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Preface

Bridging the scales for material multiphysical studies.

Smart materials, Added Value Manufacturing, and
factories for the future are key technological subjects for the
future product developments and innovation. One of the key
challenges is to play with the microstructure of the material
to not only improve its properties but also to find new
properties. Another key challenge is to define micro- or
nano-composites in order to mix physical properties. This
allows enlarging the field of possible innovative material
design. The other key challenge is to define new
manufacturing processes to realize these materials and new
factory organization to produce the commercial product.
From the material to the product, the numerical design tools
must follow all these evolutions from the nanoscopic scale to
the macroscopic scale (simulation and optimization of the
factory). If we analyze the great amount of numerical tool
development in the world, we find a great amount of
development at the nanoscopic to the microscopic scales,
typically linked to ab initio calculations and molecular
dynamics. We also find a great amount of numerical
approaches used at the millimeter to the meter scales. The
most famous in the field of engineering is the finite element
method (FEM). But there is a numerical death valley to pass
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xviii Discrete Element Method to Model 3D Continuous Materials

though, from micrometers to several centimeters. This scale
corresponds to the need for taking into account discontinuity
or microstructures in the material behavior at the sample
scale or component scale (several centimeters). Since the
2000’s, some attempts have been carried out to apply the
discrete element method (DEM) for simulation of continuous
materials. This method has been developed historically for
true granular materials, like sand, civil engineering grains or
pharmaceutical powders. Some recent developments give new
and simple tools to simulate quantitatively continuous
materials and to pass from microscopic interactions at the
material scale to the classical macroscopic properties at the
component scale (stress and strain, thermal conductivity,
cracks, damages, electrical resistivity, etc.).

In this set of books on descrete element model and
simulation of continuous materials, we propose to present
and explain the main advances in this field since 2010. This
first book primarily explains in a clear and simple manner
the numerical way to build a DEM simulation that gives the
right (same) macroscopic material properties, e.g. Young
Modulus, Poisson Ratio, thermal conductivity, etc. Then, it
shows how this numerical tool offers a new and powerful
method for analysis and modeling of cracks, damages and
finally failure of a component. The second book [JEB 15]
presents the coupling (bridging) between DEM method and
continuum numerical methods, like the FEM. This allows us
to focus DEM on the parts where the microscopic properties
and discontinuities conduce the behavior and allow FEM
calculation where the material can be considered as
continuous and homogeneous. The last book [CHA 15]
presents the object oriented numerical code developed under
the free License GPL: GranOO (www.granoo.org). All the
presented developments are implemented in a simple way on
this platform. This allows scientists and engineers to test and
contribute to improving the presented methods in a simple
and open way.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Preface xix

Now, dear reader let us open this book and welcome in the
DEM community for the material of future development ...

Ivan IORDANOFF
January 2015
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Introduction

I.1. Toward discrete element modeling of continuous
materials

The most fascinating and interesting problems in
mechanics are also often the most difficult to resolve. To
overcome this difficulty, a natural way in which the scientists
proceed is to subdivide the studied problem into individual
components or elements, whose behavior is readily
understood, and to rebuild the original problem from these
components to study its behavior. This is the key idea of a
numerical simulation. Starting from the 1960s, numerical
simulation has become a significant and, at times, an
essential approach in the progress of many areas in
engineering and science. With the help of increasing
computer power, this modern numerical approach makes it
possible to solve mechanical problems in all their detail
without making too many simplifying assumptions and
approximations, as when adopting the traditional theoretical
practice. Nowadays, such an approach plays a valuable role in
providing validation for theories, offers insights into the
experimental results and assists in the interpretation or even
the discovery of new phenomena. In certain cases, the
problem of interest is of a discrete nature. Therefore, a finite
number of well-defined components are sufficient to obtain an
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xxii Discrete Element Method to Model 3D Continuous Materials

adequate model of the studied problem. With the current
computer capacity, discrete problems can be solved even if a
large number of components are involved. The numerical
methods used to solve such problems will be called discrete
methods (DMs). However, in most situations, the problem
needs to be indefinitely subdivided into infinitesimal
components, leading to local (usually differential) governing
equations which imply an infinite number of components.
Such a problem is called “continuous” problem. In continuous
problems (also called continua), the studied material is
assumed to be continuous and to completely fill the space it
occupies. As the computer capacity is finite, continuous
problems can only be solved exactly by mathematical
techniques, which are usually limited to very simplified
situations.

To circumvent the intractability of realistic continuous
problems, various methods of discretization have been
proposed. All the methods involve an approximation which,
hopefully, tends toward the true solution (of the continuous
problem) as the number of discrete variables increases. These
methods are known as continuum methods (CMs). The most
important among the CMs is the finite element method
(FEM) [ZIE 05a, ZIE 05b, ZIE 05c]. This method is
undoubtedly the most popular and powerful numerical
approach for studying the behavior of a wide range of
engineering and physical problems. This method is classically
used to simulate mechanical problems having length scales
much greater than the interatomic distances, and for which
the continuity assumption is valid and remains valid during
simulation. Solving a continuous problem using the FEM
method undergoes a preliminary step of meshing
(discretization) which aims to subdivide the problem domain
into a finite number of elements, called meshes or grids,
whose mechanical behavior is defined using a finite number
of parameters. The major drawback of this method is that the
associated governing equations arise from continuum
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Introduction xxiii

mechanics, based on a predefined mesh or grid. Therefore, it
faces great difficulties to predict most of the complex
microscopic effects, which can strongly influence the
macroscopic behavior, e.g. fracture, fatigue and durability.

A large number of attempts have been made to correct the
shortcomings of this method. The one most commonly used is
the rezoning (remeshing) technique, which aims to rezone
(remesh) the problem domain or simply the regions where the
initial mesh is severely affected. The computation is then
resumed on the new mesh. The field variables are
approximated at the nodes of the new mesh by mass,
momentum and energy transport. Despite the great success
of this technique in the simulation of complex problems, it
has several difficulties which can limit its application. The
rezoning procedure can be tedious and time-consuming.
Besides, the transport of the field variables from the old to
the new mesh is generally accompanied by material diffusion
which can lead to a loss of material history [BEN 92].
Furthermore, the numerical results are generally mesh
dependent. To alleviate these difficulties, Moës et al.
[MOË 99] have developed the extended finite element method
(XFEM). This approach is based on the concept of local
partition of unity [CHE 03]. It extends the standard FEM by
enriching the approximated solution space so as to naturally
reproduce the challenging features (e.g. discontinuity and
singularity) associated with the studied problem. Originally,
this method was developed to model fracture problems that
are challenging for the traditional FEM. The standard
polynomial basis functions for nodes belonging to elements
that are interested in the cracking mechanisms are enriched
by discontinuous basis functions. The enriched basis, which
includes crack opening displacements, is then used to
simulate fracture. Subsequent research has illustrated that
this method can also be used to solve problems involving
more general localized effects, e.g. singularities, material
interfaces or voids, which can be described by an appropriate
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xxiv Discrete Element Method to Model 3D Continuous Materials

set of basis functions. A key advantage of XFEM is that the
mesh topology does not need to conform with the
discontinuity surfaces, and then the mesh does not need to be
updated to track the microscopic effects (e.g. crack path). This
makes it possible to alleviate the computation costs and the
projection errors, compared to standard FEM. However,
embedding complex features and effects into the
approximation space is not always a straightforward issue.
For example, application of this method to simulate problems
with complex crack patterns, such as multiple cracks or crack
nucleation at multiple locations, presents a huge challenge
and is currently the subject of several studies. The difficulties
and limitations of this method are particularly evident when
simulating hydrodynamic phenomena such as explosion and
high velocity impact (HVI). In parallel with these efforts to
improve the FEM and grid-based methods in general, an
emerging number of new ideas have been led since the 1970s
for the development of alternative approaches. These
approaches now compete with traditional grid-based
methods. One main direction has resulted in the next
generation of CMs: meshfree methods. Among these methods,
we can cite the smoothed-particle hydrodynamics (SPH) and
its different variants (e.g. corrective SPH, discontinuous
SPH) [LIU 03, RAN 96, LIU 10], moving least square (MLS)
[LEV 98] and element-free Galarkin method (EFGM)
[BEL 94]. The main objective of the meshfree methods is to
provide an accurate and stable numerical solution for the
governing equations of the studied problem with a set of
arbitrarily distributed nodes (or particles) without using any
mesh or connectivity between them. Since the problem
domain is only represented by a set of scattered nodes, rather
than a system of predefined meshes or grids, these methods
are attractive in dealing with problems that are difficult for
traditional (grid-based) CMs. Nonetheless, they are very
time-consuming and they suffer from several numerical
problems, such as accuracy degradation near the boundaries
and difficulties to impose essential (Dirichlet) boundary
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Introduction xxv

conditions. In addition, they generally lead to approximation
errors larger than those obtained using grid-based methods.

Despite the diversity of the proposed solutions, accurate
description and modeling of several important mechanical
problems have long been a challenge for traditional
continuum-based theories, and then for CMs. Indeed, certain
inherent drawbacks caused by the reliance of these methods
on computation meshes and unsuitability in dealing with
discontinuities are still not adequately addressed. In
contrast, the DMs such as molecular dynamics (MD)
[ALD 57, ALD 59] and discrete element method (DEM)
[CUN 71, CUN 79] are based on discrete mechanics and do
not rely on any kind of mesh. The domain of interest is
modeled by a discrete system made up of fully persistent
discontinuities delimiting a set of rigid (or
pseudo-deformable) bodies that are in interaction with each
other by interaction laws through these discontinuities.
Although these methods were originally developed to study
naturally discrete problems (e.g. powder or granular material
problems), some of their features are very attractive for
several continuous problems that cannot be easily solved by
CMs (e.g. damage, fracture, discontinuities and
fragmentation). Indeed, these methods naturally take into
account discontinuities, and then there is no need for complex
transition procedure from continuum phase to discontinuum
phase. However, the lack of theoretical basis has seriously
restricted their application on continua until recent years.
Mainly, two significant challenges must be tackled to this
end: (1) the first challenge is concerned with the choice of the
cohesive links (bonds) between adjacent discrete elements
and the identification of their microscopic parameters so as to
ensure a correct macroscopic behavior; (2) the second
challenge is concerned with the construction of a discrete
domain taking into account the structural properties of the
original problem domain, e.g. homogeneity and isotropy, such
that the macroscopic mechanical behavior is independent of
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xxvi Discrete Element Method to Model 3D Continuous Materials

the number of discrete elements. The terms “microscopic” and
“macroscopic” are used here to designate, respectively, the
bond (cohesive link) level and the domain level. This bears no
reference to modeling scales as otherwise used in material
modeling. Although some works contributing to address the
first challenge (correspondence between the microscopic and
macroscopic properties) can be found in the literature, the
second challenge has remained up to very recently far from
being tackled.

To develop relationships between microscopic and
macroscopic properties, two approaches have been proposed
in the literature: analytical approach and numerical
approach (calibration). In the case of regular two-dimensional
(2D) lattices, Potapov et al. [POT 95a, POT 95b] have shown
that the macroscopic properties can easily be derived by a
hand calculation, using bond-level strain–stress formulas.
Based on energy considerations, Wang and Mora [WAN 08]
have extended the works of Potapov et al.
[POT 95a, POT 95b] to regular three-dimensional (3D)
lattices. As for general 3D lattices, the relationships between
microscopic and macroscopic properties can be derived using
the principle of energy conservation, which posits that the
external work and the potential energy (stored elastic energy
of the bonds) are equivalent. This can be done in a discrete
manner by summing bonds between discrete elements or
using integral form of a fictitious continuous lattice
[KUH 01, LIA 97]. In this derivation, the external work is
estimated using a kind of homogeneous strain field, which is
not well defined and can lead to relatively large and
inescapable estimate errors [LIA 97]. This represents the
weak link of the analytical approach. To overcome this
limitation, other authors [HEN 04a] have proposed a
numerical approach based on “best-fit” strategy. In this
approach, the microscopic properties corresponding to the
expected macroscopic properties are determined by
calibration.
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Introduction xxvii

I.2. Scope and objective

The major drawback of the existing (analytical and
numerical) approaches to relate microscopic and macroscopic
properties is that the obtained relationships between these
quantities are most often dependent on the number of
discrete elements used to discretize the problem domain.
Therefore, these relationships must be recalculated each time
the domain discretization is refined, which can be tedious and
costly. Besides, the discretization of the studied domain
generally does not reflect the structural properties (e.g.
isotropy and homogeneity) of this domain. A discrete domain
having some regularities (e.g. identical discrete elements and
arranged discrete elements along the axes) may lead to an
anisotropic mechanical behavior at the structure level. To
overcome these problems, André et al. [AND 12b, AND 13,
AND 14] have recently proposed a new methodology allowing
for correct discrete element modeling of 3D continua. This
methodology is developed for a particular DEM variation in
which the interaction between the adjacent discrete elements
is ensured by 3D cohesive beam bonds, but it can easily be
extended for other DEM variations. As shown by André et al.
[AND 12b], several conditions must be fulfilled to ensure
equivalence between a continuum and its DEM
representation (from both geometric and mechanical points of
view) and to get round the fineness dependence of the results.
These conditions are divided into two classes: (1) conditions
on the construction of the DEM domain to ensure a “good”
geometric representation of the continuous domain and (2)
conditions on the mechanical behavior of the cohesive beam
bonds between the discrete elements to ensure a correct
macroscopic behavior. These conditions are intimately bound
up with each other in such a way that the proposed
methodology is valid only when all of them are applied.
Further work carried out by the same research team
[TER 13] has shown that this methodology can also be
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xxviii Discrete Element Method to Model 3D Continuous Materials

applied to preform DEM modeling of thermal conduction in
3D continua.

The present book aims at bringing together the various
developments performed on the newly proposed variation of
DEM for 3D discrete element modeling of continuous
materials. This book is dedicated to detailing the basic ideas
and formulation of this variation and to providing a
comprehensive and robust methodology to model mechanical
behavior, thermal conduction and brittle fracture of these
materials.

I.3. Organization

Following this Introduction, the book is organized as
follows:

– Chapter 1 introduces some background knowledge of
discrete element modeling. The different classes of DMs are
quickly reviewed so that the place of the DEM variation used
in this book can be distinguished. Subsequently, analytical
and numerical approaches used to assess macroscopic
variables (e.g. stress and strain tensors) in discrete element
modeling are briefly discussed.

– Chapter 2 constitutes the main chapter of the book.
It covers the formulation and implementation of the newly
developed DEM variation as well as the proposed methodology
to correctly model a continuum, and discusses various aspects
of the approach. This approach not only systematically derives
a robust DEM representation of a continuous problem, but
also guarantees fineness independence of the numerical
results beyond a certain number of discrete elements.

– Chapter 3 is devoted to DEM modeling of thermal
conduction in 3D continua. It describes a fast and efficient
method, based on the methodology presented in the previous
chapter, to simulate heat conduction through a 3D continuum
by the proposed DEM variation.
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Introduction xxix

– Chapter 4 deals with brittle fracture simulation. It shows
how the present DEM variation allows us to simply implement
fracture criteria and test the effect on the structure. Two
brittle fracture models are discussed. As will be shown,
some of the existing fracture models fail to reproduce the
cracking mechanisms at the microscopic scale correctly, which
can undermine application of DMs for fracture problems.
To overcome the limitations of these models, this chapter
proposes an approach based on the computation of an
equivalent stress tensor at the discrete elements.

– Finally, the book ends with several conclusions.
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1

State of the Art: Discrete
Element Modeling

1.1. Introduction

As mentioned in the previous chapter, in conjunction with
the accelerating progress in computer science and software
technology, the final decades of the 20th Century have seen
an explosion of powerful numerical methods which can be
classified into discrete methods (DMs) and continuum
methods (CMs). These methods have been used over the
years to simulate a wide variety of mechanical problems at
different scales. Typically, four scales can be distinguished in
the context of numerical simulation:

– the nanoscopic (or atomic) scale (∼ 10−9 m), where
phenomena related to the behavior of electrons become
significant. At this scale, the interaction between particles
(electrons, atoms, etc.) is directly dictated by their quantum
mechanical (QM) state;

– the microscopic scale (∼ 10−6 m), where phenomena
related to the behavior of atoms are considered. The
interaction between atoms is governed by empirical
interatomic potentials, which are generally derived from

Discrete Element Method to Model 3D Continuous Materials, First Edition.  
Mohamed Jebahi, Damien André, Inigo Terreros and Ivan Iordanoff.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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2 Discrete Element Method to Model 3D Continuous Materials

QM computations. Classic Newtonian mechanics is used to
compute the displacements and rotations of atoms;

– the mesoscopic scale (∼ 10−4 m), where phenomena
related to lattice defects are considered. At this scale, the
atomic degrees of freedom are not explicitly treated, and only
larger scale entities (clusters of atoms, clusters of molecules,
etc.) are considered. The interaction between particles is also
described by classic Newtonian mechanics;

– the macroscopic scale (∼ 10−2 m), where macroscopic
phenomena which can be described by continuum mechanics
are considered. At this scale, the studied physical systems are
regarded as continua, whose associated behavior is described
by constitutive laws.

Typically, the DMs cover the first three scales. At these
scales, the length scale of interest is at the same order of
magnitude as the discontinuity spacing, which makes
inappropriate the application of traditional CMs. Otherwise,
additional handling is required to correctly reproduce
phenomena associated with discontinuities like strain
localization at crack initiation. At the macroscopic scale, most
of the interesting materials can be treated as continua even
though they consist of discrete grains at smaller scales. CMs
can therefore be used without remorse at this scale. However,
it is often rewarding to model such materials as
discontinuous by DMs because new knowledge can be gained
about their macroscopic behavior when their microscopic
mechanisms are understood. The need to model these
materials as discontinuous is even more rooted when they are
characterized by complex nonlinear mechanical behaviors
that cannot easily be described by traditional continuum
theories, e.g. anomalous behavior of silica glass [JEB 13b].
This reflects the tremendous diversity of problems to which
discrete element modeling can be applied and the
ever-increasing availability of DMs. Section 1.2 gives a
bird’s-eye view of these methods, in order to position the one
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State of the Art: Discrete Element Modeling 3

that is used in this book; the reader can refer to
[DON 09, JIN 07, JEB 14] for more detail. The common
feature of these methods is that the studied material is
modeled by a set of discrete elements, which can be of
different shape and size. These elements interact with each
other by contact laws and/or cohesive bonds whose type is
directly dictated by the physics of the material being
modeled. Knowing forces and torques applied on the discrete
elements, displacements and rotations can be computed using
the Newton’s second law. For practical purposes, it would be
often beneficial to express these results in terms of
homogeneous macroscopic variables (e.g. strains and
stresses). This allows us, for example, to compare the
numerical results with experimental ones. Several techniques
have been developed to assess macroscopic quantities from
the discrete variables (e.g. force, displacement, etc.). The
most commonly used techniques are detailed in section 1.4.

1.2. Classification of discrete methods

According to the analysis scale, the DMs most commonly
used in numerical simulation can be classified into three
classes: quantum mechanical (or ab initio) methods (QMMs),
atomistic methods (AMs) and mesoscopic DMs (MDMs)
(Figure 1.1).

Figure 1.1. Characteristic length scales and time
scales for numerical methods
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4 Discrete Element Method to Model 3D Continuous Materials

1.2.1. Quantum mechanical methods

The QMMs are used for material simulation at the atomic
scale (∼ 10−9 m), in which the electrons are the players
(Figure 1.1). The molecules are treated as collections of nuclei
and electrons whose interaction is directly dictated by their
QM state, without any reference to “chemical bonds”. These
methods all ultimately stem from the Schrödinger equation
first brought to light in 1925. The fully time-dependent form
of this equation for a single particle p (e.g. electron) is
expressed as:

[
− h̄

2mp

(∇2 +Φ(rp, t)
)]

Ψ(rp, t) = ih̄
∂Ψ(rp, t)

∂t
[1.1]

where mp and rp are, respectively, the mass and position
vector of the particle of interest, t designates the time, Φ is an
external field (e.g. elecrostatic potential), ∇2 is the Laplacian,
h̄ is Plank’s constant divided by 2π, i is the square root of −1
and Ψ is the wave function which characterizes the particle
motion. In fact, the wave function Ψ can properly be obtained
for all the particles within a system, which, for crystalline
materials, is actually reduced to the primitive unit cell
because of translational symmetry. However, equation [1.1]
needs this function to be expressed for individual particles.
To get around this, the technique most commonly used is to
write the overall wave function as a product of single-particle
wave functions (the Slater determinant) and then to recast
the underlying Schrödinger equation in terms of these
functions. Solving this equation gives the particle motions,
which in turn give the molecular structure and energy among
other observables, as well as information about bonding. The
challenge in developing QMMs is that such an equation can
be solved exactly only for few problems, e.g. one-electron
system (the hydrogen atom), and approximations need to be
made. The approximation commonly used is the so-called
“Hartree–Fock” which consists of replacing the “correct”
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State of the Art: Discrete Element Modeling 5

description of particle (electron) motions by a picture in
which the particles behave essentially as independent bodies.
Several other approximations can be found in the literature.
These approximations constitute the main difference between
QMMs. Examples of these methods are quantum Monte
Carlo (QMC) [FOU 01] and quantum chemistry (QC)
[SZA 89]. These methods allow us to treat electrons explicitly
and accurately, which makes them very accurate but
computationally too demanding to handle more than a few
tens of electrons. Other QMMs are density-functional theory
(DFT) and local density approximation (LDA)
[HOH 64, PAY 92]. In these approaches, the primary
Schrödinger equation is expressed in terms of particle density
rather than the wave functions. Although they are less
accurate than QMC or QC, these methods can be readily
applied to systems containing several hundred atoms for
static properties. Dynamic simulations with DFT and LDA
are usually limited to timescales of a few picoseconds.

