 2008).

15.4.1 Design-through-analysis of Shell Structures

Shell formulations generally rely on the presence of a parametric mid-surface, see Chapter 10.
The geometry of the mid-surface is governed by a mapping from a parameter domain onto the
physical domain. This mapping enters the formulation with the definition of the basis vectors,
which are the gradients of the physical coordinate with respect to the parametric coordinate,
and governs all subsequently derived quantities, including strains and curvatures. In standard
finite element technology this surface is defined through the elements, and hence, an element-
wise parametric description of the surface is obtained. In such a case the parent element domain
serves as an element-wise parameter domain.

In computer aided geometric design the mid-surface parametrisation is provided by Equa-
tion (15.1), with a bivariate parameter domain (dp = 2) mapped onto a subset of the three-
dimensional space (ds = 3). In contrast to standard finite element analyses, isogeometric analy-
sis directly uses the spline basis functions to discretise the fields that describe the deformation.
Considering the process of converting a geometric design into an analysis-suitable object,
isogeometric analysis offers two major advantages. First, no meshing or geometry clean-up
procedures are required to construct the analysis model. A significant reduction of the time
required to perform a design-through-analysis cycle can thus be obtained, particularly when
complex geometries are considered (Cottrell et al. 2009). Evidently, isogeometric analysis re-
quires the geometric object to be analysis-suitable. Consequently, problems in the parametric
design are now solved where they should be solved, namely in the geometric object. As a
consequence, improper geometry definitions that result in meshing problems and the require-
ment of geometry clean-up tools are no longer solved in an ad-hoc fashion, but are eliminated
rigorously. The second major advantage of an isogeometric analysis of shells is that splines are
very efficient in parametrising curved surfaces. In standard finite element analyses of shells, the
number of elements can be dictated by the geometry, which can render the approach inefficient.

The above considerations highlight the potential advantages of using isogeometric finite
elements for shell formulations of any kind. The benefits of isogeometric analysis for Reissner–
Mindlin shells have been stipulated by Benson et al. (2010). Since the Reissner–Mindlin
formulations only require C0-continuity, they have been used extensively in finite element
analysis. The advantages of isogeometric analysis are then as discussed above, although the
use of splines has been found to improve robustness in computations.

This is different for Kirchhoff–Love shells. From Chapter 10 we recall that, in general, the
strain in a plate/shell is given, cf. Equation (10.1), by:

ε = ε� + z�χ

where the array ε� contains the in-plane strains at the reference plane, and is given by Equa-
tion (10.2), and z� is the vertical coordinate with respect to the shell reference plane (Figure 9.1).
The fundamental assumption in the Kirchhoff–Love formulation is that the director is taken to
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492 Non-linear Finite Element Analysis of Solids and Structures

be equal to the unit normal vector to the shell reference plane:

d =
∂x
∂ξ

× ∂x
∂η∥∥∥ ∂x

∂ξ
× ∂x

∂η

∥∥∥ (15.26)

with ξ, η the local coordinates of the mid-surface (Figure 10.3). As a consequence the rotations
θx and θy, which are independent variables in the Reissner–Mindlin shell formulation, are
constrained, cf. Equation (9.2), by:

θx = −∂w

∂x
and θy = −∂w

∂y
(15.27)

with w the out-of-plane displacement of the shell. Substitution of these constraints into Equa-
tion (10.3) results in the curvatures for a Kirchhoff–Love shell theory:

χ =


− ∂2w

∂x2

− ∂2w
∂y2

−2 ∂2w
∂x∂y

 (15.28)

The second-order derivatives which now evolve require a C1-continuity, similar to the Euler–
Bernoulli beams (Chapter 9). For beam elements, this requirement can be met relatively easily,
e.g. using Hermite interpolations, Equation (9.14b), but this is less so for shell elements of
arbitrary shapes.

Since C1-continuity is naturally obtained using splines of order two or higher, the Kirchhoff–
Love shell formulation can be discretised straightforwardly in isogeometric analysis. We il-
lustrate the potential of isogeometric finite element analysis for the Kirchhoff–Love shell
formulation with two examples. First, we shall show results for the Scordelis-Lo roof, which
has evolved as a standard benchmark problem for linear shell analysis (MacNeal and Harder
1985). Next, the potential for geometrically non-linear analysis will be demonstrated for a
channel-section beam problem (Chróscielewski et al. 1992).

The Scordelis-Lo roof has been used in Chapter 4 to assess the performance of line searches,
and was modelled using eight-noded shell elements. Now, the exact geometry of the roof
is described by a single-element third-order NURBS (Figure 15.9), with control points and
weights given in Table 15.1. Various refinements of this single-element NURBS have been
considered. The used meshes are shown in Figure 15.10. The mesh shown in Figure 15.10(a) has
been obtained by a single subdivision in both directions of the original object. The mesh shown
in Figure 15.10(b) has been obtained by applying further subdivisions. Evidently, the mesh
shown in Figure 15.10(b) is a T-spline, since it contains T-junctions. The T-spline discretisation
consists of 224 elements and 257 basis functions, and contains 3 × 257 = 771 degrees of
freedom.

The deflection of the roof due to the gravity load is determined using the Kirchhoff–Love
formulation. In this linear computation, both the external force vector and stiffness matrix have
been computed in the undeformed state. A fourth-order Gauss integration appeared to yield
sufficient accuracy, see Hughes et al. (2010) for a detailed study of the numerical integration
of rational basis functions. For the T-spline discretisation in Figure 15.10, the downward
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Isogeometric Finite Element Analysis 493

Table 15.1 Control point positions and weights for the Scordelis-Lo roof, with
i = 1, . . . , 4. A linear parametrisation in the x3-direction is obtained by
selecting the control points according to �g = {0, 1

3 , 2
3 , 1} which corresponds to

the knot vector �ζ = {0, 0, 0, 0, 1, 1, 1, 1}

i pi,1/R pi,2/R pi,3/L Wi

4(i − 1) + 1 −sinθ cosθ �
g

1 1

4(i − 1) + 2 − sinθ

1 + 2cosθ

2 + cosθ

1 + 2cosθ
�

g

2

1 + 2cosθ

3

4(i − 1) + 3
sinθ

1 + 2cosθ

2 + cosθ

1 + 2cosθ
�

g

3

1 + 2cosθ

3
4(i − 1) + 4 sinθ cosθ �

g

4 1

g

x1

L

x2
x3

θR

Figure 15.9 A single-element NURBS representation of the Scordelis–Lo roof. The control points are
indicated by squares. At the supports displacements are constrained in x1- and x2-direction only

deflection of the mid-point on either of the free edges is computed as 0.301, which is in
excellent agreement with results reported in the literature (MacNeal and Harder 1985). Mesh
convergence studies have been presented by Kiendl et al. (2009).

