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Series Preface

Electromechanical systems permeate the engineering and technology fields in aerospace,

automotive, mechanical, biomedical, civil/structural, electrical, environmental, and industrial

systems. The Wiley Book Series on dynamics and control of electromechanical systems will

cover a broad range of engineering and technology within these fields. As demand increases

for innovation in these areas, feedback control of these systems is becoming essential for

increased productivity, precision operation, load mitigation, and safe operation. Furthermore,

new applications in these areas require a reevaluation of existing control methodologies tomeet

evolving technological requirements, for example the distributed control of energy systems.

The basics of distributed control systems are well documented in several textbooks, but the

nuances of its use for future applications in the evolving area of energy system applications,

such as wind turbines and wind farm operations, solar energy systems, smart grids, and the

generation, storage and distribution of energy, require an amelioration of existing distributed

control theory to specific energy system needs. The book series serves two main purposes:

1) a delineation and explication of theoretical advancements in electromechanical system

dynamics and control, and 2) a presentation of application-driven technologies in evolving

electromechanical systems.

This book series will embrace the full spectrum of dynamics and control of electrome-

chanical systems from theoretical foundations to real-world applications. The level of the

presentation should be accessible to senior undergraduate and first-year graduate students, and

should prove especially well-suited as a self-study guide for practicing professionals in the

fields of mechanical, aerospace, automotive, biomedical, and civil/structural engineering. The

aim is to provide an interdisciplinary series, ranging from high-level undergraduate/graduate

texts, explanation and dissemination of science and technology and good practice, through

to important research that is immediately relevant to industrial development and practical

applications. It is hoped that this new and unique perspective will be of perennial interest to

students, scholars, and employees inthe engineering disciplines mentioned. Suggestions for

new topics and authors for the series are always welcome.

This book, Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, has
the objective of providing a theoretical foundation as well as practical insights on the topic at

hand. It is broken down into three parts: 1) sliding mode control (SMC) of Markovian jump

singular systems, 2) SMC of switched state-delayed hybrid systems, and 3) SMC of switched

stochastic hybrid systems. The book provides detailed derivations from first principles to allow

the reader to thoroughly understand the particular topic. This is especially useful forMarkovian

jump singular systems with stochastic perturbations because a comprehensive knowledge of
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xii Series Preface

stochastic analysis is not required before understanding the material. Readers can simply dive

into the material. It also provides several illustrative examples to bridge the gap between

theory and practice. It is a welcome addition to the Wiley Electromechanical Systems Series

because no other book is focused on the topic of SMC with a specific emphasis on uncertain

parameter-switching hybrid systems.

Mark J. Balas

John L. Crassidis

Florian Holzapfel

Series Editors
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Preface

Since the 1950s, sliding mode control (SMC) has been recognized as an effective robust

control strategy for nonlinear systems and incompletely modeled systems. In the past two

decades, SMC has been successfully applied to a wide variety of real world applications

such as robot manipulators, aircraft, underwater vehicles, spacecraft, flexible space structures,

electrical motors, power systems, and automotive engines. Basically, the idea of SMC is to

utilize a discontinuous control to force the system state trajectories to some predefined sliding

surfaces on which the system has desired properties such as stability, disturbance rejection

capability, and tracking ability. Many important results have been reported for this kind of

control strategy. However, when the controlled plants are uncertain parameter-switching hybrid

systems including parameter-switching (Markovian jump or arbitrary switching), state-delay,

stochastic perturbation, and singularly perturbed terms, the common SMC methodologies

cannot meet the requirements.

It is known that the SMC of uncertain parameter-switching hybrid systems is much more

complicated because sliding mode controllers must be designed so that not only is the sliding

surface robustly reachable, but also the sliding mode dynamics can converge the system’s equi-

librium automatically by choosing a suitable switching function. This book aims to present

up-to-date research developments and novel methodologies on SMC of uncertain parameter-

switching hybrid systems in a unified matrix inequality setting. The considered uncertain

parameter-switching hybrid systems include Markovian switching hybrid systems, switched

state-delayed hybrid systems, and switched stochastic hybrid systems. These new method-

ologies provide a framework for stability and performance analysis, SMC design, and state

estimation for these classes of systems. Solutions to the design problems are presented in terms

of linear matrix inequalities (LMIs). In this book, a large number of references are provided

for researchers who wish to explore the area of SMC of uncertain parameter-switching hybrid

systems, and the main contents of the book are also suitable for a one-semester graduate

course.

In this book, we present new SMCmethodologies for uncertain parameter-switching hybrid

systems. The systems under consideration includeMarkovian jump systems, singular systems,

switched hybrid systems, stochastic systems, and time-delay systems.

The content of this book are divided into three parts. The first part is focused on SMC

of Markovian jump singular systems. Some necessary and sufficient conditions are derived

for the stochastic stability, stochastic admissibility, and optimal performances by developing

new techniques for the considered Markovian jump singular systems. Then a set of new SMC

methodologies are proposed, based on the analysis results. The main contents are as follows:
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xiv Preface

Chapter 2 is concerned with the state estimation and SMC of singular Markovian switching

systems; Chapter 3 studies the optimal SMC problem for singular Markovian switching

systems with time delay; and Chapter 4 establishes the integral SMC method for singular

Markovian switching stochastic systems.

In the second part, the problem of SMC of switched state-delayed hybrid systems is inves-

tigated. A unified approach of the piecewise Lyapunov function combining with the average

dwell time technique is developed for analysis and synthesis of the considered systems. By

this approach, some sufficient conditions are established for the stability and synthesis of the

switched state-delayed hybrid system. More importantly, a set of SMCmethodologies under a

unique framework are proposed for the considered hybrid systems. The main contents of this

part are as follows: Chapter 5 is devoted to the stability analysis and the stabilization problems

for switched state-delayed hybrid systems; Chapter 6 investigates the optimal dynamic output

feedback (DOF) control of switched state-delayed hybrid systems; and Chapters 7 and 8 study

the SMC of continuous- and discrete-time switched state-delayed hybrid systems, respectively.

In the third part, the parallel theories and techniques developed in the second part are

extended to deal with switched stochastic hybrid systems. The main contents include the

following: Chapters 9 and 10 are concerned with the control of switched stochastic hybrid

systems for continuous- and discrete-time cases, respectively; Chapter 11 studies the observer-

based SMC of switched stochastic hybrid systems; and Chapter 12 focuses on the dissipativity-

based SMC of switched stochastic hybrid systems.

This book is a research monograph whose intended audience is graduate and postgraduate

students, academics, scientists and engineers who are working in the field.

Ligang Wu

Harbin, China

Peng Shi

Melbourne, Australia

Xiaojie Su

Chongqing, China
December 2013
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Abbreviations and Notations

Abbreviations

CCL cone complementary linearization

CQLF common quadratic Lyapunov function

DOF dynamic output feedback

LMI linear matrix inequality

LQR linear-quadratic regulator

LTI linear time-invariant

MIMO multiple-input multiple-output

MJLS Markovian jump linear system

MLF multiple Lyapunov function

SISO single-input single-output

SMC sliding mode control

SOF static output feedback

SQLF switched quadratic Lyapunov functions

Notations

■ end of proof
⧫ end of remark

≜ is defined as

∈ belongs to

∀ for all∑
sum

C field of complex numbers

R field of real numbers

Z field of integral numbers

Rn space of n-dimensional real vectors
Rn×m space of n × m real matrices

Cn,d set of Rn-valued continuous functions on [−d, 0]
E{⋅} mathematical expectation operator

lim limit

max maximum

min minimum
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xviii Abbreviations and Notations

sup supremum

inf infimum

rank(⋅) rank of a matrix

trace(⋅) trace of a matrix

𝜆min(⋅) minimum eigenvalue of a real symmetric matrix

𝜆max(⋅) maximum eigenvalue of a real symmetric matrix

diag block diagonal matrix with blocks
{
X1,… ,Xm

}
𝜎min(⋅) minimum singular value of a real symmetric matrix

𝜎max(⋅) maximum singular value of a real symmetric matrix

I identity matrix with appropriate dimension

In n × n identity matrix
0 zero matrix with appropriate dimension

0n×m zero matrix of dimension n × m
XT transpose of matrix X
X−1 inverse of matrix X
X⟂ full row rank matrix satisfying

X⟂X = 0 and X⟂X⟂T > 0

X > (<)0 X is real symmetric positive (negative) definite

X ≥ (≤)0 X is real symmetric positive (negative) semi-definite

2[0,∞) space of square integrable functions

on [0,∞) (continuous case)

𝓁2[0,∞) space of square summable infinite vector sequences

over [0,∞) (discrete case)|⋅| Euclidean vector norm‖⋅‖ Euclidean matrix norm (spectral norm)‖⋅‖2 2-norm:

√
∫ ∞
0 |⋅|2 dt (continuous case)

𝓁2-norm:
√∑∞

0 |⋅|2 (discrete case)
⋆ symmetric terms in a symmetric matrix
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1
Introduction

1.1 Sliding Mode Control

Sliding mode control (SMC) has proven to be an effective robust control strategy for incom-

pletely modeled or nonlinear systems since its first appearance in the 1950s [70,103,197]. One

of the most distinguished properties of SMC is that it utilizes a discontinuous control action

which switches between two distinctively different system structures such that a new type of

system motion, called sliding mode, exists in a specified manifold. The peculiar characteristic

of the motion in the manifold is its insensitivity to parameter variations, and its complete

rejection of external disturbances [260]. SMC has been developed as a new control design

method for a wide spectrum of systems including nonlinear, time-varying, discrete, large-scale,

infinite-dimensional, stochastic, and distributed systems [101]. Also, in the past two decades,

SMC has successfully been applied to a wide variety of practical systems such as robot manip-

ulators, aircraft, underwater vehicles, spacecraft, flexible space structures, electrical motors,

power systems, and automotive engines [60, 77, 199, 259].

In this section, we will first present some preliminary background and fundamental theory

of SMC, which will be helpful to some readers who have little or no knowledge on SMC, and

then we will give an overview of recent development of SMC methodologies.

1.1.1 Fundamental Theory of SMC

We first formulate the SMC problem as follows. For a general nonlinear system of the form

ẋ(t) = f (x, u, t), (1.1)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is the control input. We need to design

a sliding surface

s(x) = 0,

where s(x) is called the switching function, and the order of s(x) is usually the same as that of
the control input, i.e. s(x) ∈ Rm, and

s(x) =
[
s1(x) s2(x) ⋯ sm(x)

]T
.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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2 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then a sliding mode controller u(t) = [u1(t) u2(t) ⋯ um(t) ]
T is designed in the form of

ui(t) =
{

u+i (t), when si(x) > 0,

u−i (t), when si(x) < 0,
i = 1, 2,… ,m,

where u+i (t) ≠ u+i (t), such that the following two conditions hold:

Condition 1. The sliding mode is reached in a finite time and subsequently maintained, that

is, the system state trajectories can be driven onto the specified sliding surface s(x) = 0 by

the sliding mode controller in a finite time and maintained there for all subsequent time;

Condition 2. The dynamics in sliding surface s(x) = 0, that is, the sliding mode dynamics, is

stable with some specified performances.

Further consider (1.1) with single input, that is, u(t) ∈ R and s(x) ∈ R, and suppose that the
sliding mode can be reached in a finite time, then the solutions of the equation

ẋ(t) = f (x, u+(t), t), s(x) > 0,

will approach s(x) = 0 and reach there in a finite time. During the approaching phase, ṡ(x) < 0.

Similarly, the solutions of the equation

ẋ(t) = f (x, u−(t), t), s(x) < 0,

will also approach s(x) = 0 and reach there in a finite time, thuswe have ṡ(x) > 0. To summarize

the above analysis, we have {
ṡ(x) < 0, when s(x) > 0,

ṡ(x) > 0, when s(x) < 0,

or, equivalently,

s(x)ṡ(x) < 0.

which is the so-called ‘reaching condition’. This is the condition under which the state will

move toward and reach a sliding surface. The system state trajectories under the reaching

condition is called the reaching phase [77, 101].

In summary, Condition 1 requires the reachability of a sliding mode, which is guaranteed

through designing a sliding mode controller, while Condition 2 requires the sliding mode

dynamics to be stable with some specified performances, which is assured by designing an

appropriate sliding mode surface. Therefore, a conventional SMC design consists of two steps:

Step 1. Design a sliding surface s(x) = 0 such that the dynamics restricted to the sliding surface

has the desired properties such as stability, disturbance rejection capability, and tracking;

Step 2. Design a discontinuous feedback control u(t) such that the system state trajectories can

be attracted to the designed sliding surface in a finite time and maintained on the surface

for all subsequent time.
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Introduction 3

In the following, we will briefly introduce some commonly used methods in the design

of sliding surfaces and sliding mode controllers, and in the elimination/reduction of

chattering. Readers can refer to various books on SMC theory for more details, for example,

[60, 77, 197, 199].

Sliding Surface Design

In this section, three kinds of sliding surfaces, namely, linear sliding surface, integral sliding

surface, and terminal sliding surface, are introduced.

Linear Sliding Surface
The linear sliding surface, due to its simplicity of implementation, is commonly used in SMC

design. There are two approaches to designing linear sliding surface. First, we introduce the

‘regular form’ model transformation approach. Consider the following nonlinear system:

ẋ(t) = f (x, t) + B(x, t)u(t), (1.2)

where x(t) ∈ Rn and u(t) ∈ Rm are the system states and control inputs, respectively. f (x, t) ∈
Rn and B(x, t) ∈ Rn×m are assumed to be continuous with bounded continuous derivatives with
respect to x. B(x, t) is bounded away from zero at any time.

By applying an appropriate diffeomorphic transformation z(t) =
[
z1(t)
z2(t)

]
= Tx(t), system

(1.2) can be written in the following regular form [120]:[
ż1(t)
ż2(t)

]
=
[
f̂1(z, t)
f̂2(z, t)

]
+
[

0

B̂1(z, t)

]
u(t),

where z1(t) ∈ Rn−m and z2(t) ∈ Rm are the transformed system states. B̂1(z, t) ∈ Rm×m is

nonsingular (to ensure this, the matrix B(x, t) should be of full column rank for all t for the
existence of such a transformation).

Design a switching function as

s(z) = z2(t) + ℏ(z1(t)),

where ℏ(⋅) is a function to be defined. When the system state trajectories reach onto the sliding

surface, we have s(z) = 0, thus z2(t) = −ℏ(z1(t)). Substituting this into the first equation of the
regular form yields

ż1(t) = f̂1
(
z1, z2, t

)
= f̂1

(
z1,−ℏ(z1(t)), t

)
.

which is a reduced-order system representing the sliding mode dynamics. The remaining work

of the sliding surface design is to choose a function ℏ(⋅) such that the above nonlinear sliding
mode dynamics is stable and/or satisfies a specified performance.

For a linear time-invariant (LTI) system of the form

ẋ(t) = Ax(t) + Bu(t), (1.3)
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4 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is the control input, and the matrices

A ∈ Rn×n and B ∈ Rn×m. The matrix B is assumed to have full column rank and the pair (A,B)
is assumed to be controllable.

It is well known that for the controllable system (1.3) there exists a nonsingular transfor-

mation, defined by [
z1(t)
z2(t)

]
= z(t) = Tx(t),

such that

TAT−1 =
[
A11 A12
A21 A22

]
, TB =

[
0

B1

]
.

Thus, by z(t) = Tx(t) system (1.3) can be transformed into the following regular form:{
ż1(t) = A11z1(t) + A12z2(t),
ż2(t) = A21z1(t) + A22z2(t) + B1u(t),

(1.4)

where z1(t) ∈ Rn−m and z2(t) ∈ Rm are the transformed system states. A11 ∈ R(n−m)×(n−m),
A12 ∈ R(n−m)×m, A21 ∈ Rm×(n−m), A22 ∈ Rm×m, B1 ∈ Rm×m, and B1 is nonsingular.
Now, a sliding surface can be designed under the model of (1.4). For example, we can

choose the following linear one:

s(z) = z2(t) + Cz1(t), (1.5)

where C is the design parameter to be designed. Similarly, when the system state trajectories

reach onto the sliding surface, that is, s(z) = 0, it follows that

z2(t) = −Cz1(t). (1.6)

Substituting (1.6) into the first equation of (1.4) yields

ż1 =
(
A11 − A12C

)
z1(t). (1.7)

The above reduced-order system is the so-called sliding mode dynamics (that is, the motion

equation in the sliding surface), which is an autonomous system. Therefore, the design of

sliding surfaces becomes choosing thematrix parameterC such that the slidingmode dynamics

is stable. Furthermore, since it can be shown that, if the pair (A,B) is controllable, then the
pair (A11,A12) is controllable as well, the problem of finding the design matrix C is in fact a

classical state feedback problem with matrix C as a feedback gain and A12 as an input matrix.
Therefore, all existing linear state feedback control design methods can be used to solve this

problem, for example, the conventional eigenvalue allocation method and linear-quadratic

regulator (LQR) design method.
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Introduction 5

There is another approach to linear surface design, named the Lyapunov approach [186].

Let V(x) be a Lyapunov function for system (1.2), that is, V(x) > 0 and V̇(x) < 0. The sliding

surface can be chosen as

s(x) = BT (x, t)

[
𝜕V(x)
𝜕x

]T
= 0, (1.8)

where

𝜕V(x)
𝜕x

=
[
𝜕V(x)
𝜕x1

𝜕V(x)
𝜕x2

⋯
𝜕V(x)
𝜕xn

]
.

Lemma 1.1.1 [186] System (1.2) with sliding mode on the sliding surface (1.8) is asymp-
totically stable.

For linear system (1.3), since (A,B) is controllable we know that there exists a feedback

matrix K such that Ā = A + BK is stabilizable. Thus, there exist matrices P > 0 and Q > 0

such that the following Lyapunov equation holds:

PĀ + ĀTP = −Q.

Now, design the sliding surface as

s(x) = BTPx(t) = 0, (1.9)

and rewrite system (1.3) as

ẋ(t) = Āx(t) + Bū(t), (1.10)

where ū(t) = u(t) − Kx(t), and Kx is a fictitious feedback to system (1.3).

Let V(x) = xT (t)Px(t) > 0, and we have

V̇(x) = xT (t)
(
PĀ + ĀTP

)
x(t) + 2xT (t)PBū(t).

When the system state trajectories are driven onto the sliding surface, that is, s(x) = BTPx(t) =
0, it follows that

V̇(x) = −xT (t)Qx(t) < 0,

for x(t) ≠ 0. Therefore, the system states are asymptotically stable on the sliding surface.

Therefore, we have the following lemma.

Lemma 1.1.2 [186] System (1.10) with sliding mode on the sliding surface (1.9) is asymp-
totically stable.

We can see from Lemmas 1.1.1–1.1.2 that for the Lyapunov approach, the design of sliding

surface is given by the positive definite matrix P.
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6 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Integral Sliding Surface
In the above-mentioned linear sliding surface design, the order of the resulting sliding mode

dynamics is (n − m), with n being the dimension of the state space and m being the dimension

of the control input. Unlike in linear sliding surface design, in the integral sliding surface, the

order of the sliding motion equation is the same as that of the original system, rather than being

reduced by the number of the dimension of the control input. As the result, the robustness of

the system can be guaranteed throughout an entire response of the system starting from the

initial time instance [198].

Consider system (1.3) with a nonlinear perturbation included in the input channel (called

matched perturbation), that is,

ẋ(t) = Ax(t) + B (u(t) + d(x, t)) .

where d(x, t) is a nonlinear perturbation with known upper bound d0(x, t), that is, |d(x, t)| <
d0(x, t). Design control u(t) = u0(t) + u1(t) for the above system, and suppose that there exists
a feedback control law u(t) = u0(t) such that the perturbation-free system, that is, ẋ(t) =
Ax(t) + Bu(t) can be stabilized in a desired way. That is, the state trajectories of the closed-loop
system ẋ(t) = Ax(t) + Bu0(t) followpre-specified reference trajectorieswith a desired accuracy.

Here, u0(t) may be designed through linear static feedback control, such as u0(t) = Kx(t) in
which the feedback gain K can be determined by eigenvalue allocation or LQR methods.

Design the integral switching function as

s(x) = Cx(t) − Cx(t0) − C ∫
t

t0

(A + BK) x(𝜏)d𝜏, (1.11)

and C is the parameter matrix to be designed such that CB is nonsingular. Notice that, at t = t0,
the switching function s(x)|t=t0 = 0, and hence the reaching phase is eliminated. By (1.11), the

resulting sliding mode dynamics coincides with that of the ideal system ẋ(t) = Ax(t) + Bu0(t),
which means that the integral sliding surface is robust to the perturbation throughout the entire

response of the system starting from the initial time instance.

The approaches to integral sliding surface design were then developed for uncertain sys-

tems with mismatched uncertainties/perturbations [27, 30, 32, 43, 170], higher order SMC

systems [114, 118], stochastic systems [12, 155–158], singular systems [219, 221, 223, 225],

and switched hybrid systems [125]. For discrete-time SMC systems, the integral sliding surface

design approaches were developed in [1, 107,233].

Terminal Sliding Surface
The terminal SMC technique was first proposed in [201]. Compared to the conventional SMC,

the terminal SMC has some superior properties such as fast and finite-time convergence and

high steady-state tracking precision.

Consider the second-order linear system{
ẋ1(t) = x2(t),
ẋ2(t) = a1x1(t) + a2x2(t) + bu(t),

where x1(t) and x2(t) are the system states and u(t) is the control input.
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Introduction 7

The following terminal switching function is designed:

s(x1, x2) = x2(t) + 𝛽xq∕p
1

, 𝛽 > 0,

where p and q are positive odd integers that satisfy p > q.
Similar to the conventional SMC technique, if the system state trajectories are driven onto

the sliding surface, that is, s(x1, x2) = 0, then

ẋ1(t) = −𝛽xq∕p
1

.

Let the initial condition of x1(t) at t = 0 be x1(0)(≠ 0), then the relaxation time t1 for a solution
of above equation is

t1 = −𝛽−1 ∫
0

x1(0)

dx1(𝜏)

xq∕p
1

(𝜏)
=
|xi(0)|(1−q∕p)
𝛽(1 − q∕p)

,

which means that on the terminal sliding surface, the system state trajectories converge to zero

in a finite time.

For a high-order single-input single-output (SISO) linear system

⎧⎪⎨⎪⎩
ẋi(t) = xi+1(t), i = 1, 2,… , n − 1,

ẋ2(t) =
n∑
j=1

ajxj(t) + u(t),

the following terminal switching functions are designed:

⎧⎪⎪⎨⎪⎪⎩

s0(x) = x1(t),

s1(x) = ṡ0(x) + 𝛽1s
q1∕p1
0

(x),

s2(x) = ṡ1(x) + 𝛽2s
q2∕p2
1

(x),
⋮

sn−1(x) = ṡn−2(x) + 𝛽n−1s
qn−1∕pn−1
n−2 (x),

where 𝛽i > 0 are constants and pi and qi are positive odd integers satisfying pi > qi,
i = 1, 2,… , n − 1.

The terminal SMC technique for multiple-input multiple-output (MIMO) systems was

proposed in [141], and then developed in [39, 72, 142].

Sliding Mode Controller Design

Having designed the sliding mode via the design of switching functions, the next step is to

design a sliding mode controller such that the system state trajectories can be driven onto the

specified sliding surface in a finite time and maintained there for all subsequent time. The

main requirement in this step is that the control should be designed to satisfy the reaching

condition, thus guaranteeing the existence of a sliding mode on the sliding surface. Additional
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8 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

requirements in this reaching phase include some desired properties such as fast reaching

and low chattering. In the following, we will introduce some commonly used methods to the

sliding mode controller design.

Equivalent Control Design
Equivalent control is designed in the reaching phase, which can satisfy the reachability of the

system state trajectories to the sliding surfaces if the system is free of parameter uncertainties

and external disturbances. Consider system (1.2) with switching function being s(x). Suppose
that the system state trajectories reach onto the sliding surface at time instant t1 and remain there
in the subsequent time. We then have s(x) = 0 for all t > t1. Along sliding mode trajectories,
s(x) is constant, and so sliding mode trajectories are described by the differential equation

ṡ(x) = 0. Differentiating s(x) yields

ṡ(x) = 𝜕s(x)
𝜕x

ẋ(t) = 𝜕s(x)
𝜕x

[
f (x, t) + B(x, t)ueq(t)

]
= 0,

where

𝜕s(x)
𝜕x

=
[
𝜕s(x)
𝜕x1

𝜕s(x)
𝜕x2

⋯
𝜕s(x)
𝜕xn

]
is called the gradient of s(x). Here, we suppose that 𝜕s(x)

𝜕x
B(x, t) is nonsingular for all x and t,

thus the equivalent control can be solved as follows:

ueq(t) = −
(
𝜕s(x)
𝜕x

B(x, t)

)−1
𝜕s(x)
𝜕x

f (x, t). (1.12)

Substituting the above equivalent control into the original system, it follows that on the sliding

surface s(x) = 0 the system dynamics satisfy

ẋ(t) =

[
I − B(x, t)

(
𝜕s(x)
𝜕x

B(x, t)

)−1
𝜕s(x)
𝜕x

]
f (x, t).

The above differential equation represents the sliding mode dynamics, which is actually is a

reduced-order model of order n − m. (Considering s(x) = 0, thus m of the system states can

be eliminated from the equation.)

Reaching Condition Approach
A straightforwardmethod of sliding mode controller design is based on the reaching condition,

that is, for i = 1, 2,… ,m, {
ṡi(x) < 0, when si(x) > 0,

ṡi(x) > 0, when si(x) < 0,
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Introduction 9

or, equivalently,

si(x)ṡi(x) < 0, i = 1, 2,… ,m.

With the designed controller satisfying the above reachability condition, the tangent vectors of

the state trajectories are guaranteed to point toward the sliding surface, hence, the reachability

of the system state trajectories to the sliding surface can be guaranteed. Somemore discussions

of this approach can be found in [101].

Lyapunov Function Approach
The Lyapunov function approach is commonly used in sliding mode controller design. Choos-

ing a Lyapunov function of the form

V(s) = sT (x)s(x),

a sufficient condition for the sliding surface to be globally attractive is that the control u(t) is
designed such that

V̇(s) < 0, when s(x) ≠ 0.

Finite reaching time can be guaranteed by [103]

V̇(s) < −𝜖, when s(x) ≠ 0,

where 𝜖 > 0 is a constant.

For system (1.2), design the sliding mode controller as

u(t) = ueq(t) + uN(t),

where ueq(t) is the equivalent control which is designed in (1.12), and the discontinuous control
uN(t) is to be chosen such that

V̇(s) = 2sT (x)ṡ(x)

= 2sT (x)
𝜕s(x)
𝜕x

[
f (x, t) + B(x, t)

(
ueq(t) + uN(t)

) ]
= 2sT (x)

𝜕s(x)
𝜕x

B(x, t)uN(t) < 0.

Clearly, this approach leads to the global attraction of the system state trajectories to the sliding

surface.

Reaching Law Approach
The reaching law is a differential equation which specifies the dynamics of a switching

function, and by the choice of the parameters in the reaching law, the dynamic quality of SMC
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10 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

system in the reaching mode can be controlled [78]. A general form of the reaching law can

be described by the differential equation

ṡ(x) = −Υsign(s(x)) − Kg(s(x)), (1.13)

where

Υ = diag{𝜀1, 𝜀2,… , 𝜀m}, 𝜀i > 0,

K = diag{k1, k2,… , km}, ki > 0,

sign(s(x)) =
⎡⎢⎢⎢⎣
sign(s1(x))
sign(s2(x))

⋮
sign(sm(x))

⎤⎥⎥⎥⎦ , g(s(x)) =
⎡⎢⎢⎢⎣
g1(s1(x))
g2(s2(x))

⋮
gm(sm(x))

⎤⎥⎥⎥⎦ .
The functions gi(si(x)) satisfy gi(0) = 0 and

si(x)gi(si(x)) > 0, when si(x) ≠ 0, i = 1, 2,… ,m.

Therefore, using reaching law (1.13) directly to system (1.2) with

ṡ(x) = 𝜕s(x)
𝜕x

(
f (x, t) + B(x, t)u(t)

)
= −Υsign(s(x)) − Kg(s(x)),

the sliding mode controller can be obtained as

u(t) = −
(
𝜕s(x)
𝜕x

B(x, t)

)−1(
𝜕s(x)
𝜕x

f (x, t) + Υsign(s(x)) + Kg(s(x))

)
.

Equation (1.13) is a general form of the reaching law, and some special cases are

1. The constant rate reaching law:

ṡ(t) = −Υsign(s(x))

2. The constant plus proportional rate reaching law:

ṡ(t) = −Υsign(s(x)) − Ks(t)

3. The power rate reaching law:

ṡi(t) = −𝜀i|si(x)|𝛼sign(si(x)), 0 < 𝛼 < 1; i = 1, 2,… ,m.

The reaching law approach not only guarantees the reaching condition but also specifies the

dynamic characteristics of the motion during the reaching phase [78, 101].
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Introduction 11

Chattering Problem

The chattering problem is one of the most common handicaps for applying SMC to real

applications. Chattering in SMC systems is usually caused by 1) the unmodeled dynamics

with small time constants, which are often neglected in the ideal model; and 2) utilization of

digital controllers with finite sampling rate, which causes so called ‘discretization chattering’.

Theoretically, the ideal sliding mode implies infinite switching frequency. Since the control

is constant within a sampling interval, switching frequency can not exceed that of sampling,

which also leads to chattering. From the control engineer’s point of view, chattering is unde-

sirable because it often causes control inaccuracy, high heat loss in electric circuitry, and high

wear of moving mechanical parts. In addition, the chattering action may excite the unmodeled

high-order dynamics, which probably leads to unforeseen instability. Therefore, a good deal of

research work has been reported in literature on the chattering elimination/reduction problem;

see for example, [2,9–11,19,36,44,83,116,117,183,200,209,258] and references therein. In

the following, we will review some chattering elimination/reduction approaches.

Boundary Layer Approach
Roughly speaking, an SMC law consists of two parts, that is, u(t) = ueq(t) + uN(t). The contin-
uous control ueq(t), known as the equivalent control, controls the system when its states are on

the sliding surface, and the discontinuous control uN(t) handles the system uncertainties. Since

the discontinuous control uN(t) will switch between two structures during operation, the SMC

system will undergo oscillation near the sliding surface. A commonly used method to alleviate

chattering is to insert a boundary layer near the sliding surface so that a continuous control

replaces the discontinuous one when the system is inside the boundary layer [52, 183, 196].

For this purpose, the discontinuous controller of

uN(t) = −Kssign(s(x)),

is often replaced by the saturation control of

uN(t) ≈ −Kssat

(
s(x)
𝛿

)
=
⎧⎪⎨⎪⎩
−Ks

s(x)‖s(x)‖ , when ‖s(x)‖ ≥ 𝛿,

−Ks
s(x)
𝛿

, when ‖s(x)‖ < 𝛿,

or

uN(t) ≈ −Ks
s(x)‖s(x)‖ + 𝛿

,

for some, preferably small, 𝛿 > 0.

The boundary layer approach has been utilized extensively in practical applications. How-

ever, this method has some disadvantages such as: 1) it may give a chattering-free system but

a finite steady-state error must exist; 2) the boundary layer thickness has a trade-off relation

between control performance of SMC and chattering migration; and 3) within the boundary

layer, the characteristics of robustness and accuracy of the system are no longer assured.
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12 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

SMC Integrator Plant

Augmented System

Dynamic SMC

w u

Figure 1.1 Dynamic sliding mode control

Dynamic SMC Approach
The second way to eliminate chatter is the dynamic SMC approach [9, 10, 36]. The main idea

of this method is to insert an integrator (or any other strictly proper low-pass filter) between the

SMC and the controlled plant, see Figure 1.1. The time derivative of the control input, w = u̇,
is treated as the new control input for the augmented system (including the original system

and the integrator). Since the low-pass integrator in Figure 1.1 filters out the high frequency

chattering in w, the control input to the real plant u = ∫ wdt becomes chattering free [36].
Chattering reduction using the dynamic SMC approach is achieved by using an integrator,

and the property of perfect disturbance rejection is guaranteed (no boundary layer is used in

the controller). Such a method can eliminate chattering and ensure zero steady-state error;

however, the system order is increased by one and the transient responses will be degraded

[209].

Reaching Law Approach
Another way of reducing chattering is to decrease the amplitude of the discontinuous control.

However, the robustness property of the controller is affected, and the transient performance

of the system will also be degraded. There is a trade-off between the chattering reduction

and the robustness property. A compromise approach is to decrease the amplitude of the

discontinuous control when the system state trajectories are near to the sliding surface (to

reduce the chattering), and to increase the amplitude when the system states are not near to the

sliding surface (to guarantee the robustness to system uncertainties and unmodeled dynamics).

This can be implemented by tuning the parameters of the reaching law

ṡi(x) = −𝜀isign(si(x)) − kisi(x),

where 𝜀i and ki, i = 1, 2,… ,m, are positive parameters to be tuned. When the system state

trajectories are closed to the sliding surface, we have si(x, t) ≈ 0 and ṡi(x, t) ≈ −𝜀isign(si(x, t)).
Here, the parameter 𝜀i represents the reaching velocity. By choosing 𝜀i small, the momentum

of the motion will be reduced as the system state trajectories approach the sliding surface. As

a result, the amplitude of the chattering will be reduced. However, in this case, the transient

performance of the system is also degraded. To guarantee the transient performance, a large

value for the parameter ki should be chosen to increase the reaching rate when the state is not
near the sliding surface.

Apart from the above-mentioned chattering elimination/reduction approaches, there have

been some others, which can be found in [2, 11, 19, 44, 83, 116, 117, 200, 258].
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Introduction 13

1.1.2 Overview of SMC Methodologies

Due to its simplicity and robustness against parameter variations and disturbances, SMC

has been studied extensively for many kinds of systems such as uncertain systems, time-

delay systems, stochastic systems, parameter-switching systems, and singular systems. Many

important SMCmethodologies have been reported in literature. Here, we review some recently

developed results in this area.

SMC of Uncertain Systems

Uncertainties exist in all practical physical systems, and the robust control, as a branch

of control theory, is invented to explicitly deal with system uncertainties and to achieve

robust performance and/or stability for controlled systems. SMC, as one of the robust control

strategies, is well known for its strong robustness to system uncertainties in sliding motion.

However, the uncertainties should satisfy the so-called ‘matching’ condition, that is, the

uncertainties act within channels implicit in the control input. If a system has mismatched

uncertainties in the state matrix or/and the input matrix, the conventional SMC approaches are

not directly applicable. Therefore, in the past two decades, many researchers have investigated

the SMC of uncertain systems with mismatched uncertainties/disturbances – see for example

[31, 40, 41, 43, 112, 193] and references therein. To mention a few, in [112], the SMC of

uncertain second-order single-input systems with mismatched uncertainties, was considered;

in [40, 193], the authors investigated the SMC design for uncertain systems, in which the

uncertainties are mismatched and exist only in state matrix. The related approaches were then

developed in [41, 43] to deal with a more complicated case that the mismatched uncertainties

are involved in not only the state matrix but also the input matrix. In addition, the integral

SMC techniques were extensively used to deal with uncertain systems with mismatched

uncertainties – see for example, [27, 30, 43, 170, 233] – and some other SMC approaches to

deal with uncertain systems can be found in [65, 108,172,194,229].

SMC of Time-Delay Systems

It is well known that time delays appear commonly in various practical systems, such as

communication, electronic, hydraulic, and chemical processes. Their existence can introduce

instability, oscillation, and poor performance [168]. Time-delay systems have continuously

been receiving considerable attention over the past decades. The main reason is that many pro-

cesses include after-effect phenomena in their inner dynamics, and engineers need their models

to approximate the real processes more accurately due to the ever-increasing expectations of

dynamic performance. Stability analysis is a fundamental and vital issue in studying time-delay

systems, and the conservativeness of a stability condition is an important index to evaluate a

stability result. Several methods have been proposed to develop delay-dependent stability con-

ditions (which have less conservativeness compared to delay-independent ones), such as the

model transformation approach (based on Newton–Leibniz formula) [110,121], the descriptor

system approach [74], the slack matrix approach [228, 243], the delay partitioning approach

[86], and the input-output method (based on the small gain theorem) [88]. There have been

a number of excellent survey papers on the stability analysis of time-delay systems – see for
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14 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

example, [168,246]. SMC of time-delay systems have also been receiving considerable atten-

tion over the past decades – see for example, [69, 75, 85, 91, 120, 123, 160, 162, 212, 234, 250]

and the references therein. To mention a few, El-Khazali in [69] proposed an output feedback

robust SMC for uncertain time-delay systems, and the delay variables were considered as

external perturbation when designing the sliding surface; Fridman et al. in [75] presented a
descriptor approach to SMC of systems with time-varying delays; Xia and Jia in [234] con-

sidered the SMC of time-delay systems with mismatched parametric uncertainties by using a

delay-independent approach and the LMI technique; Yan in [250] studied the SMC of uncer-

tain time-delay systems with a class of nonlinear inputs by using a delay-dependent approach;

Wu et al. in [212] investigated a sliding mode observer design and an observer-based SMC

for a class of uncertain nonlinear neutral delay systems; Han et al. in [91] addressed the SMC

design for time-varying input-delayed systems by using a singular perturbation approach.

SMC of Stochastic Systems

Stochastic systems and processes have come to play an important role in many fields of

science, engineering, and economics. Thus, stochastic systems have received considerable

attention, in which the stochastic differential equations are the most useful stochastic models

with extensive applications in aeronautics, astronautics, chemical or process control system,

and economic systems. A great number of methods and techniques have been developed

for stochastic systems governed by Itô stochastic differential equations – see for example,

[144, 145, 240, 241]. SMC design scheme for stochastic systems has also been developed –

see for example, [8, 12, 13, 33, 98, 99, 155, 156, 158] and references therein. In [33], based

on the concept of SMC, the steady-state covariance assignment problem was investigated for

perturbed stochastic multivariable systems. The robust integral SMC and the robust sliding

mode observer were designed for uncertain stochastic systems with time-varying delay in

[155,156], respectively. In [98], SMC of nonlinear stochastic systems was addressed by using

a fuzzy approach. In [158], by utilizing the ∞ disturbance attenuation technique, a novel

SMC method was proposed for nonlinear stochastic systems. In [8], a covariance control

scheme was proposed for stochastic uncertain multivariable systems via SMC strategy. In

[99], a robust SMC design scheme was developed for discrete-time stochastic systems with

mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities.

SMC of Parameter-Switching Hybrid Systems

The parameter-switching hybrid system, which is the main plant considered in this book,

consists of two types: Markovian jump systems and switched hybrid systems. Parameter-

switching systems have received considerable research attention in the past two decades –

see for example, [53, 131, 136] – since such systems are capable of modeling a wide range

of practical systems that are subject to abrupt variations in their structures, owing to random

failures or repairs of components, sudden environmental disturbances, changing subsystem

interconnections, abrupt variations, and so on. An overview of the development of uncertain

parameter-switching hybrid systems is presented in Section 1.2, from which we can see

that the study on such systems, including the problems of stability analysis, stabilization,

optimal control, filtering and model reduction, have been fully developed. However, SMC

of parameter-switching hybrid systems, as a relatively new problem, has had only limited
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Introduction 15

attention, and further research in this area is needed. There have been some results reported in

the literature – see for example, [34,35,125,135,157,178,210,224,227] and references therein.

More recently, for Markovian jump systems, Shi et al. in [178] presented an SMC design

scheme by designing a linear mode-dependent sliding surface; Niu et al. in [157] investigated
the SMC of Markovian stochastic systems by designing an integral mode-dependent sliding

surface; Ma and Boukas in [135] proposed a singular system approach to robust sliding mode

control for uncertain Markovian jump systems; Chen et al. in [35] developed an adaptive

SMC for stochastic Markovian jump systems with actuator degradation. For switched hybrid

systems,Wu andLam in [210] proposed a linearmode-independent sliding surface in designing

SMC for switched hybrid systems with time delay, and then the results were developed to deal

with the SMC design problem for switched stochastic systems in [224]. Wu et al. in [227]

investigated the dissipativity-based SMC design for switched stochastic systems, in which an

integral mode-dependent sliding surface was designed such that the sliding motion is strictly

dissipative.

Output Feedback SMC

The conventional implementation of SMC schemes is usually based on state feedback, which

requires the assumption that all the state variables of the controlled systems are completely

accessible for feedback. Such an assumption, however, is not always valid in practice since

some state components cannot be measured. Roughly, there are two commonly used methods

to deal with the controller design in the case that the system state components are not fully

accessible. One approach is first to design an observer or a filter to estimate the immeasurable

state components, and then synthesize an observer-based sliding mode controller – see for

example, [154, 184, 212, 252]. However, the observer-based SMC scheme will require more

hardware and will increase system dimension. The other approach is to design a feedback

controller by using the measurable output information, which is called the output feedback

SMC approach.

During the past two decades, output feedback SMC approaches have been intensively

studied, and many important results have been reported in the literature – see for example,

[32, 42, 48, 61–64, 68, 90, 113, 163, 253, 263] and references therein. To mention a few, output

feedback SMC design for uncertain dynamic systems was investigated in [263], and an algo-

rithm for output-dependent hyperplane design was proposed based upon eigenvector methods.

The eigenvalue assignment approach was proposed in [68] to design the sliding surface of

the output feedback SMC scheme. The LMI technique was applied to output feedback SMC

design in [62,63]. Output feedback SMC design for state-delayed systems was investigated in

[90,253]. The above-mentioned results are all for static output feedback (SOF) SMC problems.

In fact, output feedback control has two different forms: the SOF control and dynamic output

feedback (DOF) control. Generally speaking, DOF control is more flexible than SOF control

since the additional dynamics of the controller is introduced. Although DOF control involves

more design parameters, for linear systems the closed-loop system can usually be written

in a more compact form where certain parameters can be embedded into augmented matrix

variables. Compared to the SOF SMC design, the DOF SMC design problem has received

less attention, and only a few results have been reported, for example, in [32, 163] the DOF

SMCwas studied for MIMO linear systems with mismatched norm-bounded uncertainties and

matched nonlinear disturbances.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

1.2 Uncertain Parameter-Switching Hybrid Systems

1.2.1 Analysis and Synthesis of Switched Hybrid Systems

Switched systems form a class of hybrid systems consisting of a family of subsystems described

by continuous- or discrete-time dynamics, and a rule specifying the switching among them

[129,191]. The switching rule in such systems is usually considered to be arbitrary. Switched

systems have received increasing attention in the past few years, since many real-world

systems such as, chemical processes, transportation systems, computer-controlled systems,

and communication industries can be modeled as switched systems [131]. More importantly,

many intelligent control strategies are designed based on the idea of controllers switching to

overcome the shortcomings of the traditionally used single controller and to improve their

performance, thus making the corresponding closed-loop systems into switched systems.

Switched hybrid systems with all subsystems described by linear differential or difference

equations are called switched linear hybrid systems. A continuous-time switched linear system

can be modeled as

ẋ(t) = A(𝛼(t))x(t) + B(𝛼(t))u(t),

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input; {(A(𝛼(t)),B(𝛼(t))) :
𝛼(t) ∈ } is a family of matrices parameterized by an index set  = {1, 2,… ,N} and

𝛼(t) : R →  is a piecewise constant function of time t called a switching signal. At a given
time t, the value of 𝛼(t), denoted by 𝛼 for simplicity, might depend on t or x(t), or both, or may
be generated by any other hybrid scheme. Therefore, the switched hybrid system effectively

switches among N subsystems with the switching sequence controlled by 𝛼(t). It is assumed
that the value of 𝛼(t) is unknown a priori, but its instantaneous value is available in real time.
Similarly, a discrete-time switched linear hybrid system can be described by

x(k + 1) = A(𝛼(k))x(k) + Bu(𝛼(k))u(k),

where x(k) ∈ Rn is the state vector; u(k) ∈ Rm is the control input; {(A(𝛼(k)),B(𝛼(k))) :
𝛼(k) ∈ } is a family of matrices parameterized by an index set  = {1, 2,… ,N}, and
𝛼(k) : Z+ →  is a piecewise constant function of time, called a switching signal, which

takes its values in the finite set . At an arbitrary discrete time k, the value of 𝛼(k), denoted by
𝛼 for simplicity, might depend on k or x(k), or both, or may be generated by any other hybrid
scheme.

Stability of Switched Hybrid Systems

The stability analysis of switched hybrid systems is a fundamental issue for the synthesis of

such systems. Note that there are two facts relatedwith the stability of switched hybrid systems:

1) a switched hybrid system may have divergent trajectories even when all the subsystems are

stable; and 2) a switched hybrid system may have convergent trajectories even when some

of the subsystems are unstable. These two facts show that the stability of a switched hybrid

system depends not only on the dynamics of each subsystem but also on the properties of the

switching signals.
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Introduction 17

When focusing on stability analysis of switched hybrid systems, there are many valuable

results that have appeared in the past two decades, and interested readers may refer to survey

papers, such as [53, 128, 131, 148], and books, such as [129, 191]. In the following, we will

briefly overview some recently developed results.

Arbitrary Switching
We first consider the stability analysis of the switched hybrid systems without any restrictions

on switching signal, that is, the switching is arbitrary. Several approaches have been reported

on the stability analysis of switched hybrid systems with arbitrary switching, for example:

1. Common Quadratic Lyapunov Functions. For the stability analysis problem of switched

hybrid systems under arbitrary switching, it is necessary to require that all the subsystems

are asymptotically stable. However, even when all the subsystems of a switched system are

exponentially stable, the stability of the switched hybrid system still can not be guaranteed

[129]. Therefore, in general, all subsystems’ stability assumptions are not sufficient to

ensure stability for the switched systems under arbitrary switching. On the other hand, if

there exists a common quadratic Lyapunov function (CQLF) for all the subsystems, then

the stability of the switched system is guaranteed under arbitrary switching. Generally

speaking, the existence of a CQLF is only sufficient for the asymptotic stability of linear

switched hybrid systems under arbitrary switching, and could be rather conservative. For

the switched linear system ẋ(t) = A(𝛼(t))x(t) with the parameter matrices A(𝛼(t)) replaced
by A(i) denoting that the ith subsystem is activated, by constructing a CQLF as V(x) =
xT (t)Px(t) where P > 0, it can be shown that the switched linear system is asymptotically

stable if there exists a positive definite symmetric matrix P such that

PA(i) + AT (i)P < 0, i ∈  .

For discrete-time switched linear system x(k + 1) = A(𝛼(k))x(k), it is asymptotically stable
if there exists a positive definite symmetric matrix P such that

AT (i)PA(i) − P < 0, i ∈  .

The above stability results are both expressed in the form of LMIs, which can be tested easily

by using standard software such as the LMI Toolbox in Matlab [25]. In [127], a sufficient

condition was presented for asymptotic stability of a switched linear system in terms of

Lie algebra generated by the individual matrices. Namely, if this Lie algebra is solvable,

then the switched system is exponentially stable for arbitrary switching. In [146], a stability

criterion was proposed for switched nonlinear systems which involves Lie brackets of the

individual vector fields but does not require that these vector fields commute. However, the

stability conditions are both only sufficient conditions, not necessary and sufficient ones. In

[180], some necessary and sufficient conditions were proposed for the existence of a CQLF

for two stable second-order LTI systems, and then the related results were extended for a

set of stable LTI systems in [181, 182]. In [109], the authors studied a singularity test for

the existence of CQLF for pairs of stable LTI systems, and some necessary and sufficient

algebraic conditions were given. A necessary and sufficient condition for the existence of a

common Lyapunov function for all subsystems was proposed in [128] for a switched hybrid
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18 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

V1(x)

t10 t2 t3 t4 t5 t

V2(x) V1(x) V2(x) V2(x)

Figure 1.2 Switched quadratic Lyapunov functions

system under arbitrary switching. A considerable number of approaches to construct such

a CQLF were presented in [159].

2. Switched Quadratic Lyapunov Functions. Since the existence conditions of a CQLF are

conservative for all subsystems of a switched hybrid system with arbitrary switching, some

attention has been paid to a less conservative class of Lyapunov functions, namely switched

quadratic Lyapunov functions (SQLF). By using the SQLF, the values of such a Lyapunov

function still decrease at the switching instants – see Figure 1.2. Compared with the CQLF,

the SQLF contains the switching information (mode-dependent), and a typical form of

such Lyapunov function can be constructed as V(x) = xT (t)P(𝛼(t))x(t) for continuous-time
switched systems or V(x) = xT (k)P(𝛼(k))x(k) for discrete-time switched systems, where

P(⋅) > 0, i ∈  are mode-dependent. Using an SQLF approach, the stability analysis con-

dition for the discrete-time switched linear system x(k + 1) = A(𝛼(k))x(k) can be formulated
as: it is asymptotically stable if there exist positive definite symmetric matrices P(i), i ∈ 
such that [−P(i) AT (i)P(j)

⋆ −P(j)

]
< 0, i, j ∈  .

The above stability analysis result based on the SQLF approach will turn out to be the

above-mentioned one with the CQLF approach if P(i) = P(j), i, j ∈  . Obviously, the

SQLF approach is less conservative than the CQLF approach. Some results on the SQLF

approach to stability analysis and control synthesis for switched hybrid systems can be

found in [46, 71].

Restricted Switching
Stability analysis approaches for arbitrary switching have been developed, but a natural ques-

tion may still be raised, that is, can switched hybrid systems be stable under some restricted
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Introduction 19

switchings in spite of the fact that they fail to preserve stability under arbitrary switching? If

so, what kinds of restrictions should be put on the switching signals to guarantee the stability

of switched hybrid systems? To answer such questions, there have been some stability analysis

approaches for switched hybrid systems under restricted switching, for example,

1. Dwell Time Approach. Recently, there has been enormous growth of interest in using the

dwell time approach to deal with stability analysis of switched hybrid systems – see for

example, [92, 93, 102, 149, 151, 165, 188, 215–217, 219, 220, 264, 265]. A positive constant

Td ∈ R is called the dwell time of a switching signal if the time interval between any two

consecutive switchings is no smaller than Td. The basic idea of the dwell time approach
can be formulated as follows: given a dwell time, and let (Td) denote the set of all

switching signals with interval between consecutive discontinuities not smaller than Td,
it has been shown that one can pick Td sufficiently large such that the switched system

considered is exponentially stable for any switching signal belonging to (Td). The dwell
time approach was used to analyze the local asymptotic stability of nonlinear switched

systems. Subsequently, this concept was extended and the average dwell time approach

was developed [92], which means that the average time interval between consecutive

switchings is no less than a specified constant Ta. Specifically, a positive constant Ta is
called an average dwell time for a switching signal 𝛼(t) if

N𝛼(T1,T2) ≤ N0 +
T2 − T1

Ta
.

For any T2 > T1 ≥ 0, let N𝛼(T1,T2) denote the number of switching of 𝛼(t) over (T1,T2).
Here, Ta is called an average dwell time and N0 is the chatter bound. It has been proved

in [92] that if all the subsystems are exponentially stable then the switched hybrid system

remains exponentially stable provided that the average dwell time Td is sufficiently large.
By using the average dwell time approach, Zhai et al. in [264] investigated the disturbance
attenuation properties of continuous-time switched hybrid systems, and then the exponential

stability and 𝓁2 gain properties for discrete-time switched hybrid systems was investigated
in [265]; Sun et al. in [188] studied the exponential stability and weighted 2-gain for

switched delay systems; Wu and Lam in [215] considered the filtering problem of switched

hybrid systems with time-varying delay. As well as the above-mentioned results, the model

reduction problem for switched hybrid systems with time-varying delay was addressed in

[219] by using the average dwell time approach incorporated with a piecewise Lyapunov

function; and the DOF controller design problem was considered in [216,217].

2. Multiple Lyapunov Functions Approach. By using the Lyapunov function approach to

the stability analysis of switched hybrid systems, the above-mentioned CQLF and SQLF

approaches require that the Lyapunov functions are globally monotonically decreasing as

with the state trajectories. This is, however, conservative since suchLyapunov functionsmay

not exist for all subsystems of switched hybrid systems. For such cases, one can construct a

set of Lyapunov-like functions, which only require non-positive Lie-derivatives for certain

subsystems in certain regions of the state space, instead of being negative globally. Multiple

Lyapunov functions (MLF), is a non-traditional Lyapunov stability approach, and the key

point of the method is the non-increasing requirement on any Lyapunov function over the

exiting (switch from) or starting (switch to) time sequences of the corresponding subsystem

[94,128,148,164]. Specifically, the Lyapunov-like function is selected for each subsystem,
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20 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

V1(x)
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Figure 1.3 Multiple Lyapunov stability (Case 1: the values of Lyapunov-like functions at the switching

instants form a monotonically decreasing sequence)

and the values of the Lyapunov-like function at the exiting (the starting) instant of the next

running interval are smaller than that of the current running interval, then the energy of

the Lyapunov-like functions are decreasing globally. There are several versions of MLF

results in the literature, for example, Case 1: the Lyapunov-like function is decreasing when

the corresponding mode is active and does not increase its value at each switching instant

[53] – see Figure 1.3 – and in this case, the switched hybrid system is asymptotically stable;

Case 2: the value of the Lyapunov-like function at every exiting instant is smaller than its

value at the previous exiting time, then the switched system is asymptotically stable [26] –

see Figure 1.4. Case 3: the Lyapunov-like function may increase its value during a time

interval, only if the increment is bounded by certain kind of continuous functions [257] –

see Figure 1.5 – and in this case, the switched system can remain stable.

Synthesis of Switched Hybrid Systems

Over the past several decades, considerable interest has been devoted to synthesis problems

of switched hybrid systems, including stabilization, robust/optimal control, state estimation/

filering, fault detection, model approximation, and so on. Here, we will review some relevant

literature on the synthesis of switched hybrid systems. First, we introduce two important prop-

erties of switched hybrid systems, namely, the controllability and the observability. Roughly

speaking, the concept of controllability denotes the ability to move a system around in its entire

configuration space using only certain admissible manipulations. Observability is a measure

for how well internal states of a system can be inferred by knowledge of its external outputs.

Observability and controllability are dual aspects of the same problem. Some results on the

controllability and the observability analysis for switched hybrid systems were reported in

[16, 37, 105, 132, 166, 185, 189, 206, 235, 236, 270] and references therein.
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Introduction 21

V1(x)

t10 t2 t3 t4 t5 t

V2(x) V1(x) V2(x) V2(x)

Figure 1.4 Multiple Lyapunov stability (Case 2: the values of Lyapunov-like function for each subsys-

tem at every exiting instant form a monotonically decreasing sequence)

In the previous section, we discussed the stability properties of switched hybrid systems. As

mentioned earlier, the stability of a switched hybrid system depends not only on the dynam-

ics of each subsystem but also on the properties of the switching signals, thus the synthesis

problems include two strategies for implementation. The first is based on the subsystems’

dynamics with given switching signals, and the second is based on the switching signals. The

stabilization problem for switched hybrid systems was investigated in [4, 6, 14, 38, 45, 46, 79,

84, 95, 100, 102, 124, 130, 140, 143, 190, 192, 222, 237, 247, 249, 267] and references therein.

V1(x)

t10 t2 t3 t4 t5 t

V2(x) V1(x) V2(x) V2(x)

Figure 1.5 Multiple Lyapunov stability (Case 3: the Lyapunov-like function for each subsystem

increases its value during a certain period)
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22 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Over the past decade, considerable attention has been paid to robust and optimal control

problems for switched hybrid systems, and many important results have been reported – see

for example, [17,47,51,67,80,81,106,126,138,153,161,171,216,217,232,248,264,268] and

references therein. To mention a few, Geromel et al. in [81] considered the passivity analysis
and controller design problems; Kamgarpour and Tomlin in [106] studied the optimal control

problem for non-autonomous switched systems with a fixed mode sequence; Lian and Ge in

[126] addressed robust∞ output tracking control for switched systems under asynchronous

switching; Mahmoud in [138] proposed a generalized2 control design approach for discrete-

time switched systemswith unknowndelays;Niu andZhao in [153] used the average dwell time

approach to the robust∞ control problem for a class of uncertain nonlinear switched systems;

Orlov in [161] presented finite time stability analysis and robust control synthesis methods

for uncertain switched systems; Seatzu et al. in [171] studied the optimal control problem for

continuous-time switched affine systems. The above-mentioned results are all based on state

feedback control, and the output feedback control problem was also investigated – see for

example, [51, 67, 80, 216, 217]. In addition, SMC design methodologies for switched hybrid

systems were proposed in [210,224,227,262].

It is well known that one of the fundamental problems in control systems and signal

processing is the estimation of the state variables of a dynamical system through available

noisy measurements, which is referred to as the filtering problem. The celebrated Kalman

filter has been considered as the best possible (optimal) estimator for a large class of systems;

it is an algorithm that uses a series of measurements observed over time, containing noise

(random variations) and other inaccuracies, and produces estimates of unknown variables

that tend to be more precise than those based on a single measurement alone. The Kalman

filter for switched discrete-time linear systems was designed in [3]. However, the application

of the Kalman filter is subject to two initial assumptions: the underlying system is linear

with complete knowledge of the dynamical model, and the noise concerned is white/colored

with known spectral density. Thus the Kalman filtering scheme is no longer applicable when

a priori information on the external noises is not precisely known. Therefore, the past two

decades have witnessed significant progress on robust filtering involving various approaches

such as 2 filtering, ∞ filtering, 2-∞ filtering, and mixed 2/∞ filtering. The robust

filtering problem for switched hybrid systems has also been developed over the past decade –

see for example, [50, 137, 139, 167, 202, 215, 216, 272] and references therein. To mention

a few important robust filtering results for switched hybrid systems, Deaecto et al. in [50]

developed a trajectory-dependent filter design approach for discrete-time switched linear

systems; Mahmoud in [137] presented a delay-dependent ∞ filter design approach for a

class of discrete-time switched systems with state delay; Qiu et al. in [167] investigated the
robust mixed 2/∞ filtering design for discrete-time switched polytopic linear systems;

Wang et al. in [202] addressed the ∞ filtering problem for discrete-time switched systems

with state delays via switched the Lyapunov function approach;Wu and Lam in [215] proposed

an average dwell time approach to the weighted ∞ filter design for switched systems with

time-varying delay; Wu and Ho in [216] developed a reduced-order 2-∞ filter design

scheme for a class of nonlinear switched stochastic systems.

The issues of fault detection and isolation are increasingly required in various kinds of

practical complex systems for guaranteeing reliability and pursuing performance. Hence, how

to develop effective methods for timely and accurate diagnosis of faults becomes a crucial

problem. To combat this, many significant schemes have been introduced, such asmodel-based
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Introduction 23

approaches and knowledge-based methods. Among them, the model-based approach is the

most favored. The basic idea of model-based fault detection is to construct a residual signal

and, based on this, determine a residual evaluation function to compare with a predefined

threshold. When the residual evaluation function has a value larger than the threshold, an

fault alarm is generated. Since accurate mathematical models are not always available, the

unavoidable modeling errors and external disturbances may seriously affect the performance

of model-based fault detection systems. Thus, the designed fault detection systems should be

both sensitive to faults and suppressive to external disturbances. Fortunately, the ∞ fault

detection filter or observer is known to be able to do a good job of achieving the above-

mentioned requirements. The ∞ fault detection problem for switched hybrid systems was

studied in [203, 261], and some other approaches can be found in [15, 49, 119]. Fault-tolerant

control is a related issue that makes it possible to develop a control feedback that allows the

required system performance to be maintained in the case of faults. The fault-tolerant control

problem for switched hybrid systems has also been investigated: for example, Du et al. in
[59] proposed an active fault-tolerant controller design scheme for switched systems with time

delay; Li and Yang in [119] developed a simultaneous fault detection and control technique

for switched systems under asynchronous switching; Wang et al. in [205] designed a robust
fault-tolerant controller for a class of switched nonlinear systems in lower triangular form.

Mathematical modeling of physical systems often results in complex high-order models,

which bring serious difficulties to analysis and synthesis of the systems concerned. Therefore,

in practical applications it is desirable to replace high-order models by reduced ones with

respect to some given criterion, which is the model reduction problem. Over the past decades,

the model reduction problem has been the concern of many researchers. Many important

results have been reported, which involve various efficient model reduction approaches, such

as the balanced truncation approach [89], the Hankel-norm approach [82], Krylov projection

approach [87], the Padé reduction approach [7], the 2 approach [251], and the 2 approach

[217, 219]. Readers can refer to [5] for a detailed survey of model reduction. The model

reduction problem for switched hybrid systems has also received considerable attention – see

for example, [18, 133, 150, 173, 179, 204, 217, 219] and references therein. To mention a few

important results, Birouche et al. in [18] investigated the model order-reduction for discrete-
time switched linear systems by the balanced truncation approach; Monshizadeh et al. in [150]
developed a simultaneous balanced truncation approach to model reduction of switched linear

systems; Shi et al. in [179] studied the model reduction problem for discrete-time switched

linear systems over finite frequency ranges; Wang et al. in [204] developed a delay-dependent
model reduction approach for continuous-time switched state-delayed systems; and Wu and

Zheng in [219] proposed aweighted∞model reduction approach for linear switched systems

with time-varying delay.

1.2.2 Analysis and Synthesis of Markovian Jump Linear Systems

Markovian jump linear systems (MJLSs) are another typical class of parameter-switching

systems, and they are modeled by a set of linear systems with the transitions between the

models determined by a Markov chain, taking values in a finite set [136]. MJLSs can also be

considered as a special case of switched hybrid systems with the switching signals governed

by a Markov chain. Applications of MJLSs may be found in many processes, such as target

tracking problems, manufactory processes, solar thermal receivers, fault-tolerant systems, and
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24 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

economic problems. From a mathematical point of view, MJLSs can be regarded as a special

class of stochastic system with system matrices changed randomly at discrete time points

governed by a Markov process and remaining LTI between random jumps. Over the past

decades, owing to a large number of applications in control engineering, MJLSs have received

increasing interest. Many results in this field can be found in the literature, and in the following,

we will review some recently published results on MJLSs.

The stability analysis and stabilization problems for MJLSs were addressed in [20, 22, 28,

56,76,104,144,174,176,187,207,238,239]. Specifically, Cao and Lam in [28] investigated the

stochastic stabilizability and∞ control for discrete-time jump linear systemswith time delay;

de Souza in [56] studied the robust stability and stabilization problems for uncertain discrete-

time MJLSs; Gao et al. in [76] considered the stabilization and∞ control problems for two-

dimensionalMJLSs; Sun et al. in [187] dealt with the robust exponential stabilization ofMJLSs

withmode-dependent input delay; Xiong et al. in [238] studied the robust stabilization problem
for MJLSs with uncertain switching probabilities. In addition, there have been some results on

the stability and stabilization for Markovian jump stochastic systems. For example, Boukas

and Yang in [20] proposed an exponential stabilizability condition for stochastic systems with

Markovian jump parameters; Wang et al. in [207] solved the stabilization problem for bilinear

uncertain time-delay stochastic systems with Markovian jump parameters; and some other

results on Markovian jump stochastic systems can be found in [144].

The∞ control for MJLSs was investigated in [21,24,28,29,76,115,230,245]; robust∞
control of MJLSs with unknown nonlinearities was studied in [21].∞ control was addressed

in [24] for discrete-time MJLSs with bounded transition probabilities; the robust ∞ control

problem was considered in [29] for uncertain MJLSs with time delay; the robust ∞ control

of descriptor discrete-time Markovian jump systems is covered in [115]; delay-dependent

∞ control for singular Markovian jump systems with time delay appears in [230]; delay-

dependent∞ control and filtering for uncertain Markovian jump systems with time-varying

delays are found in [245].

The filtering problem for MJLSs was considered in [54,55,57,134,175,177,208,211,231,

242,254,256]. To mention a few, de Souza and Fragoso studied the∞ filter design problem

for continuous- and discrete-time MJLSs in [54, 55], respectively; Ma and Boukas in [134]

investigated robust∞ filtering for uncertain discrete Markovian jump singular systems with

mode-dependent time delay; Shi et al. in [175] consideredKalman filtering for continuous-time
uncertain MJLSs; Wu et al. in [211] addressed the∞ filtering problem for Markovian jump

two-dimensional systems; Yao et al. in [254] dealt with robust∞ filtering ofMarkovian jump

stochastic systems with uncertain transition probabilities; and then they studied quantized∞
filtering for Markovian jump LPV systems with intermittent measurements in [256].

The fault detection problem for MJLSs was investigated in [147, 152, 226, 255, 273, 274].