Overall, the QM methods are generally very accurate since
they hold out the possibility of performing simulations
without need for prior tuning. However, they are extremely
expensive and can only be applied on very small domains a
few nanometers in size. Indeed, they deal with electrons in a
system and, even if some of the electrons are ignored (as in
the semi-empirical approaches), a large number of particles
must still be considered.

1.2.2. Atomistic methods

The AMs are used for material simulation at the
microscopic scale (∼ 10−6 m), where atoms are the players
(Figure 1.1). These methods ignore the electronic motions and
compute the energy of a system as a function of the atomic
positions only. This way to compute energy derives its
legitimacy from the Born–Oppenheimer approximation,
which postulates that the electrons adjust to the new atomic
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6 Discrete Element Method to Model 3D Continuous Materials

positions much faster than the atomic nuclei. The interaction
laws between particles (atoms) can be described by empirical
interatomic potentials that encapsulate the effects of bonding
(mediated by electrons) between them. These potentials may
depend on the distance between particles, angles between
bonds, angles between planes, etc. Equation [1.2] gives the
general form of these potentials:

Φ(r1, r2, ..., rN) =
∑

pΦ1(rp) +
∑

p
∑

q, q > pΦ2(rp, rq)

+
∑

p
∑

q, q > p
∑

m, m > qΦ3(rp, rq, rm)

+ ... [1.2]

where rp is the position vector of a particle (atom) p, N is the
total number of particles, Φ1 is the one-particle part of Φ (due
to external field or boundary conditions) and Φ2 and Φ3 are,
respectively, the two-particle and three-particle parts of Φ
due to interaction between particles. The interatomic
potentials may include several parameters which can be
obtained by calibration using experimental data or from QM
calculations. When only Φ2 parts are present, the associated
Φ is called the pair potential, e.g. Hard sphere potential and
Lennard–Jones potential. The Hard sphere potential
(Figure 1.2a) is the simplest part (without any cohesive
interaction) and is generally used in the theoretical
investigation of some idealized problems:

Φ(lpq) =

{∞ for lpq ≤ l0
0 for lpq > l0

[1.3]

where lpq = ‖rq − rp‖ is the distance between two particles p
and q and l0 is the cutoff distance. The Lennard–Jones
potential (Figure 1.2b) is more complex and more realistic to
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State of the Art: Discrete Element Modeling 7

model some physical interactions, such as the van der Waals
interaction in inert gases and molecular systems:

Φ(lpq) = 4ε

[( σ

lpq

)12 −
( σ

lpq

)6
]
= ε

[(
lm
lpq

)12

− 2

(
lm
lpq

)6
]

[1.4]

where ε is the depth of the potential well (the region
surrounding the potential minimum), σ is the finite distance
at which the interparticle potential is zero and lm is the
distance at which the potential reaches its minimum. Several
papers providing the Lennard–Jones parameters for some
molecular systems can be found in the literature
[ASH 76, HAL 75]. The pair interatomic potentials are
currently the most commonly used because of their simplicity
and their relatively good ability to model several molecular
systems. However, in some complex problems, more
sophisticated many-body potentials (including Φ3 and higher
terms) are required to correctly reproduce the involved
interaction mechanisms. Knowing the interatomic potential
Φ, the loadings acting on the particles (atoms) can be
obtained. Then, Newton’s second law can be applied to find
the motions of these particles. This is the key idea of the
AMs. Examples of these methods are molecular mechanics
(statics) (MM) [HEH 03], molecular dynamics (MD)
[ALD 57, ALD 59] and MC [MET 49], which are widely used
in molecular simulation.

Although they are less accurate than the QMMs, the AMs
are relatively inexpensive (compared to QMMs) and are able
to provide insight into atomic processes involving
considerably large systems of up to 109 atoms [ABR 02].
Nevertheless, dynamic simulation with AM methods is
generally limited to timescales of a few nanoseconds, which
can be crippling for the simulation of realistic mechanical
problems.
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8 Discrete Element Method to Model 3D Continuous Materials

(a) Hard sphere potential

(b) Lennard–Jones potential

Figure 1.2. Examples of pair potentials

1.2.3. Mesoscopic discrete methods

To overcome the timescale limitations of the QMMs and
the AMs, another generation of DMs has been developed:
MDMs. The MDM methods can be used for material
simulation at the mesoscopic scale (∼ 10−4 m), where lattice
defects such as dislocations, crack propagation and other
microstructural elements are the players. At this scale, the
system is too small to be regarded as a continuum and too
large to be simulated effectively using QMMs or AMs. More
accurately, the mesoscopic scale can be defined as an
intermediate scale at which the microscopic phenomena (e.g.
particle motions) can be assumed in mechanical equilibrium,
but cannot be described by continuum mechanics. The MDMs
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State of the Art: Discrete Element Modeling 9

can broadly be regarded as a generalization of the AMs,
where more complex interaction laws are used. These
interaction laws are usually derived by calibration or from
phenomenological theories that encompass the effects of
interactions between atoms. In MDMs, the atomic degrees of
freedom are not explicitly treated and only larger-scale
particles are modeled. Originally, this class of methods was
developed to model movements within granular materials in
rock mechanics [CUN 71]. Subsequent works have extended
this class to study damage in various geometricals such as
concrete [HEN 04b] and rocks [BOB 09]. More recently,
attempts to apply this class of method on continuous
materials (continua), such as ceramics [TAN 09] and glasses
[AND 13, JEB 13b, JEB 13a, AND 12b], have emerged. In
these attempts, the continuum is also modeled by an
agglomerate of discrete elements (particles or nodes) which
interact via bilateral cohesive links to ensure the material
cohesion. Different cohesive links are tested according to the
physical properties of the studied material. Figure 1.3
illustrates an example of a continuum modeled by the MDM
method. As will be seen in Chapter 2, the application of
MDMs methods in modeling of continua must respect certain
geometric and mechanical rules.

(a) Relaxing state (b) Loading state

Figure 1.3. MDM modeling of a continuum. For a color version of
the figure, see www.iste.co.uk/jebahi/discrete.zip
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10 Discrete Element Method to Model 3D Continuous Materials

Nowadays, the MDMs present an alternative method to
study realistic complex problems, for which continuity
assumption is not valid, or problems with discontinuities that
cannot easily be treated by CMs, such as cracking behavior of
silica glass [AND 13, JEB 13b, JEB 13a, AND 12b]. The
benefits of these methods have attracted several researchers,
and consequently, several variations of MDMs have been
developed. These variations can be divided into four
categories as shown in Figure 1.4. The fundamental concepts
of each one are briefly recalled hereafter.

Figure 1.4. Classification of mesoscopic discrete methods (MDMs)

1.2.3.1. Lattice methods

In lattice models, a solid is modeled by a set of nodes
connected with truss or beam elements [SCH 92a, SCH 92b]
(Figure 1.5). Typically, nodes have neither masses nor
volumes (they do not occupy volumes). Solving a mechanical
problem with this class of DMs is based on the construction of
a global stiffness matrix K from the local connection
properties. Knowing this matrix, the displacements u and
rotations θ at the nodes can be obtained for static analysis by
solving:

KX = b [1.5]

where X is the vector of the problem unknowns which
includes both displacements and rotations of all the nodes
and b is the loading vector which includes forces and torques
in the beams. Both regular and irregular lattices were
studied. Originally, the lattice models were used to represent
elastic continuum; the equivalence was established for both

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



State of the Art: Discrete Element Modeling 11

truss [HRE 41] and beam [SCH 96] elements. Later on,
obvious enhancements, such as brittle beam failure, were
introduced. Lattice models nicely show the emergence of
relatively complex structural behaviors, although fairly
simple formulas are used to describe the governing local
processes.

Figure 1.5. 2D regular triangular lattice of beams
(inspired by [SCH 92a])

Lattice models have shown a great ability to model
fracture in continuous materials. Schlangen et al. [SCH 97]
pointed out that using beam elements (forces and torques are
considered), the crack pattern is quite close to the
experimentally observed pattern. The same authors [SCH 97]
emphasized the importance of the beam torques, without
which the crack behavior may be entirely unacceptable. The
major drawback of these models is that the nodes do not have
volumes, which can cause numerical problems related to
crack closure in postfracture stage. To circumvent this
problem, Ibrahimbegovic et al. [IBR 03] have proposed to
associate fictitious equivalent volumes with the nodes, based
on the spatial Voronoï decomposition. However, this solution
is generally time-consuming, especially in the case of large
three-dimensional (3D) problems.
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12 Discrete Element Method to Model 3D Continuous Materials

1.2.3.2. Smooth contact particle methods

This class of methods is very close to the first discrete
approach proposed in the literature by Cundall and Strack
[CUN 71, CUN 79]: distinct (discrete) element method
(DEM). Contrary to lattice models, particle models consider
elements with masses and volumes in interaction through
contact laws. These elements often have a disk shape (in
two-dimensional (2D)) or spherical shape (in 3D): only one
parameter (the radius) is required to determine the geometry
of elements and there is only one possible contact easily
detectable between them. Consequently, computer memory
requirements and processing time are minimized with these
element shapes, even when a relatively large number of
elements are used. Nevertheless, discs and spheres can roll or
rotate easily. This does not reflect the expected behavior for
several materials, for example, in the case of large shear
processes. To solve this problem, more complex shapes such
as ellipses [TIN 93], ellipsoids [LIN 97], polygons [ISS 92]
and polyhedra [CUN 88] were proposed in the literature to
provide more flexibility for element characterization in
particle models.

Basically, the associated algorithm involves two stages. In
the first stage, interaction forces are computed when
elements slightly interpenetrate each other. This
force-interpenetration formulation is generally referred to as
a “smooth contact” method or “force–displacement” method.
Actually, the interpenetration between discrete elements,
which makes no mechanical sense, represents the relative
deformation of the surface layers. In the second stage,
Newton’s second law is applied to determine the acceleration
of each element, which is then integrated, using “dynamic
explicit” schemes, to find the new velocities and positions of
elements. This process is repeated until the simulation is
achieved.
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State of the Art: Discrete Element Modeling 13

Figure 1.6. 2D smooth contact particle model

1.2.3.3. Non-smooth contact particle models

Despite the great success of the smooth contact particle
models to simulate a wide variety of complex systems, there
are cases for which they are less appropriate:

– in systems where the typical duration of a collision
is much shorter than the mean time between successive
collisions of a particle. Therefore, the pairwise collisions of
particles may be considered as instantaneous events;

– in systems where the contact laws between particles
cannot easily be determined as a function of the relative
position, velocity and orientation; however, information about
postcollision velocities is accessible from the precollision
conditions (e.g. by using experimental techniques);

– in systems where the particles are very rarely in contact
with more than one other particle.

To allow a better investigation of such systems, another
class of DMs has been developed. This class provides an
alternative approach based on a “non-smooth” formulation of
mutual exclusion and dry friction between elements [JEA 99,
LUD 96, MOR 94]. It introduces the notion of non-smooth
(irregular) contact between elements which is, at present, the
subject of several studies. Interpenetration between elements
is prevented: no elastic contact laws are used between them.
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14 Discrete Element Method to Model 3D Continuous Materials

Mainly, two classes of numerical integrators exist for non-
smooth contact methods; both of them are of the “dynamic
implicit” type: the event-driven integrators, also referred to
as the event-driven method (EDM) [LUD 96], and the time-
stepping integrators, also referred to as the contact dynamics
method (CDM) [JEA 99, MOR 94]. In EDM, a collision or
“event” occurs when two rigid elements touch each other and
the postcollisional and angular velocities are prescribed by
a collision operator [RAP 80]. Despite being very accurate,
the event-driven integrators treat only one force at a time.
Therefore, they are not well adapted for problems with many
simultaneous contacts, as often encountered in mechanics.
To overcome this limitation, Jean and Moreau [JEA 99,
MOR 88] have developed the CDM which has a specialized
numerical scheme for problems with many contacts. The
governing equations are expressed as differential inclusions
(multivalued differential equations) and the accelerations are
replaced by velocity jumps. In the generic CDM algorithm,
an iterative process is used to compute forces and velocities.
This process consists of solving a single contact problem with
all other contacts kept constant, and iteratively updating the
forces until a convergence criterion is fulfilled. Two basic
kinematic constraints are used between elements in the CDM
formulation:

– the Signorini conditions which state that the normal force
fn is repulsive when the elements are in contact (distance
between them is zero), and fn = 0 otherwise. To deal with
persistent contacts, fn is reset to zero when no relative velocity
exists between elements in contact;

– Coulomb’s friction law, which relates the sliding particle
velocities and the friction forces ft.

These kinematic constraints can also be complemented by
a “rolling friction” constraint which introduces a moment
resistance [BRA 02]. Within the CDM, the time resolution is
much larger than the collision characteristic time (unlike in
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State of the Art: Discrete Element Modeling 15

the case of smooth contact approaches). Therefore, the time
step represents a unit of time during which collisions can
occur, causing velocity jumps. Although CDM has
successfully been used for several geomechanical problems
[DON 09], it is much more difficult to implement than the
DMs based on smooth contact. Also, the prediction of the
contact forces and particle velocities in the following time
step from the current configuration is very problematic and is
currently the subject of several studies.

The non-smooth contact models are generally used to
study quasi-static problems or problems with relatively low
dynamic effects. This class of methods is perfectly suitable to
study mechanical problems of granular mechanics. However,
in the case of continuous media, the use of models based on
regular or “smooth” interaction laws seems to be
advantageous since the elasticity is naturally taken into
account by these interaction laws.

1.2.3.4. Hybrid lattice-particle models

As seen earlier, the features and advantages of the lattice
and particle models are largely complementary. Indeed, the
particle methods cannot correctly model a continuum using a
simple disk of spherical elements, especially when significant
shear effects are involved. This problem can be solved using
cohesive beams between elements, such as in lattice models.
On the other hand, particle methods can correctly deal with
crack closure in postfracture stage, since elements have their
own volumes. However, additional treatment must be made
to simulate this phenomenon by using lattice models.
Therefore, it would be beneficial to combine these models, in
order to strengthen their advantages and overcome their
drawbacks. This idea has attracted a strong research effort
which has given rise to the class of hybrid lattice-particle
methods. This class merges the main features of the
combined models, i.e. by considering sphere elements
connected with cohesive beams [GRI 01] (Figure 1.7).
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16 Discrete Element Method to Model 3D Continuous Materials

Figure 1.7. 2D hybrid lattice-particle model

1.3. Discrete element method for continuous materials

As seen in the previous section, the DMs are classified into
three classes: QMMs, AMs and MDMs. The first two classes
are adapted for very fine-scale problems for which continuum
description is not possible. Application of these classes to
study continuous materials whose scale of interest is much
greater than the interatomic distance is extremely
time-consuming or even crippling. The MDMs are used to
study the problems at the mesoscopic scale which is the scale
of interest for most of the complex phenomena that are
encountered in continuum simulation, but cannot correctly be
treated by CMs. Compared to QMMs and AMs, these
methods are relatively inexpensive and seem to be the most
adapted to simulate continuous materials. Mainly, four
categories of MDMs can be distinguished. The category of
non-smooth contact methods is based on a non-smooth
formulation between particles. This formulation can be
perfectly adapted for granular materials; however, it is
inappropriate to study continuous materials. In effect, the
use of models based on regular or “smooth” interaction laws
seems to be advantageous for these materials since their
mechanical behavior can naturally be taken into account by
the smooth interaction laws. Except for the non-smooth
contact methods, all MDM categories present this feature (of
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State of the Art: Discrete Element Modeling 17

smooth interaction between particles) and seem a priori
candidates to model continuous materials. Among them, the
category of hybrid lattice-particle methods has practically all
the advantages of the MDM categories with regard to
continuum simulation, while alleviating their drawbacks.
The use of a DM in this category to model continua is thereby
justified. Specifically, this book focuses on the variation of
DMs recently developed by André et al. [AND 12b,
AND 13, JEB 13b, TER 13, JEB 13a]. This method models a
continuum by a set of spherical particles linked by 3D
cohesive beams. The main specificities and features of this
method will be detailed later.

1.4. Discrete-continuum transition: macroscopic
variables

In the framework of discrete element modeling, results of a
mechanical problem are given in terms of forces and torques
acting on particles, and their corresponding displacements
and rotations. However, in order to compare these results
with macroscopic experiments or theories, it is useful to
assess macroscopic quantities from these results. This is the
subject of several works which aim to establish a
correspondence with continuum theories by computing
macroscopic tensorial quantities, e.g. stress tensor σ and
strain tensor ε, as well as other scalar properties, e.g. bulk
and shear moduli [GOD 86, KRU 96, LIA 97]. These
macroscopic quantities can even be applied to enrich some
criteria used in discrete element modeling. As will be shown
in Chapter 4, fracture criteria based on a stress tensor allow
us to reproduce the cracking mechanisms much better than
the traditional criteria based on the forces or displacements.
The major challenge in obtaining these quantities is that, in
some variations of DMs, the particles have additional degrees
of freedom (rotations) which are not taken into account in
classical continuum theories. To account for rotation effects,
it is necessary to develop a consistent size-dependent
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18 Discrete Element Method to Model 3D Continuous Materials

continuum theory able to account for the microstructure of
materials. This theory must span many scales and, of course,
reduce to classical theories for the macroscopic scale. More
accurately, new length-related measures of deformation, such
as the curvature tensor, are needed in a more complete
continuum theory. As a result, this theory also requires us to
introduce the notion of couple stress which was originally
proposed by Voigt in 1887 [VOI 87]. Several attempts have
been developed in the literature to establish such a theory
[TOU 62, CHE 01, LEO 02, HAD 11, COS 09]. However,
these attempts, with their numerous difficulties, fall far short
of providing a solid formulation workable in practice
[ERI 68, MIN 62, HAD 11].

In the remainder of this section, approaches used to
compute stress and strain tensors will be briefly reviewed,
while remaining within the framework of classic continuum
theories. The contribution of couple stress will then be
ignored in this review. Furthermore, the phenomena related
to the kinematics of the particles and having no equivalent in
continuum will not be considered. This does not mean
ignoring the particle rotations, only phenomena associated
with no dissipated or stocked energy are ignored, e.g. loss
contact or rolling without sliding. According to several papers
[CAI 95, MOR 97, AND 13, BAG 06, CAM 09], these
approaches lead in a first approximation to an acceptable
estimate of these tensors. For the sake of clarity, unless there
is a need for index form, equations in the following will be
given in matrix form. Moreover, tensors will be replaced by
their corresponding matrices in the equations.

1.4.1. Stress tensor for discrete systems

Within the framework of classic continuum theories, the
most commonly used definition of stress in DMs is the virial
stress. This stress, also called system-level stress, is based on
a generalization of the virial theorem of Clausius developed
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State of the Art: Discrete Element Modeling 19

in 1870 for gas pressure. In the original definition
[MCL 74, TSA 79, SWE 83], the average virial stress over a
volume V around a particle p is given by:

Π̄ =
1

V

⎛
⎝−mp u̇p ⊗ u̇p +

1

2

∑
q �=p

lpq ⊗ fpq

⎞
⎠ [1.6]

where mp is the mass of p, u̇p is the velocity of p (material
time derivative of the displacement up, u̇p = dup/dt),
lpq = rq − rp is the vector linking the centers of particles p and
q, rp is the position vector of p, fpq is the force applied on p by
particle q, “⊗” denotes the tensor product and the summation
runs over all the particles in V . The sign convention for solid
mechanics is used in the virial stress relation [1.6], i.e. the
stress is negative in compression and positive in extension.
This relation includes two parts. The first part depends on
the mass and velocity (or in some versions the fluctuations of
velocity) of the particles, reflecting that the mass transfer
through a fixed spatial surface causes mechanical stress on
this surface. The second part depends on the interparticle
forces and particle positions, providing a continuum measure
for the internal mechanical interactions between particles.

The virial stress as defined in [1.6] has widely been used in
the past to compute an equivalent to Cauchy stress in
discrete systems. Recently, Zhou [ZHO 03] has demonstrated
that, contrary to what was believed by some investigators,
this quantity is not a measure for the mechanical forces
between material points and cannot be regarded as a
measure of mechanical stress in any sense. The lack of
physical significance is both at the microscopic level (particle
level) and macroscopic level (system level). This author has
shown that only the second part of the virial stress can be
identified with the Cauchy stress. The details of the proof can
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20 Discrete Element Method to Model 3D Continuous Materials

be found in [ZHO 03]. Therefore, the average stress in a
region of volume V as given by Zhou is:

σ̄ =
1

2V

∑
p

∑
q �=p

lpq ⊗ fpq [1.7]

Originally, expressions [1.6] and [1.7] were developed for
MD where the interparticle forces are derived from a
functional Φ (e.g. Lennard–Jones potential [1.4]) as follows:

fpq =
∂Φ(lpq)

∂lpq
lpq

lpq
[1.8]

where lpq = ‖lpq‖ represents the distance between particles
p and q. In this instance, expressions [1.6] and [1.7] lead to
symmetric tensors. However, this cannot be generalized to all
DMs. To analyze the symmetry of the stress tensor [1.7] for
the general case, the approach proposed by Chapuis [CHA 76]
for quasi-static analysis can be used.

For quasi-static study, the resultant torque on a particle p
must vanish:∑

q �=p

lpq ∧ fpq = 0 [1.9]

which is equivalent to:
∑
q �=p

lpqi fpq
j − lpqj fpq

i = 0, ∀ i, j ∈ [1..3] [1.10]

Therefore,∑
q �=p

lpq ⊗ fpq =
∑
q �=p

fpq ⊗ lpq [1.11]

If the volume V , in which the stress tensor is computed,
includes all the particles of the studied system (i.e. the volume
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State of the Art: Discrete Element Modeling 21

boundary does not cut any particle), equation [1.9] is true for
each of these particles. Therefore, the following relation can
be obtained:∑

p

∑
q �=p

lpq ⊗ fpq =
∑
p

∑
q �=p

fpq ⊗ lpq [1.12]

which proves the symmetry of the stress tensor given by [1.7].
However, if some particles are cut by the boundary of the
considered volume, equation [1.9] is not valid for these
particles. In this case, the symmetry of the stress tensor [1.7]
is not guaranteed. However, if the volume V is large enough,
the number of particles cut by the volume boundary is small
with respect to the total number of particles in V . The
associated stress tensor can therefore be considered as
symmetric [CAI 95, MOR 97].

