SLIDING MODE CONTROL
OF UNCERTAIN
PARAMETER-SWITCHING
HYBRID SYSTEMS



SLIDING MODE CONTROL
OF UNCERTAIN
PARAMETER-SWITCHING
HYBRID SYSTEMS

Ligang Wu
Harbin Institute of Technology, China

Peng Shi
The University of Adelaide; and Victoria University, Australia

Xiaojie Su
Chongqing University, China

WILEY

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



This edition first published 2014
© 2014 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data applied for.
ISBN 9781118862599
Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2014

85USD17 SUOWLWOD dAITEa.D) 3|cedldde ay) Aq peusenob afe ssp ke YO ‘SN Jo sajn oy AeiqiT auluQ A8 ]I UO (SUONIPUOD-PU-SLLLBYW0D" A3 | 1M Alelq 1 puluo//Sdny) SuonIpuoD pue swie | ay) 88S *[£202/2T/TE] uo Ariqiauljuo A ‘ulseuibul Jo AlsieAlun exeya Aq /1op/wod A3 |im Aeiqjul|uo//sdny wolj pepeojumoq



Downloaded from https:/onlinelibrary.wiley.com/doi/ by Dhaka University of Engineerin, Wiley Online Library on [31/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

L. Wu

To my family
P. Shi

To my family
X. Su

To Jingyan and Zhixin



Contents

Series Preface

Preface

Acknowledgments

Abbreviations and Notations

1
1.1

1.2

1.3
1.4

Introduction

Sliding Mode Control

1.1.1 Fundamental Theory of SMC

1.1.2 Overview of SMC Methodologies

Uncertain Parameter-Switching Hybrid Systems

1.2.1 Analysis and Synthesis of Switched Hybrid Systems

1.2.2 Analysis and Synthesis of Markovian Jump Linear Systems
Contribution of the Book

Outline of the Book

Part One SMC OF MARKOVIAN JUMP SINGULAR SYSTEMS

2

2.1
22
23
24

25
2.6

State Estimation and SMC of Markovian Jump Singular Systems
Introduction

System Description and Preliminaries

Stochastic Stability Analysis

Main Results

24.1 Observer and SMC Law Design

242 Sliding Mode Dynamics Analysis

Mlustrative Example

Conclusion

xi

xiii

XV

Xvii

13
16
16
23
25
26

35
35
36
37
40
40
42
46
48

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



viii Contents
3 Optimal SMC of Markovian Jump Singular Systems with Time Delay 49
3.1 Introduction 49
32 System Description and Preliminaries 50
3.3 Bounded £, Gain Performance Analysis 51
34 Main Results 55

3.4.1 Sliding Mode Dynamics Analysis 55

3.4.2 SMC Law Design 60
35 Tlustrative Example 61
3.6 Conclusion 64
4 SMC of Markovian Jump Singular Systems with Stochastic Perturbation 65
4.1 Introduction 65
4.2 System Description and Preliminaries 66
4.3 Integral SMC 67

4.3.1 Sliding Mode Dynamics Analysis 67

4.3.2 SMC Law Design 70
4.4 Optimal H, Integral SMC 71

4.4.1 Performance Analysis and SMC Law Design 71

4.4.2 Computational Algorithm 77
4.5 Mlustrative Example 78
4.6 Conclusion 84

Part Two SMC OF SWITCHED STATE-DELAYED HYBRID SYSTEMS

5

5.1
5.2

53

54

6.1
6.2

Stability and Stabilization of Switched State-Delayed

Hybrid Systems 87
Introduction 87
Continuous-Time Systems 88
5.2.1 System Description 88
5.2.2 Main Results 89
5.2.3 Hlustrative Example 94
Discrete-Time Systems 95
5.3.1 System Description 95
5.3.2 Main Results 96
5.3.3 Lllustrative Example 103
Conclusion 104
Optimal DOF Control of Switched State-Delayed Hybrid Systems 107
Introduction 107
Optimal £,- L, DOF Controller Design 108
6.2.1 System Description and Preliminaries 108
6.2.2 Main Results 109
6.2.3 Hllustrative Example 121

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



Contents ix
6.3 Guaranteed Cost DOF Controller Design 125
6.3.1 System Description and Preliminaries 125
6.3.2 Main Results 126
6.3.3 Lllustrative Example 136
6.4 Conclusion 140
7 SMC of Switched State-Delayed Hybrid Systems: Continuous-Time Case 141
7.1 Introduction 141
7.2 System Description and Preliminaries 142
7.3 Main Results 143
7.3.1 Sliding Mode Dynamics Analysis 143
7.3.2 SMC Law Design 147
7.4 Mlustrative Example 151
7.5 Conclusion 157
8 SMC of Switched State-Delayed Hybrid Systems: Discrete-Time Case 159
8.1 Introduction 159
8.2 System Description and Preliminaries 160
8.3 Main Results 161
8.3.1 Sliding Mode Dynamics Analysis 161
83.2 SMC Law Design 167
8.4 Mlustrative Example 169
8.5 Conclusion 171
Part Three SMC OF SWITCHED STOCHASTIC HYBRID SYSTEMS
9 Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 175
9.1 Introduction 175
9.2 System Description and Preliminaries 176
9.3 Stability Analysis and Stabilization 178
94  H, Control 182
9.4.1 H, Performance Analysis 182
9.4.2 State Feedback Control 185
94.3 H, DOF Controller Design 186
9.5 Mlustrative Example 190
9.6 Conclusion 195
10 Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 197
10.1  Introduction 197
10.2  System Description and Preliminaries 197
10.3  Stability Analysis and Stabilization 199
104 H, Control 205
10.5  Tllustrative Example 210
10.6  Conclusion 214

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



X Contents
11 State Estimation and SMC of Switched Stochastic Hybrid Systems 215
11.1  Introduction 215
11.2  System Description and Preliminaries 215
11.3  Main Results 217

11.3.1  Sliding Mode Dynamics Analysis 217

11.3.2  SMC Law Design 219
11.4  Observer-Based SMC Design 220
11.5 Tlustrative Example 226
11.6  Conclusion 232
12 SMC with Dissipativity of Switched Stochastic Hybrid Systems 233
12.1  Introduction 233
12.2 Problem Formulation and Preliminaries 234

12.2.1  System Description 234

12.2.2  Dissipativity 235
12.3  Dissipativity Analysis 236
12.4  Sliding Mode Control 241

12.4.1  Sliding Mode Dynamics 241

12.4.2  Sliding Mode Dynamics Analysis 242

12.4.3  SMC Law Design 245
12.5 Tllustrative Example 246
12.6  Conclusion 250
References 251
Index 263

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



Series Preface

Electromechanical systems permeate the engineering and technology fields in aerospace,
automotive, mechanical, biomedical, civil/structural, electrical, environmental, and industrial
systems. The Wiley Book Series on dynamics and control of electromechanical systems will
cover a broad range of engineering and technology within these fields. As demand increases
for innovation in these areas, feedback control of these systems is becoming essential for
increased productivity, precision operation, load mitigation, and safe operation. Furthermore,
new applications in these areas require a reevaluation of existing control methodologies to meet
evolving technological requirements, for example the distributed control of energy systems.
The basics of distributed control systems are well documented in several textbooks, but the
nuances of its use for future applications in the evolving area of energy system applications,
such as wind turbines and wind farm operations, solar energy systems, smart grids, and the
generation, storage and distribution of energy, require an amelioration of existing distributed
control theory to specific energy system needs. The book series serves two main purposes:
1) a delineation and explication of theoretical advancements in electromechanical system
dynamics and control, and 2) a presentation of application-driven technologies in evolving
electromechanical systems.

This book series will embrace the full spectrum of dynamics and control of electrome-
chanical systems from theoretical foundations to real-world applications. The level of the
presentation should be accessible to senior undergraduate and first-year graduate students, and
should prove especially well-suited as a self-study guide for practicing professionals in the
fields of mechanical, aerospace, automotive, biomedical, and civil/structural engineering. The
aim is to provide an interdisciplinary series, ranging from high-level undergraduate/graduate
texts, explanation and dissemination of science and technology and good practice, through
to important research that is immediately relevant to industrial development and practical
applications. It is hoped that this new and unique perspective will be of perennial interest to
students, scholars, and employees inthe engineering disciplines mentioned. Suggestions for
new topics and authors for the series are always welcome.

This book, Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, has
the objective of providing a theoretical foundation as well as practical insights on the topic at
hand. It is broken down into three parts: 1) sliding mode control (SMC) of Markovian jump
singular systems, 2) SMC of switched state-delayed hybrid systems, and 3) SMC of switched
stochastic hybrid systems. The book provides detailed derivations from first principles to allow
the reader to thoroughly understand the particular topic. This is especially useful for Markovian
jump singular systems with stochastic perturbations because a comprehensive knowledge of
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xii Series Preface

stochastic analysis is not required before understanding the material. Readers can simply dive
into the material. It also provides several illustrative examples to bridge the gap between
theory and practice. It is a welcome addition to the Wiley Electromechanical Systems Series
because no other book is focused on the topic of SMC with a specific emphasis on uncertain
parameter-switching hybrid systems.

Mark J. Balas
John L. Crassidis
Florian Holzapfel

Series Editors
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Preface

Since the 1950s, sliding mode control (SMC) has been recognized as an effective robust
control strategy for nonlinear systems and incompletely modeled systems. In the past two
decades, SMC has been successfully applied to a wide variety of real world applications
such as robot manipulators, aircraft, underwater vehicles, spacecraft, flexible space structures,
electrical motors, power systems, and automotive engines. Basically, the idea of SMC is to
utilize a discontinuous control to force the system state trajectories to some predefined sliding
surfaces on which the system has desired properties such as stability, disturbance rejection
capability, and tracking ability. Many important results have been reported for this kind of
control strategy. However, when the controlled plants are uncertain parameter-switching hybrid
systems including parameter-switching (Markovian jump or arbitrary switching), state-delay,
stochastic perturbation, and singularly perturbed terms, the common SMC methodologies
cannot meet the requirements.

It is known that the SMC of uncertain parameter-switching hybrid systems is much more
complicated because sliding mode controllers must be designed so that not only is the sliding
surface robustly reachable, but also the sliding mode dynamics can converge the system’s equi-
librium automatically by choosing a suitable switching function. This book aims to present
up-to-date research developments and novel methodologies on SMC of uncertain parameter-
switching hybrid systems in a unified matrix inequality setting. The considered uncertain
parameter-switching hybrid systems include Markovian switching hybrid systems, switched
state-delayed hybrid systems, and switched stochastic hybrid systems. These new method-
ologies provide a framework for stability and performance analysis, SMC design, and state
estimation for these classes of systems. Solutions to the design problems are presented in terms
of linear matrix inequalities (LMIs). In this book, a large number of references are provided
for researchers who wish to explore the area of SMC of uncertain parameter-switching hybrid
systems, and the main contents of the book are also suitable for a one-semester graduate
course.

In this book, we present new SMC methodologies for uncertain parameter-switching hybrid
systems. The systems under consideration include Markovian jump systems, singular systems,
switched hybrid systems, stochastic systems, and time-delay systems.

The content of this book are divided into three parts. The first part is focused on SMC
of Markovian jump singular systems. Some necessary and sufficient conditions are derived
for the stochastic stability, stochastic admissibility, and optimal performances by developing
new techniques for the considered Markovian jump singular systems. Then a set of new SMC
methodologies are proposed, based on the analysis results. The main contents are as follows:
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xiv Preface

Chapter 2 is concerned with the state estimation and SMC of singular Markovian switching
systems; Chapter 3 studies the optimal SMC problem for singular Markovian switching
systems with time delay; and Chapter 4 establishes the integral SMC method for singular
Markovian switching stochastic systems.

In the second part, the problem of SMC of switched state-delayed hybrid systems is inves-
tigated. A unified approach of the piecewise Lyapunov function combining with the average
dwell time technique is developed for analysis and synthesis of the considered systems. By
this approach, some sufficient conditions are established for the stability and synthesis of the
switched state-delayed hybrid system. More importantly, a set of SMC methodologies under a
unique framework are proposed for the considered hybrid systems. The main contents of this
part are as follows: Chapter 5 is devoted to the stability analysis and the stabilization problems
for switched state-delayed hybrid systems; Chapter 6 investigates the optimal dynamic output
feedback (DOF) control of switched state-delayed hybrid systems; and Chapters 7 and 8 study
the SMC of continuous- and discrete-time switched state-delayed hybrid systems, respectively.

In the third part, the parallel theories and techniques developed in the second part are
extended to deal with switched stochastic hybrid systems. The main contents include the
following: Chapters 9 and 10 are concerned with the control of switched stochastic hybrid
systems for continuous- and discrete-time cases, respectively; Chapter 11 studies the observer-
based SMC of switched stochastic hybrid systems; and Chapter 12 focuses on the dissipativity-
based SMC of switched stochastic hybrid systems.

This book is a research monograph whose intended audience is graduate and postgraduate
students, academics, scientists and engineers who are working in the field.

Ligang Wu
Harbin, China

Peng Shi

Melbourne, Australia
Xiaojie Su
Chonggqing, China
December 2013
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Abbreviations and Notations

Abbreviations

CCL

cone complementary linearization

CQLF  common quadratic Lyapunov function
DOF dynamic output feedback

LMI linear matrix inequality

LQR linear-quadratic regulator

LTI linear time-invariant

MIMO  multiple-input multiple-output

MILS  Markovian jump linear system

MLF multiple Lyapunov function

SISO single-input single-output

SMC sliding mode control

SOF static output feedback

SQLF  switched quadratic Lyapunov functions
Notations

H end of proof

¢ end of remark

= is defined as

€ belongs to

v for all

> sum

C field of complex numbers

R field of real numbers

V/ field of integral numbers

R” space of n-dimensional real vectors
R space of n X m real matrices

C.q set of R"-valued continuous functions on [—d, 0]
E{-} mathematical expectation operator
lim limit

max maximum

min minimum
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xviii Abbreviations and Notations
sup supremum
inf infimum
rank(-) rank of a matrix
trace(-) trace of a matrix
Amin() minimum eigenvalue of a real symmetric matrix
Amax(+) maximum eigenvalue of a real symmetric matrix
diag block diagonal matrix with blocks {X;, ..., X, }
Omin(*) minimum singular value of a real symmetric matrix
Omax () maximum singular value of a real symmetric matrix
1 identity matrix with appropriate dimension
I, n X n identity matrix
0 zero matrix with appropriate dimension
0,150m zero matrix of dimension n X m
xT transpose of matrix X
x-! inverse of matrix X
xt full row rank matrix satisfying
XtX =0and X* X7 >0
X > (<)0 X is real symmetric positive (negative) definite
X > (2)0 X isreal symmetric positive (negative) semi-definite
L£,[0,00) space of square integrable functions
on [0, co) (continuous case)
?5[0,00)  space of square summable infinite vector sequences
over [0, o) (discrete case)
|| Euclidean vector norm
[1-1] Euclidean matrix norm (spectral norm)
11l L,-norm: \/fooo |-|? dt (continuous case)
¢>-norm: \/Zgo || (discrete case)
* symmetric terms 1n a symmetric matrix
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1

Introduction

1.1 Sliding Mode Control

Sliding mode control (SMC) has proven to be an effective robust control strategy for incom-
pletely modeled or nonlinear systems since its first appearance in the 1950s [70,103,197]. One
of the most distinguished properties of SMC is that it utilizes a discontinuous control action
which switches between two distinctively different system structures such that a new type of
system motion, called sliding mode, exists in a specified manifold. The peculiar characteristic
of the motion in the manifold is its insensitivity to parameter variations, and its complete
rejection of external disturbances [260]. SMC has been developed as a new control design
method for a wide spectrum of systems including nonlinear, time-varying, discrete, large-scale,
infinite-dimensional, stochastic, and distributed systems [101]. Also, in the past two decades,
SMC has successfully been applied to a wide variety of practical systems such as robot manip-
ulators, aircraft, underwater vehicles, spacecraft, flexible space structures, electrical motors,
power systems, and automotive engines [60,77,199,259].