Specifically, Meskin and Khorasani in [147] investigated fault detection and isolation prob-

lems for discrete-time MJLSs with application to a network of multi-agent systems having

imperfect communication channels; Nader and Khashayar proposed a geometric approach to

fault detection and isolation of continuous-time MJLSs in [152]; Wu et al. in [226] studied
generalized 2 fault detection for Markovian jump two-dimensional systems; Yao et al. in
[255] considered fault detection filter design for Markovian jump singular systems with inter-

mittent measurements; and Zhong et al. in [273,274] addressed robust fault detection problem
for continuous- and discrete-time MJLSs, respectively.
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Introduction 25

The SMC design problem was also addressed for MJLSs in [34,35,135,157,178,221,223,

225]. Chen et al. studied SMC of MJLSs with actuator nonlinearities in [34], and adaptive

SMC design for Markovian jump stochastic systems with actuator degradation in [35]; Ma and

Boukas in [135] proposed a singular system approach to robust SMC for uncertain MJLSs;

Shi et al. in [178] considered the SMC design problem for MJLSs; Wu and Ho in [221] solved

the SMC problem for Markovian jump singular stochastic hybrid systems; Wu et al. in [223]
investigated state estimation and SMC of Markovian jump singular systems; and then they

considered SMC design with bounded 2 gain performance for Markovian jump singular

time-delay systems in [225].

Apart from the above-mentioned synthesis problems for MJLSs, the model reduction prob-

lem for such systems was also investigated – see for example, [111, 266]. Kotsalis et al. in
[111] studied the model reduction problem for discrete-time MJLSs; and Zhang et al. in [266]
considered ∞ model reduction for both continuous- and discrete-time MJLSs.

1.3 Contribution of the Book

This book represents the first of a number of attempts to reflect the state-of-the-art of the

research area for handling the SMC problem for uncertain parameter-switching hybrid systems

(including Markovian jump systems, switched hybrid systems, singular systems, stochastic

systems, and time-delay systems). The content of this book can be divided into three parts.

The first part is focused on SMC of Markovian jump singular systems. Some necessary and

sufficient conditions are derived for the stochastic stability, stochastic admissibility, and opti-

mal performances by developing new techniques for the considered Markovian jump singular

systems. Then, a set of new SMC methodologies are proposed, based on the analysis results.

In the second part, the problem of SMC of switched delayed hybrid systems is investigated.

A unified framework under ‘average dwell time’ is established for analyzing the considered

switched delayed hybrid systems. Then some sufficient conditions are derived for the stability,

stabilizability, existence of the desired DOF controllers, and existence of the sliding mode

dynamics in the SMC issue. More importantly, a set of SMC methodologies under a unique

framework are proposed for the considered hybrid systems. In the third part, the parallel theo-

ries and techniques developed in the previous part are extended to deal with switched stochastic

hybrid systems. Specifically, in this third part, the main attention will be focused on stochastic

stability analysis, stabilization, ∞ control, and SMC of switched stochastic hybrid systems.

Sufficient conditions are established first for the stochastic exponential stability and optimal

performances (such as ∞ and dissipativity) of the continuous- and discrete-time switched

stochastic systems. Based on the obtained analysis results, the synthesis issues, including∞
control and SMC design, are solved.

The features of this book can be highlighted as follows. 1)A unified framework is established

for SMC of Markovian jump singular systems, where the parameters are jumping from one

mode to another stochastically, and at the same time there are time delays in existing system

states. 2) A series of problems are solved with new approaches for analysis and synthesis

of continuous- and discrete-time switched hybrid systems, including stability analysis and

stabilization,DOFcontrol, and SMC. 3) Three correlated problems,∞ control (state feedback

control and DOF control), SMC, and state estimation problems, are dealt with for switched

stochastic systems. 4) A set of newly developed techniques (e.g. average dwell time method,
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26 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

piecewise Lyapunov function approach, parameter-dependent Lyapunov function approach,

cone complementary linearization (CCL) approach, slackmatrix approach, and sumsof squares

technique) are exploited to handle the emerging mathematical/computational challenges.

This book is a timely reflection on the developing area of system analysis and SMC theories

for systems with uncertain switching parameters, typically resulting from varying operation

environments. It is a collection of a series of latest research results and therefore serves as a

useful textbook for senior and/or graduate students who are interested in knowing: 1) the state

of the art of the SMC area; 2) recent advances in Markovian jump systems; 3) recent advances

in switched hybrid systems; and 4) recent advances in singular systems, stochastic systems and

time-delay systems. Readers will also benefit from new concepts, models and methodologies

with theoretical significance in system analysis and control synthesis. The book can also be

used as a practical research reference for engineers dealing with SMC, optimal control, and

state estimation problems for uncertain parameter-switching hybrid systems. The aim of this

book is to close the gap in literature by providing a unified, neat framework for SMC of

uncertain parameter-switching hybrid systems.

In general, this book aims at third- or fourth-year undergraduates, postgraduates and aca-

demic researchers. Prerequisite knowledge includes linear algebra, matrix analysis, linear

control system theory, and stochastic systems. It should be described as an advanced book.

More specifically, the readers should include: 1) control engineers working on nonlinear

control, switching control, and optimal control; 2) system engineers working on switched

hybrid systems and stochastic systems; 3) mathematicians and physicists working on hybrid

systems and singular systems; and 4) postgraduate students majoring on control engineering,

system sciences, and applied mathematics. This book could also serve as a useful reference

to: 1) mathematicians and physicists working on complex dynamic systems; 2) computer

scientists working on algorithms and computational complexity; and 3) third- or fourth-year

students who are interested in knowing about advances in control theory and applications.

1.4 Outline of the Book

The organization structure of this book is shown in Figure 1.6. The general layout of this book

is divided into three parts: Part One: SMC of Markovian jump singular systems; Part Two:

SMC of switched hybrid systems with time-varying delay; and Part Three: SMC of switched

stochastic hybrid systems. The main contents of this book are shown in Figure 1.7.

Chapter 1 first presents the research background, motivations and research problems of this
book which mainly involve SMC methodologies and the uncertain parameter-switching

hybrid systems. A survey is provided on the fundamental theory of the SMC method-

ologies, which include some basic concepts (SMC problem, reaching condition, and two

SMC design steps), sliding surface design (linear sliding surface, integral sliding surface,

and terminal sliding surface), sliding mode controller design (equivalent control design,

reaching condition approach, Lyapunov function approach, and reaching law approach),

chattering problem (boundary layer approach, dynamic SMC approach, and reaching law

approach). Then, an overview of recent developments of SMC Methodologies is also pre-

sented, which includes SMC of uncertain systems, SMC of time-delay systems, SMC of

stochastic systems, SMC of parameter-switching hybrid systems, and the output feedback
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Figure 1.7 The main contents of the book
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28 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

SMC technique. Another focus in this chapter is to provide a timely review on the recent

advances of the analysis and synthesis issues for uncertain parameter-switching hybrid

systems (including switched hybrid systems and Markovian jump linear systems). Most

commonly used methods for the stability analysis of the switched hybrid systems are

summarized. Subsequently, recently developed results on synthesis issues (such as control,

filtering, fault detection, and model reduction) for the uncertain parameter-switching hybrid

systems are reviewed with a lot of references involved. Finally, we summarize the main

contributions of this book and give the outline of this book.

Part One presents the analysis and SMC design procedure for Markovian jump singular

systems. It begins with Chapter 2, and consists of three chapters as follows.

Chapter 2 investigates SMC of Markovian jump singular systems. The main difficulties of

such a problem come from switching function design and stochastic admissibility analysis

for the resulted sliding mode dynamics (termed Markovian jump singular systems). Thus,

the chapter solves the two key problems of how to design an appropriate switching function

and how to establish a necessary and sufficient condition of the stochastic admissibility

for the resulted sliding mode dynamics. But it should be pointed out that the existing

results on the stochastic admissibility (and stochastic stability) of Markovian jump singular

systems are not all of strict LMI form owing to some matrix equality constraints involved.

This may cause considerable trouble in checking the conditions numerically. How to get

a condition in strict LMI form is also a key problem to be discussed. Motivated by the

above-mentioned three key issues, we will consider the stability analysis and SMC design

problems for Markovian jump singular systems in this chapter. First, a new integral-type

switching function is designed by taking the singular matrix E into account, by which the

sliding mode dynamics can be derived. Then, a necessary and sufficient condition for the

existence of such a sliding mode (the stochastic stability of the sliding mode dynamics)

is established in terms of strict LMIs, by which the sliding surface can be designed.

Considering that the system states are not always available in practice owing to the limits

of the physical situation or the expense of measuring them, the state estimation problem

has become more important. In this case, an observer is designed to estimate the system’s

states, and an observer-based SMC law is then synthesized to guarantee the reachability of

the state trajectories of the closed-loop system to the predefined sliding surface.

Chapter 3 studies the problems of the bounded 2 gain performance analysis and SMC of

Markovian jump singular time-delay systems. The purpose is to contribute to the develop-

ment of SMC and the bounded 2 gain performance analysis for the considered system.

We will pay particular attention to the singular matrix E in the design of an integral-type

switching function, which leads to a full-order Markovian jump singular time-delay system

for describing the sliding mode dynamics. We will then apply the slack matrix approach to

derive a delay-dependent sufficient condition in the form of LMIs, which guarantees that

the sliding mode dynamics is stochastically stable with a bounded 2 gain performance. In

addition, the analysis conditions of the sliding mode dynamics and the solvability condition

for the desired switching function are both established. Finally, we will synthesize an SMC

law for driving the system state trajectories onto the predefined sliding surface.

Chapter 4 addresses the SMC of a nonlinear singular stochastic system with Markovian

switching. An integral switching function is designed, and the resulting sliding mode
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Introduction 29

dynamics is expressed by a full-order Markovian jump singular stochastic system. By

introducing some specified matrices, a sufficient condition is proposed in terms of strict

LMIs, which guarantees the stochastic stability of the sliding mode dynamics (thus the

existence of such a sliding mode can be guaranteed). A sliding mode controller is then

synthesized for reaching motion. Moreover, when there is an external disturbance in the

considered control system, the 2 disturbance attenuation performance (∞ performance)

is analyzed. Some corresponding sufficient conditions are also established for the existence

of the sliding mode dynamics, and some algorithms (including the CCL algorithm) are

presented to cast the SMC design problem into a nonlinear minimization problem involving

LMI conditions instead of the original nonconvex feasibility problem.

Part Two presents the analysis and SMC design procedure for switched state-delayed hybrid

systems. It begins with Chapter 5, and consists of four chapters as follows.

Chapter 5 deals with the stability analysis and stabilization problems for continuous- and

discrete-time switched hybrid systems with time-varying delays. For a continuous-time

system, the time-varying delay d(t) is assumed to satisfy either (A1) 0 ≤ d(t) ≤ d and

ḋ(t) ≤ 𝜏 or (A2) 0 ≤ d(t) ≤ d. By using the average dwell time approach and the piecewise
Lyapunov function technique, two delay-dependent sufficient conditions are established for

the exponential stability of the considered hybrid system with (A1) and (A2), respectively.

Here, the slack matrix approach is applied to further reduce the conservativeness of the

stability conditions caused by the time delay. For the discrete-time system, the stability

conditions are also derived by the average dwell time approach, and the results are all

delay-dependent, and thus less conservative. The stabilization problem is then solved by

designing a memoryless state feedback controller, and then an explicit expression for the

desired controller is given. The research in this chapter is an important foundation for

the development of the SMC methodologies for switched hybrid systems in subsequent

chapters.

Chapter 6 is concerned with the DOF control problem for continuous-time switched hybrid

systems with time-varying delays. Specifically, two issues are investigated: 1) the 2-∞
control problem for continuous-time switched hybrid systems with time-varying delay. A

DOF controller is designed, which is assumed to be switching with the same switching

signal as in the original system. A delay-dependent sufficient condition is proposed, to

guarantee the exponential stability and a weighted 2-∞ performance for the closed-

loop system with the decay estimate is explicitly given. The corresponding solvability

condition for a desired DOF controller is established, and an explicit parametrization of

all desired DOF controllers is also given; 2) the guaranteed cost DOF controller design

for continuous-time linear switched hybrid system with both discrete and neutral delays. A

sufficient condition is first proposed, in terms of a set of LMIs, to guarantee the exponential

stability and a certain bound for the cost function of the closed-loop system, where the

decay estimate is explicitly given to quantify the convergence rate. Then, the corresponding

solvability conditions for a desired DOF controller under guaranteed cost are established by

using the approach of linearizing variable transforms. Since these obtained conditions are

not all expressed by strict LMIs, the CCL algorithm is exploited to cast them into sequential

minimization problems subject to LMI constraints, which can be easily solved numerically.
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30 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Chapter 7 studies the SMC design problem for continuous-time switched hybrid systems

with time-varying delay. First, the original system is transformed into a regular form

throughmodel transformation, and then, by designing a linear sliding surface, the dynamical

equation for the sliding mode dynamics is derived. A delay-dependent sufficient condition

for the existence of a desired sliding mode is proposed, and an explicit parametrization of

the desired sliding surface is also given. Since the obtained conditions are not all expressed

in terms of strict LMIs (some matrix equality constraints are involved), the CCL method is

exploited to cast them into a sequential minimization problem subject to LMI constraints,

which can be easily solved numerically. Then, a discontinuous SMC law is synthesized,

by which the system state trajectories can be driven onto the prescribed sliding surface in

a finite time and maintained there for all subsequent time. Since the designed SMC law

contains state-delay terms, it requires the time-varying delay to be explicitly known a priori
in the practical implementation of the controller. However, in some practical situations, the

information for time delay is usually unavailable, or difficult to measure. In such a case,

the designed SMC law is not applicable. To overcome this, we suppose that the state-delay

terms in the controller are norm-bounded with an unknown upper bound. We will design

an adaptive law to estimate the unknown upper bound, and thus an adaptive SMC law is

synthesized, which can also guarantee the system state trajectories reach the prescribed

sliding surface.

Chapter 8 is concerned with the problem of SMC of discrete-time switched delayed hybrid

systemswith time-varying delay. First, we transform the original system into a new onewith

regular form, and then by designing a linear switching function, a reduced-order sliding

mode dynamics, described by a switched state-delayed hybrid system, is developed. By

utilizing the average dwell time approach and the piecewise Lyapunov function technique,

a delay-dependent sufficient condition for the existence of the desired sliding mode is

proposed in terms of LMIs, and an explicit parametrization of the desired switching surface

is also given. Here, to reduce the conservativeness induced by the time delay in the system,

both the slack matrix technique and also the delay partitioning method are employed,

which make the proposed existence condition less conservative. In this chapter, the time

delay considered is a time-varying one with a known lower bound. In this case, combined

with construction of an appropriate Lyapunov–Krasovskii function, the delay partitioning

method is employed by partitioning the lower bound evenly into several components. We

then show that the conservativeness of the obtained existence condition becomes less and

less with the partitioning getting thinner. Finally, a discontinuous SMC law is designed to

drive the state trajectories of the closed-loop system onto a prescribed sliding surface in a

finite time and maintained there for all subsequent time.

Part Three presents the analysis and SMC design procedure for switched stochastic hybrid

systems. It begins with Chapter 9, and consists of four chapters as follows.

Chapter 9 investigates the problems of stability and performance analysis, stabilization

and ∞ control (including state feedback control and DOF control) for continuous-time

switched stochastic hybrid systems. The average dwell time approach combined with the

piecewise Lyapunov function technique is applied to derive the main results. There are

two main advantages to using this approach to the switched system. First, this approach

uses a mode-dependent Lyapunov function, which avoids some conservativeness caused
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Introduction 31

by using a common Lyapunov function for all the subsystems. Then the other advantage is

that the obtained result is not just an asymptotic stability condition, but an exponential one.

Therefore, by this approach, a sufficient condition is first proposed, which guarantees the

mean-square exponential stability of the unforced switched stochastic hybrid system.When

system states are available, a state feedback controller is designed such that the closed-

loop system is mean-square exponentially stable with an∞ performance. However, when

system states are not all available, a DOF controller is designed and the mean-square

exponential stability with an ∞ performance is also guaranteed.

Sufficient solvability conditions for the desired controllers are proposed in terms of

LMIs.

Chapter 10 considers the stability and performance analysis, stabilization and ∞ control

problems for discrete-time switched stochastic systems with time-variant delays. By apply-

ing the average dwell time method and the piecewise Lyapunov function technique, a

sufficient condition is first proposed to guarantee the mean-square exponential stability for

the considered system. A condition on a weighted∞ performance is also proposed. Then,

the stabilization and ∞ state feedback control problems are solved with some sufficient

conditions presented in terms of LMI.

Chapter 11 is concerned with the SMC of a continuous-time switched stochastic hybrid sys-

tem, and some results developed in Chapter 9 are used in the research. Firstly, by designing

an integral switching function, we obtain the sliding mode dynamics, which is expressed

by a switched stochastic hybrid system with the same order as the original systems. Based

on the stability analysis result in Chapter 9, a sufficient condition for the existence of the

sliding mode is proposed in terms of LMIs, and an explicit parametrization of the desired

switching function is also given. Then, a discontinuous SMC law for reaching motion is

synthesized such that the state trajectories of the SMC system can be driven onto a pre-

scribed sliding surface and maintained there for all subsequent time. Moreover, considering

that some system state components may not be available in practical applications, we fur-

ther study the state estimation problem by designing an observer. Sufficient conditions are

also established for the existence of the sliding mode and the solvability of the desired

observer, and then the observer-based SMC law is synthesized.

Chapter 12 shows the dissipativity analysis and the SMC design for switched stochastic

hybrid systems. A more general supply rate is proposed, and a strict (, ,)-dissipativity
is defined, which includes ∞, positive realness, and passivity as its special cases. The

main idea is to introduce the strict (, ,)-dissipativity concept into the analysis of the
sliding mode dynamics so as to improve the transient performance of the SMC system. The

objective is to conduct dissipativity analysis and investigate the dissipativity-based SMC

design scheme, with a view to contributing to the development of SMC design and the

dissipativity analysis methods for the switched stochastic hybrid system. Specifically, an

integral sliding surface is designed such that the slidingmode dynamics exists with the same

order as the original system. Then, a sufficient condition, which guarantees the slidingmode

dynamics mean-square exponentially stable with a strict dissipativity, is then established

in terms of LMIs by using the average dwell time approach and the piecewise Lyapunov

function technique. In addition, a solution to the dissipativity synthesis is provided by

designing a discontinuous SMC law such that the system state trajectories can be driven

onto the predefined sliding surface in a finite time.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Part One
SMC of Markovian
Jump Singular
Systems

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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2
State Estimation and SMC of
Markovian Jump Singular Systems

2.1 Introduction

In this chapter, we are aiming at the investigation of state estimation and SMC problems for

Markovian jump singular systems. Although there has been some existing work on the stability

analysis of such systems based on the LMI technique, the results are not all of strict LMI form

since there are usually some matrix equality constraints. This may cause a lot of trouble in

checking the analysis results numerically. Therefore, a natural question is immediately raised:

are there any techniques that can release the matrix equality constraints? In this chapter, we

extend the approach proposed in [195] to the stability analysis of Markovian jump singular

systems, and a new necessary and sufficient stability condition is established in terms of strict

LMI. Also, the analysis and synthesis of singular systems have been extensively investigated in

the past decades, but little progress has beenmade toward solving the SMC problem of singular

systems. This problem may become difficult and complicated due to the singular matrix E
in the systems. Since the rank of E may not be equal to that of B in a simple singular LTI

system of Eẋ(t) = Ax(t) + Bu(t), it is difficult to obtain the so-called ‘regular form’ through
conventional model transformation approach. As a result, the linear sliding surface is not

suitable for singular systems. Therefore, a key issue in the study of this problem is how to

design a suitable sliding surface such that the resulting sliding mode dynamics exists.

In this chapter, a new integral-type sliding surface is designed by taking the singular matrixE
into account. Then, by using the integral SMC technique, the sliding mode dynamics described

by a Markovian jump singular differential equation can be derived. A necessary and sufficient

condition for the stochastic stability of the sliding mode dynamics is presented in terms of

strict LMI, by which the sliding surface can be designed. In practice, the system states are

not always available owing to the limit of physical conditions or the expense of measuring

it. Thus, the estimation problem has become more important in this case. In this chapter, we

investigate the state estimation and SMC problems for Markovian jump singular systems with

unmeasured states. An observer is first designed to estimate the system states, and then a

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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36 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

discontinuous SMC law is synthesized based on feedback of the estimated states, which forces

the system state trajectories onto the sliding surface in a finite time.

2.2 System Description and Preliminaries

Consider the continuous-time Markovian jump singular system described by

Eẋ(t) = A(rt)x(t) + B(rt)u(t), (2.1a)

y(t) = C(rt)x(t), (2.1b)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input; y(t) ∈ Rp is the measured

output. Matrix E ∈ Rn×n may be singular, and we assume that rank(E) = r ≤ n. A(⋅), B(⋅), and
C(⋅) are known real matrices with appropriate dimensions. These matrices are functions of rt.
Here, let

{
rt, t ≥ 0

}
be a continuous-time Markov process which takes values in a finite state

space  = {1, 2,… ,N}, and the generator matrix Π = 𝜋ij, i, j ∈  with transition probability

from mode i at time t to mode j at time t + Δ is given by

Pij = P
{
rt+Δ = j|rt = i

}
=

{
𝜋ijΔ + o(Δ), if i ≠ j,

1 + 𝜋iiΔ + o(Δ), if i = j,
(2.2)

where Δ > 0 and limΔ→0 o(Δ)∕Δ = 0; 𝜋ij > 0, i ≠ j, and 𝜋ii = −
∑

j≠i 𝜋ij for each i ∈  .
For each possible value rt = i ∈  , A(rt) = Ai, B(rt) = Bi, and C(rt) = Ci. Then, the system

(2.1a)–(2.1b) can be described by

Eẋ(t) = Aix(t) + Biu(t), (2.3a)

y(t) = Cix(t). (2.3b)

The following preliminary assumption is made for system (2.3a)–(2.3b).

Assumption 2.1 For each i ∈  , the pair (Ai,Bi

)
in (2.3a)–(2.3b) is controllable, the pair(

Ai,Ci

)
is observable, and matrix Bi is full column rank.

Before proceeding, we first consider the unforced system of (2.3a), that is,

Eẋ(t) = Aix(t). (2.4)

Definition 2.2.1

I. The Markovian jump singular system in (2.4) is said to be regular if det
(
sE − Ai

)
is not

identically zero for each i ∈  .
II. The Markovian jump singular system in (2.4) is said to be impulse free if deg (det(sE −

Ai)) = rank(E) for each i ∈  .
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State Estimation and SMC of Markovian Jump Singular Systems 37

III. The Markovian jump singular system in (2.4) is said to be stochastically stable if, for any
x0 ∈ Rn and r0 ∈  , there exists a positive scalar T(x0, r0) such that

min
t→∞

E
{
∫

t

0

‖‖x(s, x0, r0)‖‖2 ds|(x0, r0)} ≤ T(x0, r0).

IV. The Markovian jump singular system in (2.4) is said to be stochastically admissible if it
is regular, impulse free and stochastically stable.

The following lemma provides a necessary and sufficient condition for the stochastic admis-

sibility of the Markovian jump singular system in (2.4).

Lemma 2.2.2 [244] The Markovian jump singular system in (2.4) is stochastically admis-
sible if and only if there exist nonsingular matrices Pi such that for i ∈  ,

ETPi = PT
i E ≥ 0, (2.5a)

AT
i Pi + PT

i Ai +
N∑
j=1

𝜋ijE
TPj < 0. (2.5b)

Remark 2.1 Notice that the conditions in Lemma 2.2.2 are not all of strict LMI form
due to the matrix equality constraint of (2.5a). This may cause major problems in checking
the conditions numerically, since the matrix equality constraint is fragile and is not usually
perfectly satisfied. Therefore, the strict LMI conditions are more desirable than non-strict ones
from the numerical point of view. ⧫

2.3 Stochastic Stability Analysis

In the section, we propose a strict LMI condition (easy to check by using standard software)

of the stochastic admissibility for the Markovian jump singular system in (2.4), and present

the following result.

Theorem 2.3.1 The Markovian jump singular system in (2.4) is stochastically admissible if
and only if there exist matrices Xi > 0, Yi, U, and W such that for i ∈  ,

AT
i

(
XiE + UTYiW

T) + (ETXi +WYT
i U
)
Ai +

N∑
j=1

𝜋ijE
TXjE < 0, (2.6)

where U ∈ R(n−r)×n and W ∈ Rn×(n−r) are matrices satisfying UE = 0 and EW = 0.

Proof. (Sufficiency) Letting Pi ≜ XiE + UTYiW
T , i ∈  in (2.6), we can satisfy (2.5a) and

(2.5b). Thus, according to Lemma 2.2.2 we know that the continuousMarkovian jump singular

system in (2.4) is stochastically admissible.
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38 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

(Necessity) Suppose that the system in (2.4) is stochastically admissible, then there exist

nonsingular matrices M and N such that, for each i ∈  ,

MEN =
[
I 0

0 0

]
, MAiN =

[
A1i A2i
A3i A4i

]
. (2.7)

Since the system in (2.4) is regular and impulse free we have that matrices A4i are nonsingular
for i ∈  . Thus, we can set

M̃i ≜
[
I −A2iA−1

4i
0 I

]
M.

Then, it follows that

Ẽ = M̃iEN =
[
I −A2iA−1

4i
0 I

]
MEN

=
[
I −A2iA−1

4i
0 I

] [
I 0

0 0

]
=
[
I 0

0 0

]
, (2.8)

Ãi = M̃iAiN =
[
I −A2iA−1

4i
0 I

]
MAiN

=
[
I −A2iA−1

4i
0 I

] [
A1i A2i
A3i A4i

]
=
[
Ã1i 0

A3i A4i

]
, (2.9)

where Ã1i ≜ A1i − A2iA
−1
4i A3i. Therefore, it is easy to see that the stochastic stability of system

(2.4) implies that the following continuous Markovian jump system is stochastically stable:

𝜉̇(t) = Ã1i𝜉(t)

It follows that there exist matrices X̃i > 0 such that, for i ∈  ,

ÃT
1iX̃i + X̃iÃ1i +

N∑
j=1

𝜋ijX̃j < 0.

Now, let N ≜ [N1 N2

]
and M̃i ≜ [ M̃T

1i M̃T
2i

]T
, thus by (2.9) we have M̃2iAiN =

[
A3i A4i

]
,

where the partitions of N and M̃i are compatible for algebraic operations. Therefore, for a

sufficient small 𝛼 > 0, we have

ÃT
1iX̃i + X̃iÃ1i +

N∑
j=1

𝜋ijX̃j − 𝛼
(
AT
3iN

T
2
N1 + NT

1
N2A3i

)
+ 𝛼
(
AT
3iN

T
2
N2 + NT

1
N2A4i

)
×
(
AT
4iN

T
2
N2 + NT

2
N2A4i

)−1 (
AT
4iN

T
2
N1 + NT

2
N2A3i

)
< 0. (2.10)
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State Estimation and SMC of Markovian Jump Singular Systems 39

By Schur complement, (2.10) is equivalent to

[Ψ11i − 𝛼AT
3iN

T
2
N2 − 𝛼NT

1
N2A4i

⋆ − 𝛼AT
4iN

T
2
N2 − 𝛼NT

2
N2A4i

]
< 0, (2.11)

where

Ψ11i ≜ ÃT
1iX̃i + X̃iÃ1i +

N∑
j=1

𝜋ijX̃j − 𝛼AT
3iN

T
2
N1 − 𝛼NT

1
N2A3i.

Furthermore, (2.11) can be rewritten as

[
Ã1i 0

A3i A4i

]T [
X̃i 0

0 I

] [
I 0

0 0

]
+
[
I 0

0 0

] [
X̃i 0

0 I

] [
Ã1i 0

A3i A4i

]
+

N∑
j=1

𝜋ij

[
I 0

0 0

] [
X̃j 0

0 I

] [
I 0

0 0

]
+
[
AT
3i

AT
4i

] (
−𝛼In−r

)
NT
2

[
N1 N2

]
+
[
NT
1

NT
2

]
N2

(
−𝛼In−r

) [
A3i A4i

]
< 0. (2.12)

Considering (2.7), it follows from (2.12) that

NTAT
i M̃

T
i

[
X̃i 0

0 I

]
M̃iEN + NTETM̃T

i

[
X̃i 0

0 I

]
M̃iAiN

+
N∑
j=1

𝜋ijN
TETM̃T

j

[
X̃j 0

0 I

]
M̃jEN

− 𝛼NT (N2M̃2iAi + AT
i M̃

T
2iN

T
2

)
N < 0. (2.13)

Let Xi ≜ M̃T
i

[
X̃i 0

0 I

]
M̃i in (2.13) (obviously, Xi > 0), we have

NT

[
AT
i

(
XiE − 𝛼M̃T

2iN
T
2

)
+
(
ETXi − 𝛼N2M̃2i

)
Ai +

N∑
j=1

𝜋ijE
TXjE

]
N < 0.
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40 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Since M̃2i is of full row rank, it can be written as M̃2i = M̃3iU, where M̃3i ∈ R(n−r)×(n−r)

is nonsingular (thus, by (2.8) M̃2iEN = M̃3iUEN = 0 implies UE = 0). Then, defining Yi ≜
−𝛼M̃T

3i and W ≜ N2 (it is easily seen from (2.7) that EW = EN2 = 0), we have

NT

[
AT
i

(
XiE + UTYiW

T) + (ETXi +WYT
i U
)
Ai +

N∑
j=1

𝜋ijE
TXjE

]
N < 0,

which is equivalent to (2.6). This completes the proof.

Remark 2.2 Note that Theorem 2.3.1 presents a new necessary and sufficient condition of
stochastic admissibility in terms of strict LMI for the Markovian jump singular system in (2.4),
which is less conservative and more useful than Lemma 2.2.2. ⧫

2.4 Main Results

In this section, we consider the state estimation and SMC problems for the Markovian jump

singular systems with unmeasured states in (2.1a)–(2.1b). First, we design an observer to

estimate unmeasured states, and then we design a sliding surface and an SMC law based

on the state estimates. The designed observer-based SMC law can drive the system state

trajectories onto the predefined sliding surface in a finite time.

2.4.1 Observer and SMC Law Design

The following observer is employed to provide the estimates of the unmeasured states for the

system in (2.3a)–(2.3b):

E ̇̂x(t) = Aix̂(t) + Biu(t) + Li (y(t) − ŷ(t)) , (2.14a)

ŷ(t) = Cix̂(t), (2.14b)

where x̂(t) ∈ Rn represents the estimate of x(t), and Li ∈ Rn×p are the observer gains to be
designed.

Let e(t) ≜ x(t) − x̂(t) denote the estimation error. Considering (2.3a)–(2.3b) and (2.14a)–

(2.14b), the estimation error dynamics is obtained as

Eė(t) =
(
Ai − LiCi

)
e(t). (2.15)

Design the following integral switching function:

s(t) = GiEx̂(t) − ∫
t

0

Gi

(
Ai + BiKi

)
x̂(𝜃)d𝜃, (2.16)
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State Estimation and SMC of Markovian Jump Singular Systems 41

where Ki ∈ Rm×n are real matrices to be designed such that

E ̇̂x(t) =
(
Ai + BiKi

)
x̂(t) (2.17)

is stochastically admissible. The matrices Gi ∈ Rm×n are to be chosen so that GiBi are non-

singular.

Design the following state estimate-based SMC law:

u(t) = Kix̂(t) − (𝜀 + 𝜌(t)) sign (s(t)) , (2.18)

where 𝜀 > 0 is a real constant and

𝜌(t) ≜ max
i∈
‖‖GiBi

‖‖ (‖‖GiLiy(t)‖‖ + ‖‖GiLiCix̂(t)‖‖) .
The following theorem shows that the sliding motion in the specified sliding surface s(t) = 0

is attained in a finite time.

Theorem 2.4.1 Under the SMC law (2.18), the state trajectories of the observer dynamics
(2.14a)–(2.14b) can be driven onto the sliding surface s(t) = 0 in a finite time and remain
there in subsequent time.

Proof. Choose the following Lyapunov function:

V(t) = sT (t)
(
BT
i ZiBi

)−1
s(t),

where Zi > 0 are matrices to be specified such that BT
i ZiBi > 0. Thus, we choose Gi = BT

i Zi in
(2.16), and then GiBi = BT

i ZiBi > 0 are nonsingular. According to (2.14a)–(2.14b) and (2.16),

we have

ṡ(t) = GiE ̇̂x(t) − Gi

(
Ai + BiKi

)
x̂(t)

= BT
i ZiBi

(
u(t) − Kix̂(t)

)
+ GiLi (y(t) − ŷ(t)) . (2.19)

Substituting (2.18) into (2.19) yields

ṡ(t) = −BT
i ZiBi (𝜀 + 𝜌(t)) sign (s(t)) + GiLi (y(t) − ŷ(t)) .

Thus taking the derivation of V(t) and considering |s(t)| ≥ ‖s(t)‖, we have
V̇(t) = 2sT (t)

(
BT
i ZiBi

)−1
ṡ(t)

= 2sT (t)
(
BT
i ZiBi

)−1 [−BT
i ZiBi (𝜀 + 𝜌(t)) sign (s(t)) + GiLi (y(t) − ŷ(t))

]
≤ −2 (𝜀 + 𝜌(t)) ‖s(t)‖ + 2

‖‖‖BT
i ZiBi

‖‖‖ (‖‖GiLiy(t)‖‖ + ‖‖GiLiCix̂(t)‖‖) ‖s(t)‖
≤ −2𝜀 ‖s(t)‖ ≤ −𝜀̃V

1

2 (t). (2.20)
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42 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where 𝜀̃ ≜ 2𝜀∕
√
𝜆max

(
BT
i ZiBi

)
. It can be seen from (2.20) that there exists a time t∗ =

2
√
V(0)∕𝜀̃ such that V(t) = 0, and consequently s(t) = 0, for t ≥ t∗, which means that the

system state trajectories can reach onto the predefined sliding surface in a finite time. This

completes the proof.

2.4.2 Sliding Mode Dynamics Analysis

When the system operates in the sliding mode, it follows that s(t) = 0 and ṡ(t) = 0. Thus, by

ṡ(t) = 0 in (2.19), we can obtain the equivalent control ueq(t) as

ueq(t) = Kix̂(t) − GiLiCie(t). (2.21)

Substituting (2.21) into (2.14a), the sliding mode dynamics can be obtained as

E ̇̂x(t) =
(
Ai + BiKi

)
x̂(t) +

(
I − BiGi

)
LiCie(t). (2.22)

In the following, we will analyze the stochastic admissibility of the estimation error dynam-

ics in (2.15). By Theorem 2.3.1, we give the following result.

Theorem 2.4.2 The estimation error dynamics in (2.15) is stochastically admissible if
and only if there exist symmetric positive definite matrices Xi ∈ Rn×n, nonsingular matrices
Yi ∈ R(n−r)×(n−r), and matrices i ∈ Rn×p, i ∈ R(n−r)×p, U ∈ R(n−r)×n, W ∈ Rn×(n−r) such
that for i ∈  ,(

ETXi +WYT
i U
)
Ai + AT

i

(
XiE + UTYiW

T)
−
(
ETi +Wi

)
Ci − CT

i

(T
i E +T

i W
T) + N∑

j=1
𝜋ijE

TXjE < 0, (2.23)

where U and W are matrices satisfying UE = 0 and EW = 0. Moreover, the parametric
matrices Li can be computed by

Li =
(
ETXi +WYT

i U
)−1 (

ETi +Wi

)
. (2.24)

Proof. According to Theorem 2.3.1, we know that the estimation error dynamics in (2.15) is

stochastically admissible if and only if there exist matrices Xi > 0,Yi, U and W such that for

i ∈  ,
(
ETXi +WYT

i U
) (

Ai − LiCi

)
+
(
AT
i − CT

i L
T
i

) (
XiE + UTYiW

T) + N∑
j=1

𝜋ijE
TXjE < 0. (2.25)

Letting i ≜ XiLi and i ≜ YT
i ULi in (2.25) yields (2.23), thus the proof is completed.
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State Estimation and SMC of Markovian Jump Singular Systems 43

Next, we shall analyze the stochastic admissibility of the dynamics in (2.17), and give a

solution to parameter Ki. Before proceeding, we give the following lemma.

Lemma 2.4.3 Let Xi be symmetric such that ET
LXiEL > 0 and matrices Yi are nonsingular,

then XiE + UTYiW
T are nonsingular and their inverse are expressed as

(
XiE + UTYiW

T)−1 = iE
T +WiU, (2.26)

where i are symmetric matrices and i are nonsingular matrices with

i =
(
WTW

)−1
Y−1
i

(
UUT)−1 , ET

RiER =
(
ET
LXiEL

)−1
.

Proof. Decompose E as E = ELE
T
R , where EL ∈ Rn×r and ER ∈ Rn×r are of full column

rank. Since UE = 0 and EW = 0, thus we have that UEL = 0, ET
RW = 0 and

[
ER W

]
is

nonsingular. Then,

⎧⎪⎨⎪⎩
[
ER W

]−1 = [ (ET
RER

)−1
ET
R(

WTW
)−1

WT

]
,

ER

(
ET
RER

)−1
ET
R +W

(
WTW

)−1
WT = In.

(2.27)

According to (2.27), we have

[
ER

(
ET
RER

)−1 (
ET
LXiEL

)−1
ET
L +W

(
WTW

)−1
Y−1
i

(
UUT

)−1
U

−W
(
WTW

)−1
Y−1
i

(
UUT

)−1
UXiEL

(
ET
LXiEL

)−1
ET
L

]
×
(
XiE + UTYiW

T
)
= In,

which implies that XiE + UTYiW
T are nonsingular and

(
XiE + UTYiW

T)−1 = ER

(
ET
RER

)−1 (
ET
LXiEL

)−1
ET
L

+W
(
WTW

)−1
Y−1
i

(
UUT)−1U

−W
(
WTW

)−1
Y−1
i

(
UUT)−1UXiEL

(
ET
LXiEL

)−1
ET
L

= ΦTΩiΦET +W
(
WTW

)−1
Y−1
i

(
UUT)−1U, (2.28)
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44 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where

⎧⎪⎪⎨⎪⎪⎩
Φ ≜

[ (
ET
RER

)−1
ET
R(

WTW
)−1

WT

]
,

Ωi ≜
[ (

ET
LXiEL

)−1 −
(
ET
LXiEL

)−1
ET
LXiU

T
(
UUT

)−1
Y−T
i

⋆ 0

]
.

Define i ≜ ΦTΩiΦ and i ≜ (WTW
)−1

Y−1
i

(
UUT

)−1
in (2.28), and we have (2.26)–(2.27).

This completes the proof.

Now, according to Theorem 2.3.1, we present the following result without proof.

Theorem 2.4.4 The dynamics in (2.17) is stochastically admissible if and only if there exist
matrices Xi > 0, Yi, U and W such that for i ∈  ,
(
ETXi+WYT

i U
) (

Ai+BiKi

)
+
(
AT
i +KT

i B
T
i

) (
XiE+UTYiW

T) +
N∑
j=1

𝜋ijE
TXjE < 0, (2.29)

where U ∈ R(n−r)×n and W ∈ Rn×(n−r) are matrices satisfying UE = 0 and EW = 0.

The following sufficient condition is proposed for the stochastic admissibility of the dynam-

ics in (2.17), by which the parametric matrices Ki can be solved.

Theorem 2.4.5 The dynamics in (2.17) is stochastically admissible if there exist symmetric
positive definite matrices i ∈ Rn×n, nonsingular matrices i ∈ R(n−r)×(n−r), and matrices
i ∈ Rm×n, i ∈ Rm×(n−r), U ∈ R(n−r)×n, and W ∈ Rn×(n−r) such that for i ∈  ,[

Ψ11i + ΨT
11i − 𝜋iiEiE

T Ψ12i
⋆ Ψ22i

]
< 0, (2.30)

where i ≜ iE
T +WiU and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ψ11i ≜ Aii + Bi

(iE
T +iU

)
+ 𝜋iiEi,

Ψ22i ≜ −diag
{
ET
R1ER, E

T
R2ER, … , ET

Ri−1ER,

ET
Ri+1ER, … , ET

RN−1ER, E
T
RNER

}
,

Ψ12i ≜ [√𝜋i1T
i ER

√
𝜋i2T

i ER ⋯
√
𝜋i(i−1)T

i ER√
𝜋i(i+1)T

i ER ⋯
√
𝜋i(N−1)T

i ER
√
𝜋iNT

i ER
]
,

where U and W are matrices satisfying UE = 0 and EW = 0. Moreover, the parametric
matrices Ki are given by

Ki =
(iE

T +iU
)−1

i . (2.31)
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State Estimation and SMC of Markovian Jump Singular Systems 45

Proof. By Theorem 2.4.4 we know that the dynamics in (2.17) is stochastically admissible

if there exist matrices Xi > 0 and nonsingular matrices Yi such that (2.29) holds for i ∈
 . However, by Lemma 2.4.3, XiE + UTYiW

T are nonsingular and their inverse matrices

are iE
T +WiU. Now, performing a congruence transformation to (2.29) by i ≜ iE

T +
WiU, we have

(
Ai + BiKi

)i +T
i

(
AT
i + KT

i B
T
i

)
+

N∑
j=1

𝜋ijT
i E

TXjEi < 0. (2.32)

Letting i ≜ Kii andi ≜ KiWi in (2.32), we have

Aii +T
i A

T
i + Bi

(iE
T +iU

)
+
(
ET

i + UTT
i

)
BT
i + 𝜋iiT

i ER

(
ET
RiER

)−1
ET
Ri

+
N∑

j=1,j≠i
𝜋ijT

i ER

(
ET
RjER

)−1
ET
Ri < 0. (2.33)

Also, the following fact is true:

0 ≤
[
ET
Ri −

(
ET
RiER

)
ET
L

]T (
ET
RiER

)−1 [
ET
RT

i −
(
ET
RiER

)
ET
L

]
= −Ei −T

i E
T + EiE

T +T
i ER

(
ET
RiER

)−1
ET
Ri.

Considering 𝜋ii < 0 in (2.2), we have

𝜋iiT
i ER

(
ET
RiER

)−1
ET
Ri ≤ 𝜋iiEi + 𝜋iiT

i E
T − 𝜋iiEiE

T .

Therefore, (2.33) holds if the following inequality holds:

Ψ11i + ΨT
11i − 𝜋iiEiE

T +
N∑

j=1,j≠i
𝜋ijT

i ER

(
ET
RjER

)−1
ET
Ri < 0, (2.34)

where Ψ11i is defined in (2.30). By Schur complement, LMI (2.30) implies inequality (2.34).

This completes the proof.

Remark 2.3 Notice from Definition 2.2.1 that the stochastic admissability implies the
stochastic stability of a Markovian jump singular system. Thus, we know that the estima-
tion error dynamics in (2.15) is stochastically stable if LMI (2.23) in Theorem 2.4.2 holds.
Also, the dynamics in (2.17) is stochastically stable if LMI (2.30) in Theorem 2.4.5 holds. It
is not difficult to show from stochastic stability of dynamics (2.15) and (2.17) that the sliding
mode dynamics (2.22) is stochastically stable. ⧫
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46 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

2.5 Illustrative Example

Example 2.5.1 Consider the Markovian jump singular system in (2.1a)–(2.1b) with two

operating modes, that is, N = 2, and the following parameters:

A1 =
⎡⎢⎢⎣
1.3 0.8 1.0

0.7 0.8 0.9

0.4 0.2 −0.7

⎤⎥⎥⎦ , B1 =
⎡⎢⎢⎣
1.5

0.9

1.1

⎤⎥⎥⎦ , E =
⎡⎢⎢⎣
1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 0.0

⎤⎥⎥⎦ , S =
⎡⎢⎢⎣
0.0

0.0

1.0

⎤⎥⎥⎦ ,
A2 =

⎡⎢⎢⎣
0.7 0.9 0.3

1.1 1.4 −0.4
0.5 0.3 1.6

⎤⎥⎥⎦ , B2 =
⎡⎢⎢⎣
0.9

1.8

1.4

⎤⎥⎥⎦ , EL = ER =
⎡⎢⎢⎣
1.0 0.0

0.0 1.0

0.0 0.0

⎤⎥⎥⎦ ,
Π =

[
−0.6 0.6

0.8 −0.8

]
, C1 =

[
1.1 1.6 0.9

]
, C2 =

[
1.5 1.3 0.7

]
, R = ST .

Our aim is to design an observer in the form of (2.14a)–(2.14b) to estimate the states of system

(2.1a)–(2.1b), and then synthesize an SMC law u(t) as (2.18) (based on the state estimate)

such that the closed-loop system is stochastically admissible.

Solving the LMI condition (2.23) in Theorem 2.4.2 by using LMI Toolbox in the Matlab

environment and then by (2.24), we have

L1 =
⎡⎢⎢⎣
3.6359

0.1377

0.1525

⎤⎥⎥⎦ , L2 =
⎡⎢⎢⎣
0.6149

1.8942

1.0853

⎤⎥⎥⎦ .
However, solving the LMI condition (2.30) in Theorem 2.4.5, and then by (2.31) we have

K1 =
[
−2.3459 −0.0756 −0.1750

]
,

K2 =
[
−1.6968 −1.0136 −0.7452

]
.

Here, parameters G1 and G2 in (2.16) are chosen as

G1 =
[
0.3513 0.2108 0.2576

]
,

G2 =
[
0.1498 0.2995 0.2329

]
.

Thus, the switching function in (2.16) can be computed as

s(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s1(t) =
[
0.3513 0.2108 0.0000

]
x̂(t)

−∫
t

0

[
−1.6387 0.4256 0.1857

]
x̂(s)ds, i = 1,

s2(t) =
[
0.1498 0.2995 0.0000

]
x̂(t)

−∫
t

0

[
−1.1460 −0.3897 −0.4474

]
x̂(s)ds, i = 2.
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State Estimation and SMC of Markovian Jump Singular Systems 47

Let the adjustable parameter 𝜀 be 𝜀 = 0.5, then the observer-based SMC law designed in (2.18)

can be obtained as

u(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1(t) =
[
−2.3459 −0.0756 −0.1750

]
x̂(t)

− (0.5 + 𝜌(t)) sign
(
s1(t)
)
, i = 1,

u2(t) =
[
−1.6968 −1.0136 −0.7452

]
x̂(t)

− (0.5 + 𝜌(t)) sign
(
s2(t)
)
, i = 2,

where 𝜌(t) = 1.3456 (‖y(t)‖ + ‖x̂(t)‖).
To prevent the control signals from chattering, we replace sign

(
si(t)
)
with

si(t)

0.01 + ‖‖si(t)‖‖ , i ∈ {1, 2}.

For given initial condition of x(0) =
[
−0.8 −1.2 −0.6

]T
, the simulation results are given

in Figures 2.1–2.2. Specifically, in Figure 2.1 shows the states of the closed-loop system, while

Figure 2.2 depicts the switching function s(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t/sec

Figure 2.1 States of the closed-loop system
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48 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t/sec

Figure 2.2 Switching function

2.6 Conclusion

In this chapter, the state estimation and SMC problems have been investigated for continuous-

time Markovian jump singular systems with unmeasured states. First, we have proposed a

strict LMI necessary and sufficient condition of the stochastic admissibility for the unforced

Markovian jump singular systems. Then, an observer has been designed and an observer-based

sliding mode controller has been synthesized to guarantee the reachability of the system state

trajectories to the predefined integral sliding surface. Finally, a numerical example has been

provided to illustrate the effectiveness of the proposed design scheme.
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3
Optimal SMC of Markovian Jump
Singular Systems with Time Delay

3.1 Introduction

It is recognized that the slidingmode of an SMC system is invariant to system perturbations and

external disturbances, only if the perturbations/disturbances satisfy the so-called ‘matching

condition’. Although many researchers have paid considerable attention to the mismatched

uncertainties in SMC design, the obtained results are very conservative. If the undesired

uncertainties/disturbances can not be eliminated in the sliding mode, it is possible to attenuate

its effect on the system performance. In this chapter, we will consider the disturbance attenu-

ation problem in sliding mode with∞ performance. For this purpose, we design an integral

switching function. The plant considered in this chapter is the Markovian jump singular time-

delay system, which is a typical kind of hybrid systems of high complexity (including system

parameter jumping, time delay in states, and singularity). How to establish a less conservative

stability condition is a key issue in SMC design. As is well known, the slack matrix technique

[228, 243], usually combined with the Lyapunov–Krasovskii approach, has been proved to

be an effective tool to establish less conservative stability conditions for time-delay systems.

Unfortunately, little progress has been made in dealing with singular time-delay systems by

this technique, probably due to the particularity and complexity caused by the singular matrix

E, thus it is difficult to choose a suitable Lyapunov–Krasovskii function.
In this chapter, we will pay particular attention to the singular matrix E in the design of an

integral-type switching function, which leads to a full-order Markovian jump singular time-

delay system for describing the sliding mode dynamics. We will then apply the slack matrix

technique combining with the Lyapunov–Krasovskii approach to derive a delay-dependent

sufficient condition, which guarantees that the sliding mode dynamics is stochastically stable

with a bounded 2 gain performance. In addition, the analysis result and the solvability

condition for the desired switching function are both established. All the obtained results are

in terms of strict LMI, which can be solved by efficient interior-point algorithms [25]. Finally,

a discontinuous SMC law is designed to drive the system state trajectories onto the predefined

sliding surface in a finite time.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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50 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

3.2 System Description and Preliminaries

Consider a Markovian jump singular time-delay system described by

Eẋ(t) = A(rt)x(t) + Ad(rt)x(t − d) + Bw(rt)𝜔(t)

+B(rt) (u(t) + f (x(t), t)) , (3.1a)

z(t) = C(rt)x(t) + Cd(rt)x(t − d) + Dw(rt)𝜔(t), (3.1b)

x(t) = 𝜙(t), t ∈ [−d, 0], (3.1c)

where
{
rt, t ≥ 0

}
is a continuous-time Markov process on the probability space which has

been defined in (2.2) of Chapter 2, and x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the

control input; z(t) ∈ Rp is the controlled output; 𝜔(t) ∈ Rq is the exogenous input (which

represents either the exogenous disturbance input or the exogenous reference input) belonging

to 2[0,∞). Matrix E ∈ Rn×n may be singular, and it is assumed that rank(E) = r ≤ n. A(⋅),
B(⋅), C(⋅), Ad(⋅), Cd(⋅), Bw(⋅) and Dw(⋅) are known real matrices with appropriate dimensions.
d represents the constant time-delay and 𝜙(t) ∈ n,d is a compatible vector-valued initial

function. In addition, f (x(t), t) ∈ Rm is an unknown nonlinear function (which represents the

unmodeled dynamics of a physical plant), and there exists a known constant 𝜂 > 0 such that

‖f (x(t), t)‖ ≤ 𝜂 ‖x(t)‖ .
For each rt = i ∈  , A(rt) = Ai, B(rt) = Bi, C(rt) = Ci, Ad(rt) = Adi, Cd(rt) = Cdi, Bw(rt) =

Bwi, and Dw(rt) = Dwi. Then, system (3.1a)–(3.1c) can be described by

Eẋ(t) = Aix(t) + Adix(t − d) + Bwi𝜔(t)

+Bi (u(t) + f (x(t), t)) , (3.2a)

z(t) = Cix(t) + Cdix(t − d) + Dwi𝜔(t), (3.2b)

x(t) = 𝜙(t), t ∈ [−d, 0], (3.2c)

Assumption 3.1 For each i ∈  , the pair (Ai,Bi) in (3.2a) is controllable, and matrix Bi is
full column rank.

Before proceeding, we first consider the unforced system of (3.2a)–(3.2c), that is,

Eẋ(t) = Aix(t) + Adix(t − d), (3.3a)

x(t) = 𝜙(t), t ∈ [−d, 0]. (3.3b)

We introduce the following definition for the Markovian jump singular time-delay system

in (3.3a)–(3.3b).
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Optimal SMC of Markovian Jump Singular Systems with Time Delay 51

Definition 3.2.1

I. The Markovian jump singular time-delay system in (3.3a)–(3.3b) is said to be regular and
impulse free if the pairs (E,Ai) and (E,Ai + Adi) are regular and impulse free for each
i ∈  .

II. The Markovian jump singular time-delay system in (3.3a)–(3.3b) is said to be stochasti-
cally stable if for any x0 ∈ Rn and r0 ∈  , there exists a positive scalar T(x0,𝜙(⋅)) such
that

min
t→∞

E
{
∫

t

0

‖x(t)‖2 dt|r0, x(s) = 𝜙(s), s ∈ [−d, 0]
}

≤ T(x0,𝜙(⋅)).

III. The Markovian jump singular time-delay system in (3.3a)–(3.3b) is said to be stochasti-
cally admissible if it is regular, impulse free and stochastically stable.

In addition, we introduce the following definition for the Markovian jump singular time-

delay system of

Eẋ(t) = Aix(t) + Adix(t − d) + Bwi𝜔(t), (3.4a)

z(t) = Cix(t) + Cdix(t − d) + Dwi𝜔(t), (3.4b)

x(t) = 𝜙(t), t ∈ [−d, 0], (3.4c)

Definition 3.2.2 Given a scalar 𝛾 > 0, the Markovian jump singular time-delay system in
(3.4a)–(3.4c) is said to be stochastically admissible with a bounded 2 gain performance 𝛾 , if
the system (3.4a)–(3.4c) with 𝜔(t) ≡ 0 is stochastically admissible, and under zero condition,
for nonzero 𝜔(t) ∈ 2[0,∞), it holds that

E
{
∫

∞

0

zT (t)z(t)dt

}
< 𝛾2 ∫

∞

0

𝜔T (t)𝜔(t)dt. (3.5)

3.3 Bounded 2 Gain Performance Analysis

This section is concerned with the bounded 2 gain performance analysis for the Markovian

jump singular time-delay system in (3.4a)–(3.4c) in the sense of Definition 3.2.2, and we give

the following theorem.

Theorem 3.3.1 Given a scalar 𝛾 > 0, the Markovian jump singular time-delay system in
(3.4a)–(3.4c) is stochastically admissible with bounded 2 gain performance 𝛾 , if there exist
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52 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

matrices Q > 0, R > 0, Pi ≜
[
P11i P12i
0 P22i

]
, Wi ≜ [W1i 0n×(n−r)

]
(with 0 < P11i ∈ Rr×r and

W1i ∈ Rn×r) such that for each i ∈  ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11i PiAdi −Wi PiB𝜔i dWi dAT
i R CT

i

⋆ −Q 0 0 dAT
diR CT

di

⋆ ⋆ −𝛾2I 0 dBT
wiR DT

wi

⋆ ⋆ ⋆ −dR 0 0

⋆ ⋆ ⋆ ⋆ −dR 0

⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.6)

where

Ψ11i ≜ PiAi + AT
i P

T
i + Q +

N∑
j=1

𝜋ijPjE +Wi +WT
i .

Proof. First, we consider the nominal case of (3.4a)–(3.4c), that is, 𝜔(t) = 0 in (3.4a)–(3.4c).

Without loss of generality, we assume that the matrixE and the state vector x(t) in (3.4a)–(3.4c)
have the form of

E =
[

Ir×r 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

]
, x(t) =

[
x1(t)
x2(t)

]
,

where x1(t) ∈ Rr and x2(t) ∈ Rn−r.
In the following, we will consider the stochastic stability of the system in (3.4a)–(3.4c) with

𝜔(t) ≡ 0. To this end, we choose a Lyapunov function as

V(xt, rt, t) ≜ xT (t)P(rt)Ex(t) + ∫
t

t−d
xT (𝜏)Qx(𝜏)d𝜏

+∫
0

−d ∫
t

t+𝜃
ẋT (𝜏)ETREẋ(𝜏)d𝜏d𝜃, (3.7)

where xt ≜ x(𝜃), 𝜃 ∈ [t − 2d, t], thus {(xt, rt), t ≥ d} is a Markov process with initial condition

(𝜙(⋅), r0). Matrices Q and R are positive definite, and

P(rt) ≜
[
P11(rt) P12(rt)
P21(rt) P22(rt)

]
, or equivalently, Pi ≜

[
P11i P12i
P21i P22i

]
,
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Optimal SMC of Markovian Jump Singular Systems with Time Delay 53

with P11(rt) > 0 and P21(rt) = 0 (which can be found from P(rt)E = ETPT (rt) ≥ 0). Let be

the weak infinitesimal generator of the random process {xt, rt}. Thus, for each possible value
rt = i ∈  and t ≥ d, we have

V(xt, i, t) = 2xT (t)Pi[Aix(t) + Adix(t − d)] + xT (t)Qx(t) − xT (t − d)Qx(t − d)

+ d[Aix(t) + Adix(t − d)]TR[Aix(t) + Adix(t − d)]

+ xT (t)

(
N∑
j=1

𝜋ijPjE

)
x(t) − ∫

t

t−d
ẋT (𝜏)ETREẋ(𝜏)d𝜏. (3.8)

On the other hand, Newton–Leibniz formula gives

x(t) − x(t − d) = ∫
t

t−d
ẋ(𝜏)d𝜏.

Thus, forWi ≜ [W1i 0n×(n−r)
]
withW1i ∈ Rn×r, it holds that

2xT (t)Wi

[
x(t) − x(t − d) − ∫

t

t−d
ẋ(𝜏)d𝜏

]
= 0. (3.9)

By (3.8)–(3.9) and noting

WiE =
[
W1i 0n×(n−r)

] [ Ir×r 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

]
= Wi,

we have

V(xt, i, t) = 2xT (t)Pi[Aix(t) + Adix(t − d)] + xT (t)Qx(t) − xT (t − d)Qx(t − d)

+ xT (t)

(
N∑
j=1

𝜋ijPjE

)
x(t) + 2xT (t)Wi[x(t) − x(t − d)]

+ d[Aix(t) + Adix(t − d)]TR[Aix(t) + Adix(t − d)]

+ ∫
t

t−d
xT (t)WiR

−1WT
i x(t)d𝜏 − ∫

t

t−d
xT (t)WiR

−1WT
i x(t)d𝜏

− ∫
t

t−d
2xT (t)WiEẋ(𝜏)d𝜏 − ∫

t

t−d
ẋT (𝜏)ETREẋ(𝜏)d𝜏

= 𝜓T (t)Φi𝜓(t)

− ∫
t

t−d

[
WT

i x(t) + REẋ(𝜏)
]T

R−1[WT
i x(t) + REẋ(𝜏)

]
d𝜏, (3.10)
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54 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where 𝜓(t) ≜
[

x(t)
x(t − d)

]
and

Φi ≜
[
Φ11i PiAdi −Wi

⋆ −Q

]
+ d

[
AT
i

AT
di

]
R
[
Ai Adi

]
,

with

Φ11i ≜ PiAi + AT
i P

T
i + Q +

N∑
j=1

𝜋ijPjE +Wi +WT
i + dWiR

−1WT
i .

By Schur complement, LMI (3.6) implies Φi < 0. Moreover, noting that the last integral term

in (3.10) is semi-positive, thus (3.10) implies that there exists a scalar 𝜀 > 0 such that for each

i ∈  ,
V(xt, i, t) ≤ −𝜀 ‖x(t)‖2 .

The rest of the proof on stochastic stability can be found in [230, 231], and so we omit it here.

Moreover, (3.6) implies Ψ11i < 0. Now partition matrices Ai and Q as

Ai =
[
A11i A12i
A21i A22i

]
, Q =

[
Q11 Q12

⋆ Q22

]
> 0,

and then substituting them and Pi into Ψ11i < 0 yields

P22iA22i + AT
22iP

T
22i + Q22 < 0,

which implies that A22i are nonsingular for i ∈  , thus the pairs (E,Ai) are regular and

impulse free for i ∈  . Therefore, the system in (3.4a)–(3.4c) with 𝜔(t) = 0 is regular and

impulse free.

Now, we establish the bounded 2 gain performance of system (3.4a)–(3.4c). Consider the

Lyapunov function in (3.7) again and the following index:

J = E
{
∫

t

0

[
zT (𝜏)z(𝜏) − 𝛾2𝜔T (𝜏)𝜔(𝜏)

]
d𝜏

}
.

Then, under zero initial condition, it can be shown that for any nonzero 𝜔(t) ∈ 2[0,∞),

J ≤ E
{
∫

t

0

[
zT (𝜏)z(𝜏) − 𝛾2𝜔T (𝜏)𝜔(𝜏) +V(x𝜏 , i, 𝜏)

]
d𝜏

}
≤ E

{
∫

t

0

𝜓̄T (𝜏)Φ̄i𝜓̄(𝜏)d𝜏

}
,
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Optimal SMC of Markovian Jump Singular Systems with Time Delay 55

where 𝜓̄(t) ≜
⎡⎢⎢⎣

x(t)
x(t − d)
𝜔(t)

⎤⎥⎥⎦ and

Φ̄i ≜
⎡⎢⎢⎣
Φ11i PiAdi −Wi PiB𝜔i
⋆ −Q 0

⋆ ⋆ −𝛾2I

⎤⎥⎥⎦ + d

⎡⎢⎢⎢⎣
AT
i

AT
di

BT
𝜔i

⎤⎥⎥⎥⎦R
[
Ai Adi B𝜔i

]

+
⎡⎢⎢⎢⎣
CT
i

CT
di

DT
𝜔i

⎤⎥⎥⎥⎦
[
Ci Cdi D𝜔i

]
.

By Schur complement, LMI (3.6) implies Φ̄i < 0, thus J ≤ 0, and hence (3.5) is true for any

nonzero 𝜔(t) ∈ 2[0,∞). This completes the proof.

Remark 3.1 It should be noted that Theorem 3.3.1 presents a delay-dependent sufficient
condition of the stochastic admissibility with the bounded 2 gain performance defined in
Definition 3.2.2 for the Markovian jump singular time-delay system in (3.4a)–(3.4c). Notice
that the slack matrix variables Wi are introduced in the derivation of the delay-dependent
result in Theorem 3.3.1, which avoids some conservativeness caused by the commonly used
model transformation approach when dealing with time-delay systems. ⧫

3.4 Main Results

3.4.1 Sliding Mode Dynamics Analysis

We design the following integral-type switching function:

s(t) = GiEx(t) − ∫
t

0

Gi

(
Ai + BiKi

)
x(𝜃)d𝜃, (3.11)

where Gi ∈ Rm×n and Ki ∈ Rm×n are real matrices. In particular, the matrices Gi are to be

chosen such that GiBi are nonsingular for i ∈  . The solution of Ex(t) can be given by

Ex(t) = Ex(0) + ∫
t

0

[Aix(𝜃) + Adix(𝜃 − d) + Bwi𝜔(𝜃) + Bi (u(𝜃) + f (x(𝜃), 𝜃))]d𝜃. (3.12)

It follows from (3.11) and (3.12) that

s(t) = GiEx(0) + Gi ∫
t

0

[−BiKix(𝜃) + Adix(𝜃 − d) + Bwi𝜔(𝜃) + Biu(𝜃) + Bi f (x(𝜃), 𝜃)]d𝜃.

(3.13)
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56 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

When the system state trajectories reach onto the sliding surface, it follows that s(t) = 0 and

ṡ(t) = 0. Therefore, by ṡ(t) = 0, we get the equivalent control as

ueq(t) = Kix(t) −
(
GiBi

)−1
GiAdix(t − d)

−(GiBi)
−1GiBwi𝜔(t) − f (x(t), t). (3.14)

By substituting (3.14) into (3.2a)–(3.2c), the sliding mode dynamics can be obtained as

Eẋ(t) = (Ai + BiKi)x(t) +
[
I − Bi(GiBi)

−1Gi

]
Adix(t − d)

+
[
I − Bi(GiBi)

−1Gi

]
Bwi𝜔(t). (3.15)

For notational simplicity, we define

Ãdi ≜ [I − Bi(GiBi)
−1Gi

]
Adi, Ãi ≜ Ai + BiKi,

B̃wi ≜ [I − Bi(GiBi)
−1Gi

]
Bwi.

Thus, the sliding mode dynamics in (3.15) and the controlled output equation in (3.2b) can be

formulated as

Eẋ(t) = Ãix(t) + Ãdix(t − d) + B̃wi𝜔(t), (3.16a)

z(t) = Cix(t) + Cdix(t − d) + Dwi𝜔(t). (3.16b)

The above analysis gives the first step of the SMC for the Markovian jump singular time-

delay system in (3.1a)–(3.1c). Specifically, we design an integral-type switching function as

(3.11) so that the dynamics restricted to the sliding surface (i.e. the sliding mode dynamics)

has the form of (3.16a)–(3.16b). Thus, the remaining problems to be addressed in this chapter

are as follows:

� ∞ performance analysis of the sliding mode dynamics. Given all the system matri-

ces in (3.1a)–(3.1c) and the matrices Gi and Ki in the switching function of (3.11),

determine under what condition the sliding mode dynamics in (3.16a)–(3.16b) is

stochastically admissible with a bounded 2 gain performance defined in the sense of

Definition 3.2.2.
� SMC law synthesis. Synthesize an SMC law to drive the system state trajectories onto the

predefined sliding surface s(t) = 0 in a finite time and maintain them there for all subsequent

time.

By Theorem 3.3.1, we have the following result for dynamics (3.16a)–(3.16b).
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Optimal SMC of Markovian Jump Singular Systems with Time Delay 57

Corollary 3.4.1 Given a scalar 𝛾 > 0, the sliding mode dynamics in (3.16a)–(3.16b) is
stochastically admissible with bounded 2 gain performance 𝛾 , if there exist matrices  > 0,

 > 0, i ≜
[11i 12i

0 22i

]
(with 11i > 0),i ≜ [1i 0n×(n−r) ] such that for each i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11i iÃdi −i iB̃𝜔i di dÃT
i  CT

i

⋆ − 0 0 dÃT
di CT

di

⋆ ⋆ −𝛾2I 0 dB̃T
wi DT

wi

⋆ ⋆ ⋆ −d 0 0

⋆ ⋆ ⋆ ⋆ −d 0

⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.17)

where

Ω11i ≜ iÃi + ÃT
i T

i + +
N∑
j=1

𝜋ijjE +i +T
i .