For dynamic study, the above analysis can also be followed
when the particle forces are symmetrically applied around
each particle center (as in regular assemblies). In this case,
no particle torques are induced on the particles, and then
equation [1.9] remains valid. If the particle forces are not
highly unsymmetrical, the corresponding stress tensor can be
assumed to be symmetric. Otherwise, the symmetric part of
[1.7] can be used to compute an approximated stress tensor in
discrete systems [AND 13, JEB 13b]:

σ̄ =
1

2V

∑
p

∑
q �=p

1

2
(pq ⊗ fpq + fpq ⊗ lpq) [1.13]

1.4.2. Strain tensor for discrete systems

The micromechanical interpretation of a strain tensor in
discrete systems has been the subject of strong scientific
interest in recent years. Consequently, several approaches
have been proposed to this end. All these approaches are
based on the assumption of small displacements of the
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22 Discrete Element Method to Model 3D Continuous Materials

particles. Most of them are derived either from equivalent
continuum computations or using best-fit methods. A brief
review of the approaches commonly used is given hereafter;
the reader is referred to [BAG 06, CAM 09] for more details.
Only 3D domains are considered in this review, but almost all
the reviewed approaches can also be used for 2D analysis. Let
ΩD denote the discrete region (made up of N particles) in
which the strain tensor would be computed.

1.4.2.1. Equivalent continuum strains

These microstructural strains are based on the equivalent
continuum technique. The discrete region ΩD is replaced by
an equivalent continuous domain, to which a displacement
field is assigned such that the displacements of the
continuum nodes (associated with the equivalent continuous
domain) are equal to those of the particle centers. The strain
tensor can then be determined from the gradient of this field,
and expressed in terms of the particle displacements and the
geometrical characteristics of the discrete model. Several
approaches based on this technique can be found in the
literature [BAG 93, BAG 96, KUH 99, CAM 00, KRU 03,
KRU 96], some of which are studied and compared in
[CAM 09, BAG 06]. The main difference between them lies in
the way in which the equivalent continuum is defined. One
particular approach is that suggested by Bagi
[BAG 93, BAG 96], which can be regarded as a generalization
of the first approach developed by Rothenburg in his PhD
dissertation in 1980 for 2D analysis [ROT 80]. This approach
is valid for 2D and 3D systems with arbitrary convex shape.
Only particle displacements are considered in such an
approach (particle rotations are ignored). The continuous
domain is constructed from the discrete system using a kind
of “space cell”, which is defined as tetrahedra (triangles in
2D) formed by the centers of neighboring (but not necessary
touching) particles (Figure 1.8). The displacement field
associated with this continuum is defined using a linear
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State of the Art: Discrete Element Modeling 23

interpolation of nodal displacements, which are, by definition,
the same that the particle displacements.

Figure 1.8. Space cells (inspired by [BAG 06])

Within a cell c, this displacement field is continuously
differentiable, and its gradient is constant in this cell. Let
ec = ∇u denote the displacement gradient tensor in the cell c.
The volume average of this tensor over the cell c can be
expressed using a surface integral as follows:

ēc =
1

V c

∮
Sc

u⊗ n ds [1.14]

where V c and Sc are, respectively, the volume and boundary
surface of the cell c, and n is the outward unit normal vector
of Sc. Using [1.14], the volume average of the displacement
gradient tensor over the whole continuum domain associated
with ΩD is given by:

ē =
1

V

∑
c

V c ēc [1.15]

where V =
∑
c

V c is the volume of the whole continuum

associated with ΩD. To compute [1.15], Bagi
[BAG 95, BAG 96] has introduced a new vector dpq associated
with the particle interactions pq (between particles p and q).

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 Discrete Element Method to Model 3D Continuous Materials

This vector is called the complementary area vector, and its
derivation is detailed in [BAG 95, BAG 96]. It can be
interpreted as the dual of the branch vector lpq pointing from
the center of the particle p to the center of the particle q, in
the sense that the total volume of the studied domain is
determined by summing the scalar products of these vectors
over the total number of particle interactions pq:

V =
1

3

∑
pq

dpq.lpq [1.16]

Using the complementary area vector dpq, equation [1.15]
can be rewritten as:

ē =
1

V

∑
pq

upq ⊗ dpq [1.17]

where upq = uq−up is the relative displacement of the centers
of particles p and q. The details of the proof can be found in
[BAG 95, BAG 96]. The symmetric part of the tensor ē defines
the average strain tensor ε̄ in V :

ε̄ =
1

2

(
ē+ tē

)
[1.18]

Several papers studying the Bagi approach can be found in
the literature [BAG 06, CAM 09]. These papers conclude that
this approach generally gives a good estimate of the strain
tensor at the structure scale.

1.4.2.2. Best-fit strains

These microstructural strains are based on the best-fit
technique (e.g. using the least squares method). They consist
of finding the displacement gradient tensor which gives the
smallest deviation from characteristic displacements of the
particles in ΩD (the discrete region in which the strain tensor
would be computed). Several best-fit approaches have been
proposed in the literature [CUN 79, LIA 97, CAM 00], all of
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State of the Art: Discrete Element Modeling 25

which are valid for 2D and 3D analyses. The main difference
between these approaches lies in the way in which the
characteristic displacements are defined, e.g. the relative
displacements of the particle centers, the relative
displacements at the contacts, etc. Among the first best-fit
strains is the Cundall strain [CUN 79], which is widely used
in the discrete element modeling and is even implemented in
several well-known software packages (e.g. PFC, TURBAL,
etc.). This microstructural strain is valid for particles with
arbitrary shape. The approach used to obtain this strain is
detailed hereafter. It should be noted that only displacements
of the particle centers (particle rotations are ignored) are
considered in this approach.

Let xp and up be the initial position vector and
displacement vector of a particle p. In the approach of
Cundall, the space variables are expressed in a framework
whose origin o is located at the average position of the
particle centers belonging to ΩD:

xo =
1

N

∑
p

xp [1.19]

where N is the total number of particles in ΩD. The
displacement of the Cundall framework is defined as the
average displacement of the particle centers in ΩD:

uo =
1

N

∑
p

up [1.20]

Therefore, the vectors xp and up are, respectively, replaced
by xop and uop. The vector xop represents the relative position
of individual particles with respect to xo:

xop = xp − xo [1.21]
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26 Discrete Element Method to Model 3D Continuous Materials

The vector uop represents the relative displacement of
individual particles with respect to uo:

uop = up − uo [1.22]

Assuming that the studied assembly deforms such that
every particle displacement exactly corresponds to a uniform
displacement gradient tensor ē (i.e. the strain tensor is
assumed to be constant in ΩD), equation [1.22] can be
rewritten as:

uop = ē xop [1.23]

because particle displacements are assumed to be small.
Therefore, the Cundall approach consists of finding the tensor
ē that gives the best fit to the relative particle displacements
[1.23]. Using the least squares method, the problem is
reduced to finding the optimum ē that minimizes S:

S =
∑
p

‖uop − ē xop‖2 [1.24]

where “‖.‖” denotes the Euclidean norm. This last relation
[1.24] can be rewritten in index form (using the Einstein
summation convention) as follows:

S =
∑
p

(
uopi − ēij x

op
j

)2
, i, j ∈ [1..3] [1.25]

The corresponding mathematical problem is: find ē such
that:

∀ i, j ∈ [1..3],
∂S

∂ēij
= 0 [1.26]

which can be rewritten in matrix form as:

A tē = B [1.27]
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State of the Art: Discrete Element Modeling 27

where the matrices A and B are given by:

A =
∑
p

xop ⊗ xop, B =
∑
p

xop ⊗ uop [1.28]

As demonstrated by Bagi [BAG 05], the coefficient matrix A
is positive-definite if and only if n ≥ 4 and there exist at least
four particles whose centers are not in the same plane. This
is the necessary and sufficient condition for existence of the
inverse coefficient matrix A−1, and then the existence of the
Cundall strain in 3D. If A−1 exists, the best-fit displacement
gradient tensor is given by:

ē = t
(
A−1B

)
[1.29]

The Cundall strain is none other than the symmetric part
of [1.29]. Based on [BAG 06, CAM 09], this microstructural
strain gives relatively good results, in agreement with strain
measures at the structure level.

1.4.2.3. Satake strain

Contrary to the Bagi and Cundall approaches, the Satake
approach [SAT 04] takes into account both displacements and
rotations of the particles. Such an approach shares some
features with the equivalent continuum ones. Indeed, it is
based on a tessellation system (space cells). However, no
displacement field assigned to these cells is required, and
then no cell deformations are analyzed (unlike in equivalent
continuum approaches). This approach is valid for assemblies
of disk or spherical particles, as in hybrid lattice-particle
methods, which is of particular interest with regard to the
subject of this book.

The geometrical background of the Satake strain is
constructed using the generalized Dirichlet tessellation
(which is also known as the Voronoï diagram) [ASH 86],
whose 2D illustration is given by Figure 1.9. This tessellation
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28 Discrete Element Method to Model 3D Continuous Materials

is unique for a given set of particles N , and it fills the convex
hull of the particles. An individual Dirichlet cell (Voronoï cell)
associated with a particle p is defined by:

Tp = {x| ‖x− xp‖ < ‖x− xq‖ , ∀ p �= q} [1.30]

(a) Construction of generalized
Dirichlet tessellation

(b) Generalized Dirichlet
tessellation

(c) Delaunay tessellation

Figure 1.9. Geometric construction of the generalized
Dirichlet tessellation and the associated Delaunay tessellation

for a set of particles in 2D
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State of the Art: Discrete Element Modeling 29

Using [1.30], the generalized Dirichlet tessellation P can be
obtained:

P = {Tp| p ∈ [1..N ]} [1.31]

After construction of P , the Delaunay tessellation
(Figure 1.9c) can be formed by the branches connecting the
centers of the particles which have a common face in P . This
allows us to define the neighboring particles: every two
particles p and q linked by a Delaunay branch are considered
as neighbors. Then, the contact cells can be defined, based on
the generalized Dirichlet tessellation and the associated
Delaunay network, such that one contact cell is defined per
pair of neighboring particles. The contact cell associated with
the pair of particles (p and q) will be denoted by pq. For each
pq, two vectors are introduced: branch vector lpq linking the
centers of the neighboring particles p and q and the dual
branch vector dpq, whose direction is perpendicular to the
Dirichlet face between these particle and magnitude is equal
to the area of this face. The volume of this cell can be
obtained using these two vectors as:

V pq =
1

3
dpq.lpq [1.32]

After long and complicated calculations which can be
found in [SAT 04], Satake has shown that the volume
average of the displacement gradient tensor over the whole
considered domain is defined by:

ē =
1

V

∑
pq

cpq ⊗ dpq [1.33]

where V =
∑
pq

V pq is the volume of the whole domain and cpq is

the contact deformation defined as the relative displacement,
between two particles p and q, expressed at the contact point c.
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30 Discrete Element Method to Model 3D Continuous Materials

This quantity can be determined using particle displacements
(up and uq) and the particle rotations (θp and θq) as follows:

cpq = {uq}c − {up}c = (uq + θq ∧ rcq)− (up + θp ∧ rcp) [1.34]

where {up}c is the displacement of the particle p expressed at
the contact point c, up is the displacement of the center of the
particle p, θp is the rotation of a particle p, rcp is a vector
pointing from the center of the particle p to the contact
(boundary) point c and “∧” denotes the vector product. The
symmetric part of ē represents the Satake strain.

As can be seen from [1.17] and [1.33], the Satake strain
expression is similar to that obtained by Bagi. One difference
is that the dual branch vector is used in place of the so-called
complementary area vector in the Bagi definition. This is due
to a difference in the definition of the geometrical background
of two microstructural strains. The generalized Dirichlet
tessellation is used to obtain the Satake strain, which allows
us to properly define a geometric background that takes into
account the particle size. This makes the geometrical
explanation more simple and clearer so that a systematic
analysis becomes easy both in 2D and 3D analyses. Another
difference between the strain definitions is that the Bagi
definition is based upon relative displacements between the
particle centers, whereas relative displacements at the
contact points are considered for the Satake definition. This
allows us to take into consideration the particle rotations in
the computation of the microstrutural strain. Numerical
comparison of these two definitions of microstructural strain
shows that they give similar results, which are in good
agreement with the strain measured at the structure level
[BAG 06, CAM 09]. This can reflect that the contribution of
the particle rotations is not of major importance in the
computation of the strain tensor.
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State of the Art: Discrete Element Modeling 31

1.5. Conclusion

This chapter provides a brief review of discrete element
modeling. A classification of the DMs most commonly used to
model physical systems is given, in order to place the DEM
proposed in this book. Depending on the analysis scale, three
classes can be distinguished: QMMs, AMs and MDMs. The
first two classes are extremely time-consuming and can be
applied only to simulate very small-scale problems. The
MDMs are used to simulate problems at the mesoscopic scale,
which is the scale of interest of most of the complex
phenomena encountered in continuum modeling (i.e. by using
CMs). Therefore, this class provides an alternative method to
model such phenomena. MDM methods are generally made
up of four categories: lattice methods, smooth contact particle
methods, non-smooth contact particle methods and hybrid
lattice-particle methods. The non-smooth contact particle
methods are based on the non-smooth formulation between
particles. Such a category is rather adapted for granular
materials. The other categories are based on the smooth
particle interactions, and then come forward as candidates to
model continuous problems. Indeed, the mechanical behavior
of these materials can naturally be taken into account by
such interactions. In particular, the category of hybrid
lattice-particle methods has practically all the advantages of
the MDM methods with regard to modeling of continuous
materials. This is why a hybrid lattice-particle method is
chosen to model continua in this book. The main features of
this method will be detailed in the next chapter. The results
of such a method and the DMs, in general, are given in terms
of discrete particle loadings (forces and torques) and their
corresponding particle motions (displacements and rotations).
These results are strongly heterogeneous: their size and
magnitude may significantly vary from particle to particle.
Therefore, they cannot be estimated as continuously
differentiable fields. Establishing a link between
particle-level results and structure-level stresses and strains
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32 Discrete Element Method to Model 3D Continuous Materials

is important to interpret these results from a macroscopic
point of view. The second part of this chapter gives some
analytical and numerical techniques used to bridge these
levels. As will be seen in Chapter 4, these techniques are also
useful to enrich the criteria applied in discrete element
modeling.
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2

Discrete Element Modeling
of Mechanical Behavior of

Continuous Materials

2.1. Introduction

The mechanical behavior of continuous materials is
usually simulated by continuum approaches like the finite
element method (FEM). However, simulation of
discontinuous phenomena like multifracturing is not
well-adapted to continuum description. In this case, as seen
in Chapter 1, the hybrid lattice-particle methods are a good
alternative because they naturally take into account
discontinuities. Many researchers have shown the interest in
these approaches for wear and fracture simulation. The
problem is that, while hybrid lattice-particle methods are
well-adapted to simulate discontinuities, they are not
suitable for simulating continuous behaviors because
continuum mechanics laws cannot be used directly within the
formulation of these approaches.

The aim of this chapter, and those which follow, is to
introduce and develop a new variation of hybrid lattice-
particle methods that tackles these theoretical difficulties to
facilitate quantitative simulation of the following mechanical

Discrete Element Method to Model 3D Continuous Materials, First Edition.  
Mohamed Jebahi, Damien André, Inigo Terreros and Ivan Iordanoff.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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34 Discrete Element Method to Model 3D Continuous Materials

and thermal behaviors: elastic, brittle fracture and thermal
conduction. In accordance with what is collectively used, in
the following, this variation will simply be called the discrete
element method (DEM). Unless explicitly stated, to this name
will be used to refer to this variation. An illustration of the
main features of this method is given in Figure 2.1, where:

Figure 2.1a illustrates a discrete domain made up of
spherical discrete elements connected by cohesive bonds.
These bonds are symbolized in this figure by springs.
This discrete domain models a sample of cohesive solid
characterized by its mechanical behavior: elasticity, failure,
etc.

Figure 2.1b illustrates the sample in a deformed state
caused by an external force. To simulate the failure of
the continuum, a criterion is introduced at the bond level.
Generally, this criterion is given in terms of maximal strain
or stress in the bonds. If a bond reaches this criterion, it is
deleted. In this example, a bond, near the clamped face, is
deleted.

Figure 2.1c illustrates the domain that comes back to the
initial state. The deleted bond is replaced by a contact between
the two discrete elements. The contact allows us to take into
account the crack closing phenomenon.

These illustrations show how simple the qualitative
modeling of a continuum behavior with the hybrid lattice-
particle approach is. However, behind this apparent simplicity
a great complexity to making quantitative simulation is
hidden. Predominantly, the following four steps (Figure 2.2)
are required to model a continuum behavior quantitatively
with the presented approach:

1) Building of the discrete domain with given size and
fineness.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 35

2) Selection of the most adapted rheological model of
the bonds to model qualitatively the expected mechanical
behavior.

3) Quantification of the rheological parameters of the
bonds. Generally, it is not always possible to deduce these
parameters from analytical laws. This step requires some
simulations and is called the calibration step.

4) Application of the developed model. The model is
implemented to solve and study some scientific and
engineering problems. This step is the enforcement of the
developed model.

Force

(a) Initial configuration

Failure

(b) Cohesive bond failure

Contact

(c) Relaxed configuration

Figure 2.1. Illustration of the hybrid lattice-particle model

2.2. Explicit dynamic algorithm

The numerical resolution is based on an explicit
integration scheme, which is well-adapted to massive DEM
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36 Discrete Element Method to Model 3D Continuous Materials

simulation [ROU 04] and high-velocity phenomena such as
fracturing or impact. Many explicit schemes can be used: the
Verlet velocity, Runge–Kutta, leapfrog or gear’s method, etc.
[EBE 10, section 13]. In [ROU 04], the authors have
compared these algorithms in terms of accuracy, stability and
CPU efficiency. It appears that all of them give approximately
the same efficiency. In the present work, the Verlet velocity
scheme is chosen for its simplicity. The discrete element
positions and velocities are estimated by:

p(t+ dt) = p(t) + dt ṗ(t) +
dt2

2
p̈(t) [2.1]

ṗ(t+ dt) = ṗ(t) +
dt

2
(p̈(t) + p̈(t+ dt)) [2.2]

Building of the discrete domain

Choice of the rheological model of the bonds

Quantification of the rheological model

Implementation and application

Figure 2.2. General approach for DEM modeling
of continuous materials

where:

– t is the current time and dt is the integration time step;

– p(t), ṗ(t) and p̈(t) are the linear position, velocity and
acceleration of the discrete elements.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 37

The discrete element orientations are described by
quaternions, noted as q(t), that facilitate an efficient way to
compute the rotation of the local frames associated with the
discrete elements [PÖS 05, section 2.5]. Quaternion is linked
to the angular velocity with the following equality [EBE 10,
section 10.5]:

q̇(t) =
1

2
ω(t) q(t) [2.3]

where ω(t) is the angular velocity of a discrete element. The
Verlet velocity scheme is also applied to quaternion q(t), with:

q(t+ dt) = q(t) + dt q̇(t) +
dt2

2
q̈(t) [2.4]

q̇(t+ dt) = q̇(t) +
dt

2
(q̈(t) + q̈(t+ dt)) [2.5]

To prevent quaternion numerical drifts, the quaternion
must be normalized each time step. Algorithm 1 details the
encapsulation of the Verlet velocity scheme in an explicit
dynamic resolution. Note that this numerical scheme is not
well-adapted to quasistatic simulation. Special care,
described later in this paper, will be taken with this kind of
test.

2.3. Construction of the discrete domain

Starting with the first point of the general approach
presented in Figure 2.2, a preliminary work consists of
building the initial discrete domain. This point is
fundamental. If the initial domain is badly formed, the
following simulations that use this domain may give some
unexpected behaviors. To prevent this, the following section
describes the construction rules to ensure the expected
behavior of the discrete domain, independently of its shape or
its size. This independence is the main goal of the described
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38 Discrete Element Method to Model 3D Continuous Materials

method because it prevent fastidious calibration processes.
The calibration process can be done only one time. Then, the
obtained parameter values are used for all the discrete
domains that model a same material without computation.

input: p(0) ṗ(0) p̈(0) q(0) q̇(0) q̈(0)

t ← 0;
foreach iteration n do

foreach discrete element i do
pi(t+ dt) ← Verlet velocity scheme [2.1];
Fi(t+ dt) ← Sum of forces acting on i;
p̈i(t+ dt) ← Newton’s second law;
ṗi(t+ dt) ← Verlet velocity scheme [2.2];

qi(t+ dt) ← Verlet velocity scheme [2.4];
qi(t+ dt) ← Normalization;
Mi(t+ dt) ← Sum of torques acting on i;
q̈i(t+ dt) ← Angular momentum law;
q̇i(t+ dt) ← Verlet velocity scheme [2.5];

end
t ← t+ dt

end
Algorithm 1. Explicit dynamic resolution

Figure 2.3 shows the different steps that are required to
build an initial discrete domain. First, a compact granular
domain is created (Figures 2.3a and 2.3b). This step requires
a granular simulation. Second, the contact network is
generated (Figure 2.3c). This network is formed by the
branches (Figure 2.3c) that link the centers of the discrete
elements in contact. Finally, the different branches of the
contact network are replaced by cohesive bonds (solid lines in
Figure 2.3d). These bonds will after be used to model the
mechanical behavior of the material being modeled.

