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PREFACE

The manufacturing industry has changed drastically from the traditional industry,

like steel and auto factory, to the semiconductor or IC industry of the 1980s, and

to the internet-based global manufacturing nowadays. Advanced manufacturing in-

volves the use of technology to improve products and/or processes, with the relevant

technology being described as “advanced,” “innovative,” or “cutting edge.” The dis-

tinctions between traditional manufacturing and advanced manufacturing are in terms

of volume and scale economies, labor and skill content, and the depth and diversity

of the network surrounding the industry, and intelligence added in the system. No

matter how complex or advanced the manufacturing operation is, it always consists

of basic actions offered by basic systems that can be categorized as static systems,

dynamic systems, and their combination. Performance of each basic system will be

crucial to the overall performance of the manufacturing.

In order to design and manufacture these high quality products at lower costs,

accurate mechanical systems are crucial in the manufacturing industry. One problem

is inconsistent performance caused by uncontrollable variations in manufacturing op-

erations, material properties, and complex operating environments. This inconsistent

performance often results in a failure in operation. Thus, robust performance, insensi-

tive to all possible changes in demand, model uncertainties, and external disturbance,

is one of the most important concerns in the design and control of these systems.

Robust design and its integration with control are the most important methods

commonly used to achieve robust performance of the system. The studies of robust

design and its integration with control are becoming increasingly important. In the

last few decades, there have been many studies on robust design and its integration

with control. There are still many unsolved problems. The purpose of this book is to

provide a brief view of the previous work on robust design and its integration with

xi
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xii PREFACE

control, and develop new design and integration methods to tackle some of these

unsolved problems.

In this book, a systematic overview and classification is first presented on robust

analysis/design for static and dynamic systems, and the integration of design and

control. Limitations and advantages of various approaches are also discussed. Next,

three novel robust design approaches are proposed for design of the static system: the

variable sensitivity based robust design approach for small-scale parameter variation,

the multi-domain modeling-based robust design for large-scale parameter variation,

and the hybrid model/data-based robust design for both parameter variation and model

uncertainty. Then, the robust eigenvalue design methods are developed to maintain

both stability and robustness of the dynamic system under parameter variation and

model uncertainty. Finally, two novel methods are proposed for integrating design

and control for the hybrid system under parameter uncertainty. One method is for

the dynamic system with hybrid discrete/continuous variables. An easily controlled

dynamic behavior will first be obtained through the process design, and then integrated

with control under the robust pole assignment. Another method is for the hybrid

system working in a large region with an unmeasured overall performance. A low

level process control will be integrated with high level system design with the help of

fuzzy modeling method, and optimized with the particle swarm optimization (PSO)

method. All the methods presented in this book have been successfully applied to the

design of some mechanical equipment and the curing process in IC packaging, and

are applicable to a wide range of systems in the manufacturing industry.

The book will be of great benefit to undergraduate and postgraduate students

in many disciplines, including manufacturing engineering, mechanical engineering,

electrical engineering, and control engineering. The book is also intended for re-

searchers, research students and application engineers interested in robust design and

its integration with control.

Han-Xiong Li

City University of Hong Kong
Central South University

XinJiang Lu

Central South University
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PART I

BACKGROUND AND FUNDAMENTALS
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CHAPTER 1

INTRODUCTION

This chapter is an introduction of the book. It briefly introduces background,

motivation, and objectives of the research, followed by the contribution and

organization of the book.

1.1 BACKGROUND AND MOTIVATION

Since we moved into the Industrial Age, most of the products used have been manu-

factured by machines and production lines. The manufacturing industry has changed

much from the traditional sector, like steel and auto factory, to the semiconductor or

IC industry in 1980s, and to the internet-based global manufacturing nowadays. Ad-

vanced manufacturing uses the so-called “advanced,” “innovative,” or “cutting-edge”

technology to improve products and/or processes. The distinctions between tradi-

tional sectors of manufacturing and advanced manufacturing are in terms of volume

and scale economies, labor and skill content, and intelligence added in the system.

In modern IC industry, the higher speed, the higher precision, and the higher

intelligence have become common requirements to many of the processes involved,

for example, epoxy/silicone dispensing (Li et al., 2007), curing process (Li, Deng, and

Zhong, 2004; Deng, Li, and Chen, 2005), bonding/wiring process (Li and Zuo, 1999),

and so on. Even in a traditional industry, like the forging press machine (Lu, Li, and

Chen, 2012), the machine will seek help from an intelligence unit for meeting quality

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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4 INTRODUCTION

and economic constraints. Modern information technology can make a traditional

system more advanced.

No matter how complex or advanced the manufacturing operation is, it always

consists of basic actions offered by basic systems. These basic systems could be

classified into the following three different categories.

� The static system. The performance is invariant over time, so it is discrete.
� The dynamic system. The performance is varying over time, so it is continuous.
� The hybrid system. It is a combination of the above two, which forms a hybrid

system with discrete/continuous parameters, or a hybrid discrete/continuous

system.

Design for advanced manufacturing is actually centered on the design and control

of these basic systems, as the performance of every basic system is crucial to the

overall performance of the manufacturing.

Since advanced manufacturing usually involves more complex system configura-

tion and more advanced technologies, it will require a higher quality design of each

basic system involved in the operation. However, unavoidable external variations in

manufacturing operations, material properties, and a complex operating environment

will result in an inconsistent performance of the system, which will be a big challenge

to design for manufacturing. If these variations are not properly considered in product

design, the degraded performance may result in a failure in operation (Caro, Bennis,

and Wenger, 2005). Thus, robust performance, insensitive to all possible changes in

demand, model uncertainties, and external disturbance, is one of the most important

concerns in the design of any system.

In system design, robust design is the most important method commonly used to

achieve robust performance. Its fundamental principle is minimizing the sensitivity of

the performance to uncontrollable variations. Most of these approaches are for static

systems, a few for dynamic systems. Furthermore, design and control are always

separated in both academic research and industrial applications, which leads to few

effective methods for the hybrid system.

The principal goal in this book is to develop effective design methods for funda-

mental systems existing in advanced manufacturing, including

1. novel robust design methods for both static and dynamic systems; and

2. robust design and control integration methods for the hybrid discrete/continuous

system.

Though these methods are studied for basic systems in this book, they should be

easily applied to any advanced manufacturing or production.

There are three different sets of variables that will appear in robust design.

� Design variable (or control variable). This is the controllable variable with its

nominal value to be designed ideally between the upper and lower bounds. The

variations around its nominal value are usually caused by poor manufacturing.
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BACKGROUND AND MOTIVATION 5

� Uncertainty. This usually includes parameter variation, noise, and model un-

certainty. It cannot be adjusted by the designer, and thus is uncontrollable.
� Performance. This is the objective of the design and depends on the system

model, design variable, and uncertainty.