The following theorem is devoted to solving the parameter Ki in the switching function

of (3.11).

Theorem 3.4.2 Given a scalar 𝛾 > 0, the sliding mode dynamics in (3.16a)–(3.16b) is
stochastically admissible with bounded 2 gain performance 𝛾 , if there exist matrices  > 0,

 > 0, i, i ≜
[11i 12i

0 22i

]
(with 11i > 0), i ≜ [1i 0n×(n−r) ] and a scalar 𝜎 > 0

such that for each i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̃11i Ω̃12i B̃𝜔i di Ω̃15i iC
T
i i Ω̃18i

⋆ Ω̃22i 0 0 diÃ
T
di iC

T
di 0 0

⋆ ⋆ −𝛾2I 0 dB̃T
wi DT

wi 0 0

⋆ ⋆ ⋆ Ω̃44i 0 0 0 0

⋆ ⋆ ⋆ ⋆ −d 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ − 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Ω̃88i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.18)
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58 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ω̃11i ≜ AiT
i + Bii + iA

T
i +T

i B
T
i + 𝜋iiET

i +i +T
i ,

Ω̃12i ≜ ÃdiT
i −i,

Ω̃22i ≜ −i − T
i +,

Ω̃44i ≜ −di − dT
i + d,

Ω̃15i ≜ diA
T
i + dT

i B
T
i ,

Ω̃18i ≜ [√𝜋i1i
√
𝜋i2i ⋯

√
𝜋i(i−1)i√

𝜋i(i+1)i ⋯
√
𝜋i(N−1)i

√
𝜋iNi

]
,

Ω̃88i ≜ −diag
{(1E + 𝜎−1) , (2E + 𝜎−1) , … ,

(i−1E + 𝜎−1)(i+1E + 𝜎−1) , … ,
(N−1E + 𝜎−1) , (NE + 𝜎−1)} .

Moreover, if the above LMI conditions have a set of feasible solutions then the parametric
matrices Ki in (3.11) can be computed by

Ki = i−T
i . (3.19)

Proof. Letting i = −1
i ,  ≜ −1,  = −1 andi ≜ iiT

i , and performing a congru-

ence transformation on (3.17) by diag
{i,i, I,i,, I

}
, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̄11i Ω̃12i B̃𝜔i di diÃ
T
i iC

T
i

⋆ Ω̄22i 0 0 diÃ
T
di iC

T
di

⋆ ⋆ −𝛾2I 0 dB̃T
wi DT

wi

⋆ ⋆ ⋆ Ω̄44i 0 0

⋆ ⋆ ⋆ ⋆ −d 0

⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.20)

where

⎧⎪⎪⎨⎪⎪⎩
Ω̄11i ≜ ÃiT

i + iÃ
T
i + iT

i +i +T
i +

N∑
j=1

𝜋ijijET
i ,

Ω̄22i ≜ −iT
i ,

Ω̄44i ≜ −diT
i ,

and Ω̃12i is defined in (3.18).

Also notice that

0 ≤ (i −) (i −)T = iT
i − i − T

i +,
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Optimal SMC of Markovian Jump Singular Systems with Time Delay 59

which implies

−iT
i ≤ −i − T

i +.
Similarly, we have

−iT
i ≤ −i − T

i +.

Moreover, noting that jE ≥ 0, it follows that there exists a sufficient small scalar 𝜎 > 0 such

that jE + 𝜎 > 0, where

 =
[

0r×r 0r×(n−r)
0(n−r)×r I(n−r)×(n−r)

]
,

thus,

(jE + 𝜎)−1 = [11i 0

0 𝜎I(n−r)×(n−r)

]−1
=
[11i 0

0 𝜎−1I(n−r)×(n−r)

]
= jE + 𝜎−1.

Therefore, inequality (3.20) holds if

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̂11i Ω̃12i B̃𝜔i di diÃ
T
i iC

T
i

⋆ Ω̃22i 0 0 diÃ
T
di iC

T
di

⋆ ⋆ −𝛾2I 0 dB̃T
wi DT

wi

⋆ ⋆ ⋆ Ω̃44i 0 0

⋆ ⋆ ⋆ ⋆ −d 0

⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where Ω̃12i, Ω̃22i, and Ω̃44i are defined in (3.18), and

Ω̂11i ≜ ÃiT
i + iÃ

T
i + iT

i +i +T
i + 𝜋iiET

i +
N∑

j=1,j≠i
𝜋iji

(jE + 𝜎)T
i .

Moreover, lettingi = KiT
i and by Schur complement, the above inequality is equivalent to

(3.18). This completes the proof.

Remark 3.2 Note that we introduced the term 𝜎(𝜎 > 0) in the proof of Theorem 3.4.2. The
reason is that jE is singular (and there is no inversion), while jE + 𝜎 is nonsingular and
thus it has inversion. ⧫
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60 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

3.4.2 SMC Law Design

In this section, we shall synthesize a discontinuous SMC law, by which the state trajecto-

ries of the Markovian jump singular time-delay system in (3.2a)–(3.2c) can be driven onto

the predefined sliding surface s(t) = 0 in a finite time and then maintained there for all

subsequent time.

Theorem 3.4.3 Consider the Markovian jump singular time-delay system in (3.2a)–(3.2c).
Suppose that the switching function is designed as (3.11) with Ki being solvable by (3.19), and
matrices Gi in (3.11) are chosen such that GiBi are nonsingular. Then, the state trajectories
of system (3.2a)–(3.2c) can be driven onto the sliding surface s(t) = 0 in a finite time by the
following SMC law:

u(t) = Kix(t) − (GiBi)
−1GiAdix(t − d) − (𝜚 + 𝜂 ‖x(t)‖ + 𝜇 ‖𝜔(t)‖) sign (BT

i G
T
i s(t)

)
, (3.21)

where 𝜚 is a positive constant which is adjustable, and 𝜇 is a positive constant which
satisfies

𝜇 ≥
maxi∈

{√
𝜆max

(
GiBwiBT

wiG
T
i

)}
mini∈

{√
𝜆min

(
GiBiBT

i G
T
i

)} .

Proof. Suppose matrices Gi are chosen such that GiBi are nonsingular. Choose the following

Lyapunov function:

W(t) = 1

2
sT (t)s(t).

According to (3.13), we have

ṡ(t) = −GiBiKix(t) + GiAdix(t − d) + GiBwi𝜔(t) + GiBiu(t) + GiBi f (x(t), t). (3.22)

Thus, taking the derivative of W(t), and considering (3.22) and the SMC law designed in

(3.21), we have

Ẇ(t) = sT (t)ṡ(t) = sT (t)GiBi

[
−Kix(t) + (GiBi)

−1GiAdix(t − d)

+(GiBi)
−1GiBwi𝜔(t) + u(t) + f (x(t), t)

]
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Optimal SMC of Markovian Jump Singular Systems with Time Delay 61

= sT (t)GiBi

[
(GiBi)

−1GiBwi𝜔(t) + f (x(t), t)

− (𝜚 + 𝜂 ‖x(t)‖ + 𝜇 ‖𝜔(t)‖) sign (BT
i G

T
i s(t)

)
]

≤ ‖‖‖sT (t)GiBwi
‖‖‖ ‖𝜔(t)‖ + ‖‖‖sT (t)GiBi

‖‖‖ ‖f (x(t), t)‖
− (𝜚 + 𝜂 ‖x(t)‖ + 𝜇 ‖𝜔(t)‖) |||BT

i G
T
i s(t)

||| . (3.23)

Substituting (3.21) into (3.23) and noting ‖‖BT
i G

T
i s(t)

‖‖ ≤ ||BT
i G

T
i s(t)

||, we have
Ẇ(t) ≤ −𝜚 ‖‖‖BT

i G
T
i s(t)

‖‖‖ ≤ −𝜚W
1

2 (t), (3.24)

where

𝜚 ≜√2𝜚mini∈
{√

𝜆min
(
GiBiBT

i G
T
i

)}
> 0.

It can be seen from (3.24) that there exists a time t∗ ≤ W1∕2(0)∕𝜚 such that W(t) = 0, and

consequently s(t) = 0, for t ≥ t∗. This means that the system state trajectories can reach onto

the predefined sliding surface in a finite time, thereby completing the proof.

3.5 Illustrative Example

Example 3.5.1 Consider Markovian jump singular time-delay system (3.1a)–(3.1c) with

two operating modes, that is, N = 2 and the following parameters:

A1 =
⎡⎢⎢⎣

0.5023 2.0125 0.0150

0.3025 0.4004 −4.0020
−0.1002 0.3002 −3.5001

⎤⎥⎥⎦ , A2 =
⎡⎢⎢⎣
0.5005 0.5052 −0.1002
0.1256 −0.0552 0.3003

0.1033 1.0015 −2.0045

⎤⎥⎥⎦ ,
Ad1 =

⎡⎢⎢⎣
−0.1669 0.0802 1.6820

−0.8162 −0.9373 0.5936

2.0941 0.6357 0.7902

⎤⎥⎥⎦ , Ad2 =
⎡⎢⎢⎣
0.1053 −0.1948 −0.6855
0.1586 0.0755 −0.2684
0.7709 −0.5266 −1.1883

⎤⎥⎥⎦ ,
B1 =

⎡⎢⎢⎣
0.9

1.8

1.4

⎤⎥⎥⎦ , B2 =
⎡⎢⎢⎣
1.5

0.9

1.1

⎤⎥⎥⎦ , Bw1 =
⎡⎢⎢⎣
0.1

0.2

0.4

⎤⎥⎥⎦ , Bw2 =
⎡⎢⎢⎣
−0.6
0.5

0.8

⎤⎥⎥⎦ ,
C1 =

[
0.8 0.3 0.9

]
, Cd1 =

[
0.2486 0.1025 −0.0410

]
,

C2 =
[
−0.5 0.2 0.3

]
, Cd2 =

[
−2.2476 −0.5108 0.2492

]
,

E =
⎡⎢⎢⎣
1 0 0

0 1 0

0 0 0

⎤⎥⎥⎦ , Π =
[
−0.3 0.3

0.8 −0.8

]
, Dw1 = 0.2, Dw2 = 0.5.
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62 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

In addition, f (x(t), t) = 0.78 exp(−t) sin(t)x1(t) (so 𝜂 can be chosen as 𝜂 = 0.78), the time delay

d = 0.5, and the disturbance input 𝜔(t) = 1∕(1 + t2).
Our aim here is to verify the effectiveness of the proposed theoretical results in the previous

sections. By solving the LMI condition (3.18) in Theorem 3.4.2 by using LMI-Toolbox in the

Matlab environment and then considering (3.19), we have

K1 =
[
−2.1356 −1.7843 1.0213

]
,

K2 =
[
−1.2769 −0.5120 −0.0922

]
.

Here, parameters G1 and G2 in (3.11) are chosen as

G1 =
[
0.1107 0.2214 0.1722

]
,

G2 =
[
0.5370 0.3222 0.3938

]
.

Thus, the switching function in (3.11) is

s(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s1(t) =
[
0.1107 0.2214 0.0000

]
x(t)

−∫
t

0

[
−1.4734 −0.9559 −0.7321

]
x(𝜃)d𝜃, i = 1,

s2(t) =
[
0.5370 0.3222 0.0000

]
x(t)

−∫
t

0

[
−1.6020 −0.1347 −0.8874

]
x(𝜃)d𝜃, i = 2.

Let 𝜚 = 0.7748, then the SMC law designed in (3.21) can be computed as

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1(t) =
[
−2.1356 −1.7843 1.0213

]
x(t)

+
[
0.2184 −0.1206 0.6137

]
x(t − d)

− 𝜌(t)sign(s1(t)), i = 1,

u2(t) =
[
−1.2769 −0.5120 −0.0922

]
x(t)

+
[
0.2690 −0.1882 −0.6035

]
x(t − d)

− 𝜌(t)sign(s2(t)), i = 2,

where

𝜌(t) = 0.7748 + 0.78 ‖x(t)‖ + 0.2483 ‖𝜔(t)‖ .
For a given initial condition of 𝜙(t) =

[
−0.8 −1.2 1.1

]T
, t ∈ [−0.5, 0], the simulation

results are given in Figures 3.1–3.2. Specifically, Figure 3.1 shows the states of the closed-

loop system, and Figure 3.2 depicts the switching function s(t).
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Figure 3.1 States of the closed-loop system
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Figure 3.2 Switching function
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64 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

3.6 Conclusion

In this chapter, we have investigated the problems of the bounded 2 gain performance

analysis and the SMC of continuous-time Markovian jump singular time-delay systems. The

major theoretical findings are as follows. First, the delay-dependent sufficient condition in

the form of LMI has been established so as to ensure that the sliding mode dynamics is

stochastically admissible with a bounded 2 gain performance. An integral-type switching

function has been designed, and then the condition that enables us to solve the parameter in

the switching function has been derived. Furthermore, it has been shown that, by synthesizing

an SMC law, the system state trajectories can be driven onto the predefined sliding surface

in a finite time. Finally, the usefulness of the proposed theory has been verified by the

numerical results.
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4
SMC of Markovian Jump Singular
Systems with Stochastic
Perturbation

4.1 Introduction

In this chapter, we will investigate the SMC design problem for Markovian jump singular

systems with stochastic perturbation. The stochastic perturbation considered here is described

as a Brownian motion, thus the overall dynamics is actually governed by an Itô stochastic dif-

ferential equation with Markovian switching parameters and singularity, namely a Markovian

jump singular stochastic system. There have been some results reported on SMC of stochastic

systems [155, 156, 158] and Markovian jump stochastic systems [157], but the SMC problem

for a Markovian jump singular stochastic system has not been fully investigated and still

remains challenging. Due to the stochastic perturbation, the stability analysis methods pro-

posed in Chapters 2 and 3 are not fully applicable in this chapter. The commonly used method

of analyzing the stability of stochastic systems is based on the Itô formula. In [23], Boukas

proposed a sufficient stability condition for a Markovian jump singular stochastic system, but

the results are not all of strict LMI form since there exist some matrix equality constraints,

which may cause problems in checking the conditions numerically.

We shall design an appropriate integral sliding surface, taking the singular matrix E into

account. As a result, the sliding mode dynamics, described by a Markovian jump singular

stochastic system, can be easily derived. The order of the resulting sliding mode dynamics

is equivalent to that of the original system, which is convenient for analyzing its stochastic

stability and the disturbance attenuation performance. A sufficient condition is proposed for

the stochastic stability of the sliding mode dynamics in terms of strict LMIs, and by which

the sliding surface can be designed. Following this, a discontinuous SMC law is synthesized

to force the system state trajectories onto the sliding surface in a finite time. In addition, we

also consider the disturbance attenuation problem when there exists an external disturbance in

the sliding mode dynamics. A sufficient condition is established, which guarantees the sliding

mode dynamics to be stochastically stable with an optimal∞ performance.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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66 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

4.2 System Description and Preliminaries

Consider Markovian jump singular stochastic systems described by

Edx(t) = [A(rt)x(t) + B(rt)(u(t) + f (x, rt))]dt + D(rt)x(t)d𝜛(t), (4.1)

where {rt, t ≥ 0} is a continuous-timeMarkov process on the probability space which has been

defined in (2.2) of Chapter 2; x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the control input;

𝜛(t) is a one-dimensional Brownian motion satisfying E{d𝜛(t)} = 0 and E{d𝜛2(t)} = dt.
Matrix E ∈ Rn×n may be singular, and we assume that rank(E) = r ≤ n. A(⋅), B(⋅); and D(⋅)
are known real matrices with appropriate dimensions. f (x, rt) ∈ Rm are unknown nonlinear

functions satisfying

‖f (x, rt)‖ ≤ 𝜀(rt)‖x(t)‖ ≤ 𝜀‖x(t)‖, rt = i ∈  , (4.2)

where 𝜀(rt) > 0 are constant scalars and we define 𝜀 ≜ maxi∈ (𝜀i).
For each possible value rt = i ∈  , A(rt) = Ai, B(rt) = Bi, D(rt) = Di, and f (x, rt) = fi(x).

Then, system (4.1) can be described by

Edx(t) = [Aix(t) + Bi(u(t) + fi(x))]dt + Dix(t)d𝜛(t). (4.3)

Assumption 4.1 For each i ∈  , the pair (Ai,Bi) in (4.3) is controllable, and the matrix Bi
has full column rank.

The nominal system of (4.3) can be formulated as

Edx(t) = Aix(t)dt + Dix(t)d𝜛(t). (4.4)

Definition 4.2.1 The Markovian jump singular stochastic system in (4.4) is said to be
stochastically stable if for any x0 ∈ Rn and r0 ∈  , there exists a positive scalar T(x0, r0) such
that

min
t→∞

E
{
∫

t

0

xT (s, x0, r0)x(s, x0, r0)ds|(x0, r0)} ≤ T(x0, r0).

We first recall the following lemma [23].

Lemma 4.2.2 The Markovian jump singular stochastic system in (4.4) is stochastically
stable if there exist nonsingular matrices Xi, such that for i ∈  ,

ETXi = XT
i E ≥ 0,

AT
i Xi + XT

i Ai + DT
i E

TXiDi +
N∑
j=1

𝜋ijE
TXj < 0.
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 67

4.3 Integral SMC

4.3.1 Sliding Mode Dynamics Analysis

Design the following integral switching function:

s(t) = GiEx(t) − ∫
t

0

Gi(Ai + BiKi)x(𝜏)d𝜏, (4.5)

where for each i ∈  , Gi ∈ Rm×n and Ki ∈ Rm×n are real matrices to be designed later. The
matrix Gi is designed to satisfy that GiBi is nonsingular and GiDi = 0.

The solution of Ex(t) is given as

Ex(t) = Ex(0) + ∫
t

0

[Aix(𝜏) + Bi(u(𝜏) + fi(x))]d𝜏 + ∫
t

0

Dix(𝜏)d𝜛(𝜏). (4.6)

It follows from (4.5) and (4.6) that

s(t) = GiEx(0) + Gi ∫
t

0

[−BiKix(𝜏) + Bi(u(𝜏) + fi(x))]d𝜏.

According to SMC theory, when the system state trajectories reach onto the sliding surface, it

follows that s(t) = 0 and ṡ(t) = 0. Then, by ṡ(t) = 0, we obtain the equivalent control law as

ueq(t) = Kix(t) − fi(x). (4.7)

Thus, by substituting (4.7) into (4.3), the sliding mode dynamics can be obtained as

Edx(t) = (Ai + BiKi)x(t)dt + Dix(t)d𝜛(t). (4.8)

Now, we will analyze the stability of the sliding mode dynamics in (4.8) based on

Lemma 4.2.2.

Proposition 4.3.1 The sliding mode dynamics in (4.8) is stochastically stable if there exist
nonsingular matrices Xi such that the following conditions hold for i ∈  ,

ETXi = XT
i E ≥ 0, (4.9a)

(
Ai + BiKi

)T
Xi + XT

i

(
Ai + BiKi

)
+ DT

i E
TXiDi +

N∑
j=1

𝜋ijE
TXj < 0. (4.9b)

Remark 4.1 Notice that the conditions in Proposition 4.3.1 are not all of strict LMI form
owing to the matrix equality constraint of (4.9a). This may cause problems in checking the
conditions numerically, since a matrix equality constraint is fragile and usually not satisfied
perfectly. Therefore, the strict LMI conditions are more desirable than non-strict ones from
the numerical point of view. ⧫
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68 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

In the following, we present a new condition in terms of strict LMIs for the stochastic

stability of the sliding mode dynamics in (4.8).

Proposition 4.3.2 The sliding mode dynamics in (4.8) is stochastically stable if there exist
matrices Pi > 0 and nonsingular matrices Qi such that for i ∈  ,

(
Ai + BiKi

)T (
PiE + RTQiS

T) + (PiE + RTQiS
T)T (Ai + BiKi

)
+ DT

i E
TPiEDi +

N∑
j=1

𝜋ijE
TPjE < 0, (4.10)

where R ∈ R(n−r)×n and S ∈ Rn×(n−r) are matrices satisfying RE = 0 and ES = 0.

Proof. LettingXi ≜ PiE + RTQiS
T in (4.10), we can obtain (4.9a)–(4.9b). Thus, by Proposition

4.3.1 we know that the sliding mode dynamics in (4.8) is stochastically stable. This completes

the proof.

In the following, we present a strict LMI condition for solving parameter Ki in the switching

function of (4.5). Before proceeding, we use the following lemma (i.e. Lemma 2.4.3 in

Chapter 2) which will play a key role in the sequel.

Lemma 4.3.3 Let Pi be symmetric matrices such that ET
LPiEL > 0 and suppose Qi is

nonsingular. Then, PiE + RTQiS
T is nonsingular and

(
PiE + RTQiS

T)−1 = iE
T + SiR,

where i are symmetric matrices and i are nonsingular matrices with

i =
(
STS
)−1

Q−1
i

(
RRT)−1 , ET

RiER =
(
ET
LPiEL

)−1
.

Theorem 4.3.4 The sliding mode dynamics in (4.8) is stochastically stable if there exist
symmetric matrices i ∈ Rn×n, nonsingular matrices i ∈ R(n−r)×(n−r), and matrices i ∈
Rm×n, i ∈ Rm×(n−r) such that for i ∈  ,

⎡⎢⎢⎢⎣
Ψ11i T

i D
T
i ER Ψ13i

⋆ −ET
RiER 0

⋆ ⋆ −Ψ33i

⎤⎥⎥⎥⎦ < 0, (4.11)
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 69

where i ≜ iE
T + SiR and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ11i ≜ Aii +T
i A

T
i + Bi

(iE
T +iR

)
+
(iE

T +iR
)T

BT
i

+ 𝜋ii
(
Ei +T

i E
T − EiE

T
)
,

Ψ33i ≜ diag
{
ET
R1ER,E

T
R2ER,… ,ET

Ri−1ER,

ET
Ri+1ER,… ,ET

RNER

}
,

Ψ13i ≜ [√𝜋i1T
i ER

√
𝜋i2T

i ER ⋯
√
𝜋i(i−1)T

i ER√
𝜋i(i+1)T

i ER ⋯
√
𝜋iNT

i ER
]
.

Moreover, the parametric matrices Ki in the switching function of (4.5) can be computed by

Ki ≜ (iE
T +iR

)−1
i

=
(iE

T +iR
) (iE

T + SiR
)−1

. (4.12)

Proof. By Proposition 4.3.2 we know that the sliding mode dynamics in (4.8) is stochastically

stable if there exist matrices Pi > 0 and nonsingular matrices Qi, such that the conditions

of (4.10) hold for i ∈  . Moreover, according to Lemma 4.3.3, we know that PiE + RTQiS
T

are nonsingular and i ≜ (PiE + RTQiS
T )−1 = iE

T + SiR. Now, performing a congruence
transformation on (4.10) by matrices i, we have

(
Ai + BiKi

)i +T
i

(
Ai + BiKi

)T +T
i D

T
i E

TPiEDii +
N∑
j=1

𝜋ijT
i E

TPjEi < 0.

Letting i ≜ Kii and i ≜ KiSi, we have

Aii +T
i A

T
i + Bi

(iE
T +iR

)
+
(iE

T +iR
)T

BT
i +T

i D
T
i ER

(
ET
RiER

)−1
ET
RDii

+ 𝜋iiT
i ER

(
ET
RiER

)−1
ET
Ri +

N∑
j=1,j≠i

𝜋ijT
i ER

(
ET
RjER

)−1
ET
Ri < 0. (4.13)

But the following fact is true:

0 ≤ [ET
Ri −

(
ET
RiER

)
ET
L

]T (
ET
RiER

)−1 [
ET
Ri −

(
ET
RiER

)
ET
L

]
= T

i ER

(
ET
RiER

)−1
ET
Ri − Ei −T

i E
T + EiE

T .

Considering 𝜋ii < 0, thus we have

𝜋iiT
i ER

(
ET
RiER

)−1
ET
Ri ≤ 𝜋ii

(
Ei +T

i E
T − EiE

T) .
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70 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Therefore, (4.13) holds if the following inequalities hold for i ∈ :
Aii +T

i A
T
i + Bi

(iE
T +iR

)
+
(iE

T +iR
)T

BT
i +T

i D
T
i ER

(
ET
RiER

)−1
ET
RDii

+ 𝜋ii
(
Ei +T

i E
T − EiE

T) + N∑
j=1,j≠i

𝜋ijT
i ER

(
ET
RjER

)−1
ET
Ri < 0. (4.14)

By Schur complement, (4.14) is equivalent to (4.11). This completes the proof.

4.3.2 SMC Law Design

In the following, we shall design an SMC law, by which the state trajectories of the Markovian

jump singular stochastic system in (4.1) can be driven onto the designed sliding surface s(t) = 0

in a finite time and maintained there for all subsequent time.

Theorem 4.3.5 Consider the Markovian jump singular stochastic system in (4.1). Suppose
that the switching function is given as (4.5) with Ki being solved by (4.12), and Gi is chosen
to satisfy that GiBi is nonsingular and GiDi = 0. Then, the state trajectories of system (4.1)
can be driven onto the sliding surface s(t) = 0 by the following SMC law:

u(t) = Kix(t) − (𝜆 + 𝜀 ‖x(t)‖) sign (s(t)) , (4.15)

where 𝜆 > 0 is an adjustable scalar.

Proof. We choose Gi as Gi = BT
i Yi, where Yi > 0 are matrices to be designed such that

GiBi = BT
i YiBi > 0 for i ∈  . Choose the following Lyapunov function:

V(t) = 1

2
sT (t)

(
BT
i YiBi

)−1
s(t).

According to (4.5), we have

ṡ(t) = GiEẋ(t) − Gi

(
Ai + BiKi

)
x(t)

= Gi

[
Aix(t) + Bi

(
u(t) + fi(x)

)]
− Gi

(
Ai + BiKi

)
x(t). (4.16)

Substituting (4.15) into (4.16) yields

ṡ(t) = BT
i YiBi

[
− (𝜆 + 𝜀 ‖x(t)‖) sign (s(t)) + fi(t)

]
. (4.17)

Thus, taking the derivation of V(t) and considering (4.17), we have

V̇(t) = sT (t)
(
BT
i YiBi

)−1
ṡ(t)

= sT (t)
[
− (𝜆 + 𝜀 ‖x(t)‖) sign (s(t)) + fi(t)

]
≤ −𝜆 ‖s(t)‖ < 0, for ‖s(t)‖ ≠ 0,
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 71

which implies that the state trajectories of the system in (4.1) will be driven onto the sliding

surface s(t) = 0 in a finite time. This completes the proof.

In the implementation of the SMC law in (4.15), the upper bound scalar 𝜀 of fi(t) in (4.2) is
required to be known a priori. If the value of 𝜀 is not available, we have to estimate it. In the
following theorem, we shall consider this case, and first design an adaptive law to estimate 𝜀,

thus an adaptive SMC law will be presented for system (4.1).

Theorem 4.3.6 Consider the Markovian jump singular stochastic system in (4.1), and
assume that the exact value of the upper bound scalar 𝜀 is not available. Suppose that the
switching function is given as (4.5) with Ki being solved by (4.12), and Gi is chosen to satisfy
that GiBi are nonsingular and GiDi = 0. Then, the state trajectories of system (4.1) can be
driven onto the sliding surface s(t) = 0 by the following adaptive SMC law:

u(t) = Kix(t) − (𝜆 + 𝜀̂(t) ‖x(t)‖) sign (s(t)) ,
where 𝜀̂(t) represents the estimate of 𝜀, and the adaptive law is given as

̇̂𝜀(t) = 1

𝛿
‖s(t)‖ ‖x(t)‖ ,

with 𝜀(0) = 0, where 𝛿 > 0 is an adjustable scalar.

Proof. Select the following Lyapunov function:

V̂(t) = 1

2

[
sT (t)

(
BT
i YiBi

)−1
s(t) + 𝛿𝜀̃2(t)

]
.

The rest of the proof can be followed along the same lines as the proof of Theorem 4.3.5.

4.4 Optimal ∞ Integral SMC

In this section, within the framework of the SMC problem, we shall further analyze the ∞
performance for Markovian jump singular stochastic systems with an 2 external disturbance.

Specifically, we will propose a sufficient condition by which the sliding mode dynamics of the

controlled system is guaranteed to be stochastically stable with an∞ performance.

4.4.1 Performance Analysis and SMC Law Design

Consider the following singular stochastic systems with Markovian jump parameters and an

external disturbance:

Edx(t) =
[
Aix(t) + Bi

(
u(t) + fi(x)

)
+ Fi𝜔(t)

]
dt + Dix(t)d𝜛(t), (4.18a)

z(t) = Cix(t) + Hi𝜔(t), (4.18b)
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72 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where𝜔(t) ∈ Rp is the disturbance input which belongs to2[0,∞); z(t) ∈ Rq is the controlled

output;Ci,Fi andHi are real constant matrices. Unless other specified, the notations in (4.18a)–

(4.18b) have the same meanings as those in (4.1).

Designing the same switching function as in (4.5) and employing the methods used in

Section 4.3, we can obtain the following sliding mode dynamics:

Edx(t) =
{(

Ai + BiKi

)
x(t) +

[
I − Bi

(
GiBi

)−1
Gi

]
Fi𝜔(t)

}
dt + Dix(t)d𝜛(t). (4.19)

Remark 4.2 Notice from (4.19) that if matrix Fi in (4.18a)–(4.18b) satisfies the so-called
matching condition – that is, there exist matrices F̃i satisfying Fi = BiF̃i – it follows that the
sliding mode dynamics in (4.19) becomes (4.8). This implies that the sliding mode dynamics is
adaptive to the disturbance 𝜔(t). In this case, the methods proposed in the previous section of
this chapter can be applied directly. In the following, we assume that matrix Fi does not satisfy
the matching condition, thus there will exist a disturbance 𝜔(t) in the sliding mode dynamics,
and the results will be sharply different from the matching case. ⧫

Definition 4.4.1 Given a scalar 𝛾 > 0, the sliding mode dynamics in (4.19) is said to
be stochastically stable with an ∞ performance level 𝛾 , if it is stochastically stable with
𝜔(t) = 0, and under zero condition, for nonzero 𝜔(t) ∈ 2[0,∞), it holds that

E
{
∫

∞

0

zT (t)z(t)dt

}
< 𝛾2 ∫

∞

0

𝜔T (t)𝜔(t)dt. (4.20)

Now, we will analyze the stability and the ∞ performance of the sliding mode dynamics

in (4.19).

Theorem 4.4.2 Given a scalar 𝛾 > 0, the sliding mode dynamics in (4.19) is stochastically
stable with an ∞ performance level 𝛾 , if there exist nonsingular matrices i such that for
i ∈  ,

ETi = T
i E ≥ 0, (4.21a)⎡⎢⎢⎢⎣

Ξ11i Ξ12i T
i Bi

⋆ Ξ22i 0

⋆ ⋆ −BT
i E

TiBi

⎤⎥⎥⎥⎦ < 0, (4.21b)

BT
i E

TiDi = 0, (4.21c)

where

⎧⎪⎪⎨⎪⎪⎩
Ξ11i ≜ T

i

(
Ai + BiKi

)
+
(
Ai + BiKi

)T i + CT
i Ci + DT

i E
TiDi +

N∑
j=1

𝜋ijE
Tj,

Ξ12i ≜ CT
i Hi + T

i Fi,

Ξ22i ≜ −𝛾2I + HT
i Hi + FT

i E
TiFi.
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 73

Proof. Choose the following Lyapunov function:

W(x, rt) = xT (t)ET(rt)x(t),
where T (rt)E = ET(rt) ≥ 0 and (rt) (denoted by i when rt = i) are nonsingular matrices
to be specified such that BT

i E
TiBi are positive definite for i ∈  .

Let  be the infinitesimal generator of the Markov process {(x(t), rt), t ≥ 0}. Then,

the average derivative emanating from point (x, i) at time t is given by the following

expression:

W(x, i) = 2xT (t)T
i

{(
Ai + BiKi

)
x(t) +

[
I − Bi

(
GiBi

)−1
Gi

]
Fi𝜔(t)

}
+ xT (t)DT

i E
TiDix(t) +

N∑
j=1

𝜋ijx
T (t)ETjx(t)

≤ xT (t)Υix(t) + 2xT (t)T
i Fi𝜔(t) + 𝜔T (t)FT

i E
TiFi𝜔(t), (4.22)

where

Υi ≜ T
i

(
Ai + BiKi

)
+
(
Ai + BiKi

)T i + DT
i E

TiDi

+ T
i Bi

(
BT
i E

TiBi

)−1
BT
i i +

N∑
j=1

𝜋ijE
Tj.

Here, we choose Gi = BT
i E

Ti in the above derivation, which guarantees that GiBi =
BT
i E

TiBi is nonsingular since ETi > 0. In addition, BT
i E

TiDi = 0 are introduced due

to GiDi = 0. Therefore, when 𝜔(t) = 0 in (4.22), it follows that W(x, i) = xT (t)Υix(t). By
Schur complement, (4.21b) implies Υi < 0 for i ∈  , thus,

W(x, i) < −mini∈
{
𝜆min(Υi)

} ‖x(t)‖ .
Therefore, we know that the the slidingmode dynamics in (4.19) with𝜔(t) = 0 is stochastically

stable.

Now, we will establish the∞ performance. To this end, assume zero initial condition (that

is, x(0) = 0, thus W(0, r0) = 0) and consider index:

 = E
{
∫

∞

0

[
zT (t)z(t) − 𝛾2𝜔T (t)𝜔(t)

]
dt

}
.

Dynkin’s formula gives

E
{
W(x, rt)

}
− E
{
W(0, r0)

}
= E
{
∫

∞

0

W(x, i)dt

}
,
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74 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

and together with (4.22), we have

 ≤ E
{
∫

∞

0

[
zT (t)z(t) − 𝛾2𝜔T (t)𝜔(t)

]
dt

}
+ E
{
W(x, rt)

}
− E
{
W(0, r0)

}
= E

{
∫

∞

0

[
zT (t)z(t) − 𝛾2𝜔T (t)𝜔(t) +W(x, i)

]
dt

}

≜ E

{
∫

∞

0

[
x(t)

𝜔(t)

]T [Υi + CT
i Ci Ξ12i

⋆ Ξ22i

] [
x(t)

𝜔(t)

]
dt

}
, (4.23)

where Ξ12i and Ξ22i are defined in (4.21b). By Schur complement, (4.21b) implies[Υi + CT
i Ci Ξ12i

⋆ Ξ22i

]
< 0.

Then  < 0 from (4.23), thus (4.20) holds. This completes the proof.

The following theorem will give a sufficient condition by which the sliding mode dynamics

in (4.19) is guaranteed to be stochastically stable with an ∞ performance level 𝛾 , and the

switching function in (4.5) can be solved.

Theorem 4.4.3 Given a scalar 𝛾 > 0, the sliding mode dynamics in (4.19) is stochastically
stable with an∞ performance level 𝛾 , if there exist symmetric matrices i ∈ n×n, positive
definite matrices i ∈ r×r, i ∈ r×r, nonsingular matricesi ∈ (n−r)×(n−r), and matrices
i ∈ m×n, i ∈ m×(n−r) such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̃11i Ξ̃12i Bi 0 T
i C

T
i T

i D
T
i ER Ξ̃17i

⋆ Ξ̃22i 0 FT
i ER 0 0 0

⋆ ⋆ Ξ̃33i 0 0 0 0

⋆ ⋆ ⋆ −i 0 0 0

⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −i 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −Ξ̃77i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.24a)

i − ET
RiER = 0, (4.24b)

BT
i ERiE

T
RDi = 0, (4.24c)

ii = I, (4.24d)
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 75

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ̃11i ≜ Aii +T
i A

T
i + Bi

(iE
T +iR

)
+
(iE

T +iR
)T

BT
i

+ 𝜋ii
(
Ei +T

i E
T − EiE

T
)
,

Ξ̃12i ≜ T
i C

T
i Hi + Fi,

Ξ̃22i ≜ −𝛾2I + HT
i Hi,

Ξ̃33i ≜ −BT
i ERiET

RBi,

Ξ̃77i ≜ diag
{1,2,… , i−1, i+1, … , N

}
,

i ≜ iE
T + SiR,

Ξ̃17i ≜
[√

𝜋i1T
i ER

√
𝜋i2T

i ER ⋯
√
𝜋i(i−1)T

i ER
√
𝜋i(i+1)T

i ER ⋯
√
𝜋iNT

i ER

]
.

Moreover, the parametric matrices Ki in the switching function of (4.5) can be computed by

Ki ≜ (iE
T +iR

)−1
i

=
(iE

T +iR
) (iE

T + SiR
)−1

. (4.25)

Proof. From Proposition 4.3.2, it can be seen that the sliding mode dynamics in (4.19)

is stochastically stable with an ∞ performance level 𝛾 , if there exist matrices Pi > 0 and

nonsingular matrices Qi such that for i ∈  ,

⎡⎢⎢⎢⎣
Ξ̂11i Ξ̂12i ZT

i Bi

⋆ Ξ̂22i 0

⋆ ⋆ −BT
i E

TPiEBi

⎤⎥⎥⎥⎦ < 0, (4.26)

BT
i E

TPiEDi = 0, (4.27)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ξ̂11i ≜ ZT
i (Ai + BiKi) + (Ai + BiKi)

TZi + CT
i Ci + DT

i E
TPiEDi +

N∑
j=1

𝜋ijE
TPjE,

Ξ̂12i ≜ CT
i Hi + ZT

i Fi,

Ξ̂22i ≜ −𝛾2I + HT
i Hi + FT

i E
TPiEFi,

Zi ≜ PiE + RTQiS
T .
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76 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

ByLemma4.3.3,we know thatZi ≜ PiE + RTQiS
T are nonsingular andZ−1

i = iE
T + SiR ≜

i, where i are symmetric matrices and i are nonsingular matrices with

ET
RiER =

(
ET
LPiEL

)−1
> 0.

Now, performing a congruence transformation on (4.26) by diag{i, I, I}, we have

⎡⎢⎢⎢⎣
Ξ̆11i Ξ̃12i Bi

⋆ Ξ̂22i 0

⋆ ⋆ −BT
i E

TPiEBi

⎤⎥⎥⎥⎦ < 0, (4.28)

where Ξ̃12i are defined in (4.24a) and

Ξ̆11i ≜ (Ai + BiKi)i +T
i (Ai + BiKi)

T +T
i C

T
i Cii +T

i D
T
i E

TPiEDii

+
N∑
j=1

𝜋ijT
i E

TPjEi.

Notice that

𝜋iiT
i ER

(
ET
RiER

)−1
ET
Ri ≤ 𝜋ii

(
Ei +T

i E
T − EiE

T) .
Letting i ≜ Kii and i ≜ KiSi, we know that (4.28) holds if for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̃11i Ξ̃12i Bi 0 T
i C

T
i T

i D
T
i ER Ξ̃17i

⋆ Ξ̃22i 0 FT
i ER 0 0 0

⋆ ⋆ Ξ̆33i 0 0 0 0

⋆ ⋆ ⋆ −ET
RiER 0 0 0

⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −ET
RiER 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −Ξ̃77i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.29)

where

Ξ̆33i ≜ −BT
i ER

(
ET
RiER

)−1
ET
RBi

= −BT
i ER−1

i ET
RBi = −BT

i ERiET
RBi,

where i = −1
i , and the other notations are defined in (4.24a). Furthermore, considering

(4.24b) and (4.24d), inequality (4.24a) yields (4.29), and (4.24c) yields (4.27). This completes

the proof.
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 77

Now, by applying the same procedures as in Section 4.3, we design a discontinuous SMC

law to drive the system state trajectories onto the predefined sliding surface in a finite time

and maintain it there for all the subsequent time.

Theorem 4.4.4 Consider the Markovian jump singular stochastic system in (4.1). Suppose
that the switching function is given as (4.5) with Ki being solved by (4.25), and Gi are chosen
as Gi = BT

i E
T
RiER, where i is the solution of (4.24a)–(4.24d). Then, the state trajectories of

system (4.1) can be driven onto the sliding surface s(t) = 0 by the SMC law u(t) designed in
(4.15).

4.4.2 Computational Algorithm

Notice that there exist three matrix equalities of (4.24b)–(4.24d) in Theorem 4.4.3, which can

not be solved directly by applying the LMI procedures. In the following, we will propose some

algorithms to solve them. Firstly, to solve (4.24b)–(4.24c), we consider the following matrix

inequalities for scalars 𝛼 > 0 and 𝛽 > 0,(i − ET
RiER

)T (i − ET
RiER

) ≤ 𝛼I, for i ∈  , (4.30)(
BT
i ERiE

T
RDi

)T (
BT
i ERiE

T
RDi

) ≤ 𝛽I, for i ∈  . (4.31)

By Schur complement, (4.30) and (4.31) are respectively equivalent to[
−𝛼I

(i − ET
RiER

)T
⋆ −I

]
≤ 0, for i ∈  , (4.32)

[
−𝛽I

(
BT
i ERiE

T
RDi

)T
⋆ −I

]
≤ 0, for i ∈  . (4.33)

Therefore, when 𝛼 > 0 and 𝛽 > 0 are chosen as two sufficiently small scalars, matrix equalities

(4.24b) and (4.24c) can be solved through LMIs (4.32) and (4.33), respectively.

We use the CCLmethod [66] to solve (4.24d) by formulating it into a sequential optimization

problem subject to LMI constraints.We suggest the followingminimization problem involving

LMI conditions instead of the original nonconvex feasibility problem in Theorem 4.4.3.

Problem SMDA (Sliding mode dynamics analysis):

min trace

(∑
i∈

ii

)
subject to (4.24a), (4.32)–(4.33) and for i ∈  ,[i I

I i

]
≥ 0. (4.34)
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78 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

If the solution of the aforesaid minimization problem is Nr, then the conditions in Theorem
4.4.3 are solvable. Although it is still not possible to always find the global optimal solution,

the proposed minimization problem is easier to solve than the original nonconvex feasibility

problem. We suggest the following algorithm to solve Problem SMDA.

Algorithm SMDA

Step 1. Choose 𝛼 > 0 and 𝛽 > 0 as sufficiently small scalars.

Step 2. Find a feasible set ( (0)
i ,(0)i , (0)

i ,(0)
i ,(0)

i ,(0)
i ) satisfying (4.24a), (4.32)–(4.33),

and (4.34). Set 𝜅 = 0.

Step 3. Solve the following optimization problem

min trace

(∑
i∈
((𝜅)i i + i (𝜅)

i

))
subject to (4.24a), (4.32)–(4.33) and (4.34),

and denote f ∗ as the optimized value.
Step 4. Substitute the obtained matrices (i,i,i,i,i,i) into (4.29). If (4.29) is satisfied,

with

||f ∗ − 2Nr|| < 𝜀,

for a sufficiently small scalar 𝜀 > 0, then output the feasible solutions (i,i,i,i,i,i),

so EXIT.

Step 5. If 𝜅 > ℕ where ℕ is the maximum number of iterations allowed, so EXIT.

Step 6. Set 𝜅 = 𝜅 + 1, ( (𝜅)
i ,(𝜅)i , (𝜅)

i ,(𝜅)
i ,(𝜅)

i ,(𝜅)
i ), and go to Step 3.

4.5 Illustrative Example

Example 4.5.1 Consider the Markovian jump singular stochastic system in (4.1) with two

operating modes, that is, N = 2 and the following parameters:

A1 =
⎡⎢⎢⎢⎣
1.5 −1.0 −1.2
1.3 1.6 1.1

0.6 0.8 −0.8

⎤⎥⎥⎥⎦ , D1 =
⎡⎢⎢⎢⎣
0.1 0.2 0.0

0.1 0.2 0.0

0.0 0.0 0.0

⎤⎥⎥⎥⎦ , B1 =
⎡⎢⎢⎢⎣
1.0

0.5

0.4

⎤⎥⎥⎥⎦ ,

A2 =
⎡⎢⎢⎢⎣
0.5 −0.6 0.7

1.2 2.4 −0.4
0.6 0.2 1.5

⎤⎥⎥⎥⎦ , D2 =
⎡⎢⎢⎢⎣
0.2 0.1 0.0

0.2 0.1 0.0

0.0 0.0 0.0

⎤⎥⎥⎥⎦ , B2 =
⎡⎢⎢⎢⎣
0.8

1.0

0.4

⎤⎥⎥⎥⎦ .
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SMC of Markovian Jump Singular Systems with Stochastic Perturbation 79

In addition, f1(x) = f2(x) = 1.5 exp(−t) sin(t)x(t) (thus, 𝜀 in (4.2) can be chosen as 𝜀 = 1.5)

and

E =
⎡⎢⎢⎢⎣
1.0 0.0 0.0

0.0 0.4 0.0

0.0 0.0 0.0

⎤⎥⎥⎥⎦ , ER =
⎡⎢⎢⎢⎣
1.0 0.0

0.0 1.0

0.0 0.0

⎤⎥⎥⎥⎦ , S =
⎡⎢⎢⎢⎣
0.0

0.0

1.0

⎤⎥⎥⎥⎦ ,
EL =

[
1.0 0.0 0.0

0.0 0.4 0.0

]
, Π =

[−0.6 0.6

0.8 −0.8

]
, R = [ 0.0 0.0 1.0 ].

Here, we only simulate the results in Section 4.3. Our aim is to design an SMC law u(t) in
(4.15) such that the closed-loop system is stochastically stable. Solving the LMI conditions in

Theorem 4.3.4, we obtain

1 =
⎡⎢⎢⎢⎣
42.5930 11.8279 16.0462

11.8279 32.5262 −8.0232
16.0462 −8.0232 52.5856

⎤⎥⎥⎥⎦ , 2 =
⎡⎢⎢⎢⎣
39.6506 9.4146 −9.2143
9.4146 36.7383 0.7701

−9.2143 0.7701 44.6905

⎤⎥⎥⎥⎦ ,
1 = [−50.9447 −186.4032 0.000 ], 2 = [−29.8068 −144.8451 0.000 ],

1 = 12.8865, 2 = −16.7176, 1 = 2.7937, 2 = 11.9350.

Thus, by (4.12) we have

K1 = [0.3324 −5.7983 0.2168],

K2 = [0.0159 −3.9317 −0.7139].

Here, parameter Gi, i ∈ {1, 2} in (4.5) can be chosen as G1 = G2 = [ 1 −1 1 ]. Thus, GiBi are

nonsingular and GiDi = 0 are guaranteed for i ∈ {1, 2}. By (4.5), the switching functions can

be computed as

s(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1(t) = [ 1.0 −1.0 0.0 ] x(t)

−∫
t

0

[ 1.0992 −7.0185 −2.9049 ] x(s)ds, i = 1,

s2(t) = [ 1.0 −1.0 0.0 ] x(t)

−∫
t

0

[−0.0968 −3.5863 2.4572 ] x(s)ds, i = 2.
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80 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Let the adjustable scalar 𝜆 be 𝜆 = 0.5, then the SMC law designed in (4.15) can be computed

as

u(t) =

⎧⎪⎪⎨⎪⎪⎩

u1(t) = [ 0.3324 −5.7983 0.2168 ] x(t)

− (0.5 + 1.5‖x(t)‖)sign(s1(t)), i = 1,

u2(t) = [ 0.0159 −3.9317 −0.7139 ] x(t)
− (0.5 + 1.5‖x(t)‖)sign(s2(t)), i = 2.

To prevent the control signals from chattering, we replace sign(s(t)) with s(t)
0.01+‖s(t)‖ . By

using the discretization approach [96], we simulate standard Brownian motion. Some initial

parameters are given as follows: the simulation time t ∈ [0,T∗] with T∗ = 8, the normally

distributed variance 𝛿t = T∗

N∗ with N
∗ = 211, step size Δt = 𝜌𝛿t with 𝜌 = 2, and the number of

discretized Brownian paths p = 10. The simulation results are given in Figures 4.1–4.7. Among

them, Figures 4.1–4.3 are the simulation results along an individual discretized Brownian

path. Figure 4.1 shows the states of the closed-loop system; Figure 4.2 depicts the switching

function s(t); and Figure 4.3 gives the SMC input u(t). Figures 4.4–4.7 show the corresponding

simulation results along 10 individual paths (dotted lines) and the average over 10 paths

(solid line). Figures 4.4–4.6 show the states of the closed-loop system. Figure 4.7 depicts the

switching function s(t).

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

t/sec

Figure 4.1 States of the closed-loop system
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0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t/sec

Figure 4.2 Switching function

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t/sec

Figure 4.3 Control input
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0 1 2 3 4 5 6 7 8
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t/sec

Figure 4.4 Individual paths and the average of the state of the closed-loop system: first component

0 1 2 3 4 5 6 7 8
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Figure 4.5 Individual paths and the average of the state of the closed-loop system: second component
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Figure 4.6 Individual paths and the average of the state of the closed-loop system: third component

0 1 2 3 4 5 6 7 8
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t/sec

Figure 4.7 Individual paths and the average of the switching function
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84 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

4.6 Conclusion

In this chapter, SMC of Markovian jump singular stochastic hybrid systems has been inves-

tigated. An integral sliding surface has been designed and some sufficient conditions have

been proposed for the stochastic stability of sliding mode dynamics in terms of strict LMI.

Also, an explicit parametrization of the desired sliding surface has been given. A sliding mode

controller has been synthesized to guarantee the reachability of the system state trajectories

to the sliding surface. Moreover, we have further analyzed the stochastic stability and 2 dis-

turbance attenuation performance for the sliding mode dynamics, and some related sufficient

conditions have also been proposed. A numerical example has been provided to illustrate the

effectiveness of the proposed design scheme.
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5
Stability and Stabilization of
Switched State-Delayed
Hybrid Systems

5.1 Introduction

In the previous three chapters, we have solved SMC design problems for systems with Marko-

vian switching parameters. From this chapter onward, we shall study the analysis and synthesis

problems for another kind of parameter-switching systems, namely switched hybrid systems.

In Chapter 1, we presented an overview of the recent developments in switched hybrid systems.

The stability analysis problem for switched hybrid systems can be classified into two major

categories: stability analysis under arbitrary switching and under restricted switchings. It was

shown that switched systems may fail to preserve stability under arbitrary switching, but may

be stable under restricted switching signals [131]. That is to say, the stability results under

restricted switchings may have less conservativeness than those under arbitrary switching.

Among the restricted switchings, the most famous concept is the average dwell time. In this

book, we shall assume that the switching signal in the considered switched hybrid systems is

not arbitrary, but is a restricted one having an average dwell time.

In this chapter, we shall investigate the stability analysis and stabilization problems

for continuous- and discrete-time switched hybrid systems with time-varying delays. For

continuous-time system, the time-varying delay d(t) is assumed to satisfy either (A1)

0 ≤ d(t) ≤ d and ḋ(t) ≤ 𝜏 or (A2) 0 ≤ d(t) ≤ d. By using the average dwell time approach

and the piecewise Lyapunov function technique, two delay-dependent sufficient conditions

are established for the exponential stability of the considered hybrid system with (A1) and

(A2), respectively. Here, the slack matrix approach is applied to further reduce the conser-

vativeness of the stability conditions caused by the time delay. For discrete-time system, the

stability conditions are also derived by the average dwell time approach, and the results are

all delay-dependent and thus less conservative. The stabilization problem is then solved by

designing a memoryless state feedback controller, and an explicit expression for the desired

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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88 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

controller is given. The work in this chapter is an important foundation for the development

of the SMC methodologies for switched hybrid systems in subsequent chapters.

5.2 Continuous-Time Systems

5.2.1 System Description

Consider the continuous-time switched state-delayed hybrid systems described by

ẋ(t) = A(𝛼(t))x(t) + Ad(𝛼(t))x(t − d(t)) + B(𝛼(t))u(t), (5.1a)

x(t) = 𝜙(t), t ∈ [−d, 0] , (5.1b)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input;𝜙(t) ∈ Cn,d is a differentiable

vector-valued initial function on [−d, 0] for a known constant d > 0; d(t) denotes the time-
varying delay satisfying either (A1) 0 ≤ d(t) ≤ d ; and ḋ(t) ≤ 𝜏 or (A2) 0 ≤ d(t) ≤ d.
In system (5.1a),

{(
A(𝛼(t)),Ad(𝛼(t)),B(𝛼(t))

)
: 𝛼(t) ∈ } is a family of matrices parame-

terized by an index set = {1, 2,… ,N}, and 𝛼(t) : R →  is a piecewise constant function

of time t called a switching signal. At a given time t, the value of 𝛼(t), denoted by 𝛼 for

simplicity, might depend on t or x(t), or both, or may be generated by any other hybrid scheme.
Therefore, the switched delayed hybrid system effectively switches among N subsystems with

the switching sequence controlled by 𝛼. We assume that the value of 𝛼 is unknown, but its

instantaneous value is available in real time.

For each 𝛼 = i (i ∈  ), we will denote the system matrices associated with mode

i by A(i) = A(𝛼), Ad(i) = Ad(𝛼), and B(i) = B(𝛼), where A(i), Ad(i), and B(i) are con-

stant matrices. Corresponding to the switching signal 𝛼, we have the switching sequence{
(i0, t0), (i1, t1),… , (ik, tk),… , | ik ∈  , k = 0, 1,…

}
with t0 = 0, which means that the ikth

subsystem is activated when t ∈
[
tk, tk+1

)
.

For the switching signal 𝛼, we revisit the average dwell time property from the following

definition.

Definition 5.2.1 [129] For any T2 > T1 ≥ 0, let N𝛼(T1,T2) denote the number of switching
of 𝛼 over (T1,T2). If N𝛼(T1,T2) ≤ N0 + (T2 − T1)∕Ta holds for Ta > 0, N0 ≥ 0, then Ta is
called an average dwell time.

Assumption 5.1 The switching signal 𝛼(t) has an average dwell time.

Definition 5.2.2 The continuous-time switched state-delayed hybrid system in (5.1a)–(5.1b)
with u(t) = 0 is said to be exponentially stable under 𝛼(t) if the solution x(t) of the system
satisfies

‖x(t)‖ ≤ 𝜂 ‖‖x(t0)‖‖C e−𝜆(t−t0), ∀t ≥ t0,

for constants 𝜂 ≥ 1 and 𝜆 > 0, and

‖‖x(t0)‖‖C ≜ sup
−d≤𝜃≤0

{‖‖x(t0 + 𝜃)‖‖ , ‖‖ẋ(t0 + 𝜃)‖‖} .
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 89

Remark 5.1 By the average dwell time switching, we mean a class of switching signals such
that the average time interval between consecutive switchings is at least Ta. Then, a basic
problem for such systems is how to specify the minimal Ta and thereby get the admissible
switching signals such that the system is stable and satisfies a prescribed performance if the
system dynamics meets some conditions. As commonly used in the literature, we choose N0 = 0

in Definition 5.2.1. ⧫

5.2.2 Main Results

In this section, we will establish an exponential stability condition for system (5.1a)–(5.1b)

with u(t) = 0 by applying the average dwell time approach and the piecewise Lyapunov

function technique, and give the following result.

Theorem 5.2.3 For a given constant 𝛽 > 0, suppose (A1) holds and there exist matrices
P(i) > 0, Q(i) > 0, R(i) > 0, and X(i), Y(i) such that for i ∈  ,

⎡⎢⎢⎢⎣
Π̄11(i) Π̄12(i) dAT (i)R(i) dX(i)
⋆ Π̄22(i) dAT

d (i)R(i) dY(i)
⋆ ⋆ −dR(i) 0

⋆ ⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎥⎦ < 0, (5.2)

where

⎧⎪⎨⎪⎩
Π̄11(i) ≜ P(i)A(i) + AT (i)P(i) + Q(i) + 𝛽P(i) + X(i) + XT (i),
Π̄12(i) ≜ P(i)Ad(i) + YT (i) − X(i),
Π̄22(i) ≜ −(1 − 𝜏)e−𝛽dQ(i) − Y(i) − YT (i).

Then the switched system in (5.1a)–(5.1b) with u(t) = 0 is exponentially stable for any switch-
ing signal with average dwell time satisfying Ta > T∗

a = ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  . (5.3)

Moreover, an estimate of the state decay is given by

‖x(t)‖ ≤ 𝜂 ‖x(0)‖C e−𝜆t, (5.4)

where

⎧⎪⎪⎨⎪⎪⎩
𝜆 ≜ 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 ≜

√
b
a
≥ 1,

a ≜ min
∀i∈ 𝜆min (P(i)) ,

b ≜ max
∀i∈ 𝜆max (P(i)) + d max

∀i∈ 𝜆max (Q(i)) +
d2

2
max
∀i∈ 𝜆max (R(i)) .

(5.5)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



90 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Proof. Choose a Lyapunov function of the following form:

V(xt, 𝛼) ≜ V1(xt, 𝛼) + V2(xt, 𝛼) + V3(xt, 𝛼),

with

⎧⎪⎪⎨⎪⎪⎩

V1(xt, 𝛼) ≜ xT (t)P(𝛼)x(t),

V2(xt, 𝛼) ≜ ∫
t

t−d(t)
e𝛽(s−t)xT (s)Q(𝛼)x(s)ds,

V3(xt, 𝛼) ≜ ∫
0

−d ∫
t

t+𝜃
e𝛽(s−t)ẋT (s)R(𝛼)ẋ(s)dsd𝜃,

(5.6)

where P(𝛼) > 0, Q(𝛼) > 0, and R(𝛼) > 0 are to be determined. Then, as with the solution of

(5.1a)–(5.1b) for a fixed 𝛼, we have

V̇1(xt, 𝛼) = 2xT (t)P(𝛼)ẋ(t)

= 2xT (t)P(𝛼)
(
A(𝛼)x(t) + Ad(𝛼)x(t − d(t))

)
, (5.7)

V̇2(xt, 𝛼) ≤ −𝛽 ∫
t

t−d(t)
e𝛽(s−t)xT (s)Q(𝛼)x(s)ds + xT (t)Q(𝛼)x(t)

−(1 − 𝜏)e−𝛽dxT (t − d(t))Q(𝛼)x(t − d(t)), (5.8)

V̇3(xt, 𝛼) ≤ −𝛽 ∫
0

−d ∫
t

t+𝜃
e𝛽(s−t)ẋT (s)R(𝛼)ẋ(s)dsd𝜃 + dẋT (t)R(𝛼)ẋ(t)

−∫
t

t−d(t)
e−𝛽dẋT (s)R(𝛼)ẋ(s)ds. (5.9)

However, the Newton–Leibniz formula gives

x(t) − x(t − d(t)) = ∫
t

t−d(t)
ẋ(s)ds.

Then, for any appropriately dimensioned matrices Z(𝛼) ≜
[
X̄(𝛼)
Ȳ(𝛼)

]
, we have

2e−𝛽d𝜑T (t)Z(𝛼)

[
x(t) − x(t − d(t)) − ∫

t

t−d(t)
ẋ(s)ds

]
= 0, (5.10)

where 𝜑(t) ≜
[

x(t)
x(t − d(t))

]
.
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 91

Considering (5.7)–(5.10), it follows that

V̇(xt, 𝛼) + 𝛽V(xt, 𝛼) ≤ 𝜑T (t)

[
Π(𝛼) + de−𝛽dZ(𝛼)R−1(𝛼)ZT (𝛼)

]
𝜑(t)

−∫
t

t−d(t)
e−𝛽d

[
ZT (𝛼)𝜑(t) + R(𝛼)ẋ(s)

]T
×R−1(𝛼)

[
ZT (𝛼)𝜑(t) + R(𝛼)ẋ(s)

]
ds, (5.11)

where

Π(𝛼) ≜
[
Π11(𝛼) Π12(𝛼)

⋆ Π22(𝛼)

]
,

with

⎧⎪⎨⎪⎩
Π11(𝛼) ≜ P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + Q(𝛼) + 𝛽P(𝛼)

+e−𝛽dX̄(𝛼) + e−𝛽dX̄T (𝛼) + dAT (𝛼)R(𝛼)A(𝛼),
Π12(𝛼) ≜ P(𝛼)Ad(𝛼) − e−𝛽dX̄(𝛼) + e−𝛽dȲT (𝛼) + dAT (𝛼)R(𝛼)Ad(𝛼),

Π22(𝛼) ≜ −(1 − 𝜏)e−𝛽dQ(𝛼) − e−𝛽d
(
Ȳ(𝛼) + ȲT (𝛼)

)
+ dAT

d (𝛼)R(𝛼)Ad(𝛼).

Notice that, in (5.11),[
ZT (𝛼)𝜑(t) + R(𝛼)ẋ(s)

]T
R−1(𝛼)

[
ZT (𝛼)𝜑(t) + R(𝛼)ẋ(s)

]
≥ 0. (5.12)

Performing a congruence transformation on (5.2) by diag
{
I, I, I, e𝛽dI

}
and consideringX(𝛼) ≜

e−𝛽dX̄(𝛼), Y(𝛼) ≜ e−𝛽dȲ(𝛼), by Schur complement, (5.2) implies

Π(𝛼) + de−𝛽dZ(𝛼)R−1(𝛼)ZT (𝛼) < 0. (5.13)

Thus, it follows from (5.11)–(5.13) that

V̇(xt, 𝛼) + 𝛽V(xt, 𝛼) ≤ 0. (5.14)

Now, for an arbitrary piecewise constant switching signal 𝛼, and for any t > 0, we let 0 <

t1 < ⋯ < tk < ⋯, k = 0, 1,…, denote the switching points of 𝛼 over the interval (0, t). As
mentioned earlier, the ikth subsystem is activated when t ∈

[
tk, tk+1

)
. Integrating (5.14) from

tk to t gives

V(xt, 𝛼) ≤ e−𝛽(t−tk)V(xtk , 𝛼(tk)). (5.15)

Using (5.3) and (5.6), at switching instant tk, we have

V(xtk , 𝛼(tk)) ≤ 𝜇V(xt−
k
, 𝛼(t−k )). (5.16)
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92 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Therefore, it follows from (5.15)–(5.16) and the relationship 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta that

V(xt, 𝛼) ≤ e−𝛽(t−tk)𝜇V(xt−
k
, 𝛼(t−k )) ≤ ⋯

≤ e−𝛽(t−0)𝜇𝜗V(x0, 𝛼(0)),

≤ e−(𝛽−ln𝜇∕Ta)tV(x0, 𝛼(0)). (5.17)

Notice from (5.6) that

V(xt, 𝛼) ≥ a ‖x(t)‖2 , V(x0, 𝛼(0)) ≤ b ‖x(0)‖2C , (5.18)

where a and b are defined in (5.5). Combining (5.17)–(5.18) yields

‖x(t)‖2 ≤ 1

a
V(xt, 𝛼) ≤ b

a
e−(𝛽−ln𝜇∕Ta)t ‖x(0)‖2C ,

which implies (5.4). By Definition 5.2.1 with t0 = 0, system (5.1a)–(5.1b) is exponentially

stable. This completes the proof.

Remark 5.2 Notice that Theorem 5.2.3 gives a delay-dependent sufficient condition for
the exponential stability of system (5.1a)–(5.1b) with u(t) = 0. In the derivation of the delay-
dependent result in Theorem 5.2.3, no model transformation was performed to system (5.1a)–
(5.1b). Moreover, we introduced slack variables X̄(𝛼) and Ȳ(𝛼), which helps avoid using
bounding techniques and hence the possible conservativenes. ⧫

Remark 5.3 Notice that there exist constraints P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), and R(i) ≤ 𝜇R(j),
∀i, j ∈  in (5.3) of Theorem 5.2.3. So 𝜇(> 1) is only dependent upon (5.3), and it is inde-
pendent of (5.2). In fact, 𝜇 can be found to have very many solutions, for example,

𝜇 = 𝜇∗ = max

{
sup
i,j∈

(
𝜆max (P(i))

𝜆min (P(j))

)
, sup
i,j∈

(
𝜆max (Q(i))

𝜆min (Q(j))

)
, sup
i,j∈

(
𝜆max (R(i))

𝜆min (R(j))

)}
,

and any value larger than 𝜇∗ can also be considered as a solution of 𝜇. ⧫

Remark 5.4 When 𝜇 = 1 in Ta > T∗
a = ln𝜇

𝛽
, we have Ta > T∗

a = 0, which means that the

switching signal 𝛼 can be arbitrary. In this case, (5.3) turns out to be P(i) ≤ P(j), Q(i) ≤
Q(j), and R(i) ≤ R(j), ∀i, j ∈  . Thus the only possibility is P(i) = P(j) = P, Q(i) = Q(j) = Q,
and R(i) = R(j) = R, ∀i, j ∈  , which implies that a common (that is, mode-independent)
Lyapunov function is required for all subsystems. ⧫

Remark 5.5 When 𝜇 > 1 and 𝛽 → 0 in Ta > T∗
a = ln𝜇

𝛽
, we have Ta → ∞, that is, there is no

switching. Switched system (5.1a)–(5.1b) is effectively operating at one of the subsystems all
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 93

the time. In this case, according to the proof of Theorem 5.2.3, the asymptotic stability result
of system (5.1a)–(5.1b) coincides with Theorem 1 in [243] when delay d(t) = d is constant. ⧫

Remark 5.6 It should be pointed out that the methods used in this chapter for deriving
the stability condition in Theorem 5.2.3 are different from that in [188], thus the obtained
results are different. Since it introduced more slack matrices in Theorem 1 of [188], the
condition becomes hard to apply to stabilization and controller synthesis problems. Our result
in Theorem 5.2.3 overcomes the above difficulty, and this can be verified by the SMC problem
presented in Chapter 7. ⧫

The result in Theorem 5.2.3 is based on (A1), but when considering (A2), we have the

following theorem. The result can be obtained by employing the same techniques used as in

the proof of Theorem 5.2.3, thus we omit the proof.