The effectiveness of the second and the third steps of the
initial discrete domain construction are dependent upon the
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 39

compaction process (first step). Therefore, it is essential to
carry out this step properly. Many methods can be used to
achieve this goal such as the iterative growth algorithm
[LUB 90], isotropic compression [MAR 03] or densification
processes [BAG 05]. Although these methods are widely used
in the literature, they are restricted to relatively simple
domains. The next section details a new compaction method,
which can be used for any domain.

(a)
Compaction
process

(b) Compacted
domain

(c) contact
network

(d) cohesive
beam network

Figure 2.3. Different steps to create the initial discrete domain. For
a color version of the figure, see www.iste.co.uk/jebahi/discrete.zip

2.3.1. The cooker compaction algorithm

To achieve the compaction process, an original algorithm,
which will be named cooker in this book, has been developed
(algorithm 2). The main idea of the cooker algorithm is to fill
the free space with randomly placed discrete elements using
the RandomFillDomain() function (algorithm 2). The input
parameters are the external boundaries of the discrete
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40 Discrete Element Method to Model 3D Continuous Materials

domain, the characteristics of the discrete elements
(distribution of the discrete element sizes or granulometry)
and the expected average coordination number (average
number of contacts per discrete element).

2.3.1.1. Stopping criterion of compaction process

For a mono-disperse distribution of the discrete element
sizes, it has been established that the average coordination
number (also called cardinal number) must be around 6.2
[GOT 74] and the volume fraction must be around 0.636
[FIN 70]. These two parameters can then be used as shutoff
criteria of the compaction process. However, contrary to the
average coordination number, the volume fraction can be set
a priori by setting the number and the radii of the discrete
elements. Therefore, the average coordination number must
be used as stopping criterion of the cooker algorithm. This
parameter is calculated for infinite discrete domains as
follows:

Average coordination number =
2× Number of contacts

Number of discrete elements
[2.6]

This formula supposes infinite discrete domains (with no
boundaries), which can be modeled in practice using finite
domains with periodic boundaries. However, its application
on finite discrete domains is not valid. In this case, some
discrete elements are cut by the domain boundaries, and then
their coordination numbers are only half of the coordination
numbers of the internal discrete elements. If the number of
the cut discrete elements is small compared to the total
number of discrete elements, the error on the average
coordination number can be neglected. Otherwise, corrections
must be made: the discrete elements belonging to the
boundaries as well as the contacts between them must be
ignored in [2.6].
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 41

2.3.1.2. Filling process

Figure 2.4 shows the static random filling of a cube at
different stages. The filling process continues until no longer
free place exists, i.e. after a given number (to be fixed by the
user) of unsuccessful attempts to insert a new discrete
element. Then, the discrete elements are forced to be inserted
one by one (or by packet) until the expected average
coordination number is reached. The forced insertion of a
discrete element (or a packet of discrete elements) induces a
high interpenetration with some other discrete elements.
Therefore, the discrete domain must be relaxed after each
forced insertion. This is done by the RelaxDomain()
function (algorithm 2). This function performs a dynamic
computation of the granular domain until the kinetic energy
decreases to a very small value. During this computation, the
interaction between the discrete elements is ensured by
contact laws including damping effects to cancel the kinetic
energy.

2.3.1.3. Overlapping removing

Once the average coordination number reaches the
expected value, the cooker process is stopped. At this stage,
the average interpenetration between the discrete elements
is very significant. Its value can be larger than 2% of the
average radius of the discrete elements. A solution, which
is implemented in the DecreaseWallStifness() function
(algorithm 2), consists of decreasing the boundary wall
stiffness until this stiffness reaches a negligible value. It
should be noted that this function is very time-consuming,
and is recommended only when the contact between discrete
elements is important in the further simulations (for which
the discrete domain is prepared). If the discrete domain
is prepared for lattice model simulations (the interaction
between the discrete elements is ensured by cohesive bonds
with no contact dynamics), this step is not required.
Another comment concerns the coordination number. The
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42 Discrete Element Method to Model 3D Continuous Materials

DecreaseWallStifness() function relaxes the domain and
some contacts disappear. This effect significantly reduces the
coordination number. Two solutions can be provided:

1) During the DecreaseWallStifness() process, the
contact network is frozen. Each contact between two discrete
elements is replaced by a bilateral spring-dashpot bond.
These bonds are parametrized with an initial relaxed length
that corresponds to a null interpenetration. With this
solution, the coordination number is not affected by the
DecreaseWallStifness() process.

2) At the end of the DecreaseWallStifness() process,
the average coordination number is corrected. The final
contact network is computed using a greater value of the
discrete element radii. The factor used to enlarge the discrete
elements is computed due to a dichotomy algorithm. The
contact network is finally computed with the enlarging factor
to reach the target value of the average coordination number.

The aim of the cooker process is to provide a compacted
domain with given dimensions, shape, and average
coordination number. This granular domain is characterized
by a unique contact network. A future step consists of
converting this contact network into a cohesive bond network
to model the mechanical behavior of the continuum. It can be
noted that, with the above solutions, the contact network
used to define cohesive bond networks can be larger than the
true contact network defined by the physical contacts
between discrete elements. This allows each discrete element
to have a sufficient number of cohesive bonds (and then a
sufficient number of neighboring discrete elements), which
prevents numerical problems due to high interactions when
some cohesive bonds are destroyed (during a failure
simulation for example).

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Discrete Element Modeling of Mechanical Behavior of Continuous Materials 43

input: the target value of average coordination number,
the shape, the size and the granulometry of the
compacted domain

output: a compacted domain with the given dimensions,
shape, granulometry and very low
interpenetration

while the coordination number is lower than the target
value do

RelaxDomain();
RandomFillDomain();

end
DecreaseWallStifness();

Function RelaxDomain()
while kinetic energy is high do

OneIterationStep();
end

end

Function RandomFillDomain()
while there is a free space do

RandomAddDiscreteElement();
end

end

Function DecreaseWallStifness()
while the wall stiffness is higher than a very small
value do

Decrease wall stiffness to a given small value;
RelaxDomain()

end
end

Algorithm 2. The cooker algorithm
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44 Discrete Element Method to Model 3D Continuous Materials

40 elements 80 elements 120 elements

200 elements 240 elements 280 elements

320 elements 360 elements 400 elements

Figure 2.4. Static random filling of the discrete domain. For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip

2.3.2. Geometrical characterization of the discrete
domain

In hybrid lattice-particle methods, the mechanical
behavior of the studied material is governed by the
rheological model assigned to the cohesive bonds. In addition,
the network architecture of these bonds plays a great role in
the mechanical behavior rendering. Schlangen and Garboczi
[SCH 96, section 3] have studied the influence of the initial
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 45

geometric arrangement. Figure 2.5 illustrates the comparison
made by the authors: a precracked sample is loaded in a
shear configuration. The sample was modeled by 2D ordered
(Figure 2.5a) and disordered (Figure 2.5b) lattices. The crack
paths given by the disordered configuration is more realistic
than the crack pattern given by the ordered lattice. This
study demonstrates that the geometrical arrangement of the
initial discrete domain significantly influences the
mechanical behavior of the lattice.

Sh
ea

r
lo

ad

Crack paths

(a) Crack path in ordered 2D
lattice

Sh
ea

r
lo

ad

Crack paths

(b) Crack path in disordered 2D
lattice

Figure 2.5. Shear tensile test using different 2D lattices (taken from
[SCH 96]). For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip

2.3.2.1. Geometrical isotropy and granulometry

The definition of geometrical isotropy must be clarified
before proposing a criterion characterizing this concept.
Cambou [CAM 98, Introduction, S3.6] defines the geometric
anisotropy as the distribution of contact and bond directions.
If this distribution is perfectly homogeneous, the domain is
considered as geometrically isotropic. It is considered that the
geometrical isotropy is a necessary condition to ensure the
mechanical isotropy of the simulated material. To measure
the geometrical organization of granular material, Cambou
et al. [CAM 09, section 1.2.2] have exploited a mathematical
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46 Discrete Element Method to Model 3D Continuous Materials

tool called the “fabric tensor”. However, this tool cannot be
used to determine the isotropy in a simple way [KEN 84]. A
more intuitive method based on a simple geometric
computation and statistical analysis is proposed. This
method is a three-dimensional (3D) extension of the classical
two-dimensional (2D) graphs that classify contacts into
direction subsets [KEN 84, D’AD 02].

Contacts are grouped into subsets depending on their
orientation in the 3D space. All the members in a subset have
a quite similar spatial orientation. To group contacts into
orientation subsets, a platonic solid (a geode) of 320 equal
faces is used as reference (Figure 2.6). Figure 2.6 and
algorithm 3 detail the computation method of the contact
directions. For each contact between two discrete elements,
the contact direction Δ is determined. The straight line Δ
going through the centers of two discrete elements in contact
intersects the geode γ at two opposite geode faces fj and fk.
The number of contacts that intersect each geode face are
numbered. This allows us to count the contacts that match a
given geode face.

foreach Discrete element DE0 do
Translate the geode γ to the discrete element center
O0;
foreach Discrete element DEi in contact with DE0 do

Compute the contact direction Δ = (O0, Oi);
Detect the opposite faces fj and fk that intersect
Δ;
Increment the contact direction numbers
associated to fj and fk ;

end
end
Algorithm 3. Computation algorithm of the contact directions
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 47

(γ)

O0

fk

fj

Oi

Δ

DE0

DEi

Figure 2.6. Platonic solid used as a reference geometry
to classify the contact orientations

The final result is a 3D histogram (Figure 2.7) in which
each bar represents the number of contacts belonging to an
orientation subset (a sort of discretized solid angle). The
weight of a given orientation subset is defined as the density
of contact orientations that match this subset. As in the
computation of the average coordination number
(section 2.3.1.1), it is recommended to exclude the discrete
elements that belong to the boundaries because the bonds
between these elements have privileged directions.

With the aim of simulating isotropic behaviors, the
discrete domain must be geometrically isotropic (the different
orientation subsets are equally weighted). It is known from
the literature [LOC 06] that to prevent an ordered packing
configuration and then to promote geometrical isotropy, a
dispersion (denoted as κ) must be applied on the radii of the
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48 Discrete Element Method to Model 3D Continuous Materials

discrete elements. The most simple case is the case of uniform
dispersion defined by maximum and minimum values:

κ =
Rmax −Rmin

R̄
[2.7]

where Rmax, Rmin and R̄ are the maximum, the minimum and
the average discrete element radii.

Figures 2.8 shows the geometrical arrangement for two
values of the dispersion parameter κ. This figure illustrates
the influence of the radius dispersion on the geometrical
arrangement (Figures 2.8a and 2.8b) and on the contact
orientation (Figures 2.8c and 2.8d). For a distribution range
κ = 0%, the packing seems to be perfectly ordered. The
perfect arrangement is strongly anisotropic. In contrast, a
higher dispersion value (κ = 25%) seems to promote the
isotropy.

Figures 2.7a and 2.7b show the 3D histograms used to
qualify the observed level of isotropy. From these figures, it is
clear that the radius dispersion value κ highly influences the
isotropy level. To quantify the isotropy level, it is proposed to
compute the mean square difference between the observed
frequencies in geode cells (fi) and the uniform frequency
(1/N ):

e =
N∑
i=1

(
fi − 1

N

)2
N

[2.8]

where:

– N is the total number of cells: the 320 geode faces;

– fi is the observed frequency of the cell i: the ratio between
the number of the contacts that match the solid angle i and the
total number of contacts.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 49

(a) κ = 0%

(b) κ = 25%

Figure 2.7. 3D histograms of the orientation subsets. For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip
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50 Discrete Element Method to Model 3D Continuous Materials

The important aspect of this criterion is the asymptotic
behavior (Figure 2.9). Increasing the radius dispersion value
κ gives an asymptotic constant limit, beginning from a κ
value of 15%. This result is in accordance with the
observation of Luding [PÖS 01, Chapter 5]: “crystallization
(...) does not occur for polydisperse packing with ω0 ≈ 0.15”. In
other words, for a dispersion value higher than 15%, an
ordered geometrical arrangement does not occur within the
sphere packing. A value of κ = 25% is chosen here to ensure
minimal anisotropy.

(a) Domain for κ = 0%
(discrete element view)

(b) Domain for κ = 25%
(discrete element view)

(c) Domain for κ = 0%
(contact network view)

(d) Domain for κ = 25%
(contact network view)

Figure 2.8. Geometrical arrangement of a 3D sphere packing with
κ = 0% and κ = 25%. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip
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Radius dispersion κ (%)
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Figure 2.9. Evolution of the mean square difference e parameter of
the sampling distribution of the contact orientation packet versus

radius dispersion κ

2.3.2.2. Average coordination number
In the same way as the geometrical isotropy, the average

coordination number influences the mechanical behavior. To
illustrate this influence, the average coordination number of
a given sample is increased due to the dichotomy process
described in section 2.3.1.1. Figure 2.10 shows the result on
the cohesive bond network with two values of average
coordination number. The obtained samples were used to
compute the macroscopic Young’s modulus EM and Poisson’s
ratio νM . In this study, all the samples have the same set of
cohesive bond parameter values. Figure 2.11 shows the
evolution of EM and νM with the average coordination
number. As this last parameter increases, the number of
cohesive bonds increases. As a result, the rigidity of the
Assembly and then the macroscopic Young’s modulus
increases. In contrast, the macroscopic Poisson’s ratio
diminishes. It is clear that the average coordination number
influences the mechanical behavior.

It is recommended to use an average coordination number
value close to 6.2. This value is a characteristic of the
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52 Discrete Element Method to Model 3D Continuous Materials

Random Close Packing (RCP) as described in [LOC 06]. This
kind of packing ensures a good level of geometrical isotropy.
Larger average coordination numbers can also be used to
improve simulation of certain complex behaviors (e.g. crack
propagation) [AND 13]. However, in this case, high values of
Poisson’s ratio can be unreachable because of the decreasing
tendency of this parameter (Figure 2.11).

(a) Average coordination number of 6.2

(b) Average coordination number of 8.0

Figure 2.10. Cohesive bond network with two values of average
coordination number. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 53

The most important thing is to keep the same value of the
average coordination number between discrete domains that
simulate a same material. This allows us to ensure constant
mechanical properties.
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Figure 2.11. Influence of the average coordination
number on mechanical properties

2.3.2.3. Discrete domain fineness

The discrete domain fineness is characterized, for a given
volume, by the number of discrete elements that describe
this volume. Mainly, three criteria are used to characterize a
discrete element representation of a continuum: the volume
fraction, the average coordination number and the isotropy
(characterized by the mean square difference of the contact
orientation subsets). This section deals with two questions:

1) Do the three criteria converge if the number of discrete
elements per unit volume increases?

2) In this case, is it possible to define a critical number of
discrete elements, beyond which simulation of homogeneous
and isotropic media can be systematically performed?
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54 Discrete Element Method to Model 3D Continuous Materials

To answer these questions, the influence of the discrete
domain fineness on the above three criteria was first
investigated. To do so, 22 packing domains having the same
bounding volume1 and different levels of discrete domain
fineness were built. To facilitate a statistical processing, 5
packing domains were built for each number of discrete
elements (for each fineness level). Therefore, a total of 110
packing domains were analyzed.

Figures 2.12a, 2.12b and 2.12c show the influence of the
discrete domain fineness on the volume fraction, the average
coordination number and the isotropy. These values are
extracted from the discrete domains built with a dispersion
radius of κ = 25% (corresponding to the conclusion of the
previous section). Small differences could be accepted. The
criteria could be classified as following on the basis of order
of importance:

1) Isotropy is considered as the most important. This
criterion highly influences the discrete sample mechanical
behavior.

2) The average coordination number and the volume
fraction are less important. However it is important to keep
these parameters constant between discrete domains that
simulate a same material.

The average coordination number converges to a limit
value close to 6.2. As for the volume fraction and isotropy,
slight variations are still observed for high number of
discrete elements.

1 Bounding volume is defined as the volume of the minimal size hull
containing the discrete domain.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 55
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Figure 2.12. Evolution of 3 geometrical criteria versus discrete
domain fineness (for radius dispersion κ = 25%)
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56 Discrete Element Method to Model 3D Continuous Materials

The discrete element number increases with refining. A
high refining level brings down the computational
performances. Therefore, a compromise must be made
between performance and precision. For the next section, a
number of 10, 000 discrete elements is considered as sufficient
for an acceptable level of precision. For this value, the
geometrical anisotropy criterion is lower than 0.0032, the
coordination number is higher than 6.2 and the volume
fraction is around 0.635. In conclusion, 10, 000 discrete
elements in a 3D square domain gives a good level of
convergence. This value for one-dimensional (1D) domains
can be computed as 10, 0001/3 ≈ 21.5.

2.4. Mechanical behavior modeling

At this stage, only the granular skeleton is defined. The
aim of this section is to give mechanical properties to this
skeleton. Following the general method described in
Figure 2.2, the second point consists of choosing an
appropriate rheological model according to the mechanical
behavior of the continuum to be modeled. This model is
assigned to the cohesive bonds between the discrete elements
(Figure 2.3d). These bonds ensure the discrete domain
cohesion, hence the name cohesive bonds.

The mechanical behavior of a random structure composed
of a large number of discrete elements cannot be analytically
predicted. Global behavior is the result of a large number
of interactions between discrete elements and can be
considered as an emergent physical property [MUN 04,
preface]. Implicitly, two scales are considered in a discrete
element approach:

– The structure scale, represented by a set of discrete
elements. This scale will be called “macroscopic scale”.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 57

– The discrete element scale and its elementary interaction
with its neighbors. This scale will be called the “microscopic
scale”.

The mechanical properties such as the Young’s modulus or
the Poisson’s ratio, are considered as emergent properties at
the macroscopic scale. Furthermore, unlike the FEM
[ZIE 05a], continuous mechanical behavior laws cannot be
directly introduced into the DEM formulation. As a result,
the difficulty is to quantify DEM microscopic interaction laws
according to continuous mechanical behavior. This problem
has been discussed in detail by Ostoja-Starzewski [OST 02].
The author proposes micro-macro laws for some typical
ordered lattice configurations. In the last paragraph
(section 6.3) dedicated to the periodic random lattice network,
Ostoja-Starzewski proposes numerical tests to calibrate the
model. The analytical approach is limited to an ordered and
homogeneous configuration. This idea is well-synthesized by
Potyondy and Cundall [POT 04, section 3.1] who write:

“For continuum models, the input properties (such as
modulus and strength) can be derived directly from
measurements performed on laboratory specimens. For the
BPM 2 (...) the input properties of the components usually are
not known. (...) For the general case of arbitrary packing of
arbitrarily sized particles, the relation is found by means of a
calibration process (...)”.

To summarize, for random discrete domains, the
quantification of the microscopic parameters requires some
numerical tests called a calibration procedure. It is proposed,
in the following section, to deal with this question with the
most simple case: the elastic behavior.

2 “Bonded Particle Model”, discrete element model used by Potyondy and
Cundall
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58 Discrete Element Method to Model 3D Continuous Materials

2.4.1. Cohesive beam model

The elastic behavior of materials is characterized by a
Young modulus and a Poisson ratio. Modeling this behavior
with the DEM has been intensively studied, and then several
rheological models have been proposed to this end, e.g. the
simple spring model [CHU 96, OST 02, GUN 02], the dual
spring model (a pair of normal and tangential springs)
[POT 04, HEN 04a, FAK 07, TAV 06] and the cohesive beam
model [SCH 97, SCH 96, CAR 08] (Figure 2.13). Although the
cohesive beam model is not well-established in the literature,
this model allows us to obtain more realistic results,
compared to classical spring and dual spring models, for some
complex problems, e.g. fracture, large shear processes, etc.
For example, as mentioned in the previous chapter,
Schlangen and Garboczi [SCH 97, section 3] have shown that
the cohesive beam model produces more realistic crack
pattern than the simple spring and the dual spring models.
Therefore, this model is chosen in this book to model the
elastic behavior of continuous materials.

(a) Simple spring model (b) Dual spring model

(c) Beam model

Figure 2.13. Illustration of the three main cohesive
bond models. For a color version of the figure,

see www.iste.co.uk/jebahi/discrete.zip
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 59

The cohesive beam model was first introduced by Stanley
in 1988 [STA 88]. More recently, it was applied to model 2D
ordered [SCH 92a, SCH 92b] and disordered
[SCH 96, KUN 96, D’AD 02, IBR 03, D’AD 06] lattice
networks. A major question that arises from application of
this model is how to match the microscopic mechanical
properties (of the cohesive beams) to the macroscopic
properties (of the material being modeled). In [SCH 96], the
authors have proposed to use equivalent microscopic and
macroscopic properties. In their work, the beam dimensions
(cross-section and inertia momentum) are chosen due to a
numerical recursive algorithm to satisfy a uniform elastic
continuum condition. However, this algorithm is only applied
for simple discrete domains. Other researchers have proposed
a more general calibration approach, in which the
microscopic and macroscopic mechanical properties can be
different and the relationships between them are determined
by calibration process. This approach is applicable for any
discrete domain, regardless its complexity. Therefore, it is
chosen in this work to match the mechanical properties at the
different levels. The microscopic properties which can be
different from the macroscopic properties must be fitted such
that the macroscopic mechanical behavior corresponds to the
material being modeled.

2.4.1.1. Analytical model
Figure 2.14 shows two discrete elements bonded by a

cohesive beam. A cylindrical beam geometry is chosen
because its dimensional description requires only two
independent parameters: a length lμ and a radius rμ3. Two
mechanical properties are also assigned to the cohesive
beams: a Young modulus Eμ and a Poisson ratio νμ. These
four geometric and mechanical parameters are sufficient to
describe the cohesive beam. Note that the cohesive beams are

3 To distinguish microscopic from macroscopic properties, microscopic
parameters are denoted by ‘μ’ and macroscopic parameters by ‘M ’.
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60 Discrete Element Method to Model 3D Continuous Materials

massless; mass properties are assigned only to the discrete
elements.