Based on the above definition, we will introduce and discuss robust design and

control integration in the rest of the chapter.

1.1.1 Robust Design for Static Systems

Robust design for the static system minimizes the influence of uncertainty on steady-

state performance. Two typical robust design examples of the static system are intro-

duced in Examples 1.1 and 1.2.

Example 1.1: Nonlinear system The damper structure widely exists in manufac-

turing industry and can be simplified as in Figure 1.1 (Caro, Bennis, and Wenger,

2005), where M and Cd are mass of the moving part and damping coefficient in the

chamber, respectively. The excitation force F(t) is assumed to be F cos(𝜔⋅t). The

displacement will be X(t) = X cos(𝜔 ⋅ t + 𝜙), where 𝜙 is the phase.

The performances X and 𝜙 can be expressed as follows:

X = F

𝜔
√

C2
d + 𝜔

2M2

, 𝜙 = tan−1

(
𝜔M
Cd

)
(1.1)

The objective is to keep the displacement and the phase at desirable values un-

der the given excitation force. Due to manufacturing error, variations coming from

fluid properties and the operating environment, there are large uncontrollable varia-

tions from the design variable M as well as the model parameter Cd in this system.

Thus, this nonlinear system should be designed to be robust to these uncontrollable

variations.

Cd

M

F(t)

X(t)

FIGURE 1.1 Damper
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6 INTRODUCTION

D P
ω

L

W F

FIGURE 1.2 A pneumatic cylinder

Example 1.2: Partially unknown system The pneumatic cylinder, widely existing

in manufacturing industry, is used to move a load of weight W along a horizontal

surface, as shown in Figure 1.2. There exists the friction force F between the load and

the surface, and the unknown disturbance force w is caused by other uncertain factors,

such as leakage. The load is accelerated within a distance L to attain a steady-state

velocity V. If the supply pressure is P, the actuator size D will be designed for a

robust performance.

The performance V may be expressed as the sum of the known nominal model f
and the model uncertainty Δf

V = f + Δf (1.2)

with f =
√

gL(𝜋D2P−4F)

2W
, Δf =

√
gL
2W

(√
𝜋D2P − 4(F + w) −

√
𝜋D2P − 4F

)
.

The nominal model f is derived from the force balance in the absence of the distur-

bance force w. The model uncertainty Δf is caused by unknown disturbance force w,

and thus it, including its structure, is unknown as a black box to designers. For a desir-

able performance, a robust design is needed to properly handle all these uncertainties

coming from the design variable D and the parameters W and F in the system.

In past decades, much effort has been dedicated to robust design of the static sys-

tem. Design on this aspect can be classified into two main categories: the experiment-

based robust design and the model-based robust design.

The experiment-based methods, as indicated in Figure 1.3a, design system ro-

bustness using experimental data. These methods have the advantage that no accurate

system model is required. Typical examples include the Taguchi method (Ross, 1988;

Taguchi, 1987, 1993) and the response surface method (Box, 1988; Tsui, 1992; Engel

and Huele, 1996; Choi, 2005). All these methods are developed generally based on

experiment data without process knowledge. Thus, the cost could be high if a large

number of experiments are needed, and the method may not be accurate, especially

for the strongly nonlinear system. Moreover, they cannot handle variations of design

variables (Chen et al., 1996a). All these disadvantages may limit their applications

and make it difficult to be applied for the nonlinear system described in Exam-

ple 1.1, or the partially known system with variations of design variables described

in Example 1.2.

The second class of methods is the model-based robust design, as shown in

Figure 1.3b, which uses the model information to design the system robustness.
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BACKGROUND AND MOTIVATION 7

(a)

(b)

Data

Performance

Design

variables 

Parameter variations/ noise

System 

Robust design 

Performance 

Design

variables 

Parameter variations/ noise 

System 

Model 

Robust design 

FIGURE 1.3 Traditional static robust designs: (a) experiment-based robust designs; (b)

model-based robust designs

These kinds of methods are low cost and have high design accuracy compared with

the experiment-based methods. In past decades, much effort has been dedicated to

this class of robust design, which can be divided into two categories (Li, Azarm,

and Boyars, 2006): probabilistic robust design approaches and deterministic robust

design approaches.

The probabilistic robust design approaches use probabilistic information of vari-

ables, usually their mean and variance, to minimize the sensitivities of the perfor-

mance (Li, Azarm, and Boyars, 2006). There are many authors that have contributed to

the probabilistic approaches (e.g., Chen et al., 1996a, 2000; Al-Widyan and Angeles,

2005; Kalsi, Hacker, and Lewis, 2001; Yu and Ishii, 1998). The main shortcoming

of the probabilistic approaches is that probability distributions must be known or

presumed. Accurate knowledge of the distributions may be difficult to obtain and the

presumed distributions may not be correct (Li, Azarm, and Boyars, 2006).

The deterministic robust design methods use a worst-case scenario approach to

minimize the sensitivity. The robust design solutions are obtained using gradient in-

formation of variables, usually the Euclidean norm method and the condition number
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8 INTRODUCTION

method (e.g., Ting and Long, 1996; Zhu and Ting, 2001; Caro, Bennis, and Wenger,

2005; Beyer and Sendhoff, 2007), to improve the system sensitivity. However, this

gradient information may not be easy to obtain in practice.

In general, the model-based robust designs have the following limitations.

� They are mainly based on the approximate first- or second-order model derived

by local linearization for the sake of simplicity and easy design. When the

system is strongly nonlinear with larger uncontrollable variations, similar to

Example 1.1, larger approximation errors may arise and make the design less

effective.
� Ideally, the model-based design only works when the system model is avail-

able. Practically, an accurate model is often difficult to obtain due to complex

boundary conditions, complexity of the process, or incomplete knowledge of

the system. Thus, a realistic solution is to use the nominal model of the system,

which is often built by assumption, idealization, and simplicity. This approx-

imation will result in model uncertainty, like Δf in Example 1.2. This model

uncertainty is usually neglected in the existing design, which makes the model-

based approaches less effective because the ignored uncertainty will affect

system performance.

Thus, it is very necessary to develop some new methods to

� design the strongly nonlinear system to be robust to larger uncontrollable vari-

ations; and
� design a system to be insensitive to model uncertainty as well as variations from

parameters and design variables.

1.1.2 Robust Design for Dynamic Systems

Many manufacturing systems often work under open loop, without any external

control, due to some physical and economic constraints. The dynamic performance

of such systems fully depends on their own design. In contrast with the design of

static systems, robust design for dynamic systems must consider dynamic properties.