In this section, we will first present some preliminary background and fundamental theory
of SMC, which will be helpful to some readers who have little or no knowledge on SMC, and
then we will give an overview of recent development of SMC methodologies.

1.1.1 Fundamental Theory of SMC

We first formulate the SMC problem as follows. For a general nonlinear system of the form
x(1) = f(x,u,0), (1.1)

where x(¢) € R" is the system state vector, u(f) € R™ is the control input. We need to design
a sliding surface

s(x) =0,

where s(x) is called the switching function, and the order of s(x) is usually the same as that of
the control input, i.e. s(x) € R™, and

s =[50 500 - s,®]"

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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2 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then a sliding mode controller u(?) = [u(t) u,(t) - u,(t) 17 is designed in the form of
_J ut@), whens;(x) >0, .
ul) = { W), whens(x) <0, T e

where u (f) # u; (), such that the following two conditions hold:

Condition 1. The sliding mode is reached in a finite time and subsequently maintained, that
is, the system state trajectories can be driven onto the specified sliding surface s(x) = 0 by
the sliding mode controller in a finite time and maintained there for all subsequent time;

Condition 2. The dynamics in sliding surface s(x) = 0, that is, the sliding mode dynamics, is
stable with some specified performances.

Further consider (1.1) with single input, that is, u(¢) € R and s(x) € R, and suppose that the
sliding mode can be reached in a finite time, then the solutions of the equation

X)) =f,ut (0,1, sx) >0,

will approach s(x) = 0 and reach there in a finite time. During the approaching phase, §(x) < 0.
Similarly, the solutions of the equation

X(1) =fu (0,0,  sx) <0,
will also approach s(x) = 0 and reach there in a finite time, thus we have §(x) > 0. To summarize
the above analysis, we have

§(x) <0, when s(x) >0,
§(x) >0, whens(x) <0,

or, equivalently,
s(x)8(x) < 0.

which is the so-called ‘reaching condition’. This is the condition under which the state will
move toward and reach a sliding surface. The system state trajectories under the reaching
condition is called the reaching phase [77, 101].

In summary, Condition 1 requires the reachability of a sliding mode, which is guaranteed
through designing a sliding mode controller, while Condition 2 requires the sliding mode
dynamics to be stable with some specified performances, which is assured by designing an
appropriate sliding mode surface. Therefore, a conventional SMC design consists of two steps:

Step 1. Design a sliding surface s(x) = 0 such that the dynamics restricted to the sliding surface
has the desired properties such as stability, disturbance rejection capability, and tracking;

Step 2. Design a discontinuous feedback control u(f) such that the system state trajectories can
be attracted to the designed sliding surface in a finite time and maintained on the surface
for all subsequent time.
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Introduction 3

In the following, we will briefly introduce some commonly used methods in the design
of sliding surfaces and sliding mode controllers, and in the elimination/reduction of
chattering. Readers can refer to various books on SMC theory for more details, for example,
[60,77,197,199].

Sliding Surface Design

In this section, three kinds of sliding surfaces, namely, linear sliding surface, integral sliding
surface, and terminal sliding surface, are introduced.

Linear Sliding Surface

The linear sliding surface, due to its simplicity of implementation, is commonly used in SMC
design. There are two approaches to designing linear sliding surface. First, we introduce the
‘regular form’ model transformation approach. Consider the following nonlinear system:

X(t) = f(x, 1) + B(x, Hu(r), (1.2)

where x(r) € R" and u(f) € R™ are the system states and control inputs, respectively. f(x, ) €
R" and B(x, ) € R™" are assumed to be continuous with bounded continuous derivatives with
respect to x. B(x, t) is bounded away from zero at any time.

zi(0)

By applying an appropriate diffeomorphic transformation z(¢) = [Z )
2

] = Tx(t), system

(1.2) can be written in the following regular form [120]:

a0] _ [A@D 0
K = |"A + | & u(t),
[Z2(t)] [fz(z, o| T B | @
where z;(f) € R"™ and z,(1) € R" are the transformed system states. Bl(z, 1) € R"™M g
nonsingular (to ensure this, the matrix B(x, ) should be of full column rank for all # for the

existence of such a transformation).
Design a switching function as

5(2) = 25(1) + (z, (1)),

where 7(-) is a function to be defined. When the system state trajectories reach onto the sliding
surface, we have s(z) = 0, thus z,(f) = —A(z;(1)). Substituting this into the first equation of the
regular form yields

Zl(f) =fA‘1 (Zl,Zz,t) =f‘1 (Zl,—h(Zl(t)), t) .

which is a reduced-order system representing the sliding mode dynamics. The remaining work
of the sliding surface design is to choose a function 7(-) such that the above nonlinear sliding
mode dynamics is stable and/or satisfies a specified performance.

For a linear time-invariant (LTI) system of the form

X(1) = Ax(t) + Bu(r), (1.3)
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4 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where x(r) € R” is the system state vector, u(f) € R” is the control input, and the matrices
A € R™" and B € R™. The matrix B is assumed to have full column rank and the pair (A, B)
is assumed to be controllable.

It is well known that for the controllable system (1.3) there exists a nonsingular transfor-
mation, defined by

[Zl(l‘)
2p(1)

] = 2(t) = Tx(1),

such that

A, A 0
TAT ' = |11 12], TB:[ ]
[Azl Ay B,

Thus, by z(¢) = Tx(¢) system (1.3) can be transformed into the following regular form:

{Zl(f)=A1121(f)+A1222(f), (1.4)

(1) = Ay 24(0) + App2p(0) + Bru(o),

where z,(t) € R"™ and z,(t) € R™ are the transformed system states. A;; € RO*="x(=m)
Ay, € RUmmxm A, e RMX(=m) A, € R"™™" B, € R™"™ and B, is nonsingular.

Now, a sliding surface can be designed under the model of (1.4). For example, we can
choose the following linear one:

5(2) = 2p(1) + Cz; (1), (1.5)

where C is the design parameter to be designed. Similarly, when the system state trajectories
reach onto the sliding surface, that is, s(z) = 0, it follows that

2(t) = =Cz; (). (1.6)
Substituting (1.6) into the first equation of (1.4) yields
Z = (A = A12C) 7. (1.7)

The above reduced-order system is the so-called sliding mode dynamics (that is, the motion
equation in the sliding surface), which is an autonomous system. Therefore, the design of
sliding surfaces becomes choosing the matrix parameter C such that the sliding mode dynamics
is stable. Furthermore, since it can be shown that, if the pair (A, B) is controllable, then the
pair (A;,A,,) is controllable as well, the problem of finding the design matrix C is in fact a
classical state feedback problem with matrix C as a feedback gain and A, as an input matrix.
Therefore, all existing linear state feedback control design methods can be used to solve this
problem, for example, the conventional eigenvalue allocation method and linear-quadratic
regulator (LQR) design method.
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Introduction 5

There is another approach to linear surface design, named the Lyapunov approach [186].
Let V(x) be a Lyapunov function for system (1.2), that is, V(x) > 0 and V(x) < 0. The sliding
surface can be chosen as

T
s(x) = BT (x, 1) [w] =0, (1.8)
ox
where
V) [V oV V()
ox | ox 0x, ox, |’

Lemma 1.1.1  [186] System (1.2) with sliding mode on the sliding surface (1.8) is asymp-
totically stable.

For linear system (1.3), since (A, B) is controllable we know that there exists a feedback
matrix K such that A = A + BK is stabilizable. Thus, there exist matrices P > 0 and Q > 0
such that the following Lyapunov equation holds:

PA+ATP=-Q.
Now, design the sliding surface as
s(x) = BTPx(r) = 0, (1.9)
and rewrite system (1.3) as
i(t) = Ax(t) + Bu(?), (1.10)

where u(t) = u(t) — Kx(t), and Kx is a fictitious feedback to system (1.3).
Let V(x) = xT(t)Px(¢) > 0, and we have

V(x) = x"(#) (PA + ATP) x(t) + 2x" (t)PBu(1).

When the system state trajectories are driven onto the sliding surface, that is, s(x) = BT Px(t) =
0, it follows that

V(x) = —xT (1) 0x(1) <0,

for x(t) # 0. Therefore, the system states are asymptotically stable on the sliding surface.
Therefore, we have the following lemma.

Lemma 1.1.2  [186] System (1.10) with sliding mode on the sliding surface (1.9) is asymp-
totically stable.

We can see from Lemmas 1.1.1-1.1.2 that for the Lyapunov approach, the design of sliding
surface is given by the positive definite matrix P.
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6 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Integral Sliding Surface
In the above-mentioned linear sliding surface design, the order of the resulting sliding mode
dynamics is (n — m), with n being the dimension of the state space and m being the dimension
of the control input. Unlike in linear sliding surface design, in the integral sliding surface, the
order of the sliding motion equation is the same as that of the original system, rather than being
reduced by the number of the dimension of the control input. As the result, the robustness of
the system can be guaranteed throughout an entire response of the system starting from the
initial time instance [198].

Consider system (1.3) with a nonlinear perturbation included in the input channel (called
matched perturbation), that is,

x(t) = Ax(t) + B (u(t) + d(x, 1)) .

where d(x, ) is a nonlinear perturbation with known upper bound dy(x, ), that is, |d(x, )| <
dy(x, t). Design control u(t) = u(t) + u,(¢) for the above system, and suppose that there exists
a feedback control law u(f) = uy(¢) such that the perturbation-free system, that is, &(t) =
Ax(t) + Bu(t) can be stabilized in a desired way. That is, the state trajectories of the closed-loop
system x(¢) = Ax(f) + Bu(t) follow pre-specified reference trajectories with a desired accuracy.
Here, u,(¢) may be designed through linear static feedback control, such as uy(¢) = Kx(¢) in
which the feedback gain K can be determined by eigenvalue allocation or LQR methods.
Design the integral switching function as

t
s(x) = Cx(1) — Cx(ty) — C/ (A + BK) x(t)dr, (1.11)
lo

and C is the parameter matrix to be designed such that CB is nonsingular. Notice that, at t = 7,
the switching function s(x)l,:,0 = 0, and hence the reaching phase is eliminated. By (1.11), the
resulting sliding mode dynamics coincides with that of the ideal system i(¢) = Ax(f) + Bu(1),
which means that the integral sliding surface is robust to the perturbation throughout the entire
response of the system starting from the initial time instance.

The approaches to integral sliding surface design were then developed for uncertain sys-
tems with mismatched uncertainties/perturbations [27, 30, 32, 43, 170], higher order SMC
systems [114, 118], stochastic systems [12, 155-158], singular systems [219,221,223,225],
and switched hybrid systems [125]. For discrete-time SMC systems, the integral sliding surface
design approaches were developed in [1, 107,233].

Terminal Sliding Surface
The terminal SMC technique was first proposed in [201]. Compared to the conventional SMC,
the terminal SMC has some superior properties such as fast and finite-time convergence and
high steady-state tracking precision.

Consider the second-order linear system

X1 (1) = x,(0),
Xz([) = alxl (t) + az.Xz(t) + bu(t),

where x| (¢) and x,(#) are the system states and u(¢) is the control input.
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Introduction 7

The following terminal switching function is designed:
s(y.x) = x(0) + pxP. p>0,
where p and g are positive odd integers that satisfy p > g.
Similar to the conventional SMC technique, if the system state trajectories are driven onto
the sliding surface, that is, s(x,x,) = 0, then

&0 = —pxP.

Let the initial condition of x; (f) att = 0 be x; (0)( 0), then the relaxation time ¢, for a solution
of above equation is

t=-p" /0 dx, (7) _ |x,-(0)|(1—q/p),
w0 x7@)  P1=a/p)

which means that on the terminal sliding surface, the system state trajectories converge to zero
in a finite time.
For a high-order single-input single-output (SISO) linear system

() = x40, i=1,2,....n—1,
n

(0 =) ax(t) + u(),
j=1

the following terminal switching functions are designed:

so(x) = x(0),
5106 = 30 (0) + BrsD/71 (),
5200 = §1(0) + 5?7 (),

Sp—1 (X) = Sn—Z(x) + ﬂ -1 SZYLEI [Pt (X),
where f; > 0 are constants and p; and ¢g; are positive odd integers satisfying p; > g;,
i=1,2,...,n—1.
The terminal SMC technique for multiple-input multiple-output (MIMO) systems was
proposed in [141], and then developed in [39,72, 142].

Sliding Mode Controller Design

Having designed the sliding mode via the design of switching functions, the next step is to
design a sliding mode controller such that the system state trajectories can be driven onto the
specified sliding surface in a finite time and maintained there for all subsequent time. The
main requirement in this step is that the control should be designed to satisfy the reaching
condition, thus guaranteeing the existence of a sliding mode on the sliding surface. Additional
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8 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

requirements in this reaching phase include some desired properties such as fast reaching
and low chattering. In the following, we will introduce some commonly used methods to the
sliding mode controller design.