The ability of the isogeometric Kirchhoff–Love shell formulation to accurately capture
geometrically non-linear behaviour is now shown for the channel-section beam problem of

Figure 15.10 (a) Third-order NURBS discretisation of the Scordelis–Lo roof with 4 Bézier elements
and 25 basis functions. (b) Third-order T-spline with 224 elements and 257 basis functions
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494 Non-linear Finite Element Analysis of Solids and Structures

Table 15.2 Control point positions for the channel section beam,
with i = 1, . . . , 5. On account of the beam’s symmetry with
respect to the x1–x3-plane, only the control points with
non-negative x2-coordinate are shown in the table. A linear
parametrisation in the x1-direction is established by selecting the
control points according to: �g = {0, 1

6 , 1
2 , 5

6 , 1} corresponding to
the knot vector � = {0, 0, 0, 0, , 1

2 , 1, 1, 1, 1}

i pi,1/L pi,2/(2b) pi,3/a

11(i − 1) + 1 �
g

1 1 1

11(i − 1) + 2 �
g

2 1
11

20

11(i − 1) + 3 �
g

3 1
1

10
11(i − 1) + 4 �

g

4 1 0

11(i − 1) + 5 �
g

5

14

15
0

11(i − 1) + 6 �
g

6 0 0

Figure 15.11 (Chróscielewski et al. 1992). The height of the web, in dimensionless form, is
b = 6, and the width of the flanges is a = 2. The length of the beam is equal to L = 36 and
the thickness of the web and the flanges equals t = 0.05. The Young’s modulus is equal to 107

and the Poisson’s ratio is ν = 0.333. The beam is loaded by a downward point force applied
to the tip of the beam.

The geometry of the beam is described by a bivariate uniform B-spline of order three, with the
control points shown in Table 15.2. In the x1-direction a linear parametrisation is enforced, but
note that the control points themselves are not distributed linearly in the x1-direction. Attention
is drawn to the fact that the corners of the channel have been rounded (although not circular).
Indeed, the B-spline surface can efficiently represent rounded corners. In order to accurately
capture the deformation pattern of the beam for geometrically non-linearities, a refinement
to the original geometry is made with 2048 Bézier elements and 2345 basis functions, which
results in 3 × 2345 = 7035 degrees of freedom.

bL

P , δ

a

x3 x1

x2

Figure 15.11 Uniform B-spline representation of a channel-section beam with rounded corners. The
control points are indicated by squares. At the left support the displacements and the rotations are fully
constrained
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Isogeometric Finite Element Analysis 495

Figure 15.12 Deformed channel-section beam at δ = 4 computed using 2048 Bézier elements

The load–deformation behaviour of the beam has been traced using displacement control
with the downward deflection δ of the tip of the beam being increased with steps of 0.1 until
δ = 4. The point load is applied to the element vertex closest to (36, 3, 0). Note that, in contrast
to standard finite elements, multiple global basis functions are supported at this element vertex,
and as a consequence, displacement control is implemented as a linear constraint between the
supported basis functions, rather than as a constraint to a single degree of freedom. The final
deformation of the beam is shown in Figure 15.12 and is in excellent agreement with other
results reported in the literature (Betsch et al. 1996). The most striking non-linear effect is
the buckling of the upper flange. This buckling phenomenon can also be inferred from the
force–displacement curve in Figure 15.13. At the peak load the upper flange buckles, followed
by a post-buckling behaviour.

Displacement δ

Fo
rc

e
P

43210

120

90

60

30

0

Figure 15.13 Load–displacement curve for the channel-section beam problem obtained using 2048
Bézier elements
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496 Non-linear Finite Element Analysis of Solids and Structures

15.4.2 Higher-order Damage Models

In Chapter 6 it has been shown that the spurious mesh sensitivity in analyses using damage
theories can be overcome effectively by adopting a non-local equivalent strain definition.
The gradient approximations to this non-local damage formulation were found to be more
efficient from the vantage point of numerical modelling. Then, the non-local equivalent strain
ε̄ can be related to the local equivalent strain measure ε̃ through a differential equation, which
can be truncated after the second-order derivative, Equation (6.152), or after the fourth-order
derivative, Equation (14.10). The second-order implicit gradient damage model described by
Equation (6.152) can still be solved using standard finite elements, since partial integration
allows an order reduction, and merely aC0-continuity is required for the interpolation functions.
However, this is no longer the case for a higher-order gradient damage model. In Chapter 14
this has been solved using the higher-order continuity property of meshless methods. Now, this
property of splines will be exploited (Verhoosel et al. 2011b). Moreover, a sixth-order gradient
damage model will be included in the analysis:

ε̄ − c1∇2ε̄ − c2∇4ε̄ − c3∇6ε̄ = ε̃ (15.29)

where ∇6 is a short-hand notation similar to that for ∇4, which was used in Equation (14.10).
The fourth-order gradient damage formulation (c3 = 0) requires C1-continuity, and hence can
be discretised using quadratic splines. The C2-continuity required for the sixth-order formula-
tion is provided by cubic splines.

In this section we consider two numerical simulations that illustrate the capability of iso-
geometric analysis to discretise the gradient damage formulations of order two, four and six.
In the first simulation we revisit the uniaxial rod problem discussed in Chapter 6 in the con-
text of gradient damage formulations, and in Chapter 14 in the context of meshless methods.
The second simulation considers a two-dimensional problem in which a diagonal failure band
develops, which is captured by local T-spline refinements.