Theorem 5.2.4 For a given constant 𝛽 > 0, suppose (A2) holds and there exist matrices
P(i) > 0, R(i) > 0, and X(i), Y(i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎣
Π̃11(i) Π̃12(i) dAT (i)R(i) dX(i)

⋆ Π̃22(i) dAT
d (i)R(i) dY(i)

⋆ ⋆ −dR(i) 0

⋆ ⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎥⎥⎦
< 0,

where

⎧⎪⎨⎪⎩
Π̃11(i) ≜ P(i)A(i) + AT (i)P(i) + X(i) + XT (i) + 𝛽P(i),

Π̃12(i) ≜ P(i)Ad(i) + YT (i) − X(i),

Π̃22(i) ≜ −Y(i) − YT (i).

Then the switched system in (5.1a)–(5.1b) with u(t) = 0 is exponentially stable for any switch-
ing signal with average dwell time satisfying Ta > T∗

a = ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

P(i) ≤ 𝜇P(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  .

Moreover, an estimate of state decay is given by

‖x(t)‖ ≤ 𝜂 ‖x(0)‖C e−𝜆t,
where

⎧⎪⎪⎨⎪⎪⎩
𝜆 ≜ 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 ≜

√
c
a
≥ 1,

a ≜ min
∀i∈ 𝜆min (P(i)) ,

c ≜ max
∀i∈ 𝜆max (P(i)) +

d2

2
max
∀i∈ 𝜆max (R(i)) .
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94 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Remark 5.7 Comparing the results in Theorems 5.2.3 and 5.2.4, we found that the result
in Theorem 5.2.4 requires a weaker condition on the time-varying delay when compared with
Theorem 5.2.3. To obtain Theorem 5.2.4, a Lyapunov function is chosen as follows:

W(xt, 𝛼) ≜ xT (t)P(𝛼)x(t) + ∫
0

−d ∫
t

t+𝜃
e𝛽(s−t)ẋT (s)R(𝛼)ẋ(s)dsd𝜃.

Notice that the derivative of the functional does not require bounding of the rate of delay
d(t). In particular, the delay in Theorem 5.2.3 is required to be differentiable, but the one in
Theorem 5.2.4 may be non-differentiable with arbitrarily fast time-varying behavior. ⧫

5.2.3 Illustrative Example

Example 5.2.5 Consider the switched delay system in (5.1a)–(5.1b) with N = 2 and the

following system parameters:

A(1) =
[
−0.4 0.2

0.2 −0.3

]
, Ad(1) =

[
−0.2 0.0

0.1 −0.4

]
,

A(2) =
[
−0.2 0.3

0.2 −0.7

]
, Ad(2) =

[
−0.3 0.1

0.0 −0.2

]
,

and d = 1.2, 𝛽 = 0.5, 𝜏 = 0.3. It can be checked by using Theorem 1 of [243] that the above two

subsystems are both asymptotically stable. We consider the average dwell time scheme, and

set 𝜇 = 1.2 > 1, thus Ta > T∗
a = ln𝜇

𝛽
= 0.3646 by (5.3). Solving LMIs (5.2)–(5.3), it follows

that

P(1) =
[

3.0746 −0.1222
−0.1222 3.0759

]
, P(2) =

[
2.6710 0.0254

0.0254 3.5407

]
,

Q(1) =
[

0.0682 −0.1614
−0.1614 0.4278

]
, Q(2) =

[
0.0688 −0.1637

−0.1637 0.3622

]
,

R(1) =
[

2.7061 −0.3964
−0.3964 3.0228

]
, R(2) =

[
3.0755 −0.5469

−0.5469 2.6960

]
,

which means that the above switched system is exponentially stable. Taking Ta = 1 > T∗
a ,

and considering (5.4)–(5.5) yield a = 2.6702, b = 6.6340, 𝜂 = 1.5762 and 𝜆 = 0.1588,

thus

‖x(t)‖ ≤ 1.5762 ‖x(0)‖C e−0.1588t.
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 95

5.3 Discrete-Time Systems

5.3.1 System Description

Consider a discrete-time switched system with time delays, which can be described by the

following dynamical equations:

x(k + 1) = A(𝛼(k))x(k) + Ad(𝛼(k))x(k − d(k)) + B(𝛼(k))u(k), (5.19a)

x(k) = 𝜙(k), k = −d2,−d2 + 1,… , 0, (5.19b)

where x(k) ∈ Rn is the system state vector; u(k) ∈ Rm represents the control input; 𝜙(k)
is the initial condition;

{(
A(𝛼(k)),Ad(𝛼(k)),B(𝛼(k))

)
: 𝛼(k) ∈ } is a family of matrices

parameterized by an index set = {1, 2,… ,N}; and 𝛼(k) : Z+ →  is a piecewise constant

function of time, called a switching signal, which takes its values in the finite set  . At an

arbitrary discrete time k, the value of 𝛼(k), denoted by 𝛼 for simplicity, might depend on k or
x(k), or both, or may be generated by any other hybrid scheme.We assume that the sequence of

subsystems in switching signal 𝛼 is unknown a priori, but its instantaneous value is available in
real time. For the switching time sequence k0 < k1 < k2 < ⋯ of switching signal 𝛼, the holding

time between
[
kl, kl+1

]
is called the dwell time of the currently engaged subsystem, where

l ∈  . The delay d(k) satisfies 1 ≤ d1 ≤ d(k) ≤ d2, where d1 and d2 are constant positive
scalars representing the minimum and maximum delays, respectively.

Remark 5.8 For each possible value 𝛼 = i, i ∈  , we will denote the system matrices
associated with mode i by A(i) = A(𝛼), Ad(i) = Ad(𝛼), and B(i) = B(𝛼), where A(i), Ad(i),
and B(i) are constant matrices. Corresponding to the switching signal 𝛼, we have the switch-
ing sequence

{
(i0, k0), (i1, k1),… , (il, kl),… , | il ∈  , l = 0, 1,…

}
with k0 = 0, which means

that the ilth subsystem is activated when k ∈
[
kl, kl+1

)
. ⧫

For the switching signal 𝛼, we introduce the following definition.

Definition 5.3.1 For a switching signal and any ki > kj > k0, let N𝛼

(
kj, ki

)
be the switching

numbers of𝛼k over the interval
[
kj, ki

]
. If for any givenN0 > 0andTa > 0, we haveN𝛼

(
kj, ki

) ≤
N0 +

(
ki − kj

)
∕Ta, then Ta and N0 are called average dwell time and the chatter bound,

respectively.

Here, we assume N0 = 0 for simplicity as commonly used in the literature.

Assumption 5.2 The switching signal 𝛼(k) has an average dwell time.

Design a stabilization controller with the following general structure:

u(k) = K(𝛼)x(k), (5.20)

where K(𝛼) ∈ Rm×n are parameter matrices to be designed.
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96 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Substituting the stabilization controller in (5.20) into system (5.19a)–(5.19b), we obtain the

closed-loop system as

x(k + 1) = Ã(𝛼)x(k) + Ad(𝛼)x(k − d(k)), (5.21a)

x(k) = 𝜙(k), k = −d2,−d2 + 1,… , 0, (5.21b)

where Ã(𝛼) ≜ A(𝛼) + B(𝛼)K(𝛼).

Definition 5.3.2 The discrete-time switched time-delay hybrid system in (5.19a)–(5.19b)
with u(k) = 0 is said to be exponentially stable under 𝛼 if the solution x(k) satisfies

‖x(k)‖ ≤ 𝜂 ‖‖x(k0)‖‖C 𝜌(k−k0), ∀k ≥ k0,

for constants 𝜂 ≥ 1 and 0 < 𝜌 < 1, and

‖‖x(k0)‖‖C ≜ {‖x(k + 𝜃)‖ , ‖𝜉(k + 𝜃)‖}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

sup−d2≤𝜃≤0

,

where 𝜉(𝜃) ≜ x(𝜃 + 1) − x(𝜃).

Remark 5.9 Notice that the phrase ‘under 𝛼’ appears in Definition 5.3.2. This serves to
emphasize that all results obtained subsequently in this chapter are dependent on the switching
signal 𝛼, and 𝛼 is not an arbitrary switching signal but a restricted one having an average dwell
time. ⧫

5.3.2 Main Results

First, we will use the piecewise Lyapunov technique and the average dwell time

approach to propose a sufficient condition for the exponential stability of the discrete-

time switched time-delay system in (5.19a)–(5.19b) with u(k) = 0. We have the following

theorem.

Theorem 5.3.3 Given a constant 0 < 𝛽 < 1, suppose that there exist matrices P(i) > 0,
Q(i) > 0, R(i) > 0, S1(i) > 0, and S2(i) > 0, and matrices L(i), M(i), and N(i) such that for
i ∈  ,

⎡⎢⎢⎢⎣
𝛽−(d2+1)Φ(i) d2L(i)

(
d2 − d1

)
M(i) d2N(i)

⋆ −d2S1(i) 0 0

⋆ ⋆ −
(
d2 − d1

)
S1(i) 0

⋆ ⋆ ⋆ −d2S2(i)

⎤⎥⎥⎥⎦ < 0, (5.22)
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 97

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φ(i) ≜
⎡⎢⎢⎣
Φ11(i) 0 0

⋆ −𝛽d2+1Q(i) 0

⋆ ⋆ −𝛽d2+1R(i)

⎤⎥⎥⎦ +
⎡⎢⎢⎣
AT (i)
AT
d (i)
0

⎤⎥⎥⎦P(i)
⎡⎢⎢⎣
AT (i)
AT
d (i)
0

⎤⎥⎥⎦
T

+ d2𝛽
⎡⎢⎢⎣
AT (i) − I
AT
d (i)
0

⎤⎥⎥⎦
(
S1(i) + S2(i)

) ⎡⎢⎢⎣
AT (i) − I
AT
d (i)
0

⎤⎥⎥⎦
T

+ 2𝛽d2+1

⎧⎪⎨⎪⎩L(i)
⎡⎢⎢⎣
I
−I
0

⎤⎥⎥⎦
T

+M(i)
⎡⎢⎢⎣
0

I
−I

⎤⎥⎥⎦
T

+ N(i)
⎡⎢⎢⎣
I
0

−I

⎤⎥⎥⎦
T⎫⎪⎬⎪⎭ ,

Φ11(i) ≜ −𝛽P(i) + 𝛽R(i) + 𝛽(d2 − d1 + 1)Q(i).

Then the discrete-time switched time-delay system in (5.19a)–(5.19b) with u(k) = 0 is expo-
nentially stable for any switching signal with average dwell time satisfying Ta > T∗

a =
ceil
(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1 satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), R(i) ≤ 𝜇R(j),

S1(i) ≤ 𝜇S1(j), S2(i) ≤ 𝜇S2(j), ∀i, j ∈  . (5.23)

Proof. Choose a Lyapunov function of the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(x, 𝛼) ≜
5∑
i=1

Vi(x, 𝛼),

V1(x, 𝛼) ≜ xT (k)P(𝛼)x(k),

V2(x, 𝛼) ≜
k−1∑

l=k−d(k)
𝛽k−lxT (l)Q(𝛼)x(l),

V3(x, 𝛼) ≜
k−1∑

l=k−d2

𝛽k−lxT (l)R(𝛼)x(l),

V4(x, 𝛼) ≜
−d1∑

s=−d2+1

k−1∑
l=k+s

𝛽k−lxT (l)Q(𝛼)x(l),

V5(x, 𝛼) ≜
−1∑

s=−d2

k−1∑
l=k+s

𝛽k−l𝜉T (l)S(𝛼)𝜉(l),

(5.24)
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98 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where 𝜉(k) ≜ x(k + 1) − x(k), S(𝛼) ≜ S1(𝛼) + S2(𝛼), and P(𝛼) > 0, Q(𝛼) > 0, R(𝛼) > 0,

S1(𝛼) > 0, and S2(𝛼) > 0 are real matrices. For k ∈ [kl, kl+1), we define

ΔVj(x(k), 𝛼) ≜ Vj(x(k + 1), 𝛼) − Vj(x(k), 𝛼), j = 1, 2, 3, 4, 5,

thus ΔV(x, 𝛼) =
∑5

i=1ΔVi(x, 𝛼) with

ΔV1(x, 𝛼) = xT (k + 1)P(𝛼)x(k + 1) − xT (k)P(𝛼)x(k), (5.25)

ΔV2(x, 𝛼) ≤ −(1 − 𝛽)

k−1∑
l=k−d(k)

𝛽k−lxT (l)Q(𝛼)x(l)

+
k−d1∑

l=k+1−d2

𝛽k+1−lxT (l)Q(𝛼)x(l) + 𝛽xT (k)Q(𝛼)x(k)

−𝛽d2+1xT (k − d(k))Q(𝛼)x(k − d(k)), (5.26)

ΔV3(x, 𝛼) = −(1 − 𝛽)

k−1∑
l=k−d2

𝛽k−lxT (l)R(𝛼)x(l) + 𝛽xT (k)R(𝛼)x(k)

−𝛽d2+1xT (k − d2)R(𝛼)x(k − d2), (5.27)

ΔV4(x, 𝛼) = −(1 − 𝛽)

−d1∑
s=−d2+1

k−1∑
l=k+s

𝛽k−lxT (l)Q(𝛼)x(l) + 𝛽(d2 − d1)x
T (k)Q(𝛼)x(k)

−
k−d1∑

l=k+1−d2

𝛽k+1−lxT (l)Q(𝛼)x(l), (5.28)

ΔV5(x, 𝛼) ≤ −(1 − 𝛽)

−1∑
s=−d2

k−1∑
l=k+s

𝛽k−l𝜉T (l)
(
S1(𝛼k) + S2(𝛼)

)
𝜉(l)

+ d2𝛽𝜉
T (k)

(
S1(𝛼) + S2(𝛼k)

)
𝜉(k)

− 𝛽d2+1

[
k−1∑

l=k−d2

𝜉T (l)S2(𝛼)𝜉(l) +
k−1∑

l=k−d(k)
𝜉T (l)S1(𝛼)𝜉(l)

+
k−d(k)−1∑
l=k−d2

𝜉T (l)S1(𝛼)𝜉(l)

]
. (5.29)
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 99

Moreover, for 𝜁 (k) ≜ [ xT (k) xT (k − d(k)) xT (k − d2)
]T
and any appropriately dimensioned

matrices L(𝛼), M(𝛼), and N(𝛼), the following equations are true:

2𝛽d2+1𝜁T (k)L(𝛼)

[
x(k) − x(k − d(k)) −

k−1∑
l=k−d(k)

𝜉(l)

]
= 0

2𝛽d2+1𝜁T (k)M(𝛼)

[
x(k − d(k)) − x(k − d2) −

k−d(k)−1∑
l=k−d2

𝜉(l)

]
= 0

2𝛽d2+1𝜁T (k)N(𝛼)

[
x(k) − x(k − d2) −

k−1∑
l=k−d2

𝜉(l)

]
= 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (5.30)

Considering (5.25)–(5.29) and (5.30), we have

ΔV(x, 𝛼) + (1 − 𝛽)V(x, 𝛼)

≤ 𝜁T (k)

{
Φ(𝛼) + 𝛽d2+1

[
d2L(𝛼)S

−1
1
(𝛼)LT (𝛼)

+
(
d2 − d1

)
M(𝛼)S−1

1
(𝛼)MT (𝛼) + d2N(𝛼)S

−1
2
(𝛼)NT (𝛼)

]}
𝜁 (k)

− 𝛽d2+1

[
k−1∑

l=k−d(k)
ΓT
1
S−1
1
(𝛼)Γ1+

k−d(k)−1∑
l=k−d2

ΓT
2
S−1
1
(𝛼)Γ2+

k−1∑
l=k−d2

ΓT
3
S−1
2
(𝛼)Γ3

]
,

where Φ(𝛼) is defined in (5.22) and{
Γ1 ≜ S1(𝛼)𝜉(l) + LT (𝛼)𝜁 (k), Γ2 ≜ S1(𝛼)𝜉(l) +MT (𝛼)𝜁 (k),
Γ3 ≜ S2(𝛼)𝜉(l) + NT (𝛼)𝜁 (k).

Moreover, it can be seen from (5.22) that

Φ(𝛼) + 𝛽d2+1
[
d2L(𝛼)S

−1
1
(𝛼)LT (𝛼) +

(
d2 − d1

)
M(𝛼)S−1

1
(𝛼)MT (𝛼)

+d2N(𝛼)S−12 (𝛼)NT (𝛼)

]
< 0.

Then we have

ΔV(x(k), 𝛼(k)) + (1 − 𝛽)V(x(k), 𝛼(k)) < 0, ∀k ∈ [kl, kl+1). (5.31)

Now, for an arbitrary piecewise constant switching signal 𝛼k, and for any k > 0, we let

k0 < k1 < ⋯ < kl < ⋯, l = 1,…, denote the switching points of 𝛼k over the interval (0, k).
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100 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

As mentioned earlier, the ilth subsystem is activated when k ∈
[
kl, kl+1

)
. Therefore, for k ∈

[kl, kl+1), it holds from (5.31) that

V(x(k), 𝛼(k)) < 𝛽k−klV(x(kl), 𝛼(kl)). (5.32)

Using (5.23) and (5.24), at switching instant tk, we have

V(x(kl), 𝛼(kl)) ≤ 𝜇V(x(kl), 𝛼(kl−1)). (5.33)

Therefore, it follows from (5.32)–(5.33) and the relationship 𝜗 = N𝛼(0, k) ≤ (k − k0)∕Ta that

V(x(k), 𝛼(k)) ≤ 𝛽k−kl𝜇V(x(kl), 𝛼(kl−1))

≤ ⋯

≤ 𝛽(k−k0)𝜇𝜗V(x(k0), 𝛼(k0))

≤ (𝛽𝜇1∕Ta)(k−k0)V(x(k0), 𝛼(k0)). (5.34)

Note from (5.24) that there exist two positive constants a and b (a ≤ b) such that

V(x(k), 𝛼(k)) ≥ a ‖x(k)‖2 , V(x(k0), 𝛼(k0)) ≤ b ‖‖x(k0)‖‖2C . (5.35)

Combining (5.34) and (5.35) yields

‖x(k)‖2 ≤ 1

a
V(x(k), 𝛼(k))

≤ b
a

(
𝛽𝜇1∕Ta

)(k−k0) ‖‖x(k0)‖‖2C .
Furthermore, letting 𝜌 ≜√𝛽𝜇1∕Ta , it follows that

‖x(k)‖ ≤√b
a
𝜌(k−k0) ‖‖x(k0)‖‖C .

By Definition 5.3.2, we know that if 0 < 𝜌 < 1, that is, Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, the discrete-

time switched time-delay system in (5.19a)–(5.19b) with u(k) = 0 is exponentially stable,

where function ceil(h) represents rounding real number h to the nearest integer greater than or
equal to h. The proof is completed.

Remark 5.10 In Theorem 5.3.3, the parameter 𝛽 plays a key role in controlling the lower

bound of the average dwell time, which can be seen from Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
. Specifically,

if 𝛽 is given a smaller value, the lower bound of the average dwell time becomes smaller with
a fixed 𝜇, which may result in the instability of the system. ⧫
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 101

Remark 5.11 Note that when 𝜇 = 1 in Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
we have Ta > T∗

a = 0, which

means that the switching signal 𝛼(k) can be arbitrary. In this case, (5.23) turns out to be P(i) =
P(j) = P, Q(i) = Q(j) = P, R(i) = R(j) = P, S1(i) = S1(j) = S1, S2(i) = S2(j) = S2, ∀i, j ∈  ,
and the proposed approach becomes a quadratic one thus conservative. In this case, the system
in (5.19a)–(5.19b) with u(k) = 0 turns out to be

x(k + 1) = Ax(k) + Adx(k − d(k)), (5.36a)

x(k) = 𝜙(k), k = −d2,−d2 + 1,… , 0, (5.36b)

and we have the following result for the system in (5.36a)–(5.36b). ⧫

Corollary 5.3.4 The discrete-time time-delay system in (5.36a)–(5.36b) is asymptotically
stable if there exist matrices P > 0, Q > 0, R > 0, S1 > 0, and S2 > 0, and matrices L, M, and
N such that ⎡⎢⎢⎢⎣

Ψ d2L
(
d2 − d1

)
M d2N

⋆ −d2S1 0 0

⋆ ⋆ −
(
d2 − d1

)
S1 0

⋆ ⋆ ⋆ −d2S2

⎤⎥⎥⎥⎦ < 0,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ ≜
⎡⎢⎢⎣
Ψ11 0 0

⋆ −Q 0

⋆ ⋆ −R

⎤⎥⎥⎦ +
⎡⎢⎢⎣
AT

AT
d

0

⎤⎥⎥⎦P
⎡⎢⎢⎣
AT

AT
d

0

⎤⎥⎥⎦
T

+
⎡⎢⎢⎣
AT − I
AT
d
0

⎤⎥⎥⎦ d2
(
S1 + S2

) ⎡⎢⎢⎣
AT − I
AT
d
0

⎤⎥⎥⎦
T

+ 2

⎧⎪⎨⎪⎩L
⎡⎢⎢⎣
I
−I
0

⎤⎥⎥⎦
T

+M
⎡⎢⎢⎣
0

I
−I

⎤⎥⎥⎦
T

+ N
⎡⎢⎢⎣
I
0

−I

⎤⎥⎥⎦
T⎫⎪⎬⎪⎭ ,

Ψ11 ≜ −P + R + (d2 − d1 + 1)Q.

Proof. To prove the above result, we choose the following Lyapunov function:

W(x) ≜ xT (k)Px(k) +
k−1∑

l=k−d(k)
xT (l)Qx(l) +

k−1∑
l=k−d2

xT (l)Rx(l)

+
−d1∑

s=−d2+1

k−1∑
l=k+s

xT (l)Qx(l) +
−1∑

s=−d2

k−1∑
l=k+s

𝜉T (l)
(
S1 + S2

)
𝜉(l),
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102 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where 𝜉(k) ≜ x(k + 1) − x(k), and P > 0, Q > 0, R > 0, S1 > 0, and S2 > 0 are real matrices

to be determined. The remaining processes can be followed along the same lines as for the

proof of Theorem 5.3.3, and we omit the details.

Notice that there exist two product terms between the Lyapunov matrices (i.e. P(i) and
S1(i) + S2(i)) and the system matrices A(i) in the condition of Theorem 5.3.3, which will

cause some problems with the solution of the stabilization control synthesis problem. In the

following, a subsequent result is given in order to facilitate the control design procedure.

Corollary 5.3.5 Given a constant 0 < 𝛽 < 1, suppose that there exist matrices P(i) > 0 and
Q(i) > 0 such that for i ∈  ,[

Φ11(i) + AT (i)P(i)A(i) AT (i)P(i)Ad(i)
⋆ −𝛽d2+1Q(i) + AT

d (i)P(i)Ad(i)

]
< 0,

where

Φ11(i) ≜ −𝛽P(i) + 𝛽(d2 − d1 + 1)Q(i).

Then the discrete-time switched time-delay system in (5.19a)–(5.19b) with u(k) = 0 is expo-
nentially stable for any switching signal with average dwell time satisfying Ta > T∗

a =
ceil
(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1 satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), ∀i, j ∈  .

Now, based on the above corollary, we consider the stabilization problem for system (5.19a)–

(5.19b).

Theorem 5.3.6 Given a constant 0 < 𝛽 < 1, the system in (5.19a)–(5.19b) is stabilizable,
that is, the closed-loop system in (5.21a)–(5.21b) is exponentially stable under the control
input u(k) in (5.20), if there exist matrices (i) > 0, (i) > 0, and (i) such that for i ∈  ,

⎡⎢⎢⎣
Φ̃11(i) 0 (i)AT (i) + T (i)BT (i)
⋆ −𝛽d2+1(i) (i)AT

d (i)
⋆ ⋆ −(i)

⎤⎥⎥⎦ < 0, (5.37)

where

Φ̃11(i) ≜ −𝛽(i) + 𝛽(d2 − d1 + 1)(i).
Then the discrete-time switched time-delay system in (5.19a)–(5.19b) is exponentially stabi-

lizable for any switching signal with average dwell time satisfying Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
,

where 𝜇 ≥ 1 satisfies

(i) ≤ 𝜇(j), (i) ≤ 𝜇(j), ∀i, j ∈  . (5.38)
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 103

In this case, a stabilizing state feedback controller can be chosen by

u(k) = K(i)x(k) = (i)−1(i)x(k). (5.39)

Proof. By Schur complement, it can be seen from Corollary 5.3.5 that the closed-loop system

in (5.21a)–(5.21b) is exponentially stable if there matrices P(i) > 0 and Q(i) > 0 such that for

i ∈  ,

⎡⎢⎢⎣
Φ11(i) 0 ÃT (i)P(i)
⋆ −𝛽d2+1Q(i) AT

d (i)P(i)
⋆ ⋆ −P(i)

⎤⎥⎥⎦ < 0, (5.40)

where the switching signal has an average dwell time satisfying Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, where

𝜇 ≥ 1 satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), ∀i, j ∈  .

Performing a congruence transformation on (5.40) by diag {(i),(i),(i)} (where (i) =
P−1(i)) and letting (i) ≜ (i)Q(i)(i), we have

⎡⎢⎢⎣
Φ̃11(i) 0 (i)ÃT (i)
⋆ −𝛽d2+1(i) (i)AT

d (i)
⋆ ⋆ −(i)

⎤⎥⎥⎦ < 0,

where Φ̃11(i) is defined in (5.37). Moreover, we define (i) = K(i)(i), we have (5.37), and
we know that K(i) = (i)−1(i). The proof is completed.

5.3.3 Illustrative Example

Example 5.3.7 (Stability analysis) Consider the system in (5.19a)–(5.19b) with N = 2, and

its parameters are given as follows:

A(1) =
⎡⎢⎢⎣
0.2 0.1 −0.01
0.1 0.2 −0.1
0.2 −0.06 −0.13

⎤⎥⎥⎦ , Ad(1) =
⎡⎢⎢⎣
0.06 −0.2 −0.15
0.04 −0.01 0.36

0.2 0.1 −0.07

⎤⎥⎥⎦ ,
A(2) =

⎡⎢⎢⎣
0.3 −0.1 −0.3

−0.04 0.2 0.2

0.1 −0.05 −0.2

⎤⎥⎥⎦ , Ad(2) =
⎡⎢⎢⎣
−0.04 0.05 −0.2
−0.2 0.1 −0.1
0.06 −0.1 −0.03

⎤⎥⎥⎦ .
and d1 = 1, d2 = 2, 𝛽 = 0.8. We consider the average dwell time approach proposed in this

chapter, and set 𝜇 = 1.5 > 1, thus Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
= 2. Solving LMI (5.22) with
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104 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Table 5.3.7 Upper bound of d2 (denoted by d̂2) for
different 𝛽

𝛽 0.5 0.6 0.7 0.8 0.9

d̂2 1.3344 1.7345 2.2247 2.9278 4.1299

(5.23), we can obtain a feasible solution of
(
P(1),P(2),Q(1),Q(2),R(1),R(2), S1(1), S1(2),

S2(1), S2(2),L(1),L(2),M(1),M(2),N(1),N(2)
)
. Therefore, we can conclude that the above

discrete-time switched system is exponentially stable.

In addition, for d1 = 1, 𝜇 = 1.5, and 𝜏 = 0.6, considering different 𝛽, the upper bound of

d2 for different cases are listed in Table 5.3.7.

Example 5.3.8 (Stabilization problem) Consider the system in (5.19a)–(5.19b) with N = 2,

and the system parameters are given as follows:

A(1) =
⎡⎢⎢⎣
−0.9 0.2 −0.2
0.2 −0.1 0.3

−0.3 0.1 0.3

⎤⎥⎥⎦ , Ad(1) =
⎡⎢⎢⎣
0.2 0 0.1

0.1 0.3 0.1

0.3 0.1 0.2

⎤⎥⎥⎦ , B(1) =
⎡⎢⎢⎣
0

0

2

⎤⎥⎥⎦ ,
A(2) =

⎡⎢⎢⎣
−0.8 −0.1 −0.2
0.2 −0.1 0.3

0.2 −0.1 0.2

⎤⎥⎥⎦ , Ad(2) =
⎡⎢⎢⎣
0.2 0.1 0

0.1 0.2 0.1

0.1 0.1 0.3

⎤⎥⎥⎦ , B(2) =
⎡⎢⎢⎣
0

0

2

⎤⎥⎥⎦ ,
with d(k) = 2.5 + (−1)k∕2 (thus d1 = 1, d2 = 3), and suppose that 𝜇 = 1.5, 𝛽 = 0.9, and

x(𝜃) =
[
−0.3 1.0 −0.8

]T
, 𝜃 = −3,−2,−1, 0.

The switching signal is given in Figure 5.1 (which is generated randomly; here, ‘1’ and ‘2’

represent the first and second subsystems, respectively). The state trajectories of the open-loop

system are shown in Figure 5.2, from which we can see that the open-loop system is not

stable. In this situation, we will design a state feedback stabilization controller such that the

closed-loop system is stable. To this end, by solving the LMI conditions in Theorem 5.3.6, we

obtain

K1 =
[
0.1480 −0.0307 −0.1965

]
,

K2 =
[
−0.2096 0.0475 −0.1501

]
.

The state trajectories of the closed-loop system are shown in Figure 5.3.

5.4 Conclusion

The stability analysis and stabilization problems have been investigated for continuous- and

discrete-time switched hybrid systems with time-varying delay. By using the average dwell
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Stability and Stabilization of Switched State-Delayed Hybrid Systems 105
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Figure 5.1 Switching signal
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Figure 5.2 States of the open-loop system

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



106 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems
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Figure 5.3 States of the closed-loop system

time approach and the piecewise Lyapunov function technique, some delay-dependent suffi-

cient conditions have been proposed to guarantee the exponential stability of the considered

systems. To further reduce the conservativeness caused by the time-varying delays, the slack

matrix variables technique has been applied to seek the relationship between the Newton–

Leibniz formula, instead of applying the traditional model transformation. In addition, a sta-

bilization controller design approach has been developed for discrete-time switched delayed

hybrid systems, and an explicit expression for the desired state feedback controller has also

been given. Finally, two numerical examples have been provided to illustrate the effectiveness

of the theoretic results obtained.
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6
Optimal DOF Control of Switched
State-Delayed Hybrid Systems

6.1 Introduction

In practice, there are always some system states that cannot be measured, so the unmeasurable

state components can not be used for designing feedback control. Output feedback control is an

effective control strategy to deal with systems with inaccessible state components. However,

limited results have been reported on output feedback control of switched hybrid systems. In

this chapter, the DOF control problem is studied for continuous-time switched hybrid systems

with time-varying delays. This chapter is divided into two parts. First, we will investigate the

optimal 2-∞ DOF control for switched hybrid systems with time-varying delays, and the

weighted2-∞ performance is first defined. By using the average dwell time approach and the

piecewise Lyapunov function technique, a delay-dependent sufficient condition is proposed to

assure the closed-loop system to be exponentially stable with a weighted 2-∞ performance

(i.e. the existence condition for the desired 2-∞ DOF controller). Meanwhile, a decay

estimate is explicitly given for quantifying the convergence rate of the dynamics of the closed-

loop system. Since the proposed existence condition contains some product terms between

the Lyapunov matrices and the system matrices – and more importantly, all these matrices are

mode-dependent – it is difficult to use them directly to establish the DOF controller solvability

condition by the linearizing variable transforms approach. A decoupling technique is used

by introducing a slack mode-independent matrix variable, and a new existence condition

is obtained, by which the corresponding solvability condition for the desired 2-∞ DOF

controller design is then established. In the second part, we will study the guaranteed cost

DOF controller design for the continuous-time switched hybrid system with both discrete and

neutral delays. A sufficient delay-dependent condition is first proposed by means of LMIs,

which guarantees the closed-loop system exponentially stable with a certain bound for the

prescribed cost function. The corresponding solvability conditions for the desired guaranteed

cost DOF controller is then established. In both parts, since the obtained DOF solvability

conditions are not all expressed in terms of strict LMI, the CCL method is exploited to cast

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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108 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

them into sequential minimization problems subject to LMI constraints, which can be readily

solved by using standard numerical software.

6.2 Optimal 2-∞ DOF Controller Design

6.2.1 System Description and Preliminaries

Consider a class of switched state-delayed hybrid systems of the form:

ẋ(t) = A(𝛼(t))x(t) + Ad(𝛼(t))x(t − d(t)) + B(𝛼(t))u(t) + B1(𝛼(t))𝜔(t), (6.1a)

y(t) = C(𝛼(t))x(t) + Cd(𝛼(t))x(t − d(t)) + D1(𝛼(t))𝜔(t), (6.1b)

z(t) = E(𝛼(t))x(t) + Ed(𝛼(t))x(t − d(t)), (6.1c)

x(t) = 𝜙(t), t ∈ [−d, 0] , (6.1d)

where x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the control input; y(t) ∈ Rp is the

measured output; z(t) ∈ Rq is the controlled output; 𝜔(t) ∈ Rl is the disturbance input which

belongs to2[0,∞). {(A(𝛼),Ad(𝛼),B(𝛼),B1(𝛼),C(𝛼),Cd(𝛼),D1(𝛼),E(𝛼),Ed(𝛼)) : 𝛼(t) ∈  }

is a family of matrices parameterized by an index set  = {1, 2,… ,N}, and 𝛼(t) : R → 
(denoted by 𝛼 for simplicity) is the switching signal defined as the same in Chapter 5. d(t)
denotes the time-varying delays satisfying 0 ≤ d(t) ≤ d and ḋ(t) ≤ 𝜏 for known constants d
and 𝜏 and 𝜙(t) is a differentiable vector-valued initial function on [−d, 0]. For each possible
value 𝛼 ∈  , we will denote the system matrices associated with mode i by A(i) = A(𝛼),
Ad(i) = Ad(𝛼), B(i) = B(𝛼), B1(i) = B1(𝛼), C(i) = C(𝛼), Cd(i) = Cd(𝛼), D1(i) = D1(𝛼), E(i) =
E(𝛼), and Ed(i) = Ed(𝛼).

Assuming that some state components of system (6.1a) are not available, we now seek to

design a DOF controller of general structure described by

ẋc(t) = Ac(𝛼)xc(t) + Bc(𝛼)y(t), (6.2a)

u(t) = Cc(𝛼)xc(t) + Dc(𝛼)y(t), (6.2b)

where xc(t) ∈ Rn is the DOF controller state vector; Ac(𝛼), Bc(𝛼), Cc(𝛼), and Dc(𝛼) are

appropriately dimensioned matrices to be determined.

Augmenting the model of (6.1a)–(6.1d) to include the states of the DOF controller dynamics

in (6.2a)–(6.2b), we obtain the following closed-loop system:

𝜉̇(t) = Ā(𝛼)𝜉(t) + Ād(𝛼)K𝜉(t − d(t)) + B̄(𝛼)𝜔(t), (6.3a)

z(t) = C̄(𝛼)𝜉(t) + C̄d(𝛼)K𝜉(t − d(t)), (6.3b)

𝜉(t) = 𝜑(t), t ∈ [−d, 0] , (6.3c)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 109

where 𝜉(t) ≜
[
x(t)
xc(t)

]
, K ≜ [ I 0

]
and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ā(𝛼) ≜
[
A(𝛼) + B(𝛼)Dc(𝛼)C(𝛼) B(𝛼)Cc(𝛼)

Bc(𝛼)C(𝛼) Ac(𝛼)

]
,

Ād(𝛼) ≜
[
Ad(𝛼) + B(𝛼)Dc(𝛼)Cd(𝛼)

Bc(𝛼)Cd(𝛼)

]
,

B̄(𝛼) ≜
[
B1(𝛼) + B(𝛼)Dc(𝛼)D1(𝛼)

Bc(𝛼)D1(𝛼)

]
,

C̄(𝛼) ≜ [E(𝛼) 0
]
, C̄d(𝛼) ≜ Ed(𝛼).

(6.4)

Before proceeding, we give the following definitions.

Definition 6.2.1 The closed-loop system in (6.3a)–(6.3c) with 𝜔(t) = 0 is said to be expo-
nentially stable under 𝛼 if its solution 𝜉(t) satisfies

‖𝜉(t)‖ ≤ 𝜂 ‖‖𝜉(t0)‖‖C e−𝜆(t−t0), ∀t ≥ t0,

where 𝜂 ≥ 1 and 𝜆 > 0 are two real constants, and

‖‖𝜉(t0)‖‖C ≜ sup
−d≤𝜃≤0

{‖‖𝜉(t0 + 𝜃)‖‖ , ‖‖𝜉̇(t0 + 𝜃)‖‖} .
Definition 6.2.2 For 𝛽 > 0 and 𝛾 > 0, the closed-loop system in (6.3a)–(6.3c) is said to
be exponentially stable with a weighted 2-∞ performance 𝛾 , if under 𝛼 it is exponentially
stable with 𝜔(t) = 0, and under zero initial condition, that is, 𝜑(t) = 0, t ∈ [−d, 0], for any
nonzero 𝜔(t) ∈ 2[0,∞), it holds that

sup
∀t

{
e−𝛽tzT (t)z(t)

}
< 𝛾2 ∫

∞

0

𝜔T (t)𝜔(t)dt. (6.5)

Therefore, the2-∞DOFcontrol problem can be formulated as follows: for switched state-

delayed hybrid systems (6.1a)–(6.1d) and a prescribed performance level 𝛾 > 0, determine

DOF controllers in the form of (6.2a)–(6.2b) such that the resulting closed-loop system in

(6.3a)–(6.3c) is exponentially stable with a weighted 2-∞ performance level 𝛾 .

6.2.2 Main Results

First, we will investigate the exponential stability and the weighted 2-∞ performance for

the closed-loop system (6.3a)–(6.3c), and give the following result.
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110 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Theorem 6.2.3 Given constants 𝛽 > 0 and 𝛾 > 0, suppose that there exist matrices P(i) > 0,
Q(i) > 0, R(i) > 0, X(i), Y(i), and Z(i) such that for i ∈  ,

⎡⎢⎢⎢⎣
Π1(i) + Π2(i) + ΠT

2
(i) dΠT

3
(i)KTR(i) dΠT

4
(i)

⋆ −dR(i) 0

⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎥⎦ < 0, (6.6a)

⎡⎢⎢⎢⎣
−P(i) 0 C̄T (i)

⋆ −P(i) KTC̄T
d (i)

⋆ ⋆ − 1

2
𝛾2I

⎤⎥⎥⎥⎦ < 0, (6.6b)

where d̃ ≜ −(1 − 𝜏)e−𝛽d and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Π1(i) ≜
⎡⎢⎢⎢⎣
P(i)Ā(i) + ĀT (i)P(i) + KTQ(i)K + 𝛽P(i) P(i)Ād(i) P(i)B̄(i)

⋆ −d̃Q(i) 0

⋆ ⋆ −I

⎤⎥⎥⎥⎦ ,
Π2(i) ≜ [ΠT

4
(i)K −ΠT

4
(i) 0

]
,

Π3(i) ≜ [ Ā(i) Ād(i) B̄(i)
]
,

Π4(i) ≜ [XT (i) YT (i) ZT (i)
]
.

Then, the closed-loop system in (6.3a)–(6.3c) is exponentially stable with a weighted 2-∞
performance level 𝛾 for any switching signal with average dwell time satisfying Ta > T∗

a = ln𝜇
𝛽
,

where 𝜇 ≥ 1 satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  . (6.7)

Moreover, an estimate of the state decay is given by

‖𝜉(t)‖ ≤ 𝜂 ‖‖𝜉0‖‖C e−𝜆t, (6.8)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆 ≜ 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 ≜

√
b
a
≥ 1,

a ≜ min
∀i∈ 𝜆min (P(i)) ,

b ≜ max
∀i∈ 𝜆max (P(i)) + d max

∀i∈ 𝜆max (Q(i)) +
d2

2
max
∀i∈ 𝜆max (R(i)) .

(6.9)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 111

Proof. Choose a Lyapunov function of the following form:

V(𝜉t, 𝛼) ≜ 𝜉T (t)P(𝛼)𝜉(t) + ∫
t

t−d(t)
e𝛽(s−t)𝜉T (s)KTQ(𝛼)K𝜉(s)ds

+∫
0

−d ∫
t

t+𝜃
e𝛽(s−t)𝜉̇T (s)KTR(𝛼)K𝜉̇(s)dsd𝜃, (6.10)

where P(𝛼) > 0, Q(𝛼) > 0, and R(𝛼) > 0, 𝛼 ∈  are to be determined. Then, as with the

solution of system (6.3a)–(6.3c) for a fixed 𝛼, it follows that

V̇(𝜉t, 𝛼) ≤ 2𝜉T (t)P(𝛼)[Ā(𝛼)𝜉(t) + Ād(𝛼)K𝜉(t − d(t)) + B̄(𝛼)𝜔(t)]

+ 𝜉T (t)KTQ(𝛼)K𝜉(t) + d𝜉̇T (t)KTR(𝛼)K𝜉̇(t)

− (1 − 𝜏)e−𝛽d𝜉T (t − d(t))KTQ(𝛼)K𝜉(t − d(t))

− ∫
t

t−d(t)
𝛽e𝛽(s−t)𝜉T (s)KTQ(𝛼)K𝜉(s)ds

− ∫
t

t−d(t)
e−𝛽d 𝜉̇T (s)KTR(𝛼)K𝜉̇(s)ds

− ∫
0

−d ∫
t

t+𝜃
𝛽e𝛽(s−t)𝜉̇T (s)KTR(𝛼)K𝜉̇(s)dsd𝜃. (6.11)

On the other hand, Newton–Leibniz formula gives

𝜉(t) − 𝜉(t − d(t)) = ∫
t

t−d(t)
𝜉̇(s)ds.

Then for any appropriately dimensioned matrices W(𝛼) ≜
[
X(𝛼)
Y(𝛼)

]
, we have

2𝜓T (t)W(𝛼)K

[
𝜉(t) − 𝜉(t − d(t)) − ∫

t

t−d(t)
𝜉̇(s)ds

]
= 0, (6.12)

where 𝜓(t) ≜
[

𝜉(t)
K𝜉(t − d(t))

]
.

First, we will show the stability of the closed-loop system (6.3a)–(6.3c) with 𝜔(t) = 0. By

(6.11)–(6.12), we have

V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) ≤ 𝜓T (t)

[
Σ(𝛼) + de𝛽dW(𝛼)R−1(𝛼)WT (𝛼)

]
𝜓(t)

− e𝛽d ∫
t

t−d(t)

[
WT (𝛼)𝜓(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]T
R−1(𝛼)

×
[
WT (𝛼)𝜓(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]
ds, (6.13)
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112 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where

⎧⎪⎪⎨⎪⎪⎩

Σ(𝛼) ≜ Σ1(𝛼) + Σ2(𝛼) + ΣT
2
(𝛼) + dΣT

3
(𝛼)KTR(𝛼)KΣ3(𝛼),

Σ1(𝛼) ≜
[
P(𝛼)Ā(𝛼) + ĀT (𝛼)P(𝛼) + KTQ(𝛼)K + 𝛽P(𝛼) P(𝛼)Ād(𝛼)

⋆ −d̃Q(𝛼)

]
,

Σ2(𝛼) ≜ [W(𝛼)K −W(𝛼)
]
, Σ3(𝛼) ≜ [ Ā(𝛼) Ād(𝛼)

]
.

By Schur complement, LMI (6.6) implies

Σ(𝛼) + de𝛽dW(𝛼)R−1(𝛼)WT (𝛼) < 0, (6.14)

and noting

∫
t

t−d(t)

[
WT (𝛼)𝜓(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]T
×R−1(𝛼)

[
WT (𝛼)𝜓(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]
ds ≥ 0. (6.15)

Thus considering (6.13)–(6.15), we have

V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) ≤ 0. (6.16)

For an arbitrary piecewise constant switching signal 𝛼, and for any t > 0, we let 0 = t0 <
t1 < ⋯ < tk < ⋯, k = 1, 2,…, denote the switching points of 𝛼 over the interval (0, t). As
mentioned earlier, the ikth subsystem is activated when t ∈ [tk, tk+1). Integrating (6.16) from
tk to t gives

V(𝜉t, 𝛼) ≤ e−𝛽(t−tk)V(𝜉tk , 𝛼(tk)). (6.17)

Using (6.7) and (6.10), at switching instant tk, we have

V(𝜉tk , 𝛼(tk)) ≤ 𝜇V
(
𝜉t−

k
, 𝛼
(
t−k
))

, (6.18)

where t−k denotes the left limitation of tk. Therefore, it follows from (6.17)–(6.18), and noting

𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta, that

V(𝜉t, 𝛼) ≤ e−𝛽(t−tk)𝜇V
(
𝜉t−

k
, 𝛼
(
t−k
))

≤ ⋯

≤ e−𝛽(t−0)𝜇𝜗V(𝜉0, 𝛼(0))

≤ e−(𝛽−ln𝜇∕Ta)tV(𝜉0, 𝛼(0)). (6.19)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 113

Notice from (6.10) that V(𝜉t, 𝛼) ≥ a ‖𝜉(t)‖2 and V(𝜉0, 𝛼(0)) ≤ b ‖𝜉(0)‖2C, where a and b are
defined in (6.9). Considering (6.19) yields

‖𝜉(t)‖2 ≤ 1

a
V(𝜉t, 𝛼) ≤ b

a
e−(𝛽−ln𝜇∕Ta)t ‖𝜉(0)‖2

C
,

which implies (6.8). By Definition 6.2.1 with t0 = 0, we know that the closed-loop system

(6.3a)–(6.3c) with 𝜔(t) = 0 is exponentially stable.

Now, we will establish the weight2-∞ performance for the closed-loop system in (6.3a)–

(6.3c). For any appropriately dimensioned matrix W̄(𝛼), we have

2𝜓̄T (t)W̄(𝛼)K

[
𝜉(t) − 𝜉(t − d(t)) − ∫

t

t−d(t)
𝜉̇(s)ds

]
= 0, (6.20)

where 𝜓̄(t) ≜
⎡⎢⎢⎣

𝜉(t)
K𝜉(t − d(t))

𝜔(t)

⎤⎥⎥⎦ and W̄(𝛼) ≜
⎡⎢⎢⎣
X(𝛼)
Y(𝛼)
Z(𝛼)

⎤⎥⎥⎦. Considering (6.11) and (6.20), we have
V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) − 𝜔T (t)𝜔(t)

≤ 𝜓̄T (t)

[
Π(𝛼) + de𝛽dW̄(𝛼)R−1(𝛼)W̄T (𝛼)

]
𝜓̄(t)

− e𝛽d ∫
t

t−d(t)

[
W̄T (𝛼)𝜓̄(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]T
×R−1(𝛼)

[
W̄T (𝛼)𝜓̄(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]
ds, (6.21)

whereΠ(𝛼) ≜ Π1(𝛼) + Π2(𝛼) + ΠT
2
(𝛼) + dΠT

3
(𝛼)KTR(𝛼)KΠ3(𝛼) withΠ1(𝛼),Π2(𝛼) andΠ3(𝛼)

defined in (6.6). Note that

∫
t

t−d(t)

[
W̄T (𝛼)𝜓̄(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]T
×R−1(𝛼)

[
W̄T (𝛼)𝜓̄(t) + e−𝛽dR(𝛼)K𝜉̇(s)

]
ds ≥ 0. (6.22)

By Schur complement, LMI (6.6) implies

Π(𝛼) + de𝛽dW̄(𝛼)R−1(𝛼)W̄T (𝛼) < 0. (6.23)
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114 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Thus, considering (6.21)–(6.23), we have

V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) − 𝜔T (t)𝜔(t) ≤ 0. (6.24)

Let Γ(t) ≜ −𝜔T (t)𝜔(t), then (6.24) can be rewritten as

V̇(𝜉t, 𝛼) ≤ −𝛽V(𝜉t, 𝛼) − Γ(t). (6.25)

As in the proof of stability above, integrating (6.25) from tk to t gives

V(𝜉t, 𝛼) ≤ e−𝛽(t−tk)V(𝜉tk , 𝛼(tk)) − ∫
t

tk

e−𝛽(t−s)Γ(s)ds. (6.26)

Therefore, it follows from (6.18) and (6.26) and the relationship 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta
that

V(𝜉t, 𝛼) ≤ 𝜇e−𝛽(t−tk)V
(
𝜉t−

k
, 𝛼
(
t−k
))

− ∫
t

tk

e−𝛽(t−s)Γ(s)ds

≤ 𝜇𝜗e−𝛽tV(𝜉0, 𝛼(0)) − 𝜇𝜗 ∫
t1

0

e−𝛽(t−s)Γ(s)ds

−𝜇𝜗−1 ∫
t2

t1

e−𝛽(t−s)Γ(s)ds −⋯ − 𝜇0 ∫
t

tk

e−𝛽(t−s)Γ(s)ds

= e−𝛽t+N𝛼(0,t) ln𝜇V(𝜉0, 𝛼(0)) − ∫
t

0

e−𝛽(t−s)+N𝛼(s,t) ln𝜇Γ(s)ds. (6.27)

Under zero initial condition, (6.27) implies

V(𝜉t, 𝛼) ≤ ∫
t

0

e−𝛽(t−s)+N𝛼(s,t) ln𝜇𝜔T (s)𝜔(s)ds. (6.28)

Multiplying both sides of (6.28) by e−N𝛼(0,t) ln𝜇 yields

e−N𝛼(0,t) ln𝜇V(𝜉t, 𝛼) ≤ ∫
t

0

e−𝛽(t−s)−N𝛼(0,s) ln𝜇𝜔T (s)𝜔(s)ds

≤ ∫
t

0

e−𝛽(t−s)𝜔T (s)𝜔(s)ds

≤ ∫
t

0

𝜔T (s)𝜔(s)ds. (6.29)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 115

Notice that N𝛼(0, t) ≤ t∕Ta and Ta > T∗
a = ln𝜇∕𝛽, we have N𝛼(0, t) ln𝜇 ≤ 𝛽t. Thus, (6.29)

implies

e−𝛽tV(𝜉t, 𝛼) ≤ ∫
t

0

𝜔T (s)𝜔(s)ds. (6.30)

Moreover, according to (6.10) and (6.30), we have

e−𝛽t𝜉T (t)P(𝛼)𝜉(t) ≤ e−𝛽tV(𝜉t, 𝛼)

≤ ∫
t

0

𝜔T (s)𝜔(s)ds ≤ ∫
∞

0

𝜔T (t)𝜔(t)dt.

Thus, for any time t = t⋆ ≥ 0, we have

e−𝛽t
⋆
𝜉T (t⋆)P(𝛼)𝜉(t⋆) ≤ ∫

∞

0

𝜔T (t)𝜔(t)dt. (6.31)

Since t⋆ denotes any time, it is also true that

e−𝛽t
⋆
𝜉T (t⋆ − d(t⋆))P(𝛼)𝜉(t⋆ − d(t⋆)) ≤ ∫

∞

0

𝜔T (t)𝜔(t)dt. (6.32)

From inequalities (6.31) and (6.32), we have

e−𝛽t
⋆

[
𝜉(t⋆)

𝜉(t⋆ − d(t⋆))

]T [
P(𝛼) 0

0 P(𝛼)

] [
𝜉(t⋆)

𝜉(t⋆ − d(t⋆))

]
≤ 2∫

∞

0

𝜔T (t)𝜔(t)dt. (6.33)

Using Schur complement again, LMI (6.6) yields[
P(𝛼) 0

0 P(𝛼)

]
> 2𝛾−2

[
C̄T (𝛼)

KTC̄T
d (𝛼)

] [
C̄(𝛼) C̄d(𝛼)K

]
. (6.34)

Combining (6.33) with (6.34) gives

2∫
∞

0

𝜔T (t)𝜔(t)dt > 2𝛾−2e−𝛽t
⋆ [

C̄(𝛼)𝜉(t⋆) + C̄d(𝛼)K𝜉(t
⋆ − d(t⋆))

]T
×
[
C̄(𝛼)𝜉(t⋆) + C̄d(𝛼)K𝜉(t

⋆ − d(t⋆))
]

= 2𝛾−2e−𝛽t
⋆
zT (t⋆)z(t⋆),
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116 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

that is, for any t⋆ ≥ 0,

e−𝛽t
⋆
zT (t⋆)z(t⋆) < 𝛾2 ∫

∞

0

𝜔T (t)𝜔(t)dt.

Taking the supremum over t⋆ ≥ 0 yields (6.5), thus the weight 2-∞ performance has been

established. The proof is completed.

Now, we are in a position to present a solution to the 2-∞ DOF control problem.

Theorem 6.2.4 Consider the switched state-delayed hybrid systems in (6.1a)–(6.1d). For
given constants 𝛽 > 0 and 𝛾 > 0, suppose that there exist matrices 1(i) > 0, 3(i) > 0,
1(i) > 0, 3(i) > 0, (i) > 0, R(i) > 0, 2(i), 2(i), 1(i), 2(i), (i), (i), c(i), c(i),c(i), c(i),  , , and  such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11(i) Φ12(i) Φ13(i) Φ14(i) Φ15(i) Φ16(i) Φ17(i) d1(i)
⋆ Φ22(i) Φ23(i) Φ24(i) Φ25(i) Φ26(i) Φ27(i) d2(i)
⋆ ⋆ Φ33(i) Φ34(i) Φ15(i) Φ16(i) 0 0

⋆ ⋆ ⋆ Φ44(i) Φ25(i) Φ26(i) 0 0

⋆ ⋆ ⋆ ⋆ Φ55(i) −T (i) Φ57(i) d(i)
⋆ ⋆ ⋆ ⋆ ⋆ −I Φ67(i) d(i)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −d(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (6.35a)

⎡⎢⎢⎢⎢⎢⎣

−1(i) −2(i) 0 0 ET (i)
⋆ −3(i) 0 0 TET (i)
⋆ ⋆ −1(i) −2(i) ET

d (i)
⋆ ⋆ ⋆ −3(i) TET

d (i)

⋆ ⋆ ⋆ ⋆ − 1

2
𝛾2I

⎤⎥⎥⎥⎥⎥⎦
< 0, (6.35b)

(i) ≜
[1(i) 2(i)

⋆ 3(i)

]
> 0, (6.35c)

(i) ≜
[1(i) 2(i)

⋆ 3(i)

]
> 0, (6.35d)

R(i)(i) = I. (6.35e)

Then there exists a DOF controller in the form of (6.2a)–(6.2b), such that the closed-loop
system in (6.3a)–(6.3c) is exponentially stable with a weighted 2-∞ performance 𝛾 for any
switching signal with average dwell time satisfying Ta > T∗

a = ln𝜇
𝛽
, where 𝜇 ≥ 1 satisfies

(i) ≤ 𝜇(j), (i) ≤ 𝜇(j), (i) ≤ 𝜇(j), ∀i, j ∈  . (6.36)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 117

Moreover, a desired 2-∞ DOF controller realization is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

c(i) ≜ TA(i) + TB(i)Dc(i)C(i) + FT
4
Bc(i)C(i)

+TB(i)Cc(i)G4 + FT
4
Ac(i)G4,

c(i) ≜ TB(i)Dc(i) + FT
4
Bc(i),

c(i) ≜ Dc(i)C(i) + Cc(i)G4,

c(i) ≜ Dc(i),

(6.37)

where ⎧⎪⎪⎨⎪⎪⎩

Φ11(i) ≜ TA(i) + c(i)C(i) + AT (i) + CT (i)T
c (i)

+1(i) + 𝛽1(i) + 1(i) + T
1
(i),

Φ12(i) ≜ c(i) + AT (i) + CT (i)T
c (i)B

T (i) +2(i) + 𝛽2(i) + T
2
(i),

Φ22(i) ≜ A(i) + B(i)c(i) + TAT (i) + T
c (i)B

T (i) +3(i) + 𝛽3(i),

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ13(i) ≜ 1(i) − T + AT (i) + CT (i)T
c (i),

Φ23(i) ≜ T
2
(i) − I +T

c (i),

Φ33(i) ≜ − − T ,

Φ14(i) ≜ 2(i) − + AT (i) + CT (i)T
c (i)B

T (i),

Φ24(i) ≜ 3(i) −  + TAT (i) + T
c (i)B

T (i),

Φ34(i) ≜ − − I,

Φ44(i) ≜ − − T ,
Φ15(i) ≜ TAd(i) + c(i)Cd(i) − 1(i) + T (i),

Φ25(i) ≜ Ad(i) + B(i)c(i)Cd(i) − 2(i),

Φ55(i) ≜ −d̃1(i) − (i) − T (i),

Φ16(i) ≜ TB1(i) + c(i)D1(i) +T (i),

Φ26(i) ≜ B1(i) + B(i)c(i)D1(i),

Φ17(i) ≜ dAT (i) + dCT (i)T
c (i)B

T (i),

Φ27(i) ≜ dTAT (i) + dT
c (i)B

T (i),

Φ57(i) ≜ dAT
d (i) + dCT

d (i)T
c (i)B

T (i),

Φ67(i) ≜ dBT
1
(i) + dDT

1
(i)T

c (i)B
T (i).

Proof. Introducing a slack matrix F, it is not difficult to see that the conditions in Theorem
6.2.3 are satisfied if there exist matrices P(i) > 0, Q(i) > 0, R(i) > 0 X(i), Y(i), Z(i), and F
such that (6.6b) and the following conditions hold:

⎡⎢⎢⎣
Π̆1(i) + Π̆2(i) + Π̆T

2
(i) dΠ̆T

3
(i)KT dΠ̆T

4
(i)

⋆ −dR−1(i) 0

⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎦ < 0, (6.38)
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118 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Π̆1(i) ≜
⎡⎢⎢⎢⎣
Ψ1(i) P(i) − FT + ĀT (i)F FTĀd(i) FTB̄(i)
⋆ −F − FT FTĀd(i) FTB̄(i)
⋆ ⋆ −(1 − 𝜏)e−𝛽dQ(i) 0

⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎦ ,
Π̆2(i) ≜ [

Π̆T
4
(i)K 0 −Π̆T

4
(i) 0

]
,

Π̆3(i) ≜ [
Ā(i) 0 Ād(i) B̄(i)

]
,

Π̆4(i) ≜ [
XT (i) 0 YT (i) ZT (i)

]
,

Ψ1(i) ≜ FTĀ(i) + ĀT (i)F + KTQ(i)K + 𝛽P(i).

The condition in (6.38) implies (6.6a) in Theorem 6.2.3. To show this, we perform a projection

transformation to (6.38) by diag {Λ(i),R(i), I} with

Λ(i) ≜
⎡⎢⎢⎢⎣

I 0 0

Ā(i) Ād(i) B̄(i)
0 I 0

0 0 I

⎤⎥⎥⎥⎦ ,
and thus imply (6.6a). Notice that if the condition in (6.38) holds, then matrix F is nonsingular,

so we can let the matrix F be partitioned as

F ≜
[
F1 F2
F4 F3

]
, G = F−1 ≜

[
G1 G2

G4 G3

]
. (6.39)

As we are considering a full-order DOF controller, F4 and G4 are both square. Without loss

of generality, we assume that F4 and G4 are nonsingular (if not, F4 and G4 may be perturbed

respectively by matrices ΔF4 and ΔG4 with sufficiently small norms such that F4 + ΔF4 and
G4 + ΔG4 are nonsingular and satisfy (6.38)). Then, we can define the following matrices,

which are also nonsingular,

F ≜
[
F1 I
F4 0

]
, G ≜

[
I G1

0 G4

]
. (6.40)

Notice that

FG = F, GF = G, F1G1 + F2G4 = I. (6.41)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 119

Performing a congruence transformation on (6.38) by matrix diag
{1, I, I} with 1 ≜

diag
{G,G, I, I

}
, we have

⎡⎢⎢⎢⎣
Π̃1(i) + Π̃2(i) + Π̃T

2
(i) dΠ̃T

3
(i)KT dΠ̃T

4
(i)

⋆ −dR−1(i) 0

⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎥⎦ < 0, i ∈  , (6.42)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Π̃1(i) ≜
⎡⎢⎢⎢⎢⎣
Υ1(i) Υ2(i)  T

G FTĀd(i)  T
G FTB̄(i)

⋆ − T
G (F + FT )G  T

G FTĀd(i)  T
G FTB̄(i)

⋆ ⋆ −d̃Q(i) 0

⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎦
,

Π̃2(i) ≜ [ Π̃T
4
(i)K 0 −Π̃T

4
(i) 0

]
,

Π̃3(i) ≜ [ Ā(i)G 0 Ād(i) B̄(i)
]
,

Π̃4(i) ≜ [T
1
(i) T

2
(i) 0 T (i) T (i)

]
,

Υ1(i) ≜  T
G (F

TĀ(i) + ĀT (i)F + KTQ(i)K + 𝛽P(i))G,

Υ2(i) ≜  T
G (P(i) − FT + ĀT (i)F)G.

(6.43)

Define the following matrices:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

 ≜ F1,  ≜ G1,  ≜ FT
1
G1 + FT

4
G4, (i) ≜ R−1(i),

(i) ≜  T
G P(i)G ≜

[1(i) 2(i)
⋆ 3(i)

]
> 0,

(i) ≜
[

I
T
]
Q(i)

[
I
T
]T

=
[1(i) 2(i)

⋆ 3(i)

]
> 0,

(6.44)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c(i) ≜ FT
1
A(i)G1 + FT

1
B(i)Dc(i)C(i)G1 + FT

4
Bc(i)C(i)G1

+FT
1
B(i)Cc(i)G4 + FT

4
Ac(i)G4,

c(i) ≜ FT
1
B(i)Dc(i) + FT

4
Bc(i),

c(i) ≜ Dc(i)C(i)G1 + Cc(i)G4,

c(i) ≜ Dc(i).

(6.45)
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120 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

LMI (6.42) implies (6.35a) by considering (6.4), (6.39)–(6.41), and (6.43)–(6.45). Moreover,

performing a congruence transformation on (6.6b) by matrix diag
{G,G, I

}
, we have

⎡⎢⎢⎢⎣
− T

G P(i)G 0  T
G C̄T (i)

⋆ − T
G P(i)G  T

G KTC̄T
d (i)

⋆ ⋆ − 1

2
𝛾2I

⎤⎥⎥⎥⎦ < 0, i ∈  ,

which is (6.35b) by noting (6.4) and (6.44). In addition, considering the conditions in (6.7)

together (6.44) implies (6.36). Finally, considering (6.45) together with (6.44) yields (6.37).

This completes the proof.

Remark 6.1 In the proof of Theorem 6.2.4, we used conditions (6.38) and (6.6b), and not
(6.6a)–(6.6b), to solve the2-∞ DOF control problem. The reason is that there is no product
term between the parameter-dependent Lyapunov matrices and the system dynamic matrices
in (6.38); this separation is crucial to solving the 2-∞ DOF control problem. ⧫

Remark 6.2 To solve the parameters of the DOF controller in (6.37), matrices F4 and G4

should be available in advance, and they can be obtained by taking any full rank factorization
of FT

4
G4 =  − T (derived from  ≜ FT

1
G1 + FT

4
G4). ⧫

Note that the obtained conditions in Theorem 6.2.4 are not all of LMI form because of

(6.35e), which can not be solved directly using LMI procedures. Now, using the CCL method

[66], we suggest the following minimization problem involving LMI conditions instead of the

original nonconvex feasibility problem formulated in Theorem 6.2.4.

Problem DOFC-SDS (DOF control of switched delayed systems):

min trace
(∑

i∈ R(i)(i)
)

subject to (6.35a)–(6.35d), (6.36) and[
R(i) I
I (i)

]
≥ 0, ∀i ∈  . (6.46)

If the solution of the aforesaid minimization problem is Nn, then the conditions in Theorem
6.2.4 are solvable. We suggest the following algorithm to solve Problem DOFC-SDS.