Equivalent Control Design

Equivalent control is designed in the reaching phase, which can satisfy the reachability of the
system state trajectories to the sliding surfaces if the system is free of parameter uncertainties
and external disturbances. Consider system (1.2) with switching function being s(x). Suppose
that the system state trajectories reach onto the sliding surface at time instant #; and remain there
in the subsequent time. We then have s(x) = O for all # > #,. Along sliding mode trajectories,
s(x) is constant, and so sliding mode trajectories are described by the differential equation
§(x) = 0. Differentiating s(x) yields

ds(x) 3] v(x)

$(x) = X(r) =

[f( )+ B(x, l)ueq(t)]

where

0s(x) _ [as(x) ds(x) as(x)]

0x 0x; 0x, 0x,,

is called the gradient of s(x). Here, we suppose that ‘)‘Y—(;)B(x, t) is nonsingular for all x and #,
thus the equivalent control can be solved as follows:

a d
ueq<t)=—< D g >> Dt (1.12)

Substituting the above equivalent control into the original system, it follows that on the sliding
surface s(x) = 0 the system dynamics satisfy

x(r>=l1—8< )(ﬁB( )) o5(x )]f(

The above differential equation represents the sliding mode dynamics, which is actually is a
reduced-order model of order n — m. (Considering s(x) = 0, thus m of the system states can
be eliminated from the equation.)

Reaching Condition Approach
A straightforward method of sliding mode controller design is based on the reaching condition,
thatis, fori=1,2,...,m

§;(x) <0, when s;(x) >0,
§;(x) > 0, when s;(x) <0,
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Introduction 9

or, equivalently,

5;(0)5;,(x) <0, i=12,...,m.
With the designed controller satisfying the above reachability condition, the tangent vectors of
the state trajectories are guaranteed to point toward the sliding surface, hence, the reachability

of the system state trajectories to the sliding surface can be guaranteed. Some more discussions
of this approach can be found in [101].

Lyapunov Function Approach
The Lyapunov function approach is commonly used in sliding mode controller design. Choos-
ing a Lyapunov function of the form

V(s) = 5T (x)s(x),

a sufficient condition for the sliding surface to be globally attractive is that the control u(?) is
designed such that

V(s) <0, whens(x)#0.
Finite reaching time can be guaranteed by [103]
V(s) < —e, when s(x) # 0,

where € > 0 is a constant.
For system (1.2), design the sliding mode controller as

where u eq(t) is the equivalent control which is designed in (1.12), and the discontinuous control
uy(2) is to be chosen such that

V(s) = 2sT(x)S(x)
=2sT(x ) f(x 1)+ B, 1) (1, (1) + up (1))

=257 (x) ( )B(x Duy(t) < 0.

Clearly, this approach leads to the global attraction of the system state trajectories to the sliding
surface.

Reaching Law Approach
The reaching law is a differential equation which specifies the dynamics of a switching
function, and by the choice of the parameters in the reaching law, the dynamic quality of SMC
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10 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

system in the reaching mode can be controlled [78]. A general form of the reaching law can
be described by the differential equation

§(x) = =Ysign(s(x)) — Kg(s(x)), (1.13)
where

Y = diag{e;, €9, ..., €,), € >0,
K = diag{k, ky, ... . k,,}, Kk; >0,

sign(s;(x)) 8i1(s1(x))
sign(?“z(x)) o(s(0)) = gz(s.g(x))

Sign(s(x) =
Sign(s,,(x) G5 ()

The functions g;(s;(x)) satisfy g;(0) = 0 and
5;(0g;(5;() > 0,  when s;(x) #0,i = 1,2, ...,m.

Therefore, using reaching law (1.13) directly to system (1.2) with

S(x) = % <f(x, 1) + B(x, t)u(t)>
= —Ysign(s(x)) — Kg(s(x)),

the sliding mode controller can be obtained as

-1
u(t) = — <as(x) B(x, t)) (a‘; O ¢, 1) + Ysign(s(x)) + Kg(s(x))) .

ox X
Equation (1.13) is a general form of the reaching law, and some special cases are
1. The constant rate reaching law:
§(t) = —Ysign(s(x))
2. The constant plus proportional rate reaching law:
5(1) = =Ysign(s(x)) — Ks(?)
3. The power rate reaching law:
§;(1) = —g;]5;(0)|%sign(s;(x)), O<a<l;i=1,2,...,m.

The reaching law approach not only guarantees the reaching condition but also specifies the
dynamic characteristics of the motion during the reaching phase [78, 101].
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Chattering Problem

The chattering problem is one of the most common handicaps for applying SMC to real
applications. Chattering in SMC systems is usually caused by 1) the unmodeled dynamics
with small time constants, which are often neglected in the ideal model; and 2) utilization of
digital controllers with finite sampling rate, which causes so called ‘discretization chattering’.
Theoretically, the ideal sliding mode implies infinite switching frequency. Since the control
is constant within a sampling interval, switching frequency can not exceed that of sampling,
which also leads to chattering. From the control engineer’s point of view, chattering is unde-
sirable because it often causes control inaccuracy, high heat loss in electric circuitry, and high
wear of moving mechanical parts. In addition, the chattering action may excite the unmodeled
high-order dynamics, which probably leads to unforeseen instability. Therefore, a good deal of
research work has been reported in literature on the chattering elimination/reduction problem;
see for example, [2,9-11,19,36,44,83,116,117,183,200,209,258] and references therein. In
the following, we will review some chattering elimination/reduction approaches.

Boundary Layer Approach

Roughly speaking, an SMC law consists of two parts, that is, u(r) = u,,(f) + uy(t). The contin-
uous control ueq(t), known as the equivalent control, controls the system when its states are on
the sliding surface, and the discontinuous control uy(¢) handles the system uncertainties. Since
the discontinuous control uy(f) will switch between two structures during operation, the SMC
system will undergo oscillation near the sliding surface. A commonly used method to alleviate
chattering is to insert a boundary layer near the sliding surface so that a continuous control
replaces the discontinuous one when the system is inside the boundary layer [52, 183, 196].
For this purpose, the discontinuous controller of

uy(t) = =K sign(s(x)),

is often replaced by the saturation control of

s(x)
—K,———, when [|s(x)|| > 4,
uy(t) = —Ksat <s(5_x)> = L'(S)SC)”
K==, when [ls(o)| <.
or
oK S
w0~ K eor+ s

for some, preferably small, 6 > 0.

The boundary layer approach has been utilized extensively in practical applications. How-
ever, this method has some disadvantages such as: 1) it may give a chattering-free system but
a finite steady-state error must exist; 2) the boundary layer thickness has a trade-off relation
between control performance of SMC and chattering migration; and 3) within the boundary
layer, the characteristics of robustness and accuracy of the system are no longer assured.
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12 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Dynamic SMC

» SMC W—> Integrator —  Plant —-——>

Augmented System

Figure 1.1 Dynamic sliding mode control

Dynamic SMC Approach
The second way to eliminate chatter is the dynamic SMC approach [9, 10,36]. The main idea
of this method is to insert an integrator (or any other strictly proper low-pass filter) between the
SMC and the controlled plant, see Figure 1.1. The time derivative of the control input, w = i,
is treated as the new control input for the augmented system (including the original system
and the integrator). Since the low-pass integrator in Figure 1.1 filters out the high frequency
chattering in w, the control input to the real plant u = f wdt becomes chattering free [36].
Chattering reduction using the dynamic SMC approach is achieved by using an integrator,
and the property of perfect disturbance rejection is guaranteed (no boundary layer is used in
the controller). Such a method can eliminate chattering and ensure zero steady-state error;
however, the system order is increased by one and the transient responses will be degraded
[209].

Reaching Law Approach

Another way of reducing chattering is to decrease the amplitude of the discontinuous control.
However, the robustness property of the controller is affected, and the transient performance
of the system will also be degraded. There is a trade-off between the chattering reduction
and the robustness property. A compromise approach is to decrease the amplitude of the
discontinuous control when the system state trajectories are near to the sliding surface (to
reduce the chattering), and to increase the amplitude when the system states are not near to the
sliding surface (to guarantee the robustness to system uncertainties and unmodeled dynamics).
This can be implemented by tuning the parameters of the reaching law

§;(x) = —g;sign(s;(x)) — k;s;(x),

where ¢; and k;, i = 1,2, ..., m, are positive parameters to be tuned. When the system state
trajectories are closed to the sliding surface, we have s;(x, f) ~ 0 and §;(x, 1) & —g;sign(s;(x, 1)).
Here, the parameter ¢; represents the reaching velocity. By choosing ¢; small, the momentum
of the motion will be reduced as the system state trajectories approach the sliding surface. As
a result, the amplitude of the chattering will be reduced. However, in this case, the transient
performance of the system is also degraded. To guarantee the transient performance, a large
value for the parameter k; should be chosen to increase the reaching rate when the state is not
near the sliding surface.

Apart from the above-mentioned chattering elimination/reduction approaches, there have
been some others, which can be found in [2,11,19,44,83,116,117,200,258].
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1.1.2  Overview of SMC Methodologies

Due to its simplicity and robustness against parameter variations and disturbances, SMC
has been studied extensively for many kinds of systems such as uncertain systems, time-
delay systems, stochastic systems, parameter-switching systems, and singular systems. Many
important SMC methodologies have been reported in literature. Here, we review some recently
developed results in this area.

SMC of Uncertain Systems

Uncertainties exist in all practical physical systems, and the robust control, as a branch
of control theory, is invented to explicitly deal with system uncertainties and to achieve
robust performance and/or stability for controlled systems. SMC, as one of the robust control
strategies, is well known for its strong robustness to system uncertainties in sliding motion.
However, the uncertainties should satisfy the so-called ‘matching’ condition, that is, the
uncertainties act within channels implicit in the control input. If a system has mismatched
uncertainties in the state matrix or/and the input matrix, the conventional SMC approaches are
not directly applicable. Therefore, in the past two decades, many researchers have investigated
the SMC of uncertain systems with mismatched uncertainties/disturbances — see for example
[31, 40,41, 43,112, 193] and references therein. To mention a few, in [112], the SMC of
uncertain second-order single-input systems with mismatched uncertainties, was considered;
in [40, 193], the authors investigated the SMC design for uncertain systems, in which the
uncertainties are mismatched and exist only in state matrix. The related approaches were then
developed in [41,43] to deal with a more complicated case that the mismatched uncertainties
are involved in not only the state matrix but also the input matrix. In addition, the integral
SMC techniques were extensively used to deal with uncertain systems with mismatched
uncertainties — see for example, [27, 30,43, 170,233] — and some other SMC approaches to
deal with uncertain systems can be found in [65, 108, 172, 194,229].

SMC of Time-Delay Systems

It is well known that time delays appear commonly in various practical systems, such as
communication, electronic, hydraulic, and chemical processes. Their existence can introduce
instability, oscillation, and poor performance [168]. Time-delay systems have continuously
been receiving considerable attention over the past decades. The main reason is that many pro-
cesses include after-effect phenomena in their inner dynamics, and engineers need their models
to approximate the real processes more accurately due to the ever-increasing expectations of
dynamic performance. Stability analysis is a fundamental and vital issue in studying time-delay
systems, and the conservativeness of a stability condition is an important index to evaluate a
stability result. Several methods have been proposed to develop delay-dependent stability con-
ditions (which have less conservativeness compared to delay-independent ones), such as the
model transformation approach (based on Newton—Leibniz formula) [110, 121], the descriptor
system approach [74], the slack matrix approach [228,243], the delay partitioning approach
[86], and the input-output method (based on the small gain theorem) [88]. There have been
a number of excellent survey papers on the stability analysis of time-delay systems — see for
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14 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

example, [168,246]. SMC of time-delay systems have also been receiving considerable atten-
tion over the past decades — see for example, [69,75,85,91,120, 123,160, 162,212,234, 250]
and the references therein. To mention a few, El-Khazali in [69] proposed an output feedback
robust SMC for uncertain time-delay systems, and the delay variables were considered as
external perturbation when designing the sliding surface; Fridman et al. in [75] presented a
descriptor approach to SMC of systems with time-varying delays; Xia and Jia in [234] con-
sidered the SMC of time-delay systems with mismatched parametric uncertainties by using a
delay-independent approach and the LMI technique; Yan in [250] studied the SMC of uncer-
tain time-delay systems with a class of nonlinear inputs by using a delay-dependent approach;
Wu et al. in [212] investigated a sliding mode observer design and an observer-based SMC
for a class of uncertain nonlinear neutral delay systems; Han ef al. in [91] addressed the SMC
design for time-varying input-delayed systems by using a singular perturbation approach.

SMC of Stochastic Systems

Stochastic systems and processes have come to play an important role in many fields of
science, engineering, and economics. Thus, stochastic systems have received considerable
attention, in which the stochastic differential equations are the most useful stochastic models
with extensive applications in aeronautics, astronautics, chemical or process control system,
and economic systems. A great number of methods and techniques have been developed
for stochastic systems governed by Itd stochastic differential equations — see for example,
[144,145,240,241]. SMC design scheme for stochastic systems has also been developed —
see for example, [8,12,13,33,98,99, 155, 156, 158] and references therein. In [33], based
on the concept of SMC, the steady-state covariance assignment problem was investigated for
perturbed stochastic multivariable systems. The robust integral SMC and the robust sliding
mode observer were designed for uncertain stochastic systems with time-varying delay in
[155,156], respectively. In [98], SMC of nonlinear stochastic systems was addressed by using
a fuzzy approach. In [158], by utilizing the H, disturbance attenuation technique, a novel
SMC method was proposed for nonlinear stochastic systems. In [8], a covariance control
scheme was proposed for stochastic uncertain multivariable systems via SMC strategy. In
[99], a robust SMC design scheme was developed for discrete-time stochastic systems with
mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities.

SMC of Parameter-Switching Hybrid Systems

The parameter-switching hybrid system, which is the main plant considered in this book,
consists of two types: Markovian jump systems and switched hybrid systems. Parameter-
switching systems have received considerable research attention in the past two decades —
see for example, [53, 131, 136] — since such systems are capable of modeling a wide range
of practical systems that are subject to abrupt variations in their structures, owing to random
failures or repairs of components, sudden environmental disturbances, changing subsystem
interconnections, abrupt variations, and so on. An overview of the development of uncertain
parameter-switching hybrid systems is presented in Section 1.2, from which we can see
that the study on such systems, including the problems of stability analysis, stabilization,
optimal control, filtering and model reduction, have been fully developed. However, SMC
of parameter-switching hybrid systems, as a relatively new problem, has had only limited
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attention, and further research in this area is needed. There have been some results reported in
the literature — see for example, [34,35,125,135,157,178,210,224,227] and references therein.
More recently, for Markovian jump systems, Shi e al. in [178] presented an SMC design
scheme by designing a linear mode-dependent sliding surface; Niu ez al. in [157] investigated
the SMC of Markovian stochastic systems by designing an integral mode-dependent sliding
surface; Ma and Boukas in [135] proposed a singular system approach to robust sliding mode
control for uncertain Markovian jump systems; Chen et al. in [35] developed an adaptive
SMC for stochastic Markovian jump systems with actuator degradation. For switched hybrid
systems, Wu and Lam in [210] proposed a linear mode-independent sliding surface in designing
SMC for switched hybrid systems with time delay, and then the results were developed to deal
with the SMC design problem for switched stochastic systems in [224]. Wu et al. in [227]
investigated the dissipativity-based SMC design for switched stochastic systems, in which an
integral mode-dependent sliding surface was designed such that the sliding motion is strictly
dissipative.