We again consider the one-dimensional bar problem first discussed in Chapter 6 and shown
schematically in Figure 6.18. Force–displacement curves have been determined for the non-
local damage formulation, and for the second-, fourth- and sixth-order implicit gradient models.
Figure 15.14 shows the force–displacement curves for the second-order gradient formulation
and for the non-local formulation, and was obtained using 80 Bézier elements of order one and
of order three. Meaningful results for the higher-order formulations cannot be obtained using
linear elements. A comparison of the results for linear B-splines with the results obtained
using cubic B-splines shows the superior convergence behaviour of cubic basis functions.
In Figure 15.15 we show the axial stress in the bar as a function of the location. For linear
basis functions, i.e. standard finite elements, an oscillatory behaviour is observed (Simone
et al. 2003). When using higher-order basis functions for the second-order formulation, these
oscillations reduce drastically, which can be attributed to the variation diminishing property
of splines.

Figure 15.16 further shows a comparison between the gradient formulations and a non-local
formulation of the integral type. All results are obtained on a cubic Bézier mesh with 1280
elements. The results are in excellent agreement with results obtained using finite elements or
using meshless methods (Askes et al. 2000; Peerlings et al. 1996). As in Askes et al. (2000), see
also Chapter 14, the incorporation of fourth-order derivatives in the implicit scheme improves
the results, in the sense that the computed force–displacement curve is closer to that of the non-
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Figure 15.14 Comparison of results obtained with 80 Bézier elements of order one (p = 1) and order
three (p = 3) for the second-order gradient (a) and non-local damage formulation (b) (Verhoosel et al.
2011b)

local formulation. In line with this observation the sixth-order formulation gives an even closer
approximation of the non-local result. Indeed, the sixth-order gradient damage formulation is
very efficient, since the results are close to the non-local formulation, while the computational
effort is very much reduced compared with the non-local formulation.

As a second example we consider the L-shaped specimen of Figure 15.17. The free rotation
of the rigid end-plates is incorporated by means of linear constraints on the boundary control
points, which is possible due to the fact that the basis functions on the corresponding boundaries
can exactly represent all affine motions, and, in particular, the rigid rotations and translations.
The diagonal failure zone requires mesh refinements, which can be achieved using T-splines.

An isotropic elastic-damaging material model is used with modulus of elasticity E = 10 GPa
and a Poisson’s ratio ν = 0.2. Plane-stress conditions have been adopted. The modified von
Mises local equivalent strain, Equation (6.21), has been used in combination with an exponen-
tial damage relation (Geers et al. 1998). The force–displacement curves have been obtained
using the cubic Bézier T-spline mesh of Figure 15.18 (Verhoosel et al. 2011b). The mesh con-
sists of 1686 Bézier elements and has 1543 basis functions. It is noted that for the third-order
T-splines the number of basis functions is in the same range as the number of elements, which
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Figure 15.15 Axial stress in the one-dimensional bar at u = 0.023 mm for the second-order gradient
damage formulation with linear basis functions (a), and for cubic basis functions (b). The stress is plotted
in the integration points (Verhoosel et al. 2011b)
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Figure 15.16 Force–displacement diagrams for the bar loaded in tension using the non-local formula-
tion and d-th order gradient formulations. All results are obtained using cubic Bézier meshes with 1280
elements (Verhoosel et al. 2011b)
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Figure 15.17 L-shaped specimen. The thickness of the specimen is 200 mm (Verhoosel et al. 2011b)

contrasts standard finite elements with a cubic interpolation. A C2-continuous base mesh is
created using a non-tensor product T-spline. The C2 basis function centred around the re-entrant
corner is shown in Figure 15.18.

Figure 15.19 compares the results of the various formulations. Upon an increase of the
order of the formulation the approximation of the non-local result improves. An increase
of the order of the formulation also increases the total amount of dissipated energy. This is
caused by the smoothing effect of the higher-order derivatives. In Figure 15.20 the maximum
principal stress contours are shown for the second-order and for the sixth-order formulations.
No substantial stress oscillations are observed, which is consistent with the observations on
the one-dimensional model problem discussed before. Again, the sixth-order formulation is
highly efficient, since it closely approximates the result for the non-local model, with a fraction
of the computational effort.

Figure 15.18 (a) Bézier mesh for the L-shaped specimen. (b) Smooth C2 basis function centred around
the re-entrant corner of the L-shaped domain (Verhoosel et al. 2011b)
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Figure 15.19 Force–displacement results for the L-shaped specimen using the non-local formulation
and d-th order gradient formulations (Verhoosel et al. 2011b)

15.4.3 Cohesive Zone Models

The control over basis function continuity makes isogeometric analysis a viable candidate for
the modelling of evolving and propagating discontinuities, including crack models based on the
cohesive zone concept. On the one hand, the higher-order continuity of spline basis functions
results in a more accurate representation of the stresses, which results in a better prediction of the
direction in which a discontinuity propagates, see also the discussion around Equation (14.24).
And, on the other hand, discontinuities can be inserted arbitrarily by means of knot insertion,
which lowers the continuity and permits jumps in the displacement field (Verhoosel et al.
2011a).

In this section, we first illustrate the concept of inserting a discontinuity in isogeometric
analysis by means of knot insertion in a univariate B-spline setting. With the insight that we
obtain through this simple example, we can proceed to two typical fracture simulations. First,
we use a NURBS-based discretisation for modelling debonding between a circular fibre and
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Figure 15.20 Maximum principal stress contours at u = 1.25 mm as computed by the second-order
formulation (a) and the sixth-order formulation (b). Displacements are amplified by a factor of 15
(Verhoosel et al. 2011b)
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Figure 15.21 Schematic representation of two rods loaded in tension. The two segments of the com-
posite rod are connected by a zero-thickness adhesive layer with stiffness k

the epoxy matrix in which it is embedded. Secondly, we consider propagating cohesive cracks
in a single-edge notched beam, which requires the use of T-splines.