A typical example is as follows.

Example 1.3: Dynamic system The rotor system is another basic system used in

manufacturing industry. It is depicted in Figure 1.4, where a shaft carries a single disk

and rotates at constant velocity Ω. Since the rotating elements are symmetrical with

respect to the rotor axis and the bearings are isotropic, this system is a nonconservative

system (Seyranian and Kliem, 2003; Kliem, Pommer, and Stoustrup, 1998). For

simplicity, the shaft is assumed massless with the elastic coefficient k > 0, a single

disk has mass m with the external damping de and the internal damping di, and a

bearing has mass mb with the damping db and the elasticity kb.
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BACKGROUND AND MOTIVATION 9

mb/2

kb/2

de

kb/2

db/2

db/2

k, di

m

Ω

FIGURE 1.4 Physical model of a rotor system

The motion equation of the moving disk can be derived as

Mq̈ + Dq̇ + Rq + Δf = 0 (1.3)

with

M =
⎡⎢⎢⎢⎣

m 0 0 0

0 mb 0 0

0 0 m 0

0 0 0 mb

⎤⎥⎥⎥⎦ , D =
⎡⎢⎢⎢⎣

de + di −di 0 0

−di db + di 0 0

0 0 de + di −di

0 0 −di db + di

⎤⎥⎥⎥⎦ ,

R=
⎡⎢⎢⎢⎣

k −k diΩ −diΩ
−k k + kb −diΩ diΩ

−diΩ diΩ k −k
diΩ −diΩ −k k + kb

⎤⎥⎥⎥⎦Δf =−M

⎡⎢⎢⎢⎣
0.01 sin(p) 0 0 0

0 0.01 cos(p) 0 0

0 0 0.005 0

0 0 0 0.005

⎤⎥⎥⎥⎦ q̇

where the parameter p has external uncertainty Δp at its nominal value p0. The model

uncertaintyΔf is usually caused by unknown resistance forces. The model uncertainty

is unknown and is a black box to designers.

Let

x =
[

q̇
q

]
, ΔA = −M−1 𝜕Δf

𝜕x
||x=0 =

[
ΔA11 04×4

04×4 04×4

]
,

ΔA11 =
⎡⎢⎢⎢⎣

0.01 sin(p) 0 0 0

0 0.01 cos(p) 0 0

0 0 0.005 0

0 0 0 0.005

⎤⎥⎥⎥⎦
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10 INTRODUCTION

Since Δf and ΔA are unknown, the state–space equation for the rotor system is

ẋ = Ax (1.4)

with the Jacobian matrix A = A0 + ΔA and the nominal matrix A0 =[
−M−1D −M−1R

I4×4 04×4

]
.

The objective of the design is to determine design variables m and mb to make the

dynamic system stable and robust to the model uncertainty Δf and variations from

parameter and design variables.

It is well known that the dynamic behavior of the engineering system, such as its

stability, is closely related to the eigenvalues of the Jacobian matrix A. There are many

studies to explicitly consider the dynamic stability using eigenvalue theory (Blanco

and Bandoni, 2003; Kliem, Pommer, and Stoustrup, 1998; Mohideen, Perkins, and

Pistikopoulos, 1997; Kokossis and Floudas, 1994). However, all these methods only

make the real part of all eigenvalues smaller than zero, without consideration of influ-

ence from uncontrollable variations. Thus, the following problems need to be solved.

� All previous studies require the exact process model to be known without

considering the influence of model uncertainty. Thus, they are difficult to apply

to the partially unknown system in Example 1.3.
� Even if the process model is fully known, eigenvalue variation should be consid-

ered. Otherwise, the transient response may deviate from the desirable response

(Liu and Patton, 1998). A robust transient response can only be achieved when

all eigenvalue variations caused by parameter variations are small (El-Kady and

Al-Ohaly, 1997). Thus, for guaranteed system stability, the eigenvalue varia-

tions should be minimal for the robust dynamic performance. Unfortunately,

little attention has been paid to variations of the eigenvalues.

Thus, new design approaches should be developed not only to stabilize the system

but also to minimize influence from parameter variations and model uncertainty.

1.1.3 Integration of Design and Control

As the manufacturing becomes more complex for higher quality, it becomes more

difficult for traditional design and control to achieve the goal due to the hybrid nature

of the process. The integration of system design and control might be needed, which

is shown in the curing process in Example 1.4.

Example 1.4: Design and control of curing process The curing oven is a very

important process in semiconductor packaging industry to provide a desirable tem-

perature profile for curing epoxy resin and encapsulation molding compound that

are distributed onto electronic components (Hisung and Pearson, 1997). The key

requirement for high quality packaging is to maintain the uniform temperature for
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BACKGROUND AND MOTIVATION 11
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FIGURE 1.5 The studied curing system

the whole cured object and control it to follow the required temperature trajectory

during the operation (Li, Deng, and Zhong, 2004).

As shown in Figure 1.5, a curing oven has a motion mechanism inside the chamber,

which moves a working plate up and down to adjust the curing temperature for the IC

placed on the lead frame (LF). A separate control system is also required to control

the power of the heaters that are embedded in the heater block.

The finite difference method, a common modeling method for complex thermal

processes, is used to model the curing process. The two-dimensional surface of the

lead frame is discretized into many small zones by uniform intervals Δx and Δy,

as shown in Figure 1.6. The coordinate of the zone (i, j) is (xi, yj, 0). Each zone is

assumed to have a uniform temperature, heat flux, and radiative property. Since the

lead frame is thin enough, axial thermal gradient may be neglected.

z

Δy

Δx

Sx

Sy 

(i+1, j) 

(i−1, j)

(i, j−1) (i, j+1)(i, j)

Heater block 

Lead frame

H

x

y

l 

b

θ

FIGURE 1.6 Geometric explanation
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12 INTRODUCTION

The heat transfer model of every zone may be described as

mi,jc
dTi,j(t)

dt
= qd

i,j + qr
i,j + qc

i,j + qwall
i,j + qdist

i,j (i = 1,… , n; j = 1,… , p) (1.5)

where

Ti,j(t) the temperature of the (i, j) zone at time t;
c and mi,j the specific heat coefficient and mass of the (i, j) zone,

respectively;

qd
i,j, qr

i,j, and qc
i,j heat flow rates coming into the (i, j) zone via conduction,

radiation from heater block and convection from air,

respectively; and

qwall
i,j and qdist

i,j unknown heat from the chamber wall and disturbance

respectively.