Output Feedback SMC

The conventional implementation of SMC schemes is usually based on state feedback, which
requires the assumption that all the state variables of the controlled systems are completely
accessible for feedback. Such an assumption, however, is not always valid in practice since
some state components cannot be measured. Roughly, there are two commonly used methods
to deal with the controller design in the case that the system state components are not fully
accessible. One approach is first to design an observer or a filter to estimate the immeasurable
state components, and then synthesize an observer-based sliding mode controller — see for
example, [154, 184,212,252]. However, the observer-based SMC scheme will require more
hardware and will increase system dimension. The other approach is to design a feedback
controller by using the measurable output information, which is called the output feedback
SMC approach.

During the past two decades, output feedback SMC approaches have been intensively
studied, and many important results have been reported in the literature — see for example,
[32,42,48,61-64,68,90,113,163,253,263] and references therein. To mention a few, output
feedback SMC design for uncertain dynamic systems was investigated in [263], and an algo-
rithm for output-dependent hyperplane design was proposed based upon eigenvector methods.
The eigenvalue assignment approach was proposed in [68] to design the sliding surface of
the output feedback SMC scheme. The LMI technique was applied to output feedback SMC
design in [62,63]. Output feedback SMC design for state-delayed systems was investigated in
[90,253]. The above-mentioned results are all for static output feedback (SOF) SMC problems.
In fact, output feedback control has two different forms: the SOF control and dynamic output
feedback (DOF) control. Generally speaking, DOF control is more flexible than SOF control
since the additional dynamics of the controller is introduced. Although DOF control involves
more design parameters, for linear systems the closed-loop system can usually be written
in a more compact form where certain parameters can be embedded into augmented matrix
variables. Compared to the SOF SMC design, the DOF SMC design problem has received
less attention, and only a few results have been reported, for example, in [32, 163] the DOF
SMC was studied for MIMO linear systems with mismatched norm-bounded uncertainties and
matched nonlinear disturbances.
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16 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

1.2 Uncertain Parameter-Switching Hybrid Systems
1.2.1 Analysis and Synthesis of Switched Hybrid Systems

Switched systems form a class of hybrid systems consisting of a family of subsystems described
by continuous- or discrete-time dynamics, and a rule specifying the switching among them
[129,191]. The switching rule in such systems is usually considered to be arbitrary. Switched
systems have received increasing attention in the past few years, since many real-world
systems such as, chemical processes, transportation systems, computer-controlled systems,
and communication industries can be modeled as switched systems [131]. More importantly,
many intelligent control strategies are designed based on the idea of controllers switching to
overcome the shortcomings of the traditionally used single controller and to improve their
performance, thus making the corresponding closed-loop systems into switched systems.

Switched hybrid systems with all subsystems described by linear differential or difference
equations are called switched linear hybrid systems. A continuous-time switched linear system
can be modeled as

x(1) = A(a(1)x(r) + B(a()u(D),

where x(r) € R" is the state vector; u(f) € R™ is the control input; {(A(a(?)), B(a(1))) :
a(t) eN } is a family of matrices parameterized by an index set N' = {1,2,...,N} and
a(r) : R —> N is a piecewise constant function of time 7 called a switching signal. At a given
time ¢, the value of a(7), denoted by « for simplicity, might depend on 7 or x(¢), or both, or may
be generated by any other hybrid scheme. Therefore, the switched hybrid system effectively
switches among N subsystems with the switching sequence controlled by a(z). It is assumed
that the value of a(f) is unknown a priori, but its instantaneous value is available in real time.
Similarly, a discrete-time switched linear hybrid system can be described by

x(k + 1) = A(a(k)x(k) + B, (a(k))u(k),

where x(k) € R" is the state vector; u(k) € R™ is the control input; {(A(a(k)), B(a(k))) :
ak) e N } is a family of matrices parameterized by an index set N' = {1,2,...,N}, and
a(k) : Zt — N is a piecewise constant function of time, called a switching signal, which
takes its values in the finite set A'. At an arbitrary discrete time k, the value of a(k), denoted by
a for simplicity, might depend on k or x(k), or both, or may be generated by any other hybrid
scheme.

Stability of Switched Hybrid Systems

The stability analysis of switched hybrid systems is a fundamental issue for the synthesis of
such systems. Note that there are two facts related with the stability of switched hybrid systems:
1) a switched hybrid system may have divergent trajectories even when all the subsystems are
stable; and 2) a switched hybrid system may have convergent trajectories even when some
of the subsystems are unstable. These two facts show that the stability of a switched hybrid
system depends not only on the dynamics of each subsystem but also on the properties of the
switching signals.
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When focusing on stability analysis of switched hybrid systems, there are many valuable
results that have appeared in the past two decades, and interested readers may refer to survey
papers, such as [53,128, 131, 148], and books, such as [129, 191]. In the following, we will
briefly overview some recently developed results.

Arbitrary Switching

We first consider the stability analysis of the switched hybrid systems without any restrictions
on switching signal, that is, the switching is arbitrary. Several approaches have been reported
on the stability analysis of switched hybrid systems with arbitrary switching, for example:

1. Common Quadratic Lyapunov Functions. For the stability analysis problem of switched
hybrid systems under arbitrary switching, it is necessary to require that all the subsystems
are asymptotically stable. However, even when all the subsystems of a switched system are
exponentially stable, the stability of the switched hybrid system still can not be guaranteed
[129]. Therefore, in general, all subsystems’ stability assumptions are not sufficient to
ensure stability for the switched systems under arbitrary switching. On the other hand, if
there exists a common quadratic Lyapunov function (CQLF) for all the subsystems, then
the stability of the switched system is guaranteed under arbitrary switching. Generally
speaking, the existence of a CQLF is only sufficient for the asymptotic stability of linear
switched hybrid systems under arbitrary switching, and could be rather conservative. For
the switched linear system x(f) = A(a(¢))x(¢) with the parameter matrices A(a(t)) replaced
by A(i) denoting that the ith subsystem is activated, by constructing a CQLF as V(x) =
xT(£)Px(t) where P > 0, it can be shown that the switched linear system is asymptotically
stable if there exists a positive definite symmetric matrix P such that

PAG)+AT()P <0, ieN.

For discrete-time switched linear system x(k + 1) = A(a(k))x(k), it is asymptotically stable
if there exists a positive definite symmetric matrix P such that

AT(OHPAG)-P <0, i€ N.

The above stability results are both expressed in the form of LMIs, which can be tested easily
by using standard software such as the LMI Toolbox in Matlab [25]. In [127], a sufficient
condition was presented for asymptotic stability of a switched linear system in terms of
Lie algebra generated by the individual matrices. Namely, if this Lie algebra is solvable,
then the switched system is exponentially stable for arbitrary switching. In [146], a stability
criterion was proposed for switched nonlinear systems which involves Lie brackets of the
individual vector fields but does not require that these vector fields commute. However, the
stability conditions are both only sufficient conditions, not necessary and sufficient ones. In
[180], some necessary and sufficient conditions were proposed for the existence of a CQLF
for two stable second-order LTI systems, and then the related results were extended for a
set of stable LTI systems in [181, 182]. In [109], the authors studied a singularity test for
the existence of CQLF for pairs of stable LTI systems, and some necessary and sufficient
algebraic conditions were given. A necessary and sufficient condition for the existence of a
common Lyapunov function for all subsystems was proposed in [128] for a switched hybrid
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Va(x)

Figure 1.2 Switched quadratic Lyapunov functions

system under arbitrary switching. A considerable number of approaches to construct such
a CQLF were presented in [159].

. Switched Quadratic Lyapunov Functions. Since the existence conditions of a CQLF are

conservative for all subsystems of a switched hybrid system with arbitrary switching, some
attention has been paid to a less conservative class of Lyapunov functions, namely switched
quadratic Lyapunov functions (SQLF). By using the SQLF, the values of such a Lyapunov
function still decrease at the switching instants — see Figure 1.2. Compared with the CQLF,
the SQLF contains the switching information (mode-dependent), and a typical form of
such Lyapunov function can be constructed as V(x) = xT ())P(a(t))x(¢) for continuous-time
switched systems or V(x) = xT(k)P(a(k))x(k) for discrete-time switched systems, where
P(-) > 0,i € N are mode-dependent. Using an SQLF approach, the stability analysis con-
dition for the discrete-time switched linear system x(k + 1) = A(a(k))x(k) can be formulated
as: it is asymptotically stable if there exist positive definite symmetric matrices P(i),i € N
such that

[_P(l) 4 (l)]?(])] <0, i,jeWN.

* —P(j)
The above stability analysis result based on the SQLF approach will turn out to be the
above-mentioned one with the CQLF approach if P(i) = P(j),i,j € N'. Obviously, the
SQLF approach is less conservative than the CQLF approach. Some results on the SQLF
approach to stability analysis and control synthesis for switched hybrid systems can be
found in [46,71].

Restricted Switching
Stability analysis approaches for arbitrary switching have been developed, but a natural ques-
tion may still be raised, that is, can switched hybrid systems be stable under some restricted
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switchings in spite of the fact that they fail to preserve stability under arbitrary switching? If
so, what kinds of restrictions should be put on the switching signals to guarantee the stability
of switched hybrid systems? To answer such questions, there have been some stability analysis
approaches for switched hybrid systems under restricted switching, for example,

1. Dwell Time Approach. Recently, there has been enormous growth of interest in using the
dwell time approach to deal with stability analysis of switched hybrid systems — see for
example, [92,93,102, 149, 151,165, 188,215-217,219, 220,264, 265]. A positive constant
T, € Ris called the dwell time of a switching signal if the time interval between any two
consecutive switchings is no smaller than 7;. The basic idea of the dwell time approach
can be formulated as follows: given a dwell time, and let S(7,;) denote the set of all
switching signals with interval between consecutive discontinuities not smaller than 7,
it has been shown that one can pick 7, sufficiently large such that the switched system
considered is exponentially stable for any switching signal belonging to S(7;). The dwell
time approach was used to analyze the local asymptotic stability of nonlinear switched
systems. Subsequently, this concept was extended and the average dwell time approach
was developed [92], which means that the average time interval between consecutive
switchings is no less than a specified constant 7,,. Specifically, a positive constant 7, is
called an average dwell time for a switching signal a(¢) if

T, -T,
T

a

N, (T,,T,) <Ny +

Forany T, > T| > 0, let N, (T, T,) denote the number of switching of a(t) over (T, T,).
Here, T, is called an average dwell time and N, is the chatter bound. It has been proved
in [92] that if all the subsystems are exponentially stable then the switched hybrid system
remains exponentially stable provided that the average dwell time 7 is sufficiently large.
By using the average dwell time approach, Zhai et al. in [264] investigated the disturbance
attenuation properties of continuous-time switched hybrid systems, and then the exponential
stability and ¢, gain properties for discrete-time switched hybrid systems was investigated
in [265]; Sun et al. in [188] studied the exponential stability and weighted £,-gain for
switched delay systems; Wu and Lam in [215] considered the filtering problem of switched
hybrid systems with time-varying delay. As well as the above-mentioned results, the model
reduction problem for switched hybrid systems with time-varying delay was addressed in
[219] by using the average dwell time approach incorporated with a piecewise Lyapunov
function; and the DOF controller design problem was considered in [216,217].

2. Multiple Lyapunov Functions Approach. By using the Lyapunov function approach to
the stability analysis of switched hybrid systems, the above-mentioned CQLF and SQLF
approaches require that the Lyapunov functions are globally monotonically decreasing as
with the state trajectories. This is, however, conservative since such Lyapunov functions may
not exist for all subsystems of switched hybrid systems. For such cases, one can construct a
set of Lyapunov-like functions, which only require non-positive Lie-derivatives for certain
subsystems in certain regions of the state space, instead of being negative globally. Multiple
Lyapunov functions (MLF), is a non-traditional Lyapunov stability approach, and the key
point of the method is the non-increasing requirement on any Lyapunov function over the
exiting (switch from) or starting (switch to) time sequences of the corresponding subsystem
[94,128,148,164]. Specifically, the Lyapunov-like function is selected for each subsystem,
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Figure 1.3 Multiple Lyapunov stability (Case 1: the values of Lyapunov-like functions at the switching
instants form a monotonically decreasing sequence)

and the values of the Lyapunov-like function at the exiting (the starting) instant of the next
running interval are smaller than that of the current running interval, then the energy of
the Lyapunov-like functions are decreasing globally. There are several versions of MLF
results in the literature, for example, Case 1: the Lyapunov-like function is decreasing when
the corresponding mode is active and does not increase its value at each switching instant
[53] —see Figure 1.3 — and in this case, the switched hybrid system is asymptotically stable;
Case 2: the value of the Lyapunov-like function at every exiting instant is smaller than its
value at the previous exiting time, then the switched system is asymptotically stable [26] —
see Figure 1.4. Case 3: the Lyapunov-like function may increase its value during a time
interval, only if the increment is bounded by certain kind of continuous functions [257] —
see Figure 1.5 — and in this case, the switched system can remain stable.