We consider the one-dimensional bar of Figure 15.21, which is loaded in tension. The bar
has a length L, a stiffness EA, and is loaded by a force P . The bar is parametrised by a
quadratic B-spline with a knot vector � = {0, 0, 0, 1, 1, 1}, and the control points are given by
p1 = 0, p2 = 1

2L and p3 = L with uniform weights W1 = W2 = W3 = 1. The corresponding
basis functions are shown in Figure 15.22. This choice of control points results in a linear
parametrisation of the rod: x = Lξ. Using the shape functions, the displacement field can be
approximated as:

u =
N∑

k=1

hk(ξ)uk (15.30)

Any solution method will then give the coefficients u1 = 0, u2 = 1
2

PL
EA

and u3 = PL
EA

, so that

u(ξ) = PLξ
EA

, which can obviously be rewritten as the exact solution u(x) = Px
EA

.
Now consider the composite bar shown in Figure 15.21(b). The two segments of the bar,

with stiffnesses EA1 and EA2, respectively, and lengths L1 and L2, such that L1 + L2 = L,
are connected by an adhesive layer at x = L1. The infinitely thin adhesive layer is assumed
to have a stiffness k, such that the displacement jump over the layer equals �u� = P/k. Since
the basis functions corresponding to � = {0, 0, 0, 1, 1, 1} are C1-continuous on (0, L), the
discontinuous deformation of the composite bar cannot be represented exactly by these basis
functions. In order to obtain the exact solution, we enhance the solution space such that we allow
for a discontinuity in the displacement field at xd = L1. From the parametrisation of the bar this
physical position is known to coincide with the point ξd = L1

L
in the parametric domain. We

now create a discontinuity at xd = L1 by inserting a knot with multiplicity p + 1 = 3 at ξ = L1
L

,

which changes the knot vector to � =
{

0, 0, 0, L1
L

, L1
L

, L1
L

, 1, 1, 1
}

. The corresponding basis

functions for the case that L1 = 1
3L are shown in Figure 15.22(b). When the corresponding

control points are taken as p1 = 0, p2 = 1
2L1, p3 = L1, p4 = L1, p5 = L1 + 1

2L2 and p6 =
L, the original parametrisation is preserved. When determining the deformation of the bar using
the new basis functions, the coefficients u1 = 0, u2 = 1

2
PL1
EA1

, u3 = PL1
EA1

, u4 = PL1
EA1

+ P
k

, u5 =
PL1
EA1

+ P
k

+ 1
2

PL2
EA2

and u6 = PL1
EA1

+ P
k

+ PL2
EA2

are obtained, which yields the exact solution.
We now illustrate the use of NURBS to simulate adhesive fracture by considering a fibre with

a radius of 5 µm embedded in square block with dimensions 30 × 30 µm, made out of epoxy
(Figure 15.23). A plane-strain assumption is adopted. The specimen is loaded in the horizontal
direction by gradually increasing the horizontal displacement ū on the left and right edges.
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Figure 15.22 Quadratic B-spline basis functions used for the one-dimensional rod example without (a)
and with (b) a discontinuity at xd = L1 = 1

3 L

Contraction of the epoxy specimen in the vertical direction is prevented by roller supports on
the upper and lower edges of the block. By virtue of the two-fold symmetry of the specimen,
only a quarter of the specimen needs to be discretised.

A linear elastic isotropic material description is used for both the fibre and the epoxy. For
the epoxy a Young’s modulus E = 4.3 GPa and Poisson’s ratio ν = 0.34 have been adopted.
The fibre is much stiffer with a modulus of elasticity E = 225.0 GPa and a Poisson’s ratio
ν = 0.2. The traction on the fibre–epoxy interface is related to its opening by means of the
Xu–Needleman decohesion relation (Xu and Needleman 1993). The tensile strength and the
fracture toughness are taken equal to ft = 50 MPa and to Gc = 4 × 10−3 N/mm, respectively.
Equation (6.49) has been used to define the traction, with α = 2.3 the mode-mixity parameter.
To prevent the occurence of a negative crack opening a penalty parameter kp = 105 MPa/mm
is used.

x
2

30

fiu

30

10

x
1

u
–

Figure 15.23 Schematic representation of a fibre with a circular cross section embedded in a square
block of epoxy. All dimensions are in micrometres (Verhoosel et al. 2011a)
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Isogeometric Finite Element Analysis 503

Figure 15.24 NURBS meshes used for the fibre–epoxy simulations. Note that normally the control
nodes do not coincide with the element vertices (Verhoosel et al. 2011a)

Four different quadratic NURBS meshes have been used. The coarsest mesh, consisting of
only 8 elements (64 degrees of freedom), is shown in Figure 15.24. An attractive feature of
this discretisation is that the geometry is represented exactly with only 8 elements. To create
a discontinuity in the radial direction, the knot that coincides with the interface is assigned
a multiplicity of p + 1 = 3. Figure 15.24 also shows two uniformly refined meshes, with 32
elements (144 degrees of freedom) and 128 elements (400 degrees of freedom), respectively.
Moreover, the response of the system was determined using a mesh consisting of 2048 elements
(4644 degrees of freedom), which we will henceforth refer to as the reference solution.

The response of the system is characterised in terms of σxx at x = (15, 0) µm vs the pre-
scribed displacement at the left and the right edges. The response curves for the different
meshes are shown in Figure 15.25. The result for the 128-element mesh coincides with that
of the reference solution and is therefore not visible in Figure 15.25, and also the curve ob-
tained using 32 elements is already close to the reference solution. The present solutions
compare favourably with finite element solutions in the literature which are either obtained

128 elements
32 elements

8 elements
Reference solution

(µ m)

σ x
1
x
1
(1

5,
0)

(M
Pa

)

0.30.250.20.150.1
–

0.050

80

70

60

50

40

30

20

10

0

u

Figure 15.25 Response curves for the fibre–epoxy system determined using various meshes. σxx at
x = (15, 0) µm has been plotted vs the horizontal displacement ū. Note that the response using 128
elements coincides with that of the reference solution (Verhoosel et al. 2011a)
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Figure 15.26 Contour plot showing σxx in the fibre–epoxy system at ū = 0.165 µm using the 128
elements discretisation. The displacements are amplified by a factor of 10 (Verhoosel et al. 2011a)

using interface elements, or using a partition-of-unity approach. Partly, this can be attributed
to the ability of NURBS to accurately parametrise the circular geometry of the fibre. On the
other hand, the continuous stress field (Figure 15.26), that results from the C1-continuous dis-
placement field obtained using second-order NURBS, also has a favourable effect. When the
direction of crack propagation is not prescribed along an interface, as in the present example,
but has to be computed on the basis of the computed local stresses, the effect in terms of
accuracy, in particular the location of the computed crack path, is even more pronounced. Such
an example will be treated next.