Algorithm DOFC-SDS

Step 1. Find a feasible set ( (0)

1
(i), (0)

3
(i),(0)

1
(i),(0)

3
(i),(0)(i),R(0)(i), (0)

2
(i),(0)

2
(i),

 (0)

1
(i), (0)

2
(i), (0)(i),(0)(i),(0)

c (i),(0)
c (i),(0)c (i),(0)

c (i), (0),(0),(0)) satisfying

(6.35a)–(6.35d), (6.36), and (6.46). Set 𝜅 = 0.
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 121

Step 2. Solve the following optimization problem:

min trace

(∑
i∈
[
R(𝜅)(i)(i) + R(i)(𝜅)(i)

])
subject to (6.35a)–(6.35d), (6.36), and (6.46)

and denote f ∗ as the optimized value.
Step 3. Substitute the obtained matrix variables (1(i),3(i),1(i),3(i),(i),R(i),2(i),2(i),1(i),2(i),(i),(i),c(i),c(i),c(i),c(i), ,,) into (6.42). If (6.42) is sat-

isfied, with

|f ∗ − 2Nn| < 𝛿,

for a sufficiently small scalar 𝛿 > 0, then output the feasible solutions (1(i),3(i),1(i),3(i),(i),R(i),2(i),2(i),1(i),2(i),(i),(i),c(i),c(i),c(i),c(i), ,,), and
EXIT.

Step 4. If 𝜅 > ℕ where ℕ is the maximum number of iterations allowed, so EXIT.

Step 5. Set 𝜅=𝜅+1. Let ( (𝜅)

1
(i), (𝜅)

3
(i),(𝜅)

1
(i),(𝜅)

3
(i),(𝜅)(i),R(𝜅)(i), (𝜅)

2
(i),(𝜅)

2
(i),  (𝜅)

1
(i),

 (𝜅)

2
(i), (𝜅)(i),(𝜅)(i),(𝜅)

c (i),(𝜅)
c (i),(𝜅)c (i),(𝜅)

c (i), (𝜅),(𝜅),(𝜅)) = (1(i),3(i),1(i),3(i), (i), R(i), 2(i), 2(i), 1(i), 2(i), (i), (i), c(i), c(i), c(i), c(i),  , , ),
and go to Step 2.

6.2.3 Illustrative Example

Example 6.2.5 Consider system (6.1a)–(6.1d) with N = 2 and the following parameters:

A(1) =
⎡⎢⎢⎣
−0.9 0.2 −0.2
0.2 −0.6 0.3

−0.3 0.1 −0.1

⎤⎥⎥⎦ , Ad(1) =
⎡⎢⎢⎣
0.2 0.0 0.1

0.1 0.3 0.1

0.3 0.1 0.2

⎤⎥⎥⎦ , B1(1) =
⎡⎢⎢⎣
0.3

0.5

0.2

⎤⎥⎥⎦ ,
A(2) =

⎡⎢⎢⎣
−0.8 −0.1 −0.2
0.2 −0.7 0.3

0.2 −0.1 0.1

⎤⎥⎥⎦ , Ad(2) =
⎡⎢⎢⎣
0.2 0.1 0.0

0.1 0.2 0.1

0.1 0.1 0.3

⎤⎥⎥⎦ , B1(2) =
⎡⎢⎢⎣
0.4

0.2

0.3

⎤⎥⎥⎦ ,
B(1) =

⎡⎢⎢⎣
1.0

0.5

2.0

⎤⎥⎥⎦ , C(1) =
[
−1.2 1.5 0.9

]
, Cd(1) =

[
0.3 0.1 0.2

]
,

C(2) =
[
−1.0 1.2 0.5

]
, Cd(2) =

[
0.1 0.3 0.4

]
,

B(2) =
⎡⎢⎢⎣
0.5

0.7

1.5

⎤⎥⎥⎦ , E(1) =
[
0.8 1.0 0.5

]
, Ed(1) =

[
0.2 0.3 0.1

]
, D1(1) = 0.2,

E(2) =
[
0.6 1.2 0.3

]
, Ed(2) =

[
0.3 0.4 0.2

]
, D1(2) = 0.1,

and d(t) = 0.9 + 0.3 sin(t), 𝛽 = 0.5. A straightforward calculation gives d = 1.2 and 𝜏 = 0.3.

It can be checked that the switched state-delayed hybrid system in (6.1a)–(6.1d) with u(t) = 0

and the above parameters is unstable for switching signal given in Figure 6.1 (which is
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122 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems
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Figure 6.1 Switching signal

generated randomly; here, ‘1’ and ‘2’ represent the first and second subsystems, respectively) –

the states of open-loop system are shown in Figure 6.2 with the initial condition given by

x(t) =
[
−1.0 0.5 1.0

]T
, t ∈ [−1.2, 0].

Our aim is to design an 2-∞ DOF controller in the form of (6.2a)–(6.2b), such that

the closed-loop system is exponentially stable with a weighted 2-∞ performance. Setting

𝜇 = 1.01 (in this case, Ta > T∗
a = ln𝜇

𝛽
= 0.0199, thus we can choose Ta ≥ 0.02) and solving

Problem DOFC-SDS using Algorithm DOFC-SDS, it follows that the minimized feasible 𝛾 is

𝛾∗ = 1.1726, and

 =
⎡⎢⎢⎣

6.3445 −0.8569 2.6942

−6.9729 6.7830 −2.0758
−2.3134 1.3527 3.1193

⎤⎥⎥⎦ ,  =
⎡⎢⎢⎣

0.9194 −0.0674 −0.4138
−0.0227 0.4423 0.1605

−0.2669 −0.2131 0.6869

⎤⎥⎥⎦ ,
 =

⎡⎢⎢⎣
0.6087 −0.0500 −0.5661
0.5629 0.9938 0.6335

0.5812 −0.4143 0.0915

⎤⎥⎥⎦ ,
c(1) =

⎡⎢⎢⎣
−0.3414 0.6311 1.3370

−0.2710 −0.9813 −1.1610
−0.3865 0.1436 −0.1777

⎤⎥⎥⎦ , c(1) =
⎡⎢⎢⎣

6.3128

−9.1566
−3.2113

⎤⎥⎥⎦ ,
c(2) =

⎡⎢⎢⎣
−0.5660 0.5966 1.3975

0.1049 −0.9344 −1.0946
0.1107 0.1730 0.1076

⎤⎥⎥⎦ , c(2) =
⎡⎢⎢⎣

8.7955

−10.6525
−4.1636

⎤⎥⎥⎦ ,
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Figure 6.2 States of the open-loop system

c(1) = [−0.1523 −0.1327 −0.5952
]
, c(1) = −0.5461,

c(2) = [−0.2882 −0.0546 −0.6316
]
, c(2) = −0.9756.

Setting F4 = I, then G4 =  − T from FT
4
G4 =  − T in Remark 6.2.3. Therefore, by

(6.37) we have

Ac(1) =
⎡⎢⎢⎣
−2.0397 −0.5763 −0.6922
1.0149 −2.6626 −1.6111

−1.9295 −3.3293 −3.4423

⎤⎥⎥⎦ , Bc(1) =
⎡⎢⎢⎣

5.3467

−6.2948
1.1004

⎤⎥⎥⎦ ,
Cc(1) =

[
0.2827 0.5932 0.2838

]
, Dc(1) = −0.5461,

Ac(2) =
⎡⎢⎢⎣
−0.8577 1.3584 0.1620

−0.2279 −4.1920 −1.7676
−1.2900 −3.9589 −2.6826

⎤⎥⎥⎦ , Bc(2) =
⎡⎢⎢⎣

3.7427

−4.4584
0.2980

⎤⎥⎥⎦ ,
Cc(2) =

[
0.3541 0.6607 0.4052

]
, Dc(2) = −0.9756.

To show the effectiveness of the designed 2-∞ DOF controller through simulation, let

the exogenous disturbance input be 𝜔(t) = exp(−t) sin(t). Figure 6.3 gives the states of the

closed-loop system, and Figure 6.4 depicts the states of the DOF controller.
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Figure 6.3 States of the closed-loop system
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Figure 6.4 States of the DOF controller
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 125

6.3 Guaranteed Cost DOF Controller Design

6.3.1 System Description and Preliminaries

Consider a class of switched neutral delay systems of the form

ẋ(t) = A(𝛼(t))x(t) + Ad(𝛼(t))x(t − d(t)) + Ah(𝛼(t))ẋ(t − h) + B(𝛼(t))u(t), (6.47a)

y(t) = C(𝛼(t))x(t) + Cd(𝛼(t))x(t − d(t)), (6.47b)

x(t) = 𝜙(t), t ∈
[
−d̄, 0

]
, (6.47c)

where x(t) ∈ Rn is the system state vector, y(t) ∈ Rp is the measured output, and u(t) ∈ Rm is

the control input. 𝛼(t) : R →  = {1, 2,… ,N} (denoted by 𝛼 for simplicity) is the switching
signal defined as the same in the previous section. h ≥ 0 is the constant neutral delay and d(t)
denotes the time-varying delays satisfying 0 ≤ d(t) ≤ d and ḋ(t) ≤ 𝜏 < 1, where d and 𝜏 are

two known constants. 𝜙(t) is a differentiable vector-valued initial function on
[
−d̄, 0

]
with

d̄ ≜ max {d, h}.
For each possible value 𝛼 = i (i ∈  ), we denote the system matrices associated with

mode i by A(i) = A(𝛼), Ad(i) = Ad(𝛼), Ah(i) = Ah(𝛼), B(i) = B(𝛼), C(i) = C(𝛼), and Cd(i) =
Cd(𝛼), where A(i), Ad(i), Ah(i), B(i), C(i), and Cd(i) are constant matrices. Corresponding to
the switching signal 𝛼, we have the switching sequence {(i0, t0), (i1, t1),… , (ik, tk),… , | ik ∈ , k = 0, 1,…} with t0 = 0, which means that the ikth subsystem is activated when t ∈
[tk, tk+1).
Here, we are interested in designing a DOF controller of a general structure described by

ẋc(t) = Ac(𝛼)xc(t) + Bc(𝛼)y(t), (6.48a)

u(t) = Cc(𝛼)xc(t), (6.48b)

where xc(t) ∈ Rn is the controller state vector; Ac(𝛼), Bc(𝛼), and Cc(𝛼) are appropriately

dimensioned constant matrices to be determined later.

Augmenting the model of (6.47a)–(6.47c) to include the states of the DOF controller in

(6.48a)–(6.48b), we obtain the following closed-loop system:

𝜉̇(t) = Ā(𝛼)𝜉(t) + Ād(𝛼)K𝜉(t − d(t)) + Āh(𝛼)K𝜉̇(t − h), (6.49a)

𝜉(t) = 𝜑(t), t ∈
[
−d̄, 0

]
, (6.49b)

where 𝜉(t) ≜
[
x(t)
xc(t)

]
, K ≜ [ I 0

]
and

⎧⎪⎪⎨⎪⎪⎩
Ā(𝛼) ≜

[
A(𝛼) B(𝛼)Cc(𝛼)

Bc(𝛼)C(𝛼) Ac(𝛼)

]
,

Ād(𝛼) ≜
[

Ad(𝛼)

Bc(𝛼)Cd(𝛼)

]
, Āh(𝛼) ≜

[
Ah(𝛼)

0

]
.

(6.50)
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126 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Associated with the closed-loop system (6.49a)–(6.49b) is the following cost function:

 = ∫
∞

0

(xT (t)Ux(t) + uT (t)Wu(t))dt, (6.51)

where U > 0 and W > 0 are given matrices.

We now introduce the following definitions before presenting ourmain results in this section.

Definition 6.3.1 Consider the switched neutral delay system in (6.47a)–(6.47c). If there
exists a DOF controller u(t) in the form of (6.48a)–(6.48b) and a positive scalar  ∗ such that
the closed-loop system in (6.49a)–(6.49b) is stable and the cost function in (6.51) satisfies
 ≤  ∗, then  ∗ is said to be a guaranteed cost and u(t) is said to be a guaranteed cost DOF
controller for the switched hybrid system in (6.47a)–(6.47c).

Definition 6.3.2 The closed-loop system in (6.49a)–(6.49b) is said to be exponentially stable
under 𝛼 if its solution 𝜉(t) satisfies

‖𝜉(t)‖ ≤ 𝜂 ‖‖𝜉(t0)‖‖C e−𝜆(t−t0), ∀t ≥ t0,

where 𝜂 ≥ 1 and 𝜆 > 0 are two real constants, and

‖‖𝜉(t0)‖‖C ≜ sup
−d̄≤𝜃≤0

{‖‖𝜉(t0 + 𝜃)‖‖ , ‖‖𝜉̇(t0 + 𝜃)‖‖} .
Therefore, the problem to be addressed can be formulated as follows: for system (6.47a)–

(6.47c), develop a procedure to design a DOF controller u(t) in the form of (6.48a)–(6.48b)

such that the closed-loop system in (6.49a)–(6.49b) is exponentially stable and the specified

linear integral-quadratic cost function in (6.51) has an upper bound.

6.3.2 Main Results

We will first present a sufficient condition for the existence of the DOF controller in (6.48a)–

(6.48b), then give a parameterized representation of the controller in terms of the feasible

solutions to a certain set of LMIs.

Theorem 6.3.3 Consider the closed-loop system in (6.49a)–(6.49b). For a given constant
𝛽 > 0, suppose there exist matrices P(i) > 0, Q(i) > 0, and R(i) > 0 such that for i ∈  ,

⎡⎢⎢⎢⎢⎣
Π11(i) + Ψ(i) P(i)Ād(i) P(i)Āh(i) ĀT (i)KTR(i)

⋆ −(1 − 𝜏)e−𝛽dQ(i) 0 ĀT
d (i)K

TR(i)

⋆ ⋆ −e−𝛽hR(i) ĀT
h (i)K

TR(i)

⋆ ⋆ ⋆ −R(i)

⎤⎥⎥⎥⎥⎦
< 0, (6.52)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 127

where ⎧⎪⎨⎪⎩
Ψ(i) ≜

[
U 0

0 CT
c (i)WCc(i)

]
,

Π11(i) ≜ P(i)Ā(i) + ĀT (i)P(i) + 𝛽P(i) + KTQ(i)K.

Then the closed-loop system in (6.49a)–(6.49b) is exponentially stable and the cost function
(6.51) has the bound of

 ∗ = 𝜉T (0)P(i0)𝜉(0) + ∫
0

−d
e𝛽sxT (s)Q(i0)x(s)ds

+∫
0

−h
e𝛽sẋT (s)R(i0)ẋ(s)ds, (6.53)

for any switching signal with average dwell time satisfying Ta > T∗
a = ln𝜇

𝛽
, where 𝜇 ≥ 1

satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  . (6.54)

Moreover, an estimate of the state decay is given by

‖𝜉(t)‖ ≤ 𝜂 ‖𝜉(0)‖C e−𝜆t, (6.55)

where

⎧⎪⎪⎨⎪⎪⎩
𝜆 ≜ 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 ≜

√
b
a
≥ 1,

a ≜ min
∀i∈ 𝜆min (P(i)) ,

b ≜ max
∀i∈ 𝜆max (P(i)) + d max

∀i∈ 𝜆max (Q(i)) + h max
∀i∈ 𝜆max (R(i)) .

(6.56)

Proof. Choose a Lyapunov function of the following form:

V(𝜉t, 𝛼) ≜ 𝜉T (t)P(𝛼)𝜉(t) + ∫
t

t−d(t)
e𝛽(s−t)𝜉T (s)KTQ(𝛼)K𝜉(s)ds

+∫
t

t−h
e𝛽(s−t)𝜉̇T (s)KTR(𝛼)K𝜉̇(s)ds, (6.57)

where P(𝛼) > 0, Q(𝛼) > 0, and R(𝛼) > 0 (𝛼 ∈  ) are to be determined. Then, as with the

solution of the closed-loop system in (6.49a)–(6.49b) for a fixed 𝛼, we have

V̇(𝜉t, 𝛼) ≤ 𝜉T (t)

[
P(𝛼)Ā(𝛼) + ĀT (𝛼)P(𝛼)

]
𝜉(t) + 2𝜉T (t)P(𝛼)Ād(𝛼)K𝜉(t − d(t))

+ 2𝜉T (t)P(𝛼)Āh(𝛼)K𝜉̇(t − h) + 𝜉T (t)KTQ(𝛼)K𝜉(t)
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128 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

− (1 − 𝜏)e−𝛽d𝜉T (t − d(t))KTQ(𝛼)K𝜉(t − d(t))

+ 𝜉̇T (t)KTR(𝛼)K𝜉̇(t) − e−𝛽h𝜉̇T (t − h)KTR(𝛼)K𝜉̇(t − h)

− 𝛽 ∫
t

t−d(t)
e𝛽(s−t)𝜉T (s)KTQ(𝛼)K𝜉(s)ds

− 𝛽 ∫
t

t−h
e𝛽(s−t)𝜉̇T (s)KTR(𝛼)K𝜉̇(s)ds.

Thus,

V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) ≤ 𝜂T (t)Π(𝛼)𝜂(t),

where 𝜂(t) ≜
⎡⎢⎢⎣

𝜉(t)
K𝜉(t − d(t))
K𝜉̇(t − h)

⎤⎥⎥⎦ and

Π(𝛼) ≜
⎡⎢⎢⎣
Π11(𝛼) P(𝛼)Ād(𝛼) P(𝛼)Āh(𝛼)

⋆ −(1 − 𝜏)e−𝛽dQ(𝛼) 0

⋆ ⋆ −e−𝛽hR(𝛼)

⎤⎥⎥⎦
+
⎡⎢⎢⎢⎣
ĀT (𝛼)KT

ĀT
d (𝛼)K

T

ĀT
h (𝛼)K

T

⎤⎥⎥⎥⎦R(𝛼)
⎡⎢⎢⎢⎣
ĀT (𝛼)KT

ĀT
d (𝛼)K

T

ĀT
h (𝛼)K

T

⎤⎥⎥⎥⎦
T

,

with Π11(𝛼) defined in (6.52). It can be seen from (6.52) that Π(𝛼) < 0, which implies

V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) ≤ 0. (6.58)

Now, for an arbitrary piecewise constant switching signal 𝛼, and for any t > 0, we let 0 =
t0 < t1 < ⋯ < tk < ⋯, k = 1,…, denote the switching points of 𝛼 over the interval (0, t). As
mentioned earlier, the ikth subsystem is activated when t ∈ [tk, tk+1). Integrating (6.58) from
tk to t gives

V(𝜉t, 𝛼) ≤ e−𝛽(t−tk)V(𝜉tk , 𝛼(tk)). (6.59)

Using (6.54) and (6.57), at switching instant tk, we have

V(𝜉tk , 𝛼(tk)) ≤ 𝜇V(𝜉t−
k
, 𝛼(t−k )). (6.60)

Therefore, it follows from (6.59)–(6.60) and the fact 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta that

V(𝜉t, 𝛼) ≤ e−𝛽(t−tk)𝜇V(𝜉t−
k
, 𝛼(t−k )) ≤ ⋯

≤ e−𝛽(t−0)𝜇𝜗V(𝜉0, 𝛼(0))

≤ e−(𝛽−ln𝜇∕Ta)tV(𝜉0, 𝛼(0)). (6.61)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 129

It can be shown from (6.57) that there exist scalars a > 0 and b > 0 such that the following

holds:

V(𝜉t, 𝛼) ≥ a ‖𝜉(t)‖2 , V(𝜉0, 𝛼(0)) ≤ b ‖𝜉(0)‖2C , (6.62)

where a and b are defined in (6.56). Combining (6.61) and (6.62) yields

‖𝜉(t)‖2 ≤ 1

a
V(𝜉t, 𝛼) ≤ b

a
e−(𝛽−ln𝜇∕Ta)t ‖𝜉(0)‖2C ,

which implies (6.55). By Definition 6.3.2 with t0 = 0, the closed-loop system in (6.49a)–

(6.49b) is exponentially stable.

However, it can be seen from (6.52) that

V̇(𝜉t, 𝛼) + 𝛽V(𝜉t, 𝛼) + 𝜉T (t)Ψ(𝛼)𝜉(t) ≤ 0,

where Ψ(𝛼) is as defined previously. The above inequality implies

𝜉T (t)Ψ(𝛼)𝜉(t) ≤ −V̇(𝜉t, 𝛼) − 𝛽V(𝜉t, 𝛼) ≤ −V̇(𝜉t, 𝛼).

Thus, we have

xT (t)Ux(t) + uT (t)Wu(t) = xT (t)Ux(t) + xTc (t)C
T
c (𝛼)WCc(𝛼)xc(t)

= 𝜉T (t)Ψ(𝛼)𝜉(t) ≤ −V̇(𝜉t, 𝛼). (6.63)

Moreover, by integrating both sides of (6.63) from 0 to ∞ and using the initial condition, we

obtain

 = ∫
∞

0

[
xT (t)Ux(t) + uT (t)Wu(t)

]
dt ≤ V(𝜉0, 𝛼(0))

≤ 𝜉T (0)P(𝛼(0))𝜉(0) + ∫
0

−d
e𝛽s𝜉T (s)KTQ(𝛼(0))K𝜉(s)ds

+∫
0

−h
e𝛽s𝜉̇T (s)KTR(𝛼(0))K𝜉̇(s)ds

= 𝜉T (0)P(𝛼(0))𝜉(0) + ∫
0

−d
e𝛽sxT (s)Q(𝛼(0))x(s)ds

+∫
0

−h
e𝛽sẋT (s)R(𝛼(0))ẋ(s)ds.

The desired result follows Definition 6.3.1, thus the proof is completed.

Now, we present a solution to the guaranteed cost DOF control problem for the switched

neutral delay system in (6.47a)–(6.47c).
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130 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Theorem 6.3.4 Consider the switched neutral delay system in (6.47a)–(6.47c). For a given
constant 𝛽 > 0, suppose there exist matrices1(i) > 0,3(i) > 0,1(i) > 0,3(i) > 0,(i) >
0, R(i) > 0, 2(i), 2(i),c(i), c(i), c(i),  , , and  such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11(i) Σ12(i) Σ13(i) Σ14(i) Σ15(i) TAh(i) AT (i) 0 0

⋆ Σ22(i) Σ23(i) Σ24(i) Ad(i) Ah(i) ΣT
27
(i) T T

c (i)

⋆ ⋆ Σ33(i) Σ34(i) Σ15(i) TAh(i) 0 0 0

⋆ ⋆ ⋆ Σ44(i) Ad(i) Ah(i) 0 0 0

⋆ ⋆ ⋆ ⋆ Σ55(i) 0 AT
d (i) 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −e−𝛽hR(i) AT
h (i) 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −(i) 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −U−1 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −W−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(6.64a)

(i) ≜
[1(i) 2(i)

⋆ 3(i)

]
> 0,

(6.64b)

(i) ≜
[1(i) 2(i)

⋆ 3(i)

]
> 0,

(6.64c)

R(i)(i) = I,

(6.64d)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ11(i) ≜ TA(i) + AT (i) + c(i)C(i) + CT (i)c(i) + 𝛽1(i) +1(i) + U,
Σ12(i) ≜ c(i) + AT (i) + 𝛽2(i) +2(i) + U,
Σ22(i) ≜ A(i) + TAT (i) + B(i)c(i) + T

c (i)B
T (i) + 𝛽3(i) +3(i),

Σ13(i) ≜ 1(i) − T + AT (i) + CT (i)T
c (i),

Σ23(i) ≜ T
2
(i) − I +T

c (i),
Σ33(i) ≜ − − T ,

Σ14(i) ≜ 2(i) − + AT (i),
Σ24(i) ≜ 3(i) −  + TAT (i) + T

c (i)B
T (i),

Σ34(i) ≜ − − I,
Σ44(i) ≜ − − T ,
Σ15(i) ≜ TAd(i) + c(i)Cd(i),
Σ55(i) ≜ −(1 − 𝜏)e−𝛽d1(i),
Σ27(i) ≜ A(i) + B(i)c(i).
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 131

Then there exists a DOF controller in the form of (6.48a)–(6.48b), such that the closed-
loop system in (6.49a)–(6.49b) is exponentially stable and the cost function (6.51) has the
bound of

 ∗=xT (0)1(i0)x(0)+∫
0

−d
e𝛽sxT (s)1(i0)x(s)ds+∫

0

−h
e𝛽sẋT (s)R(i0)ẋ(s)ds, (6.65)

for any switching signal with average dwell time satisfying Ta > T∗
a = ln𝜇

𝛽
, where 𝜇 ≥ 1

satisfies

(i) ≤ 𝜇(j), (i) ≤ 𝜇(j), (i) ≤ 𝜇(j), ∀i, j ∈  . (6.66)

Moreover, if the above conditions are feasible, then a desired DOF controller realization is
given by

⎧⎪⎨⎪⎩
c(i) ≜ TA(i) + FT

4
Bc(i)C(i) + TB(i)Cc(i)G4 + FT

4
Ac(i)G4,c(i) ≜ FT

4
Bc(i),c(i) ≜ Cc(i)G4.

(6.67)

Proof. By Theorem 6.3.3 and introducing a slack matrix F, it is not difficult to see that the
conditions in Theorem 6.3.3 are satisfied if there exist matrices P(i) > 0, Q(i) > 0, R(i) > 0,

and F such that the following LMI condition holds:

⎡⎢⎢⎢⎢⎢⎢⎣

Π̄11(i) Π̄12(i) FTĀd(i) FTĀh(i) ĀT (i)KT

⋆ −F − FT FTĀd(i) FTĀh(i) 0

⋆ ⋆ Π̄33(i) 0 ĀT
d (i)K

T

⋆ ⋆ ⋆ −e−𝛽hR(i) ĀT
h (i)K

T

⋆ ⋆ ⋆ ⋆ −R−1(i)

⎤⎥⎥⎥⎥⎥⎥⎦
< 0, (6.68)

where

⎧⎪⎨⎪⎩
Π̄11(i) ≜ FTĀ(i) + ĀT (i)F + 𝛽P(i) + KTQ(i)K + Ψ(i),
Π̄12(i) ≜ P(i) − FT + ĀT (i)F,
Π̄33(i) ≜ −(1 − 𝜏)e−𝛽dQ(i).

The above can be verified by performing a projection transformation on (6.68) by

Λ(i) ≜
⎡⎢⎢⎢⎢⎣

I 0 0 0

Ā(i) Ād(i) Āh(i) 0

0 I 0 0

0 0 I 0

0 0 0 R(i)

⎤⎥⎥⎥⎥⎦
,

and we can obtained (6.52).
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132 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

In what follows, we will use (6.68), rather than (6.52), to solve the DOF control problem

because there is no product term between the parameter-dependent Lyapunov matrix and the

system dynamic matrix in (6.68), which is crucial to solving the present problem.

Notice that if the condition in (6.68) holds, then matrix F is nonsingular. Let the matrix F
and its inverse matrix be partitioned respectively as

F ≜
[
F1 F2
F4 F3

]
, G = F−1 ≜

[
G1 G2

G4 G3

]
. (6.69)

Without loss of generality, we assume that F4 and G4 are nonsingular – if not, F4 and G4 may

be perturbed respectively by matrices ΔF4 and ΔG4 with sufficiently small norms such that

F4 + ΔF4 and G4 + ΔG4 are nonsingular and satisfy (6.68).

Define the following matrices that are also nonsingular:

F ≜
[
F1 I
F4 0

]
, G ≜

[
I G1

0 G4

]
. (6.70)

Noticing that FG = F, GF = G, and F1G1 + F2G4 = I, and performing a congruence

transformation on (6.68) by diag
{G,G, I, I, I

}
, we obtain

⎡⎢⎢⎢⎢⎢⎢⎣

Π̃11(i) Π̃12(i)  T
G FTĀd(i)  T

G FTĀh(i)  T
G ĀT (i)KT

⋆ Π̃22(i)  T
G FTĀd(i)  T

G FTĀh(i) 0

⋆ ⋆ Π̄33(i) 0 ĀT
d (i)K

T

⋆ ⋆ ⋆ −e−𝛽hR(i) ĀT
h (i)K

T

⋆ ⋆ ⋆ ⋆ −R−1(i)

⎤⎥⎥⎥⎥⎥⎥⎦
< 0, (6.71)

where

⎧⎪⎨⎪⎩
Π̃11(i) ≜  T

G

(
FTĀ(i) + ĀT (i)F + 𝛽P(i) + KTQ(i)K + Ψ(i)

)G,

Π̃12(i) ≜  T
G Π̄12(i)G,

Π̃22(i) ≜ − T
G

(
F + FT

)G.

Define the following matrices:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) ≜ R−1(i),  ≜ F1,  ≜ G1,  ≜ FT
1
G1 + FT

4
G4,

P(i) ≜
[
P1(i) P2(i)
⋆ P3(i)

]
,

(i) ≜  T
G P(i)G ≜

[1(i) 2(i)
⋆ 3(i)

]
> 0,

(i) ≜  T
G KTQ(i)KG ≜

[1(i) 2(i)
⋆ 3(i)

]
> 0.

(6.72)
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 133

It can be easily seen from (6.72) that P1(i) = 1(i) and Q(i) = 1(i). Also, we define

⎧⎪⎨⎪⎩
c(i) ≜ FT

1
A(i)G1 + FT

4
Bc(i)C(i)G1 + FT

1
B(i)Cc(i)G4 + FT

4
Ac(i)G4,

c(i) ≜ FT
4
Bc(i),

c(i) ≜ Cc(i)G4.

(6.73)

Thus, by considering (6.50), (6.69)–(6.70) and (6.72)–(6.73), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

 T
G FTĀ(i)G ≜

[TA(i) + c(i)C(i) c(i)
A(i) A(i) + B(i)c(i)

]
,

 T
G FTĀd(i) ≜

[TAd(i) + c(i)Cd(i)
Ad(i)

]
,

 T
G FTĀh(i) ≜

[TAh(i)
Ah(i)

]
,

 T
G FTG ≜

[T 
I 

]
,

KĀ(i)G ≜ [A(i) A(i) + B(i)c(i) ],
 T
GΨ(i)G ≜

[
U U
⋆ TU + T

c (i)Wc(i)
]
.

(6.74)

Substituting (6.74) into (6.71) implies (6.64a).

Moreover, considering (6.54) together with (6.72), gives (6.66), and considering (6.73)

together with (6.72), yields (6.67). Finally, considering the zero initial condition of xc(t), that
is, xc(0) = 0, we have

𝜉T (0)P(i0)𝜉(0) = xT (0)KP(i0)K
Tx(0)

= xT (0)P1(i0)x(0) = xT (0)1(i0)x(0).

Therefore, replacing 𝜉T (0)P(i0)𝜉(0) and Q(i0) with xT (0)1(i0)x(0) and 1(i0) in (6.53) of

Theorem 6.3.3, respectively, supplies (6.65). This completes the proof.

Remark 6.3 Notice that there exist product terms between the Lyapunov and systemmatrices
in the LMI condition (6.52) of Theorem 6.3.3, which will make it difficult to solve the DOF
controller synthesis problem. Hence, in the proof of Theorem 6.3.4, we have made a decoupling
between the Lyapunov and system matrices by introducing a slack matrix variable F, and
then obtained a new condition in (6.68). Although the new condition might have introduced
some conservativeness, owing to the common matrix variable F, the introduced decoupling
technique enables us to obtain a more easily tractable condition (6.68) for synthesis of the
DOF controller. ⧫
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134 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Remark 6.4 To solve the parameters of the DOF controller in (6.67), the matrices F4 and
G4 should be available in advance, which can be obtained by taking any full rank factorization
of FT

4
G4 =  − T (derived from  ≜ FT

1
G1 + FT

4
G4). ⧫

Remark 6.5 Theorem 6.3.4 gives a set of DOF controllers characterized in terms of the
solutions to (6.64a)–(6.64d) and (6.66), and (6.67) parameterizes the set of DOF controllers.
Each controller ensures the exponential stability of the resulting closed-loop system and an
upper bound on the cost function given by (6.65). In view of this, it is desirable to find one
which minimizes the upper bound  ∗ in (6.65). ⧫

The following theorempresents amethod of selecting an optimalDOF controllerminimizing

the upper bound of the guaranteed cost (6.65).

Theorem 6.3.5 Consider the switched neutral delay system in (6.47a)–(6.47c) and cost
function (6.51). For a given constant 𝛽 > 0, suppose the following optimal problem:

 ⋆ ≜ min{𝜀 + trace() + trace( )}, (6.75)

subject to (6.64a)–(6.64d), (6.66) and[
−𝜀 xT (0)1(i0)
⋆ −1(i0)

]
< 0, (6.76a)

[
− ET1(i0)
⋆ −1(i0)

]
< 0, (6.76b)

[
− FT

⋆ −(i0)

]
< 0, (6.76c)

has a feasible solution for 1(i) > 0, 3(i) > 0, 1(i) > 0, 3(i) > 0, (i) > 0, R(i) > 0,
 > 0,  > 0, 2(i), 2(i),c(i), c(i), c(i),  , ,  (i ∈  ), and a scalar 𝜀 > 0, where

⎧⎪⎪⎨⎪⎪⎩
∫

0

−d
e𝛽sx(s)xT (s)ds = EET ,

∫
0

−h
e𝛽sẋ(s)ẋT (s)ds = FFT ,

(6.77)

with E and F being given constant matrices with appropriate dimensions. Then, the cor-
responding DOF controller in the form of (6.48a)–(6.48b) with (6.67) is an optimal DOF
controller with a guaranteed cost in the sense that the upper bound on the closed-loop cost
function (6.65) is minimized under this controller.
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Optimal DOF Control of Switched State-Delayed Hybrid Systems 135

Proof. The proof of this theorem is along the same lines as that of Theorem 6.3.4. By Schur

complement, LMI (6.76a) is equivalent to xT (0)1(i0)x(0) < 𝜀. However, noting (6.77), we

have

∫
0

−d
e𝛽sxT (s)1(i0)x(s)ds = ∫

0

−d
trace

(
e𝛽sxT (s)1(i0)x(s)

)
ds

= ∫
0

−d
trace

(
e𝛽s1(i0)x(s)x

T (s)
)
ds

= trace
(1(i0)

)
∫

0

−d
e𝛽sx(s)xT (s)ds

= trace
(
ET1(i0)E

)
< trace () .

Moreover, it follows from (6.77) and R(i0) = −1(i0) that

∫
0

−h
e𝛽sẋT (s)R(i0)ẋ(s)ds = ∫

0

−h
trace

(
e𝛽sẋT (s)−1(i0)ẋ(s)

)
ds

= ∫
0

−h
trace

(
e𝛽s−1(i0)ẋ(s)ẋ

T (s)
)
ds

= trace
(−1(i0)

)
∫

0

−h
e𝛽sẋ(s)ẋT (s)ds

= trace
(
FT−1(i0)F

)
< trace( ).

Thus, according to (6.65), we have  ∗ < 𝜀 + trace() + trace( ), and the minimization of

{𝜀 + trace() + trace( )} implies the minimization of the guaranteed cost for the switched
neutral delay system in (6.47a)–(6.47c). The optimality of the solution to the optimization

problem (6.75) follows from the convexity of the objective function as well as the constraints.

This completes the proof.

Notice that the conditions in Theorem 6.3.5 are not all of LMI form because of (6.64d),

hence they can not be solved directly using LMI procedures. Now, by using the CCL method

again, we suggest the following minimization problem involving LMI conditions instead of

the original nonconvex feasibility problem formulated in Theorem 6.3.5.

Problem DOFC-SNDS-GC (DOF control of switched neutral delay systems with a guaranteed

cost):

min trace

(∑
i∈

R(i)(i)

)
subject to (6.64a)–(6.64c), (6.66), (6.76a)–(6.76c) and[

R(i) I
I (i)

]
≥ 0, ∀i ∈  . (6.78)

The following algorithm is suggested to solve the Problem DOFC-SNDS-GC.
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136 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Algorithm DOFC-SNDS-GC

Step 1. Find a feasible set ( (0)

1
(i), (0)

3
(i),(0)

1
(i),(0)

3
(i),(0)(i),R(0)(i), (0)

2
(i),(0)

2
(i),

(0)
c (i),(0)

c (i),(0)c (i), (0),  (0), (0),(0),(0), 𝜀(0)) satisfying (6.64a)–(6.64c), (6.66),

(6.76a)–(6.76c), and (6.78). Set 𝜅 = 0.

Step 2. Solve the following optimization problem:

min trace

(∑
i∈
[
R(𝜅)(i)(i) + R(i)(𝜅)(i)

])
subject to (6.64a)–(6.64c), (6.66), (6.76a)–(6.76c), and (6.78)

and denote f ∗ as the optimized value.
Step 3. Substitute the obtained matrix variables (1(i),3(i),1(i),3(i),(i),R(i),2(i),2(i),c(i),c(i),c(i), ,  , ,,, 𝜀) into (6.71). If (6.71) is satisfied, with

||f ∗ − 2Nn|| < 𝛿,

for a sufficiently small scalar 𝛿 > 0, then output the feasible solutions (1(i),3(i),1(i),3(i),(i),R(i),2(i),2(i),c(i),c(i),c(i), ,  , ,, , 𝜀), so EXIT.
Step 4. If 𝜅 > ℕ where ℕ is the maximum number of iterations allowed, so EXIT.

Step 5. Set 𝜅 = 𝜅 + 1, ( (𝜅)

1
(i), (𝜅)

3
(i),(𝜅)

1
(i),(𝜅)

3
(i),(𝜅)(i),R(𝜅)(i), (𝜅)

2
(i),(𝜅)

2
(i),(𝜅)

c (i),

(𝜅)
c (i), (𝜅)c (i),  (𝜅),  (𝜅),  (𝜅), (𝜅), (𝜅), 𝜀(𝜅)) = (1(i), 3(i), 1(i), 3(i), (i), R(i),

2(i),2(i),c(i),c(i),c(i), ,  , ,,, 𝜀), and go to Step 2.

6.3.3 Illustrative Example

Example 6.3.6 Consider system (6.47a)–(6.47c) with N = 2 (that is, there are two subsys-

tems) and the related parameters are given as follows:

A(1) =
⎡⎢⎢⎣
−1.9 0.0 0.1

0.2 −2.1 0.0

0.0 0.1 0.3

⎤⎥⎥⎦ , Ad(1) =
⎡⎢⎢⎣
0.2 0.0 0.1

0.1 0.1 0.1

0.0 0.1 0.2

⎤⎥⎥⎦ , B(1) =
⎡⎢⎢⎣
1.0

0.5

1.0

⎤⎥⎥⎦ ,
A(2) =

⎡⎢⎢⎣
−1.8 −0.1 0.0

0.2 −2.3 0.1

0.2 −0.1 −2.2

⎤⎥⎥⎦ , Ad(2) =
⎡⎢⎢⎣
0.2 0.1 0.0

0.1 0.2 0.1

0.0 0.1 0.1

⎤⎥⎥⎦ , B(2) =
⎡⎢⎢⎣
0.5

0.6

1.0

⎤⎥⎥⎦ ,
Ah(1) =

⎡⎢⎢⎣
0.1 0.0 0.1

0.0 0.2 0.1

0.1 0.0 0.1

⎤⎥⎥⎦ , Ah(2) =
⎡⎢⎢⎣
0.2 0.1 0.0

0.1 0.1 0.1

0.1 0.0 0.1

⎤⎥⎥⎦ ,
C(1) =

[
1.2 1.0 1.4

]
, Cd(1) =

[
0.3 0.1 0.2

]
,

C(2) =
[
1.3 1.2 1.5

]
, Cd(2) =

[
0.1 0.3 0.2

]
,

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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Figure 6.5 Switching signal

with d(t) = 0.7 + 0.3 sin(t) and 𝛽 = 0.5. A straightforward calculation gives d = 1.0 and 𝜏 =
0.3. It can be checked that the system in (6.47a)–(6.47c) with u(t) = 0 and the above parameters

is unstable for switching signal given in Figure 6.5 (which is generated randomly; here, ‘1’

and ‘2’ represent the first and second subsystems, respectively), and the states of open-loop

system are shown in Figure 6.6 with the initial condition given by x(𝜃) = [ 0.1 0.3 0.2 ]T ,

𝜃 ∈ [−1, 0]. In view of this, our aim is to design a DOF controller u(t) in the form of (6.48a)–

(6.48b), such that the closed-loop system is exponentially stable and the specified linear

integral-quadratic cost function in (6.51) has an upper bound.

Setting 𝜇 = 1.01 (thus Ta >
ln𝜇
𝛽

= 0.0199) and U = diag {0.1, 0.1, 0.1}, W = 0.5, i0 = 1,

we solve Problem DOFC-SNDS-GC by Algorithm DOFC-SNDS-GC, and obtain

 =
⎡⎢⎢⎣

0.0824 −0.0057 −0.0330
−0.0361 0.0965 −0.0503
−0.0206 −0.0561 0.1413

⎤⎥⎥⎦ ,
 =

⎡⎢⎢⎣
0.4919 −0.4490 −0.2498

−0.0094 0.4764 −0.0552
−0.3063 −0.0147 0.3862

⎤⎥⎥⎦ ,  =
⎡⎢⎢⎣
12.5338 −0.6635 0.0878

2.4689 16.0969 0.1650

0.0326 0.4439 17.5236

⎤⎥⎥⎦ ,
c(1) =

⎡⎢⎢⎣
−1.2474 0.7324 0.2495

−0.1116 −1.5146 −0.0846
0.1060 −0.1952 −1.3798

⎤⎥⎥⎦ , c(1) =
⎡⎢⎢⎣
−0.0692
−0.0608
−0.0661

⎤⎥⎥⎦ ,
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Figure 6.6 States of the open-loop system

c(2) =
⎡⎢⎢⎣
−1.3014 0.4466 0.1132

−0.2933 −1.3092 0.0853

0.3635 −0.2835 −1.2655

⎤⎥⎥⎦ , c(2) =
⎡⎢⎢⎣
−0.0704
−0.0486
−0.0562

⎤⎥⎥⎦ ,
c(1) = [0.1977 −0.3589 −1.9555

]
,

c(2) = [−1.6509 0.7992 −0.3083
]
.

Setting F4 = I, we haveG4 =  − T by Remark 6.4. Therefore, it follows from (6.67) that

Ac(1) =
⎡⎢⎢⎣
−4.0081 −2.4662 −1.8121
−1.6211 −3.8452 −1.3765
−1.8396 −2.2488 −4.0423

⎤⎥⎥⎦ , Bc(1) =
⎡⎢⎢⎣
−0.0692
−0.0608
−0.0661

⎤⎥⎥⎦ ,
Ac(2) =

⎡⎢⎢⎣
−4.1412 −2.4587 −1.9010
−1.2203 −4.0549 −1.4000
−1.9281 −2.2060 −3.8444

⎤⎥⎥⎦ , Bc(2) =
⎡⎢⎢⎣
−0.0704
−0.0486
−0.0562

⎤⎥⎥⎦ ,
Cc(1) =

[
−0.1919 1.3215 1.5099

]
,

Cc(2) =
[

3.7940 0.2577 0.4612
]
.

Consequently, the optimal guaranteed cost of the closed-loop system is  ⋆ = 33.6685. The

states of the closed-loop system are given in Figure 6.7 and the DOF control input is shown in

Figure 6.8.
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Figure 6.7 States of the closed-loop system
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Figure 6.8 Control input
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140 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

6.4 Conclusion

In this chapter, the DOF controller design problem has been investigated for continuous-

time switched hybrid systems with time-varying delay. Two independent problems have been

considered: one is the 2-∞ DOF controller design for switched hybrid systems with time-

varying delay, and the other is the guaranteed cost DOF controller design for switched hybrid

systems with neutral delay. By using the average dwell time approach and the piecewise

Lyapunov function technique, some delay-dependent sufficient conditions have been proposed

for the existences of the 2-∞ DOF controller and the guaranteed cost DOF controller,

respectively. Then, the corresponding solvability conditions for the desired 2-∞ DOF

controller and the guaranteed cost DOF controller have also been established, respectively, by

using the linearizing variables transforms approach. Numerical examples have been provided

to illustrate the effectiveness of the proposed design schemes.
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7
SMC of Switched State-Delayed
Hybrid Systems: Continuous-Time
Case

7.1 Introduction

SMC theory and methodologies have been developed for many kinds of systems such as

uncertain systems, time-delay systems, and stochastic systems. Unfortunately, little progress

has been made toward solving SMC of switched hybrid systems. The research in this area has

not been fully investigated and still remains challenging. In this chapter, we will investigate the

SMC design problem for continuous-time switched hybrid systems with time-varying delay.

First, the original system is transformed into a regular form through model transformation,

and then by designing a linear sliding surface, the dynamical equation for the sliding mode

dynamics is derived. By utilizing the average dwell time approach and the piecewise Lyapunov

function technique, a delay-dependent sufficient condition for the existence of a desired

sliding mode is proposed, and an explicit parametrization of the desired sliding surface is

also given. Since the obtained conditions are not all expressed in terms of strict LMIs (some

matrix equality constraints exist), the CCL method is exploited to cast them into a sequential

minimization problem subject to LMI constraints, which can be easily solved numerically.

Then, a discontinuous SMC law is synthesized, by which the system state trajectories can

be driven onto the prescribed sliding surface in a finite time and maintained there for all

subsequent time. Since the designed SMC law contains state-delay terms, it requires the time-

varying delay to be explicitly known a priori in the practical implementation of the controller.
However, in some practical situations, the information about time delay is unavailable, or

difficult to measure. In such a case, the designed SMC law is not applicable. To overcome

this, we suppose the the state-delay terms in controller are unknown and unmeasurable, but

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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142 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

that they are norm-bounded with an unknown upper bound. We will design an adaptive law to

estimate the unknown upper bound, and thus an adaptive SMC law is synthesized, which can

also guarantee that the system state trajectories reach onto the the prescribed sliding surface

in a finite time.

7.2 System Description and Preliminaries

Consider the continuous-time state-delayed hybrid systems described by

ẋ(t) = A(𝛼(t))x(t) + Ad(𝛼(t))x(t − d(t)) + B [u(t) + F(𝛼(t))f (t)] , (7.1a)

x(t) = 𝜙(t), t ∈ [−d, 0] , (7.1b)

where x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the control input; f (t) ∈
Rp is the nonlinearity representing the external disturbance or unmodeled dynamics;{(

A(𝛼(t)),Ad(𝛼(t)),F(𝛼(t))
)
: 𝛼(t) ∈ } is a family of matrices parameterized by an index

set = {1, 2,… ,N}; and 𝛼(t) : R →  (denoted by 𝛼 for simplicity) is a switching signal

defined as the same in Chapter 5. Also, 𝜙(t) ∈ Cn,d is a differentiable vector-valued initial

function on [−d, 0] for a known constant d > 0, and d(t) denotes the time-varying delays which
satisfy 0 ≤ d(t) ≤ d and ḋ(t) ≤ 𝜏.

For each possible value 𝛼(t) = i, i ∈  , we denote the system matrices associated with

mode i by A(i) = A(𝛼), Ad(i) = Ad(𝛼), and F(i) = F(𝛼), where A(i), Ad(i), and F(i) are constant
matrices. In addition, B is assumed to be of full column rank, and for the nonlinearity f (t), we
suppose that

‖F(i)f (t)‖ ≤ 𝜂(i), ∀i ∈  ,

where 𝜂(i) > 0, i ∈  are real constants.

Introduce the following definitions for the autonomous system of (7.1a):

ẋ(t) = A(𝛼)x(t) + Ad(𝛼)x(t − d(t)). (7.2)

Definition 7.2.1 The switched state-delayed hybrid system in (7.2) is said to be exponentially
stable under 𝛼(t) if the solution x(t) of the system satisfies

‖x(t)‖ ≤ 𝜂 ‖‖x(t0)‖‖C e−𝜆(t−t0), ∀t ≥ t0,

where 𝜂 ≥ 1 and 𝜆 > 0 are two real constants, and

‖‖x(t0)‖‖C ≜ sup
−d≤𝜃≤0

{‖‖x(t0 + 𝜃)‖‖ , ‖‖ẋ(t0 + 𝜃)‖‖} .
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SMC of Switched State-Delayed Hybrid Systems: Continuous-Time Case 143

7.3 Main Results

7.3.1 Sliding Mode Dynamics Analysis

In this section, we will consider the SMC problem for system (7.1a)–(7.1b). First of all, we

design the switching function and analyze the stability of sliding mode dynamics. Since B is

of full column rank by assumption, there exists a nonsingular matrix T such that

TB =
[
0(n−m)×m

B1

]
, (7.3)

where B1 ∈ Rm×m is nonsingular. Taking a singular value decomposition of B, we have

B = U

[
0(n−m)×m

Γ

]
WT , (7.4)

where U ≜ [U1 U2

]
and W ∈ Rm×m are unitary matrices with U1 ∈ Rn×(n−m), U2 ∈ Rn×m,

and Γ ∈ Rm×m is a diagonal positive-definite matrix. For convenience, choose T = UT , then

by the transformation z(t) = Tx(t), system (7.1a)–(7.1b) becomes

ż(t) = TA(𝛼)T−1z(t) + TAd(𝛼)T
−1z(t − d(t))

+ TB [u(t) + F(𝛼)f (t)] . (7.5)

Let z(t) ≜
[
z1(t)
z2(t)

]
with z1(t) ∈ Rn−m, z2(t) ∈ Rm, and

⎧⎪⎪⎨⎪⎪⎩
Ā(𝛼) ≜

[
Ā11(𝛼) Ā12(𝛼)

Ā21(𝛼) Ā22(𝛼)

]
= TA(𝛼)T−1,

Ād(𝛼) ≜
[
Ād11(𝛼) Ād12(𝛼)

Ād21(𝛼) Ād22(𝛼)

]
= TAd(𝛼)T

−1,

then (7.5) can be written in the following regular form:

[
ż1(t)
ż2(t)

]
=
[
Ā11(𝛼) Ā12(𝛼)

Ā21(𝛼) Ā22(𝛼)

] [
z1(t)

z2(t)

]
+
[
Ād11(𝛼) Ād12(𝛼)

Ād21(𝛼) Ād22(𝛼)

] [
z1(t − d(t))

z2(t − d(t))

]
+
[
0(n−m)×m

B1

]
(u(t) + F(𝛼)f (t)) , (7.6)
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144 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where

Ā11(𝛼) ≜ UT
1
A(𝛼)U1, Ā12(𝛼) ≜ UT

1
A(𝛼)U2, Ā21(𝛼) ≜ UT

2
A(𝛼)U1,

Ā22(𝛼) ≜ UT
2
A(𝛼)U2, Ād11(𝛼) ≜ UT

1
Ad(𝛼)U1, Ād12(𝛼) ≜ UT

1
Ad(𝛼)U2,

Ād21(𝛼) ≜ UT
2
Ad(𝛼)U1, Ād22(𝛼) ≜ UT

2
Ad(𝛼)U2, B1 ≜ ΓWT .

Obviously, the first subsystem of (7.6) represents the sliding mode dynamics. We design

the following switching function:

s(t) = Cz1(t) + z2(t), (7.7)

where C ∈ Rm× (n−m) is the parametric matrix to be designed.

Remark 7.1 Note that the switching function defined in (7.7) does not switch with the
switching signal 𝛼 (i.e. we design C not C(𝛼) in (7.7)), that is, there is a unique non-switched
sliding surface. The reason for this is to avoid repetitive jumps of the trajectories of the
state components of the closed-loop system between sliding surfaces and hence the possible
instability. ⧫

When the system state trajectories reach onto the sliding surface s(t) = 0, that is, z2(t) =
−Cz1(t), the sliding mode dynamics is attained. Substituting z2(t) = −Cz1(t) into the first

subsystem of (7.6) yields the sliding mode dynamics:

ż1(t) =
(
Ā11(𝛼) − Ā12(𝛼)C

)
z1(t)

+
(
Ād11(𝛼) − Ād12(𝛼)C

)
z1(t − d(t)). (7.8)

Now, we will analyze the stability of the sliding mode dynamics in (7.8) based on the result

obtained in Theorem 5.2.3, and give the following theorem.

Theorem 7.3.1 For a given constant 𝛽 > 0, there exist matrices P > 0,  > 0, R(i) > 0,
(i) > 0, (i) > 0, (i) > 0,  (i) > 0, (i), (i), and  such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎣

Π̆11(i) Π̆12(i) d
(
Ā11(i) − Ā12(i))T d(i)

⋆ Π̆22(i) d
(
Ād11(i) − Ād12(i))T d(i)

⋆ ⋆ −d(i) 0

⋆ ⋆ ⋆ −de−𝛽d(i)

⎤⎥⎥⎥⎥⎥⎦
< 0, (7.9a)

[
−R(i) P

⋆ − (i)
]
≤ 0, (7.9b)

P = I, R(i)(i) = I, (i) (i) = I, (7.9c)
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SMC of Switched State-Delayed Hybrid Systems: Continuous-Time Case 145

where

⎧⎪⎪⎨⎪⎪⎩

Π̆11(i) ≜ Ā11(i) + ĀT
11
(i) − Ā12(i) −TĀT

12
(i)

+ (i) + T (i) +(i) + 𝛽 ,
Π̆12(i) ≜ Ād11(i) − Ād12(i) + T (i) − (i),
Π̆22(i) ≜ − (1 − 𝜏)e−𝛽d(i) − (i) − T (i).

Then the sliding mode dynamics in (7.8) is exponentially stable for any switching signal with
average dwell time satisfying Ta > T∗

a = ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

R(i) ≤ 𝜇R(j), (i) ≤ 𝜇(j), (i) ≤ 𝜇(j), ∀i, j ∈  . (7.10)

Moreover, if the conditions above are feasible, the matrix C in (7.7) is given by C = −1,
that is, the switching function can be designed as

s(t) = −1z1(t) + z2(t)

= Pz1(t) + z2(t). (7.11)

Proof. By Theorem 5.2.3, we know that if there exist matrices P > 0, Q(i) > 0, R(i) > 0, X(i),
and Y(i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎣

Π̂11(i) Π̂12(i) d
(
Ā11(i) − Ā12(i)C

)T
R(i) dX(i)

⋆ Π̂22(i) d
(
Ād11(i) − Ād12(i)C

)T
R(i) dY(i)

⋆ ⋆ −dR(i) 0

⋆ ⋆ ⋆ −de−𝛽dR(i)

⎤⎥⎥⎥⎥⎥⎦
< 0, (7.12)

where

⎧⎪⎪⎨⎪⎪⎩

Π̂11(i) ≜ P
(
Ā11(i) − Ā12(i)C

)
+
(
Ā11(i) − Ā12(i)C

)T
P

+ X(i) + XT (i) + Q(i) + 𝛽P,

Π̂12(i) ≜ P
(
Ād11(i) − Ād12(i)C

)
+ YT (i) − X(i),

Π̂22(i) ≜ −(1 − 𝜏)e−𝛽dQ(i) − Y(i) − YT (i),

then the sliding mode dynamics in (7.8) is exponentially stable for any switching signal with

average dwell time satisfying Ta > T∗
a = ln𝜇

𝛽
, where 𝜇 ≥ 1 and satisfies

Q(i) ≤ 𝜇Q(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  . (7.13)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



146 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Define the following matrices:

⎧⎪⎨⎪⎩
 ≜ P−1,  ≜ C ,

(i) ≜ R−1(i), (i) ≜ Q(i) ,
(i) ≜ X(i) , (i) ≜ Y(i) , ∀i ∈  .

(7.14)

Performing a congruence transformation on (7.12) with diag { , ,(i),}, we have
⎡⎢⎢⎢⎢⎢⎣

Π̆11(i) Π̆12(i) d
(
Ā11(i) − Ā12(i))T d(i)

⋆ Π̆22(i) d
(
Ād11(i) − Ād12(i))T d(i)

⋆ ⋆ −d(i) 0

⋆ ⋆ ⋆ −de−𝛽d−1(i)

⎤⎥⎥⎥⎥⎥⎦
< 0, (7.15)

where Π̆11(i), Π̆12(i), and Π̆22(i) are defined in (7.9a).
Notice that (7.15) is not of LMI form because of the term of −1(i) . Now, replacing

−1(i) in (7.15) with (i) > 0, it follows that (7.15) holds if (7.9a) holds and for i ∈  ,

−1(i) ≥ (i). (7.16)

By Schur complement, (7.16) is equivalent to[
−−1(i) −1

⋆ −−1(i)

]
≤ 0, (7.17)

which implies (7.9b) by (7.14) and letting  (i) = −1(i).
Moreover, considering (7.13)–(7.14), we have (7.10). This completes the proof.

Remark 7.2 It should be pointed out that the matrix variables P and  in Theorem 7.3.1 do
not depend on the switching set and are fixed. As the designed switching function in (7.7) is a
parameter-independent function, the parameter C = −1 in (7.7) is guaranteed to be fixed
if the matrix variable  is fixed. ⧫

Note that the conditions in Theorem 7.3.1 are not all of strict LMI form due to (7.9c), so

we can not solve them by LMI procedures directly. Now, by using CCL method [66], we

suggest the following minimization problem involving LMI conditions instead of the original

nonconvex feasibility problem formulated in Theorem 7.3.1.

Problem SMDA (Sliding mode dynamics analysis)

min trace

(
P +

∑
i∈

R(i)(i) +
∑
i∈

(i) (i)
)
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SMC of Switched State-Delayed Hybrid Systems: Continuous-Time Case 147

subject to (7.9a)–(7.9b), (7.10) and for i ∈  ,

[
P I
I 

]
≥ 0,

[
R(i) I
I (i)

]
≥ 0,

[(i) I
I  (i)

]
≥ 0. (7.18)

According to the CCL method [66], if the solution of the above minimization problem is

(1 + 2N)(n − m), then the conditions in Theorem 7.4.0 are solvable. We give the following

algorithm to solve Problem SMDA.

Algorithm SMDA

Step 1. Find a feasible set (P(0), (0),R(0)(i),(0)(i),(0)(i), (0)(i),  (0)(i), (0)(i),  (0)(i),
(0)) satisfying (7.9a)–(7.9b), (7.10), and (7.18). Set 𝜅 = 0.

Step 2. Solve the following optimization problem:

min trace

⎛⎜⎜⎜⎝
P(𝜅) + P (𝜅)+∑

i∈

(
R(𝜅)(i)(i) + R(i)(𝜅)(i)+
 (𝜅)(i) (i) + (i) (𝜅)(i)

)⎞⎟⎟⎟⎠
subject to (7.9a)–(7.9b), (7.10), and (7.18)

and denote f ∗ as the optimized value.
Step 3. Substitute the obtained matrices

(
P, ,R(i),(i),(i),(i),  (i),(i), (i), ) into

(7.17). If (7.17) is satisfied, with

||f ∗ − (2 + 4N)(n − m)|| < 𝜀,

for a sufficiently small scalar 𝜀 > 0, then output the feasible solutions (P, ,R(i),
(i),(i),(i),  (i),(i),(i),), so EXIT.

Step 4. If 𝜅 > ℕ where ℕ is the maximum number of iterations allowed, so EXIT.

Step 5. Set 𝜅 = 𝜅 + 1,
(
P(𝜅), (𝜅),R(𝜅)(i),(𝜅)(i),(𝜅)(i), (𝜅)(i), (𝜅)(i), (𝜅)(i), (𝜅)(i),

(𝜅)
)
=
(
P, ,R(i),(i),(i),(i),  (i),(i),(i),), and go to Step 2.

7.3.2 SMC Law Design

In the following, we are in a position to synthesize an SMC law to drive the system state

trajectories onto the predefined sliding surface s(t) = 0, and give the following result.

Theorem 7.3.2 Suppose that the conditions in (7.9a)–(7.10) have a set of feasible solutions
P > 0,  > 0, R(i) > 0, (i) > 0, (i) > 0, (i) > 0,  (i) > 0, (i), (i), and , and the
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148 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

switching function is given by (7.11). Then the state trajectories of the closed-loop system
(7.6) can be driven onto the sliding surface s(t) = 0 in a finite time by the control of

u(t) = −B−1
1

{−1 [Ā11(i)z1(t) + Ā12(i)z2(t) + Ād11(i)z1(t − d(t))

+ Ād12(i)z2(t − d(t))
]
+ Ā21(i)z1(t) + Ā22(i)z2(t)

+ Ād21(i)z1(t − d(t)) + Ād22(i)z2(t − d(t))
}

− (𝜌(i) + 𝜂(i)) sign
(
BT
1
s(t)
)
, (7.19)

where 𝜌(i) > 0, i ∈  are adjustable parameters.

Proof. We will show that the control law (7.19) can not only drive the system state trajectories

onto the sliding surface, but also keep it there for all subsequent time. Consider the switching

function as

s(t) = −1z1(t) + z2(t), (7.20)

and choose the following Lyapunov function:

W(t) ≜ 1

2
sT (t)s(t). (7.21)

Then as with the solution of the system in (7.6) for a fixed 𝛼, we have

Ẇ(t) = sT (t)ṡ(t) = sT (t)
(−1ż1(t) + ż2(t)

)
= sT (t)

{−1 [Ā11(𝛼)z1(t) + Ā12(𝛼)z2(t) + Ād11(𝛼)z1(t − d(t))

+ Ād12(𝛼)z2(t − d(t))
]
+ Ā21(𝛼)z1(t) + Ā22(𝛼)z2(t) + Ād21(𝛼)z1(t − d(t))

+ Ād22(𝛼)z2(t − d(t)) + B1u(t) + B1F(𝛼)f (t)
}
. (7.22)

Substituting the following control law into (7.22):

u(t) = − B−1
1

{−1 [Ā11(𝛼)z1(t) + Ā12(𝛼)z2(t) + Ād11(𝛼)z1(t − d(t))

+ Ād12(𝛼)z2(t − d(t))
]
+ Ā21(𝛼)z1(t) + Ā22(𝛼)z2(t)

+ Ād21(𝛼)z1(t − d(t)) + Ād22(𝛼)z2(t − d(t))
}

− (𝜌(𝛼) + 𝜂(𝛼)) sign
(
BT
1
s(t)
)
, (7.23)
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SMC of Switched State-Delayed Hybrid Systems: Continuous-Time Case 149

and noting that ‖‖sT (t)B1‖‖ ≤ ||sT (t)B1||, we have
Ẇ(t) = sT (t)

[
−B1 (𝜌(𝛼) + 𝜂(𝛼)) sign

(
BT
1
s(t)
)
+ B1F(𝛼)f (t)

]
= −sT (t)B1

[
(𝜌(𝛼) + 𝜂(𝛼)) sign

(
BT
1
s(t)
)
− F(𝛼)f (t)

]
≤ − (𝜌(𝛼) + 𝜂(𝛼))

|||sT (t)B1||| + 𝜂(𝛼)
‖‖‖sT (t)B1‖‖‖

≤ −𝜌(𝛼) ‖‖‖sT (t)B1‖‖‖
≤ −
√
2𝜆min

(
B1B

T
1

)
min
∀𝛼∈ (𝜌(𝛼))W1∕2(t)

≜ −𝜌W1∕2(t) < 0,

where 𝜌 ≜
√
2𝜆min

(
B1B

T
1

)
min
∀𝛼∈ (𝜌(𝛼)) > 0.

As in the proof of Theorem 5.2.3, for an arbitrary piecewise constant switching signal 𝛼,

and for any t > 0, we let 0 = t0 < t1 < ⋯ < tk < ⋯, k = 0, 1,…, denote the switching points

of 𝛼 over the interval (0, t). The ikth subsystem is activated when t ∈
[
tk, tk+1

)
. Integrating

Ẇ(t) ≤ −𝜌W1∕2(t) from tk to t and tk−1 to tk, k = 1, 2,…, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

W1∕2(t) −W1∕2(tk) ≤ −1
2
𝜌(t − tk),

W1∕2(tk) −W1∕2(tk−1) ≤ −1
2
𝜌(tk − tk−1),

⋮

W1∕2(t1) −W1∕2(0) ≤ −1
2
𝜌(t1 − 0).

(7.24)

Summing the terms on both sides of (7.24) gives

W1∕2(t) −W1∕2(0) ≤ −1
2
𝜌t. (7.25)

It can be seen from (7.25) that there exists a time t∗ ≤ 2W1∕2(0)∕𝜌 such that W(t) = 0, and

consequently s(t) = 0, for t ≥ t∗, which means that the system state trajectories can reach

onto the predefined sliding surface s(t) = 0 in a finite time. Since the reaching condition

sT (t)ṡ(t) < 0 holds, the system state trajectories can be driven onto the predefined sliding

surface and maintained there for all subsequent time. This completes the proof.

Notice that the SMC law in (7.19) is applicable only when the time-varying delay d(t) is
explicitly known a priori, since there exist z1(t − d(t)) and z2(t − d(t)) in (7.19). However, in
some practical situations, the information for delay d(t) is unavailable, or difficult to measure.
To overcome this, in what follows, we provide another kind of SMC law.

We assume that there exists a constant r > 0 such that

‖z(t + 𝜃)‖ ≤ r ‖z(t)‖ , 𝜃 ∈ [−d, 0] , (7.26)
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150 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where the constant r is not known a priori, which is often the case in practical situations.

Therefore, to obtain the value of r, we should design an adaptive law first to estimate it, and

thus give an adaptive SMC law for system (7.6). Let r(t) represent the estimate of r. The
corresponding estimation error is r̃(t) = r(t) − r.