Synthesis of Switched Hybrid Systems

Over the past several decades, considerable interest has been devoted to synthesis problems
of switched hybrid systems, including stabilization, robust/optimal control, state estimation/
filering, fault detection, model approximation, and so on. Here, we will review some relevant
literature on the synthesis of switched hybrid systems. First, we introduce two important prop-
erties of switched hybrid systems, namely, the controllability and the observability. Roughly
speaking, the concept of controllability denotes the ability to move a system around in its entire
configuration space using only certain admissible manipulations. Observability is a measure
for how well internal states of a system can be inferred by knowledge of its external outputs.
Observability and controllability are dual aspects of the same problem. Some results on the
controllability and the observability analysis for switched hybrid systems were reported in
[16,37,105,132,166,185,189,206,235,236,270] and references therein.
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Figure 1.4 Multiple Lyapunov stability (Case 2: the values of Lyapunov-like function for each subsys-
tem at every exiting instant form a monotonically decreasing sequence)

In the previous section, we discussed the stability properties of switched hybrid systems. As
mentioned earlier, the stability of a switched hybrid system depends not only on the dynam-
ics of each subsystem but also on the properties of the switching signals, thus the synthesis
problems include two strategies for implementation. The first is based on the subsystems’
dynamics with given switching signals, and the second is based on the switching signals. The
stabilization problem for switched hybrid systems was investigated in [4, 6, 14, 38,45,46,79,
84,95,100, 102,124,130, 140,143,190, 192,222,237, 247,249,267] and references therein.
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Figure 1.5 Multiple Lyapunov stability (Case 3: the Lyapunov-like function for each subsystem
increases its value during a certain period)
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Over the past decade, considerable attention has been paid to robust and optimal control
problems for switched hybrid systems, and many important results have been reported — see
for example, [17,47,51,67,80,81,106,126,138,153,161,171,216,217,232,248,264,268] and
references therein. To mention a few, Geromel et al. in [81] considered the passivity analysis
and controller design problems; Kamgarpour and Tomlin in [106] studied the optimal control
problem for non-autonomous switched systems with a fixed mode sequence; Lian and Ge in
[126] addressed robust H, output tracking control for switched systems under asynchronous
switching; Mahmoud in [138] proposed a generalized H, control design approach for discrete-
time switched systems with unknown delays; Niu and Zhao in [153] used the average dwell time
approach to the robust H , control problem for a class of uncertain nonlinear switched systems;
Orlov in [161] presented finite time stability analysis and robust control synthesis methods
for uncertain switched systems; Seatzu et al. in [171] studied the optimal control problem for
continuous-time switched affine systems. The above-mentioned results are all based on state
feedback control, and the output feedback control problem was also investigated — see for
example, [51,67,80,216,217]. In addition, SMC design methodologies for switched hybrid
systems were proposed in [210,224,227,262].

It is well known that one of the fundamental problems in control systems and signal
processing is the estimation of the state variables of a dynamical system through available
noisy measurements, which is referred to as the filtering problem. The celebrated Kalman
filter has been considered as the best possible (optimal) estimator for a large class of systems;
it is an algorithm that uses a series of measurements observed over time, containing noise
(random variations) and other inaccuracies, and produces estimates of unknown variables
that tend to be more precise than those based on a single measurement alone. The Kalman
filter for switched discrete-time linear systems was designed in [3]. However, the application
of the Kalman filter is subject to two initial assumptions: the underlying system is linear
with complete knowledge of the dynamical model, and the noise concerned is white/colored
with known spectral density. Thus the Kalman filtering scheme is no longer applicable when
a priori information on the external noises is not precisely known. Therefore, the past two
decades have witnessed significant progress on robust filtering involving various approaches
such as H, filtering, H, filtering, £,-L filtering, and mixed H,/H, filtering. The robust
filtering problem for switched hybrid systems has also been developed over the past decade —
see for example, [50, 137,139, 167,202, 215,216, 272] and references therein. To mention
a few important robust filtering results for switched hybrid systems, Deaecto ef al. in [50]
developed a trajectory-dependent filter design approach for discrete-time switched linear
systems; Mahmoud in [137] presented a delay-dependent H filter design approach for a
class of discrete-time switched systems with state delay; Qiu et al. in [167] investigated the
robust mixed H,/H, filtering design for discrete-time switched polytopic linear systems;
Wang et al. in [202] addressed the H, filtering problem for discrete-time switched systems
with state delays via switched the Lyapunov function approach; Wu and Lam in [215] proposed
an average dwell time approach to the weighted H , filter design for switched systems with
time-varying delay; Wu and Ho in [216] developed a reduced-order L£,-L  filter design
scheme for a class of nonlinear switched stochastic systems.

The issues of fault detection and isolation are increasingly required in various kinds of
practical complex systems for guaranteeing reliability and pursuing performance. Hence, how
to develop effective methods for timely and accurate diagnosis of faults becomes a crucial
problem. To combat this, many significant schemes have been introduced, such as model-based
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approaches and knowledge-based methods. Among them, the model-based approach is the
most favored. The basic idea of model-based fault detection is to construct a residual signal
and, based on this, determine a residual evaluation function to compare with a predefined
threshold. When the residual evaluation function has a value larger than the threshold, an
fault alarm is generated. Since accurate mathematical models are not always available, the
unavoidable modeling errors and external disturbances may seriously affect the performance
of model-based fault detection systems. Thus, the designed fault detection systems should be
both sensitive to faults and suppressive to external disturbances. Fortunately, the H, fault
detection filter or observer is known to be able to do a good job of achieving the above-
mentioned requirements. The 7, fault detection problem for switched hybrid systems was
studied in [203,261], and some other approaches can be found in [15,49, 119]. Fault-tolerant
control is a related issue that makes it possible to develop a control feedback that allows the
required system performance to be maintained in the case of faults. The fault-tolerant control
problem for switched hybrid systems has also been investigated: for example, Du et al. in
[59] proposed an active fault-tolerant controller design scheme for switched systems with time
delay; Li and Yang in [119] developed a simultaneous fault detection and control technique
for switched systems under asynchronous switching; Wang et al. in [205] designed a robust
fault-tolerant controller for a class of switched nonlinear systems in lower triangular form.

Mathematical modeling of physical systems often results in complex high-order models,
which bring serious difficulties to analysis and synthesis of the systems concerned. Therefore,
in practical applications it is desirable to replace high-order models by reduced ones with
respect to some given criterion, which is the model reduction problem. Over the past decades,
the model reduction problem has been the concern of many researchers. Many important
results have been reported, which involve various efficient model reduction approaches, such
as the balanced truncation approach [89], the Hankel-norm approach [82], Krylov projection
approach [87], the Padé reduction approach [7], the H, approach [251], and the £, approach
[217,219]. Readers can refer to [5] for a detailed survey of model reduction. The model
reduction problem for switched hybrid systems has also received considerable attention — see
for example, [18, 133,150, 173,179,204,217,219] and references therein. To mention a few
important results, Birouche et al. in [18] investigated the model order-reduction for discrete-
time switched linear systems by the balanced truncation approach; Monshizadeh ez al. in [150]
developed a simultaneous balanced truncation approach to model reduction of switched linear
systems; Shi et al. in [179] studied the model reduction problem for discrete-time switched
linear systems over finite frequency ranges; Wang et al. in [204] developed a delay-dependent
model reduction approach for continuous-time switched state-delayed systems; and Wu and
Zheng in [219] proposed a weighted H , model reduction approach for linear switched systems
with time-varying delay.

1.2.2  Analysis and Synthesis of Markovian Jump Linear Systems

Markovian jump linear systems (MJLSs) are another typical class of parameter-switching
systems, and they are modeled by a set of linear systems with the transitions between the
models determined by a Markov chain, taking values in a finite set [136]. MJLSs can also be
considered as a special case of switched hybrid systems with the switching signals governed
by a Markov chain. Applications of MJLSs may be found in many processes, such as target
tracking problems, manufactory processes, solar thermal receivers, fault-tolerant systems, and
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24 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

economic problems. From a mathematical point of view, MJLSs can be regarded as a special
class of stochastic system with system matrices changed randomly at discrete time points
governed by a Markov process and remaining LTI between random jumps. Over the past
decades, owing to a large number of applications in control engineering, MJLSs have received
increasing interest. Many results in this field can be found in the literature, and in the following,
we will review some recently published results on MJLSs.

The stability analysis and stabilization problems for MJLSs were addressed in [20, 22,28,
56,76,104,144,174,176,187,207,238,239]. Specifically, Cao and Lam in [28] investigated the
stochastic stabilizability and H, control for discrete-time jump linear systems with time delay;
de Souza in [56] studied the robust stability and stabilization problems for uncertain discrete-
time MJLSs; Gao et al. in [76] considered the stabilization and H , control problems for two-
dimensional MJLSs; Sun et al. in [187] dealt with the robust exponential stabilization of MJLSs
with mode-dependent input delay; Xiong ef al. in [238] studied the robust stabilization problem
for MJLSs with uncertain switching probabilities. In addition, there have been some results on
the stability and stabilization for Markovian jump stochastic systems. For example, Boukas
and Yang in [20] proposed an exponential stabilizability condition for stochastic systems with
Markovian jump parameters; Wang et al. in [207] solved the stabilization problem for bilinear
uncertain time-delay stochastic systems with Markovian jump parameters; and some other
results on Markovian jump stochastic systems can be found in [144].

The H, control for MJLSs was investigated in [21,24,28,29,76,115,230,245]; robust H
control of MJLSs with unknown nonlinearities was studied in [21]. H, control was addressed
in [24] for discrete-time MJLSs with bounded transition probabilities; the robust H, control
problem was considered in [29] for uncertain MJLSs with time delay; the robust H, control
of descriptor discrete-time Markovian jump systems is covered in [115]; delay-dependent
H, control for singular Markovian jump systems with time delay appears in [230]; delay-
dependent H, control and filtering for uncertain Markovian jump systems with time-varying
delays are found in [245].

The filtering problem for MJLSs was considered in [54,55,57,134,175,177,208,211,231,
242,254,256]. To mention a few, de Souza and Fragoso studied the H  filter design problem
for continuous- and discrete-time MJLSs in [54, 55], respectively; Ma and Boukas in [134]
investigated robust H filtering for uncertain discrete Markovian jump singular systems with
mode-dependent time delay; Shi et al. in [175] considered Kalman filtering for continuous-time
uncertain MJLSs; Wu et al. in [211] addressed the H, filtering problem for Markovian jump
two-dimensional systems; Yao et al. in [254] dealt with robust H  filtering of Markovian jump
stochastic systems with uncertain transition probabilities; and then they studied quantized H
filtering for Markovian jump LPV systems with intermittent measurements in [256].

The fault detection problem for MJLSs was investigated in [147, 152,226, 255,273,274].
Specifically, Meskin and Khorasani in [147] investigated fault detection and isolation prob-
lems for discrete-time MJLSs with application to a network of multi-agent systems having
imperfect communication channels; Nader and Khashayar proposed a geometric approach to
fault detection and isolation of continuous-time MJLSs in [152]; Wu et al. in [226] studied
generalized 7, fault detection for Markovian jump two-dimensional systems; Yao et al. in
[255] considered fault detection filter design for Markovian jump singular systems with inter-
mittent measurements; and Zhong et al. in [273,274] addressed robust fault detection problem
for continuous- and discrete-time MJLSs, respectively.
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The SMC design problem was also addressed for MJLSs in [34, 35, 135,157,178,221,223,
225]. Chen et al. studied SMC of MJLSs with actuator nonlinearities in [34], and adaptive
SMC design for Markovian jump stochastic systems with actuator degradation in [35]; Ma and
Boukas in [135] proposed a singular system approach to robust SMC for uncertain MJLSs;
Shi et al. in [178] considered the SMC design problem for MJLSs; Wu and Ho in [221] solved
the SMC problem for Markovian jump singular stochastic hybrid systems; Wu ez al. in [223]
investigated state estimation and SMC of Markovian jump singular systems; and then they
considered SMC design with bounded £, gain performance for Markovian jump singular
time-delay systems in [225].

Apart from the above-mentioned synthesis problems for MJLSs, the model reduction prob-
lem for such systems was also investigated — see for example, [111,266]. Kotsalis et al. in
[111] studied the model reduction problem for discrete-time MJLSs; and Zhang et al. in [266]
considered H, model reduction for both continuous- and discrete-time MJLSs.

1.3 Contribution of the Book

This book represents the first of a number of attempts to reflect the state-of-the-art of the
research area for handling the SMC problem for uncertain parameter-switching hybrid systems
(including Markovian jump systems, switched hybrid systems, singular systems, stochastic
systems, and time-delay systems). The content of this book can be divided into three parts.
The first part is focused on SMC of Markovian jump singular systems. Some necessary and
sufficient conditions are derived for the stochastic stability, stochastic admissibility, and opti-
mal performances by developing new techniques for the considered Markovian jump singular
systems. Then, a set of new SMC methodologies are proposed, based on the analysis results.
In the second part, the problem of SMC of switched delayed hybrid systems is investigated.
A unified framework under ‘average dwell time’ is established for analyzing the considered
switched delayed hybrid systems. Then some sufficient conditions are derived for the stability,
stabilizability, existence of the desired DOF controllers, and existence of the sliding mode
dynamics in the SMC issue. More importantly, a set of SMC methodologies under a unique
framework are proposed for the considered hybrid systems. In the third part, the parallel theo-
ries and techniques developed in the previous part are extended to deal with switched stochastic
hybrid systems. Specifically, in this third part, the main attention will be focused on stochastic
stability analysis, stabilization, H, control, and SMC of switched stochastic hybrid systems.
Sufficient conditions are established first for the stochastic exponential stability and optimal
performances (such as H, and dissipativity) of the continuous- and discrete-time switched
stochastic systems. Based on the obtained analysis results, the synthesis issues, including H
control and SMC design, are solved.

The features of this book can be highlighted as follows. 1) A unified framework is established
for SMC of Markovian jump singular systems, where the parameters are jumping from one
mode to another stochastically, and at the same time there are time delays in existing system
states. 2) A series of problems are solved with new approaches for analysis and synthesis
of continuous- and discrete-time switched hybrid systems, including stability analysis and
stabilization, DOF control, and SMC. 3) Three correlated problems, 7, control (state feedback
control and DOF control), SMC, and state estimation problems, are dealt with for switched
stochastic systems. 4) A set of newly developed techniques (e.g. average dwell time method,
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26 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

piecewise Lyapunov function approach, parameter-dependent Lyapunov function approach,
cone complementary linearization (CCL) approach, slack matrix approach, and sums of squares
technique) are exploited to handle the emerging mathematical/computational challenges.

This book is a timely reflection on the developing area of system analysis and SMC theories
for systems with uncertain switching parameters, typically resulting from varying operation
environments. It is a collection of a series of latest research results and therefore serves as a
useful textbook for senior and/or graduate students who are interested in knowing: 1) the state
of the art of the SMC area; 2) recent advances in Markovian jump systems; 3) recent advances
in switched hybrid systems; and 4) recent advances in singular systems, stochastic systems and
time-delay systems. Readers will also benefit from new concepts, models and methodologies
with theoretical significance in system analysis and control synthesis. The book can also be
used as a practical research reference for engineers dealing with SMC, optimal control, and
state estimation problems for uncertain parameter-switching hybrid systems. The aim of this
book is to close the gap in literature by providing a unified, neat framework for SMC of
uncertain parameter-switching hybrid systems.