For propagating discontinuities where the crack path is not predefined, NURBS no longer
satisfy, and the ability of T-splines to flexibly modify the mesh topology is key to a successful
application of isogeometric analysis. As an example, we consider the Single-Edge Notched
Beam of Figure 6.13, that has also been used in the preceding chapters to test the performance
of embedded discontinuities (Figure 6.14), of standard finite elements for the implicit second-
order gradient damage model (Figure 6.20), of interface elements and of partition-of-unity finite
element models to simulate cohesive fracture (Figures 13.1 and 14.16). Now, the single-edge
notched beam geometry and the deformation are described using cubic T-splines. Figure 15.27
shows that the T-spline mesh allows for local control point insertion to represent the loading
plates and the initial notch. The coarsest mesh which has been considered consists of 130
elements (402 degrees of freedom). Two uniform mesh refinements have been applied, with 334
elements (868 degrees of freedom) and 1204 elements (2734 degrees of freedom), respectively.

The response of the beam is shown in Figure 15.28 for the three meshes. The response
is characterised in terms of the force P vs the crack mouth sliding displacement. From Fig-
ure 15.28 we observe that the result using the intermediate mesh practically coincides with that
for the fine mesh. Accordingly, an accurate solution is already obtained with just 334 elements.
We also observe that the coarsest mesh experiences significant bumps in the response curve
(Figure 15.28). As in Figure 14.15, which was obtained using a partition-of-unity finite element
method applied to cohesive fracture, these bumps are attributable to the fact that the crack is
abruptly extended when the propagation criterion is violated. A more gradual extension of the
crack, which takes place for the finer meshes, reduces this effect significantly.

Figure 15.29 shows a contour plot of the cracked beam. The dominant crack nucleates at
the bottom right corner of the initial notch at an angle of 37◦ with the vertical axis. Upon
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Isogeometric Finite Element Analysis 505

Figure 15.27 Meshes used for the single-edge notched beam simulations. Note that the control points
do not need to coincide with the element vertices (Verhoosel et al. 2011a)

extension, the crack gradually deflects to eventually propagate parallel to the vertical axis. It is
also observed that a secondary crack nucleates at the bottom edge of the specimen. Note from
the contour plot that both crack paths are smooth since the directions of the normal vectors
from one segment to another have been matched.
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Figure 15.28 Response curves for the single-edge notched beam simulations. The response is measured
in terms of the applied force P versus the crack mouth sliding displacement (CMSD), which equals the
vertical displacement difference between the left and the right notches (Verhoosel et al. 2011a)
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506 Non-linear Finite Element Analysis of Solids and Structures

Figure 15.29 Contour plot showing σxx in the single-edge notched beam at crack mouth sliding displace-
ment = 0.033 mm using the finest discretisation. Displacements are amplified by a factor of 100 (Verhoosel
et al. 2011a)
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J-integral, 427
L2-norm, 7, 81, 137, 394
B̄-concept, 275, 389, 396
F̄-concept, 395
C∞-continuous shape functions, 449
Cp-continuous shape functions, 477
π-plane, 226, 249
h-type instability, 300
k-refinement, 477
p-refinement, 477
s-type instability, 301

acceleration, 146, 150, 151, 153
acoustic tensor, 181
active yield surface, 258
adhesion, 222
adhesive fracture, 501
aging, 284
analysis-suitable T-meshes, 481
analysis-suitable T-splines, 481
angle of internal friction, 224
anisotropic damage models, 198
anisotropic yield functions, 245
apex of the yield surface, 225, 256, 263
arc-length method, 116, 320
associated flow rule, 230
automatic load incrementation, 135
average acceleration scheme, 153
axial vector, 335, 417

B-spline, 475, 487
Bézier elements, 485, 487
Bézier extraction, 485
Bézier mesh, 485, 489
back stress tensor, 234

back bone inviscid plasticity, 295
Bailey–Norton power law, 288
balance of moment of momentum, 18, 32
balance of momentum, 31, 190, 365, 392,

452, 466
bandwidth, 444, 446, 476
Bauschinger effect, 233
bending moment, 309, 312, 319, 346
Bernstein polynomials, 484, 486
bifurcation analysis, 181
bifurcation point, 102, 130, 132, 133
Biot strain tensor, 397
Biot stress tensor, 368, 397
Boltzmann continuum, 18
bond-slip behaviour, 207
boundary conditions, 212
bounding surface plasticity, 235, 242
branch switching, 134
Broyden update, 139
Broyden–Fletcher–Goldfarb–Shanno update,

139
Bubnov–Galerkin approach, 192
buckling, 320
buckling load, 103
bulk modulus, 24, 269, 377

Cam-clay model, 268
Cardano’s formula, 261
Cauchy stress tensor, 88, 101, 365, 370, 377, 397,

403, 412, 461
central difference scheme, 144, 153
CFL criterion, 152
coaxiality, 204, 230, 251, 264, 368, 388, 420, 422
code blocks, 27
cohesion, 224
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cohesionless soil, 268
cohesive forces, 185, 461
cohesive zone models, 185, 190, 202, 428, 456,

500
collocation methods, 444
computer aided geometric design, 473
consistency parameter, 236, 242
consistency visco-plasticity, 297
consistent mass matrix, 146, 149, 466
consistent tangent operator, 239, 249, 252, 264,