Theorem 7.3.3 Suppose the conditions in (7.9a)–(7.10) have a set of feasible solutions
P > 0,  > 0, R(i) > 0, (i) > 0, (i) > 0, (i) > 0,  (i) > 0, (i), (i), and , and the
switching function is given by (7.11). Then the state trajectories of the closed-loop system
(7.6) can be driven onto the sliding surface s(t) = 0 with the control of

u(t) = −1√
𝜆min

(
B1B

T
1

) {𝛿(i) + ‖‖B1‖‖ 𝜂(i) + ‖‖‖−1‖‖‖(‖‖‖[ Ā11(i) Ā12(i)
]‖‖‖

+ r(t) ‖‖‖[ Ād11(i) Ād12(i)
]‖‖‖) ‖z(t)‖ + (‖‖‖[ Ā21(i) Ā22(i)

]‖‖‖
+ r(t) ‖‖‖[ Ād21(i) Ād22(i)

]‖‖‖) ‖z(t)‖} sign (BT
1
s(t)
)
, (7.27)

where 𝛿(i) > 0, i ∈  are constants, and the adaptive law is given as

ṙ(t) = 1

l
min
∀i∈

{‖‖‖−1‖‖‖ ‖‖‖[ Ād11(i) Ād12(i)
]‖‖‖

+ ‖‖‖[ Ād21(i) Ād22(i)
]‖‖‖}‖z(t)‖ ‖s(t)‖ , (7.28)

with r(0) = 0, where l > 0 is a given scalar.

Proof. Choose a Lyapunov function of the following form:

W1(t) ≜ 1

2

(
sT (t)s(t) + lr̃2(t)

)
.

Then as with the solution of the system in (7.6) for a fixed 𝛼 and by noting (7.26), we have

Ẇ1(t) = sT (t)
(−1ż1(t) + ż2(t)

)
+ lr̃(t) ̇̃r(t)

= sT (t)
{−1 [Ā11(𝛼)z1(t) + Ā12(𝛼)z2(t) + Ād11(𝛼)z1(t − d(t))

+ Ād12(𝛼)z2(t − d(t))
]
+ Ā21(𝛼)z1(t) + Ā22(𝛼)z2(t) + Ād21(𝛼)z1(t − d(t))

+ Ād22(𝛼)z2(t − d(t)) + B1u(t) + B1F(𝛼)f (t)
}
+ lr̃(t) ̇̃r(t)

≤ ‖s(t)‖{‖‖‖−1‖‖‖ [‖‖‖[Ā11(𝛼) Ā12(𝛼)
]‖‖‖+ r ‖‖‖[Ād11(𝛼) Ād12(𝛼)

]‖‖‖] ‖z(t)‖
+
[‖‖‖[Ā21(𝛼) Ā22(𝛼)

]‖‖‖ + r ‖‖‖[Ād21(𝛼) Ād22(𝛼)
]‖‖‖] ‖z(t)‖}

+ sT (t)B1u(t) + ‖s(t)‖ ‖‖B1‖‖ ‖F(𝛼)f (t)‖ + lr̃(t) ̇̃r(t). (7.29)
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Substituting the control law (7.27) into (7.29) yields

Ẇ1(t) ≤ −r̃(t)
(‖‖‖−1‖‖‖ ‖‖‖[Ād11(𝛼) Ād12(𝛼)

]‖‖‖+ ‖‖‖[Ād21(𝛼) Ād22(𝛼)
]‖‖‖)

× ‖z(t)‖ ‖s(t)‖ − 𝛿(𝛼) ‖s(t)‖ + lr̃(t) ̇̃r(t). (7.30)

Note from (7.28) that ṙ(t) > 0, which implies ̇̃r(t) > 0. Therefore, there exists a time instant t#

such that r̃(t) > 0 for t > t#, and consequently lr̃(t) ̇̃r(t) > 0 for t > t#. Substituting the adaptive
law (7.28) (with i replaced by 𝛼) into (7.30), when t > t# we have

Ẇ1(t) ≤ −𝛿(𝛼) ‖s(t)‖ ≤ − min
∀𝛼∈ (𝛿(𝛼)) ‖s(t)‖

= −𝛿 ‖s(t)‖ < 0, (7.31)

where 𝛿 ≜ min𝛼∈ (𝛿(𝛼)) > 0. By (7.31) and noting lr̃(t) ̇̃r(t) > 0 for t > t#, we have sT (t)ṡ(t)
< 0 for t > t#, thus the reaching condition is satisfied. This completes the proof.

7.4 Illustrative Example

Example 7.4.1 Consider the switched state-delayed hybrid system in (7.1a)–(7.1b) with

N = 2 (that is, there are two subsystems) and the following parameters:

A(1) =
⎡⎢⎢⎣
−0.9 0.2 −0.2
0.2 −0.1 0.3

−0.3 0.1 0.3

⎤⎥⎥⎦ , Ad(1) =
⎡⎢⎢⎣
0.2 0 0.1

0.1 0.3 0.1

0.3 0.1 0.2

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣
0.0

0.0

2.0

⎤⎥⎥⎦ ,
A(2) =

⎡⎢⎢⎣
−0.8 −0.1 −0.2
0.2 −0.1 0.3

0.2 −0.1 0.2

⎤⎥⎥⎦ , Ad(2) =
⎡⎢⎢⎣
0.2 0.1 0.0

0.1 0.2 0.1

0.1 0.1 0.3

⎤⎥⎥⎦ ,
F(1) = 1.6,

F(2) = 2.0,

and d = 2.0, 𝛽 = 0.6, 𝜏 = 0.5, and f (t) = 0.5 exp(−t) sin(t). It can be verified that system

(7.1a)–(7.1b) with u(t) = 0 and the above parameters is unstable for a switching signal given

in Figure 7.1 (which is generated randomly; here, ‘1’ and ‘2’ represent the first and second

subsystems, respectively), the states of the open-loop system are shown in Figure 7.2 with the

initial condition given by x(𝜃) =
[
−1.0 0.5 1.0

]T
, 𝜃 ∈ [−2, 0]. Therefore, our aim is to

design an SMC law u(t) such that the closed-loop system is stable with arbitrary switching. To

check the stability of (7.8) with arbitrary switching, we solve conditions (7.9a)–(7.9c) in The-

orem 7.3.1 with R(i) = R(j) = R,(i) = (j) = , (i) = (j) = , ∀i, j ∈  by Algorithm

SMDA, which gives

 =
[

1.3480 −0.4896
−0.4896 0.3396

]
,  =

[
0.4537 0.3438

]
.
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0 5 10 15 20 25 30

1

2

t/sec

Figure 7.1 Switching signal
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Figure 7.2 States of the open-loop system
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According to (7.11), we have

s(t) = −1z1(t) + z2(t) =
[
1.4786 3.1441 1.0000

]
x(t). (7.32)

The existence of a feasible solution shows that there exists a mode-independent Lyapunov

function for checking the exponential stability of the sliding mode dynamics in (7.8), that is,

we can find a desired switching function in (7.32) such that the resulting slidingmode dynamics

in (7.8) is exponentially stable for arbitrary switching. The remaining task is to design an SMC

law such that the system state trajectories can be driven onto the predefined sliding surface

s(t) = 0 and maintained there for all subsequent time. When delay d(t) in (7.1a)–(7.1b) is

explicitly given as d(t) = 1.5 + 0.5 sin t, the SMC law in (7.19) can be computed as

u(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(t, 1) = −1
2

{[
−1.0019 0.0813 0.9475

]
x(t)

+
[
0.9101 1.0432 0.6623

]
x(t − d(t))

}
− (𝛿(1) + 0.8) sign (s(t)) , i = 1,

u(t, 2) = −1
2

{[
−0.3541 −0.5623 0.8475

]
x(t)

+
[
0.7101 0.8767 0.6144

]
x(t − d(t))

}
− (𝛿(2) + 1.0) sign (s(t)) , i = 2.

(7.33)

When delay d(t) in (7.1a)–(7.1b) is unknown, the SMC law designed in (7.27)–(7.28) can be

applied, and given by

u(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(t, 1) = −1
2
{(3.8603 + 1.5899r(t)) ‖x(t)‖

+ 𝛿(1) + 1.6} sign (s(t)) , i = 1,

u(t, 2) = −1
2
{(3.3311 + 1.4042r(t)) ‖x(t)‖

+ 𝛿(2) + 2.0} sign (s(t)) , i = 2.

(7.34)

Set 𝛿(1) = 𝛿(2) = 2 and l = 1. The adaptive law in (7.28) is computed as

ṙ(t) = 1.4042 ‖x(t)‖ ‖s(t)‖ .
To reduce the chattering, we replace sign (s(t)) with s(t)∕ (0.01 + ‖s(t)‖). Figure 7.3 shows

the state response of the closed-loop switched system with (7.33). The switching function and

the control input are given in Figures 7.4 and 7.5, respectively. The corresponding simulation

results with (7.34) are given in Figures 7.6–7.9.
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Figure 7.3 States of the closed-loop system with (7.33)
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Figure 7.4 Sliding function with (7.33)
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Figure 7.5 Control input (7.33)
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Figure 7.6 States of the closed-loop system with (7.34)
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Figure 7.7 Sliding function with (7.34)
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Figure 7.8 Control input (7.34)
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Figure 7.9 Adaptive estimate r(t)

7.5 Conclusion

In this chapter, the SMC design problem has been investigated for continuous-time switched

systems with time-varying delay. By model transformation, the system has first been trans-

formed into the regular form, and then the sliding mode dynamics has been derived by

designing a linear switching function. The corresponding sufficient condition for the existence

of resulting sliding mode dynamics has been derived, and an explicit parametrization of the

desired sliding surface has also been given. In addition, an adaptive SMC law for reaching

motion has been designed such that the system state trajectories can be driven onto the pre-

scribed sliding surface in a finite time and maintained there for all subsequent time. Finally, a

numerical example has been provided to illustrate the effectiveness of the design scheme.
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8
SMC of Switched State-Delayed
Hybrid Systems: Discrete-Time
Case

8.1 Introduction

In this chapter, we will study the SMC design problem for discrete-time switched hybrid

systems with time-varying delay. First, we transform the original system into a new one with

regular form, and then by designing a linear switching function, a reduced-order sliding mode

dynamics, described by a switched state-delayed hybrid system, is generated. By utilizing

the average dwell time approach and the piecewise Lyapunov function technique, a delay-

dependent sufficient condition for the existence of the desired sliding mode is proposed in

terms of LMIs, and an explicit parametrization of the desired switching surface is also given.

Here, to reduce the conservativeness induced by the time delay in the system, both the slack

matrix technique and the delay partitioning method are employed, which makes the proposed

existence condition less conservative and more practical. The delay partitioning – also called

delay fractioning – has been considered as an effective approach to reduce the conservativeness

of the stability condition for time-delay systems. This was initially proposed by Gouaisbaut

and Peaucelle in [86], and was then developed in [58, 73, 220, 271]. The basic idea of the

delay partitioning method is to evenly partition the time delay into several components (this

generally means time-invariant delay), and then take each time-delay component into account

individually when constructing a Lyapunov function. In this chapter, the time delay considered

is a time-varying one with a known lower bound. In this case, combining with construction of

an appropriate Lyapunov–Krasovskii function, the delay partitioning method is used by evenly

partitioning the lower bound into several components. It is shown that the conservativeness

of the obtained existence condition becomes less as the partitioning gets thinner. Finally, a

discontinuous SMC law is designed to drive the state trajectories of the closed-loop system

onto a prescribed sliding surface in a finite time and maintained there for all subsequent time.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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160 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

8.2 System Description and Preliminaries

Consider the following discrete-time switched state-delayed hybrid system:

x(k + 1) = A(𝛼(k))x(k) + Ad(𝛼(k))x(k − d(k))

+ B(u(k) + F(𝛼(k))f (x, k)), (8.1a)

x(k) = 𝜙(k), k = −h2,−h2 + 1,−h2 + 2,… , 0, (8.1b)

where x(k) ∈ Rn is the system state vector; u(k) ∈ Rm is the control input; f (x, k) ∈ Rp is the

nonlinearity;
{
A(𝛼(k)),Ad(𝛼(k)),F(𝛼(k)) : 𝛼(k) ∈ } is a family of matrices parameterized

by an index set  = {1, 2,… ,N}; and 𝛼(k) : Z+ →  (denoted by 𝛼 for simplicity) is the

switching signal defined as the same in Chapter 5. Also, x(k) = 𝜙(k), k = −h2,−h2 + 1,… , 0

are the initial conditions, and d(k) denotes the time-varying delays which satisfy h1 ≤ d(k) ≤
h2, where h1 and h2 are two positive constants representing its lower and upper bounds,

respectively.

For each possible value 𝛼 = i, i ∈  , we denote the system matrices associated with mode

i by A(i) = A(𝛼), Ad(i) = Ad(𝛼), and F(i) = F(𝛼), where A(i), Ad(i), and F(i) are constant

matrices. Moreover, we assume that (A(i),B) is controllable for each i ∈  , and matrix B is

of full column rank. For the nonlinearity f (x, k), we suppose that

‖F(i)f (x, k)‖ ≤ 𝜂(i), i ∈  ,

where 𝜂(i) > 0 are scalars.

Since (A(i),B) is controllable, there exists a nonsingular matrix T such that

TB =
[
0(n−m)×m

B1

]
,

where B1 ∈ Rm×m is nonsingular. For convenience, choose

T =

[
UT
2

UT
1

]
,

where U1 ∈ Rn×m and U2 ∈ Rn×(n−m) are two sub-blocks of a unitary matrix resulting from
the singular value decomposition of B, that is,

B =
[
U2 U1

] [0(n−m)×m
Γ

]
WT ,

where Γ ∈ Rm×m is a diagonal positive-definite matrix andW ∈ Rm×m is a unitary matrix.

By state transformation z(k) = Tx(k), system (8.1a) takes the form

z(k + 1) = Ā(𝛼)z(k) + Ād(𝛼)z(k − d(k))

+
[
0(n−p)×p

B1

]
(u(k) + F(𝛼)f (z, k)), (8.2)
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SMC of Switched State-Delayed Hybrid Systems: Discrete-Time Case 161

where Ā(𝛼) = TA(𝛼)T−1 and Ād(𝛼) = TAd(𝛼)T
−1. Let z(k) ≜

[
z1(k)
z2(k)

]
with z1(k) ∈ R(n−m),

z2(k) ∈ Rm, and

Ā(𝛼) ≜
[
Ā11(𝛼) Ā12(𝛼)
Ā21(𝛼) Ā22(𝛼)

]
, Ād(𝛼) ≜

[
Ād11(𝛼) Ād12(𝛼)

Ād21(𝛼) Ād22(𝛼)

]
,

then (8.2) can be expressed in the following regular form:[
z1(k + 1)

z2(k + 1)

]
=
[
Ā11(𝛼) Ā12(𝛼)
Ā21(𝛼) Ā22(𝛼)

] [
z1(k)
z2(k)

]
+
[
Ād11(𝛼) Ād12(𝛼)

Ād21(𝛼) Ād22(𝛼)

] [
z1(k − d(k))
z2(k − d(k))

]
+
[
0(n−m)×m

B1

]
(u(k) + F(𝛼)f (z, k)), (8.3)

where Ā11(𝛼) = UT
1
A(𝛼)U1, Ā12(𝛼) = UT

1
A(𝛼)U2, Ā21(𝛼) = UT

2
A(𝛼)U1, Ā22(𝛼) = UT

2
A(𝛼)U2,

Ād11(𝛼) = UT
1
Ad(𝛼)U1, Ād12(𝛼) = UT

1
Ad(𝛼)U2, Ād21(𝛼) = UT

2
Ad(𝛼)U1, Ād22 (𝛼) =UT

2
Ad

(𝛼)U2, and B1 = ΓWT .

It is obvious that the first equation of system (8.3) represents the sliding motion dynamics

of system (8.2), hence the corresponding sliding surface can be chosen as:

s(k) = Cz1(k) + z2(k), (8.4)

where C ∈ Rm×(n−m) is the parameter to be designed.
When the system state trajectories reach onto the sliding surface s(k) = 0, that is, z2(k) =

−Cz1(k), the sliding mode dynamics is attained. Substituting z2(k) = −Cz1(k) into the first

equation of system (8.3) gives the sliding mode dynamics as

z1(k + 1) =
(
Ā11(𝛼) − Ā12(𝛼)C

)
z1(k)

+
(
Ād11(𝛼) − Ād12(𝛼)C

)
z1(k − d(k)). (8.5)

Definition 8.2.1 The sliding mode dynamics (8.5) is said to be exponentially stable under 𝛼
if the solution z1(k) satisfies‖z1(k)‖ ≤ 𝜂 ‖‖z1(k0)‖‖C 𝜌k−k0 , ∀k ≥ k0,

where 𝜂 ≥ 1 and 0 < 𝜌 < 1 are two real constants, and‖z1(k0)‖C ≜ sup
𝜃=−h2,−h2+1,…,0

{‖z1(k0 + 𝜃)‖, ‖𝜉(k0)‖} ,
where 𝜉(k) ≜ z1(k + 1) − z1(k).

8.3 Main Results

8.3.1 Sliding Mode Dynamics Analysis

In this section, we analyze the stability for the sliding mode dynamics in (8.5), and present the

following result.
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162 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Theorem 8.3.1 Given an integer m and a scalar 𝛽 > 0, if there exist matrices P(i) > 0,
Q𝜚|𝜅(i) > 0, R(i) > 0, S(i) > 0, and Z(i) > 0, and matrices L(i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎣
Φ(i) ÂT (i)P(i) 𝛽h2+1h2Ã

T (i)Z(i) h2L(i)

⋆ −P(i) 0 0

⋆ ⋆ −𝛽h2+1h2Z(i) 0

⋆ ⋆ ⋆ −h2Z(i)

⎤⎥⎥⎥⎥⎦
< 0, (8.6)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ(i) ≜ 𝛽diag
{
−P(i) + Q1|1(i) + R(i) + S(i),−𝛽h2Q1|(m−1)(i) + Q2|m(i),

− 𝛽h2Qm|m(i),−𝛽h2R(i),−𝛽h2S(i)}
+ 2𝛽h2+1L(i)

[
In−p 0(n−p)×(m+2)(n−p) −In−p

]
,

Â(i) ≜ [
Ā11(i)−Ā12(i)C 0(n−p)×m(n−p) Ād11(i)−Ād12(i)C 0n−p

]
,

Ã(i) ≜ [
Ā11(i)−Ā12(i)C−I 0(n−p)×m(n−p) Ād11(i)−Ād12(i)C−I 0n−p

]
,

then the sliding mode dynamics in (8.5) is exponentially stable for any switching signal with

average dwell time satisfying Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1 satisfies that ∀i, j ∈  ,

P(i) ≤ 𝜇P(j), Q𝜚|𝜅(i) ≤ 𝜇Q𝜚|𝜅(j),
R(i) ≤ 𝜇R(j), S(i) ≤ 𝜇S(j), Z(i) ≤ 𝜇Z(j). (8.7)

Proof. Choose a Lyapunov function of the following form:

V(k) ≜
5∑
j=1

Vj(k), (8.8)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1(k) ≜ zT
1
(𝛼)P(𝛼)z1(𝛼),

V2(k) ≜
k−1∑

s=k− h1
m

𝛽k−s𝜓T (s)Q1|m(𝛼)𝜓(s),

V3(k) ≜
k−1∑

s=k−d(k)
𝛽k−szT

1
(s)R(𝛼)z1(s),

V4(k) ≜
k−1∑

s=k−h2

𝛽k−szT
1
(s)S(𝛼)z1(s),

V5(k) ≜
−1∑

l=−h2

k−1∑
s=l+k

𝛽k−s𝜉T (s)Z(𝛼)𝜉(s),
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where P(𝛼) > 0, Q1|m(𝛼) > 0, R(𝛼) > 0, S(𝛼) > 0, and Z(𝛼) > 0 are real matrices to be deter-

mined, and

𝜓(k) =

⎡⎢⎢⎢⎢⎢⎣

z1(k)

z1
(
k − h1

m

)
⋮

z1
(
k − m−1

m
h1
)
⎤⎥⎥⎥⎥⎥⎦
.

Then, as with the solution of (8.5) for a fixed 𝛼, we have

ΔV1(k) = zT
1
(k + 1)P(𝛼)z1(k + 1) − zT

1
(k)P(𝛼)z1(k),

ΔV2(k) = − (1 − 𝛽)

k−1∑
s=k− h1

m

𝛽k−s𝜓T (s)Q1|m(𝛼)𝜓(s) + 𝛽𝜓T (k)Q1|m(𝛼)𝜓(k)

− 𝛽
h1
m
+1
𝜓T
(
k −

h1
m

)
Q1|m(𝛼)𝜓

(
k −

h1
m

)
,

ΔV3(k) = − (1 − 𝛽)

k−1∑
s=k−d(k)

𝛽k−szT
1
(s)R(𝛼)z1(s) + 𝛽zT

1
(k)R(𝛼)z1(k)

− 𝛽d(k)+1zT
1
(k − d(k))R(𝛼)z1 (k − d(k)) ,

ΔV4(k) = − (1 − 𝛽)

k−1∑
s=k−h2

𝛽k−szT
1
(s)S(𝛼)z1(s) + 𝛽zT

1
(k)S(𝛼)z1(k)

− 𝛽h2+1zT
1
(k − h2)S(𝛼)z1(k − h2),

ΔV5(k) = − (1 − 𝛽)

−1∑
l=−h2

k−1∑
s=l+k

𝛽k−s𝜉T (s)Z(𝛼)𝜉(s) + 𝛽h2𝜉
T (k)Z(𝛼)𝜉(k)

−
k−1∑

s=k−h2

𝛽k−s+1𝜉T (s)Z(𝛼)𝜉(s). (8.9)

Moreover, for any matrix

Υ(k) ≜ [𝜓T (k) zT
1
(k − h1) zT

1
(k − d(k)) zT

1
(k − h2) 𝜉T (k)

]T
and any matrices L(𝛼) and Z(𝛼), the following equations are true:

2ΥT (k)L(𝛼)

[
z1(k) − z1

(
k − h2

)
−

k−1∑
s=k−h2

𝜉(s)

]
= 0,

h2ΥT (k)L(𝛼)Z−1(𝛼)LT (𝛼)Υ(k)−
k−1∑

s=k−h2

ΥT (k)L(𝛼)Z−1(𝛼)LT (𝛼)Υ(k) = 0. (8.10)
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164 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Considering (8.9)–(8.10) and denoting

Ῡ(k) ≜ [𝜓T (k) zT
1
(k − h1) zT

1
(k − d(k)) zT

1
(k − h2)

]T
,

we have

ΔV(k) + (1 − 𝛽)V(k)

<
[
Ā11(𝛼) − Ā12(𝛼)Cz1(k) + Ād11(𝛼) − Ād12(𝛼)Cz1(k − d(k))

]T
P(𝛼)

×
[
Ā11(𝛼) − Ā12(𝛼)Cz1(k) + Ād11(𝛼) − Ād12(𝛼)Cz1(k − d(k))

]
− 𝛽zT

1
(k)P(𝛼)z1(k) + 𝛽𝜓T (k)Q1|m(𝛼)𝜓(k)

− 𝛽h2+1𝜓T

(
k −

h1
m

)
Q1|m(𝛼)𝜓

(
k −

h1
m

)
+ 𝛽zT

1
(k)R(𝛼)z1(k) + 𝛽zT

1
(k)S(𝛼)z1(k) + 𝛽h2𝜉

T (k)Z(𝛼)𝜉(k)

− 𝛽h2+1zT
1
(k − d(k))R(𝛼)z1(k − d(k)) − 𝛽h2+1zT

1
(k − h2)S(𝛼)z1(k − h2)

+ h2ΥT (k)L(𝛼)Z−1(𝛼)L(𝛼)Υ(k) + 2𝛽h2+1ΥT (k)L(𝛼)
[
z1(k) − z1

(
k − h2

)]
− 𝛽h2+1

k−1∑
s=k−h2

[
𝜉T (s)Z(𝛼) + ΥT (k)L(𝛼)

]
Z−1(𝛼)

[
Z(𝛼)𝜉(s) + LT (𝛼)Υ(k)

]
= ῩT (k)

[
Φ(𝛼) + ÂT (𝛼)P(𝛼)Â(𝛼) + 𝛽h2+1h2Ã

T (𝛼)Z(𝛼)Ã(𝛼)

+ h2L(𝛼)Z
−1(𝛼)LT (𝛼)

]
Ῡ(k)

− 𝛽h2+1
k−1∑

s=k−h2

[
𝜉T (s)Z(𝛼) + ΥT (k)L(𝛼)

]
Z−1(𝛼)

[
Z(𝛼)𝜉(s) + LT (𝛼)Υ(k)

]
,

where Φ(𝛼) is defined in (8.6).
Moreover, from (8.6), it follows that

Φ(𝛼) + ÂT (𝛼)P(𝛼)Â(𝛼) + 𝛽h2+1h2Ã
T (𝛼)Z(𝛼)Ã(𝛼) + h2L(𝛼)Z(𝛼)

−1LT (𝛼) < 0.

Then it can be easily seen that

ΔV(z1(k), 𝛼(k)) + (1 − 𝛽)V(z1(k), 𝛼(k)) < 0. (8.11)

Now, for an arbitrary piecewise constant switching signal 𝛼, and for and k > 0, we let

k0 < k1 < ⋯ < kl < ⋯, l = 1, 2,…, denote the switching point of 𝛼 over the interval (0, k).
Therefore, for k ∈ [kl, kl+1), it holds from (8.11) that

V(z1(k), 𝛼(k)) < 𝛽k−klV(z1(kl), 𝛼(kl)). (8.12)
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SMC of Switched State-Delayed Hybrid Systems: Discrete-Time Case 165

Using (8.7) and (8.8), at switching instant tk, we have

V(z1(kl), 𝛼(kl)) ≤ 𝜇V(z1(kl), 𝛼(kl−1)). (8.13)

Therefore, it follows from (8.12)–(8.13) and the relationship 𝜗 = N𝛼(0, k) ≤ (k − k0)∕K𝛼 that

V(z1(k), 𝛼(k)) ≤ 𝛽k−kl𝜇V(z1(kl), 𝛼(kl−1))

≤ ⋯

≤ 𝛽k−k0𝜇𝜗V(z1(k0), 𝛼(k0))

≤ (𝛽𝜇1∕Ta)k−k0V(z1(k0), 𝛼(k0)). (8.14)

Notice from (8.8) that there exist two positive constants a and b (a ≤ b) such that

V(z1(k), 𝛼(k)) ≥ a‖z1(k)‖2, V(z1(k0), 𝛼(k0) ≤ b‖z1(k0)‖2C. (8.15)

Combining (8.14) and (8.15) yields

‖z1(k)‖2 ≤ 1

a
V(z1(k), 𝛼(k))

≤ b
a

(
𝛽𝜇1∕Ta

)k−k0 ‖z1(k0)‖2C. (8.16)

Furthermore, letting 𝜌 ≜√𝛽𝜇1∕Ta , it follows that

‖z1(k)‖ ≤√b
a
𝜌k−k0‖z1(k0)‖C. (8.17)

By Definition 8.2.1, we know that if 0 < 𝜌 < 1, that is, Ta > T∗
a = ceil(−ln𝜇

ln 𝛽 ), the switched

system (8.5) is exponentially stable, where function ceil(a) represents rounding real number a
to the nearest integer greater than or equal to a. The proof is completed.

Remark 8.1 The matrices Q𝜚|𝜅(i) used in the above proof have two advantages: 1) the matrix
for each part of the time partition can be chosen respectively according to the constraints of
LMI, which decrease the conservativeness of our approach; and 2) it is simple to show the
series of matrices from Q𝜚(i) to Q𝜅(i), which makes the result simpler and clearer. ⧫

Remark 8.2 It should be pointed out that the switching function defined in (8.4) does not
switch with the switching signal 𝛼. That is, we design C not C(𝛼) in (8.4). In this way, we
can avoid repetitive jumps of the state trajectories of the state components of the closed-loop
system between sliding surfaces and hence the possible instability. ⧫
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166 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Now,we are on the path to solve the parametermatrices in (8.6). Considering the convenience

of solving an LMI, more transformation has to be made to turn the inequality in (8.6) into an

LMI, and the following theorem is obtained.

Theorem 8.3.2 For a given constant 𝛽 > 0, suppose that there exist matrices  > 0,
𝜚|𝜅(i) > 0, (i) > 0, (i) > 0, and (i) > 0, and matrices , (i), such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎣

Φ̄(i) ̂T (i) 𝛽h2+1h2̃T (i) h2(i)
⋆ − 0 0

⋆ ⋆ −𝛽h2+1h2(i) 0

⋆ ⋆ ⋆ −h2 ((i) − 2)

⎤⎥⎥⎥⎥⎥⎦
< 0, (8.18)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Φ̄(i) ≜ 𝛽diag
{
− +1|1(i) +(i) + (i), −𝛽h21|m−1(i) +2|m(i),

− 𝛽h2m|m(i), −𝛽h2(i), −𝛽h2(i)}
+ 2𝛽h2+1(i) [ In−p 0(n−p)×(m+2)(n−p) −In−p

]
,

̂(i) ≜ [ Ā11(i)−Ā12(i) 0(n−p)×m(n−p) Ād11(i)−Ād12(i) 0n−p
]
,

̃(i) ≜ [ Ā11(i) − Ā12(i) −  0(n−p)×m(n−p)

Ād11(i) − Ād12(i) −  0n−p
]
.

Then the sliding mode dynamics in (8.5) is exponentially stable for any switching signal with

average dwell time satisfying Ta > T∗
a = ceil

(
− ln𝜇

ln𝛽

)
, where 𝜇 ≥ 1 and satisfies

𝜚|𝜅(i) ≤ 𝜇𝜚|𝜅(j), (i) ≤ 𝜇(j),

(i) ≤ 𝜇(j), (i) ≤ 𝜇(j). (8.19)

Moreover, if the conditions above are feasible, the matrix C in (8.4) is given by C = −1,
that is, the switching function can be designed as

s(k) = −1z1(k) + z2(k). (8.20)

Proof. Defining the following matrices:{ ≜ P−1, 𝜚|𝜅(i) ≜ TQ𝜚|𝜅(i) , (i) ≜ TR(i) ,
(i) ≜ TS(i) , (i) ≜ TL(i) , i ∈  ,
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SMC of Switched State-Delayed Hybrid Systems: Discrete-Time Case 167

and performing a congruence transformation on (8.6) with diag
{
Im+3 ⊗  , , (i),}, we

have

⎡⎢⎢⎢⎢⎢⎣

Φ̄(i) ̄T (i) 𝛽h2+1h2̃T (i) h2(i)
⋆ − 0 0

⋆ ⋆ −𝛽h2+1h2(i) 0

⋆ ⋆ ⋆ −h2−1(i)

⎤⎥⎥⎥⎥⎥⎦
< 0. (8.21)

Moreover, notice that

0 ≤ ( −(i))−1(i) ( −(i))
= −1(i) −  −  +(i),

which implies

− −1(i) ≤ (i) − 2 .
Thus, inequality in (8.21) holds if that in (8.18) holds. This completes the proof.

Remark 8.3 It should be mentioned that the matrices P and  in Theorem 8.3.2 do not
depend on the switching signal 𝛼 and are fixed. Since the designed sliding surface in (8.4) is
parameter-independent, the parameter C = −1 in (8.4) is guaranteed to be fixed if P and
 are fixed. ⧫

8.3.2 SMC Law Design

In this section, we design an SMC law to drive the system state trajectories onto the sliding

surface s(k) = 0, and have the following result.

Theorem 8.3.3 With the switching function given by (8.20), the state trajectories of the
closed-loop system in (8.3) can be driven onto the sliding surface by the following control and
finally converges into a residual set of the origin:

⎧⎪⎪⎨⎪⎪⎩

u(k) = −B−1
1

[
Πs(k) + C̄Ā(𝛼)z(k) + C̄Ād(𝛼)z(k − dk)

]
+ uN(k),

uN(k) =
⎧⎪⎨⎪⎩
−sign

(
BT
1
s(k)
)
𝜂, ‖BT

1
s(k)‖ > 𝜀,

−
BT
1
s(k)

𝜀
𝜂2, ‖BT

1
s(k)‖ ≤ 𝜀,

(8.22)

where Π is a positive definite matrix.
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168 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Proof. Wewill complete the proof by showing that the control law (8.22) can not only drive the

system state trajectories onto the liner sliding surface, but also keeps it there for all subsequent

time. From the sliding surface (8.4), we have

s(k + 1) = C̄z(k + 1)

= C̄Ā(𝛼)z(k) + C̄Ād(𝛼)z(k − dk) + B1u(k, 𝛼) + B1F(𝛼)f (z, k)

= −Πs(k) + B1F(𝛼)f (z, k) + B1uN(k),

where C̄ =
[
C I

]
.

Consider the following Lyapunov function:

V(k) = 1

2
sT (k)s(k). (8.23)

Then the incremental ΔV(k) is

ΔV(k) = sT (k)Δs(k) + 1

2
ΔsT (k)Δs(k)

= sT (k)
[
−(Π + I)s(k) + B1F(𝛼)f (z, k) + B1uN(k)

]
+ 1

2
ΔsT (k)Δs(k)

≤ − sT (k)(Π + I)s(k) + ‖sT (k)B1‖‖F(𝛼)f (z, k)‖
+ sT (k)B1uN(k) +

1

2
ΔsT (k)Δs(k).

If ‖BT
1
s(k)‖ > 𝜀, with the control law (8.22), holding that ‖BT

1
s(k)‖ ≤ |BT

1
s(k)|, we have

ΔV(k) ≤ − sT (k)(Π + I)s(k) + ‖sT (k)B1‖𝜂
− sT (k)B1sign

(
BT
1
s(k)
)
𝜂 + 1

2
ΔsT (k)Δs(k)

≤ − sT (k)(Π + I)s(k) + 1

2
ΔsT (k)Δs(k).

If ‖BT
1
s(k)‖ ≤ 𝜀, with the control law (8.22), we have

ΔV(k) ≤ − sT (k)(Π + I)s(k) + 𝜂

𝜀

(‖BT
1
s(k)‖𝜀 − ‖BT

1
s(k)‖2𝜂)

+1
2
ΔsT (k)Δs(k).

SinceΠ > 0 is to be tuned, an appropriateΠ can be selected large enough such thatΔV(k) < 0

as long as s(k) is within a certain bounded region which contains an equilibrium point. Then

Δs(k) is reasonably bounded, although it is not asymptotically convergent to zero, which shows
that the state trajectories of (8.3) can be driven onto the sliding surface by the control law

(8.22) and maintained there for all the subsequent time. This completes the proof.
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8.4 Illustrative Example

Consider system (8.1a)–(8.1b) with N = 2 and the following parameters:

A(1) =
[
−0.25 0.1

0.1 0.3

]
, Ad(1) =

[
−0.05 0

0.1 −0.06

]
,

A(2) =
[

0.3 −0.2
−0.2 0.2

]
, Ad(2) =

[
−0.04 0.01

0 −0.03

]
,

B =
[
0

2.0

]
, F(1) = 1.6, F(2) = 2.0,

and d(k) = 4 + round(sin(k)), where round(a) represents the nearest integer to number a. Some
other parameters of the system are given as f (k) = 0.5exp(−k)sin(

√
x2
1
+ x2

2
), 𝛽 = 0.5, m = 3,

𝜇 = 1, h1 = 3, and h2 = 5. Using the LMI Toolbox inMatlab to solve conditions (8.18)–(8.19)

in Theorem 8.3.2, we have  = 7.2129 and  = 0.72373, thus,

s(k) = −1x1(k) + x2(k)

=
[
0.1003 1.0000

]
x(k).

Let the initial condition be 𝜙(k) = [−0.8 1.0 ]T (k = −5,−4,… , 0). The switching signal is

shown in Figure 8.1, and the states of the closed-loop system are illustrated in Figure 8.2.

Figure 8.3 depicts the control input, and the switching function is given in Figure 8.4 with

Π = 3 and 𝜀 = 0.2.

0 1 2 3 4 5 6 7 8 9 10

1

2

Time in samples

Figure 8.1 Switching signal
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Figure 8.2 States of the closed-loop system
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Figure 8.3 Sliding mode control input
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Figure 8.4 Sliding surface function

8.5 Conclusion

In this chapter, the problem of SMC of a discrete-time switched hybrid system with time-

varying delay has been investigated. Within the LMIs framework, a sufficient condition,

which is dependent on the maximum and minimum delay bounds, has been established to

guarantee the existence of a linear sliding surface. The conservativeness of the obtained results

has been reduced by employing the delay partitioning method and the slack matrix technique.

An SMC law has been designed to force the closed-loop system to be driven onto a prescribed

sliding surface and maintained there for all subsequent time. Finally, a numerical example has

been included to demonstrate the usefulness of the developed new design techniques.
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9
Control of Switched
Stochastic Hybrid Systems:
Continuous-Time Case

9.1 Introduction

Stochastic systems play an important role in many branches of science and engineering

applications, thus they have received much attention during recent decades. Many results

reported about stochastic systems can be found in the literature, for example, stochastic stability

analysis, stabilization, optimal and robust control, filtering, and model reduction. Recently, a

great deal of work has been reported on stochastic systems with Markovian switching. These

results motivate us to study some interesting topics on stochastic systems whose parameters

operate by a switching signal, that is, the switched stochastic hybrid systems. This work is

interesting and challenging since this kind of hybrid system integrates the switched hybrid

systems into that of the stochastic systems, and thus is theoretically significant.

In this chapter, we investigate the ∞ control (including state feedback control and DOF

control) problems for continuous-time switched stochastic hybrid systems. The average dwell

time approach combined with the piecewise Lyapunov function technique are applied to

derive the main results. There are two main advantages of using this approach to the switched

system. First, this approach uses a mode-dependent Lyapunov function, which avoids some

conservativeness caused by using a common Lyapunov function for all the subsystems. The

other main advantage is that the obtained result is not just an asymptotic stability condition,

but an exponential one. Therefore, by this approach, a sufficient conditions is first proposed,

which guarantees the mean-square exponential stability of the unforced switched stochastic

hybrid system. When system states are available, a state feedback controller is designed such

that the closed-loop system is mean-square exponentially stable with an ∞ performance.

However, when system states are not all available, a DOF controller is designed, and the

mean-square exponential stability with an ∞ performance is also guaranteed. Sufficient

solvability conditions for the desired controllers are proposed in terms of LMIs.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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176 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

9.2 System Description and Preliminaries

Consider a class of switched stochastic hybrid systems of the form:

dx(t) = [A(𝛼(t))x(t) + B(𝛼(t))u(t) + D(𝛼(t))𝜔(t)] dt + E(𝛼(t))x(t)d𝜛(t), (9.1a)

z(t) = C(𝛼(t))x(t), (9.1b)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input; 𝜔(t) ∈ Rp is the dis-

turbance input which belongs to 2 [0,∞); z(t) ∈ Rq is the controlled output; 𝜛(t) is a

one-dimensional Brownian motion satisfying E {d𝜛(t)} = 0; and E
{
d𝜛2(t)

}
= dt. Also,

{(A(𝛼(t)),B(𝛼(t)),C(𝛼(t)),D(𝛼(t)),E(𝛼(t))) : 𝛼(t) ∈ } is a family of matrices parameterized
by an index set = {1, 2,… ,N} and 𝛼(t) : R →  (denoted by 𝛼 for simplicity) is a switch-

ing signal defined the same as in Chapter 5. In addition, we assume that the switch signal 𝛼(t)
has an average dwell time.

Here, we design a stabilization controller and an ∞ state feedback controller with the

following general structure:

u(t) = K (𝛼) x(t), (9.2)

where K (𝛼) ∈ Rm×n are parametric matrices to be designed. Substituting the controller u(t)
into the system (9.1a)–(9.1b), we obtain the closed-loop stabilization system as

dx(t) = [A(𝛼) + B(𝛼)K(𝛼)] x(t)dt + E(𝛼)x(t)d𝜛(t), (9.3)

and the closed-loop ∞ control system as

dx(t) = {[A(𝛼) + B(𝛼)K(𝛼)] x(t) + D(𝛼)𝜔(t)} dt + E(𝛼)x(t)d𝜛(t), (9.4a)

z(t) = C(𝛼)x(t). (9.4b)

The above state feedback controller requires that the system states are fully accessible.

However, in practical applications, it is usually either not accessible or hard to access. In such

a case, one option is to assume the availability of a measured output signal vector given by

dy(t) = [G(𝛼)x(t) + H(𝛼)𝜔(t)] dt + F(𝛼)x(t)d𝜛(t), (9.5)

where y(t) ∈ Rr is the measured output, and G(𝛼), H(𝛼), and F(𝛼) are real constant matrices.
For each possible value 𝛼(t) = i, i ∈  , we will denote the system matrices associated

with mode i by A(i) = A(𝛼), B(i) = B(𝛼), C(i) = C(𝛼), D(i) = D(𝛼), E(i) = E(𝛼), F(i) = F(𝛼),
G(i) = G(𝛼), andH(i) = H(𝛼), whereA(i),B(i),C(i),D(i),E(i),F(i),G(i), andH(i) are constant
matrices.

We are also interested in designing a DOF controller in the form of

dx̂(t) = Ac(𝛼)x̂(t)dt + Bc(𝛼)dy(t) (9.6a)

u(t) = Cc(𝛼)x̂(t), (9.6b)
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 177

where x̂(t) ∈ Rn is the controller state vector; Ac(𝛼), Bc(𝛼), and Cc(𝛼) are matrices to be

determined.

Augmenting the model of (9.1a)–(9.1b) to include the states of the DOF controller (9.6a)–

(9.6b), we obtain the closed-loop system as

d𝜉(t) =
[
Ã(𝛼)𝜉(t) + D̃(𝛼)𝜔(t)

]
dt + Ẽ(𝛼)M𝜉(t)d𝜛(t), (9.7a)

z(t) = C̃(𝛼)𝜉(t), (9.7a)

where 𝜉(t) ≜
[
x(t)
x̂(t)

]
and

⎧⎪⎪⎨⎪⎪⎩
Ã(𝛼) ≜

[
A(𝛼) B(𝛼)Cc(𝛼)

Bc(𝛼)G(𝛼) Ac(𝛼)

]
, D̃(𝛼) ≜

[
D(𝛼)

Bc(𝛼)H(𝛼)

]
,

Ẽ(𝛼) ≜
[

E(𝛼)
Bc(𝛼)F(𝛼)

]
, C̃(𝛼) ≜ [C(𝛼) 0

]
, M ≜ [ I 0

]
.

First we present the following definitions.

Definition 9.2.1 The switched stochastic hybrid system in (9.1a)–(9.1b) with u(t) = 0 and
𝜔(t) = 0 is said to be mean-square exponentially stable under 𝛼(t) if its solution x(t) satisfies

E {‖x(t)‖} ≤ 𝜂 ‖‖x(t0)‖‖ e−𝜆(t−t0), ∀t ≥ t0,

for constants 𝜂 ≥ 1 and 𝜆 > 0.

Definition 9.2.2 For 𝛽 > 0 and 𝛾 > 0, the switched stochastic hybrid system in (9.1a)–(9.1b)
with u(t) = 0 is said to be mean-square exponentially stable with a weighted∞ performance
level 𝛾 under 𝛼(t), if it is mean-square exponentially stable with 𝜔(t) = 0, and under zero
initial condition, that is, x(0) = 0, if it holds for all nonzero 𝜔(t) ∈ 2[0,∞) that

E
{
∫

∞

0

e−𝛽tzT (t)z(t)dt

}
≤ 𝛾2 ∫

∞

0

𝜔T (t)𝜔(t)dt. (9.8)

Therefore, the problems to be addressed in this chapter can be formulated as:

1. Stability analysis and stabilization. Propose a condition guaranteeing the mean-square

exponential stability of the unforced switched stochastic hybrid system. Then, design

of a stabilization controller such that the resulting closed-loop system is mean-square

exponentially stable.

2. ∞ control. Both the state feedback control and the DOF control are considered according

to the availability of the system states. Specifically,
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178 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

i) When system states are fully available, design a state feedback controller such that the

closed-loop system is mean-square exponentially stable with a weighted∞ performance.

ii) When system states are not all available, design a DOF controller such that the closed-loop

system is mean-square exponentially stable with a weighted ∞ performance.

9.3 Stability Analysis and Stabilization

In this section, we apply the average dwell time approach combined with the piecewise

Lyapunov function technique to investigate the mean-square exponential stability and stabi-

lization problems for system (9.1a)–(9.1b) with 𝜔(t) = 0.

Before proceeding, we cite the following result of Itô’s formula, which plays an important

role in the stability analysis for stochastic systems (see [144] for a detailed account of Itô

stochastic systems).

Lemma 9.3.1 [144] (Itô’s formula) Let x(t) be an n-dimensional Itô’s process on t ≥ 0 with
the stochastic differential

dx(t) = f (t)dt + g(t)d𝜛(t),

where f (t) ∈ Rn and g(t) ∈ Rn×m. Let V(x(t), t) ∈ C2,1(Rn × R+;R+). Then, V(x(t), t) is a
real-valued Itô process with its stochastic differential given by{

dV(x(t), t) = V(x(t), t)dt + Vx(x(t), t)g(t)d𝜛(t),

V(x(t), t) = Vt(x(t), t) + Vx(x(t), t)f (t) +
1

2
trace(gT (t)Vxx(x(t), t)g(t)),

where C2,1(Rn × R+;R+) denotes the family of all real-valued functions V(x(t), t) such that
they are continuously twice differentiable in x and t. If V(x(t), t) ∈ C2,1(Rn × R+;R+), we set

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vt(x(t), t) =
𝜕V(x(t), t)

𝜕t
,

Vx(x(t), t) =
(
𝜕V(x(t), t)

𝜕x1
,⋯ ,

𝜕V(x(t), t)
𝜕xn

)
,

Vxx(x(t), t) =
(
𝜕2V(x(t), t)

𝜕xixj

)
n×n

.

Firstly, we present the following stability analysis result for the switched stochastic hybrid

system in (9.1a)–(9.1b) with u(t) = 0 and 𝜔(t) = 0.

Theorem 9.3.2 Given a scalar 𝛽 > 0, suppose there exist matrices P(i) > 0 such that for
i ∈  , [

P(i)A(i) + AT (i)P(i) + 𝛽P(i) ET (i)P(i)

⋆ −P(i)

]
< 0. (9.9)
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 179

Then the switched stochastic hybrid system in (9.1a)–(9.1b) with u(t) = 0 and 𝜔(t) = 0 is
mean-square exponentially stable for any switching signal with average dwell time satisfying
Ta >

ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

P(i) ≤ 𝜇P(j), ∀i, j ∈  . (9.10)

Moreover, an estimate of the state decay is given by

E {‖x(t)‖} ≤ 𝜂 ‖x(0)‖ e−𝜆t, (9.11)

where

⎧⎪⎨⎪⎩
𝜆 ≜ 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 ≜

√
b
a
≥ 1,

a ≜ min
i∈ 𝜆min (P(i)) , b ≜ max

i∈ 𝜆max (P(i)) .
(9.12)

Proof. Choose a Lyapunov function as

V(x, 𝛼) ≜ xT (t)P(𝛼)x(t), (9.13)

where P(𝛼) > 0, 𝛼 ∈  are to be determined. Then, as with the solution of the system (9.1a)–

(9.1b) with u(t) = 0 and 𝜔(t) = 0 for a fixed 𝛼, by Itô’s formula, we have

dV(x, 𝛼) = V(xt, 𝛼)dt + 2xT (t)P(𝛼)E(𝛼)x(t)d𝜛(t),

where

V(x, 𝛼) = 2xT (t)P(𝛼)A(𝛼)x(t) + xT (t)ET (𝛼)P(𝛼)E(𝛼)x(t)

= xT (t)
[
P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + ET (𝛼)P(𝛼)E(𝛼)

]
x(t). (9.14)

By Schur complement, LMI (9.9) implies

P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + ET (𝛼)P(𝛼)E(𝛼) < −𝛽P(𝛼),

which implies from (9.14) that

V(x, 𝛼) < −𝛽xT (t)P(𝛼)x(t) = −𝛽V(x, 𝛼).

Thus, we have

dV(x, 𝛼) < −𝛽V(x, 𝛼)dt + 2xT (t)P(𝛼)E(𝛼)x(t)d𝜛(t).
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180 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Observe that

d
[
e𝛽tV(x, 𝛼)

]
= 𝛽e𝛽tV(x, 𝛼)dt + e𝛽tdV(x, 𝛼)

< e𝛽t
[
𝛽V(x, 𝛼)dt − 𝛽V(x, 𝛼)dt + 2xT (t)P(𝛼)E(𝛼)x(t)d𝜛(t)

]
= 2e𝛽txT (t)P(𝛼)E(𝛼)x(t)d𝜛(t). (9.15)

Integrate both sides of (9.15) from T > 0 to t and take expectations. Then, by some mathe-
matical operations, we have

E {V(x, 𝛼)} < e−𝛽(t−T)E {V(x(T), 𝛼(T))} . (9.16)

Now, for an arbitrary piecewise constant switching signal 𝛼, and for any t > 0, we let 0 = t0 <
t1 < ⋯ < tk < ⋯, k = 0, 1,…, denote the switching points of 𝛼 over the interval (0, t). As
mentioned earlier, the ikth subsystem is activated when t ∈

[
tk, tk+1

)
. Letting T = tk in (9.16)

gives

E {V(x, 𝛼)} < e−𝛽(t−tk)E
{
V(x(tk), 𝛼(tk))

}
. (9.17)

Using (9.10) and (9.13), at switching instant tk, we have

E
{
V(x(tk), 𝛼(tk))

} ≤ 𝜇E
{
V(x(t−k ), 𝛼(t

−
k ))
}
, (9.18)

where t−k denotes the left limit of tk.
Therefore, it follows from (9.17)–(9.18) and the relationship 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta that

E {V(x, 𝛼)} ≤ e−𝛽(t−tk)𝜇E
{
V(x(t−k ), 𝛼(t

−
k ))
}

≤ ⋯

≤ e−𝛽(t−0)𝜇𝜗E {V(x(0), 𝛼(0))}

≤ e−(𝛽−ln𝜇∕Ta)tE {V(x(0), 𝛼(0))}

= e−(𝛽−ln𝜇∕Ta)tV(x(0), 𝛼(0)). (9.19)

Notice from (9.13) that

E {V(x, 𝛼)} ≥ aE{‖x(t)‖2}, V(x(0), 𝛼(0)) ≤ b ‖x(0)‖2 , (9.20)

where a and b are defined in (9.12). Combining (9.19) and (9.20) yields

E
{‖x(t)‖2} ≤ 1

a
E {V(x, 𝛼)}

≤ b
a
e−(𝛽−ln𝜇∕Ta)t ‖x(0)‖2 , (9.21)
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 181

which implies (9.11). By Definition 9.2.1 with t0 = 0, the system in (9.1a)–(9.1b) with u(t) = 0

and 𝜔(t) = 0 is mean-square exponentially stable. This completes the proof.

Remark 9.1 Note that the scalar 𝛽 is introduced in the stability analysis of Theorem 9.3.2,
this is the characteristic of the exponential stability for the switched system by using the
average dwell time approach. Here, 𝛽 plays a key role in controlling the low bound of the
average dwell time due to Ta >

ln𝜇
𝛽
. From Ta >

ln𝜇
𝛽

we can see that when 𝛽 is given a bigger

value, the lower bound of the average dwell time becomes smaller with a fixed 𝜇, which may
result in the instability of the system. ⧫

Remark 9.2 When 𝜇 = 1 in Ta >
ln𝜇
𝛽

we have Ta > T∗
a = 0, which means that the switching

signal 𝛼 can be arbitrary. In this case, (9.10) turns out to be P(i) ≤ P(j), ∀i, j ∈  . The only
possibility for that is P(i) = P(j) = P, ∀i, j ∈  , and this implies that it requires a common
(that is, mode-independent) Lyapunov function for all subsystems. However, when 𝜇 > 1 and
𝛽 → 0 in Ta >

ln𝜇
𝛽
, we have Ta → ∞, that is, there is no switching. In such a case, switched

stochastic hybrid system (9.1a)–(9.1b) is effectively operating at one of the subsystems all the
time. We have the following result. ⧫

Corollary 9.3.3 Suppose there is no switching in system (9.1a)–(9.1b) with u(t) = 0 and
𝜔(t) = 0 (when 𝛽 → 0 as discussed in Remark 9.2), that is, system (9.1a)–(9.1b) with u(t) = 0

and 𝜔(t) = 0 is transformed to a common stochastic system (thus, the parameters become as
(A,E)). If there exists a matrix P > 0 such that[

PA + ATP ETP
⋆ −P

]
< 0, (9.22)

then the common stochastic system is mean-square asymptotically stable.

Remark 9.3 The mean-square asymptotic stability for the common stochastic system in
Corollary 9.3.3 is consistent with the result in [240], which shows that Theorem 9.3.2 has
extended some results in [240] to the switched hybrid systems. ⧫

Now, we present a solution to the stabilization problem, and give the following result.

Theorem 9.3.4 Given a scalar 𝛽 > 0, suppose there exist matrices R(i) > 0 and L(i) > 0

such that for i ∈  , [
Σ11(i) R(i)ET (i)
⋆ −R(i)

]
< 0, (9.23)

where

Σ11(i) ≜ A(i)R(i) + R(i)AT (i) + B(i)L(i) + LT (i)BT (i) + 𝛽R(i).
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182 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then, the closed-loop system in (9.3) is mean-square exponentially stable for any switching
signal with average dwell time satisfying Ta >

ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

R(i) ≤ 𝜇R(j), ∀i, j ∈  . (9.24)

Moreover, the gain matrices K(i) of the stabilization controller in (9.2) can be chosen by

K(i) = L(i)R−1(i), i ∈  . (9.25)

Proof. Replacing A(i) in (9.9) with A(i) + B(i)K(i) in Theorem 9.3.2, we have that the closed-

loop stabilization system in (9.3) is mean-square exponentially stable if there exist matrices

P(i) > 0 such that for i ∈  , [
Σ̄11(i) ET (i)P(i)
⋆ −P(i)

]
< 0, (9.26)

where

Σ̄11(i) ≜ P(i) (A(i) + B(i)K(i)) + (A(i) + B(i)K(i))T P(i) + 𝛽P(i).

Letting R(i) ≜ P−1(i) and performing a congruence transformation on (9.26) by

diag (R(i),R(i)) yields [
Σ̃11(i) R(i)ET (i)
⋆ −R(i)

]
< 0, (9.27)

where

Σ̃11(i) ≜ (A(i) + B(i)K(i))R(i) + R(i) (A(i) + B(i)K(i))T + 𝛽R(i).

Set L(i) = K(i)R(i), thus (9.27) is equal to (9.23). This completes the proof.

9.4 ∞ Control

9.4.1 ∞ Performance Analysis

First, we will investigate the weighted ∞ performance for the switched stochastic hybrid

system in (9.1a)–(9.1b) with u(t) = 0.

Theorem 9.4.1 Given scalars 𝛽 > 0 and 𝛾 > 0, suppose there exist matrices P(i) > 0 such
that for i ∈  ,

⎡⎢⎢⎢⎣
Π̄11(i) P(i)D(i) ET (i)P(i) CT (i)
⋆ −𝛾2I 0 0

⋆ ⋆ −P(i) 0

⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎦ < 0, (9.28)
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 183

where

Π̄11(i) ≜ P(i)A(i) + AT (i)P(i) + 𝛽P(i).

Then the switched stochastic hybrid system in (9.1a)–(9.1b) with u(t) = 0 is mean-square
exponentially stable with a weighted ∞ performance level 𝛾 for any switching signal with
average dwell time satisfying Ta >

ln𝜇
𝛽
, where 𝜇 ≥ 1 satisfies (9.10).

Proof. The proof of mean-square exponential stability can be carried out along the same lines
as that in the proof of Theorem 9.3.2. Now, we will establish the weighted ∞ performance

defined in (9.8); to this end, we introduce the following index:

 ≜ V(x, 𝛼) + 𝛽V(x, 𝛼) + zT (t)z(t) − 𝛾2𝜔T (t)𝜔(t),

where the Lyapunov function V(x, 𝛼) is given in (9.13) and

V(x, 𝛼) = 2xT (t)P(𝛼) [A(𝛼)x(t) + D(𝛼)𝜔(t)] + xT (t)ET (𝛼)P(𝛼)E(𝛼)x(t)

= xT (t)
[
P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + ET (𝛼)P(𝛼)E(𝛼)

]
x(t)

+ 2xT (t)P(𝛼)D(𝛼)𝜔(t).

Thus,

 ≜ 𝜓T (t)Π(𝛼)𝜓(t),

where 𝜓(t) ≜
[
x(t)
𝜔(t)

]
and

⎧⎪⎨⎪⎩
Π(𝛼) ≜

[
Π11(𝛼) P(𝛼)D(𝛼)
⋆ −𝛾2I

]
,

Π11(𝛼) ≜ P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + 𝛽P(𝛼) + ET (𝛼)P(𝛼)E(𝛼) + CT (𝛼)C(𝛼).

By Schur complement, LMI (9.28) is equal to Π(𝛼) < 0, thus  < 0. Let Γ(t) ≜ zT (t)z(t) −
𝛾2𝜔T (t)𝜔(t), then we have

V(x, 𝛼) < −𝛽V(x, 𝛼) − Γ(t).

Thus, we have

dV(x, 𝛼) = V(xt, 𝛼)dt + 2xT (t)P(𝛼)E(𝛼)x(t)d𝜛(t)

< −𝛽V(x, 𝛼)dt − Γ(t)dt + 2xT (t)P(𝛼)E(𝛼)x(t)d𝜛(t).
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184 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Observe that

d
[
e𝛽tV(x, 𝛼)

]
= 𝛽e𝛽tV(x, 𝛼)dt + e𝛽tdV(x, 𝛼)

< e𝛽t
[
𝛽V(x, 𝛼)dt − 𝛽V(x, 𝛼)dt − Γ(t)dt + 2xT (t)P(𝛼)E(𝛼)x(t)d𝜛(t)

]
= −e𝛽tΓ(t)dt + 2e𝛽txT (t)P(𝛼)E(𝛼)x(t)d𝜛(t). (9.29)

Integrate both sides of (9.29) from T > 0 to t and take expectations. Then, by some mathe-
matical operations, we have

E {V(x, 𝛼)} < e−𝛽(t−T)E {V(x(T), 𝛼(T))} − E
{
∫

t

T
e−𝛽(t−s)Γ(s)ds

}
. (9.30)

Let 0 = t0 < t1 < ⋯ < tk < ⋯, k = 1,…, denote the switching points of 𝛼 over the interval
(0, t), and suppose that the ikth subsystem is activated when t ∈ [tk, tk+1). Setting T = tk in
(9.30), we have

E {V(x, 𝛼)} < e−𝛽(t−tk)E
{
V(x(tk), 𝛼(tk))

}
− E

{
∫

t

tk

e−𝛽(t−s)Γ(s)ds

}
. (9.31)

Using (9.10) and (9.13), at switching instant tk, we have

E
{
V(x(tk), 𝛼(tk))

} ≤ 𝜇E
{
V(x(t−k ), 𝛼(t

−
k ))
}
. (9.32)

Therefore, it follows from (9.31)–(9.32) and the relationship 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta that

E {V(x, 𝛼)} ≤ 𝜇e−𝛽(t−tk)E
{
V(x(t−k ), 𝛼(t

−
k ))
}
− E

{
∫

t

tk

e−𝛽(t−s)Γ(s)ds

}

≤ 𝜇𝜗e−𝛽tE {V(x(0), 𝛼(0))} − 𝜇𝜗E
{
∫

t1

0

e−𝛽(t−s)Γ(s)ds
}

−𝜇𝜗−1E
{
∫

t2

t1

e−𝛽(t−s)Γ(s)ds
}

−⋯ − 𝜇0E

{
∫

t

tk

e−𝛽(t−s)Γ(s)ds

}

= −E
{
∫

t

0

e−𝛽(t−s)+N𝛼(s,t) ln𝜇Γ(s)ds
}

+ e−𝛽t+N𝛼 (0,t) ln𝜇V(x(0), 𝛼(0)). (9.33)

Under zero initial condition, that is, x(0) = 0, (9.33) implies

E
{
∫

t

0

e−𝛽(t−s)+N𝛼(s,t) ln𝜇zT (s)z(s)ds

}
≤ 𝛾2E

{
∫

t

0

e−𝛽(t−s)+N𝛼(s,t) ln𝜇𝜔T (s)𝜔(s)ds

}
. (9.34)
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 185

Multiplying both sides of (9.34) by e−N𝛼(0,t) ln𝜇 yields

E
{
∫

t

0

e−𝛽(t−s)−N𝛼(0,s) ln𝜇zT (s)z(s)ds

}
≤ 𝛾2E

{
∫

t

0

e−𝛽(t−s)−N𝛼(0,s) ln𝜇𝜔T (s)𝜔(s)ds

}
. (9.35)

Notice that as N𝛼(0, s) ≤ s∕Ta and Ta > T∗
a = ln𝜇∕𝛽, we have N𝛼(0, s) ln𝜇 ≤ 𝛽s. Thus, (9.35)

implies

E
{
∫

t

0

e−𝛽(t−s)−𝛽szT (s)z(s)ds

}
≤ 𝛾2E

{
∫

t

0

e−𝛽(t−s)𝜔T (s)𝜔(s)ds

}
= 𝛾2 ∫

t

0

e−𝛽(t−s)𝜔T (s)𝜔(s)ds.

Integrating the above inequality from t = 0 to∞ yields (9.8). This completes the proof.

Remark 9.4 Note that Theorem 9.4.1 presents a weighted∞ performance for the switched
stochastic hybrid system in (9.1a)–(9.1b) with u(t) = 0. The term ‘weighted’ refers to the
weighting function e−𝛽t in the left-hand side of (9.8). This is also the characteristic of the expo-
nential stability result to the switched system by using the average dwell time approach com-
bining with the piecewise Lyapunov function technique. When 𝛽 = 0, we know fromRemark 9.2
that there is no switching. Thus, the result in Theorem 9.4.1 becomes an asymptotic stability
condition with an ∞ performance for the deterministic stochastic system, which is also
consistent with the results in [240]. ⧫

9.4.2 State Feedback Control

In this sequel, we will present a solution to the ∞ state feedback control problem.

Theorem 9.4.2 Given scalars 𝛽 > 0 and 𝛾 > 0, suppose there exist matrices R(i) > 0 and
L(i) > 0, such that for i ∈  ,

⎡⎢⎢⎢⎣
Π̂11(i) D(i) R(i)ET (i) R(i)CT (i)
⋆ −𝛾2I 0 0

⋆ ⋆ −R(i) 0

⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎦ < 0, (9.36)

where

Π̂11(i) ≜ A(i)R(i) + R(i)AT (i) + B(i)L(i) + LT (i)BT (i) + 𝛽R(i).
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186 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then the closed-loop system in (9.4a)–(9.4b) is mean-square exponentially stable with a
weighted∞ performance level 𝛾 for any switching signal with average dwell time satisfying
Ta >

ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

R(i) ≤ 𝜇R(j), ∀i, j ∈  . (9.37)

Moreover, if the above LMIs have feasible solutions, then the gain matrices K(i) of the ∞
controller in (9.2) can be chosen by

K(i) = L(i)R−1(i), i ∈  . (9.38)

The result can be carried out by employing the same techniques as used with Theorems

9.3.4 and 9.4.1.

9.4.3 ∞ DOF Controller Design

In the following, wewill study the∞ DOF control problem for the switched stochastic hybrid

system (9.1a)–(9.1b). First, we present the following results, and its proof can be worked out

along the same line of reasoning as in the derivation of Theorems 9.3.2 and 9.4.1.

Theorem 9.4.3 Given scalars 𝛽 > 0 and 𝛾 > 0, suppose there exist matrices P(i) > 0 such
that for i ∈  ,

⎡⎢⎢⎢⎣
Π̃11(i) P(i)D̃(i) MTẼT (i)P(i) C̃T (i)
⋆ −𝛾2I 0 0

⋆ ⋆ −P(i) 0

⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎦ < 0, (9.39)

where

Π̃11(i) ≜ P(i)Ã(i) + ÃT (i)P(i) + 𝛽P(i).

Then the closed-loop switched stochastic hybrid system in (9.7a)–(9.7b) is mean-square expo-
nentially stable with a weighted∞ performance level 𝛾 for any switching signal with average
dwell time satisfying Ta >

ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

P(i) ≤ 𝜇P(j), ∀i, j ∈  . (9.40)

Moreover, an estimate of the mean-square of the state decay is given by

E {‖𝜉(t)‖} ≤ 𝜂 ‖𝜉(0)‖ e−𝜆t,
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 187

where

⎧⎪⎨⎪⎩
𝜆 = 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 =

√
b
a
≥ 1,

a = min
∀i∈ 𝜆min (P(i)) , b = max

∀i∈ 𝜆max (P(i)) .

Now, we present a solution to the ∞ DOF control problem.