According to Fourier’s rule of heat conduction, heat conduction across a surface

is expressed as

qd
i,j = kSx

(Ti+1,j(t) + Ti−1,j(t) − 2Ti,j(t)

Δx

)
+ kSy

(Ti,j+1(t) + Ti,j−1(t) − 2Ti,j(t)

Δy

)
(1.6)

where k denotes thermal conductivity, and Sx and Sy are the cross-sectional area of

every zone, as shown in Figure 1.6.

The radiative heat of a zone is

qr
i,j = 𝜀Si,j

{
Fi,j(d)u(t) − 𝜎T4

i,j(t)
}

(1.7)

where

𝜀 and 𝜎 the emissivity of the lead frame and Boltzmann constant,

respectively;

U the control variable that offers power to heaters; and

Fi,j(d) the view factor from the (i, j) zone to the heater block; it is a

function of design variables d = [𝜃, l, b, H], where 𝜃, l, b are curve

angle, length, and breadth of the heater block, respectively, and H is

distance between the LF and the heater block as shown in

Figure 1.6.

Since the heat convection has a small effect compared with the other heat flux, it

can be regarded as a disturbance. Define

ŵi,j(t) =
1

mi,jc

(
qc

i,j + qwall
i,j + qdist

i,j

)
(1.8)
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BACKGROUND AND MOTIVATION 13

Inserting Equations 1.6, 1.7, and 1.8 into Equation 1.5, the heat transfer model

(Equation 1.5) may be rewritten as

dTi,j(t)

dt
=

kSx

mi,jc

(Ti+1,j(t) + Ti−1,j(t) − 2Ti,j(t)

Δx

)
+

kSy

mi,jc

(Ti,j+1(t) + Ti,j−1(t) − 2Ti,j(t)

Δy

)
+
𝜀Si,j

mi,jc

{
Fi,j(d)u(t) − 𝜎T4

i,j(t)
}
+ŵi,j(t)

(1.9)

Obviously, the model (Equation 1.9) has strong nonlinearity and model uncertainty.

Moreover, this curing process must work over a large operating region (temperature

range: 20–200◦C) to track the required temperature profile.

Notwithstanding the complex dynamics of the process described above, the quality

of production requires a uniform temperature distribution on the whole LF. The re-

quired overall performance cannot be measured directly in production due to limited

sensors used and the extra difficulty of both design and control. A joint optimiza-

tion of the design variables and the controller might be needed for such a difficult

task.

The traditional approach used for such a kind of task is the sequential method.

In the sequential method, design and control are optimized separately, that is, design

first then control. Design usually deals with the steady-state performance, such as

economic optimality, while control deals with the transient dynamics (Sandoval,

Budman, and Douglas, 2008). Thus, the sequential method often causes a poor

dynamic performance since it is difficult to obtain an easily controlled process

(Georgiadis et al., 2002; Meeuse and Tousain, 2002; Chawankul, 2005).

The integration of design and control can be developed to overcome the weakness

of the sequential method, which is an important topic in the process industry. This

integration method aims to optimize design and control simultaneously to obtain

the desired performance for both design and control (Lewin, 1999; Chawankul,

Budman, and Douglas, 2005). The major advantage is that system tasks, including

the control task and the design task, can be shared rationally between off-line design

and online control, and thus, it could be easier to obtain satisfactory design/control

performance. Many integration methods have been studied in the recent decades

(Mohideen, Perkins, and Pistikopoulos, 1996, 1997; Bansal et al., 2000a and 2000b;

Georgiadis et al., 2002; Chawankul, 2005; Meeuse and Tousain, 2002; Lear, Barton,

and Perkins, 1995; Swartz, 2004). However, there is still a long way to go due to the

following unsolved problems.

� For easy integration and simplification of the controller design, a simple linear

nominal model is usually used to approximate the process. This approximation

is effective for a weakly nonlinear process around the operating point. However,
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14 INTRODUCTION

when the strongly nonlinear process is working in a large operating region, such

as Example 1.4, the large approximation error generated will make it difficult

to achieve satisfactory performance.
� Little progress is achieved in the design for control, namely to obtain an eas-

ily controllable dynamic behavior through process design, before the external

control is applied. If control aspects are not considered early in the design

process, some complex systems may be rendered difficult to control. A good

performance is always a proper balance between design and control aspects.

In general, new integration methods should be developed to overcome the above

weaknesses of existing methods.

1.2 OBJECTIVES OF THE BOOK

Based on the analysis of the Section 1.1, the following major objectives are addressed

in this book.

1. To develop novel approaches for the robust design of strongly nonlinear systems

with large parameter variations and for minimizing the influence of model

uncertainty and variations from design variables and model parameters.

2. To consider the dynamic performance, for example, stability and robustness,

in system design under model uncertainty and variations from parameters and

design variables.

3. To study new methods of integrated design and control, particularly design for

control, for the hybrid system, enabling satisfactory performance over a large

operating region.

4. To illustrate the application of the presented methods to selected equipment

and process in either traditional industry or the modern IC industry.

In support of the above objectives, specific topics discussed in the book include

� a systematic overview and classification on robust analysis/design and the inte-

gration of design and control;
� development of robust static design approaches, respectively, for partially un-

known systems or nonlinear systems under large parameter variations;
� development of robust dynamic design approaches for both stability and robust-

ness of dynamic processes under parameter variations and model uncertainty;
� development of integrated design and control methods for the hybrid system

working in a large operating region.

An attractive feature of this book is that several of the same examples are revisited

in different chapters, with variations and enhancements. This will help readers to

understand the property of different design methods and approaches.
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CONTRIBUTION AND ORGANIZATION OF THE BOOK 15

1.3 CONTRIBUTION AND ORGANIZATION OF THE BOOK

The research fields of this book are depicted in Figure 1.7. The contributions of

the book are in three main aspects: robust design for static/dynamic systems and

integration of design and control. These actually contribute to the fundamentals of

design for advanced manufacturing.

� First, for the static system related to the problems described in Section 1.1.1,

three novel robust design approaches will be proposed: the variable sensitivity-

based robust design approach for the nonlinear system (Chapter 3), the multi-

domain modeling-based robust design for large parameter variation (Chapter 4),

and the hybrid model/data-based robust design for both parameter variation and

model uncertainty (Chapter 5).
� Second, for the dynamic system related to the problems described in Section

1.1.2, the robust eigenvalue design methods will be developed that allow both

stability and robustness of the dynamic system to be maintained under parameter

variations (linear system or weakly nonlinear system in Chapter 6, and nonlinear

system in Chapter 7) and model uncertainty (Chapter 8).
� Finally, for the integration problem described in Section 1.1.3, two novel meth-

ods are proposed for integrating design and control for hybrid systems:

1. An easily controlled dynamic behavior is first designed under parameter

uncertainty, and then integrated with the process control through the robust

pole assignment (Chapter 9).