In general, this book aims at third- or fourth-year undergraduates, postgraduates and aca-
demic researchers. Prerequisite knowledge includes linear algebra, matrix analysis, linear
control system theory, and stochastic systems. It should be described as an advanced book.

More specifically, the readers should include: 1) control engineers working on nonlinear
control, switching control, and optimal control; 2) system engineers working on switched
hybrid systems and stochastic systems; 3) mathematicians and physicists working on hybrid
systems and singular systems; and 4) postgraduate students majoring on control engineering,
system sciences, and applied mathematics. This book could also serve as a useful reference
to: 1) mathematicians and physicists working on complex dynamic systems; 2) computer
scientists working on algorithms and computational complexity; and 3) third- or fourth-year
students who are interested in knowing about advances in control theory and applications.

1.4 Outline of the Book

The organization structure of this book is shown in Figure 1.6. The general layout of this book
is divided into three parts: Part One: SMC of Markovian jump singular systems; Part Two:
SMC of switched hybrid systems with time-varying delay; and Part Three: SMC of switched
stochastic hybrid systems. The main contents of this book are shown in Figure 1.7.

Chapter 1 first presents the research background, motivations and research problems of this
book which mainly involve SMC methodologies and the uncertain parameter-switching
hybrid systems. A survey is provided on the fundamental theory of the SMC method-
ologies, which include some basic concepts (SMC problem, reaching condition, and two
SMC design steps), sliding surface design (linear sliding surface, integral sliding surface,
and terminal sliding surface), sliding mode controller design (equivalent control design,
reaching condition approach, Lyapunov function approach, and reaching law approach),
chattering problem (boundary layer approach, dynamic SMC approach, and reaching law
approach). Then, an overview of recent developments of SMC Methodologies is also pre-
sented, which includes SMC of uncertain systems, SMC of time-delay systems, SMC of
stochastic systems, SMC of parameter-switching hybrid systems, and the output feedback
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SMC technique. Another focus in this chapter is to provide a timely review on the recent
advances of the analysis and synthesis issues for uncertain parameter-switching hybrid
systems (including switched hybrid systems and Markovian jump linear systems). Most
commonly used methods for the stability analysis of the switched hybrid systems are
summarized. Subsequently, recently developed results on synthesis issues (such as control,
filtering, fault detection, and model reduction) for the uncertain parameter-switching hybrid
systems are reviewed with a lot of references involved. Finally, we summarize the main
contributions of this book and give the outline of this book.

Part One presents the analysis and SMC design procedure for Markovian jump singular
systems. It begins with Chapter 2, and consists of three chapters as follows.

Chapter 2 investigates SMC of Markovian jump singular systems. The main difficulties of
such a problem come from switching function design and stochastic admissibility analysis
for the resulted sliding mode dynamics (termed Markovian jump singular systems). Thus,
the chapter solves the two key problems of how to design an appropriate switching function
and how to establish a necessary and sufficient condition of the stochastic admissibility
for the resulted sliding mode dynamics. But it should be pointed out that the existing
results on the stochastic admissibility (and stochastic stability) of Markovian jump singular
systems are not all of strict LMI form owing to some matrix equality constraints involved.
This may cause considerable trouble in checking the conditions numerically. How to get
a condition in strict LMI form is also a key problem to be discussed. Motivated by the
above-mentioned three key issues, we will consider the stability analysis and SMC design
problems for Markovian jump singular systems in this chapter. First, a new integral-type
switching function is designed by taking the singular matrix E into account, by which the
sliding mode dynamics can be derived. Then, a necessary and sufficient condition for the
existence of such a sliding mode (the stochastic stability of the sliding mode dynamics)
is established in terms of strict LMIs, by which the sliding surface can be designed.
Considering that the system states are not always available in practice owing to the limits
of the physical situation or the expense of measuring them, the state estimation problem
has become more important. In this case, an observer is designed to estimate the system’s
states, and an observer-based SMC law is then synthesized to guarantee the reachability of
the state trajectories of the closed-loop system to the predefined sliding surface.

Chapter 3 studies the problems of the bounded £, gain performance analysis and SMC of
Markovian jump singular time-delay systems. The purpose is to contribute to the develop-
ment of SMC and the bounded £, gain performance analysis for the considered system.
We will pay particular attention to the singular matrix E in the design of an integral-type
switching function, which leads to a full-order Markovian jump singular time-delay system
for describing the sliding mode dynamics. We will then apply the slack matrix approach to
derive a delay-dependent sufficient condition in the form of LMIs, which guarantees that
the sliding mode dynamics is stochastically stable with a bounded £, gain performance. In
addition, the analysis conditions of the sliding mode dynamics and the solvability condition
for the desired switching function are both established. Finally, we will synthesize an SMC
law for driving the system state trajectories onto the predefined sliding surface.

Chapter 4 addresses the SMC of a nonlinear singular stochastic system with Markovian
switching. An integral switching function is designed, and the resulting sliding mode
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dynamics is expressed by a full-order Markovian jump singular stochastic system. By
introducing some specified matrices, a sufficient condition is proposed in terms of strict
LMIs, which guarantees the stochastic stability of the sliding mode dynamics (thus the
existence of such a sliding mode can be guaranteed). A sliding mode controller is then
synthesized for reaching motion. Moreover, when there is an external disturbance in the
considered control system, the £, disturbance attenuation performance (H, performance)
is analyzed. Some corresponding sufficient conditions are also established for the existence
of the sliding mode dynamics, and some algorithms (including the CCL algorithm) are
presented to cast the SMC design problem into a nonlinear minimization problem involving
LMI conditions instead of the original nonconvex feasibility problem.

Part Two presents the analysis and SMC design procedure for switched state-delayed hybrid
systems. It begins with Chapter 5, and consists of four chapters as follows.

Chapter 5 deals with the stability analysis and stabilization problems for continuous- and
discrete-time switched hybrid systems with time-varying delays. For a continuous-time
system, the time-varying delay d(7) is assumed to satisfy either (Al) 0 < d(f) < d and
d(t) < 7 or (A2) 0 < d(f) < d. By using the average dwell time approach and the piecewise
Lyapunov function technique, two delay-dependent sufficient conditions are established for
the exponential stability of the considered hybrid system with (A1) and (A2), respectively.
Here, the slack matrix approach is applied to further reduce the conservativeness of the
stability conditions caused by the time delay. For the discrete-time system, the stability
conditions are also derived by the average dwell time approach, and the results are all
delay-dependent, and thus less conservative. The stabilization problem is then solved by
designing a memoryless state feedback controller, and then an explicit expression for the
desired controller is given. The research in this chapter is an important foundation for
the development of the SMC methodologies for switched hybrid systems in subsequent
chapters.

Chapter 6 is concerned with the DOF control problem for continuous-time switched hybrid
systems with time-varying delays. Specifically, two issues are investigated: 1) the £,-L
control problem for continuous-time switched hybrid systems with time-varying delay. A
DOF controller is designed, which is assumed to be switching with the same switching
signal as in the original system. A delay-dependent sufficient condition is proposed, to
guarantee the exponential stability and a weighted £,-L  performance for the closed-
loop system with the decay estimate is explicitly given. The corresponding solvability
condition for a desired DOF controller is established, and an explicit parametrization of
all desired DOF controllers is also given; 2) the guaranteed cost DOF controller design
for continuous-time linear switched hybrid system with both discrete and neutral delays. A
sufficient condition is first proposed, in terms of a set of LMISs, to guarantee the exponential
stability and a certain bound for the cost function of the closed-loop system, where the
decay estimate is explicitly given to quantify the convergence rate. Then, the corresponding
solvability conditions for a desired DOF controller under guaranteed cost are established by
using the approach of linearizing variable transforms. Since these obtained conditions are
not all expressed by strict LMIs, the CCL algorithm is exploited to cast them into sequential
minimization problems subject to LMI constraints, which can be easily solved numerically.
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Chapter 7 studies the SMC design problem for continuous-time switched hybrid systems
with time-varying delay. First, the original system is transformed into a regular form
through model transformation, and then, by designing a linear sliding surface, the dynamical
equation for the sliding mode dynamics is derived. A delay-dependent sufficient condition
for the existence of a desired sliding mode is proposed, and an explicit parametrization of
the desired sliding surface is also given. Since the obtained conditions are not all expressed
in terms of strict LMIs (some matrix equality constraints are involved), the CCL method is
exploited to cast them into a sequential minimization problem subject to LMI constraints,
which can be easily solved numerically. Then, a discontinuous SMC law is synthesized,
by which the system state trajectories can be driven onto the prescribed sliding surface in
a finite time and maintained there for all subsequent time. Since the designed SMC law
contains state-delay terms, it requires the time-varying delay to be explicitly known a priori
in the practical implementation of the controller. However, in some practical situations, the
information for time delay is usually unavailable, or difficult to measure. In such a case,
the designed SMC law is not applicable. To overcome this, we suppose that the state-delay
terms in the controller are norm-bounded with an unknown upper bound. We will design
an adaptive law to estimate the unknown upper bound, and thus an adaptive SMC law is
synthesized, which can also guarantee the system state trajectories reach the prescribed
sliding surface.

Chapter 8 is concerned with the problem of SMC of discrete-time switched delayed hybrid
systems with time-varying delay. First, we transform the original system into a new one with
regular form, and then by designing a linear switching function, a reduced-order sliding
mode dynamics, described by a switched state-delayed hybrid system, is developed. By
utilizing the average dwell time approach and the piecewise Lyapunov function technique,
a delay-dependent sufficient condition for the existence of the desired sliding mode is
proposed in terms of LMIs, and an explicit parametrization of the desired switching surface
is also given. Here, to reduce the conservativeness induced by the time delay in the system,
both the slack matrix technique and also the delay partitioning method are employed,
which make the proposed existence condition less conservative. In this chapter, the time
delay considered is a time-varying one with a known lower bound. In this case, combined
with construction of an appropriate Lyapunov—Krasovskii function, the delay partitioning
method is employed by partitioning the lower bound evenly into several components. We
then show that the conservativeness of the obtained existence condition becomes less and
less with the partitioning getting thinner. Finally, a discontinuous SMC law is designed to
drive the state trajectories of the closed-loop system onto a prescribed sliding surface in a
finite time and maintained there for all subsequent time.

Part Three presents the analysis and SMC design procedure for switched stochastic hybrid
systems. It begins with Chapter 9, and consists of four chapters as follows.

Chapter 9 investigates the problems of stability and performance analysis, stabilization
and H, control (including state feedback control and DOF control) for continuous-time
switched stochastic hybrid systems. The average dwell time approach combined with the
piecewise Lyapunov function technique is applied to derive the main results. There are
two main advantages to using this approach to the switched system. First, this approach
uses a mode-dependent Lyapunov function, which avoids some conservativeness caused
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by using a common Lyapunov function for all the subsystems. Then the other advantage is
that the obtained result is not just an asymptotic stability condition, but an exponential one.
Therefore, by this approach, a sufficient condition is first proposed, which guarantees the
mean-square exponential stability of the unforced switched stochastic hybrid system. When
system states are available, a state feedback controller is designed such that the closed-
loop system is mean-square exponentially stable with an H , performance. However, when
system states are not all available, a DOF controller is designed and the mean-square
exponential stability with an H, performance is also guaranteed.

Sufficient solvability conditions for the desired controllers are proposed in terms of
LMIs.

Chapter 10 considers the stability and performance analysis, stabilization and H_, control
problems for discrete-time switched stochastic systems with time-variant delays. By apply-
ing the average dwell time method and the piecewise Lyapunov function technique, a
sufficient condition is first proposed to guarantee the mean-square exponential stability for
the considered system. A condition on a weighted 7{, performance is also proposed. Then,
the stabilization and H, state feedback control problems are solved with some sufficient
conditions presented in terms of LMI.

Chapter 11 is concerned with the SMC of a continuous-time switched stochastic hybrid sys-
tem, and some results developed in Chapter 9 are used in the research. Firstly, by designing
an integral switching function, we obtain the sliding mode dynamics, which is expressed
by a switched stochastic hybrid system with the same order as the original systems. Based
on the stability analysis result in Chapter 9, a sufficient condition for the existence of the
sliding mode is proposed in terms of LMIs, and an explicit parametrization of the desired
switching function is also given. Then, a discontinuous SMC law for reaching motion is
synthesized such that the state trajectories of the SMC system can be driven onto a pre-
scribed sliding surface and maintained there for all subsequent time. Moreover, considering
that some system state components may not be available in practical applications, we fur-
ther study the state estimation problem by designing an observer. Sufficient conditions are
also established for the existence of the sliding mode and the solvability of the desired
observer, and then the observer-based SMC law is synthesized.

Chapter 12 shows the dissipativity analysis and the SMC design for switched stochastic
hybrid systems. A more general supply rate is proposed, and a strict (Z, Y, X)-dissipativity
is defined, which includes H,, positive realness, and passivity as its special cases. The
main idea is to introduce the strict (Z, Y, X)-dissipativity concept into the analysis of the
sliding mode dynamics so as to improve the transient performance of the SMC system. The
objective is to conduct dissipativity analysis and investigate the dissipativity-based SMC
design scheme, with a view to contributing to the development of SMC design and the
dissipativity analysis methods for the switched stochastic hybrid system. Specifically, an
integral sliding surface is designed such that the sliding mode dynamics exists with the same
order as the original system. Then, a sufficient condition, which guarantees the sliding mode
dynamics mean-square exponentially stable with a strict dissipativity, is then established
in terms of LMIs by using the average dwell time approach and the piecewise Lyapunov
function technique. In addition, a solution to the dissipativity synthesis is provided by
designing a discontinuous SMC law such that the system state trajectories can be driven
onto the predefined sliding surface in a finite time.

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



art One

MC of Markovian
ump Singular
ystems

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



2

State Estimation and SMC of
Markovian Jump Singular Systems

2.1 Introduction

In this chapter, we are aiming at the investigation of state estimation and SMC problems for
Markovian jump singular systems. Although there has been some existing work on the stability
analysis of such systems based on the LMI technique, the results are not all of strict LMI form
since there are usually some matrix equality constraints. This may cause a lot of trouble in
checking the analysis results numerically. Therefore, a natural question is immediately raised:
are there any techniques that can release the matrix equality constraints? In this chapter, we
extend the approach proposed in [195] to the stability analysis of Markovian jump singular
systems, and a new necessary and sufficient stability condition is established in terms of strict
LMI. Also, the analysis and synthesis of singular systems have been extensively investigated in
the past decades, but little progress has been made toward solving the SMC problem of singular
systems. This problem may become difficult and complicated due to the singular matrix E
in the systems. Since the rank of £ may not be equal to that of B in a simple singular LTI
system of Ex(f) = Ax(t) + Bu(t), it is difficult to obtain the so-called ‘regular form’ through
conventional model transformation approach. As a result, the linear sliding surface is not
suitable for singular systems. Therefore, a key issue in the study of this problem is how to
design a suitable sliding surface such that the resulting sliding mode dynamics exists.