Theorem 9.4.4 Consider the switched stochastic hybrid system in (9.1a)–(9.1b). For given
constants 𝛽 > 0 and 𝛾 > 0, suppose there exist matrices (i) > 0, (i) > 0, c(i), c(i), andc(i) and a scalar 𝜀 > 0 such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎣

Ψ11(i) Ψ12(i) Ψ13(i) CT (i) 0

⋆ Ψ22(i) D(i) (i)CT (i) 𝜀(i)
⋆ ⋆ −𝛾2I 0 0

⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ −𝜀I

⎤⎥⎥⎥⎥⎥⎥⎦
< 0, (9.41a)

⎡⎢⎢⎢⎣
−𝜀I ET (i)(i) + FT (i)T

c (i) ET (i)

⋆ −(i) −I
⋆ ⋆ −(i)

⎤⎥⎥⎥⎦ < 0, (9.41b)

where

⎧⎪⎪⎨⎪⎪⎩

Ψ11(i) ≜ (i)A(i) + AT (i)(i) + c(i)G(i) + GT (i)T
c (i) + 𝛽(i) + 𝜀I,

Ψ12(i) ≜ c(i) + A(i) + I + 𝜀(i),
Ψ13(i) ≜ (i)D(i) + c(i)H(i),

Ψ22(i) ≜ A(i)(i) +(i)AT (i) + B(i)c(i) + T
c (i)B

T (i) + 𝛽(i).

Then the closed-loop system in (9.7a)–(9.7b) is mean-square exponentially stable with a
weighted∞ performance level 𝛾 for any switching signal with average dwell time satisfying
Ta > T∗

a = ln𝜇
𝛽
, where 𝜇 ≥ 1 and satisfies

[(i) I
I (i)

]
≤ 𝜇

[(j) I
I (j)

]
, ∀i, j ∈  . (9.42)
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188 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Moreover, if the above conditions have feasible solutions, then a desired weighted ∞ DOF
controller realization is given by

⎧⎪⎨⎪⎩
Ac(i) ≜ P−1

2
(i)[c(i) − (i)A(i)(i) − P2(i)Bc(i)G(i)(i) − (i)B(i)Cc(i)Q

T
2
(i)]Q−T

2
(i),

Bc(i) ≜ P−1
2
(i)c(i),

Cc(i) ≜ c(i)Q−T
2
(i).

(9.43)

Proof. From Theorem 9.4.3, we know that the closed-loop system in (9.7a)–(9.7b) is mean-

square exponentially stablewith aweighted∞ performance level 𝛾 > 0, if there existmatrices

P(i) > 0 satisfying (9.39). It is not difficult to see that these conditions are satisfied if there

exist matrices P(i) > 0 and a scalar 𝜀 > 0 such that for i ∈  ,

⎡⎢⎢⎣
Φ11(i) P(i)D̃(i) C̃T (i)
⋆ −𝛾2I 0

⋆ ⋆ −I

⎤⎥⎥⎦ < 0, (9.44)

[
−𝜀I ẼT (i)P(i)
⋆ −P(i)

]
< 0, (9.45)

where Φ11(i) ≜ P(i)Ã(i) + ÃT (i)P(i) + 𝛽P(i) + 𝜀MTM.

Let P(i) be partitioned as

P(i) ≜
[
P1(i) P2(i)
⋆ P3(i)

]
Q(i) = P−1(i) ≜

[
Q1(i) Q2(i)
⋆ Q3(i)

]
⎫⎪⎪⎬⎪⎪⎭
. (9.46)

Without loss of generality, we assume P2(i) and Q2(i) are nonsingular (if not, P2(i) and Q2(i)
may be perturbed by matrices ΔP2(i) and ΔQ2(i) with sufficiently small norms respectively
such that P2(i) + ΔP2(i) and Q2(i) + ΔQ2(i) are nonsingular and satisfy (9.44)–(9.45)). Then,
define the following nonsingular matrices:

P(i) ≜
[
P1(i) I

PT
2
(i) 0

]
, Q(i) ≜

[
I Q1(i)

0 QT
2
(i)

]
. (9.47)

Notice that P(i)Q(i) = P(i), Q(i)P(i) = Q(i), and P1(i)Q1(i) + P2(i)Q
T
2
(i) = I, i ∈  .
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 189

Performing congruence transformations on (9.44) and (9.45) by matrices diag
{Q(i), I, I

}
and diag

{
I,Q(i)

}
, respectively, we obtain

⎡⎢⎢⎢⎣
 T
Q (i)Φ11(i)Q(i)  T

Q (i)P(i)D̃(i)  T
Q (i)C̃

T (i)

⋆ −𝛾2I 0

⋆ ⋆ −I

⎤⎥⎥⎥⎦ < 0, (9.48)

[
−𝜀I ẼT (i)P(i)Q(i)

⋆ − T
Q (i)P(i)Q(i)

]
< 0. (9.49)

Define (i) ≜ P1(i), (i) ≜ Q1(i) and

⎧⎪⎨⎪⎩
c(i) ≜ P1(i)A(i)Q1(i) + P2(i)Bc(i)G(i)Q1(i) + P1(i)B(i)Cc(i)Q

T
2
(i) + P2(i)Ac(i)Q

T
2
(i),

c(i) ≜ P2(i)Bc(i),

c(i) ≜ Cc(i)Q
T
2
(i).

(9.50)

Then by (9.46)–(9.47) and (9.50), it follows from (9.48) and (9.49) that

⎡⎢⎢⎢⎢⎢⎣

Ψ11(i) Ψ̃12(i) Ψ̃13(i) CT (i)

⋆ Ψ̃22(i) D(i) (i)CT (i)

⋆ ⋆ −𝛾2I 0

⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎥⎦
< 0, (9.51)

and (9.41), respectively, where

⎧⎪⎨⎪⎩
Ψ̃12(i) ≜ c(i) + A(i) + I + 𝜀(i),
Ψ̃13(i) ≜ (i)D(i) + c(i)H(i),

Ψ̃22(i) ≜ A(i)(i) +(i)AT (i) + B(i)c(i) + T
c (i)B

T (i) + 𝛽(i) + 𝜀(i)(i),
and Ψ11(i) are defined in (9.41a). By Schur complement, (9.41a) is equivalent to (9.51).

Moreover, considering the conditions in (9.40) yields (9.42). This completes the proof.

Remark 9.5 It should be pointed out that to solve the parameters of output feedback
controller in (9.43), matrices P2(i) and Q2(i) should be available in advance, which can
be obtained by taking any full rank factorization of P2(i)Q

T
2
(i) = I − (i)(i) (derived from

(i)(i) + P2(i)Q
T
2
(i) = I). ⧫

Remark 9.6 Note that Theorem 9.4.4 provides a sufficient condition for solvability of the
weighted∞ DOF control problem and, since the resulting condition is in LMI form, a desired
∞ DOF controller which minimizes the weighted ∞ performance level (i.e. maximize
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190 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

the level of noise removal) can be determined by solving the following convex optimization
problem:

min 𝜎 subject to (9.41a) − (9.43), where 𝜎 ≜ 𝛾2,

with matrix variables (i) > 0, (i) > 0, c(i), c(i), and c(i) and a scalar 𝜀 > 0. ⧫

9.5 Illustrative Example

Example 9.5.1 (Stabilization problem) Consider the switched stochastic hybrid system in

(9.1a)–(9.1b) with N = 2 and the following parameters:

A(1) =
[
−0.8 0.1

−0.3 −0.5

]
, E(1) =

[
1.0 0.2

0.3 0.5

]
, B(1) =

[
1.2

0.8

]
,

A(2) =
[
−0.5 0.2

−0.2 −0.4

]
, E(2) =

[
0.7 0.5

0.1 0.3

]
, B(2) =

[
0.4

1.2

]
.

Given 𝛽 = 0.5. By simulation, when setting 𝜇 = 1.78, thus Ta > T∗
a = ln𝜇

𝛽
= 1.1532, the con-

ditions in (9.9) hold with

P(1) = 103 ×
[
3.4640 1.9001

1.9001 3.8329

]
,

P(2) = 103 ×
[
1.9687 0.8284

0.8284 5.2596

]
.

As analyzed above, the open-loop system is mean-square exponentially stable for Ta > T∗
a =

1.1532. Moreover, taking Ta = 1.2 > T∗
a = 1.1532 and according to (9.11)–(9.12) we have

a = 1739.4, b = 5557.4, 𝜂 = b
a
= 3.1950, and 𝜆 = 𝛽 − ln𝜇

Ta
= 0.0195, thus, an estimate of the

mean-square of the state decay is given by

E
{‖x(t)‖2} ≤ 3.1950e−0.0195t ‖x(0)‖2 .

Now, we further simulate the stabilization problem. As analyzed above, the open-loop system

is mean-square exponentially stable when Ta ≥ T∗
a = 1.1532. Here, to show the effectiveness,

we will design an appropriate stabilization controller in (9.2) such that the closed-loop system

in (9.3) is mean-square exponentially stable for Ta ≥ T∗
a = 0.1 (in this case, the allowable

minimum of 𝜇 is 𝜇min = 1.0513). By solving conditions (9.23) in Theorem 9.3.4, we have

R(1) =
[

0.4747 −0.1532
−0.1532 0.6804

]
, R(2) =

[
0.4695 −0.1551

−0.1551 0.6732

]
,

L(1) =
[
−0.1685 −0.1425

]
, L(2) =

[
−0.2031 −0.2704

]
.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 191

Thus, by (9.25) we have

K(1) =
[
−0.4556 −0.3121

]
, K(2) =

[
−0.6118 −0.5425

]
.

Therefore, by the stabilization controller in (9.2) with the above control gains, the closed-loop

system is mean-square exponentially stable for Ta ≥ T∗
a = 0.1.

Example 9.5.2 (∞ DOF control problem) Consider the switched stochastic hybrid system

in (9.1a)–(9.1b) with N = 2 and

A(1) =
[

0.3 0.2

−0.3 −0.8

]
, B(1) =

[
1.2

0.8

]
, C(1) =

[
0.6 1.0

]
, H(1) = 0.1,

A(2) =
[
−0.8 −0.1
0.3 0.1

]
, B(2) =

[
1.4

1.2

]
, C(2) =

[
1.4 0.9

]
, H(2) = 0.2,

D(1) =
[
0.1

0.2

]
, E(1) =

[
0.2 0.1

0.2 0.3

]
, F(1) =

[
0.1 0.2

]
, G(1) =

[
0.6 0.4

]
,

D(2) =
[
0.3

0.1

]
, E(2) =

[
0.2 0.1

0.1 0.3

]
, F(2) =

[
0.2 0.1

]
, G(2) =

[
0.6 0.8

]
.

Given 𝛽 = 0.5, we checked that the considered switched stochastic hybrid system with the

above two subsystems is not stable for a switching signal given in Figure 9.1 (which is

generated randomly; here, ‘1’ and ‘2’ represent the first and second subsystems, respectively).

Here, our aim is to design a DOF controller such that the resulting closed-loop system is

mean-square exponentially stable with a weighted ∞ performance level 𝛾 > 0 for Ta > T∗
a .

Here, for example, we set T∗
a = ln𝜇min

𝛽
= 0.0976 (in this case, the allowable minimum of 𝜇

is 𝜇min = 1.05). Letting 𝜀 = 0.18 and solving (9.41a)–(9.41b) in Theorem 9.4.4, then setting

Q2(i) = I and according to (9.43), we have 𝛾 = 3.3166 and

Ac(1) =
[
−28.0435 −19.1500

0.2633 0.1884

]
, Bc(1) =

[
0.9100

−0.6834

]
,

Ac(2) =
[

−9.3112 −7.8631
−19.7947 −16.2218

]
, Bc(2) =

[
−0.3707
0.8223

]
,

Cc(1) =
[
−85.5350 −57.8919

]
, Cc(2) =

[
−60.0887 −49.8330

]
.

Given the initial conditions as x(0) =
[
−1.0 1.0

]T
and x̂(0) =

[
0 0

]T
, suppose the distur-

bance input𝜔(t) be𝜔(t) = 0.5e−t sin(t). By using the discretization approach [96], we simulate
standard Brownian motion. Some initial parameters are given as follows: the simulation time

t ∈
[
0,T⋆

]
with T⋆ = 20, the normally distributed variance 𝛿t = T⋆

N⋆ with N⋆ = 211, step size

Δt = 𝜌𝛿t with 𝜌 = 2, and the number of discretized Brownian paths p = 10. The simulation

results are given in Figures 9.2–9.6. Among them, Figures 9.2–9.4 are the simulation results

along an individual discretized Brownian path. Figures 9.2 and 9.3 give respectively the states
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Figure 9.1 Switching signal
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Figure 9.2 States of the closed-loop system
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Figure 9.3 States of the DOF controller
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Figure 9.4 DOF control input
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Figure 9.5 Individual paths and the average of the states of the closed-loop system
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Figure 9.6 Individual paths and the average of the states of the DOF controller
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Control of Switched Stochastic Hybrid Systems: Continuous-Time Case 195

of the closed-loop system and the DOF controller. The control input is shown in Figure 9.4.

Figures 9.5 and 9.6 are the simulation results on x(t) and x̂(t) along 10 individual paths (dotted
lines) and the average over 10 paths (solid line), respectively.

9.6 Conclusion

In this chapter, the problems of stabilization and the ∞ control have been investigated for

continuous-time switched stochastic hybrid systems. By applying the average dwell time

method and the piecewise Lyapunov function technique, sufficient conditions have been pro-

posed for the mean-square exponential stability and the weighted ∞ performance for the

switched stochastic hybrid system. Then, the stabilization and the ∞ control including the

state feedback and DOF control problems have been solved. Finally, two numerical examples

have been provided to illustrate the effectiveness of the proposed theories.
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10
Control of Switched Stochastic
Hybrid Systems: Discrete-Time
Case

10.1 Introduction

In this chapter, we will study the problems of stability and stabilization, and the∞ control of

discrete-time switched stochastic hybrid systems with time-varying delays. Similar to Chapter

9, the main results proposed in this chapter are obtained by employing the average dwell time

approach and the piecewise Lyapunov function technique. However, the development of such

methods in the continuous and discrete cases has certain technical differences. A sufficient

condition, which guarantees the considered system mean-square exponentially stable, is first

proposed in terms of LMIs, and by this the stabilization problem is then solved. The weighted

∞ performance condition is then also established, and ∞ control is designed. It is shown

that the ∞ control problem can be converted into a convex optimization problem with a set

of LMI constraints which can be solved by applying interior-point algorithms.

10.2 System Description and Preliminaries

Consider the discrete-time switched stochastic hybrid system with time delays, which is

described by the following dynamical equations:

x(k + 1) = A(𝛼(k))x(k) + Ad(𝛼(k))x(k − d(k)) + A𝜏 (𝛼(k))f (x(k − 𝜏))

+Bu(𝛼(k))u(k) + B𝜔(𝛼(k))𝜔(k)

+
[
C(𝛼(k))x(k) + Cd(𝛼(k))x(k − d(k)) + D𝜔(𝛼(k))𝜔(k)

]
𝜛(k), (10.1a)

z(k) = L(𝛼(k))x(k), (10.1b)

x(k) = 𝜙(k), −max{𝜏, d2} < k ≤ 0, (10.1c)

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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198 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where x(k) ∈ Rn is the system state vector; u(k) ∈ Rm represents the control input; 𝜔(k) ∈ Rp

is the noise signal that belongs to 𝓁2[0,+∞); z(k) ∈ Rq is the controlled output; and 𝜛(k)
is a zero-mean real scalar process on a probability space (𝜛, ,) relative to an increasing
family (k)k∈N of 𝜎-algebras k ⊂  generated by (𝜛(k))k∈N. The stochastic process {𝜛(k)}
is independent, which is assumed to satisfy E{𝜛(k)} = 0 and E{𝜛2(k)} = 𝛿, k = 0, 1,…,

where 𝛿 > 0 is a known scalar. In addition, 𝜙(k) denotes the initial conditions and 𝛼(k) : Z+ →
 = {1, 2,… ,N} (denoted by 𝛼 for simplicity) is a switching signal, which was defined in the
same way in Chapter 5. Here, we assume that the switch signal 𝛼(k) has an average dwell time.
The time-varying delay d(k) satisfies 1 ≤ d1 ≤ d(k) ≤ d2, where d1 and d2 are two constant
positive scalars representing its lower and upper bounds, respectively.

Assumption 10.1 For the nonlinear function f (x) : Rn → Rn, there exist matrices Π1 and
Π2 such that (

f (x) − Π1x
)T (

f (x) − Π2x
) ≤ 0, x ∈ Rn. (10.2)

We design a stabilization controller and an∞ state feedback controller with the following

general structure:

u(k) = K (𝛼) x(k), (10.3)

where K (𝛼) ∈ Rm×n are parameter matrices to be designed. Substituting the controller u(k)
into system (10.1a)–(10.1c), we obtain the closed-loop stabilization system as

x(k + 1) =
[
A(𝛼) + Bu(𝛼)K(𝛼k)

]
x(k) + Ad(𝛼)x(k − d(k)) + A𝜏 (𝛼)f (x(k − 𝜏))

+
[
C(𝛼)x(k) + Cd(𝛼)x(k − d(k))

]
𝜛(k), (10.4)

and the closed-loop ∞ control system as

x(k + 1) =
[
A(𝛼) + Bu(𝛼)K(𝛼)

]
x(k) + Ad(𝛼)x(k − d(k)) + A𝜏 (𝛼)f (x(k − 𝜏))

+B𝜔(𝛼)𝜔(k) +
[
C(𝛼)x(k) + Cd(𝛼)x(k − d(k)) + D𝜔(𝛼)𝜔(k)

]
𝜛(k), (10.5a)

z(k) = L(𝛼)x(k). (10.5b)

Remark 10.1 For each possible value 𝛼 = i, i ∈  , we will denote the system matri-
ces associated with mode i by A(i) = A(𝛼), Ad(i) = Ad(𝛼), A𝜏 (i) = A𝜏 (𝛼), C(i) = C(𝛼),
Cd(i) = Cd(𝛼), Bu(i) = Bu(𝛼), B𝜔(i) = B𝜔(𝛼), D𝜔(i) = D𝜔(𝛼), L(i) = L(𝛼), and K(i) = K(𝛼),
where A(i), Ad(i), A𝜏 (i), C(i), Cd(i), Bu(i), B𝜔(i), D𝜔(i), L(i), and K(i) are constant
matrices. ⧫

Definition 10.2.1 The discrete-time switched stochastic hybrid system in (10.1a) with u(k) =
0 and 𝜔(k) = 0 is said to be mean-square exponentially stable under 𝛼 if the solution x(k)
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 199

satisfies

E {‖x(k)‖} ≤ 𝜂 ‖‖x(k0)‖‖C 𝜌(k−k0), ∀k ≥ k0,

for constants 𝜂 ≥ 1 and 0 < 𝜌 < 1, and

‖‖x(k0)‖‖C ≜ {‖‖x(k0 + 𝜃)‖‖ , ‖‖𝜍(k0 + 𝜃)‖‖ , ‖‖f (𝜍(k0 + 𝜃))‖‖}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

sup−max{𝜏,d2}<𝜃≤0

,

where 𝜍(𝜃) ≜ x(𝜃 + 1) − x(𝜃).

Definition 10.2.2 For 0 < 𝛽 < 1 and 𝛾 > 0, the system in (10.1a)–(10.1c) with u(k) = 0 is
said to be mean-square exponentially stable with a weighted ∞ performance level 𝛾 under
𝛼, if it is mean-square exponentially stable with 𝜔(k) = 0, and under zero initial condition, it
holds for all nonzero 𝜔(k) ∈ 𝓁2[0,∞) that

E

{ ∞∑
s=k0

𝛽szT (s)z(s)

}
< 𝛾2

∞∑
s=k0

𝜔T (s)𝜔(s). (10.6)

10.3 Stability Analysis and Stabilization

In this section, we apply the average dwell time approach combined with the piecewise Lya-

punov function technique to investigate the mean-square exponential stability and stabilization

problems for the system (10.1a).

Theorem 10.3.1 Given a constant 0 < 𝛽 < 1, suppose that there exist matrices P(i) > 0,
Q(i) > 0, and R(i) > 0 such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎣

Φ11(i) 0 H2 0 AT (i)P(i) 𝛿CT (i)P(i)
⋆ −𝛽d2+1Q(i) 0 0 AT

d (i)P(i) 𝛿CT
d (i)P(i)

⋆ ⋆ 𝛽R(i) − I 0 0 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(i) AT
𝜏 (i)P(i) 0

⋆ ⋆ ⋆ ⋆ −P(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛿P(i)

⎤⎥⎥⎥⎥⎥⎥⎦
< 0, (10.7)

where

⎧⎪⎪⎨⎪⎪⎩

Φ11(i) ≜ −𝛽P(i) + 𝛽(d2 − d1 + 1)Q(i) − H1,

H1 ≜ ΠT
1
Π2 + ΠT

2
Π1

2
,

H2 ≜ ΠT
1
+ ΠT

2

2
.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



200 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then the discrete-time switched stochastic time-delay system in (10.1a) with u(k) = 0 and
𝜔(k) = 0 is mean-square exponentially stable for any switching signal with average dwell

time satisfying Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1 satisfies

P(i) ≤ 𝜇P(j), Q(i) ≤ 𝜇Q(j), R(i) ≤ 𝜇R(j). (10.8)

Moreover, an estimate of the state decay is given by

E {‖x(k)‖} ≤ 𝜂𝜌(k−k0)‖x(k0)‖C, (10.9)

where d ≜ −max{𝜏, d2} and

⎧⎪⎪⎨⎪⎪⎩
𝜂 ≜
√

b
a
≥ 1, 𝜌 ≜

√
𝛽𝜇

1

Ta ,

a ≜ min
∀i∈ 𝜆min(P(i)),

b ≜ max
∀i∈ 𝜆max(P(i)) + (d + d2) max

∀i∈ 𝜆max(Q(i)) + d max
∀i∈ 𝜆max(R(i)).

(10.10)

Proof. Choose a Lyapunov function of the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V(x, 𝛼) ≜
4∑
i=1

Vi(x, 𝛼),

V1(x, 𝛼) ≜ xT (k)P(𝛼)x(k),

V2(x, 𝛼) ≜
k−1∑

l=k−d(k)
𝛽k−lxT (l)Q(𝛼)x(l),

V3(x, 𝛼) ≜
−d1∑

s=−d2+1

k−1∑
l=k+s

𝛽k−lxT (l)Q(𝛼)x(l),

V4(x, 𝛼) ≜
k−1∑
l=k−𝜏

𝛽k−lf T (x(l))R(𝛼)f (x(l)),

(10.11)

where P(𝛼) > 0, Q(𝛼) > 0, and R(𝛼) > 0 are real matrices to be determined.

For k ∈ [kl, kl+1), define E
{
ΔVj(x, 𝛼)

} ≜ E
{
Vj(x(k + 1), 𝛼) − Vj(x(k), 𝛼)

}
, j = 1, 2, 3, 4,

and thus we have E {ΔV(x, 𝛼)} =
∑4

i=1 E
{
ΔVi(x, 𝛼)

}
with

E
{
ΔV1(x, 𝛼)

}
= E

{
xT (k + 1)P(𝛼)x(k + 1) − xT (k)P(𝛼)x(k)

}
= E
{[

A(𝛼)x(k) + Ad(𝛼)x(k − d(k)) + A𝜏 (𝛼)f (x(k − 𝜏))
]T

P(𝛼)

×
[
A(𝛼)x(k) + Ad(𝛼)x(k − d(k)) + A𝜏 (𝛼)f (x(k − 𝜏))

]
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 201

+ 𝛿
[
C(𝛼)x(k) + Cd(𝛼k)x(k − d(k))

]T
P(𝛼)

×
[
C(𝛼)x(k) + Cd(𝛼)x(k − d(k))

]
− xT (k)P(𝛼)x(k)

}
, (10.12)

E
{
ΔV2(x, 𝛼)

} ≤ E
{

− (1 − 𝛽)

k−1∑
l=k−d(k)

𝛽k−lxT (l)Q(𝛼)x(l)

+
k−d1∑

l=k+1−d2

𝛽k+1−lxT (l)Q(𝛼)x(l) + 𝛽xT (k)Q(𝛼)x(k)

− 𝛽d2+1xT (k − d(k))Q(𝛼)x(k − d(k))

}
, (10.13)

E
{
ΔV3(x, 𝛼)

}
= E
{

− (1 − 𝛽)

−d1∑
s=−d2+1

k−1∑
l=k+s

𝛽k−lxT (l)Q(𝛼)x(l)

+ 𝛽(d2 − d1)x
T (k)Q(𝛼)x(k)

−
k−d1∑

l=k+1−d2

𝛽k+1−lxT (l)Q(𝛼)x(l)

}
, (10.14)

E
{
ΔV4(x, 𝛼)

} ≤ E
{

− (1 − 𝛽)

k−1∑
l=k−𝜏

𝛽k−lf T (x(l))R(𝛼)f (x(l))

+ 𝛽f T (x(k))R(𝛼)f (x(k))

− 𝛽𝜏+1f T (x(k − 𝜏))R(𝛼)f (x(k − 𝜏))

}
. (10.15)

Moreover, Assumption 10.1 gives

E
{[

xT (k) f T (x(k))
] [H1 −H2

⋆ I

] [
x(k)

f (x(k))

]}
≤ 0, (10.16)

where H1 and H2 are defined in (10.7) of Theorem 10.3.1.

Considering (10.12)–(10.15), and (10.16), we have

E {ΔV(x, 𝛼)} + (1 − 𝛽)E {V(x, 𝛼)} ≜ E
{
𝜁T (k)Φ(𝛼)𝜁 (k)

}
, (10.17)

where

𝜁 (k) ≜
[
xT (k) xT (k − d(k)) f T (x(k)) f T (x(k − 𝜏))

]T
,
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202 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

and Φ(𝛼) is defined as

Φ(𝛼) ≜
⎡⎢⎢⎢⎣
Φ11(𝛼) 0 H2 0

⋆ −𝛽d2+1Q(𝛼) 0 0

⋆ ⋆ 𝛽R(𝛼) − I 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(𝛼)

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
AT (𝛼)

AT
d (𝛼)

0

AT
𝜏 (𝛼)

⎤⎥⎥⎥⎦P(𝛼)
⎡⎢⎢⎢⎣
AT (𝛼)

AT
d (𝛼)

0

AT
𝜏 (𝛼)

⎤⎥⎥⎥⎦
T

+ 𝛿

⎡⎢⎢⎢⎣
CT (𝛼)

CT
d (𝛼)

0

0

⎤⎥⎥⎥⎦P(𝛼)
⎡⎢⎢⎢⎣
CT (𝛼)

CT
d (𝛼)

0

0

⎤⎥⎥⎥⎦
T

,

where Φ11(𝛼) ≜ −𝛽P(𝛼) + 𝛽(d2 − d1 + 1)Q(𝛼) − H1.

Moreover, by Schur complement to (10.7) it follows that Φ(𝛼) < 0, then one can easily

obtain

E {ΔV(x(k), 𝛼(k)) + (1 − 𝛽)V(x(k), 𝛼(k))} < 0, ∀k ∈ [kl, kl+1). (10.18)

Now, for an arbitrary piecewise constant switching signal 𝛼, and for any k > 0, we let k0 < k1 <
⋯ < kl < ⋯, l = 1,…, denote the switching points of 𝛼 over the interval (0, k). As mentioned
earlier, the ilth subsystem is activated when k ∈

[
kl, kl+1

)
. Therefore, for k ∈ [kl, kl+1), it holds

from (10.18) that

E {V(x(k), 𝛼(k))} < 𝛽k−klE
{
V(x(kl), 𝛼(kl))

}
. (10.19)

Using (10.8) and (10.11), we have

E
{
V(x(kl), 𝛼(kl))

} ≤ 𝜇E
{
V(x(kl), 𝛼(kl−1))

}
. (10.20)

Therefore, it follows from (10.19)–(10.20) and the relationship 𝜗 = N𝛼(k0, k) ≤ (k − k0)∕Ta
that

E {V(x(k), 𝛼(k))} ≤ 𝛽k−kl𝜇E
{
V(x(kl), 𝛼(kl−1))

}
≤ ⋯

≤ 𝛽(k−k0)𝜇𝜗E
{
V(x(k0), 𝛼(k0))

}
≤ (𝛽𝜇1∕Ta )(k−k0)E

{
V(x(k0), 𝛼(k0))

}
. (10.21)

Notice from (10.11) that there exist two positive constants a and b (a ≤ b) such that

E {V(x(k), 𝛼(k))} ≥ aE
{‖x(k)‖2} ,

E
{
V(x(k(0)), 𝛼(k0))

} ≤ b ‖‖x(k0)‖‖2C . (10.22)
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 203

Combining (10.21) and (10.22) yields

E
{‖x(k)‖2} ≤ 1

a
E {V(x(k), 𝛼(k))}

≤ b
a
(𝛽𝜇1∕Ta)(k−k0) ‖‖x(k0)‖‖2C . (10.23)

Furthermore, letting 𝜌 ≜√𝛽𝜇1∕Ta , it follows that

E {‖x(k)‖} ≤√b
a
‖‖x(k0)‖‖C 𝜌(k−k0). (10.24)

By Definition 10.2.1, we know that if 0 < 𝜌 < 1, that is, Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, the discrete-

time switched stochastic time-delay system in (10.1a) with u(k) = 0 and 𝜔(k) = 0 is mean-

square exponentially stable, where function ceil(h) represents the rounding real number h to
the nearest integer greater than or equal to h. The proof’ is completed.

Remark 10.2 In Theorem 10.3.1, we propose a sufficient condition for the mean-square
exponential stability condition for the considered discrete-time switched stochastic time-delay
system in (10.1a) with u(k) = 0 and 𝜔(k) = 0. Here, the parameter 𝛽 plays a key role in
controlling the lower bound of the average dwell time, which can be seen from Ta > T∗

a =
ceil
(
−ln𝜇

ln 𝛽

)
; specifically, if 𝛽 is a smaller value, the lower bound of the average dwell time

becomes smaller with a fixed 𝜇, which may result in the instability of the system. ⧫

Remark 10.3 Note that when 𝜇 = 1 in Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
we have Ta > T∗

a = 0, which

means that the switching signal 𝛼k can be arbitrary. In this case, (10.8) turns out to be P(i) =
P(j) = P, Q(i) = Q(j) = P, R(i) = R(j) = P, ∀i, j ∈  , and the proposed approach becomes a
quadratic one thus conservative. In this case, the system in (10.1a) with u(k) = 0 and 𝜔(k) = 0

turns out to be a discrete-time stochastic system with time delays. However, when 𝛽 = 1 in

Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, we have Ta = ∞, that is, there is no switching. ⧫

Theorem 10.3.2 Given a constant 0 < 𝛽 < 1, suppose that there exist matrices X(i) > 0,
Z(i) > 0, R(i) > 0, and Y(i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃11(i) 0 X(i)H2 0 Φ̃15(i) 𝛿X(i)CT (i)

⋆ −𝛽d2+1Z(i) 0 0 X(i)AT
d (i) 𝛿X(i)CT

d (i)

⋆ ⋆ 𝛽R(i) − I 0 0 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(i) AT
𝜏 (i) 0

⋆ ⋆ ⋆ ⋆ −X(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛿X(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (10.25)
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204 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where {
Φ̃11(i) ≜ −(2 + 𝛽)X(i) + 𝛽(d2 − d1 + 1)Z(i) + H−1

1
,

Φ̃15(i) ≜ X(i)AT (i) + YT (i)BT
u (i).

Then the closed-loop stabilization system in (10.4) is mean-square exponentially stable for

any switching signal with average dwell time satisfying Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1

satisfies

X(i) ≤ 𝜇X(j), Z(i) ≤ 𝜇Z(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  . (10.26)

In this case, a robustly stabilizing state feedback controller can be chosen by

u(k) = Y(i)X−1(i)x(k). (10.27)

Proof. By performing a congruence transformation on (10.7) with matrix diag {X(i),X(i),
I, I,X(i),X(i)} (where X(i) = P−1(i)), it follows that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̂11(i) 0 X(i)H2 0 X(i)AT (i) 𝛿X(i)CT (i)

⋆ −𝛽d2+1Z(i) 0 0 X(i)AT
d (i) 𝛿X(i)CT

d (i)

⋆ ⋆ 𝛽R(i) − I 0 0 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(i) AT
𝜏 (i) 0

⋆ ⋆ ⋆ ⋆ −X(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛿X(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (10.28)

where {
Φ̂11(i) ≜ −𝛽X(i) + 𝛽

(
d2 − d1 + 1

)
Z(i) − X(i)H1X(i),

Z(i) ≜ X(i)Q(i)X(i).

However, the following matrix inequality holds:

(
X(i) − H−1

1

)
H1

(
X(i) − H−1

1

) ≥ 0,

thus,

X(i)H1X(i) ≥ 2X(i) − H−1
1
.
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 205

Therefore, matrix inequality (10.28) holds if the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃11(i) 0 X(i)H2 0 X(i)AT (i) 𝛿X(i)CT (i)

⋆ −𝛽d2+1Z(i) 0 0 X(i)AT
d (i) 𝛿X(i)CT

d (i)

⋆ ⋆ 𝛽R(i) − I 0 0 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(i) AT
𝜏 (i) 0

⋆ ⋆ ⋆ ⋆ −X(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛿X(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (10.29)

where Φ̃11(i) is defined in (10.25). From Theorem 10.3.1 and the above derivation we know

that the discrete-time switched stochastic time-delay system in (10.1a) with 𝜔(k) = 0 is mean-

square exponentially stabilizable, that is, the closed-loop stabilization system in (10.4) is

mean-square exponentially stable if the matrix inequality, that is, (10.29) with A(i) replacing
by A(i) + Bu(i)K(i)) holds.
Furthermore, we define Y(i) = K(i)X(i), we have (10.25), and we know that K(i) =

Y(i)X−1(i). The proof is completed.

10.4 ∞ Control

In this section, we will investigate the weighted ∞ performance for system (10.1a)–(10.1c)

with u(k) = 0. A sufficient condition of the weighted ∞ performance will be established,

and based on which the ∞ controller will be synthesized.

Theorem 10.4.1 For given constants 𝛽 > 0 and 𝛾 > 0, suppose that there exist matrices
P(i) > 0, Q(i) > 0, and R(i) > 0 such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̆11(i) 0 H2 0 0 AT (i)P(i) 𝛿CT (i)P(i)

⋆ −𝛽d2+1Q(i) 0 0 0 AT
d (i)P(i) 𝛿CT

d (i)P(i)

⋆ ⋆ 𝛽R(i) − I 0 0 0 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(i) 0 AT
𝜏 (i)P(i) 0

⋆ ⋆ ⋆ ⋆ −𝛾2I BT
𝜔(i)P(i) 𝛿DT

𝜔(i)P(i)

⋆ ⋆ ⋆ ⋆ ⋆ −P(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝛿P(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(10.30)

where

Φ̆11(i) ≜ −𝛽P(i) + 𝛽(d2 − d1 + 1)Q(i) − H1 + LT (i)L(i).
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206 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then the system in (10.1a)–(10.1c) with u(k) = 0 is mean-square exponentially stable with a
weighted∞ performance level 𝛾 for any switching signal with average dwell time satisfying

Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1 satisfies (10.8).

Proof. The proof of mean-square exponential stability can be referred to the proof of Theorem
10.3.1. Now, we will establish the weighted ∞ performance defined in (10.6). To this end,

introduce the following index:

 ≜ E
{
ΔV(x, 𝛼) + (1 − 𝛽)V(x, 𝛼) + zT (k)z(k) − 𝛾2𝜔T (k)𝜔(k)

}
,

where the Lyapunov function V(xk, 𝛼k) is given in (10.11). By employing the same techniques
used as those in the proof of Theorem 10.3.1, for k ∈ [kl, kl+1), we have

E
{
ΔV(x, 𝛼) + (1 − 𝛽)V(x, 𝛼) + zT (k)z(k) − 𝛾2𝜔T (k)𝜔(k)

} ≤ E
{
𝜒T (k)Π(𝛼)𝜒(k)

}
,

where 𝜒(k) ≜
[
𝜁 (k)
𝜔(k)

]
and

Π(𝛼) ≜
⎡⎢⎢⎢⎢⎢⎣

Φ̆11(𝛼) 0 H2 0 0

⋆ −𝛽d2+1Q(𝛼) 0 0 0

⋆ ⋆ 𝛽R(𝛼) − I 0 0

⋆ ⋆ ⋆ −𝛽𝜏+1R(𝛼) 0

⋆ ⋆ ⋆ ⋆ −𝛾2I

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

AT (𝛼)

AT
d (𝛼)

0

AT
𝜏 (𝛼)

BT
𝜔(𝛼)

⎤⎥⎥⎥⎥⎥⎥⎦
P(𝛼)

⎡⎢⎢⎢⎢⎢⎢⎣

AT (𝛼)

AT
d (𝛼)

0

AT
𝜏 (𝛼)

BT
𝜔(𝛼)

⎤⎥⎥⎥⎥⎥⎥⎦

T

+ 𝛿

⎡⎢⎢⎢⎢⎢⎣

CT (𝛼)

CT
d (𝛼)

0

0

DT
𝜔(𝛼)

⎤⎥⎥⎥⎥⎥⎦
P(𝛼)

⎡⎢⎢⎢⎢⎢⎣

CT (𝛼)

CT
d (𝛼)

0

0

DT
𝜔(𝛼)

⎤⎥⎥⎥⎥⎥⎦

T

.

By Schur complement, LMI (10.30) is equal to Π(𝛼k) < 0, thus  < 0. Let Γ(k) ≜ zT (k)z(k) −
𝛾2𝜔T (k)𝜔(k), then we have

E {ΔV(x(k), 𝛼(k))} < E {−(1 − 𝛽)V(x(k), 𝛼(k)) − Γ(k)} . (10.31)

Therefore, for k ∈ [kl, kl+1), it holds from (10.31) that

E {V(x(k), 𝛼(k))} < 𝛽k−klE
{
V(x(kl), 𝛼(kl))

}
− E

{
k−1∑
s=kl

𝛽k−1−sΓ(s)

}
. (10.32)
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 207

Considering (10.8) and (10.11), it follows that

E
{
V(x(kl), 𝛼(kl))

} ≤ 𝜇E
{
V(x(kl), 𝛼(kl−1))

}
. (10.33)

Thus by (10.32)–(10.33) we have

E {V(x(k), 𝛼(k)} < 𝛽k−klE
{
V(x(kl), 𝛼(kl))

}
− E

{
k−1∑
s=kl

𝛽k−1−sΓ(s)

}
,

E
{
V(x(kl), 𝛼(kl))

}
< 𝛽kl−kl−1𝜇E

{
V(x(kl−1), 𝛼(kl−1))

}
−𝜇E

{ kl−1∑
s=kl−1

𝛽kl−1−sΓ(s)

}
,

E
{
V(x(kl−1), 𝛼(kl−1))

}
< 𝛽kl−1−kl−2𝜇E

{
V(x(kl−2), 𝛼(kl−2))

}
−𝜇E

{kl−1−1∑
s=kl−2

𝛽kl−1−1−sΓ(s)

}
,

⋮

E
{
V(x(k1), 𝛼(k1))

}
< 𝛽k1−k0𝜇E

{
V(x(k0), 𝛼(k0))

}
− 𝜇E

{k1−1∑
s=k0

𝛽k1−1−sΓ(s)

}
.

Therefore, it follows from the above inequalities and the relationship 𝜗 = N𝛼(k0, k) ≤ (k −
k0)∕Ta that

E {V(x(k), 𝛼(k))} < 𝛽k−klE
{
V(x(kl), 𝛼(kl))

}
− E

{
k−1∑
s=kl

𝛽k−1−sΓ(s)

}
< 𝛽k−k0𝜇N𝛼(k0,k)E

{
V(x(k0), 𝛼(k0))

}
−𝛽k−k1𝜇N𝛼(k0,k)E

{k1−1∑
s=k0

𝛽k1−1−sΓ(s)

}

−𝛽k−k2𝜇N𝛼(k1,k)E

{k2−1∑
s=k1

𝛽k2−1−sΓ(s)

}
−⋯

−𝛽k−kl−1𝜇2E

{kl−1−1∑
s=kl−2

𝛽kl−1−1−sΓ(s)

}

−𝛽k−kl𝜇E

{ kl−1∑
s=kl−1

𝛽kl−1−sΓ(s)

}
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208 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

−E

{
k−1∑
s=kl

𝛽k−1−sΓ(s)

}
= 𝛽k−k0𝜇N𝛼(k0,k)E

{
V(x(k0), 𝛼(k0))

}
−E

{
k−1∑
s=k0

𝛽k−1−s𝜇N𝛼(s,k)Γ(s)

}
. (10.34)

Under zero initial condition, that is, x(𝜃) = 𝜙(𝜃) = 0, (−max{𝜏, d2} < 𝜃 ≤ 0), (10.34) implies

E

{
k−1∑
s=k0

𝛽k−1−s𝜇N𝛼(s,k)zT (s)z(s)

}
< 𝛾2E

{
k−1∑
s=k0

𝛽k−1−s𝜇N𝛼(s,k)𝜔T (s)𝜔(s)

}
.

Multiplying both sides of the above inequality by 𝜇−N𝛼(0,k) yields

E

{
k−1∑
s=k0

𝛽k−1−s𝜇−N𝛼(0,s)zT (s)z(s)

}
< 𝛾2E

{
k−1∑
s=k0

𝛽k−1−s𝜇−N𝛼(0,s)𝜔T (s)𝜔(s)

}
. (10.35)

Notice that N𝛼(0, s) ≤ s∕Ta and Ta > −ln𝜇
ln 𝛽 , so we have N𝛼(0, s) ≤ −s ln 𝛽ln𝜇 . Thus (10.35)

implies

E

{
k−1∑
s=k0

𝛽k−1−s𝜇
s ln 𝛽ln𝜇 zT (s)z(s)

}
= E

{
k−1∑
s=k0

𝛽k−1−s𝛽szT (s)z(s)

}

< 𝛾2E

{
k−1∑
s=k0

𝛽k−1−s𝜇−N𝛼(0,s)𝜔T (s)𝜔(s)

}

< 𝛾2E

{
k−1∑
s=k0

𝛽k−1−s𝜔T (s)𝜔(s)

}
.

which yields

E

{ ∞∑
s=k0

𝛽szT (s)z(s)

}
< E

{ ∞∑
s=k0

𝜔T (s)𝜔(s)

}
.

By Definition 10.2.2, we know that system (10.1a)–(10.1c) with u(k) = 0 is mean-square

exponentially stable with a weighted ∞ performance level 𝛾 under 𝛼k. This completes the

proof.

Remark 10.4 Note that Theorem 10.4.1 gives a weighted ∞ performance for the
discrete-time switched stochastic time-delay system in (10.1a)–(10.1c) with u(k) = 0. The
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 209

term ‘weighted’ refers to the weighting function 𝛽s in the left-hand side of (10.6). This is also
the characteristic of the mean-square exponential stability result to the switched stochastic
hybrid system by using the average dwell time approach combining with the piecewise Lya-
punov function technique. When setting 𝛽 = 1, from the analysis in Remark 10.3, there is no
switching. Thus, the result in Theorem 10.4.1 becomes a mean-square asymptotic stability
condition with an ∞ performance for the deterministic system. ⧫

Now, we are in a position to present a solution to the ∞ control problem for the discrete-

time switched stochastic time-delay system in (10.1a)–(10.1c).

Theorem 10.4.2 For given constants 𝛽 > 0 and 𝛾 > 0, suppose that there exist matrices
X(i) > 0, Z(i) > 0, R(i) > 0, and Y(i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃11(i) 0 X(i)H2 0 0 Φ̃15(i) Φ̃16(i) Φ̃17(i)

⋆ Φ̃22(i) 0 0 0 Φ̃25(i) Φ̃26(i) 0

⋆ ⋆ Φ̃33(i) 0 0 0 0 0

⋆ ⋆ ⋆ Φ̃44(i) 0 AT
𝜏 (i) 0 0

⋆ ⋆ ⋆ ⋆ −𝛾2I BT
𝜔(i) 𝛿DT

𝜔(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ −X(i) 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝛿X(i) 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10.36)

where

⎧⎪⎨⎪⎩
Φ̃22(i) ≜ −𝛽d2+1Z(i), Φ̃16(i) ≜ 𝛿X(i)CT (i),

Φ̃44(i) ≜ −𝛽𝜏+1R(i), Φ̃26(i) ≜ 𝛿X(i)CT
d (i),

Φ̃25(i) ≜ X(i)AT
d (i), Φ̃17(i) ≜ X(i)LT (i), Φ̃33(i) ≜ 𝛽R(i) − I.

Then the closed-loop system in (10.5a)–(10.5b) is mean-square exponentially stable with a
weighted∞ performance level 𝛾 for any switching signal with average dwell time satisfying

Ta > T∗
a = ceil

(
−ln𝜇

ln 𝛽

)
, where 𝜇 ≥ 1 satisfies

X(i) ≤ 𝜇X(j), Z(i) ≤ 𝜇Z(j), R(i) ≤ 𝜇R(j), ∀i, j ∈  . (10.37)

In this case, an ∞ state feedback controller can be chosen by

u(k) = Y(i)X−1(i)x(k). (10.38)

Proof. The result can be carried out by employing the same techniques used as those of

Theorems 10.3.2 and 10.4.1.
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210 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

10.5 Illustrative Example

Example 10.5.1 (Stabilization problem) Consider the switched stochastic hybrid system in

(10.1a) with N = 2 and

A(1) =
[
−0.2 0

0 −0.1

]
, Ad(1) =

[
−0.1 −0.2

0 −0.15

]
,

A(2) =
[
−0.2 0

0 −0.1

]
, Ad(2) =

[
−0.2 −1.1

0 −0.22

]
,

A𝜏 (1) =
[
−0.1 0

0.1 −0.3

]
, A𝜏 (2) =

[
−0.1 0

0.2 −0.36

]
,

C(1) =
[
−0.1 0

0.3 0.12

]
, Cd(1) =

[
0.11 0.1

0.3 0.02

]
, Bu(1) =

[
0.2 0.2

0.1 0.2

]
,

C(2) =
[
−0.2 0.13

0.1 0.2

]
, Cd(2) =

[
0.01 0.2

0.2 0.32

]
, Bu(2) =

[
0.3 0.2

0.1 0.3

]
,

and d(k) = 2 + 1+(−1)k
2

, 𝛽 = 0.7. A straightforward calculation gives d2 = 3, 𝜏 = 1, and

𝛿 = 0.314. Give 𝛽 = 0.7 and set 𝜇 = 1.6, thus Ta > T∗
a = ceil(−ln𝜇

ln 𝛽 ) = 2. Checking the

conditions in (10.7) by using LMI Toolbox, a set of feasible solutions is found. There-

fore, the switched stochastic hybrid system (10.1a) with the above parametric matrices is

mean-square exponentially stable for Ta > T∗
a = 2. Moreover, taking Ta = 3 > T∗

a = 2 and

according to (10.9) and (10.10), we obtained a = 2.4410, b = 5.6846, 𝜂 =
√

b
a
= 2.3842, and

𝜌 =
√
𝛽𝜇

1

Ta = 0.9048, thus, an estimate of the mean-square of the state decay is given by

E {‖x(k)‖} ≤ 2.3842 ‖‖x(k0)‖‖C 0.9048(k−k0).
Now,we further simulate the stabilization problem. As analyzed above the open-loop system

is mean-square exponentially stable when Ta ≥ T∗
a = 2. Here, to show the effectiveness, we

will design a stabilization controller in (10.3) such that the closed-loop system in (10.4) is

mean-square exponentially stable for Ta = 1 (in this case, the allowable minimum of 𝜇 is

𝜇min = 1.0314). Solving LMI conditions in Theorem 10.3.2, and considering (10.27), we

have

K(1) =
[
−0.2039 1.0211

1.0218 −0.0944

]
, K(2) =

[
−2.2237 1.1017

11.1193 −0.5039

]
.

Therefore, the controller in the form of (10.3) with above control gains can stabilize the

open-loop system when Ta = 1.
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Control of Switched Stochastic Hybrid Systems: Discrete-Time Case 211

Example 10.5.2 (∞ control problem) Consider the switched stochastic hybrid system in

(10.1a)–(10.1c) with N = 2 and the following parameters:

A(1) =
[
−0.2 0

0 −0.1

]
, Ad(1) =

[
−0.1 −0.2

0 −0.15

]
,

A(2) =
[
−0.2 0

0.2 −1.1

]
, Ad(2) =

[
−0.2 −0.15
0.1 −0.2

]
,

A𝜏 (1) =
[
−0.1 0

0.1 −0.3

]
, Bu(1) =

[
0.02 0.2

0.1 0.02

]
,

A𝜏 (2) =
[
−0.2 0

0.1 −0.3

]
, Bu(2) =

[
1.00 1.20

0.10 0.20

]
,

B𝜔(1) =
[
0.3 0

0 0.1

]
, C(1) =

[
−0.01 0

0.03 0.02

]
,

B𝜔(2) =
[
0.1 0.1

0 0.5

]
, C(2) =

[
0.02 0.01

−0.03 0.02

]
,

Cd(1) =
[
0.1 0

0 0.02

]
, D𝜔(1) =

[
0.01 0.02

0.03 −0.01

]
,

Cd(2) =
[
0.01 0

0.1 0.1

]
, D𝜔(2) =

[
0 0.02

0.03 −0.02

]
,

L(1) =
[
0 0.002

]
, L(2) =

[
0.001 0

]
.

Let 𝛽 = 0.7 and

f (k) =

[
tan(−x1(k)) − 0.01x1(k) + 0.01x2(k)

0.01x1(k) − tan(x2(k)) + 0.01x2(k)

]
,

then it is easy to verify that there exist

Π1 =
[
−0.01 0.01

−0.02 0.01

]
, Π2 =

[
0.01 0.01

0.01 0.01

]
,

such that (10.2) is satisfied. It can be shown that the switched stochastic hybrid system with

the above two subsystems is not stable for a switching signal given in Figure 10.1 (which is

generated randomly; here, ‘1’ and ‘2’ represent the first and second subsystems, respectively).

Here, our aim is to design a state feedback controller such that the resulting closed-loop system

is mean-square exponentially stable with a weighted∞ performance level 𝛾 > 0 for Ta > T∗
a .
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212 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

0 10 20 30 40 50 60 70

1

2

Time in samples

Figure 10.1 Switching signal

Here, for example, we set T∗
a = ceil

(
− ln𝜇

ln𝛽

)
= 2 (in this case, the allowable minimum of 𝜇 is

𝜇min = 1.6). Letting d2 = 3, 𝜏 = 1, and 𝛿 = 0.314. Solving (10.36)–(10.37) in Theorem 10.4.2,

we have 𝛾 = 2.1204 and

K(1) =
[

1.4425 −2.6676
−0.7147 8.3398

]
,

K(2) =
[

3.6274 −16.2692
−2.4995 13.5442

]
.

Suppose the disturbance input 𝜔(k) is

𝜔(k) =
[
0.4e−2k tan(k) 0.5e−k sin(2k)

]T
.

Figure 10.2 shows the Brownian path, and Figure 10.3 gives the states of the closed-loop

system.
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Figure 10.2 Brownian motion
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Figure 10.3 States of the closed-loop system
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214 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

10.6 Conclusion

In this chapter, the problems of stability, stabilization and the∞ control have been considered

for discrete-time switched stochastic hybrid systems with time-varying delays. By applying

the average dwell time method and the piecewise Lyapunov function technique, sufficient

conditions have been proposed for the mean-square exponential stability with a weighted∞
performance for the considered hybrid system. Then the stabilization and the ∞ control

problems have also been solved. Finally, two numerical examples have been provided to

illustrate the effectiveness of the proposed design methods.
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11
State Estimation and SMC
of Switched Stochastic
Hybrid Systems

11.1 Introduction

In Chapter 9, we studied the problems of stability, stabilization, and ∞ control for the

continuous-time switched stochastic hybrid system. In this chapter, we are interested in inves-

tigating the SMC design problem for such hybrid systems, and some results developed in

Chapter 9 will be used. First, by designing an integral switching function, we obtain the slid-

ing mode dynamics, which is a switched stochastic hybrid system with the same order as the

original systems. Based on the stability analysis result in Chapter 9, a sufficient condition for

the existence of the sliding mode is proposed in terms of LMIs, and an explicit parametrization

of the desired switching function is also given. Then, a discontinuous SMC law for reaching

motion is synthesized, such that the state trajectories of the SMC system can be driven onto

a prescribed sliding surface and maintained there for all subsequent time. Moreover, consid-

ering that some system state components may not be available in practical applications, we

further consider the state estimation problem by designing an observer. Sufficient conditions

are also established for the existence and the solvability of the desired observer, and then the

observer-based SMC law is synthesized.

11.2 System Description and Preliminaries

Consider the switched stochastic hybrid systemswhich are established on the probability space
(Ω, ,) and are described by

dx(t) = [A(𝛼(t))x(t) + B(𝛼(t)) (u(t) + F(𝛼(t))f (x, t))] dt

+D(𝛼(t))x(t)d𝜛(t), (11.1)

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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216 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

where x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the control input; 𝜛(t) is

a one-dimensional Brownian motion satisfying E {d𝜛(t)} = 0, and E
{
d𝜛2(t)

}
= dt.{

(A(𝛼(t)),B(𝛼(t)),D(𝛼(t)),F(𝛼(t))) : 𝛼(t) ∈ } is a family of matrices parameterized by an
index set  = {1, 2,… ,N} and 𝛼(t) : R →  is switching signal (denoted by 𝛼 for sim-

plicity), which is defined as in Chapter 5. For each possible value 𝛼 = i, i ∈  , we denote

the system matrices associated with mode i by A(i) = A(𝛼), B(i) = B(𝛼), D(i) = D(𝛼), and
F(i) = F(𝛼), where A(i), B(i), D(i), and F(i) are constant matrices. The pairs (A(i),B(i)) are
controllable for i ∈  , and matrices B(i) are assumed to be of full column rank. For scalars
𝜙(𝛼) > 0, i ∈  , the unknown nonlinear function f (x, t) satisfies

‖F(𝛼)f (x, t)‖ ≤ 𝜙(𝛼), 𝛼 ∈  . (11.2)

The autonomous system of (11.1) can be formulated as

dx(t) = A(𝛼)x(t)dt + D(𝛼)x(t)d𝜛(t). (11.3)

Definition 11.2.1 The switched stochastic hybrid system in (11.3) is said to be mean-square
exponentially stable under 𝛼 if its solution x(t) satisfies

E {‖x(t)‖} ≤ 𝜂 ‖‖x(t0)‖‖ e−𝜆(t−t0), ∀t ≥ t0,

where 𝜂 ≥ 1 and 𝜆 > 0 are two real constants.

According to Theorem 9.3.2, we have the following result for the mean-square exponential

stability of system (11.3).

Theorem 11.2.2 Given a scalar 𝛽 > 0, suppose that there exist matrices P(i) > 0 such that
for i ∈  , [

P(i)A(i) + AT (i)P(i) + 𝛽P(i) DT (i)P(i)

⋆ −P(i)

]
< 0.

Then the switched stochastic hybrid system in (11.3) is mean-square exponentially stable for
any switching signal with average dwell time satisfying Ta >

ln𝜇
𝛽

with 𝜇 ≥ 1 and satisfying

P(i) ≤ 𝜇P(j), ∀i, j ∈  .

Moreover, an estimate of the mean-square of the state decay is given by

E {‖x(t)‖} ≤ 𝜂 ‖x(0)‖ e−𝜆t,
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State Estimation and SMC of Switched Stochastic Hybrid Systems 217

where

⎧⎪⎪⎨⎪⎪⎩
𝜆 ≜ 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 ≜

√
b
a
≥ 1,

a ≜ min
i∈ 𝜆min(P(i)), b ≜ max

i∈ 𝜆max(P(i)).

11.3 Main Results

11.3.1 Sliding Mode Dynamics Analysis

We design the following integral switching function:

s(t) = G(i)x(t) − ∫
t

0

G(i)

[
A(i) + B(i)K(i)

]
x(𝜃)d𝜃, (11.4)

whereG(i) ∈ Rm×n andK(i) ∈ Rm×n are realmatrices to be designed. In particular, thematrices
G(i) are to be chosen such that G(i)B(i) are nonsingular and G(i)D(i) = 0 for all i ∈  .

Then, the solution of x(t) can be given by

x(t) = x(0) + ∫
t

0

[
A(i)x(𝜃) + B(i) (u(𝜃) + F(i)f (x(𝜃), 𝜃))

]
d𝜃

+ ∫
t

0

D(i)x(𝜃)d𝜛(𝜃). (11.5)

It follows from (11.4) and (11.5) that

s(t) = G(i)x(0)

+ ∫
t

0

G(i)

[
− B(i)K(i)x(𝜃) + B(i) (u(𝜃) + F(i)f (x(𝜃), 𝜃))

]
d𝜃.

As is well known that when the system state trajectories reach onto the sliding surface, it

follows that s(t) = 0 and ṡ(t) = 0. Therefore, by ṡ(t) = 0, we get the equivalent control as

ueq(t) = K(i)x(t) − F(i)f (x(t), t). (11.6)

By substituting (11.6) into (11.1), the sliding mode dynamics can be obtained as

dx(t) = (A(i) + B(i)K(i)) x(t)dt + D(i)x(t)d𝜛(t). (11.7)
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218 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

We will analyze the stability of the sliding mode dynamics in (11.7) based on Theo-

rem 11.2.2, by which an explicit parametrization of the desired switching function designed

in (11.4) is given.

Theorem 11.3.1 For a given constant 𝛽 > 0, suppose that there exist matrices (i) > 0 and
(i) such that for i ∈  ,[

A(i)(i) + (i)AT (i) + B(i)(i) +T (i)BT (i) + 𝛽P(i) (i)DT (i)

⋆ −(i)
]
< 0. (11.8)

Then the slidingmode dynamics in (11.7) ismean-square exponentially stable for any switching
signal with average dwell time satisfying Ta >

ln𝜇
𝛽

with 𝜇 ≥ 1 and satisfying

(i) ≤ 𝜇(j), ∀i, j ∈  . (11.9)

Moreover, if the conditions above are feasible, the matrices K(i) in (11.4) can be solved by

K(i) = (i)−1(i). (11.10)

Proof. FromTheorem 11.2.2, if there exist matricesP(i) > 0 such that the following conditions

hold for i ∈  :[
P(i) (A(i) + B(i)K(i)) + (A(i) + B(i)K(i))T P(i) + 𝛽P(i) DT (i)P(i)

⋆ −P(i)

]
< 0, (11.11)

then the slidingmode dynamics in (11.7) is mean-square exponentially stable for any switching

signal with average dwell time satisfying Ta >
ln𝜇
𝛽

with 𝜇 ≥ 1 and satisfying

P(i) ≤ 𝜇P(j), ∀i, j ∈  . (11.12)

Letting (i) ≜ P−1(i), and performing a congruence transformation on (11.11) with

diag {(i),(i)}, we have that for i ∈  ,[
(A(i) + B(i)K(i))(i) + (i) (A(i) + B(i)K(i))T + 𝛽(i) (i)DT (i)

⋆ −(i)
]
< 0. (11.13)

Let (i) ≜ K(i)(i), and we have (11.8) from (11.13). Furthermore, considering (11.12) and

noting (i) ≜ P−1(i) yields (11.9). This completes the proof.
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State Estimation and SMC of Switched Stochastic Hybrid Systems 219

11.3.2 SMC Law Design

In this section, we will synthesize an SMC law to drive the system state trajectories onto the

predefined sliding surface s(t) = 0.

Theorem 11.3.2 Consider the switched stochastic hybrid system (11.1). Suppose that the
switching function is designed as (11.4) with K(i) being solved by (11.10) in Theorem 11.3.1.
Then the state trajectories of system (11.1) can be driven onto the sliding surface s(t) = 0 in
a finite time by the following SMC law:

u(t) = K(i)x(t) − (𝛿 + 𝛾(i)) (G(i)B(i))−1 sign (s(t)) , (11.14)

with

𝛾(i) ≜ 𝜙(i) ‖G(i)B(i)‖ ,
where 𝛿 > 0 is a real constant and G(i) are adjustable parameters to be chosen such that
G(i)B(i) are nonsingular for i ∈  .

Proof. Choose a Lyapunov function of the following form:

V(t) = 1

2
sT (t)s(t).

By (11.4), we have

ṡ(t) = G(i)B(i) [−K(i)x(t) + u(t) + F(i)f (x(t), t)] .

Thus, taking the derivative of V(t) and considering the above equation, we have

V̇(t) = sT (t)ṡ(t)

= sT (t)G(i)B(i) [−K(i)x(t) + u(t) + F(i)f (x(t), t)] . (11.15)

Substituting (11.14) into (11.15) and noting ‖s(t)‖ ≤ |s(t)|, we have
V̇(t) ≤ −𝛿 ‖s(t)‖ ≤ −

√
2𝛿V

1

2 (t). (11.16)

It can be shown from (11.16) that there exists an instant t∗ =
√
2V(0)∕𝛿 such that V(t) = 0

(equivalently, s(t) = 0) when t ≥ t∗. Thus, it is concluded that the system trajectories can be

driven onto the predefined sliding surface in a finite time.
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220 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

11.4 Observer-Based SMC Design

In this section, we will study the SMC problem under the assumption that some of the system

state components are not available. We will first utilize a state observer to generate an estimate

of the unmeasured states, and then synthesize an SMC law based on the state estimates. To

begin with, we give the following measured output:

y(t) = C(i)x(t), (11.17)

where y(t) ∈ Rp is the measured output. We design the following sliding mode observer to

estimate the states of the switched stochastic hybrid system in (11.1):

̇̂x(t) = A(i)x̂(t) + B(i) (u(t) + v(t)) + L(i) (y(t) − C(i)x̂(t)) , (11.18)

where x̂(t) ∈ Rn represents the estimate of the system states x(t); L(i) ∈ Rn×p are the observer
gains to be designed; and the control term v(t) is chosen to eliminate the effect of the nonlinear
function f (x, t).
Let e(t) ≜ x(t) − x̂(t) denote the estimation error. According to (11.1) and (11.17)–(11.18),

the estimation error dynamics is obtained as

de(t) = [(A(i) − L(i)C(i)) e(t) − B(i) (v(t) − F(i)f (x, t))] dt

+D(i)e(t)d𝜛(t) + D(i)x̂(t)d𝜛(t). (11.19)

Remark 11.1 Notice from (11.19) that the estimation error dynamics corresponds to a
switched stochastic hybrid system, and is dependent on the observer feedback matrix L(i) and
state estimates x̂(t). This means that the stability analysis of the error dynamics (11.19) is not
independent of the observer dynamics (11.18). ⧫

Define the following switching functions in the state estimation space and in the state

estimation error space, respectively,

sx(t) = BT (i)X(i)

(
x̂(t) + ∫

t

0

B(i)(i)x̂(𝜃)d𝜃
)
, (11.20a)

se(t) = BT (i)X(i)e(t), (11.20b)

where (i) ∈ Rm×n are adjustable matrices which are chosen such that (A(i) − B(i)(i)) are
Hurwitz for i ∈  . In addition, X(i) > 0 are matrices to be designed such that there always

exist appropriately dimensioned matrices N(i) for BT (i)X(i) = N(i)C(i), thus

se(t) = BT (i)X(i)e(t)

= N(i)C(i) (x(t) − x̂(t)) = N(i) (y(t) − C(i)x̂(t)) . (11.21)
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State Estimation and SMC of Switched Stochastic Hybrid Systems 221

The state-estimate-based SMC laws are designed as

u(t) = − (𝜚 + 𝜅 + 𝜒(t, i) + 𝜙(i)) sign
(
sx(t)
)
, (11.22a)

v(t) = (𝜅 + 𝜙(i)) sign
(
se(t)
)
, (11.22b)

where 𝜚 > 0 and 𝜅 > 0 are two real constants, and

𝜒(t, i) ≜ ‖‖‖(BT (i)X(i)B(i)
)−1‖‖‖

[(‖‖‖BT (i)X(i) (A(i) + B(i)(i))‖‖‖
+ ‖‖‖BT (i)X(i)L(i)C(i)‖‖‖

)‖x̂(t)‖ + ‖‖‖BT (i)X(i)L(i)‖‖‖ ‖y(t)‖
]
.

We will show in the following that the sliding motion will be driven onto the specified

sliding surface sx(t) = 0 in a finite time.

Theorem 11.4.1 The state trajectories of systems (11.18) can be driven onto the sliding
surface sx(t) = 0 in a finite time by the observer-based SMC law in (11.22a)–(11.22b).