2. The nonlinear process is modeled with the fuzzy system to work over a

large operating region, upon which design and control are integrated for

overall performance and optimized with the particle swarm optimization

(PSO) method (Chapter 10).

This book presents several newly developed methods for robust design and meth-

ods for integrated design and control. The book is organized as shown in Figure 1.8,

where topics of chapters and their interconnection are provided for easy understand-

ing. The contents of each chapter will also be summarized below for readers to have

a quick knowledge of the whole book.

Control 
System design

(Robust design) 
Integrated

design/control 

FIGURE 1.7 Research fields covered
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16 INTRODUCTION
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FIGURE 1.8 Organization of the book

In Chapter 2, a systematic overview and classification is presented. The char-

acterization and quantification of uncertainty, robust analysis/design for static and

dynamic systems, and the integration of design and control are briefly discussed.

Various approaches are reviewed and classified with their limitations and advan-

tages summarized for comparison. This brief overview motivates us to develop new

methods for robust design and integrated design/control.

In Chapter 3, variable sensitivity based deterministic and probabilistic robust

design approaches are presented for nonlinear systems (Lu, Li, and Chen, 2010;

Lu and Li, 2012). A nonlinear system is first formulated using a linear structure.

This linear structure will be easy to handle using well-developed robust design

methods. A variable sensitivity matrix will be derived for this linear structure when

the nonlinearity of the system is considered. Then, the bounds of both the variable

sensitivity matrix and its singular values are calculated in a larger design region.

Finally, with the variable sensitivity information incorporated, two different robust

designs, one of deterministic nature and another of probabilistic nature, are developed

to minimize the influence of parameter variation on the original nonlinear system.

Since the proposed robust designs consider the influence of the nonlinearity, they can

obtain robust performance of the nonlinear system despite uncontrollable variations.

In Chapter 4, a multi-domain modeling-based robust design approach is presented

for designing a nonlinear system to be robust under large parameter variations (Lu

and Huang, 2013a). Initially, a multi-domain modeling approach is used to model the

nonlinear system. The model obtained has a linear structure that is easy to handle using

well-developed robust design methods. Then, a robust design method is proposed to

minimize the influence of large parameter variations on the performance. Since this

approach integrates the merits of both the multi-domain modeling method and the
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CONTRIBUTION AND ORGANIZATION OF THE BOOK 17

robust design method to handle the influence of the system nonlinearity as well as

large parameter variations, it can effectively ensure robustness of the nonlinear system

even if large parameter variations exist.

In Chapter 5, two novel robust design approaches are proposed to improve the

system robustness against parameter variations as well as model uncertainty (Lu and

Li, 2009b; Lu, Li, and Chen, 2012). The system is first formulated as a linear structure

that will be easy to handle by well-developed robust design theories. Its sensitivity

matrix incorporates all model uncertainties and nonlinearities. Then, model bounds

are estimated from data. Modeling the bound of model uncertainty is easier than

modeling the model uncertainty itself. On this basis, the two model-based robust

design methods, one deterministic and the other probabilistic, can be easily developed

to minimize the influence of parameter variations on performance.

In Chapter 6, two novel robust eigenvalue design approaches are proposed to

design the system to be stable and robust under parameter variations (Lu and Li,

2009a). When a linear or weakly nonlinear system has small parameter variations,

a linearization model can effectively approximate the system. In this case, stability

theory is first applied to obtain a set of design variables and their variation bounds.

The system will be stable when design variables stay within these bounds. Then, the

robust eigenvalue design is developed to make the dynamic response less sensitive

to variations. Furthermore, the tolerance space of the obtained robust design will

be maximized to meet the specified performance requirement for dynamic response.

When the system has large parameter variations, a multi-model approach is initially

developed to formulate the nonlinear relation between dynamic performance and

model parameters. A stability design is then developed to guarantee the stability

of the dynamic system under large uncontrollable variations. Moreover, a robust

design is proposed to achieve the dynamic robustness. Finally, several examples will

demonstrate and confirm the effectiveness of the proposed methods.

In Chapter 7, a novel sector nonlinearity (SN) based robust design approach is

proposed to design a nonlinear system to be stable and robust. A system can be

strongly nonlinear for large parameter variations, and thus difficult for traditional

methods to handle. The SN method is first employed to model a nonlinear system.

A stability design is then developed to ensure the nonlinear system’s stability in a

desirable domain under variations. Furthermore, dynamic robustness will be achieved

by minimizing the sensitivity of the system eigenvalues to parameter variations. This

two-loop optimization method could ensure a nonlinear dynamic system has stability

and dynamic robustness under large uncontrollable parameter variation.

In Chapter 8, a novel robust design approach is proposed for stability and robust-

ness of the nonlinear system under model uncertainty (Lu and Li, 2011). First, stability

theory and perturbation theory are used to guarantee system stability under model un-

certainty. Then, a new robust design is developed to make the dynamic response less

sensitive to model uncertainty using matrix perturbation theory. Finally, the tolerance

space of the designed variables can be maximized when there are model uncer-

tainties and performance constraints. Thus, the proposed robust design can design

the system to have the desired stability and robustness under model uncertainty and

variations of design variables.
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18 INTRODUCTION

In Chapter 9, a novel method is proposed for integrated design/control of a non-

linear system with hybrid discrete/continuous variables. The controller design is

simplified under the robust pole placement (Lu and Huang, 2013b). The key idea

in this method is to obtain an easily controlled dynamic behavior through process

design, and then integrate the merits of both design and control to ensure robust pole

placement under parameter uncertainty. First, a design-for-control approach is devel-

oped to make the system controllable and have a good linear approximation. This

can effectively reduce the system nonlinearity so that the system designed is easy to

control. Then, a novel approach for integrated robust design and control is proposed

to guarantee the stability as well as robust pole placement, which can effectively

ensure satisfactory dynamic performance under parameter uncertainty.

In Chapter 10, a novel integration of design and control is proposed for the

manufacturing system to work in a large operating region with the unmeasured

ultimate performance (Lu, Li, Duan, and Sun, 2010; Lu, Li, and Yuan, 2010). The

fuzzy modeling method is first employed to approximate the process, upon which

fuzzy control rules are developed to achieve stability and robustness. Then, the

process design and the control system design are integrated into a unified objective

function to consider the global economic performance (high level) as well as the local

dynamic performance (low level). Finally, a PSO-based global optimization method

is developed to find the solution of this complex integration problem.