Beam rμ

lμ

Figure 2.14. The cohesive beam bond. For a color version of the
figure, see www.iste.co.uk/jebahi/discrete.zip

For the sake of clarity, Figure 2.15 shows a configuration
in which the discrete elements have been moved away. The
cohesive beam is symbolized by its median line. Both cohesive
beam ends are fixed to the discrete element centers O1 and
O2. The discrete element frames F1 (O1,X1,Y1,Z1) and
F2 (O2,X2,Y2,Z2) are oriented such that X1 and X2 are
normal to the beam cross-section ends. At the initial time, the
beams are relaxed (Figure 2.15a). Figure 2.15b shows the
cohesive beam in a loading state due to displacements and
rotations of discrete elements.

The well-known analytical beam model of Euler–Bernoulli
[TIM 83] is used to describe the mechanical behavior of the
cohesive beams. In [GUP 99, section 6.2], the author
describes a stiffness matrix expressed in the beam local
frame for a finite element application. Figure 2.15b
illustrates the beam local frame positioning. The center of
discrete element 1 (O1) is considered as the origin. The
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 61

“aligned” configuration, in which O1O2 = kX1 = −kX2, is
considered as the non-bending state and is taken as
reference. Consequently, the cohesive beam local frame
F (O,X,Y,Z) is oriented such that (Figure 2.15b):

X =
O1O2

‖O1O2‖ and Y = X ∧X1 and Z = X ∧Y

(a) Relaxing state

(b) Loading state

Figure 2.15. Cohesive beam bond configurations. For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip

In the local frame F , the deflections at O1 and O2 are null.
Cross-section bending rotations at O1 and O2 are defined,
respectively, by θ1 = (X,X1) and θ2 = (−X,X2)
(Figure 2.15b). Consequently, the force and torque reactions
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62 Discrete Element Method to Model 3D Continuous Materials

acting on discrete elements 1 and 2 are:

FDE1 = +EμSμ
Δlμ
lμ

X− 6EμIμ
l2μ

((θ2z + θ1z)Y

+ (θ2y + θ1y)Z) [2.9]

FDE2 = −EμSμ
Δlμ
lμ

X+
6EμIμ
l2μ

((θ2z + θ1z)Y

− (θ2y + θ1y)Z) [2.10]

MDE1 = +
GμIoμ

lμ
(θ2x − θ1x)X− 2EμIμ

lμ
((θ2y + 2θ1y)Y

− (θ2z + 2θ1z)Z) [2.11]

MDE2 = −GμIoμ
lμ

(θ2x − θ1x)X− 2EμIμ
lμ

((2θ2y + θ1y)Y

− (2θ2z + θ1z)Z) [2.12]

where:

– FDE1 and FDE2 are the beam force reactions acting on
discrete elements 1 and 2.

– MDE1 and MDE2 are the beam torque reactions acting on
discrete elements 1 and 2.

– lμ and Δlμ are the initial beam length and the
longitudinal extension.

– θDE1(θ1x, θ1y, θ1z) and θDE1(θ2x, θ2y, θ2z) are the rotations
of beam cross-section at the points O1 and O2 expressed in the
beam local frame.

– Sμ, Ioμ and Iμ are the beam cross-section area, polar
moment of inertia and moment of inertia along Y and Z.

– Eμ and Gμ are the Young and shear moduli.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 63

Note that the beam force and torque reactions are
expressed in the beam local frame F (O,X,Y,Z).

2.4.1.2. Strain energy computation

The explicit integration algorithm (section 2.2) requires
small time steps. Therefore, it can be supposed that the
different discrete element variables (forces, torques,
displacement, rotations, etc.) are constant during a time step.
This assumption allows us to compute the strain energy
stored by the cohesive beams as the sum of their elementary
works ΔW produced at each time step:

ΔW = FDE1.ΔUDE1 + FDE2.ΔUDE2 +MDE1.ΔθDE1

+MDE2.ΔθDE2 [2.13]

where:

– FDE1 and FDE2 are the beam force reactions acting on
discrete elements 1 and 2 computed at a given time step;

– MDE1 and MDE2 are the beam torque reactions acting on
discrete elements 1 and 2 computed at a given time step;

– ΔUDE1 and ΔUDE2 are the elementary displacements of
the bonded discrete elements 1 and 2 done during a given time
step;

– θDE1 and θDE2 are the elementary rotations of the bonded
discrete elements 1 and 2 done during a given time step;

This elementary strain energy can be divided into tensile,
bending and torsion energies as follows:

ΔWTensile = FDE1.X×ΔUDE1.X+ FDE2.X

×ΔUDE2.X [2.14]
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64 Discrete Element Method to Model 3D Continuous Materials

ΔWBending = FDE1.Y ×ΔUDE1.Y + FDE2.Y ×ΔUDE2.Y

+FDE1.Z×ΔUDE1.Z+ FDE2.Z×ΔUDE2.Z

+FDE1.Y × θDE1.Y + FDE2.Y × θDE2.Y

+FDE1.Z× θDE1.Z+ FDE2.Z

×θDE2.Z [2.15]

ΔWTorsion = FDE1.X× θDE1.X+ FDE2.X

×θDE2.X [2.16]

where F (O,X,Y,Z) is the beam local frame (section 2.4.1.1).
So, at a given time t corresponding to n computational
iterations, the strain energies stored by a cohesive beam are:

WTensile =

n∑
i=1

ΔWTensile [2.17]

WBending =

n∑
i=1

ΔWBending [2.18]

WTorsion =
n∑

i=1

ΔWTorsion [2.19]

2.4.2. Calibration of the cohesive beam static
parameters

The aim of the calibration process is to quantify the values
of the microscopic parameters to fit the macroscopic
properties. The main difficulty is to establish the transition
laws between the i microscopic parameters (γ1μ, γ

2
μ, . . . , γ

i
μ) of

the cohesive beams and the j macroscopic parameters
(Γ1

M ,Γ2
M , . . . ,Γj

M ) of the material being modeled. This section
describes the calibration process of the cohesive beam static
parameters used to model an elastic continuum. In this case,
four parameters define the cohesive beams: the length , the
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 65

radius, the microscopic Young modulus and the microscopic
Poisson ratio (lμ, rμ, Eμ, νμ). Whereas, only two parameters
define the continuum: the macroscopic Young modulus and
the macroscopic Poisson ratio (EM , νM ).

To simplify the calibration process, a parametric study
aiming to investigate the influence of the microscopic
parameters on the macroscopic mechanical properties was
done. In this study, several numerical quasistatic uniaxial
tensile tests were simulated, using different microscopic
parameters in the cohesive beams.

2.4.2.1. Quasistatic tensile test description

A perfectly homogeneous, isotropic, elastic material is
characterized by the Young modulus EM and the Poisson
ratio νμ. For real materials, these parameters are generally
determined by quasistatic tensile tests. These experimental
procedures can also be applied to a numerical sample.

2.4.2.1.1. From discrete to continuous geometry

To compute the macroscopic Young modulus and the
Poisson’s ratio, a perfect 3D continuous geometry is associated
with the compact discrete domain. This perfect geometry
is the bounding shape of the compacted discrete domain.
The discrete elements belonging to the domain boundaries
are marked to compute the perfect geometry dimensions
(Figure 2.16). With the cylinder shape, three discrete element
sets are marked (Figure 2.16) as:

– The “xMax” and “xMin” sets are associated with faces
with normal X and −X.

– The “radius” set is associated with the cylinder
circumference.
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66 Discrete Element Method to Model 3D Continuous Materials

The Perfect cylinder dimensions are computed as:

LM = 2R+

(
1

NxMax

NxMax∑
i=1

OGi +
1

NxMin

NxMin∑
i=0

OGi

)
.X [2.20]

RM = R+
1

Nradius

Nradius∑
i=1

√
(OGi.Y)2 + (OGi.Z)2 [2.21]

where:

– LM and RM are the perfect cylinder length and radius.

– NxMax, NxMin and Nradius are the number of discrete
elements belonging respectively to “xMax”, “xMin” and
“radius” sets.

– OGi is the position of the gravity center of the discrete
element i.

– R is the average discrete element radius over the entire
domain.

Figure 2.16. Perfect cylinder associated with a discrete domain
with κ = 25%. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 67

2.4.2.1.2. Loading

To ensure a quasistatic tensile test, the loading force
acting on the discrete element sets “xMin” and “xMax”, are
progressively applied (linear ramp) and stabilized. The sum
of forces acting on “xMax” and “xMin” are denoted by FxMax

and FxMin, respectively. These two forces, acting along X for
FxMax and −X for FxMin, have equal norms and opposite
directions. To check the quasistatic properties, the kinetic
and strain energies are computed and stored during the
numerical test (section 2.4.1.2 for the computational method).
Figure 2.17 confirms that the applied tensile loading gives a
negligible kinetic energy and ensures a quasistatic aspect of
the simulation.
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Figure 2.17. Kinetic and strain energies and load during a
quasistatic tensile test (computed with a time step Δt = 3.10−7s and

a number of iterations n =100 000)

2.4.2.1.3. EM and νM computation

The macroscopic Young modulus and the Poisson ratio can
be easily determined for the cylinder sample by using the
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68 Discrete Element Method to Model 3D Continuous Materials

material strength analytical formulations:

EM =
F/SM0

ΔLM/LM0

[2.22]

νM = −ΔRM/RM0

ΔLM/LM0

[2.23]

where:

– LM0 , RM0 and SM0 are the initial bounding cylinder
dimensions (respectively: length, radius, and section).

– EM and νM are the macroscopic Young modulus and
Poisson ratio.

– F is the normal force.

The explicit numerical schemes are not well-adapted to the
quasistatic simulation. The system vibrates around the static
solution. To facilitate results stabilization, a pure numerical
damping factor is introduced in the numerical scheme as
described by Tchamwa and Wielgosz [MAH 09]. This is a
decentered explicit integration scheme that facilitates high
frequency dissipation. This scheme is very similar to the
Verlet velocity algorithm. The dissipation is controlled with a
single parameter ϕ. Only the second time derivative terms
are modified. Equations [2.2] and [2.5] become:

ṗ(t+ dt) = ṗ(t) + ϕ
dt

2
(p̈(t) + p̈(t+ dt)) [2.24]

q̇(t+ dt) = q̇(t) + ϕ
dt

2
(q̈(t) + q̈(t+ dt)) [2.25]

A value ϕ = 1.3 is used to facilitate a high convergence rate
to the static solution, as shown in Figure 2.18. To ensure a
high convergence rate, the time step dt must be close to the
critical time step dtmax of the explicit numerical scheme.
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Figure 2.18. Numerical damping effects on the macroscopic Young
modulus EM and Poisson ratio νM . For a color version of the figure,

see www.iste.co.uk/jebahi/discrete.zip

2.4.2.2. Parametric study

As shown previously, the cohesive beam bonds are defined
by four parameters:

– Two geometrical parameters: length lμ and radius rμ.

– Two mechanical parameters: microscopic Young’s
modulus Eμ and microscopic Poisson’s ratio νμ.

The lengths of the cohesive beam bonds are imposed by the
distances between the centers of the discrete elements in
contact and are not to be determined (non-free parameters).
The other three parameters which are assumed to be the
same for all the cohesive beams are free and must be
quantified. Concerning the second geometrical parameter
(rμ), dimensionless cohesive beam radius, noted as r̃μ and
defined as the ratio between the beam radius rμ and the
mean radius of the discrete elements R̄, will be preferred to
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70 Discrete Element Method to Model 3D Continuous Materials

the beam radius. This allows this parameter to be
independent of the size of discrete elements.
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Figure 2.19. Influence of νμ on EM and νM

2.4.2.2.1. Microscopic Poisson’s ratio influence

Figure 2.19 shows the evolution of the macroscopic Young
modulus EM and Poisson ratio νM for different values of
the microscopic Poisson ratio νμ in the range [0, 0.5]. It
is observed that the microscopic parameter νμ does not
influence significantly the macroscopic properties (EM and
νM ). Actually, this parameter is only involved in [2.11] and
[2.12] to compute the microscopic shear modulus Gμ, which
in turn is only used to determine the local torsion loading
(of the cohesive beams). To explain the νμ independence of
the macroscopic properties, the total elastic energy during
the quasistatic tensile test is split up into three energies
(section 2.4.1.2 for details on the computation methods):

– Tension energy characterized by the sum of the cohesive
beam works of the normal forces.
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 71

– Bending energy characterized by the sum of the cohesive
beam works of the bending torques.

– Torsion energy characterized by the sum of the cohesive
beam works of the torsion torques.

Figure 2.20 presents the evolution of these energies with
time. The contribution of the torsion energy is minor
(Figure 2.20), which explains the negligible effect of the
microscopic Poisson ratio νμ. Consequently, this parameter
can be fixed arbitrarily. For the rest of the study, a value of
νμ = 0.3 is chosen.

Time (ms)
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80
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Bending

Traction

Total

Figure 2.20. Energy breakdown of total elastic energy stored by
cohesive beams for the quasistatic tensile test (computed with a time

step Δt = 3.10−7s and a number of iterations n = 100 000)

2.4.2.2.2. Microscopic Young’s modulus influence

Figure 2.21 shows the evolution of the macroscopic
parameters as a function of the microscopic Young modulus
Eμ for different values of r̃μ (microscopic radius ratio). Based
on this figure, Eμ increases linearly the macroscopic Young
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72 Discrete Element Method to Model 3D Continuous Materials

modulus, whereas it has no significant influence on the
macroscopic Poisson ratio νM . Table 2.1 gives an outline of
these evolutions.

Macro. Macro. Macro.
parameters Young’s modulus EM Poisson’s ratio νM
Functions EM = f1 (Eμ) νM = f2 (Eμ)
Evolution increasing linear function constant function
Figures 2.21a 2.21b

Table 2.1. Influence of the microscopic Young modulus
on the macroscopic properties

2.4.2.2.3. Microscopic radius ratio influence

Figure 2.22 shows the evolution of the macroscopic
parameters as a function of the microscopic radius ratio r̃μ for
different values of the microscopic Young modulus. Both the
macroscopic Young modulus EM and the macroscopic Poisson
ratio νM are nonlinearly dependent upon r̃μ, but with
reversed trends. r̃μ increases EM and decreases νM . Table 2.2
gives an outline of these evolutions.

2.4.2.3. Calibration method for static parameters

Section 2.4.2.2 has described the influence of the
microscopic parameters νμ, Eμ and r̃μ on the macroscopic
parameters EM and νM . The results of this section have been
used to develop a calibration methodology. The next three
steps describe this methodology with an application to the
silica glass material whose Young modulus and Poisson ratio
are respectively ESilica

M = 75GPa and νSilicaM = 0.17.

1) Calibration of the microscopic Poisson ratio νμ
Section 2.4.2.2.1 has shown that the influence of the
microscopic Poisson ratio νμ is negligible. Its value is
arbitrarily fixed at 0.3.

2) Calibration of the microscopic radius ratio r̃μ
The microscopic Young modulus Eμ is arbitrarily fixed at the
macroscopic value (the silica glass value). A set of tensile
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 73

tests are simulated to plot the evolution of νM with r̃μ. This
evolution facilitates to retrieve the value of r̃μ that matches
the value of the silica Poisson ratio, as shown in Figure 2.23a.
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(a) EM evolution as a function of Eμ
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(b) νM evolution as a function of Eμ

Figure 2.21. Microscopic Young’s modulus Eμ influence on the
macroscopic parameters EM and νM . For a color version of the figure,

see www.iste.co.uk/jebahi/discrete.zip
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74 Discrete Element Method to Model 3D Continuous Materials

Macro. Macro. Macro.
parameters Young’s modulus EM Poisson’s ratio νM
Functions EM = f3 (r̃μ) νM = f2 (r̃μ)
Evolution increasing quadratic function. decreasing quadratic function
Figures 2.22a 2.22b

Table 2.2. Influence of the microscopic radius
ratio on the macroscopic properties

Micro radius ratio r̃μ
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Figure 2.22. Microscopic radius ratio r̃μ influence on the
macroscopic parameters EM and νM . For a color version of the figure,

see www.iste.co.uk/jebahi/discrete.zip
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Micro radius ratio r̃μ
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(a) Calibration of r̃μ
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Figure 2.23. Calibration of microscopic parameters r̃μ and Eμ that
match the silica Young modulus and Poisson ratio values

3) Calibration of the microscopic Young modulus Eμ

The microscopic radius ratio r̃μ was quantified in the previous
step. A set of tensile tests are simulated to plot the evolution
of EM with Eμ. This evolution facilitates to retrieve the value
of Eμ that matches the value of the silica Young modulus, as
shown in Figure 2.23b. Note that Eμ have no influence on the
macroscopic Poisson ratio νM which was fitted in the previous
step (section 2.4.2.2.2).
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76 Discrete Element Method to Model 3D Continuous Materials

2.4.2.4. Convergence study
To apply the cohesive beam model to any material

geometry, it must be verified that the calibration results do
not depend on the number of discrete elements in a given
material volume. To check this property, many discrete
samples (with similar bounding dimensions) were built with
an increasing number of discrete elements (Figure 2.24). The
samples satisfy the criteria established in section 2.3. To take
into account the variability of the sample geometry, four
different samples were built for each number of discrete
elements.

(a) 200 discrete elements

(b) 2 000 discrete elements

(c) 20 000 discrete elements

Figure 2.24. Snapshot of discrete samples with increasing
fineness. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip

Figure 2.25 shows the evolution of the macroscopic
parameters EM and νM as a function of the number of
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 77

discrete elements. Beyond 10, 000 discrete elements, the
macroscopic Young modulus EM and the macroscopic Poisson
ratio νM fluctuate respectively around 3% and 2.5%. These
fluctuations seem to be better than those obtained in the
literature. Hentz et al. [HEN 04a] have shown that the Liao
calibration methodology for the dual spring model [LIA 97]
gives a dispersion around 28% for the Young modulus and
16% for the Poisson ratio. To improve the accuracy, the same
authors have introduced an energy criterion, which has
allowed us to reduce the dispersions to around 12% and 10%,
respectively. However, this criterion is assembly dependent
and must be computed for each sample.
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Figure 2.25. Evolution of the macroscopic parameters EM and νM
as a function of the number of discrete elements. For a color version

of the figure, see www.iste.co.uk/jebahi/discrete.zip

The cohesive beam model associated with the compaction
criteria facilitates a better precision without any
recomputation. Consequently, a set of microscopic parameters
r̃μ, Eμ and νμ allows us to model an elastic material whatever
shape or discrete domain fineness it has, provided that a
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78 Discrete Element Method to Model 3D Continuous Materials

sufficient number of discrete elements is used (10, 000 or
more).

2.4.2.5. Validation

The previous sections provide a methodology for
calibrating the microscopic parameters from the macroscopic
elastic properties. Tables 2.3 and 2.4 summarize the results
obtained for the silica glass material. To validate these
results, the obtained microscopic elastic parameters are used
to build a cylindrical numeric sample of silica glass. This
sample is submitted to quasistatic tensile, bending and
torsion loadings, such that the “xMin” discrete element set is
fixed and “xMax” set is loaded. To reproduce a quasistatic
aspect, the loads are applied gradually (section 2.4.2.1.2). The
free face (“xMax” set) displacement and rotation given by the
numerical simulations are compared to the results given by
the material strength theory. Table 4.2 summarizes the
differences in terms of percentages between numerical and
theoretical results. The higher difference is obtained for the
torsion test and is less than 7%. A possible cause can be the
definition of the bounding radius of the sample. A small
difference on the radius value theoretically leads to a
difference of fourth order magnitude on the torsion results
because of the computation of the second moment of area.
Figure 2.26 shows the two possible definitions of the sample
radius. If the Effective section is used instead of the Max
section, the difference for the torsion test decreases to a value
of 1.8%. However the other differences, for bending and
tensile tests, increase.

Young’s Modulus Poisson’s ratio
EM = 75 GPa νM = 0.17

Table 2.3. Macroscopic silica glass elastic parameters

The transition from the discrete sample to a continuous
shape has so far been an open question. A proposed solution
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 79

consists of computing the bounding volume of the discrete
sample. The advantage of this definition is its simplicity.
However, a more complex definition of the equivalent
continuous geometry from a discrete sample may provide
better results.

Young’s Modulus Poisson’s ratio Radius ratio
Eμ = 295.5 GPa νμ = 0.3 r̃μ = 0.68

Table 2.4. Microscopic silica glass elastic parameters

Tensile Bending Torsion
Criteria Free face Free face Free face

normal displacement tangential deflection rotation
Difference 1.20 % 4.16 % 6.13 %

Table 2.5. Comparison of the numerical and theoretical results for
the quasistatic tensile, bending and torsion tests

2.4.3. Calibration of the cohesive beam dynamic
parameters

The previous section has dealt with the calibration of the
elastic (static) parameters. The presented calibration
approach facilitates for quantification of the three
microscopic elastic parameters (Young’s modulus Eμ, cohesive
beam radius r̃μ and Poisson’s ratio νμ) to obtain the expected
elastic behavior at the structure scale. To quantitatively
simulate dynamic phenomena such as cracks or impacts, it is
also necessary to calibrate the microscopic mass parameters.

2.4.3.1. Calibration method for dynamic parameters

The discrete element mass parameters (mass and inertia
matrix) depend on the discrete element volume and density.
Since the geometrical characteristics of the discrete elements
are set out during the construction of the discrete domain,
only the density of these elements is to be adjusted. As the
elastic parameters, this microscopic parameter can be
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80 Discrete Element Method to Model 3D Continuous Materials

different from the macroscopic density of the material being
modeled (to compensate the voids between the discrete
elements in the compacted domain). To quantify this
parameter, a very simple calibration criterion is chosen. This
criterion ensures mass equality between the discrete and
continuous domains:

ρμ =
ρMVM

N∑
i=1

Vμi

[2.26]

where:

– ρμ and Vμi are respectively the discrete element density
and volume.