360, 421
constitutive equations, 23
constraint counting, 391
constraint equations, 444
constraint function, 119
constraint matrix, 59
constructor, 78
contact stress, 240
control net, 474, 489
control point, 474
convergence criterion, 49, 79, 136
convergence radius, 41
corotational formulation, 72, 96, 321, 397
Cosserat continuum, 210
Coulomb friction, 222
couple stresses, 210
Courant–Friedrichs–Lewy criterion, 148
Cox–de Boor recursion formula, 475
crack band model, 188
crack band width, 202
crack initiation, 430, 441, 442, 461
crack propagation, 427, 441
crack propagation direction, 457
crack spacing, 209
creep function, 283
creep potential function, 288
creep strain, 287
critical time step, 146, 153, 164, 468
cross product, 7
crossed triangular elements, 273, 389
crystal plasticity, 199, 419
crystalline materials, 409
curvature, 308, 313

damage loading function, 172
damage variable, 170, 203
Damage–Plasticity Models, 270
dashpot, 281
decohesion relations, 187
deformation energy, 375

deformation gradient, 85, 107, 373, 408, 418, 460
deformation theory of plasticity, 221, 249
degenerate continuum beam element, 328, 333
degenerate continuum shell element, 343, 351
delamination, 428, 464
delta-incremental method, 48
design-through-analysis concept, 473, 490
determinant, 10, 15, 181
deviatoric strain tensor, 22
deviatoric stress tensor, 19
diffraction criterion, 447
diffuse crack pattern, 206
dilatancy angle, 220, 232
Dirac function, 181, 284, 461
director, 328, 333, 353, 357, 491
directory structure, xix
Dirichlet series, 286
discontinuity, 180, 206, 427, 452, 460, 468, 500
discontinuous Galerkin methods, 436
discontinuous pressure field, 391
discontinuous shape functions, 446
discrete crack models, 201
discrete Kirchhoff constraints, 344
dispersion relation, 159
displacement control, 50
displacement criterion, 137
distance function, 468
divergence theorem, 10, 366, 375, 436, 452, 466
domain of influence, 441, 451
drifting error, 241
Drucker’s Postulate, 230, 231
Drucker–Prager yield criterion, 228, 244, 254
ductile fracture, 187
Duvaut–Lions Visco-plasticity, 294
dyadic product, 11
dynamic instabilities, 298
dynamic residual force vector, 144, 148, 154

effective stress concept, 171, 178, 270
eigenprojection, 16, 266
eigenspectrum, 182
eigenvalue, 15, 52, 100, 103, 130, 131, 133, 136,

148, 261
eigenvector, 16, 131, 265, 388, 397
elastic compliance tensor, 23
elastic material stiffness matrix, 57
elastic stiffness tensor, 23
elasticity-based damage, 171
element connectivity, 55, 77, 489
element extraction operator, 484, 487, 489
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Index 511

element-free Galerkin method, 185, 442, 449
ellipticity, 179, 271
embedded discontinuity models, 190
embedded reinforcement, 207
energetically conjugate, 89, 91, 366, 397
energy criterion, 137
energy criterion for stability, 130
energy release constraint, 122, 245, 435
energy-conserving algorithms, 161
engineering beam theory, 322
engineering shear strain, 21
enhanced assumed strain approach, 191, 277, 392
enhanced strain field, 191, 343
equilibrium path, 130
equivalent strain, 173, 176
essential boundary conditions, 444, 476
Euler backward method, 241, 247, 265, 295,

360, 418
Euler coordinates, 85
Euler description, 70
Euler forward method, 239, 247
Eulerian finite element formulation, 402, 412, 461
explicit time integration, 143, 144, 150, 288, 466
exponential map integrators, 418
external force, 4
external force vector, 34, 41, 79, 143, 150

Finger deformation tensor, 87
finite rotations, 333
First Piola–Kirchhoff stress tensor, 89, 179, 367
fixed smeared crack model, 202
flow rule, 228, 413, 418
flow theory of plasticity, 221, 249
force control, 245
force criterion, 137
Fox–Goodwin scheme, 153
fracture energy, 187, 202, 209
fracture process zone, 185, 428
fragment, 25
friction coefficient, 222

Gauss elimination, 9
Gauss integration, 37, 312, 314, 318, 432,

446, 492
generalised plasticity, 242
geometric contribution tangential stiffness

matrix, 69, 71, 74, 94, 312, 332, 340, 350
Gibbs effect, 477
gradient damage model, 211, 449, 496
gradient of a function, 7

gradient of the yield function, 229
Green–Lagrange strain tensor, 66, 86, 92, 107,

307, 330, 336, 339, 347, 353, 367, 394, 408
Green–Naghdi rate, 370, 413
ground-state shear modulus, 379

Hamilton–Jacobi equation, 470
hardening behaviour, 232
hardening diagram, 237
hardening modulus, 236, 237
hardening parameter, 232
harmonic perturbation, 300
Heaviside function, 181, 283, 452, 460, 467, 468
Hencky Model, 386
hereditary integral, 285
Hermitian interpolation, 310
HHT α-method, 154
hierarchical refinement, 477
hierarchical shape functions, 309, 315
higher-order continua, 212
Hill yield criterion, 246
Hoffman yield criterion, 246
Hooke’s law, 23
Houbolt’s method, 155
hour-glass modes, 164
Hu–Washizu variational principle, 191, 313, 394
hydrostatic pressure, 19, 377
hyperelasticity, 369, 397
hypoelasticity, 371, 401

ideally elastic material, 374
Ilyushin yield function, 358
imaginary wave speed, 302
implicit time integration, 143, 153
implicit–explicit methods, 164
incompatible modes element, 276, 389, 397
incompressibility, 376, 450
incremental objectivity, 415
incremental procedure, 44
incremental-iterative procedure, 44, 46
indefinite matrix, 10
Initial Stiffness method, 49
initial strain, 284
inner product, 6
instance, 77
integration cells, 446
integration point, 37, 40
interaction stress, 209
interface, 206, 427
interface elements, 428, 453
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512 Index

intermediate configuration, 407
internal energy, 22
internal force, 4
internal force vector, 35, 42, 69, 73, 80, 84, 96,

143, 150, 311, 315, 318, 324, 327, 349, 379,
395, 403, 462, 466

internal length scale, 187, 211, 300
internal variable, 170, 172, 420
internal virtual work, 43, 90, 207, 309, 324, 327
interpolation functions, see shape functions, 33
invariants, 19, 227, 261, 373
inversion of matrices, 8
isoparametric concept, 37, 329, 333, 490
isoparametric coordinates, 33, 351
isotropic hardening, 233, 244
iterative procedure, 41