Chapter 11 provides conclusions and future challenges.
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CHAPTER 2

OVERVIEW AND CLASSIFICATION

This chapter will provide a brief overview of robust analysis/design and its

integration with control for manufacturing. It will investigate methods to ac-

count for uncertainty, to measure, evaluate, and design robustness for both

static and dynamic systems, and to integrate design with control. By review-

ing the strengths and weaknesses of the existing design methods, the research

opportunities in this area will be discussed.

2.1 CLASSIFICATION OF UNCERTAINTY

Robust performance is one of the most important concerns in the design of any

system in the manufacturing industry. This performance can be achieved by robust

analysis/design. A key issue in robust analysis/design is to handle uncertainties that

critically affect system performance. In general, uncertainties in robust performance

design can be classified into the following categories.

� Noise. It is often stochastic and caused by variation of environmental operating

conditions, for example, operating temperature, pressure, humidity, material,

and so on. The robust design for this kind of uncertainty is defined as Type 1

robust design (Chen et al., 1996a).
� Parameter uncertainty. It is often caused by manufacturing errors. The model

parameter of a product can be realized with certain accuracy. A design that is less

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.
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20 OVERVIEW AND CLASSIFICATION

sensitive to manufacturing tolerance will have the advantage of cost reduction

without loss of performance (Beyer and Sendhoff, 2007). The robust design for

this kind of uncertainty is defined as Type 2 robust design (Chen et al., 1996).
� Model uncertainty. It is often caused by approximation in system modeling.

Practically, an accurate model of the system is difficult to obtain due to complex

boundary conditions, unknown disturbances, or incomplete system knowledge.

Thus, a realistic approximation of the system is taken as the nominal model,

under educated assumptions, reasonable simplification, and idealization. This

approximation will produce uncertainty in system design. The robust design for

this kind of uncertainty is defined as Type 3 robust design (Choi, 2005).

On the other hand, all these uncertainties can be modeled in different ways, using

deterministic-, probabilistic-, or possibility-based approaches (Beyer and Sendhoff,

2007; Choi, 2005). Different types of uncertainties are defined as follows.

� The deterministic uncertainty defines the domain in which a certain event will

occur.
� The probabilistic uncertainty defines probability measure of the likelihood for

a certain event to occur.
� The possibilistic uncertainty defines fuzzy measure for describing the intensive

degree by which a certain event will occur.

These three different types of uncertainties are usually modeled by crisp sets,

probability distributions, and fuzzy sets, respectively.

2.2 ROBUST PERFORMANCE ANALYSIS

Robust analysis only ranks the contribution of design variables to performance but

cannot find the optimal solution for system robustness. These robust analysis methods

can be applied at both prior- and post-design stages by ranking importance of all

variables. For the prior-design situation, the ranking can help designers identify

those variables with little potential impact on the response variability. Thus, the

dimension of the design space can be reduced as well as the computational cost.

For the post-design analysis, the ranking provides valuable information on where

additional resources will be spent to further control the source of variations (Liu,

Chen, and Sudjianto, 2004).

2.2.1 Interval Analysis

Interval analysis is a growing branch of computational mathematics and represents an

elegant tool for operations on intervals rather than real numbers. In interval analysis,

the value of a variable is replaced by a pair of numbers representing the maximum

and minimum values within which the variable is expected to be. Interval arithmetic

rules are then used to perform mathematical operations with the interval numbers.
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ROBUST PERFORMANCE ANALYSIS 21

In robust performance analysis, if the information about an uncertain variable in

the form of probability distribution is not available, interval analysis would be the

most convenient method to use. In the interval analysis, uncertain parameters are

described by an upper and lower bound, and then rigorous bounds on the response

are computed using interval functions and interval arithmetic. Wu and Rao (2004)

integrated the interval analysis with fuzzy analysis to model the tolerances and

clearances in mechanism analysis. Rao and Berke (1997) presented methods that

take input parameters as interval numbers. The interval analysis was also applied to

robotic mechanisms for obtaining inverse kinematics (Rao et al., 1998). Although

interval analysis has been applied successfully to some problems, it is still difficult

to apply to a large-scale problem because the results produced are too conservative

in this complex situation (Choi, 2005).

2.2.2 Fuzzy Analysis

The possibility methods are proposed for applications where accurate statistical

data are not available. Its foundation is the possibility theory. Similar to probability

measures based on probability distribution functions, possibility measures can be

represented by possibility distribution functions. If membership function is convexity,

the possibility measure is formally equivalent to fuzzy sets (Mourelatos and Zhou,

2005). The fuzzy set methodology offers a rigorous way to quantify the membership

of a design solution to the feasible solution space. In this method, an input variable

in crisp nature is mapped to a fuzzy variable by a membership function 𝜇(x) ∈ [0, 1].

This membership describes the degree to which the input variable belongs to the

feasible set. The maximum value 𝜇(x) = 1 means that x is feasible and 𝜇(x) = 0

means that x is infeasible. After the fuzzification of the input variables, the extension

principle calculates the possibility distribution of the fuzzy response according to the

possibility distribution of the fuzzy input variables.

The complete fuzzy response might be difficult to obtain in practice due to the

overcomputation, except for simple cases involving one or two fuzzy variables. This

is because the computational effort will increase exponentially with increasing num-

ber of fuzzy input variables. Therefore, numerical methods of fuzzy analysis have

been proposed, such as vertex method (Penmetsa and Grandhi, 2002; Akpan, Koko,

and Orisamolu, 2000) and discretization method (Akpan, Rushton, and Koko, 2002).

Recently, this method was applied to modeling of tolerances and clearances in mech-

anism analysis (Wu and Rao, 2004) and robust optimal design to deal with epistemic

uncertainty (Mourelatos and Zhou, 2005; Choi, Du, and Gorsich, 2007; Huang and

Zhang, 2009; Zhou and Mourelatos, 2008). The possibility-based design was also

compared with the probabilistic design for catastrophic failure under uncertainty

(Nikolaidis et al., 2004). The review of this application can be found in He and Qu

(2008) and Beyer and Sendhoff (2007).

2.2.3 Probabilistic Analysis

Sensitivity analysis is an important procedure in engineering design to obtain valu-

able information about the model behavior. Probabilistic sensitivity analysis (PSA)
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22 OVERVIEW AND CLASSIFICATION

methods have been developed to provide insight into the probabilistic behavior of a

model, which can be used to identify those nonsignificant variables and reduce the

dimension space of the random design. A review about PSA was presented by (Liu,

Chen, and Sudjianto, 2004). Several common methods for PSA will be reviewed as

follows.

2.2.3.1 Variance-Based Methods Among the existing PSA methods, a pop-

ular category is the variance-based method, also called a global sensitivity analysis

method, which aims to design the variance of a response. Reviews on different

variance-based methods can be found in Chan, Saltelli, and Tarantola (1997).