– ρM and VM are respectively the continuous density and
volume. The continuous domain dimensions are computed as
presented in section 2.4.2.1.1.

Max radius
Max sectionEffective section

Effective radius

Z

Y

xMax

Figure 2.26. Two possible definitions of the sample section:
bounding or effective. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 81

However, this criterion does not ensure inertia equality
between the discrete and the continuous domains. To study
the influence of this inequality, the results of simple 1D
dynamic tests were analyzed. A set of discrete domains with
aligned identical discrete elements are loaded to generate a
resonance answer in tensile, bending and torsion modes
(Figure 2.27).

(a) Discrete domain made up of two aligned discrete elements

(b) Discrete domain made up of ten aligned discrete elements

Figure 2.27. Illustration of simple 1D dynamic tests. For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip

The oscillation periods are computed due to spectral
analysis. The number of discrete elements is increased from 2
to 20 to study the convergence of the solution. For each mode,
the analytical solution of oscillation period T associated with
a clumped-free beam can be obtained using the material
strength theory [SHA 97, section 4.1, section 4.2, section 4.3]:

Ttensile = 4L

√
ρ

E
[2.27]
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82 Discrete Element Method to Model 3D Continuous Materials

Tbending =
2L2

π

√
ρS

E I
[2.28]

Ttorsion = 4L

√
ρ

G
[2.29]

where:

– Ttensile, Tbending and Ttorsion are the first mode oscillation
periods of the clamped-free beam;

– E, G are the Young and shear moduli;

– ρ is the density;

– L, S, I are the length, the cross-section area and the
second moment of area of the beam.

The discrete element density is computed so as to ensure
mass equality between discrete and continuous domains:

ρμ =
3

4

ρL

NR
[2.30]

where:

– N is the number of discrete elements;

– ρμ is the density of the discrete elements;

– R is the radius of the discrete elements.

In the case of 1D discrete domains, the parameter values
of the cohesive beams are equal to those of the continuous
domain:

Eμ = E

νμ = ν

rμ = R
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 83

The obtained results show that, in the case of:

– tensile test (Figure 2.28a), the numerical solution
converges to the analytical solution.

– bending test (Figure 2.28b), the numerical solution
converges to the analytical solution with a small difference.
This error is due to material strength theory that neglects the
rotational kinetic energy.

– torsion test (Figure 2.28c), numerical solution converges
to the analytical solution with a difference of 10%. In this
case, the rotational kinetic energy cannot be neglected, which
explains the relatively large error.

The tensile and bending numerical results are in good
agreement with the analytical solutions. Such an agreement
is not as good in the case of torsion test, since 10% relative
error is obtained between the numerical and analytical
results. This error is due to computation of the discrete
element density using mass equality between the discrete
and continuous domains, rather than inertia equality. Using
inertia equality, the discrete element density is computed as:

ρinertia
μ =

15

16

ρL

N R
[2.31]

The ratio between the oscillation period using discrete
element density computed with mass equality assumption
ρmass
μ [2.30] and inertia equality assumption ρinertia

μ [2.31] is:

Tmass
Torsion

T inertia
Torsion

=
4L

√
ρmass
μ

G

4L

√
ρinertia
μ

G

=

√√√√ 3
4

ρL
N R

15
16

ρL
N R

Tmass
Torsion

T inertia
Torsion

=

√
12

15
≈ 0, 89 [2.32]
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Figure 2.28. Convergence study of oscillation periods
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 85

Overall, the relative error in torsion results could be
accepted in the framework of discrete element modeling,
especially, as shown in Figures 2.20 and 2.29, the torsion
energy does not contribute significantly in computation of the
total energy.

In conclusion, the consequence of the error on the inertia
computation, caused by the mass equality assumption, is not
significant on the dynamic elastic response of the studied
system. The mass equality can be used as a simple
calibration method of the discrete element density.

2.4.3.2. Validation
The previous section considered simple 1D models to

investigate the calibration method of the microscopic
dynamic parameter (discrete element density). The present
section attempts to validate the calibration results by
simulation of dynamic tensile, bending, torsion and impact
tests using 3D cylindrical discrete domains (Figure 2.16). The
material of these domains is assumed to be silica glass whose
the macroscopic elastic properties and their associated
microscopic parameters are given by Tables 2.3 and 2.4,
respectively. The silica glass density is ρM = 2200 kg/m3. The
corresponding microscopic density is obtained using the mass
equality assumption between discrete and continuous
domains. The dimensions of the continuous domain are
computed as explained in section 2.4.2.1.1.

Starting with dynamic tensile, bending and torsion tests,
the boundary conditions and the loadings are applied such
that the “xMin” face is fixed and the “xMax” face is loaded.
The forces acting on “xMax” are applied progressively and
suddenly set to 0. This loading allows us to excite the system
dynamically. Based on spectral analysis, the numerical
oscillation periods are obtained by averaging the positions of
the discrete elements belonging to the free face (“xMax”).
Numerical results are compared to theoretical results given
by equations [2.27], [2.28] and [2.29].
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Figure 2.29. Energy breakdown of total elastic energy stored by
cohesive beams for a complex dynamic test (computed with a time

step Δt = 3.10−7s and a number of iterations n = 50 000). For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip

For impact tests, an initial velocity on X is applied to the
“xMin” face to generate a mechanical wave. “xMax” average
velocity on X is measured at each time step. Incidentally, it
is possible to capture the moment when the mechanical wave
reach “xMax” face (Figure 2.30). Mechanical wave celerity is
deduced with the elapsed time for the mechanical wave front
to go through the numerical sample (Figure 2.31).

Table 2.6 shows relative comparison between simulation
and theoretical results. Tensile, torsion and impact tests
show very good adequacy with analytical results. The
bending test shows less precision. The reason for this error is
previously discussed and a solution is proposed in
section 2.4.2.5.
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Figure 2.30. “xMax” face average velocity as a function of time

Traction Bending Torsion Impact
Criteria Free face Free face Free face Mechanical

normal tangential rotational wave
oscillation oscillation oscillation celerity

Difference 0.38 % 6.63 % 0.50 % 0.40 %

Table 2.6. Comparison of the numerical and theoretical results for
dynamic tensile, bending, torsion and impact tests

2.5. Conclusion

The present chapter focuses on modeling of continuum
mechanical behaviors using the hybrid lattice-particle
method. Due to various difficulties, this method was, until
very recently, used as a qualitative tool to understand
complex phenomena such as wear, fracture or impact. This
chapter aims to overcome these limitations by proposing a
new variation of this method to model quantitatively
continuous materials. In this variation, the studied material
is represented by an agglomerate of spherical discrete
elements connected by identical cylindrical cohesive beams.

In addition, a comprehensive methodology has been
introduced to simplify application of this variation and
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88 Discrete Element Method to Model 3D Continuous Materials

ensure a correct quantitative modeling of continuous
materials. This methodology consists of four steps.

(a) t ≈ 3.8 μs (b) t ≈ 7.6 μs

(c) t ≈ 11.4 μs (d) t ≈ 15.2 μs

(e) t ≈ 19 μs

Figure 2.31. Snapshots of mechanical wave propagation. For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip

The first step concerns the construction of the discrete
domain of the studied problem. As shown, building the initial
discrete domain is a question of high level of interest. Indeed,
the obtained discrete domain impacts greatly the associated
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 89

mechanical behavior. For example, a regular discrete domain
can lead to an unexpected anisotropic behavior. This first step
deals with this question and proposes a well-tested algorithm,
the cooker, that can be used to correctly build the discrete
representation of the studied material. A list of good-practices
can be drawn from this step:

– The compacted domains must ensure a good level of
geometrical isotropy to ensure mechanical isotropy. Then,
ordered discrete domains must be prevented. To do so, a
statistical distribution κ must be applied on the discrete
element radii. In the case of uniform distribution [2.7], κ =
25% seems to promote the isotropy. The cooker algorithm
proposed in this chapter has been proven to conduce to
isotropy. If another method is used to generate the discrete
element domain, isotropy must be verified with a 3D
histogram, as shown in Figure 2.7.

– The compacted domains that model a same material must
have same level of average coordination number (cardinal
number) and volume fraction.

– The compacted domains must have a sufficient number
of discrete elements N to ensure refining independence of the
simulation results. It is demonstrated in this chapter that for
a 3D discrete domain and beyond N = 10, 000 the simulation
results are weakly affected by this number.

The second step concerns the choice of the rheological
model of the cohesive bonds used to link the adjacent discrete
elements. To reproduce the linear elastic behavior of
materials, cylindrical cohesive beam bonds were proposed.
The mechanical behavior of these beams is described by the
analytical Euler–Bernoulli theory. Only four parameters are
required to completely describe their geometrical and
mechanical properties: two geometrical parameters (length lμ
and radius rμ) and two mechanical parameters (Young’s
modulus Eμ and Poisson’s ratio νμ). These static parameters,
in addition to the discrete element masses, are sufficient for
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90 Discrete Element Method to Model 3D Continuous Materials

descibing the mechanical behavior of the studied problem.
Except for lμ which is imposed by the discrete element
locations, all these parameters must be adjusted to ensure a
correct macroscopic mechanical behavior.

The third step aims to address this point. An identification
approach by calibration was proposed to identify the
appropriate microscopic parameters. As in experimental
identification, to determine the static microscopic
parameters, quasistatic tensile tests were simulated using
numerical samples having different static microscopic
parameters. To simplify the calibration process, a parametric
study was first done. As a result of this study, it has shown
that the microscopic Poisson ratio νμ has no influence of the
macroscopic mechanical behavior and can be fixed arbitrary.
The microscopic Young modulus Eμ has influence only on the
macroscopic Young modulus EM . The microscopic radius ratio
r̃μ influences both EM and νM . Therefore, this last parameter
must be calibrated first to obtain the expected νM . Then, the
parameter Eμ can be calibrated to match the expected EM . As
for the dynamic parameters (discrete element masses), these
parameters can be replaced by only one parameter (simple to
calibrate): the discrete element density ρμ which is assumed
to be the same for all the discrete elements. As shown, this
dynamic parameter can easily be determined by analytical
calculation, using mass equality assumption between discrete
and continuous domain.

The final step consists of implementation and application
of the first three steps to simulate mechanical problems with
the developed DEM variation. The obtained results have been
quantitatively compared to experimental, analytical or other
numerical results. As seen, these results are very promising
to invest more in this direction.

This work is a first step in proposing a quantitative
numerical tool able to quantitatively model those classes of
problems that cannot be easily treated by classic numerical
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Discrete Element Modeling of Mechanical Behavior of Continuous Materials 91

approaches. Further developments will tackle more complex
behaviors such as anisotropy, work hardening or
densification, etc.

The next chapter attempts to apply the presented
methodology to deal with another interesting aspect in
mechanical engineering: thermal conduction in continuous
materials.
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3

Discrete Element Modeling of Thermal
Behavior of Continuous Materials

3.1. Introduction

The temperature field plays a valuable role in almost
any manufacturing process, such as machining, friction
stir welding, etc. Due to the very strong dependence
of metallurgical phenomena on this field, it critically
influences the mechanical properties of the processed
material. Consequently, the search for a realistic thermal
simulation of these processes, including an accurate heat
transfer modeling, is an issue of capital importance
for the desired full control of manufacturing techniques.
Predominantly, three fundamental modes of heat transfer can
be distinguished:

– conduction which is defined as transfer of energy by
diffusion between objects in physical contact;

– convection which is defined as transfer of energy between
an object and its environment, due to fluid motion;

– radiation which is defined as transfer of energy by
electromagnetic radiation generated from thermal motion of
charged particles.

Discrete Element Method to Model 3D Continuous Materials, First Edition.  
Mohamed Jebahi, Damien André, Inigo Terreros and Ivan Iordanoff.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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94 Discrete Element Method to Model 3D Continuous Materials

Conduction is the most significant means of heat transfer
within a solid or between solids in physical contact. In
continuous materials, this mode can be described by using
the Fourier equation which was first proposed in 1822
[FOU 22]. This equation can be written in the case of
constant conductivity as:

∂Θ

∂t
=

λ

ρ cp

(
∂2Θ

∂x2
+

∂2Θ

∂y2
+

∂2Θ

∂z2

)
[3.1]

where Θ denotes the temperature field, λ is the thermal
conductivity, ρ is the density of the considered material, cp is
the specific heat and t represents the time. Solving this
equation analytically is only possible for few geometrically
simple problems [CRA 56]. In the general case, it is often
necessary to have recourse to numerical approaches to
provide an approximate solution for this equation. In
particular, continuum approaches have been widely applied
to this end, due to their natural adaptation to partial
differential equations.

In tooling processes, regions with high thermal gradients
and heat fluxes are often located near the tool-piece contact.
In the contact area, continuum approaches have difficulty to
accurately describe the emerged complex phenomena, such as
fracture [TAV 06], dry sliding contact with a third body
presence [RIC 08], high strains and temperature gradients.
As for the discrete element method (DEM), this approach
provides a good alternative to continuum methods to locally
treat these phenomena.

If solutions have been proposed to apply DEM for
simulation of continuum mechanical phenomena, application
of this method to simulate thermal problems has until
recently been restricted to granular materials
[RIC 08, VAR 01, VAR 02b, VAR 02a, VAR 03, VAR 07].
Lately, Hahn et al. [HAH 11] have applied this method to
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 95

model 2D continuum thermal behaviors. This chapter
attempts to extend this work to 3D continuous materials.

The previous chapter has presented a general methodology
to model continuous materials from a mechanical point of
view. Based on this methodology, the present chapter
describes a method for simulating isotropic heat conduction
through a 3D continuum material, using the DEM.

3.2. General description of the method

3.2.1. Characterization of field variable variation in
discrete domain

To introduce the main concept of the heat conduction
method, a discrete domain created exclusively with spherical
discrete elements is considered (Figure 3.1). As shown in
Figure 3.1, only contacts between particles are considered in
the heat conduction calculations. The cohesive beams can
only be used to identify, in a rapid and focused manner, the
contacts between the discrete elements, or also to perform
thermo-mechanical coupling.

Figure 3.1. Discrete domain for thermal conduction modeling. For a
color version of the figure, see www.iste.co.uk/jebahi/discrete.zip
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96 Discrete Element Method to Model 3D Continuous Materials

To find the variation of a given field variable throughout a
discrete domain, there are two main steps to follow, as
explained in [VAR 01]:

– for each discrete element, the variations of the considered
field variable due to interaction of this discrete element with
each of its neighbors must be analyzed and stored separately;

– the stored variations associated with each discrete
element must be summed to obtain the global field variable
variations (at the discrete elements).

These steps can be translated mathematically into:

Gi =

Nneigh∑
j=1

gij [3.2]

where Gi is the global variation of the considered field variable
at the discrete element i, gij is the variation of this field at i
due to its interaction with the discrete element j and Nneigh is
the total number of neighboring discrete elements of i.

3.2.2. Application to heat conduction

In the particular case of heat conduction, transferred heat
between two discrete elements at a given instant, Wij , can be
calculated using Fourier’s law as follows:

Wij = St λ
(θj − θi)

lij
[3.3]

where St is the heat transmission surface area, (θj − θj) is the
temperature difference between discrete element i and
discrete element j, λ is the material heat conductivity and lij
is the distance between discrete element i and discrete
element j. Furthermore, the thermal energy gain of a discrete
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 97

element i, ΔEi, can be calculated as a function of its rise in
temperature as follows:

ΔEi = cp ρμi Vi Δθi

where cp is the specific thermal capacity of the discrete
element, ρμi represents the density of the discrete element i,
Vi is the volume and Δθi is the rise in temperature at a
discrete element i. The time derivative of this thermal energy
gain represents the heat being transferred to discrete
element i:

ΔEi

Δt
= Wij =

cp ρμi Vi Δθi
Δt

[3.4]

If the time step Δt is small enough to consider (θj − θi)
constant during the time step, equations [3.3] and [3.4] can be
combined to obtain the temperature rise of discrete element i
due to its interaction with a neighbor j:

Δθi =
(θj − θi) St λ

lij cp ρμi Vi
Δt [3.5]

Finally, equation [3.2] is used to obtain the total variation
of the temperature at the discrete element i, ΔΘi, after the
time step Δt:

ΔΘi =

Nneigh∑
j=1

Δθj [3.6]

3.3. Thermal conduction in 3D ordered discrete
domains

In the work by Hahn et al. [HAH 11], an approach to
predict the temperature field in 2D discrete domains formed
by hexagonal discrete elements was developed. Using the
concepts introduced in the previous section, the present
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98 Discrete Element Method to Model 3D Continuous Materials

section extends this approach to 3D ordered discrete domains
formed by identically sized spherical discrete elements placed
following a simple cubic crystal pattern. Figure 3.2
represents an illustration of this discrete domain. To fill all of
the domain volume, each discrete element i is represented by
a cube of continuous material whose volume equals
Vi = (2R)3. Equation [3.5] can be modified for the particular
case of the crystal domain presented in Figure 3.2 as follows.
The mass of each discrete element is supposed to be equal to
the mass of the associated cubic volume. In this case, the
discrete element density ρμ, which is same for all the discrete
elements, is linked to the material density ρM by means of
the volume fraction fv as follows:

ρμ =
ρM
fv

=
Vcube

Vsph
ρM =

8R3

4/3 π R3
ρM =

6

π
ρM [3.7]

Figure 3.2. 3D crystal domain and example of a random particle
with six neighbors. The volume represented by each discrete element

is 2R × 2R × 2R = 8R3

Let us consider the transmission surface to be equal to the
surface of the cube face St = 4R2 and the distance between
discrete elements equal to the cube side lij = 2R. In this case,
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 99

equation [3.5] becomes:

Δθi =
(θj − θi) St λ

lij cp ρμ Vsph
Δt =

(θj − θi) (4R
2) λ

(2R) cp ρM (Vcube/Vsph) Vsph
Δt

=
λ

cp ρM

(θj − θi)

(2R)2
Δt [3.8]

Inside the discrete domain, the discrete elements have on
average six neighbors. Considering a discrete element i with
its neighbors (Figure 3.3), the total temperature variation at
this element is given by:

ΔΘi =

6∑
j=1

Δθj

=
λ

ρM cp

(θ1 + θ2 + θ3 + θ4 + θ5 + θ6 − 6θi)

(2R)2
Δt

[3.9]

or also,

ΔΘi =
λ

ρM cp

×
(
θ1 + θ2 − 2θi

(2R)2
+

θ3 + θ4 − 2θi
(2R)2

+
θ5 + θ6 − 2θi

(2R)2

)
Δt

[3.10]

which is an exact fit to the finite central difference stencil for
the 3D heat equation [3.1] with a mesh size equal to 2R:

∂Θ

∂t
=

λ

ρM cp

(
∂2Θ

∂x2
+

∂2Θ

∂y2
+

∂2Θ

∂z2

)
≈

≈ λ

ρM cp

(
θ1 + θ2 − 2θi

(2R)2
+

θ3 + θ4 − 2θi
(2R)2

+
θ5 + θ6 − 2θi

(2R)2

)
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100 Discrete Element Method to Model 3D Continuous Materials

In summary, the use of equation [3.2] to describe heat
conduction through a 3D continuous material modeled with an
ordered discrete domain as shown in Figure 3.2 fits a central
difference stencil if:

– the mass of each discrete element is equal to the mass of
the associated volume in the discretized continuous material
(cubic volume in the given example);

– the transmission surface of each discrete element is equal
to the area of the faces of the associated volume.

Figure 3.3. Six discrete elements around an internal discrete
element i. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip

However, application of this equation on disordered discrete
domains is not straightforward. The next section attempts to
address this issue.

3.4. Thermal conduction in 3D disordered discrete
domains

To ease the coupling of the thermal and mechanical
aspects of a simulation, both the thermal behavior and
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 101

mechanical behavior should work together using the same
discrete domain. To perform quantitative simulation of a
solid material by DEM, the previous chapter has shown that
the discrete domain must verify some criteria related to
compactness, homogeneity and isotropy (in terms of contact
directions). To extend the general heat conduction method
introduced in section 3.2.2 to this type of discrete domain
(isotropic discrete domain), the items inferred in summary of
the previous section will be assumed necessary, even if the
structure of the 3D discrete domain is different.

The problem is that there is no geometrical method to find
the volume fraction and the transmission surface associated
with each discrete element (Figure 3.4). To circumvent this
problem, the present chapter proposes a robust and
numerically efficient method to obtain locally these
parameters, ρμ and St [3.5], in 3D discrete domains. Such a
method constitutes the main originality of the present work.
As will be seen later, results obtained using this method are
in agreement with the results of Hahn et al. [HAH 11] who
have shown that local anisotropy in the thermal heat
conductivity at small scales has no effect on the heat flux at
the structure scale.

Crystal domain Isotropic domain

Figure 3.4. 2D example of a crystal (ordered) domain with known
transmission surface and known volume fraction;

and an isotropic discrete domain with unknown transmission
surface and unknown volume fraction
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102 Discrete Element Method to Model 3D Continuous Materials

3.4.1. Determination of local parameters for each
discrete element

To determine the transmission surface area and the
discrete element density in an isotropic discrete domain, an
equivalent platonic solid that depends on the number of
neighbors is considered for each discrete element. Figure 3.5
shows an example of the equivalent platonic solid of a
discrete element having six neighbors.