Jacobian matrix, 37, 40, 318, 320, 403, 431
Jaumann rate, 371, 405, 411

Karush–Kuhn–Tucker, 172, 253, 258, 290, 296
Kelvin chain, 286
Kelvin element, 282
kernel, 285
kinematic constraint, 272
kinematic hardening, 233, 242
Kirchhoff assumption, 309
Kirchhoff beam element, 318
Kirchhoff stress tensor, 368, 388, 402, 411, 419
Kirchhoff–Love formulation, 344, 491
knot insertion, 477, 485, 500
knot interval, 476, 481
knot multiplicity, 476
knot value, 476
knot vector, 474, 475, 476
Koiter’s generalisation, 253, 260, 361

Lüders bands, 298
Ladyzenskaya–Babuška–Brezzi condition,

391
Lagrange coordinates, 85
Lagrange description, 70, 86
Lagrange multipliers, 436, 444
Lagrange polynomials, 475, 484
Lamé constants, 24, 284
large displacement gradients, 63
large rotation increments, 333
layered approach, 346, 356
layered beam, 313
LDU decomposition, 9, 52, 133

left Cauchy–Green deformation tensor, 87, 386,
410, 420

left stretch tensor, 87, 388
level set function, 456, 470
Lie derivative, 410
limit point, 117, 132, 133
line search technique, 113, 124
linear acceleration scheme, 153
linear buckling analysis, 100
linear comparison solid, 134, 180
linear contribution tangential stiffness matrix, 69,

71, 73, 94
linear elastic fracture mechanics, 427, 441, 447,

455
linear elasticity, 23
Linear Multi-Step schemes, 155
Linux distributions, xix
literate programming, xx, 25
load control, 50
load increment, 44
load parameter, 44, 150
loading function, 225
Lobatto integration, 37, 312, 341, 432
local basis function domain, 476
local residuals, 241, 269, 420
local spin, 97
localisation, 183, 188, 196, 300, 448
location matrix, 34
logarithmic strain tensor, 388, 419
loss of ellipticity, 180, 210
loss of positive definiteness, 130, 133, 180
loss of uniqueness, 101, 130
lumped integration, 434
lumped mass matrix, 146, 149, 466, 476
Lyapounov stability, 129, 179

Mac OS X, xix
MacAulay brackets, 173, 292
mass matrix, 34, 143, 466
material coordinates, 85, 101
material description, 70
material stability, 179, 182
material tangential stiffness matrix, 43, 99, 108,

178, 398, 403, 430
Maxwell chain, 285
Maxwell compatibility condition, 181
Maxwell element, 282
member function, 77
membrane locking, 313, 343, 356, 450
membrane strain, 309, 313
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Index 513

mesh sensitivity, 179, 182, 196, 271, 302, 458,
496

meshfree methods, 185, 442
meshless methods, 442
micro-cracking, 185
microplane model, 199
midpoint configuration, 417
midpoint return-mapping scheme, 246
midpoint rule, 288, 292
mixed finite elements, 391
mixed hardening, 235
mode jumping, 124
mode-I crack, 188
mode-II crack, 188
modified Newton–Raphson method, 48
Mohr’s circle, 224
Mohr–Coulomb yield criterion, 224, 260, 386
moment of inertia, 311
monomials, 443
Mooney–Rivlin model, 378
moving least squares approximation, 442
multi-surface plasticity, 252
multilaminate model, 199
multiplicative elasto-plastic decomposition, 402,

407, 418, 419

Nanson’s formula, 366, 461
near-incompressibility, 376
neo-Hookean model, 378
nested yield surfaces, 235
neutral equilibrium, 130
Newmark time integration, 153
Newton–Cotes integration, 37, 312, 341, 432
Newton–Raphson method, 41, 48, 80, 113, 116,

174, 193, 203, 242, 249, 288, 315, 379, 463
nodal integration, 446
nominal stress tensor, 366
nominal traction, 89, 91, 366
non-associated flow rule, 197, 230, 251
non-associated hardening, 251, 269
non-convex domain, 446
non-linear elasticity, 268
non-local damage models, 210
non-local strain, 210
non-negativity property, 476
normal force, 309, 312, 319, 346
normal path method, 120
normal stress, 17
normalised external load vector, 44
normality rule, 230

normally consolidated soil, 267
numerical dissipation, 154
numerical integration, 35, 38, 61
numerical stability, 438
NURBS, 478

objective derivative of a vector, 369
objective stress rate, 370, 403
Ogden model, 383
order elevation, 477
orthogonal matrix, 13
out-of-balance vector, 45
out-of-plane shear strains, 345
overconsolidated soil, 268
overstress plasticity, 296

parameter domain, 474
Park’s method, 155
partition-of-unity property, 451, 476
partitioned procedure, 117
patch test, 53
path length, 116
path-following constraint, 116
path-following method, 116, 245
penalty functions, 445
perfect bond, 206
perfectly brittle material, 169, 185, 202
Perzyna visco-plasticity, 292
Petrov–Galerkin approach, 196, 442
physical domain, 474
pivot, 9, 133
plane acceleration waves, 181
plane-strain consistutive relation, 109
plane-strain damage consistutive relation,

175
plastic dilatancy, 231
plastic flow direction, 229
plastic potential function, 230
plastic spin tensor, 410, 418
plastic stretching, 409, 418
plastic volume change, 231
point interface elements, 434
Poisson effect, 203
Poisson’s ratio, 23, 57, 172, 175, 284
polar decomposition, 86, 368
Portevin–Le Chatelier bands, 298
positive definite matrix, 10, 476
potential energy, 375
Prager’s consistency condition, 228, 413
Prager’s hardening rule, 234

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



514 Index

preconsolidation pressure, 268
predictor, 127
prescribed displacements, 56
prestressed concrete, 206
principal stretches, 373, 388, 422
principal value, 15, 261, 372
principle of objectivity, 369
principle of virtual work, 33, 64, 98, 272, 314,

349, 402
projection matrix, 228, 244, 255
projection vector, 228, 256
propagating discontinuities, 469,