These variance-based methods decompose the total variance of a model response

(design performance) into variances contributed from each input variable.

V =
∑

i

Vi +
∑
i<j

Vij +⋯ + V1,2,3,…,n (2.1)

The first-order term Vi represents the partial variance in the response due to the

effect of the input variable di, while the higher order term shows the interaction effects

between two or more different input variables. The first-order term Vi is also called

the main effect of the input variable di. A general sensitivity index is defined as

Si1,…,is
=

Vi1,…,is

V
(2.2)

There are many approaches to obtain the above sensitivity indices. Three com-

mon approaches, namely the correlation ratio, the Fourier amplitude sensitivity test

(Saltelli, Tarantola, and Chan, 1999; Chan, Saltelli, and Tarantola, 1997), and Sobol’s

method (Sobol′, 1993, 2001; Sobol′ and Kucherenko, 2007), will be reviewed in the

following section.

1. Correlation ratio
The correlation ratio, called importance measures, evaluates variance of a

conditional expectation and is defined as (Saltelli, Tarantola, and Chan, 1999;

Chan, Saltelli, and Tarantola, 1997)

Si =
Vpi

[
E(Y ||di)

]
V

(2.3)

with Vpi
[E(Y|di)] = ∫ [E(Y|di) − E(Y)]2p(di)d(di),

where E(Y ||di) denotes the expectation of Y conditional on a fixed value of di,

and the variance is taken over all possible values of di. The method is only used

to measure the main effect of each input on the output variance.

2. FAST method
The Fourier amplitude sensitivity test (FAST) is a procedure that has been

developed for sensitivity analysis. This procedure provides a way to estimate the
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ROBUST PERFORMANCE ANALYSIS 23

expected value and variance of the response and also measures the contribution

of an individual input variable to the variance.

The input variable can be expressed in the following form.

di(s) = Gi(sin(wis)) (2.4)

where s is a scalar variable varying over the range −∞ ≤ s ≤ +∞, Gi is

transformation function, and wi is frequency. According to the properties of

Fourier series, an approximation of the variance of Y is given by

V = 2

∞∑
j=1

(
A2

j + B2
j

)
(2.5)

with Aj =
1

2𝜋
∫ 𝜋−𝜋 f (s) cos(js)ds, Bj =

1

2𝜋
∫ 𝜋−𝜋 f (s) sin(js)ds

where Aj and Bj are the Fourier coefficients.

The contribution to the total variance by di can be expressed as

Ṽi = 2

∞∑
j=1

(
A2

jwi
+ B2

jwi

)
(2.6)

Thus, the total effect index (TSI) of a random variable di is defined as

STi =
Ṽi

V
(2.7)

An advantage of FAST is that the evaluation of sensitivity can be carried

out independently for each parameter using just one simulation because all the

terms in a Fourier expansion are mutually orthogonal (Saltelli, Tarantola, and

Chan, 1999; Chan, Saltelli, and Tarantola, 1997). Moreover, FAST provides

a way to evaluate the variance by converting a multidimensional integral to a

one-dimensional (1D) integral.

3. Sobol’s method
Sobol’s method for variance estimation is based on an ANOVA-like decom-

position of a function with increasing dimensionality (Sobol′, 1993, 2001;

Sobol′ and Kucherenko, 2007). The main idea behind this method is to

decompose the function into a group of increasing order terms described

as below.

f (d) = f0 +
n∑

i=1

fi(di) +
n∑

i=1

n∑
j=i+1

fij(di, dj) +⋯ + f1⋯n(d1,… , dn) (2.8)
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24 OVERVIEW AND CLASSIFICATION

where f0 is a constant, fi is a function di only, fij is a function di and dj only,

and so on. Then the variance and partial variance terms can be derived as

V = ∫ f 2(d)p(d)d(d) − f 2
0

(2.9a)

Vi,…,n = ∫ f 2
i,…,n(di,… dn)p(di,… dn)d(di)⋯ d(dn) (2.9b)

where p(d) is the joint probability density function (PDF) of random variables

d. These two equations can be evaluated by Monte Carlo methods to obtain

the sensitivity index. However, this method requires a large number of samples

or lengthy numerical procedures such as employing Monte Carlo or lattice

samplings. Chen et al. (2005) developed an analytical technique based on

meta-models in simulation-based design to improve efficiency and accuracy of

Sobol’s method. This kind of method can reduce the random errors associated

with the sampling approach.

The major limitations of variance-based methods are as follows (Liu, Chen, and

Sudjianto, 2004, 2006; Chan, Saltelli, and Tarantola, 1997).

1. Since the second moment (performance variance) is used to describe the un-

certainties, a good knowledge of the distribution dispersion will be crucial for

satisfactory performance.

2. The methods cannot be applied to the case where only a partial region of the

distribution is counted, such as the failure region.

2.2.3.2 Sensitivity-Based Methods

1. Probabilistic sensitivity analysis
PSA evaluates the sensitivity of failure probability Pf with respect to the

mean and standard deviation of the input random variable. One way is to

calculate it numerically using the concept of finite difference as (Melchers,

1999):

S𝜃i
=

(Pf + ΔPf ) − Pf

Δ𝜃i
(2.10)

where 𝜃 is an uncertain measure, which is usually taken as the mean or the

variance of a random variable di.

The analytical equation of 𝜕Pf ∕𝜕𝜃i may be written as (Wu, 1994; Monanty

and Wu, 2001)

S𝜃i
=
𝜕Pf ∕Pf

𝜕𝜃i∕𝜃i
= E

[
𝜃i𝜕p(d)

p(d)𝜕𝜃i

]
Ω

(2.11)
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ROBUST PERFORMANCE ANALYSIS 25

where p(d) is the joint PDF of all random variables for a failure model, and Ω
denotes the failure region. Wu’s sensitivity coefficients are the average impact of

𝜃i on the probability of failure. They are usually evaluated by sampling methods.

Equation 2.11 can be further simplified as follows if all random variables are

transformed into the standard normal space (Liu, Chen, and Sudjianto, 2004):

S𝜇i
=
𝜕Pf ∕Pf

𝜕𝜇i∕𝜇i
= E[ui]Ω (2.12a)

S𝜎i
=
𝜕Pf ∕Pf

𝜕𝜎i∕𝜎i
= E

[
u2

i

]
Ω − 1 (2.12b)

where u is a vector of standard normal random variable transformed from d. If

d follows independent normal distribution, then the transformation is written

as ui = (di − 𝜇i)∕𝜎i.