Figure 3.5. Example of an equivalent platonic solid. For a color
version of the figure, see www.iste.co.uk/jebahi/discrete.zip

The transmission surface and the local volume fraction are
calculated from this platonic solid. Note that due to random
packing of discrete elements, the volume fraction may vary
from one discrete element to another, since it depends on the
number of discrete element neighbors. Consequently, the
concept of “local” volume fraction will be used instead of the
concept of volume fraction used before. Furthermore,
dimensionless transmission surface S̃t, defined as the ratio
between the transmission surface St and the square of the
considered discrete element radius R2, will be preferred to St.
This facilitates this parameter to be independent of the
discrete element radii.
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 103

3.4.2. Calculation of discrete element transmission
surface

As stated in section 3.4.1, a discrete element i is related to
a regular polyhedron (platonic solid) by means of its number
of neighbors. The number of surfaces of the chosen
polyhedron is equal to the number of neighbors. Then, the
area of the virtual polyhedron faces is calculated and used as
the transmission surface of the considered discrete element i.
In the cases where such a regular polyhedron does not exist,
the transmission surface is chosen by linear interpolation
(Figure 3.6). For the cases where the discrete element i is in
contact with less than four neighbors, the slope is considered
to be constant. In the example of Figure 3.5, in which six
discrete elements are in contact with the discrete element of
interest, the transmission surface area is considered to be
four times the square of its radius 4R2, as shown in
Figure 3.6 and in Table 3.1.

Figure 3.6. Dimensionless transmission surfaces (solid curve)
and volume fractions (dotted curve) as a function of the

number of neighbors
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104 Discrete Element Method to Model 3D Continuous Materials

3.4.3. Calculation of local volume fraction

A similar method is used to calculate the volume fraction
associated with each discrete element. The volume fraction of
a given discrete element is chosen in the same way as the
volume fraction of the associated crystal structure, which
depends on the number of neighboring discrete elements.
Just as in section 3.4.2, if the number of neighbors does not
match any crystal structure, the local volume fraction is
calculated using a linear interpolation (Figure 3.6). For the
theoretical case where the discrete element has no neighbors,
the local volume fraction is considered to be zero.
Furthermore, when the discrete element of interest is in
contact with more than 12 neighbors, the slope is considered
to be constant. For instance, the discrete element shown in
Figure 3.5 is assumed to occupy nearly 52.36% of the space, as
is an atom in a simple cubic unit cell (Figure 3.7):

fv =
l3

(4/3)πR3
=

(2R)3

(4/3)πR3
=

6

π
≈ 0.5236 [3.11]

where l is the side length of the equivalent platonic solid
(cubic volume) and R is the radius of the discrete elements.
Figure 3.6 and Table 3.1 give the results for other number of
neighboring discrete elements (from 1 to 20 neighbors).

Nneigh S̃t fv Nneigh S̃t fv
1 19,98076 0,08502 11 1,69019 0,72540
2 16,78460 0,17004 12 1,38757 0,74048
3 13,58845 0,25506 13 1,30888 0,75555
4 10,39230 0,34008 14 1,23020 0,77063
5 7,19615 0,43184 15 1,15152 0,78570
6 4,0 0,52359 16 1,07284 0,80078
7 3,29903 0,60188 17 0,99415 0,81586
8 2,59807 0,68017 18 0,91547 0,83093
9 2,29545 0,69525 19 0,83679 0,84601
10 1,99282 0,71032 20 0,75810 0,86109

Table 3.1. Calculated values for S̃t and fv as a
function of the number of neighbors
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 105

Figure 3.7. Example of a simple cubic unit cell

The methods described in the previous and present sections
are numerically very efficient. The knowledge of the number of
neighbors directly provides the transmission surface and local
volume fraction that must be employed for the heat transfer
calculation.

3.4.4. Interactions between each discrete element and its
neighbors

Once the local volume fraction and transmission surface
are obtained for each discrete element, some considerations
must be taken into account to calculate the temperature rise.
First, the heat exchange between any discrete element i and
its neighbor j must be the same, irrespective of the identity of
the discrete element of reference. This requirement means
that the resultant amount of exchanged heat [3.3] must be
the same, whether reference element i or element j is used in
the calculation. This equivalence is achieved by averaging the
parameter St from equation [3.3]. The transmission surface
associated with the discrete element i can be obtained using
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106 Discrete Element Method to Model 3D Continuous Materials

the dimensionless values presented in Table 3.1 as follows:
Sti = S̃ti R

2
i . The equivalent transmission surface between

this discrete element and its neighbor j is then given by:
Stij =

√
Sti Stj . On the contrary, the parameter fv must not be

averaged in such a way, because it determines the
temperature rise of the discrete element and this variation
depends on the properties of the discrete element itself and
not on its interactions.

Taking into account the results of this section, and
replacing ρμi with its expression (ρM/fvi , where fvi is the
volume fraction of the discrete element i), equation [3.5] can
be expressed as follows:

Δθi =
(θj − θi) Stij λ fvi

lij ρM cp Vi
Δt [3.12]

Finally, the temperature variation, after a time step Δt, at a
discrete element i belonging to an isotropic discrete domain
can be obtained by summation of the local variations [3.12]
due to interaction of this element with its neighbors as follows:

ΔΘi =

Nneigh∑
j=1

Δθi =

Nneigh∑
j=1

(θj − θi) Stij λ fvi
lij ρM cp Vi

Δt [3.13]

3.5. Validation

To validate the method described in the previous section,
two types of thermal tests were simulated using isotropic
discrete domains.

3.5.1. Cylindrical beam in contact with a hot plane

In the first case, the cylindrical domain shown in
Figure 3.8, with an initial temperature of 298 K, is submitted
to a boundary temperature of 798 K at the left-hand end
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 107

(located at X = 0). Further characteristics of the sample,
which is assumed to be completely adiabatic, are given in
Table 3.2. The results obtained with the DEM simulation are
compared with analytical results obtained using the following
equation [CRA 56]:

Θ(x, t) = Θmax − 4(Θmax −Θmin)

π

∞∑
n=0

(−1)n

2n+ 1

× cos
(2n+ 1)πx

2L
e

−λ(2n+1)2π2t

cp ρ 4L2 [3.14]

with Θmax = 798K and Θmin = 298K. Figure 3.9 presents this
comparison. As can be seen, the numerical results are in good
agreement with the analytical results, both at the beginning
of the simulation when the greatest temperature gradient is
found and at the end of the simulation when the temperature
gradient is the smallest.

Figure 3.8. Heat conduction in a cylindrical beam at a given time of
the simulation. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip

3.5.2. Dynamically heated sheet

The second simulation aims to validate the heat
conduction method developed in this chapter using complex
thermal conditions, including high temperature gradients. A
sheet was heated with a moving heat source whose
characteristics are given in Table 3.3. The geometrical and
thermal properties of this sheet are given in Figure 3.10 and
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108 Discrete Element Method to Model 3D Continuous Materials

Table 3.4. It should be noted that this sheet whose thermal
properties correspond to an aluminium alloy was allowed to
reach elevated temperatures, actually causing material
melting. The objective there would be to make this sheet in
the same thermal conditions encountered during the friction
stir welding (FSW) process. However, the material melting
was not taken into account in the present simulation.

Parameter Value
Length 2.184mm
Radius 0.116mm
Initial temperature 298K

Density 2.790
kg

m3

Specific heat 880 J
kgK

Thermal conductivity 134 W
mK

Discrete elements 19.465
Element average radius 8.998μm

Table 3.2. Cylindrical beam characteristics

s

s

s

x (mm)

T
em

p
er

at
u
re

(K
)

Analytical results
DEM results

Figure 3.9. Numerical and analytical temperature distributions at
various times. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 109

To control the heat propagation through this sheet, which
is assumed to be completely adiabatic, local temperature
evolutions were measured at three check-points (A, B and C).
The coordinates of these check-points are given in Table 3.5.
To test the convergence of the DEM calculations, different
numbers of discrete elements were used to discretize the
associated discrete domain: 1, 000, 5, 000 and 20, 000. Also, to
obtain enough data to carry out statistical calculations, five
discrete domains were created using the cooker algorithm
(section 2.3.1) for each number of discrete elements. Thus, 15
different discrete domains were used in total. For each
number of discrete elements, five sets of temperature
evolutions were obtained at each check-point.

Parameter Value
Diameter 8mm
Height 2mm
Velocity 3.3 mm

s
Heat power 1011 W

m3

Initial X position 20mm

Table 3.3. Heat source characteristics

30 mm

2 mm

50 mm
Velocity

8 mm

Figure 3.10. Schema of the sheet used in calculations
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110 Discrete Element Method to Model 3D Continuous Materials

The relative dispersion e of these sets of temperature
evolutions was computed for each number of discrete
elements and at each check-point using the following
equation:

e =
1

n

n∑
p=1

θpmax − θpmin

θpmax
[3.15]

where θpmax = max
i=1,...,5

{θpi } and θpmin = min
i=1,...,5

{θpi }, θpi is the

temperature of the discrete domain i at iteration p, and n is
the total number of iterations. Figure 3.11 presents the
values of e at the three check-points for each number of
discrete elements. As obtained for the mechanical behavior,
beyond 10, 000 discrete elements, the relative dispersion
(obtained by interpolation) can be considered satisfactory
(less than 6%). Furthermore, this parameter has a tendency
to decrease with the number of discrete elements (less than
4% for 20, 000 discrete elements).

Parameter Value
Length 50mm
Width 30mm
Height 2mm
Initial temperature 25 ◦C

Density 2.790
kg

m3

Specific heat 880 J
kgK

Thermal conductivity 134 W
mK

Table 3.4. Sheet properties

Check-point x (mm) y (mm)
A 9.5 −0.5
B 31.0 0.0
C 41.5 −9.5

Table 3.5. Coordinates of the control points
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 111
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Figure 3.11. Averaged relative dispersions of results
obtained in the check-points for each type of domain

To validate the DEM simulation, the results obtained with
20, 000 discrete elements were averaged and compared with
other numerical results obtained with the finite element
method (FEM) method using the Abaqus 6.10TM software. The
FEM domain was meshed with cubic elements whose edges
are 0.5 mm long. Figures 3.12a, 3.12b and 3.12c show this
comparison. The maximal temperature difference was located
in each figure, and the relative error between the FEM and
DEM results was calculated at this point. Relatively small
errors were obtained, which proves the validity of the
developed heat conduction method.
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112 Discrete Element Method to Model 3D Continuous Materials
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(a) Thermal field obtained at check-
point A by the DEM and FEM.
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(b) Thermal field obtained at check-
point B by the DEM and FEM.
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(c) Thermal field obtained at check-
point C by the DEM and FEM.

Figure 3.12. Thermal field obtained at different
check-points by the DEM and FEM
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Discrete Element Modeling of Thermal Behavior of Continuous Materials 113

3.6. Conclusion

This chapter shows the way in which the DEM can be used
to carry out complex heat conduction simulations using
compact, homogeneous and isotropic (in terms of contact
directions) discrete domains. The proposed method can be
used to simulate conduction within continuous materials,
and, for the first time, it is capable to deal with 3D models.
This method can easily be coupled with the mechanical
approach described in the previous chapter. Indeed, it is
adapted for the same type of discrete domains that are used
to carry out mechanical simulations.

The main originality of the presented heat conduction
method is the way in which the volume fractions fv and the
transmission surfaces St of the discrete elements are treated
to emerge the desired properties of the continuous materials
under study. A virtual platonic solid is associated with each
discrete element in the considered discrete domain. Only one
parameter is required to define such a solid: the number of
neighbors of the discrete element in question. This simple,
fast and numerically efficient operation allows us to overcome
all the problems created by the granular nature of the
discrete domains, specially: (1) the problem of internal voids,
related to the mass of the continuous material; and (2) the
problem of contact surfaces between discrete elements,
related to the internal conductivity of the continuous
material.

To validate the developed heat conduction approach, it was
applied to simulate two thermal tests. The first test is an
academic test, for which analytical solution is available. The
obtained DEM results for this test correlate very well with
the analytical solutions. The second test is relatively complex
and represents an initiation to simulation of a very complex
manufacturing process: FSW. Comparison between results
obtained by DEM simulation and FEM simulation (using
Abaqus 6.10TM software) of such a test shows that the
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114 Discrete Element Method to Model 3D Continuous Materials

developed approach is also applicable for complex thermal
simulations involving high temperature gradients.

To reduce the calculation time, a long-term solution will
consist of coupling the DEM with continuum approaches such
as the FEM [ZIE 05a, ZIE 05b, ZIE 05c] or constrained
natural element method (CNEM) [CHI 11, ILL 11, YVO 04].
Once again, the type of discrete domain used in this chapter
makes this task easier.
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4

Discrete Element Modeling
of Brittle Fracture

4.1. Introduction

One of the most important problems in material science
and engineering is fractures. For engineering materials, two
possible types of fracture can be distinguished: ductile
fracture and brittle fracture (Figure 4.1). The main difference
between them can be attributed to the amount of plastic
deformation (i.e. dislocation motion) that the material
undergoes before fracture occurs. Ductile materials (e.g.
low-carbon steels, aluminum, tungsten, etc.) undergo large
amount of plastic deformation, while brittle materials (e.g.
high-carbon steels, glass, ceramics, etc.) show little or no
plastic deformation before fracture. Only brittle fracture is
considered in this work. This means that all dissipation
during the fracture process is associated directly with the
creation of new free surfaces. This type of fracture is thought
to be initiated under a tensile stress in mode I, as reported in
the literature [LAW 93].

Discrete Element Method to Model 3D Continuous Materials, First Edition.  
Mohamed Jebahi, Damien André, Inigo Terreros and Ivan Iordanoff.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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116 Discrete Element Method to Model 3D Continuous Materials

(a) Brittle fracture (b) Ductile fracture

(c) Completely
ductile fracture

Figure 4.1. Difference between brittle fracture and ductile fracture
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Discrete Element Modeling of Brittle Fracture 117

Despite the great research effort, most of the complex
fracture problems remain an ongoing challenge in
computational mechanics. There exist several difficulties
associated not only with the formulation of physically based
models of material failure, but also with the numerical
methods required to treat geometries that change in time
(emergence of new free surfaces, singularities, etc.). Due to its
discrete nature, the discrete element method (DEM) method
presents a good candidate to model such problems, since it
can naturally deal with emergent discontinuities that can
occur in such problems. However, a major question
encountered in DEM modeling of fracture is how to develop a
fracture model able to quantitatively fit the fracture
mechanisms experimentally observed, as reported in the
literature [LAW 03, GRI 21]. Such a question has received a
great deal of scientific interest over the years, which has led
to the development of several fracture models. These models
are presently widely applied to simulate various complex
problems, such as tribology [RIC 07, IOR 08, TAN 09], impact
[MAG 98, SHI 09] and fragmentation [D’AD 01, CAR 08]
problems.

Most of the existent fracture models are based on a local
description, i.e. at the bond (cohesive beam) level. These
models give acceptable results at the macroscopic (structure)
scale. However, as will be seen in the next section, in some
cases, they are unable to correctly reproduce the cracking
mechanisms at the microscopic scale, e.g. crack path. To
overcome this limitation, a different model based on a
non-local description is proposed in this book. By using
individual cohesive beams, the new model computes
averaging quantities (stresses) at the discrete elements,
taking into account their neighbors. This model can be
regarded as complementary to the existing models.
Depending on the analysis scale and what is expected of the
studied problem, one of these models can be chosen to model
fractures.
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118 Discrete Element Method to Model 3D Continuous Materials

In the following, the main concepts of one of the most
commonly used local models as well as the newly proposed
non-local model are detailed. To provide a quantitative study
of these models, the silica glass which a typical brittle
material is chosen as material of the numerical samples: the
microscopic mechanical parameters of the cohesive beams
linking the discrete elements are calibrated such that the
associated macroscopic properties correspond to the silica
glass.

4.2. Fracture model based on the cohesive beam bonds

The fracture models based on the cohesive beam bonds,
also referred to as beam-based models, bond-based models,
microscopic models or local fracture models, consider
individual bonds (cohesive beams) to simulate fracture
mechanisms. The main difference between these models lies
in the way in which the fracture criterion is computed.
Different criteria can be distinguished: maximal bond stress
[POT 04], maximal bond strain [CAR 08] and maximal bond
deformation energy. The maximal bond stress criterion is well
adapted to study brittle fracture of materials, which is the
subject of this chapter. The remainder of this section will
focus on this criterion.

4.2.1. Fracture criterion

The maximal bond stress criterion presented here is
derived from the Rankine criterion, which is widely applied
to model brittle fracture. This criterion is based on the
computation of the maximal principle stress in the beam
bonds [POT 95]. Based on the Euler–Bernoulli beam theory,
the maximal principle stress σμmax (also known as equivalent
Rankine stress) in a cohesive beam is given by:

σμmax =
1

2

(
σn
μmax

+

√(
σn
μmax

)2
+ 4 (τμmax)

2

)
[4.1]
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Discrete Element Modeling of Brittle Fracture 119

where σn
μmax

is the maximal normal stress (due to tensile and
bending loadings) and τμmax is the maximal shear stress (due
to torsion loading). Considering a cohesive beam connecting
two discrete elements 1 and 2, the maximal normal stress in
this beam can be obtained as follows:

σn
μmax

= σnt

μmax
+ σnb

μmax

σnt

μmax
=

Nμ

Sμ

σnb

μmax
=

1

2
‖MDE1 +MDE1‖ rμ

Iμ

[4.2]

where:

– σnt

μmax
is the maximal normal stress due to tensile

loadings;

– σnb

μmax
is the maximal normal stress due to bending

loadings;

– Sμ = π r2μ is the section of the cohesive beam;

– rμ is the beam radius;

– Iμ =
π r4μ
4 is the moment of inertia along Y and Z;

– Nμ = Eμ Sμ
Δlμ
lμ

is the normal force in the cohesive beam
(Eμ is the microscopic Young’s modulus);

– MDE1 and MDE2 are the beam torque reactions acting on
discrete elements 1 and 2, respectively. Their expressions are
given by [2.11] and [2.12], respectively.

The maximal shear stress in the considered cohesive beam
is expressed as:

τμmax =
1

2

rμ
Ioμ

(MDE1 −MDE2) .X [4.3]

where Ioμ =
π r4μ
2 is the polar moment of inertia. Assuming

Mμx, Mμy and Mμz are, respectively, the torsional moment
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120 Discrete Element Method to Model 3D Continuous Materials

along X, the bending moment along Y and the bending
moment along Z in the cohesive beam, the equivalent
Von-Mises stress can be rewritten as:

σμmax

=
1

2

[(
rμ

2 Iμ

√
Mμy2 +Mμz2 +

Nμ

Sμ

)

+

√(
rμ

2 Iμ

√
Mμy2 +Mμz2 +

Nμ

Sμ

)
2 + 4

(
rμMμx

Ioμ

)
2

]

[4.4]

The proposed fracture criterion postulates that if the
maximal principal stress in a cohesive beam σμmax is larger
than a certain critical value σμf

, the considered beam is
destroyed. The critical value σμf

, called microscopic fracture
stress, is to be determined by calibration.

4.2.2. Calibration

To calibrate the critical value σμf
, quasi-static tensile tests

were simulated using the same geometric model (cylindrical
beam) that was used in the calibration of the microscopic
mechanical properties of the cohesive beams (Figure 2.16).
However, as in experimental fracture tests, the present
simulations are displacement controlled. This facilitates the
cracking mechanisms to evolve more rapidly, and then the
“clean” fracture can properly be distinguished. Instead of
applying tensile forces, displacements Ux and −Ux are
progressively applied on the opposite ends of the numerical
sample “xMax” and “xMin” (Figure 2.16) until “clean”
fracture occurs, i.e. until a sudden rise in the number of
broken cohesive beams appears. Figure 4.2 illustrates the
evolution of the number of the broken cohesive beams during
a tensile test for an arbitrarily chosen σμf

. The “clean”
fracture can easily be identified by the sudden rise of this
number.
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Figure 4.2. Evolution of the number of the broken cohesive beams
and the macroscopic normal stresses measured the end faces of the

numerical sample. For a color version of the figure, see
www.iste.co.uk/jebahi/discrete.zip

To compute the macroscopic fracture stress σMf
, numerical

sensors were implemented on the discrete elements belonging
to the faces “xMax” and “xMin”. These sensors record the
forces Fp and torques Mp exerted on these elements. Thus, it
is possible to compute the macroscopic normal forces applied
on “xMin” and “xMax” as follows:

NxMin
M =

NxMin∑
p=1

Fp.X [4.5]

NxMax
M =

NxMax∑
p=1

Fp.X [4.6]

where NxMin and NxMax are the numbers of discrete elements
belonging to “xMin” and “xMax”, respectively. Using these
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122 Discrete Element Method to Model 3D Continuous Materials

last equations, the macroscopic normal stresses at “xMax”
and “xMin” can be obtained:

σnxMin

M =
NxMin

M

SM
[4.7]

σnxMax

M =
NxMax

M

SM
[4.8]

As shown in Figure 4.2, evolution of these quantities
(σnxMin

M and σnxMax

M ) during a tensile test shows:

– very good agreement between these quantities before
fracture occurs. Their evolution after fracture is due to the
mechanical shock wave generated by sudden separation of the
right sample part from the left one: elastic energy stored in
the cohesive beams is released and transferred into kinetic
energy; the crack, not being initiated at the center, causes the
observed dissymmetry of σnxMin

M and σnxMax

M after fracture;

– rapid decrease in the macroscopic normal stresses beyond
certain values, indicating the occurrence of “clean” fracture.

The macroscopic normal stress σM , which is assumed to be
constant along the numerical sample, can be approximated as
the average of σnxMin

M and σnxMax

M :

σn
M =

(
σnxMin

M + σnxMax

M

)
/2 [4.9]

Using the Rankine criterion, the macroscopic fracture
stress which is none other than the maximal macroscopic
principal stress can be expressed as:

σMf
= (σn

M )fracture [4.10]

where (σn
M )fracture is the macroscopic normal stress measured

at the fracture of the numerical sample. The calibration
process aims to research the appropriate microscopic fracture
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Discrete Element Modeling of Brittle Fracture 123

stress σμf
that ensures correct macroscopic fracture behavior:

the macroscopic fracture stress σMf
obtained numerically

must correspond to the one measured experimentally. Several
numerical tests with different σμf

have been performed, from
which the corresponding σMf

have been determined.
Furthermore, to take into account the dispersion of results
due to the geometric discretization, four numerical samples
have been prepared for each σμf

value. Figure 4.3 shows the
calibration results. A linear relationship is obtained between
σMf

and σμf
. Based on these results, the calibrated value of

σμf
corresponding to the silica glass whose macroscopic

fracture stress is σSilica
Mf

= 50MPa can be deduced:
σSilica
μf

= 292MPa.