In this chapter, a new integral-type sliding surface is designed by taking the singular matrix £
into account. Then, by using the integral SMC technique, the sliding mode dynamics described
by a Markovian jump singular differential equation can be derived. A necessary and sufficient
condition for the stochastic stability of the sliding mode dynamics is presented in terms of
strict LMI, by which the sliding surface can be designed. In practice, the system states are
not always available owing to the limit of physical conditions or the expense of measuring
it. Thus, the estimation problem has become more important in this case. In this chapter, we
investigate the state estimation and SMC problems for Markovian jump singular systems with
unmeasured states. An observer is first designed to estimate the system states, and then a
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36 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

discontinuous SMC law is synthesized based on feedback of the estimated states, which forces
the system state trajectories onto the sliding surface in a finite time.

2.2 System Description and Preliminaries

Consider the continuous-time Markovian jump singular system described by

Ex(1) = A@)x(t) + B(r)u(r), (2.1a)
y(1) = Clr)x(0), (2.1b)

where x(¢) € R” is the state vector; u(f) € R™ is the control input; y(f) € R? is the measured
output. Matrix E € R™" may be singular, and we assume that rank(E) = r < n. A(-), B(-), and
C(-) are known real matrices with appropriate dimensions. These matrices are functions of r,.
Here, let {r,,t > O} be a continuous-time Markov process which takes values in a finite state
space S = {1,2,...,N}, and the generator matrix I = x;;, i,j € S with transition probability
from mode 7 at time ¢ to mode j at time ¢ + A is given by

[j’

. (2.2)
I+ 7m;A+0(d), if i=},

P =P {1, =jlr, =i} = {

where A > 0 and lim,_, 0o(A)/A = 0; m; > 0,i#j,and 7;; = — E#i m; foreachi € S.
For each possible value r, =i € S, A(r,) = A;, B(r;) = B;, and C(r,) = C,. Then, the system
(2.1a)—(2.1b) can be described by

Ex(1) = Ajx(t) + Byu(1), (2.3a)
y(0) = Cx(@). (2.3b)

The following preliminary assumption is made for system (2.3a)—(2.3b).

Assumption 2.1 Foreachi € S, the pair (Ai, Bi) in (2.3a)—(2.3b) is controllable, the pair
(Al-, C,») is observable, and matrix B; is full column rank.

Before proceeding, we first consider the unforced system of (2.3a), that is,
Ei(t) = Ax(1). (2.4)

Definition 2.2.1

1. The Markovian jump singular system in (2.4) is said to be regular if det (SE - Al-) is not
identically zero for eachi € S.

II. The Markovian jump singular system in (2.4) is said to be impulse free if deg (det(sE —
A;)) =rank(E) for each i € S.
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1II. The Markovian jump singular system in (2.4) is said to be stochastically stable if, for any
xg € R"andry € S, there exists a positive scalar T(xy, ) such that

1
min E {/0 ||x(s,x0,r0)||2ds|(x0,r0)} < T(xg,1p)-

=00

1V. The Markovian jump singular system in (2.4) is said to be stochastically admissible if it
is regular, impulse free and stochastically stable.

The following lemma provides a necessary and sufficient condition for the stochastic admis-
sibility of the Markovian jump singular system in (2.4).

Lemma 2.2.2  [244] The Markovian jump singular system in (2.4) is stochastically admis-
sible if and only if there exist nonsingular matrices P; such that fori € S,

ETP,=PTE >0, (2.52)

N
ATP, + PTA; + ) m;E"P; < 0. (2.5b)
j=1

Remark 2.1 Notice that the conditions in Lemma 2.2.2 are not all of strict LMI form
due to the matrix equality constraint of (2.5a). This may cause major problems in checking
the conditions numerically, since the matrix equality constraint is fragile and is not usually
perfectly satisfied. Therefore, the strict LMI conditions are more desirable than non-strict ones
from the numerical point of view. ¢

2.3 Stochastic Stability Analysis

In the section, we propose a strict LMI condition (easy to check by using standard software)
of the stochastic admissibility for the Markovian jump singular system in (2.4), and present
the following result.

Theorem 2.3.1  The Markovian jump singular system in (2.4) is stochastically admissible if
and only if there exist matrices X; > 0, Y;, U, and W such that fori € S,

N
Al (XE+UTYWT) + (ETX; + WY[U)A; + ) m;ETX,E <0, (2.6)
j=1

where U € R""7%" and W € R™"=") are matrices satisfying UE = 0 and EW = 0.
Proof. (Sufficiency) Letting P; 2 X,;E + UTY,WT, i € S in (2.6), we can satisfy (2.5a) and

(2.5b). Thus, according to Lemma 2.2.2 we know that the continuous Markovian jump singular
system in (2.4) is stochastically admissible.
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38 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

(Necessity) Suppose that the system in (2.4) is stochastically admissible, then there exist
nonsingular matrices M and N such that, for each i € S,

I 0
0 0

A, A
, MAN=|"U 2i ] ) 2.7
] ! [A3i Ay @7

Since the system in (2.4) is regular and impulse free we have that matrices A,; are nonsingular
for i € S. Thus, we can set

MEN:[

=
11>

I —AyA}!
[0 5|

Then, it follows that

. [1 -A,A7]
E= ,-EN:_O 2} 41_MEN
_ | =AyA [r o] 1 0
=lo 77 []o o/T]0 o] (28)
T
A, =MAN = I Ay MA;N
_O 1 B
_ 1 A | [Ar Ax| _ [Aw O (2.9)
_0 1 A3i A4i A3i A4,' ’ '

where A;; £ Ay; — A2iAZ,'1A3i- Therefore, it is easy to see that the stochastic stability of system
(2.4) implies that the following continuous Markovian jump system is stochastically stable:

E(n) = A&

It follows that there exist matrices Xi > 0 such that, fori € S,

>

Now, letN £ [N; N, | and M; £ [M], If/lzTi]T,thus by (2.9) we have My AN = [A3; Ayl
where the partitions of N and M, are compatible for algebraic operations. Therefore, for a
sufficient small & > 0, we have

N
J=1

-1
X (ALNIN, + NINyAy) ™ (ALNIN, + NIN,A3;) <O. (2.10)
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By Schur complement, (2.10) is equivalent to

Wi —aALNIN, — aN NyAy,
) <0, 2.11)
*x - aAlLNIN, — aNIN,A,;

where
1

N
lPlll‘ e ATX +XiA1i + z 7[115(] - (XA;NZTNI - (INITN2A31
j=1

Furthermore, (2.11) can be rewritten as

A, o] [% o 1 0], [1 0][% O][A; o©
Ay Ayl lo rf]o o] T|o of|o 1||Ay; Ay

N

ENETETE
+[2§ ](—aln_r)NzT [Ny N ]
+[x§ ]Nz (=al,_,) [As Ay] <O. 2.12)

Considering (2.7), it follows from (2.12) that

0 I

T AT gyT
NAiMI.[ 0

] M.EN + N"E" M [ ] M,AN

N ~
- X 0] -~
+Zn,-jNTETMjT [oj I]M]EN
=1

— aN" (NMyA; + AT MyN] ) N < 0. (2.13)

i

Letx,.énzf[o

(I)] 1\7I,- in (2.13) (obviously, X; > 0), we have

N
NT lAiT (X;E — afyNY ) + (E"X; — aNyiy;) A, + Y myE"X;E| N < 0.
j=1
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Since M,, is of full row rank, it can be written as My; = M3;U, where M5; € RO"="%(1=")
is nonsingular (thus, by (2.8) M,,EN = M3,UEN = 0 implies UE = 0). Then, defining Y¥; £
—a]\7I3Tl. and W £ N, (it is easily seen from (2.7) that EW = EN, = 0), we have

N
N AT (X,E+ UTY,W") + (ETX, + WY[U) A; + ) m;E"X;E| N <0,
j=1

which is equivalent to (2.6). This completes the proof. [

Remark 2.2  Note that Theorem 2.3.1 presents a new necessary and sufficient condition of
stochastic admissibility in terms of strict LMI for the Markovian jump singular system in (2.4),
which is less conservative and more useful than Lemma 2.2.2. ¢

2.4 Main Results

In this section, we consider the state estimation and SMC problems for the Markovian jump
singular systems with unmeasured states in (2.1a)—(2.1b). First, we design an observer to
estimate unmeasured states, and then we design a sliding surface and an SMC law based
on the state estimates. The designed observer-based SMC law can drive the system state
trajectories onto the predefined sliding surface in a finite time.

2.4.1 Observer and SMC Law Design

The following observer is employed to provide the estimates of the unmeasured states for the
system in (2.3a)—(2.3b):

EA(1) = AR(1) + Bu(t) + L; (y(t) — $(1)) , (2.142)
(1) = Cix(0), (2.14b)

where %() € R" represents the estimate of x(r), and L; € R™? are the observer gains to be
designed.

Let e(f) £ x(f) — 2(f) denote the estimation error. Considering (2.3a)—(2.3b) and (2.14a)—
(2.14b), the estimation error dynamics is obtained as

Ee(t) = (A; = LiC;) e(t). (2.15)

Design the following integral switching function:

t
s(t) = G,EX(t) — / G; (A; + B;K;) %(6)d, (2.16)
0
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where K; € R™" are real matrices to be designed such that
EX(1) = (A; + BiK;) 2() (2.17)
is stochastically admissible. The matrices G; € R™" are to be chosen so that G;B; are non-

singular.
Design the following state estimate-based SMC law:

u(t) = K;x(t) — (e + p(1)) sign (s(1)) , (2.18)
where € > 0 is a real constant and

p(t) £ max 1G:B:| (IGLyD|| + ||GL D)) -

The following theorem shows that the sliding motion in the specified sliding surface s(f) = 0
is attained in a finite time.

Theorem 2.4.1  Under the SMC law (2.18), the state trajectories of the observer dynamics
(2.14a)—(2.14b) can be driven onto the sliding surface s(t) = 0 in a finite time and remain
there in subsequent time.
Proof. Choose the following Lyapunov function:

V(o) = s"(t) (BT Z;B;) ™' s(a),
where Z; > 0 are matrices to be specified such that Bl.TZiBl- > (. Thus, we choose G; = Bl.TZi in
(2.16), and then G;B; = BiTZ[Bi > 0 are nonsingular. According to (2.14a)—(2.14b) and (2.16),

we have

5(1) = GiEX(H) — G, (A; + BiK;) (1)
= B/ ZB; (u(t) = Ki#(D) + G,L; (0(D) = $(1) . 2.19)

Substituting (2.18) into (2.19) yields
§(1) = —BI Z,B, ( + p(1)) sign (s(1)) + G,L; (1) = $(1)).
Thus taking the derivation of V(#) and considering |s()| > ||s(£)||, we have
V(t) = 25" (o) (B'Z:B;) ™" 5(t)
= 257(0) (BT Z;B,) ™" [~BTZ;B; (¢ + p(1)) sign (s(t)) + G,L; (y(t) — $(1))]
< =2(e + p(0) IsOll +2 | B/ 2B, | (| GiLovo)]| + | GLCEO ) lsto)]

< 2 ls()]) < —EV3 (). (2.20)
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where & £ 2e/4/ Amax (BTZ;B;). It can be seen from (2.20) that there exists a time r* =

24/V(0)/& such that V() =0, and consequently s(f) = 0, for 7 > ¢*, which means that the
system state trajectories can reach onto the predefined sliding surface in a finite time. This
completes the proof. u

2.4.2 Sliding Mode Dynamics Analysis
When the system operates in the sliding mode, it follows that s(#) = 0 and §(¢) = 0. Thus, by
§(t) = 01n (2.19), we can obtain the equivalent control ueq(t) as
ueq(t) = Kl.%(t) - Gl'LiCie(t). (221)
Substituting (2.21) into (2.14a), the sliding mode dynamics can be obtained as
EX(1) = (A; + BiK;) X(t) + (I — B,G;) L;Ce(d). (2.22)

In the following, we will analyze the stochastic admissibility of the estimation error dynam-
ics in (2.15). By Theorem 2.3.1, we give the following result.

Theorem 2.4.2  The estimation error dynamics in (2.15) is stochastically admissible if
and only if there exist symmetric positive definite matrices X; € R™", nonsingular matrices
Y; € R=X=0 " and matrices L£; € R™P, Q; € R 7 € R=rXn W g R gych
that fori € S,

(E"X; + WY U) A, + AT (XE+U"Y,W")
N
—(E"L; +WQ;) ¢; = €T (LTE+ QI W) + ) m;E"X;E < 0, (2.23)
j=1

where U and W are matrices satisfying UE =0 and EW = 0. Moreover, the parametric
matrices L; can be computed by

L= (E"X,+wy'u) ™ (ETc, + wo,) . (2.24)

Proof. According to Theorem 2.3.1, we know that the estimation error dynamics in (2.15) is
stochastically admissible if and only if there exist matrices X; > 0,Y;, U and W such that for
i€es,
N
(E"X, + WY[U) (A, = LiC;) + (AT = CTLT) (XE+ UTY,WT) + ) m;E"X;E < 0. (2.25)
j=1

Letting £; £ X;L; and Q; £ YT UL; in (2.25) yields (2.23), thus the proof is completed. "
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Next, we shall analyze the stochastic admissibility of the dynamics in (2.17), and give a

solution to parameter K;. Before proceeding, we give the following lemma.

Lemma 2.4.3  Let X; be symmetric such that ELTX,E 7. > 0 and matrices Y; are nonsingular,

then X;E + UTY,WT are nonsingular and their inverse are expressed as
(XE+UTY,WT)™" = XET + WyU,

where X; are symmetric matrices and Y; are nonsingular matrices with

1

Y= (Wiw) "y (UUT) T R = (E[XE) T

Proof. Decompose E as E = ELE1€,

rank. Since UE =0 and EW = 0, thus we have that UE; =0, EgW =0 and [ER

nonsingular. Then,

| (ETER) T ED
e W= | e
Eg (EPER) " EL + W (WTW) ™' W7 =1,

According to (2.27), we have

Eg (EXER) ™ (ETX:E,) ™ ET +w (WTW) ™ v (vuT) U

—w (wTw) "y (UUT) T UXGE, (EfXiE,) T E]
X(XE+UTYWT) =1,

which implies that X;E + UTY;W are nonsingular and

(XE+UTY, W)™ = E (ERER) ™ (EIXE,) ™ ET
+w (w'w) "y (o)
W (WTw) "y (UUT) T UXE, (EfXiEy)

= oTQ@E" + w (W'w) " v (vuT) o,

(2.26)

where E; € R™" and Ep € R™ are of full column

W] is

(2.27)

(2.28)
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where

o 2 (E1€ER)_1E1€
(Wiw)™' wT |
Q 2 [ (EZXiEL)_1 - (EZXiEL)_1 EZ’éiUT (UUT)_I el
*

Define X; £ ®7Q® and Y; 2 (W'W)™ v~ (UUT) ™" in (2.28), and we have (2.26)~(2.27).