504
propagative instabilities, 298
pseudo-load vector, 281, 293
PyFEM.py, xix, 125
Python, xix, 41
Python database, 77

quadratic convergence, 50
quadrilateral element, 40
quarter-point elements, 441
quasi-brittle fracture, 187
Quasi-Newton Methods, 50, 138, 258
quaternions, 418

radial return method, 249
radius of convergence, 50, 113
Rankine yield criterion, 254
rate of deformation tensor, 370, 403
Rayleigh coefficient, 148
reduced integration, 164, 275, 343, 389
reference frame, 5, 12, 19
regularisation, 210, 271, 449
rehardening, 298
reinforced concrete, 206
Reissner–Mindlin formulation, 344,

491
relative displacements, 428
relaxation function, 283
relaxation time, 282, 290, 295
remeshing, 428, 441
residual vector, 45, 81, 294, 311
return-mapping algorithm, 239, 240, 269, 297,

417
Riemann integral, 283
right Cauchy–Green deformation tensor, 86, 372,

408
right stretch tensor, 86, 368, 397
Riks’ method, 120, 125

rotating crack model, 203, 205, 265, 266,
386

rotation matrix, 13, 334
Routh–Hurwitz stability theorem, 300
rubbers, 374
Runge–Kutta methods, 156

Secant-Newton methods, 50
second Piola–Kirchhoff stress, 108
Second Piola–Kirchhoff stress tensor, 88, 101,

161, 330, 332, 336, 339, 353, 367, 371, 375,
394, 409, 411

second-order accuracy, 144, 153
see-through criterion, 447
selective integration, 275
shallow-arch formulation, 344
shape functions, 33, 38, 39, 57, 151, 309, 325,

329, 336, 348, 352, 393, 430, 442, 443, 451,
476, 488

shear band, 190, 196, 298
shear correction factor, 316, 354
shear deformation, 314, 326
shear force, 314, 316, 346
shear locking, 316, 343, 348, 356, 450
shear modulus, 24
shear retention factor, 202
shear strain, 21, 314
shear stress, 17
Sherman–Morrison formula, 10, 139
Simpson integration, 37, 312, 341
single-edge notched beam, 196, 214, 428,

504
singular matrix, 9, 15
slip theory, 199
slope stability, 245
small-scale yielding, 185
smeared crack models, 189, 201
snap-back behaviour, 117
softening modulus, 183, 197
solid-like shell elements, 344, 356
spatial coordinates, 85, 101
spatial description, 70
spectral decomposition, 16, 245, 257, 409,

422
spectral radius, 52
spherical arc-length constraint, 119
spin tensor, 370
splines, 473
spring–sliding system, 219
spurious cracking, 206
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Index 515

spurious kinematic modes, 164, 274
spurious wave reflections, 432, 454
stabilised crack pattern, 209
stabilised finite element method, 395
stability, 179, 299
stability of the integration scheme, 241, 249, 260,

293
stable equilibrium, 130
static condensation, 194
Stieltjes integral, 283
strain energy density, 374
strain energy function, 376, 388, 411
strain history, 284
strain softening, 157, 179, 301
strain tensor, 21
strain-hardening creep, 288
strain-hardening hypothesis, 233
strain-rate softening, 297
stress history, 284
stress intensity factor, 427
stress resultants, 309, 343
stress singularity, 447, 455, 457
stress tensor, 17
stress vector, 17, 18
stress-dependent elastic moduli,

268
stress-resultant shell elements, 343
stress–strain relations, 23
stretching tensor, 370
strong discontinuity, 190
structural stability, 100, 180, 320, 464
subcycling, 164
subincrements, 249
sublayer model, 235
subspace constraint equation, 122
superposition principle, 283
support, 441, 446, 450, 476

T-junction, 481
T-mesh, 481
T-spline control mesh, 481
T-splines, 480
tangent cutting plane algorithm, 247
tangential shear modulus, 316, 348
tangential stiffness matrix, 10, 44, 48, 51, 58, 80,

82, 100, 130, 131, 136, 144, 150, 154, 163,
174, 198, 210, 288, 293, 295, 297, 311, 327,
332, 349, 379, 385, 395, 403, 411, 430, 453,
462

tangential stiffness modulus, 5, 65, 312

tension softening, 202, 208
tension stiffening, 208
tensorial shear strain, 21
test functions, 196, 365, 436, 442,

465
thickness stretching, 356
through-the-depth integration, 312, 343
time step selection, 164
time-discontinuous Galerkin methods,

156
time-hardening creep, 288
Timoshenko beam, 314, 326
Total Lagrange formulation, 67, 96,

161
total stress–strain relation, 171, 174
total-incremental method, 46
trace, 12, 377
traction oscillations, 431, 454
transformation of a second-order tensor, 13,

22
transformation of a vector, 12
transpose of a matrix, 8
trapezoidal return-mapping scheme, 245
trapezoidal rule, 153, 288, 291
Tresca yield criterion, 226, 260
trial functions, 196, 394
trial stress, 240, 258, 360
Truesdell rate, 371, 403, 411, 461
truss element, 64, 81
two-stage solution procedure, 117

unconditional stability, 153, 156
unstructured meshes, 463
Updated Lagrange formulation, 70,

96
updated normal path method, 120

variation diminishing property, 477
variational inconsistency, 196
velocity gradient, 179, 370, 409
Vieta’s rule, 15, 130
visco-plastic strain, 289
viscosity, 282, 290
visibility criterion, 447
void initiation, 185
Voigt notation, 18
volumetric hardening, 233, 267
volumetric locking, 271, 389, 450
volumetric strain, 22
von Mises yield criterion, 227
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516 Index

wave dispersion, 156
wave length, 300
wave number, 300
weak discontinuity, 190, 469
weak formulation, 33, 190
weight factor, 320
weight function, 210, 443
well-posedness, 181, 210
Windows, xix

work of separation, 187
work-hardening hypothesis, 232

yield function, 225, 412
Young’s modulus, 4, 23, 57, 65, 175, 198, 237,

282, 284, 469

zero-energy modes, 164
Ziegler’s hardening rule, 234
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