Micro stress failure σμf
(MPa)
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Figure 4.3. Calibration of the microscopic fracture
stress σμf of silica glass

4.2.3. Convergence study

The influence of the number of discrete elements N , used
to discretize the geometric model, on the macroscopic fracture
criterion σMf

, was investigated in the same way as the elastic
parameters. Figure 4.4 shows the evolution of σMf

as a
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124 Discrete Element Method to Model 3D Continuous Materials

function of this number, for a fixed σSilica
μf

= 292MPa. Beyond
N = 10, 000, σMf

is varying within 10% around an average
value. This dispersion is larger than that obtained for the
elastic parameters (Figure 2.25). Contrary to elastic
phenomena, fractures are a local phenomenon for which
crack initiation is attributed to the presence of local defects in
the regions subjected to severe stresses. Therefore, the
macroscopic fracture stress is more sensitive than the elastic
parameters to the local beam arrangements which vary from
one sample to another. However, this dispersion, which is
lower than the dispersion obtained by Hentz et al.
[HEN 04a], could be accepted, more so because it decreases
as the number of discrete elements increases. As elastic
parameters, the calibrated microscopic fracture stress σμf

can
be used for any discrete domain, provided that a sufficient
number of discrete elements is used and the associated
discrete domain is prepared as explained in section 2.3.
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Figure 4.4. Evolution of the macroscopic fracture
stress σMf as a function of the number of discrete elements
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Discrete Element Modeling of Brittle Fracture 125

4.2.4. Validation

To validate this model, it was applied to simulate several
quasi-static reference tests. The microscopic fracture stress
σμf

is fixed at 292 MPa, which corresponds to the macroscopic
fracture stress of silica glass.

4.2.4.1. Quasi-static bending of a 3D beam

Figure 4.5 presents the discrete domain used to simulate
the quasi-static bending test. A parallelepiped beam was
preferred to a cylindrical beam. Indeed, by using a cylindrical
beam, the region of maximum stress is reduced to a single
line, which requires very fine discretization to ensure a
sufficient number of discrete elements in this region
(Figure 4.6). In contrast, by using a parallelepiped beam, this
region extends over a rectangle, easy to capture by relatively
coarse discretization (Figure 4.6).

Figure 4.5. Discrete domain for the quasi-static bending test. For a
color version of the figure, see www.iste.co.uk/jebahi/discrete.zip
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126 Discrete Element Method to Model 3D Continuous Materials

Maximum stress zone

(a) Parallelepiped sample

Maximum stress zone

(b) Cylindrical sample

Figure 4.6. Zones of maximum stress in parallelepiped and
cylindrical numerical samples submitted to bending loading

Rotations φz and −φz are progressively applied about the
Z axis on the beam ends “xMin” and “xMax” until a “clean”
fracture occurs. To compute the macroscopic fracture stress
σMf

, it is necessary to measure the macroscopic bending
torque (about the Z axis) MMz, which is assumed to be
constant along the studied beam. To do so, the forces Fp and
torques Mp, applied on the discrete elements belonging to
“xMax” and “xMin”, were measured with the help of
numerical sensors. Using these quantities, the bending
torque can be obtained:

MxMin
Mz =

nxMin∑
p=1

(Mp +O1Gp ∧ Fp) .Z [4.11]
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Discrete Element Modeling of Brittle Fracture 127

MxMax
Mz =

nxMax∑
p=1

(Mp +O2Gp ∧ Fp) .Z [4.12]

MMz =
(
MxMin

Mz +MxMax
Mz

)
/2 [4.13]

where O1 and O2 are the centers of, respectively, the faces
“xMin” and “xMax”. The maximal macroscopic normal stress
σn
Mmax

can be deduced from [4.13] as follows:

σn
Mmax

=
MMz

Iz

hM
12

[4.14]

where Iz is the moment of inertia along the Z axis. Its
expression is given by:

Iz =
bM h3M
12

[4.15]

where hM and bM are the dimensions of the numerical sample
along Y and Z, respectively. The macroscopic fracture stress
is then defined according to the Rankine criterion as:

σMf
=

(
σn
Mmax

)
fracture

[4.16]

where
(
σn
Mmax

)
fracture

is the maximal macroscopic normal
stress measured at the fracture of the numerical sample.

Table 4.1 summarizes the results of the macroscopic
fracture stress obtained from simulation of bending tests
using four different numerical samples discretized with
approximately 10, 000 discrete elements. These results are in
good agreement with those obtained from tensile tests (with a
margin of 6.5% error). Furthermore, the crack geometry
seems in accordance with the brittle fracture theory
(Figure 4.7). Indeed, the fracture surface is perpendicular to
the neutral axis of the numerical sample (beam).
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128 Discrete Element Method to Model 3D Continuous Materials

Sample Tensile (MPa) Bending (MPa) Torsion (MPa)
No. 1 53.6 55.8 49.7
No. 2 48.6 55.6 52.1
No. 3 53.2 52.9 53.2
No. 4 51.8 56.4 51.3

Average 51.8 55.2 51.6
Difference Reference 6.5% 0.3%

Table 4.1. Comparison of the results of the macroscopic fracture
stress obtained from tensile, bending and torsion tests: four discrete

domains consisted of approximately 10, 000 discrete elements

Failure path

Figure 4.7. Illustration of the crack morphology
obtained from bending test

4.2.4.2. Quasi-static torsion of a 3D beam

Figure 4.8 presents the geometric model used to simulate
the quasi-static torsion test. A cylindrical beam, similar to
that used in the calibration of the elastic parameters, is
subjected to progressive rotations φx and −φx about the X
axis on, respectively, “xMin” and “xMax” end faces.

To compute the macroscopic fracture stress, the forces Fp

and torques Mp, applied on the discrete elements belonging
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Discrete Element Modeling of Brittle Fracture 129

to “xMin” and “xMax”, are measured. The macroscopic torsion
torque MMx can be obtained from these quantities as follows:

MxMin
Mx =

NxMin∑
p=1

(Mp +O1Gp ∧ Fp) .X [4.17]

MxMax
Mx =

NxMax∑
p=1

(Mp +O2Gp ∧ Fp) .X [4.18]

MMx =
(
MxMin

Mx +MxMax
Mx

)
/2 [4.19]

Figure 4.8. Discrete domain for the quasi-static torsion test. For a
color version of the figure, see www.iste.co.uk/jebahi/discrete.zip

Based on the material strength theory, the maximal
macroscopic shear stress can be obtained from [4.19] as:

τMmax =
MMx

Io
RM [4.20]
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130 Discrete Element Method to Model 3D Continuous Materials

where RM is the radius of the discrete domain and Io is the
polar moment of inertia, which is defined as:

Io =
π R4

M

2
[4.21]

Using the Rankine criterion, the macroscopic fracture
stress which is none other than the maximal macroscopic
principal stress can be expressed as:

σMf
= (τMmax)fracture [4.22]

where (τMmax)fracture is the maximal macroscopic shear stress
measured at the fracture of the numerical sample. Table 4.1
summarizes the different values of the macroscopic fracture
stress obtained using four different numerical samples
discretized with approximately 10, 000 discrete elements.
These results show a very good correlation with those
obtained from the tensile tests (0.3% error). Moreover, at the
structure scale, the crack geometry seems in agreement with
the brittle fracture theory (Figure 4.9). The crack surface is
oriented at 45◦ to the main axis of the numerical sample.

Failure path

Figure 4.9. Illustration of the crack morphology
obtained from torsion test
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Discrete Element Modeling of Brittle Fracture 131

4.2.4.3. Quasi-static 2D spherical indention

The first two validation tests show that this model gives
relatively good results at the structure scale. The numerical
samples fail at the expected macroscopic fracture stress.
Furthermore, the fracture surfaces seem in accordance with
the brittle fracture theory. To investigate this last point more
closely, 2D spherical indentation was simulated using this
fracture model. Figure 4.10 shows the associated results. This
simulation does not produce the Hertzian cone crack as
experimentally observed (Figure 4.11). Instead, several
cracks initiate beneath the indenter and propagate vertically
throughout the thickness of the material being simulated. In
conclusion, even this model is moderately satisfactory at the
structure scale [AND 12a, SRI 13], it cannot reproduce
correctly the cracking mechanisms at the microscopic scale.

Figure 4.10. 2D spherical indentation with beam-based fracture
model. For a color version of the figure, see

www.iste.co.uk/jebahi/discrete.zip
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132 Discrete Element Method to Model 3D Continuous Materials

Figure 4.11. The Hertzian cone crack under spherical indenter, as
experimentally observed (taken from [ROE 56])

4.3. Fracture model based on the virial stress

To overcome the limitations of the beam-based fracture
models, another model based on a non-local formulation was
proposed. The idea behind this model is that, in continuum
mechanics, several techniques profiting from a solid
foundation have been proposed to describe fracture.
Therefore, it can be beneficial to apply these techniques in
discrete mechanics. To achieve this aim, it is important to
know the relationships between certain microscopic (of
discrete elements) and macroscopic (of continua) quantities,
allowing for discrete-continuum mechanics bridging. Chapter
1 has detailed several approaches used to this end. The
present fracture model is based on one of these approaches:
the virial stress technique which is used to compute an
equivalent Cauchy stress tensor from discrete element forces
and positions.

4.3.1. Fracture criterion

The proposed non-local fracture model is based on the
computation of an equivalent Cauchy stress tensor at the
discrete elements, taking into account their neighbors. Using
[1.13], this tensor can be expressed at a discrete element i as
follows:

σ̄i =
1

2Vi

Nneigh∑
j=1

1

2

(
lij ⊗ f ij + f ij ⊗ lij

)
[4.23]
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Discrete Element Modeling of Brittle Fracture 133

where Nneigh is the number of discrete elements connected to
the discrete element i and Vi is a volume associated with i at
which the stress tensor is assessed. This volume is chosen in
this work as the volume of the discrete element i. This choice
allows us to take into account only the interactions between
the regarded discrete element and its neighbors in
computation of the equivalent Cauchy stress tensor. Larger
volume can also be used to better reinforce the “non-local”
character of the present fracture model. However, a very
large volume can affect the accuracy of the obtained stress
tensor. Further works would be done to accurately choose this
parameter.

Remember that in this work it is assumed that completely
brittle fracture occurs in the studied material, and such
fracture type is thought to be initiated under tensile stress in
mode I. Therefore, the new criterion postulates that a
discrete element i is released from its neighbors when the
associated hydrostatic stress computed, using:

P i
hyd =

1

3
trace(σ̄i), [4.24]

is positive (tension state at i) and exceeds the fracture
strength σhydf . In this case, all the beam bonds linking this
discrete element to its neighbors break and are not taken into
account anymore to compute the interparticle forces and
torques at the next time step. Figure 4.12 shows an
illustration of the cracking process using the new criterion.

Figure 4.12. The cracking mechanisms at the microscopic scale
using the new fracture model
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134 Discrete Element Method to Model 3D Continuous Materials

Here, the fracture strength σhydf can be different from the
macroscopic fracture stress measured at the macroscopic scale
σMf

. This difference is due to the fact that the definition of the
volume Vi is not precise. Further work must be done to find the
appropriate Vi that ensures the equivalence of σhydf and σMf

.
In this work, σhydf corresponding to σMf

is to be determined
by calibration.

4.3.2. Calibration

The fracture strength σhydf was calibrated using the same
procedure as in the calibration of the beam-based model. A
series of quasi-static tensile tests were processed with
different values of σhydf . Each test was repeated four times
using different discretized numerical samples to verify the
repeatability of the tests. All the numerical samples used in
these tests were discretized with approximately 10, 000
discrete elements. Figure 4.13 presents the calibration
results. The macroscopic fracture stress evolves linearly with
the microscopic one. The calibrated value of σhydf which
corresponds to the silica glass fracture stress σSilica

Mf
= 50MPa

is approximately: σSilica
hydf

= 64MPa.

4.3.3. Convergence study

The dependence of the macroscopic fracture stress σMf
on

the number of discrete elements N was studied. In this study,
the calibrated value of the fracture stress σSilica

hydf
= 64MPa

was used. Figure 4.14 presents the evolution of σMf
with

respect to the number of discrete elements N . A good stability
of the macroscopic fracture stress around the silica glass
value of σSilica

Mf
= 50MPa was obtained. Furthermore, σMf

converges to σSilica
Mf

more quickly than when using the
beam-based model, indicating that the present model is more
suitable to study cracking mechanisms at small scales. The
given dispersion of 13% is in the same order of magnitude as
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Discrete Element Modeling of Brittle Fracture 135

the dispersion obtained using the beam-based model. This
dispersion could be accepted, since larger dispersions can be
found in the literature [HEN 04a].
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136 Discrete Element Method to Model 3D Continuous Materials

4.3.4. Validation

To validate this model at the structure scale, it was
applied to simulate the reference tests used to validate the
first beam-based model in sections 4.2.4.1 and 4.2.4.2
(bending and torsion tests of 3D beams). The fracture
strength σhydf is fixed at 64 MPa, which corresponds to the
macroscopic fracture stress of silica glass. Table 4.2
summarizes the macroscopic fracture stresses obtained from
the tensile, bending and torsion tests. Fairly similar average
macroscopic fracture stresses were obtained, which is in
agreement with the material strength theory. To verify the
crack morphology, the crack geometry obtained from the
torsion test has been observed (Figure 4.15). A crack path is
developed along a helical surface oriented at 45◦ to the main
axis of the numerical sample (3D beam with circular base).
This result is in accordance with the material strength
theory, much better than that obtained using the beam-based
fracture model.

Sample Tensile (MPa) Bending (MPa) Torsion (MPa)
No. 1 53.3 47.0 51.5
No. 2 48.0 47.0 47.6
No. 3 48.3 46.2 50.9
No. 4 48.2 55.5 47.7

Average 49.5 48.9 49.4
Difference Reference 1.2% 0.2%

Table 4.2. Overview of the macroscopic fracture stresses from tensile,
bending and torsional tests: four discrete samples made up of

approximately 10, 000 discrete elements are used

To better investigate the cracking mechanisms at smaller
scales, the 2D spherical indentation was simulated using the
present fracture model. Figure 4.16 shows the associated
result. As expected, the crack pattern exhibits a cone
geometry (Figure 4.16). It is clear that this model allows us to
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Discrete Element Modeling of Brittle Fracture 137

describe more precisely the cracking mechanisms at small
scales.

(a) View showing all discrete elements

(b) View showing only critical discrete elements

Figure 4.15. View of crack path in a torsional test; the discrete
elements in which the fracture criterion is fulfilled
are highlighted. For a color version of the figure,

see www.iste.co.uk/jebahi/discrete.zip

4.4. Conclusion

The present chapter has dealt with one of the most
important phenomena encountered in material science and
engineering: brittle fracture of materials. This phenomenon
is the most fundamental issue motivating contemporary
efforts toward discrete element modeling of continua.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



138 Discrete Element Method to Model 3D Continuous Materials

First, one of the commonly used bond-based models was
adapted to the present variation of the DEM. This model is
based on the computation of the equivalent principle stress in
the cohesive beams. Calibration of this model was performed
using quasi-static tensile tests. As elastic parameters, the
calibrated microscopic fracture stress is applicable for any
discrete domain that is used to model the same material and
is prepared following the methodology presented in Chapter
2. Validation of this model has shown that it is able to provide
relatively good results at the structure level, however, it fails
to reproduce the cracking mechanisms at smaller scales.

Figure 4.16. Qualitative 2D indentation test showing cracks
produced when using the new fracture criterion. For a color version

of the figure, see www.iste.co.uk/jebahi/discrete.zip

To overcome the limitations of the beam-based models,
another approach has been proposed. This approach is based
on a non-local formulation in which equivalent Cauchy
stresses are assessed at the discrete elements, taking into
account all their neighbors. Application of this approach to
model various fracture problems has shown that relatively
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Discrete Element Modeling of Brittle Fracture 139

good results are obtained at both macroscopic and
microscopic scales.

The use of one of these two models in practice depends on
what is expected from the simulated problem as well as on the
analysis scale.
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Conclusion

This book presents recent works on the modeling of
continuum physics with the discrete element methods. The
main interest of these approaches is to deal with problems
where the studied domains become highly discontinuous:
multiphase materials such as the composite materials,
multicracked materials such as the brittle materials or
metamaterials such as the technological foams. With these
kinds of problems, the continuum approaches consist of
homogenizing a representative material volume and
deducing an average behavior on this volume. This process
leads to loss of important local data that can drive some
non-negligible effects at higher scales. For example, during a
quasi-brittle material loading, a microcrack network appears
and some of these microcracks coalesce to produce a
macrocrack that leads to the collapse of the whole structure.
Nevertheless, modeling these phenomena with discrete
element method (DEM) is a hard and exciting challenge. The
material behaviors are generally expressed and modeled with
the continuum mechanics paradigm. How can we model and
what is the significance of these physical quantities such as
the Young’s modulus, and the strain or the stress with the
discrete mechanics? These questions are tackled and
discussed throughout this book. After a general introduction,
the book has described the following key characteristics.

Discrete Element Method to Model 3D Continuous Materials, First Edition.  
Mohamed Jebahi, Damien André, Inigo Terreros and Ivan Iordanoff.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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142 Discrete Element Method to Model 3D Continuous Materials

Chapter 1 gave a brief review on discrete element
modeling. A classification of the DMs, the most commonly
used method, was presented in order to introduce the one
used in this book. According to the analysis scale, three
classes can be distinguished. From these classes, the
mesoscopic discrete methods (MDMs) are used at the
mesoscopic scale which is the scale of interest of most of the
complex phenomena that cannot easily be handled by
continuum approaches. From the existing MDMs, the hybrid
lattice-particle methods are the most adapted to model
continuous materials. This is why the discrete method
addressed in this book belongs to this category. This method,
which is based on discrete mechanics, is dedicated to the
modeling of continuous materials whose mechanical behavior
is generally described by continuum mechanics. The second
part of this chapter dealt with some numerical techniques to
link these two classes of mechanics (continuum and discrete
mechanics).

Chapter 2 described a general methodology to model a
continuum using the chosen lattice-particle approach, with
an application to elastic materials. This methodology can be
divided into two parts. The first part is concerned with
discrete domain construction, which plays an important role
in the mechanical behaviors. As shown, the construction of
the discrete domain must follow several geometrical
conditions to ensure isotropy and refining independence of
the simulation results. The second part is concerned with the
mechanical behavior of the cohesive beams between the
discrete elements. A calibration approach was detailed to
determine the appropriate microscopic parameters (of the
cohesive beams) that ensure a correct macroscopic
mechanical behavior. To simplify the calibration process, a
numerical study was also given. This study has allowed to
find relationships between the microscopic and macroscopic
parameters. Finally, to validate the presented methodology, it
was applied to simulate several reference tests. The obtained
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Conclusion 143

results are in good agreement with analytical and other
numerical results. The dependence of these results on the
number of discrete elements was also studied. Contrary to
existing approaches, beyond 10, 000 discrete elements, the
simulation results are relatively independent of this number.
In the two last chapters, this general framework was applied
to model thermal and brittle fracture behaviors.

Chapter 3 proposed an original and fast calculation
method to compute thermal conduction in 3D continuous
materials, using the present DEM variation. This method is
an extension of the works of Hahn et al. [HAH 10] who have
developed an approach to predict thermal conduction in
two-dimensional (2D) discrete domains formed by hexagonal
discrete elements. To validate this method, it was applied to
simulate several reference tests involving high-temperature
gradients. The obtained results are in good agreement with
other analytical and numerical results obtained from finite
element method (FEM) calculations.

Chapter 4 proposed two brittle fracture criteria to model
complex cracking problems. The first criterion is based on a
local formulation involving the cohesive beams and is
inspired by the Rankine criterion, which is widely used to
model brittle fracture. Application of this model has shown
that it can give relatively good results at the structure scale.
However, it fails to reproduce correctly the cracking
mechanisms at smaller scales. To overcome this problem,
another criterion based on a non-local formulation was
developed. It consists of computing an equivalent Cauchy
stress tensor at each discrete element taking into account its
neighbors. As shown, this criterion provides relatively good
results at both microscopic and macroscopic scales, better
than when using the first beam-based criterion.

The aim of this book is to propose a rigorous scientific
framework to the DEM applied to continuum. The main steps
to achieve this goal are described from the discrete domain
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144 Discrete Element Method to Model 3D Continuous Materials

creation to the validation tests. The physical behavior of the
discrete domain is introduced through the rheological models
implemented by the bonds between the discrete elements.
The choice of the relevant rheological model is of utmost
importance and is generally based on micromechanical
considerations.

The application of preset DEM variation to continuum is
relevant at the microscopic scale, where the material
discontinuities and material heterogeneity appear. For
example, the behavior of ceramic microstructures, which is
highly heterogeneous, can be investigated using DEM. At this
scale, one problem is how to model the boundary conditions
and the loadings that are applied very far from the studied
zone. To take into account these conditions, the DEM can be
coupled with continuum methods such as FEM or constrained
natural element method (CNEM) [JEB 14, JEB 13a,
JEB 13c]. The second book in the series is dealt with this hot
question.

Finally, the application of DEM for computational
structure in engineering design is presently not feasible. The
barriers are both technical and theoretical: high
computational resource requirement, the lack of easy-to-use
software and the lack of a well-designed theoretical
framework. We hope that this set of book will provide
concrete solutions to these scientific and technical problems.
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