This completes the proof. u
Now, according to Theorem 2.3.1, we present the following result without proof.

Theorem 2.4.4  The dynamics in (2.17) is stochastically admissible if and only if there exist
matrices X; > 0, Y;, U and W such that for i € S,

N
(E"X,+WY[U) (A;+BiK;) + (AT +K[B]) (XE+UTY,W") + 3 m;E"X;E <0, (2.29)
=

where U € R"7X" and W € R"™ ") gre matrices satisfying UE = 0 and EW = 0.

The following sufficient condition is proposed for the stochastic admissibility of the dynam-
ics in (2.17), by which the parametric matrices K; can be solved.

Theorem 2.4.5  The dynamics in (2.17) is stochastically admissible if there exist symmetric
positive definite matrices X; € R™", nonsingular matrices Y; € RO=1X=1) " and matrices
K, eR™" R, € R™ =1 U € R and W € R™ =7 sych that for i € S,

Y+ 1le1[ — mEXET Wy

<0, (2.30)
* Wi

where Z; 2 X,ET + WY.U and

(W, 24,2, + B; (K;ET + R,U) + n,EZ,,

W,y £ —diag {EXX|E, EYX,Ep, ..., EXX; |Ep,

) ENX; \Eg. ... EbXy_Egp, EYXyEg} .

Wi 2 [VEnZlEr  \maZlEx - \[manZEg
VEanZiEr o \mw-nZiEr  \EinZiEr],

where U and W are matrices satisfying UE =0 and EW = 0. Moreover, the parametric
matrices K; are given by

K, = (KE"+RU) Z;". (2.31)

a5UBD1 7 SUOLILWIOD) BAIIER1D) 3|ceal|dde ayy Aq pausenof ale sapie YO ‘8sh Jo sajni 10} Akeld 1 auljuQ 481 UO (SUOIIPUOD-pUE-SWLIBY/W0D A8 | 1M Afeiq 1 Ul uo//Sdny) SUORIPUOD pUe SWIB | 8L} 38S *[£202/2T/TE] Uo Arlqiauluo A1 ‘uisauibul jo AiseAlunexeyd Aq /1op/wod e |im Aiqipuljuo//sdny woly papeojumoq



State Estimation and SMC of Markovian Jump Singular Systems 45

Proof. By Theorem 2.4.4 we know that the dynamics in (2.17) is stochastically admissible
if there exist matrices X; > 0 and nonsingular matrices Y; such that (2.29) holds for i €
S. However, by Lemma 2.4.3, X;E + UTY;WT are nonsingular and their inverse matrices
are X;ET + WY,U. Now, performing a congruence transformation to (2.29) by Z; £ X,ET +
WY,U, we have

N
(A;+BiK;) Z;+ 2 (AT +K[B) + Y ;2] E'X;EZ, < 0. (2.32)
j=1

Letting K; £ K;X; and R; £ K;WY), in (2.32), we have
AZi+ZTAT + B, (KET + RU) + (EKT + UTRT) BT + ;27 E (ELX.ER) ™ EL 2,
al 1
+ ) 72 Eg (ERXiER) ™ ExZ; <0. (2.33)
Ry

Also, the following fact is true:

T
-1
0 < |ehz, - (shiea) £ | (Bhie)” |ER] - (Bhvea) £
= —EZ;- ZVET + EX,E" + ZTEp (ELXER) " ELZ,.
Considering 7z;; < 01in (2.2), we have
-1

Therefore, (2.33) holds if the following inequality holds:

N
-1
W+ W - mEXET + Y m; 2 Eg (ERXiER) ™ ERZ; <0, (2.34)
=L

where ¥, ; is defined in (2.30). By Schur complement, LMI (2.30) implies inequality (2.34).
This completes the proof. ]

Remark 2.3  Notice from Definition 2.2.1 that the stochastic admissability implies the
stochastic stability of a Markovian jump singular system. Thus, we know that the estima-
tion error dynamics in (2.15) is stochastically stable if LMI (2.23) in Theorem 2.4.2 holds.
Also, the dynamics in (2.17) is stochastically stable if LMI (2.30) in Theorem 2.4.5 holds. It
is not difficult to show from stochastic stability of dynamics (2.15) and (2.17) that the sliding
mode dynamics (2.22) is stochastically stable. ¢
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2.5 [Illustrative Example

Example 2.5.1 Consider the Markovian jump singular system in (2.1a)—(2.1b) with two
operating modes, that is, N = 2, and the following parameters:

[13 08 1.0] [1.5] 1.0 0.0 0.0 0.0
A =107 08 09|, B, =[09],E=[00 10 00/, 5=[00],
04 02 =07 1.1 00 00 00 1.0
[07 09 03] [ 0.9 ] 1.0 0.0
Ay=|11 14 -04|,B,=|18|, E,=E,=[00 10],
05 03 1.6 1.4 0.0 0.0
-06 06 T
= [ 0.8 _0_8], C;=[11 16 09],C=[15 13 07],R=S5"

Our aim is to design an observer in the form of (2.14a)—(2.14b) to estimate the states of system
(2.1a)—(2.1b), and then synthesize an SMC law u(7) as (2.18) (based on the state estimate)
such that the closed-loop system is stochastically admissible.

Solving the LMI condition (2.23) in Theorem 2.4.2 by using LMI Toolbox in the Matlab
environment and then by (2.24), we have

3.6359 0.6149
L, ={01377|, L,=]1.8942|.
0.1525 1.0853

However, solving the LMI condition (2.30) in Theorem 2.4.5, and then by (2.31) we have

K, =[-23459 -0.0756 —0.1750],
Ky =[-1.6968 10136 —0.7452].

Here, parameters G| and G, in (2.16) are chosen as

G, =[03513 02108 0.2576],
G, =[0.1498 02995 0.2329].

Thus, the switching function in (2.16) can be computed as

(s5,(1) = [0'351,3 0.2108  0.0000 | &(r)

- / [-1.6387 0.4256  0.1857 | &(s)ds, i=1,
0
s(1) =4

sz(t)=[0.l49tS 0.2995  0.0000] (1)
- / [-1.1460 —0.3897 —0.4474]x(s)ds, i=2.
0
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Let the adjustable parameter € be € = 0.5, then the observer-based SMC law designed in (2.18)
can be obtained as

u () = [-2.3459  -0.0756  —0.1750] %(1)

—(0.5+ p(n)) sign (s,(1)) , i=1,
u(t) =3
up (1) = [-1.6968 —1.0136  —0.7452] %(1)

— (0.5 + p(1)) sign (s,(1)) , i=2,

where p(1) = 1.3456 (|ly®|l + 3@
To prevent the control signals from chattering, we replace sign (sl-(t)) with

$;(1) :
—, i€ {1,2}.
0.01 + |[s;(0]|
For given initial condition of x(0) = [ -0.8 -12 -0.6 ] T, the simulation results are given

in Figures 2.1-2.2. Specifically, in Figure 2.1 shows the states of the closed-loop system, while
Figure 2.2 depicts the switching function s(#).

0-6 T T T T T T T T T

0.4} () |
"""" 2a(t)
————— ws(t) | ]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t/sec

|
-
)

Figure 2.1 States of the closed-loop system
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0.2 T T T T T T T T T

01} ;

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t/sec

Figure 2.2 Switching function

2.6 Conclusion

In this chapter, the state estimation and SMC problems have been investigated for continuous-
time Markovian jump singular systems with unmeasured states. First, we have proposed a
strict LMI necessary and sufficient condition of the stochastic admissibility for the unforced
Markovian jump singular systems. Then, an observer has been designed and an observer-based
sliding mode controller has been synthesized to guarantee the reachability of the system state
trajectories to the predefined integral sliding surface. Finally, a numerical example has been
provided to illustrate the effectiveness of the proposed design scheme.
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3

Optimal SMC of Markovian Jump
Singular Systems with Time Delay

3.1 Introduction

Itis recognized that the sliding mode of an SMC system is invariant to system perturbations and
external disturbances, only if the perturbations/disturbances satisfy the so-called ‘matching
condition’. Although many researchers have paid considerable attention to the mismatched
uncertainties in SMC design, the obtained results are very conservative. If the undesired
uncertainties/disturbances can not be eliminated in the sliding mode, it is possible to attenuate
its effect on the system performance. In this chapter, we will consider the disturbance attenu-
ation problem in sliding mode with H , performance. For this purpose, we design an integral
switching function. The plant considered in this chapter is the Markovian jump singular time-
delay system, which is a typical kind of hybrid systems of high complexity (including system
parameter jumping, time delay in states, and singularity). How to establish a less conservative
stability condition is a key issue in SMC design. As is well known, the slack matrix technique
[228, 243], usually combined with the Lyapunov—Krasovskii approach, has been proved to
be an effective tool to establish less conservative stability conditions for time-delay systems.
Unfortunately, little progress has been made in dealing with singular time-delay systems by
this technique, probably due to the particularity and complexity caused by the singular matrix
E, thus it is difficult to choose a suitable Lyapunov—Krasovskii function.

In this chapter, we will pay particular attention to the singular matrix E in the design of an
integral-type switching function, which leads to a full-order Markovian jump singular time-
delay system for describing the sliding mode dynamics. We will then apply the slack matrix
technique combining with the Lyapunov—Krasovskii approach to derive a delay-dependent
sufficient condition, which guarantees that the sliding mode dynamics is stochastically stable
with a bounded £, gain performance. In addition, the analysis result and the solvability
condition for the desired switching function are both established. All the obtained results are
in terms of strict LMI, which can be solved by efficient interior-point algorithms [25]. Finally,
a discontinuous SMC law is designed to drive the system state trajectories onto the predefined
sliding surface in a finite time.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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3.2 System Description and Preliminaries

Consider a Markovian jump singular time-delay system described by

Ex(t) = A(r)x(t) + A (r)x(t — d) + B, (r,)o0(t)

+ B(r,) (u(®) + f(x(2), 1)), (3.1a)
2(t) = Clrpx(t) + Cy(rp)x(t — d) + D, (r)w(2), (3.1b)
x(@) = 1), te[-d,0], (3.1¢)

where {r,,t > 0} is a continuous-time Markov process on the probability space which has
been defined in (2.2) of Chapter 2, and x(¢) € R" is the system state vector; u(f) € R is the
control input; z(¢) € R” is the controlled output; w() € R? is the exogenous input (which
represents either the exogenous disturbance input or the exogenous reference input) belonging
to £,[0, 00). Matrix E € R"™" may be singular, and it is assumed that rank(E) = r < n. A(-),
B(-), C(-), A;(+), C4(+), B,,(-) and D, (-) are known real matrices with appropriate dimensions.
d represents the constant time-delay and ¢(7) € C, ; is a compatible vector-valued initial
function. In addition, f(x(¢), f) € R" is an unknown nonlinear function (which represents the
unmodeled dynamics of a physical plant), and there exists a known constant # > 0 such that

I @), DIl < 7 llx@)l -

Foreachr, =i € S, A(r) =A;, B(r) =B;, Cr;) = C;, Ay(r) = Ay, Cyr) = Cy, B, (1)) =
B,,;, and D, (r,) = D,,;. Then, system (3.1a)—(3.1c) can be described by

Ex(t) = Aix(t) + Ayx(t — d) + B,,j00(1)

+B; (u(t) + f(x(1), 1)), (3.2a)
(1) = Cx(1) + Cyx(t — d) + D,,;o(1), (3.2b)
x(t) = ¢t), te€[-d,0], (3.2¢)

Assumption 3.1 For each i € S, the pair (A;, B;) in (3.2a) is controllable, and matrix B; is
full column rank.

Before proceeding, we first consider the unforced system of (3.2a)—(3.2c¢), that is,

Ex(t) = Ax(t) + Agx(t — d), (3.3a)
x(1) = @), te€[-d0] (3.3b)

We introduce the following definition for the Markovian jump singular time-delay system
in (3.32)—(3.3b).
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Definition 3.2.1

1. The Markovian jump singular time-delay system in (3.3a)—(3.3b) is said to be regular and
impulse free if the pairs (E,A;) and (E,A; + Ay;) are regular and impulse free for each
iesS.

II. The Markovian jump singular time-delay system in (3.3a)—(3.3b) is said to be stochasti-
cally stable if for any x, € R" and 1y € S, there exists a positive scalar T(xy, ¢(-)) such
that

t
tnlgE{/() (D)1 dtlrg, x(5) = p(s), s € [—d, 0]} < T(xp, ().

III. The Markovian jump singular time-delay system in (3.3a)—(3.3b) is said to be stochasti-
cally admissible if it is regular, impulse free and stochastically stable.

In addition, we introduce the following definition for the Markovian jump singular time-
delay system of

Ex(t) = Aix(t) + Ayix(t — d) + B,,00(t), (3.4a)
2(t) = Cix(t) + Cyx(t — d) + D,,;00(1), (3.4b)
x(t) = ¢p(r), te€[-d,0], (3.4¢)

Definition 3.2.2  Given a scalar y > 0, the Markovian jump singular time-delay system in
(3.4a)—(3.4c) is said to be stochastically admissible with a bounded L, gain performance y, if
the system (3.4a)—(3.4c) with w(t) = 0 is stochastically admissible, and under zero condition,
Sfor nonzero w(t) € L,[0, 00), it holds that

E { / sz(t)z(t)dt} <y? / ooa)T(t)a)(t)dt. (3.5)
0 0

3.3 Bounded L, Gain Performance Analysis

This section is concerned with the bounded £, gain performance analysis for the Markovian
jump singular time-delay system in (3.4a)—(3.4c) in the sense of Definition 3.2.2, and we give
the following theorem.

Theorem 3.3.1 Given a scalar y > 0, the Markovian jump singular time-delay system in
(3.4a)—(3.4c) is stochastically admissible with bounded L, gain performance y, if there exist
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