Proof. Select the following Lyapunov function:

V̄(t) = 1

2
sTx (t)

(
BT (i)X(i)B(i)

)−1
sx(t). (11.23)

Noting ‖‖sx(t)‖‖ ≤ ||sx(t)|| and sTx (t)sign (se(t)) ≤ ||sx(t)||, we have
̇̄V(t) = sTx (t)

(
BT (i)X(i)B(i)

)−1
ṡx(t)

= sTx (t)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)

(
̇̂x(t) + B(i)(i)x̂(t))

= sTx (t)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i) {(A(i) + B(i)(i)) x̂(t)

+B(i) (u(t) + v(t)) + L(i) (y(t) − C(i)x̂(t))} . (11.24)

Substituting SMC law (11.22a)–(11.22b) into (11.24), we have

̇̄V(t) ≤ ‖‖sx(t)‖‖ ‖‖‖(BT (i)X(i)B(i)
)−1‖‖‖{‖‖‖BT (i)X(i) (A(i) + B(i)(i)) x̂(t)‖‖‖

+ ‖‖‖BT (i)X(i)L(i)C(i)x̂(t)‖‖‖ + ‖‖‖BT (i)X(i)L(i)y(t)‖‖‖} − 𝜚 ‖‖sx(t)‖‖
− (𝜅 + 𝜒(t, i) + 𝜙(i)) ||sx(t)|| + (𝜅 + 𝜙(i)) ||sx(t)||
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222 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

≤ ‖‖sx(t)‖‖ ‖‖‖(BT (i)X(i)B(i)
)−1‖‖‖{‖‖‖BT (i)X(i) (A(i) + B(i)(i))‖‖‖ ‖x̂(t)‖

+ ‖‖‖BT (i)X(i)L(i)C(i)‖‖‖ ‖x̂(t)‖ + ‖‖‖BT (i)X(i)L(i)‖‖‖ ‖y(t)‖}
− 𝜚 ‖‖sx(t)‖‖ − 𝜒(t, i) ‖‖sx(t)‖‖

= −𝜚 ‖‖sx(t)‖‖ ≤ −
√
2𝜚V̄1∕2(t) < 0, for ‖‖sx(t)‖‖ ≠ 0, (11.25)

where 𝜚 ≜ 𝜚

√
𝜆min

(
BT (i)X(i)B(i)

)
> 0. It can be shown from (11.25) that there exists an

instant t⋆ =
√
2V̄(0)∕𝜚 such that V̄(t) = 0 (equivalently, sx(t) = 0) when t ≥ t⋆. Thus, we can

say that the system state trajectories can be driven onto the predefined sliding surface in a

finite time. This completes the proof.

According to the SMC theory, it follows from ṡx(t) = 0 that the following equivalent control

law can be obtained:

ueq(t) = −
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)

×
[(

A(i) + B(i)(i)
)
x̂(t) + L(i)

(
y(t) − C(i)x̂(t)

)]
.

Substituting ueq(t) above into (11.18) yields the sliding mode dynamics in the state estimation
space, which can be formulated as

̇̂x(t) =
[
I − B(i)

(
BT (i)X(i)B(i)

)−1
BT (i)X(i)

]

×
[
A(i)x̂(t) + L(i)C(i)e(t)

]
− B(i)(i)x̂(t). (11.26)

In Theorem 11.4.1, our intention is to design an SMC law based on the estimated system

states, such that the system state trajectories can be driven onto the predefined sliding surface

sx(t) = 0 in a finite time, and the sliding mode dynamics in the state estimation space then

results – see (11.26). In the following, we will propose a sufficient stability condition for

overall closed-loop system composed of the estimation error dynamics (11.19) and the sliding

mode dynamics in the state estimation space (11.26).

Theorem 11.4.2 Consider the switched stochastic hybrid system in (11.1) with (11.17). Its
unmeasured states are estimated by the observer (11.18). The switching functions in the state
estimation space and in the state estimation error space are chosen as (11.20a)–(11.20b),
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State Estimation and SMC of Switched Stochastic Hybrid Systems 223

and the observer-based SMC law is synthesized by (11.22a)–(11.22b). If there exist matrices
X(i) > 0, N(i) > 0 and (i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎣

Π11(i) Π12(i)
√
2X(i)B(i) 0

⋆ Π22(i) 0 CT (i)T (i)

⋆ ⋆ −BT (i)X(i)B(i) 0

⋆ ⋆ ⋆ −X(i)

⎤⎥⎥⎥⎥⎥⎦
< 0, (11.27)

BT (i)X(i) − N(i)C(i) = 0, (11.28)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Π11(i) ≜ X(i)A(i) + AT (i)X(i) − X(i)B(i)(i) − T (i)BT (i)X(i)

+AT (i)X(i)A(i) + DT (i)X(i)D(i),

Π12(i) ≜ (i)C(i) + DT (i)X(i)D(i),

Π22(i) ≜ X(i)A(i) + AT (i)X(i) − (i)C(i) − CT (i)T (i) + DT (i)X(i)D(i),

then the overall closed-loop switched stochastic hybrid system is globally asymptotically
stable. Moreover, the observer gain is given by

L(i) = X−1(i)(i), i ∈  . (11.29)

Proof. Select the following Lyapunov functions:

⎧⎪⎪⎨⎪⎪⎩

Ṽ(x̂, e) ≜ Ṽ(x̂) + Ṽ(e),

Ṽ(x̂) ≜ 1

2
x̂T (t)X(i)x̂(t),

Ṽ(e) ≜ 1

2
eT (t)X(i)e(t).

(11.30)

Then, as with the solution of systems (11.19) and (11.26), we have

Ṽ(x̂) = x̂T (t)X(i)

{[
I − B(i)

(
BT (i)X(i)B(i)

)−1
BT (i)X(i)

]

×
[
A(i)x̂(t) + L(i)C(i)e(t)

]
− B(i)(i)x̂(t)

}
, (11.31)
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224 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Ṽ(e) = eT (t)X(i)

[(
A(i) − L(i)C(i)

)
e(t) − B(i)

(
v(t) − F(i)f (x, t)

)]
+ 1

2
xT (t)DT (i)X(i)D(i)x(t). (11.32)

Thus, we have

Ṽ(x̂, e) = 1

2
x̂T (t)

(
X(i)A(i) + AT (i)X(i)

)
x̂(t) + x̂T (t)X(i)L(i)C(i)e(t)

− x̂T (t)X(i)B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)A(i)x̂(t)

− x̂T (t)X(i)B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)L(i)C(i)e(t)

− x̂T (t)X(i)B(i)(i)x̂(t) + eT (t)X (A(i) − L(i)C(i)) e(t)

− eT (t)X(i)B(i) (v(t)−F(i)f (x, t))+1

2
xT (t)DT (i)X(i)D(i)x(t). (11.33)

Notice (11.22) and ‖‖se(t)‖‖ ≤ ||se(t)||. Thus,
− eT (t)X(i)B(i) (v(t) − F(i)f (x, t)) = −sTe (t) (𝜅 + 𝜙(i)) sign

(
se(t)
)

+ sTe (t)F(i)f (x, t)

≤ − (𝜅 + 𝜙(i)) |||sTe (t)||| + 𝜙(i) ‖‖‖sTe (t)‖‖‖
≤ −𝜅 ‖‖‖sTe (t)‖‖‖ < 0. (11.34)

However, the following inequalities hold:

− x̂T (t)X(i)B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)A(i)x̂(t)

≤ 1

2

{
x̂T (t)X(i)B(i)

(
BT (i)X(i)B(i)

)−1
BT (i)X(i)x̂(t) + x̂T (t)AT (i)X(i)A(i)x̂(t)

}
− x̂T (t)X(i)B(i)

(
BT (i)X(i)B(i)

)−1
BT (i)X(i)L(i)C(i)e(t)

≤ 1

2

{
x̂T (t)X(i)B(i)

(
BT (i)X(i)B(i)

)−1
BT (i)X(i)x̂(t)

+ eT (t)CT (i)LT (i)X(i)L(i)C(i)e(t)
}
.
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State Estimation and SMC of Switched Stochastic Hybrid Systems 225

Considering (11.31)–(11.34), we have

Ṽ(x̂, e) ≤ 1

2
𝜁T (t)Ω(i)𝜁 (t), (11.35)

where 𝜁 (t) ≜
[
x̂(t)

e(t)

]
and Ω(i) ≜

[
Ω11(i) Ω12(i)

⋆ Ω22(i)

]
with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ω11(i) ≜ X(i) (A(i) − B(i)(i)) + (A(i) − B(i)(i))T X(i) + AT (i)X(i)A(i)

+DT (i)X(i)D(i) + 2X(i)B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)

Ω12(i) ≜ X(i)L(i)C(i) + DT (i)X(i)D(i),

Ω22(i) ≜ X(i)A(i) − X(i)L(i)C(i) + (X(i)A(i) − X(i)L(i)C(i))T

+CT (i)LT (i)X(i)L(i)C(i) + DT (i)X(i)D(i).

Let (i) ≜ X(i)L(i) and by Schur complement, (11.27) implies Ω(i) < 0. Thus,

Ṽ(x̂, e) < 0.

We know that the overall closed-loop switched stochastic hybrid system composed of the

estimation error dynamics (11.19) and the sliding mode dynamics in the state estimation space

(11.26) is globally asymptotically stable. This completes the proof.

Note that the conditions in Theorem 11.4.2 are not all expressed in LMI form due to (11.28),

thus they can not be solved directly by an LMI procedure. In fact, (11.28) can be equivalently

converted to

trace

((
BT (i)X(i) − N(i)C(i)

)T (
BT (i)X(i) − N(i)C(i)

))
= 0.

We consider the following matrix inequalities for scalar ℏ > 0,(
BT (i)X(i) − N(i)C(i)

)T (
BT (i)X(i) − N(i)C(i)

) ≤ ℏI, i ∈  . (11.36)

By Schur complement, (11.36) is equivalent to[
−ℏI

(
BT (i)X(i) − N(i)C(i)

)T
⋆ −I

]
≤ 0, i ∈  . (11.37)

Therefore, when ℏ > 0 is chosen as a sufficiently small scalar, (11.28) can be solved through

LMI (11.37).
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226 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

11.5 Illustrative Example

Example 11.5.1 (SMC problem) Consider system (11.1) with N = 2 and the following

parameters:

A(1) =
⎡⎢⎢⎢⎣
−1.0 0.6 −2.4
2.0 −0.5 −0.8
0.1 2.2 0.5

⎤⎥⎥⎥⎦ , D(1) =
⎡⎢⎢⎢⎣
0.3 0.1 0.1

0.1 0.3 0.3

0.2 0.1 0.1

⎤⎥⎥⎥⎦ , B(1) =
⎡⎢⎢⎢⎣
1.2

0.8

0.5

⎤⎥⎥⎥⎦ ,

A(2) =
⎡⎢⎢⎢⎣
1.0 0.8 1.0

0.0 0.5 −0.6
0.3 0.4 −0.5

⎤⎥⎥⎥⎦ , D(2) =
⎡⎢⎢⎢⎣
0.2 0.1 0.2

0.1 0.3 0.1

0.2 0.2 0.2

⎤⎥⎥⎥⎦ , B(2) =
⎡⎢⎢⎢⎣
0.5

1.2

0.4

⎤⎥⎥⎥⎦ ,
F(1) = 1.6, F(2) = 2.0, f (t) = 0.5 exp(−t) sin(t).

Set 𝛽 = 0.5. It can be shown that the system in (11.1) with u(t) = 0 and the above parametric

matrices is unstable for a switching signal given in Figure 11.1 (which is generated randomly;

here, ‘1’ and ‘2’ represent the first and second subsystems, respectively). Thus, our aim

is to design the SMC law u(t) in (11.14) such that the closed-loop system is mean-square

exponentially stable for Ta > T∗
a = 0.1 (in this case, the allowable minimum of 𝜇 is 𝜇min =

1.0513). To check the stability of the sliding mode dynamics in (11.7) with Ta > T∗
a = 0.1

0 1 2 3 4 5 6 7 8 9 10

1

2

t/sec

Figure 11.1 Switching signal

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



State Estimation and SMC of Switched Stochastic Hybrid Systems 227

(that is, set 𝜇 = 1.0513), we solve the conditions (11.8)–(11.9) in Theorem 11.3.1, and by

(11.10), we obtain

K(1) =
[
−0.5946 −2.8781 −2.0463

]
,

K(2) =
[
−3.1291 −0.6310 −1.6249

]
.

We choose

G(1) =
[
5 1 −8

]
, G(2) =

[
4 2 −5

]
.

Thus, the switching function defined in (11.4) is given by

s(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s(t, 1) =
[
5 1 −8

]
x(t)

− ∫
t

0

[
−5.4648 −23.1586 −22.5297

]
x(𝜃)d𝜃, i = 1,

s(t, 2) =
[
4 2 −5

]
x(t)

− ∫
t

0

[
−5.0097 0.6855 1.4002

]
x(𝜃)d𝜃, i = 2.

and the SMC law designed in (11.14) can be computed as

u(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(t, 1) =
[
−0.5946 −2.8781 −2.0463

]
x(t)

− 0.3571 (𝛿 + 2.24) sign (s(t, 1)) , i = 1,

u(t, 2) =
[
−3.1291 −0.6310 −1.6249

]
x(t)

− 0.4167 (𝛿 + 2.40) sign (s(t, 2)) , i = 2,

where 𝛿 > 0 is an adjustable constant.

To prevent the control signals from chattering, we replace sign (s(t)) in the SMC law

with s(t)∕ (0.01 + ‖s(t)‖). Set 𝛿 = 0.5 and suppose that the initial condition is x(0) =[
−1.0 0.5 1.0

]T
. By using the discretization approach [96], we simulate standard Brow-

nian motion. Some initial parameters are given as follows: the simulation time t ∈ [0,T∗]

with T∗ = 10, the normally distributed variance 𝛿t = T∗

N∗ with N∗ = 211, step size Δt = 𝜌𝛿t
with 𝜌 = 2, and the number of discretized Brownian paths p = 10. The simulation results are

given in Figures 11.2–11.6. Specifically, Figures 11.2–11.4 are the simulation results along an

individual discretized Brownian path, with Figure 11.2 showing the states of the closed-loop

system under the designed SMC law. The switching function and the SMC input are given

in Figures 11.3 and 11.4, respectively. Figures 11.5–11.6 are the simulation results on x(t)
and s(t) along 10 individual paths (dotted lines) and the average over 10 paths (solid line),

respectively.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



228 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t/sec

 

Figure 11.2 States of the closed-loop system

0 1 2 3 4 5 6 7 8 9 10
−16

−14

−12

−10
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Figure 11.3 Switching function
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State Estimation and SMC of Switched Stochastic Hybrid Systems 229

0 1 2 3 4 5 6 7 8 9 10
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−1

0

1

2

3
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t/sec

Figure 11.4 Control input
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Figure 11.5 Individual paths and the average of the states of the closed-loop system
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230 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

0 1 2 3 4 5 6 7 8 9 10
−18

−16

−14

−12

−10
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0

2

t/sec

Figure 11.6 Individual paths and the average of the switching function

Example 11.5.2 (Observer-based SMC problem) Consider system (11.1) with N = 2 and

the following parameters:

A(1) =
⎡⎢⎢⎢⎣
−0.7 0.2 0.0

0.3 −0.4 0.0

0.0 0.4 0.2

⎤⎥⎥⎥⎦ , D(1) =
⎡⎢⎢⎢⎣
0.1 0.2 0.0

0.03 0.1 0.2

0.0 0.1 0.05

⎤⎥⎥⎥⎦ , B(1) =
⎡⎢⎢⎢⎣
1.0 1.0

2.0 1.0

1.0 2.0

⎤⎥⎥⎥⎦ ,

A(2) =
⎡⎢⎢⎢⎣
−0.5 0.2 0.0

0.3 −0.4 0.0

0.0 0.2 0.2

⎤⎥⎥⎥⎦ , D(2) =
⎡⎢⎢⎢⎣
0.02 0.2 0.0

0.03 0.1 0.1

0.0 0.1 0.15

⎤⎥⎥⎥⎦ , B(2) =
⎡⎢⎢⎢⎣
2.0 0.5

1.3 1.0

1.0 1.5

⎤⎥⎥⎥⎦ ,
C(1) =

[
0.5 0.3 0.5

]
, C(2) =

[
0.3 0.4 0.7

]
,

F(1) = 1.0, F(2) = 2.0, f (t) = e−t sin(t).

In this example, we will consider the SMC design in the case where some of the system state

components are not available. We design a sliding mode observer in the form of (11.18) to
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State Estimation and SMC of Switched Stochastic Hybrid Systems 231

estimate the system states, and then synthesize the observer-based SMC laws in (11.22a)–

(11.22b) for the reaching motion. First, we select matrices (1) and (2) as follows:

(1) = (2) =
[
0.5 2.5 −2.0
0.3 −1.5 4.0

]
,

which guarantee that both A(1) − B(1)(1) and A(2) − B(2)(2) are Hurwitz. Then, solving
(11.27) and (11.37), and by (11.29), we obtain

L(1) =
⎡⎢⎢⎢⎣
0.3177

1.0438

0.7120

⎤⎥⎥⎥⎦ , L(2) =
⎡⎢⎢⎢⎣
−0.6163
−0.0363
1.4330

⎤⎥⎥⎥⎦ .
According to (11.20a), we have

sx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sx(t, 1) =

[
0.3118 0.2078 0.3001

0.3495 0.2001 0.3700

]
x̂(t)

+ ∫
t

0

[
0.8496 0.8891 2.4239

0.9467 0.8649 2.9188

]
x̂(𝜃)d𝜃, i = 1,

sx(t, 2) =

[
0.0909 0.1146 0.1573

0.0671 0.0916 0.1427

]
x̂(t)

+ ∫
t

0

[
0.3628 0.6261 0.6079

0.2997 0.4812 0.5648

]
x̂(𝜃)d𝜃, i = 2,

and by (11.21), we have

se(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

se(t, 1) =

[
0.6242

0.7115

]
(y(t) − C(i)x̂(t)) , i = 1,

se(t, 2) =

[
0.2476

0.2117

]
(y(t) − C(i)x̂(t)) , i = 2.

Thus, the state estimate-based SMC laws designed in (11.22a)–(11.22b) are computed with

𝜙(1) = 1, 𝜙(2) = 2 and{
𝜒(t, 1) = 140.8915‖x̂(t)‖ + 5.3635‖y(t)‖,
𝜒(t, 2) = 120.2777‖x̂(t)‖ + 2.2355‖y(t)‖.
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232 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

11.6 Conclusion

The problem of the SMC of a continuous-time switched stochastic hybrid system has been

investigated in this chapter. An integral switching function has been designed, and a sufficient

condition for the existence of sliding mode has been established in terms of LMIs, and

an explicit parametrization of the desired switching function has also been given. Then, a

discontinuous SMC law for reaching motion has been synthesized to drive the system state

trajectories onto the predefined sliding surface in a finite time. Moreover, we have further

studied the observer design and observer-based SMC problems for the case that some system

state components are not accessible. Sufficient conditions have also been proposed for the

existence of the desired sliding mode, and the observer-based SMC law has been designed for

the reachingmotion. Two numerical examples have been provided to illustrate the effectiveness

of the proposed design scheme.
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12
SMC with Dissipativity
of Switched Stochastic
Hybrid Systems

12.1 Introduction

Dissipativity theory has played a critical part in analysis and control design of linear and

nonlinear systems, especially for high-order systems, since from the practical application

point of view, many systems need to be dissipative for achieving effective noise attenuation.

It has been recognized that for more abstract systems one can still associate with them an

energy-like function (called the storage function) and an input-power-like function (called

the supply rate). Dissipativity is then characterized by storage functions and supply rates,

which represent the energy stored inside the system and energy supplied from outside the

system, respectively. Roughly speaking, dissipative systems are those for which the increase

in stored energy is never larger than the amount of energy supplied by the environment, that

is, dissipative systems can only dissipate but also not generate energy. The dissipative systems

theory is closely related to the dynamic properties of a process and, in particular, to its stability

properties.

In this chapter, we will study dissipativity analysis and SMC design for switched stochastic

hybrid systems. A more general supply rate is proposed, and a strict (, ,)-dissipativity is
defined, which includes∞, positive realness, and passivity as its special cases. The main idea
is to introduce the strict (, ,)-dissipativity into the analysis of sliding mode dynamics

so as to improve the transient performance of the SMC system. The objective is to conduct

dissipativity analysis and investigate the dissipativity-based SMC design scheme, with a view

to contributing to the development of SMC design and the dissipativity analysis methods for

the switched stochastic hybrid system. Specifically, an integral sliding surface is designed such

that the sliding mode exists with the same order as the original system.

Then, by using the average dwell time approach and the piecewise Lyapunov function

technique, a sufficient condition is established in terms of LMIs, which guarantees the sliding

mode dynamics to be mean-square exponentially stable with a strict dissipativity performance.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, First Edition. Ligang Wu, Peng Shi and Xiaojie Su.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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234 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

In addition, a solution to the dissipativity synthesis is provided by designing a discontinuous

SMC law such that the system state trajectories can be driven onto the predefined sliding

surface in a finite time and maintained there for all subsequent time.

12.2 Problem Formulation and Preliminaries

12.2.1 System Description

Consider the continuous-time switched stochastic hybrid systems, which are established on

the probability space (Ω, ,), and are described by
dx(t) = {A(𝛼(t))x(t) + B(𝛼(t))[u(t) + f (x(t), t, 𝛼(t))]

+E(𝛼(t))𝜔(t)} dt + F(𝛼(t))x(t)d𝜛(t), (12.1a)

z(t) = C(𝛼(t))x(t) + D(𝛼(t))𝜔(t), (12.1b)

where x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the control input; z(t) ∈ Rq is the

controlled output; 𝜔(t) ∈ Rp which belongs to 2[0,∞), is either a disturbance input or

a reference signal; 𝜛(t) is a one-dimensional Brownian motion satisfying E {d𝜛(t)} = 0;

and E
{
d𝜛2(t)

}
= dt. In addition, f (x(t), t, 𝛼(t)) ∈ Rm is an unknown nonlinear function

satisfying

‖f (x(t), t, 𝛼(t))‖ ≤ 𝜙(𝛼(t)) ‖x(t)‖ ,
where 𝜙(𝛼(t)) > 0, and 𝜙(𝛼(t)) ‖x(t)‖ is an upper bound of the norm of the nonlinear function.

Here,
{
(A(𝛼(t)),B(𝛼(t)),C(𝛼(t)),D(𝛼(t)),E(𝛼(t)),F(𝛼(t))) : 𝛼(t) ∈ } in system (12.1a)–

(12.1b) is a family of matrices parameterized by an index set  = {1, 2,… ,N} and 𝛼(t) :
R →  is a piecewise constant function of time t called a switching signal (denoted by 𝛼 for
simplicity), which is defined as in Chapter 5. For each possible value 𝛼 = i (i ∈  ), we will

denote the system matrices associated with mode i by A(i) = A(𝛼), B(i) = B(𝛼), C(i) = C(𝛼),
D(i) = D(𝛼), E(i) = E(𝛼), and F(i) = F(𝛼), where A(i), B(i), C(i), D(i), E(i), and F(i) are
constant matrices.

Assumption 12.1 For each 𝛼 ∈  , the pair (A(𝛼),B(𝛼)) in system (12.1a) is controllable
and the matrix B(𝛼) has full column rank.

First, we consider the following switched stochastic hybrid systems:

dx(t) = [A(𝛼)x(t) + E(𝛼)𝜔(t)]dt + F(𝛼)x(t)d𝜛(t), (12.2a)

z(t) = C(𝛼)x(t) + D(𝛼)𝜔(t), (12.2b)

where x(t) ∈ X ∈ Rn is the state vector; 𝜔(t) ∈ Ω ∈ Rp is the input; and z(t) ∈ Z ∈ Rq is the

controlled output.
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SMC with Dissipativity of Switched Stochastic Hybrid Systems 235

Definition 12.2.1 The switched stochastic hybrid system (12.2a) with 𝜔(t) = 0 is said to be
mean-square exponentially stable under 𝛼 if its solution x(t) satisfies

E {‖x(t)‖} ≤ 𝜂 ‖‖x(t0)‖‖ e−𝜆(t−t0), ∀t ≥ t0,

where 𝜂 ≥ 1 and 𝜆 > 0 are real constants.

12.2.2 Dissipativity

In this section, we will give a brief introduction to dissipative systems. Dissipative systems

can be regarded as a generalization of passive systems with more general internal and supplied

energies [269]. A system is called ‘dissipative’ if there is ‘power dissipation’ in the system.

Dissipative systems are those that cannot store more energy than that supplied by the environ-

ment and/or by other systems connected to them, that is, dissipative systems can only dissipate

but not generate energy [169].

According to [97], associated with the switched stochastic hybrid system (12.2a)–(12.2b)

is a real-valued function Φ(𝜔, z) called the supply rate, which is formally defined as follows.

Definition 12.2.2 (Supply Rate) The supply rate is a real-valued function: Φ(𝜔, z) :
Ω × Z → R, which is assumed to be locally Lebesgue integrable independently of the
input and the initial conditions, that is, for any 𝜔 ∈ Ω, z ∈ Z, and t∗ ≥ 0, it holds that

∫ t∗

0 |Φ(𝜔(t), z(t))|dt < +∞.

The classical form of dissipativity in [97] is obviously applicable to the switched stochastic

hybrid system in (12.1a)–(12.1b).

Definition 12.2.3 (Dissipative system) The switched stochastic hybrid system (12.2a)–
(12.2b) with supply rate Φ(𝜔, z) is said to be dissipative if there exists a nonnegative function
V(x) : X → R, called the storage function, such that the following dissipation inequality holds:

E
{
V(x(t∗)) − V(x(0))

} ≤ E

{
∫

t∗

0

Φ(𝜔(t), z(t))dt

}
, (12.3)

for all initial condition x0 ∈ X, input 𝜔 ∈ Ω, and t∗ ≥ 0 (or said differently: for all admissible
inputs 𝜔(t) that drive the state from x(0) to x(t∗) on the interval [0, t∗], where x(t∗) is the state
variable at time t = t∗).

Remark 12.1 Inequality (12.3) is called the dissipation inequality and it formalizes the
property that the increase in stored energy is never greater than the amount of energy supplied
by the environment. Passive systems are a special class of dissipative systems that have a
bilinear supply rate, that is, Φ(𝜔, z) = zT𝜔. If a system with a constant positive feedforward
of  is passive, then the process is dissipative with respect to the supply rate Φ(𝜔, z) = zT𝜔 +
𝜔T𝜔, where = T ∈ Rp×p. Similarly, if a system with a constant negative feedback of is
passive, then the process is dissipative with respect to the supply rate Φ(𝜔, z) = zTz + zT𝜔,
where  = T ∈ Rp×p. ⧫
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236 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Motivated by the above facts, a more general supply rate is proposed in the following

definition.

Definition 12.2.4 Given matrices  ∈ Rq×q,  ∈ Rp×p, and  ∈ Rq×p with  and 
being symmetric, the switched stochastic hybrid system (12.2a)–(12.2b) is called (, ,)-
dissipative if for some real function 𝛾(⋅) with 𝛾(0) = 0,

E

{
∫

t∗

0

[
z(t)
𝜔(t)

]T [ 
⋆ 

] [
z(t)
𝜔(t)

]
dt

}
+ 𝛾(x0) ≥ 0, ∀t∗ ≥ 0. (12.4)

Furthermore, if for some scalar 𝛿 > 0 and ∀t∗ ≥ 0,

E

{
∫

t∗

0

[
z(t)
𝜔(t)

]T [ 
⋆ 

] [
z(t)
𝜔(t)

]
dt

}
+ 𝛾(x0) ≥ 𝛿 ∫

t∗

0

𝜔T (t)𝜔(t)dt, (12.5)

then the switched stochastic hybrid system (12.2a)–(12.2b) is called strictly (, ,)-𝛿-
dissipative.

Remark 12.2 In Definition 12.2.4, we assume that  ≤ 0, thus the performance defined in
Definition 12.2.4 includes ∞, positive realness, and passivity as special cases. Specifically,

Case 1. When  = −I,  = 0, and  − 𝛿I = 𝛾2I, (12.5) reduces to an ∞ performance
requirement.

Case 2. When  = 0,  = I,  − 𝛿I = 0, and 𝛾(x0) = 0, (12.5) corresponds to an extended
strict positive real problem.

Case 3. When  = −𝜃I,  = (1 − 𝜃)I, and  − 𝛿I = 𝜃𝛾2I, 𝜃 ∈ [0, 1], (12.5) corresponds to
the mixed ∞ and positive real performances.

Case 4. When  = 0,  = I, and  − 𝛿I = 𝜅I, (12.5) corresponds to a passivity problem. ⧫

12.3 Dissipativity Analysis

In this section, we will apply the average dwell time method combined with the piecewise

Lyapunov function technique to investigate the dissipativity and the mean-square exponential

stability for the switched stochastic hybrid system in (12.2a)–(12.2b).

Theorem 12.3.1 Given matrices 0 ≥  ∈ Rq×q,  ∈ Rp×p, and  ∈ Rq×p, with  and 
being symmetric, and scalars 𝛽 > 0, 𝛿 > 0, suppose that there exist matrices 0 < P(i) ∈ Rn×n

such that for i ∈  ,

Π(i) ≜
[
Π11(i) Π12(i)
⋆ Π22(i)

]
< 0, (12.6)

where

⎧⎪⎨⎪⎩
Π11(i) ≜ P(i)A(i) + AT (i)P(i) + 𝛽P(i) + FT (i)P(i)F(i) − CT (i)C(i),

Π12(i) ≜ P(i)E(i) − CT (i)T − CT (i)D(i),

Π22(i) ≜ − + 𝛿I − D(i) − DT (i)T − DT (i)D(i),
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SMC with Dissipativity of Switched Stochastic Hybrid Systems 237

then the switched stochastic hybrid system in (12.2a)–(12.2b) is strictly (, ,)-𝛿-dissipative
in the sense of Definition 12.2.4 for any switching signal with the average dwell time satisfying
Ta >

ln𝜇
𝛽

(where 𝜇 ≥ 1) and satisfying

P(i) ≤ 𝜇P(j), ∀i, j ∈  . (12.7)

Proof. Choose the following Lyapunov function:

V(x, 𝛼) ≜ xT (t)P(𝛼)x(t), (12.8)

where P(𝛼) > 0, 𝛼 ∈  are to be determined. Then, as with the solution of system (12.2a)–

(12.2b), by Itô’s formula, we obtain the stochastic differential as

dV(x, 𝛼) = V(x, 𝛼)dt + 2xT (t)P(𝛼)F(𝛼)x(t)d𝜛(t),

V(x, 𝛼) = 2xT (t)P(𝛼) [A(𝛼)x(t) + E(𝛼)𝜔(t)] + xT (t)FT (𝛼)P(𝛼)F(𝛼)x(t)

= xT (t)
[
P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + FT (𝛼)P(𝛼)F(𝛼)

]
x(t)

+ 2xT (t)P(𝛼)E(𝛼)𝜔(t). (12.9)

To show the strict dissipativity of system (12.2a)–(12.2b), we consider (12.9), and for any

nonzero 𝜔(t) ∈ 2[0,∞), it follows that

Γ(x, 𝛼) ≜ V(x, 𝛼) + 𝛽V(x, 𝛼) − zT (t)z(t) − 2𝜔T (t)z(t) − 𝜔T (t)( − 𝛿I)𝜔(t)

≜
[
x(t)
𝜔(t)

]T
Π(𝛼)

[
x(t)
𝜔(t)

]
,

where Π(𝛼) is defined in (12.6). By (12.6) we have Γ(x, 𝛼) < 0, that is,

V(x, 𝛼) < −𝛽V(x, 𝛼) + Ψ(t),

where

Ψ(t) ≜ zT (t)z(t) + 2𝜔T (t)z(t) + 𝜔T (t)( − 𝛿I)𝜔(t).

Thus, we have

dV(x, 𝛼) = V(x, 𝛼)dt + 2xT (t)P(𝛼)F(𝛼)x(t)d𝜛(t)

< − 𝛽V(x, 𝛼)dt + Ψ(t)dt + 2xT (t)P(𝛼)F(𝛼)x(t)d𝜛(t).

Observe that

d
[
e𝛽tV(x, 𝛼)

]
= 𝛽e𝛽tV(x, 𝛼)dt + e𝛽tdV(x, 𝛼)

< e𝛽tΨ(t)dt + 2e𝛽txT (t)P(𝛼)F(𝛼)x(t)d𝜛(t). (12.10)
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238 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Integrating both sides of (12.10) from t⋆ > 0 to t and then taking expectations results in

E
{
e𝛽tV(x, 𝛼)

}
− E
{
e𝛽t

⋆
V(x(t⋆), 𝛼(t⋆))

}
< E
{
∫

t

t⋆
e𝛽𝜏Ψ(𝜏)d𝜏

}
,

which is equivalent to

E {V(x, 𝛼)} < e−𝛽(t−t
⋆)E
{
V(x(t⋆), 𝛼(t⋆))

}
+ E
{
∫

t

t⋆
e−𝛽(t−𝜏)Ψ(s)d𝜏

}
. (12.11)

Now, for an arbitrary piecewise constant switching signal 𝛼, and for any t > 0, we let 0 =
t0 < t1 < ⋯ < tk < ⋯ (k = 0, 1,…) denote the switching points of 𝛼 over the interval (0, t).
As mentioned earlier, the ikth subsystem is activated when t ∈ [tk, tk+1).
According to (12.11) and letting t⋆ = tk, we have

E {V(x, 𝛼)} < e−𝛽(t−tk)E
{
V(x(tk), 𝛼(tk))

}
+ E

{
∫

t

tk

e−𝛽(t−𝜏)Ψ(𝜏)d𝜏

}
. (12.12)

Using (12.7) and (12.8), at switching instant tk, we have

E
{
V(x(tk), 𝛼(tk))

} ≤ 𝜇E
{
V(x(t−k ), 𝛼(t

−
k ))
}
. (12.13)

Therefore, it follows from (12.12)–(12.13) and the relationship 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta that

E {V(x, 𝛼)} < 𝜇e−𝛽(t−tk)E
{
V(x(t−k ), 𝛼(t

−
k ))
}
+ E

{
∫

t

tk

e−𝛽(t−𝜏)Ψ(𝜏)d𝜏

}

≤ 𝜇𝜗e−𝛽tE {V(x(0), 𝛼(0))} + 𝜇𝜗E
{
∫

t1

0

e−𝛽(t−𝜏)Ψ(𝜏)d𝜏
}

+ 𝜇𝜗−1E
{
∫

t2

t1

e−𝛽(t−𝜏)Ψ(𝜏)d𝜏
}

+⋯

+ 𝜇0E

{
∫

t

tk

e−𝛽(t−𝜏)Ψ(𝜏)d𝜏

}

= E
{
∫

t

0

e−𝛽(t−𝜏)+N𝛼(𝜏,t) ln𝜇Ψ(𝜏)d𝜏
}

+ e−𝛽t+N𝛼(0,t) ln𝜇V(x(0), 𝛼(0)). (12.14)

Under the zero initial condition, that is, x(0) = 0, (12.14) implies

E {V(x, 𝛼)} ≤ E
{
∫

t

0

e−𝛽(t−𝜏)+N𝛼(𝜏,t) ln𝜇Ψ(𝜏)d𝜏
}
. (12.15)
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SMC with Dissipativity of Switched Stochastic Hybrid Systems 239

Multiplying both sides of (12.15) by e−N𝛼(0,t) ln𝜇 yields

E
{
e−N𝛼(0,t) ln𝜇V(x, 𝛼)

} ≤ E
{
∫

t

0

e−𝛽(t−𝜏)−N𝛼(0,𝜏) ln𝜇Ψ(𝜏)d𝜏
}

≤ E
{
∫

t

0

e−𝛽(t−𝜏)Ψ(𝜏)d𝜏
}

≤ E
{
∫

t

0

Ψ(𝜏)d𝜏
}
. (12.16)

Noting N𝛼(0, t) ≤ t∕Ta and Ta > T∗
a = ln𝜇∕𝛽, we have N𝛼(0, t) ln𝜇 ≤ 𝛽t. Thus, (12.16)

implies

E
{
e−𝛽tV(x, 𝛼)

} ≤ E
{
∫

t

0

Ψ(𝜏)d𝜏
}
.

It is true that for arbitrary t∗ ≥ 0,

0 ≤ E
{
e−𝛽t

∗
V(x, 𝛼)

} ≤ E

{
∫

t∗

0

Ψ(t)dt

}
,

which satisfies (12.5). Hence, the proof is completed.

From the proof of Theorem 12.3.1, we also have the following result.

Theorem 12.3.2 Given a scalar 𝛽 > 0, suppose that there exist matrices P(i) > 0 such that
for i ∈  ,

Π11(i) ≜ P(i)A(i) + AT (i)P(i) + 𝛽P(i) + FT (i)P(i)F(i) < 0. (12.17)

Then the switched stochastic hybrid system (12.2a)–(12.2b) with 𝜔(t) = 0 is mean-square
exponentially stable for any switching signal with the average dwell time satisfying Ta >

ln𝜇
𝛽

(where 𝜇 ≥ 1) and satisfying (12.7). Moreover, an estimate of the mean square of the state
decay is given by

E {‖x(t)‖} ≤ 𝜂 ‖x(0)‖ e−𝜆t, (12.18)

where

⎧⎪⎨⎪⎩
𝜆 = 1

2

(
𝛽 − ln𝜇

Ta

)
> 0, 𝜂 =

√
b
a
≥ 1,

a = min
∀i∈ 𝜆min (P(i)) , b = max

∀i∈ 𝜆max (P(i)) .
(12.19)
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240 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Proof. Choose the Lyapunov function as (12.8). Inequality (12.17) implies

P(𝛼)A(𝛼) + AT (𝛼)P(𝛼) + FT (𝛼)P(𝛼)F(𝛼) < −𝛽P(𝛼).

Considering (12.9) for 𝜔(t) = 0, we have

V(x, 𝛼) < −𝛽xT (t)P(𝛼)x(t) = −𝛽V(x, 𝛼).

Thus,

dV(x, 𝛼) < −𝛽V(x, 𝛼)dt + 2xT (t)P(𝛼)F(𝛼)x(t)d𝜛(t).

Observe that

d
[
e𝛽tV(x, 𝛼)

]
= 𝛽e𝛽tV(x, 𝛼)dt + e𝛽tdV(x, 𝛼)

< e𝛽t
[
𝛽V(x, 𝛼)dt − 𝛽V(x, 𝛼)dt + 2xT (t)P(𝛼)F(𝛼)x(t)d𝜛(t)

]
= 2e𝛽txT (t)P(𝛼)F(𝛼)x(t)d𝜛(t). (12.20)

Integrating both sides of (12.20) from T > 0 to t and taking expectations, with some mathe-
matical operations, we have

E {V(x, 𝛼)} < e−𝛽(t−T)E {V(x(T), 𝛼(T))} . (12.21)

As the analysis made in the proof of Theorem 12.3.1, we let 0 = t0 < t1 < ⋯ < tk < ⋯
(k = 1, 2,…) denote the switching points of 𝛼 over the interval (0, t), and suppose that the ikth
subsystem is activated when t ∈ [tk, tk+1). Letting T = tk in (12.21) gives

E {V(x, 𝛼)} < e−𝛽(t−tk)E
{
V(x(tk), 𝛼(tk))

}
. (12.22)

Therefore, it follows from (12.13) and (12.22), and the relationship 𝜗 = N𝛼(0, t) ≤ (t − 0)∕Ta
that

E {V(x, 𝛼)} < e−𝛽(t−tk)𝜇E
{
V(x(t−k ), 𝛼(t

−
k ))
}

≤ ⋯

≤ e−𝛽(t−0)𝜇𝜗E {V(x(0), 𝛼(0))}

≤ e−(𝛽−ln𝜇∕Ta)tE {V(x(0), 𝛼(0))}

= e−(𝛽−ln𝜇∕Ta)tV(x(0), 𝛼(0)). (12.23)

Note from (12.8) that

E {V(x, 𝛼)} ≥ aE
{‖x(t)‖2} , V(x(0), 𝛼(0)) ≤ b ‖x(0)‖2 , (12.24)
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SMC with Dissipativity of Switched Stochastic Hybrid Systems 241

where a and b are defined in (12.19). Combining (12.23) and (12.24) together yields

E
{‖x(t)‖2} ≤ 1

a
E {V(x, 𝛼)}

≤ b
a
e−(𝛽−ln𝜇∕Ta)t ‖x(0)‖2 ,

which implies (12.18). By Definition 12.2.1 with t0 = 0, system (12.2a)–(12.2b) with u(t) = 0

is mean-square exponentially stable.

12.4 Sliding Mode Control

12.4.1 Sliding Mode Dynamics

We design the following integral switching function:

s(t) = G(i)x(t) − ∫
t

0

G(i) [A(i) + B(i)K(i)] x(𝜃)d𝜃, (12.25)

where K(i) ∈ Rm×n are real matrices to be designed, and matrices G(i) are to be chosen such
that G(i)B(i) are nonsingular and G(i)F(i) = 0 for i ∈  .

The solution of x(t) can be given by

x(t) = x(0) + ∫
t

0

[A(i)x(𝜃) + B(i) (u(𝜃) + f (x(𝜃), 𝜃, i)) + E(i)𝜔(𝜃)] d𝜃 + ∫
t

0

F(i)x(𝜃)d𝜛(𝜃).

(12.26)

It follows from (12.25) and (12.26) that

s(t) = G(i)x(0) + ∫
t

0

G(i) [−B(i)K(i)x(𝜃) + B(i) (u(𝜃) + f (x(𝜃), 𝜃, i)) + E(i)𝜔(𝜃)] d𝜃.

It is well known that when the system state trajectories reach onto the sliding surface, it follows

that s(t) = 0 and ṡ(t) = 0. Therefore, by ṡ(t) = 0 we get the equivalent control as

ueq(t) = K(i)x(t) − f (x(t), t, i) − (G(i)B(i))−1G(i)E(i)𝜔(t). (12.27)

By substituting (12.27) into (12.1a), the sliding mode dynamics can be obtained as

dx(t) =
{
[A(i) + B(i)K(i)] x(t) +

[
I − B(i) (G(i)B(i))−1 G(i)

]
E(i)𝜔(t)

}
dt + F(i)x(t)d𝜛(t).

(12.28)
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242 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

For notational simplicity, we define{
Ẽ(i) ≜ [I − B(i) (G(i)B(i))−1G(i)

]
E(i),

Ã(i) ≜ A(i) + B(i)K(i).

Thus, the sliding mode dynamics in (12.28) combined with the controlled output equation in

(12.1b) can be formulated as

dx(t) =
[
Ã(i)x(t) + Ẽ(i)𝜔(t)

]
dt + F(i)x(t)d𝜛(t), (12.29a)

z(t) = C(i)x(t) + D(i)𝜔(t). (12.29b)

In this chapter, we choose G(i) = BT (i)X(i), where 0 < X(i) ∈ Rn×n is to be designed later.
Thus,

Ẽ(i) ≜ [I − B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)

]
E(i). (12.30)

Note that the positive definiteness of matrix X(i) guarantees the nonsingularity of G(i)B(i) due
to Assumption 12.1.

The above analysis gives the first step of the SMC for the switched stochastic hybrid system

(12.1a)–(12.1b). Specifically, we design an integral-type sliding surface as given in (12.25)

so that the dynamics restricted to the sliding surface (i.e. the sliding mode dynamics) has the

form of (12.29a)–(12.29b). The remaining problems to be addressed in this chapter can be

stated as follows.

1. Dissipativity analysis.Given all the systemmatrices in (12.1a)–(12.1b), determine thematri-

ces G(i) and K(i) in the switching function (12.25) such that the sliding mode dynamics in
(12.29a)–(12.29b) is mean-square exponentially stable and strictly (, ,)-𝛿-dissipative
in the sense of Definitions 12.2.1 and 12.2.4, respectively.

2. SMC law design. Synthesize an SMC law to globally drive the system state trajectories

onto the predefined sliding surface s(t) = 0 in a finite time and maintain them there for all

subsequent time. This is the second step of SMC.

12.4.2 Sliding Mode Dynamics Analysis

First, we give the following result for the dissipativity of the sliding mode dynamics in

(12.29a)–(12.29b).

Theorem 12.4.1 Given matrices 0 ≥  ∈ Rq×q,  ∈ Rp×p, and  ∈ Rq×p, with  and 
being symmetric, and scalars 𝛽 > 0, 𝛿 > 0, suppose that there exist matrices X(i) > 0 such
that for i ∈  ,

Π̃(i) ≜
⎡⎢⎢⎣
Π̃11(i) Π̃12(i) X(i)B(i)
⋆ Π̃22(i) 0

⋆ ⋆ −BT (i)X(i)B(i)

⎤⎥⎥⎦ < 0, (12.31)
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SMC with Dissipativity of Switched Stochastic Hybrid Systems 243

where

⎧⎪⎨⎪⎩
Π̃11(i) ≜ X(i)Ã(i) + ÃT (i)X(i) + 𝛽X(i) + FT (i)X(i)F(i) − CT (i)C(i),

Π̃12(i) ≜ X(i)E(i) − CT (i)T − CT (i)D(i),

Π̃22(i) ≜ − + 𝛿I − D(i) − DT (i)T + ET (i)X(i)E(i) − DT (i)D(i).

Then the sliding mode dynamics in (12.29a)–(12.29b) is mean-square exponentially stable and
strictly (, ,)-𝛿-dissipative for any switching signal with the average dwell time satisfying
Ta >

ln𝜇
𝛽

(where 𝜇 ≥ 1) and satisfying

X(i) ≤ 𝜇X(j), ∀i, j ∈  .

Proof. The result can be obtained by employing the same techniques as used in the proof of
Theorem 12.3.1 and noticing (12.30) and

− 2xT (t)X(i)B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)E(i)𝜔(t)

≤ 𝓍T (t)X(i)B(i)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)x(t) + 𝜔T (t)ET (i)X(i)E(i)𝜔(t).

Thus, the detailed proof is omitted for brevity.

In the following, based on the result in Theorem 12.4.1, we are in a position to present

a solution to the dissipativity synthesis problem for the sliding mode dynamics in (12.29a)–

(12.29b).

Theorem 12.4.2 Given matrices 0 ≥  ∈ Rq×q,  ∈ Rp×p, and  ∈ Rq×p, with  and
 being symmetric, and scalars 𝛽 > 0, 𝛿 > 0, suppose that there exist matrices X(i) > 0,
𝒳 (i) > 0, and 𝒴 (i) such that for i ∈  ,

⎡⎢⎢⎢⎢⎢⎣

Π̆11(i) Π̆12(i) B(i) 𝒳 (i)FT (i) 𝒳 (i)CT (i)
⋆ Π̃22(i) 0 0 0

⋆ ⋆ −BT (i)X(i)B(i) 0 0

⋆ ⋆ ⋆ −𝒳 (i) 0

⋆ ⋆ ⋆ ⋆ 

⎤⎥⎥⎥⎥⎥⎦
< 0, (12.32a)

BT (i)X(i)F(i) = 0, (12.32b)

X(i)𝒳 (i) = I, (12.32c)

where Π̃22(i) is defined in Theorem 12.4.1 and{
Π̆11(i) ≜ A(i)𝒳 (i) +𝒳 (i)AT (i) + B(i)𝒴 (i) +𝒴 T (i)BT (i) + 𝛽𝒳 (i),

Π̆12(i) ≜ E(i) −𝒳 (i)CT (i)T −𝒳 (i)CT (i)D(i).
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244 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Then the sliding mode dynamics in (12.29a)–(12.29b) is mean-square exponentially stable and
strictly (, ,)-𝛿-dissipative for any switching signal with the average dwell time satisfying
Ta >

ln𝜇
𝛽

(where 𝜇 ≥ 1) and satisfying

X(i) ≤ 𝜇X(j), ∀i, j ∈  . (12.33)

Moreover, if the above conditions are feasible, then the matrix variable K(i) in (12.25) can be
computed by

K(i) = 𝒴 (i)𝒳−1(i) = 𝒴 (i)X(i). (12.34)

Proof. Let 𝒳 (i) ≜ X−1(i) and 𝒴 (i) ≜ K(i)𝒳 (i). Then by performing a congruence trans-

formation on (12.31) with diag{𝒳 (i), I, I} and by Schur complement, the result can be

obtained.

Remark 12.3 Note that there exist two matrix equalities of (12.32b) and (12.32c) in Theorem
12.4.2, which cannot be solved directly by applying the LMI Toolbox in theMatlab environment.
In the following, we will propose some algorithms to solve them. First, to solve (12.32b), for
a scalar 𝜀 > 0, we consider the following matrix inequalities:(

BT (i)X(i)F(i)
)T (

BT (i)X(i)F(i)
) ≤ 𝜀I, i ∈  . (12.35)

By Schur complement, (12.35) is equivalent to[
−𝜀I

(
BT (i)X(i)F(i)

)T
⋆ −I

]
≤ 0, i ∈  . (12.36)

Therefore, when 𝜀 > 0 is chosen as a sufficiently small scalar, matrix equality (12.32b) can be
solved through LMI (12.36). Next, we use the CCL method to solve (12.32c) by formulating it
into a sequential optimization problem subject to LMI constraints. ⧫

Now, combining the methods for solving (12.32b)–(12.32c) together, we introduce the

following minimization problem involving LMI conditions instead of the original nonconvex

feasibility problem formulated in Theorem 12.4.2.

Problem SMA (Sliding mode analysis):

min trace

(∑
i∈

X(i)𝒳 (i)

)

subject to (12.32a), (12.33), (12.36) and[
X(i) I
I 𝒳 (i)

]
≥ 0, i ∈  . (12.37)
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SMC with Dissipativity of Switched Stochastic Hybrid Systems 245

Remark 12.4 By CCL method [66], if the solution of the above minimization problem is Nn,
that is, min trace(

∑
i∈ X(i)𝒳 (i)) = Nn, then the conditions in Theorem 12.4.2 are solvable.

Although it is still not possible to always find the global optimal solution, the proposed
minimization problem is easier to solve than the original nonconvex feasibility problem. ⧫

12.4.3 SMC Law Design

In this section, we will synthesize a discontinuous SMC law, by which the state trajectories

of the switched stochastic hybrid system (12.1a)–(12.1b) can be driven onto the pre-specified

sliding surface s(t) = 0 in a finite time and then are maintained there for all subsequent time.

Theorem 12.4.3 Consider the switched stochastic hybrid system (12.1a)–(12.1b). Suppose
that the switching function is designed as (12.25) with K(i) being solved by (12.34), and G(i)
is chosen as G(i) = BT (i)X(i) with X(i) > 0 being solved in Theorem 12.4.2. Then the state
trajectories of system (12.1a)–(12.1b) can be driven onto the sliding surface s(t) = 0 in a finite
time by the following SMC law:

u(t) = K(i)x(t) − 𝜌(t, i)sign (s(t)) , (12.38)

where

𝜌(t, i) = 𝜚 + 𝜙(i) ‖x(t)‖ + ‖‖‖(BT (i)X(i)B(i)
)−1

BT (i)X(i)E(i)‖‖‖ ‖𝜔(t)‖ ,
with 𝜚 being a positive constant.

Proof. Choose a Lyapunov function of the following form:

W(t) = 1

2
sT (t)

(
BT (i)X(i)B(i)

)−1
s(t).

According to (12.27), we have

ṡ(t) = −BT (i)X(i)B(i)K(i)x(t) + BT (i)X(i)E(i)𝜔(t)

+ BT (i)X(i)B(i)u(t) + BT (i)X(i)B(i)f (x(t), t, i).

Thus, taking the derivative of W(t) and considering the above equation, we have

Ẇ(t) = sT (t)
(
BT (i)X(i)B(i)

)−1
ṡ(t)

= − sT (t)K(i)x(t) + sT (t)
(
BT (i)X(i)B(i)

)−1
BT (i)X(i)E(i)𝜔(t)

+ sT (t) (u(t) + f (x(t), t, i)) . (12.39)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



246 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Substituting (12.38) into (12.39) and noting that ‖s(t)‖ ≤ |s(t)|, we have
Ẇ(t) ≤ −𝜚 ‖s(t)‖ ≤ −𝜚W

1

2 (t), (12.40)

where

𝜚 ≜ 𝜚

√
2∕𝜆max

[(
BT (i)X(i)B(i)

)−1]
> 0.

It can be shown from (12.40) that there exists an instant t∗ = 2
√
W(0)∕𝜚 such that W(t) = 0

(equivalently, s(t) = 0) when t ≥ t∗. Thus, we can say that the system state trajectories can be

driven onto the predefined sliding surface in a finite time.

12.5 Illustrative Example

Example 12.5.1 Consider system (12.1a)–(12.1b) with N = 2 and the following parameters

A(1) =
⎡⎢⎢⎣
−0.7 0.6 −1.9
2.2 −0.5 −0.8
0.1 1.7 0.9

⎤⎥⎥⎦ , F(1) =
⎡⎢⎢⎣
0.3 0.1 0.1

0.1 0.3 0.3

0.2 0.1 0.1

⎤⎥⎥⎦ , B(1) =
⎡⎢⎢⎣
1.2

0.8

0.5

⎤⎥⎥⎦ ,
A(2) =

⎡⎢⎢⎣
1.0 −0.6 1.0

−0.4 0.7 −0.6
0.3 0.3 −0.8

⎤⎥⎥⎦ , F(2) =
⎡⎢⎢⎣
0.2 0.1 0.2

0.1 0.3 0.1

0.2 0.2 0.2

⎤⎥⎥⎦ , B(2) =
⎡⎢⎢⎣
0.5

1.2

0.8

⎤⎥⎥⎦ ,
E(1) =

⎡⎢⎢⎣
0.2

0.1

0.2

⎤⎥⎥⎦ , E(2) =
⎡⎢⎢⎣
0.3

0.2

0.2

⎤⎥⎥⎦ , D(1) = 0.2, D(2) = 0.4,

C(1) = [1.5 1.0 0.8] , C(2) = [0.5 1.2 0.6] .

Suppose 𝛽 = 0.5 and

f (x(t), t, 1) = f (x(t), t, 2) = 0.5 exp(−t) sin
(√

x2
1
(t) + x2

2
(t) + x2

3
(t)

)
,

(thus 𝜙(1) and 𝜙(2) can be chosen as 𝜙(1) = 𝜙(2) = 0.5), and the exogenous input 𝜔(t) is
given by 𝜔(t) = 1∕(1 + t2).
It is found that the system in (12.1a)–(12.1b)with u(t) = 0 and𝜔(t) = 0 and above parametric

matrices is unstable for a switching signal given in Figure 12.1 (which is generated randomly;

here, ‘1’ and ‘2’ represent the first and second subsystems, respectively). Therefore, our
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0 1 2 3 4 5 6 7 8 9 10

1

2

t/sec

Figure 12.1 Switching signal

aim is to design the SMC law u(t) in (12.38) such that the resulting closed-loop system is

mean-square exponentially stable and strictly (, ,)-𝛿-dissipative for Ta > T∗
a = 0.1 (in

this case, the allowable minimum of 𝜇 is 𝜇min = 1.0513). Firstly, we need to check the stability

and the strict (, ,)-𝛿-dissipativity of the slidingmode dynamics in (12.29a)–(12.29b) with
Ta > T∗

a = 0.1 (that is, set 𝜇 = 1.0513). To this end, we choose ,  ,  , and 𝛿 as  = −1.0,
 = 1.5, = 1.7, and 𝛿 = 0.1, respectively. Solve the conditions (12.32a)–(12.33) in Theorem

12.4.2 according to Remark 12.3 and applying the CCL method, and by (12.34), we have

K(1) = 103 × [−2.1557 1.8405 −2.0972] ,

K(2) = 103 × [3.6247 −3.8879 −6.1889] .

Thus, the switching function defined in (12.25) is given by

s(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s(t, 1) = [2.5025 0.5052 −4.0126] x(t)

−∫
t

0

103 × [−4.9132 −5.0005 −11.3543] x(𝜃)d𝜃, i = 1,

s(t, 2) = [−1.5017 1.5107 2.5025] x(t)

−∫
t

0

103 × [10.3551 −11.3575 −22.6221] x(𝜃)d𝜃, i = 2,
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248 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

and the SMC law designed in (12.38) can be computed as

u(t) =

⎧⎪⎪⎨⎪⎪⎩
u(t, 1) = 103 × [−2.1557 1.8405 −2.0972] x(t)

− (𝜚 + 0.5 ‖x(t)‖ + 0.3083 ‖𝜔(t)‖) sign (s(t, 1)) , i = 1,

u(t, 2) = 103 × [3.6247 −3.8879 −6.1889] x(t)
− (𝜚 + 0.5 ‖x(t)‖ + 0.1216 ‖𝜔(t)‖) sign (s(t, 2)) , i = 2.

To prevent the SMC system from chattering, we replace sign (s(t)) by

s(t)‖s(t)‖ + 0.01
.

Set 𝜚 = 0.5 and the initial condition x(0) = [−1.0 0.5 1.0]
T
. By using the discretization

approach [96], we simulate standard Brownian motion. Some initial parameters are given

as follows: the simulation time t ∈ [0,T∗] with T∗ = 10, the normally distributed variance

𝛿t = T∗

N∗ with N∗ = 211, the step size Δt = 𝜌𝛿t with 𝜌 = 2, and the number of discretized

Brownian paths p = 10. The simulation results are presented in Figures 12.2–12.5. Specifically,

Figures 12.2–12.3 display the simulation results along an individual discretizedBrownian path,

with Figure 12.2 showing the states of the closed-loop system, and the switching function is

given in Figure 12.3. Figures 12.4–12.5 are the simulation results on x(t) and s(t) along 10
individual paths (dotted lines) and the average over 10 paths (solid line), respectively.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

t/sec

Figure 12.2 States of the closed-loop system
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0 1 2 3 4 5 6 7 8 9 10
−0.04

−0.02

0

0.02

0.04

0.06

0.08

t/sec

Figure 12.3 Switching function

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

t/sec

Figure 12.4 Individual paths and the average of the states of the closed-loop system
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0 1 2 3 4 5 6 7 8 9 10
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t/sec

Figure 12.5 Individual paths and the average of the switching function

12.6 Conclusion

In this chapter, the problems of dissipativity analysis and SMC design have been studied

for a class of continuous-time switched stochastic hybrid systems. The average dwell time

approach and the piecewise Lyapunov function technique have been utilized to establish the

LMI-type sufficient condition for guaranteeing the mean-square exponential stability and the

strict dissipativity of the sliding mode dynamics. This was followed by the derivation of

the condition for achieving the dissipativity synthesis. Furthermore, it has been shown that

a discontinuous SMC law can be synthesized to drive the system state trajectories onto the

predefined sliding surface in a finite time. Finally, the developed theory was validated by a

numerical example together with computer simulations.
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Admissible, 37, 44, 51

Adaptive law, 30, 71, 150

Arbitrary switching, 17, 87, 151

Asymptotically stable, 5, 101, 181

Asymptotic stability, 17, 93, 181

Asynchronous switching, 22, 23

Average dwell time, 19, 88, 203

Autonomous system, 4, 142, 216

Balanced truncation, 23

Boundary layer, 11, 12, 26

Bounded L2 gain performance, 51

Brownian motion, 66, 176, 216

Brownian path, 80, 191, 227

CCL, 77, 120, 245

Chattering, 11, 153, 248

Chattering elimination, 11, 12

Closed-loop system, 102, 109, 209

Common quadratic Lyapunov function, 17

Cone complementary linearization, 26

Congruence transformation, 45, 103, 182

Continuous-time, 88, 141, 175

Control input, 36, 66, 95

Controlled output, 50, 108, 234

Controllable, 4, 36, 160

Controllability, 20

CQLF, 17, 18, 19

Delay-dependent, 13, 55, 92

Delay-independent, 13, 14

Delay partitioning, 13, 30, 159

Discontinuous control, 9, 11, 12

Descriptor system, 13

Discrete-time, 95, 160, 198

Discretization, 11, 80, 191

Dissipative, 15, 235

Dissipativity, 25, 235

Dissipativity-based SMC, 15, 31, 233

Disturbance attenuation, 19, 49, 65

Disturbances, 8, 49

DOF, 15, 108, 186

Dwell time, 19, 88, 187

Dynamic output feedback, 15, 27

Eigenvalue allocation, 4, 6

Equivalent control, 8, 42, 217

Estimation, 35, 215

Exponentially stable, 88, 109, 161

Fault detection, 23

Fault-tolerant control, 23

Feedback control, 15, 103, 185

Feedback gain, 4, 6

Filter, 15, 22

Filtering, 22, 24, 175

Finite time, 22, 40, 219

Full column rank, 3, 36, 66

Full-order, 28, 49, 118

Guaranteed cost, 29, 124
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H∞ filtering, 22, 24

H∞ performance, 56, 182

H2 filtering, 22

Hankel-norm, 23

High-order, 7, 233
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Incompletely modeled, 1

Initial condition, 7, 52, 109

Impulse free, 36, 51

Input-output method, 13

Integral SMC, 14, 67, 71

Integral sliding surface, 6, 65, 233

Integral switching function, 6, 40, 67

Kalman filter, 22, 24

Krylov projection, 23

L2 - L∞, 22, 29, 108

L2 - L∞ control, 29

L2 - L∞ filtering, 22

Less conservativeness, 13, 87

Linear-quadratic regulator, 4

Linear sliding surface, 3, 35, 141

Linear switching function, 30, 157, 159

Linear time-invariant, 3

Linearizing variable transforms, 29, 107

LMIs, 68, 126, 186

LMI Toolbox, 17, 169, 244

LTI, 3, 17, 24

Lyapunov approach, 5

Lyapunov function, 9, 17, 52

Lyapunov-like function, 19, 20

Markov chain, 23

Markov process, 36

Markovian jump linear systems, 23

Markovian jump singular systems, 24–28

Markovian jump singular time-delay systems, 25,

28

Markovian jump systems, 15, 24, 26

Matlab, 17, 244

Matching condition, 13, 72

Matrix equality constraints, 28, 30

Matrix inequality, 204

Mean-square exponential stability, 177, 199, 206,

216

MIMO, 7, 15

Minimization problem, 77, 120, 146, 244

Mismatched, 6, 13–15

Mixed H2/H∞, 22

MJLS, 23–25

MLF, 19, 20

Mode-dependent, 15, 18, 24, 30

Model reduction, 23, 25, 28

Model transformation, 3, 55, 92

Multiple-input multiple-output, 7

Multiple Lyapunov functions, 19

Necessary and sufficient, 37, 40

Neutral delay, 14, 124

Nonconvex, 77, 120

Nonlinear systems, 1, 17

Nonlinearities, 24, 25

Nonsingular, 3

Norm-bounded, 15, 142

Observability, 20

Observer, 14, 40, 220

Observer-based SMC, 14, 40, 220

Optimal control, 22

Optimal performance, 25

Output feedback, 15, 22, 189

Padé reduction, 23

Parameter-switching, 14, 16, 26–28

Parameter-switching hybrid systems, 14, 16, 26

Parameter-switching systems, 23

Parametrization, 29–31, 218

Passivity, 22, 236

Performance analysis, 51, 56, 71, 182

Piecewise Lyapunov function, 19, 89

Positive definite, 5

Positive realness, 236

Reachability, 2, 8, 9

Reaching condition, 2, 8, 10

Reaching law, 9, 10, 12

Reaching motion, 231

Reaching phase, 2, 8, 10

Reduced-order, 3, 4, 8

Regular form, 3, 143, 161

Robust control, 1, 13, 22

Robust filtering, 22

Robustness, 6, 11–13

Saturation, 11

Schur complement, 39

Single-input single-output, 7

Singular matrix, 28, 143, 160

Singular systems, 24–28, 40

SISO, 7

Slack matrix approach, 13, 26–29

Sliding mode, 1

Sliding mode control, 1, 15, 241
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Sliding mode controller, 2, 7, 15

Sliding mode dynamics, 3, 4, 6, 8, 42

Sliding mode observer, 14, 220

Sliding surface, 1–6

SMC, 1

SMC law, 40, 56, 242

SOF, 15

Solvability conditions, 29, 31

SQLF, 18, 19

Stability analysis, 37, 177, 199

Stability condition, 13, 89, 222

Stabilizable, 5, 102, 205

Stabilization, 24, 102, 199

State estimation, 40, 220, 222

State feedback, 4, 103, 185

State feedback control, 4, 177, 185

State trajectories, 2

Static output feedback, 15

Stochastic admissibility, 37, 42

Stochastic perturbation, 65

Stochastic stability, 28, 37, 68

Stochastic stabilizability, 24

Stochastic systems, 14, 66, 71

Stochastically admissible, 37, 44, 51

Stochastically stable, 37, 51, 66

Strict LMI, 37, 68, 146

Subsystems, 16–19, 88

Sufficient condition, 37, 44, 74, 96, 126

Supply rate, 31, 235, 236

Switched delayed hybrid systems, 25, 30

Switched quadratic Lyapunov functions, 18

Switched hybrid systems, 16, 88

Switched state-delayed hybrid systems, 88, 108,

116

Switched stochastic hybrid systems, 176, 215, 234

Switched stochastic systems, 15, 25, 31

Switching function, 40, 144, 166

Switching rule, 16

Switching signal, 16, 19, 88

Symmetric, 17, 18

Synthesis, 20, 56, 243

System state, 3, 12, 15

Terminal sliding surface, 6, 7, 26

Terminal SMC, 6, 7

Terminal switching function, 7

Time-delay, 13, 25, 55

Time-delay systems, 13, 25, 55

Time-varying, 88, 94, 160

Time-varying delay, 88, 160, 198

Tracking control, 22

Transient performance, 12, 31

Transition probability, 36

Two-dimensional, 24

Uncertain parameter-switching hybrid systems,
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Uncertain systems, 6, 13, 26

Uncertain transition probabilities, 24

Uncertainties, 6, 13, 14
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