This method has been applied to analyze the main bearing performance of

an IC engine system by Mourelatos et al. (2005). However, Wu’s sensitivity

coefficients are only applicable for PSA of the regional response over the failure

region in order to assess the impact on the probability of failure or reliability

(Liu, Chen, and Sudjianto, 2004).

2. Kullback–Leibler entropy-based probabilistic sensitivity analysis method
The Kullback–Leibler (KL) entropy (Kullback and Leibler, 1951) was de-

rived in statistics as an information measure in a random quantity y for the

discrimination between the true distribution p1 and its estimation p0. It does

not require the evaluation of the joint PDF or the conditional PDFs as needed for

the mutual entropy (Krzykacz-Hausmann, 2001). The KL entropy, also called

the relative entropy, is defined as

DKL(p1
||p0 ) = ∫

∞

−∞
p1(y) ⋅ log

p1(y)

p0(y)
dy = Ep1

[
log

p1(y)

p0(y)

]
(2.13)

The KL entropy is traditionally used to measure the divergence from the

true distribution p1 to its estimation p0. This entropy can be interpreted as the

expectation of the log likelihood of a random quantity y following a PDF of

p1(y). Shannon entropy or the differential entropy could be viewed as a special

case of the KL entropy when p0 is a uniform PDF.

It is assumed that a random response y(X) has a PDF of p0, where X denotes a

vector of random inputs. When fixing a random input xi at its mean value, that is,

eliminating all of its uncertainty, the PDF of y changes to p1. Therefore, the relative

entropy can evaluate the total effect of xi on the distribution of Y by measuring the

difference between the two distributions: p0 and p1. The combined effects of the

complementary of xi, DKL∼xi, can be obtained by fixing all random variables except

xi and studying the change of the response PDF. The main effect of xi is the reverse
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26 OVERVIEW AND CLASSIFICATION

of DKL∼xi. By specifying the integration limits for the KL entropy computation, the

method can be applied both globally and regionally.

For the globe response probabilistic sensitivity analysis (GRPSA), a KL entropy-

based method measures the total and main effect indices of xi as follows (Liu, Chen,

and Sudjianto, 2004, 2006):

DKLxi
(p1

||p0) = ∫
∞

−∞
p1(y(x1,… , x̄i,… , xn)) ⋅ log

p1(y(x1,… , x̄i,… , xn))

p0(y(x1,… , xi,… , xn))
dy

(2.14a)

DKL∼xi
(p1|p0) = ∫

∞

−∞
p1(y(x̄1,… , xi,… , x̄n)) ⋅ log

p1(y(x̄1,… , xi,… , x̄n))

p0(y(x1,… , xi,… , xn))
dy

(2.14b)

where x̄ means that x is taken at a given value, usually chosen at its mean value. The

larger the DKLxi
(p1|p0). is, the more important xi is. The smaller the DKL∼xi

(p1|p0).

is, the more important the main effect of xi is. It should be noted that DKL∼xi
(p1|p0).

itself is not the main effect, but it can be used to interpret the main effect (Liu, Chen,

and Sudjianto, 2004, 2006).

With simple adjustments in the formula, the proposed KL method can also be

used for the regional response probabilistic sensitivity analysis (RRPSA) over a

partial range of interest [yL, yU] as (Liu, Chen, and Sudjianto, 2004, 2006)

DKLxi
(p1

||p0) = ∫
yU

yL

p1(y(x1,… , x̄i,… , xn)) ⋅
||||log p1(y(x1,… , x̄i,… , xn))

p0(y(x1,… , xi,… , xn))

||||dy

(2.15a)

DKL∼xi
(p1

||p0) = ∫
yU

yL

p1(y(x̄1,… , xi,… , x̄n)) ⋅
||||log p1(y(x̄1,… , xi,… , x̄n))

p0(y(x1,… , xi,… , xn))

||||dy

(2.15b)

Over the entire range of a response distribution, the effect of a random variable

is measured by its impact on the whole distribution of response. Over a specific

region, the effect of a random variable is indicated by its impact on the distribution of

the response within range. Obviously, the KL based method gives a more complete

measure of the effect of a random variable than the variance-based measure. It should

be noted that the KL methods can only give a relative importance ranking of random

variables. The absolute values of the KL measures themselves are hard to interpret.
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ROBUST DESIGN 27

Unlike a true metric, there is still no method to normalize the KL values. The PDFs

in the integral are usually obtained by sampling-based estimations. The integral can

be computed by numerical methods (Liu, Chen, and Sudjianto, 2004, 2006).

2.3 ROBUST DESIGN

The fundamental principle in robust design is to improve the quality of a product

by minimizing the sensitivity of the performance to uncontrollable variations. The

robust design framework is shown in Figure 2.1.

The robust design methods are mainly classified into three categories (Choi, 2005):

Type I robust design, Type II robust design, and Type III robust design. These methods

will be introduced in detail.

Type I robust design was proposed by Taguchi. This kind of robust design is

used to design systems that satisfy a set of performance requirement targets despite

variations in noise factors, which are uncertain, uncontrollable, independent system

parameters. The experiments are usually arranged first and conducted using the design

of experiment (DoE). After collecting the experiment data, the Taguchi method is

then used to identify control factor (design variable) values that satisfy a set of

performance requirement targets despite variation in noise factors.

Type II robust design was presented by Chen and coauthors (Chen et al., 1996).

This kind of robust design is to design a system robust to the uncertainty in control

factors. Similar to noise factors, control factors are also in parametric forms that can

be measured and characterized as continuous numbers with or without probability

distribution (Choi, 2005). Control factors are usually derived from the characterized

parameters in system models that relate to system performances, including geometric

information, mass, electrical, mechanical, or chemical inputs, amounts of constituents

in materials, and so on. Type II robust design identifies the control factors (design

variables) to satisfy a set of performance requirement targets despite variation in

control and noise factors. However, it does not pay attention to model uncertainty.

+

Known system

knowledge 

Performance 
Design variable 

Noise and parameter variation   

Model uncertainty

Robust design strategy 

System 

FIGURE 2.1 Robust design framework
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FIGURE 2.2 Type III robust design

Type III robust design is to design a system not only robust to Type I and II

uncertainties but also robust to model uncertainty that can be defined as Type III

uncertainty. The concept of this kind of robust design as presented by Choi (2005) is

illustrated in Figure 2.2. In this figure, the same objective function curve is employed

to show the differences among the optimal solutions, Type I and II robust solutions,

and Type III robust solution. A deviation (or objective) function, which represents

the system’s response, is illustrated as a solid curve. In addition, two dotted curves

are added around the objective function, representing uncertainty limits, due to the

nonparametric variability, unconfigured variability, and model parameter uncertainty.

Considering not only the objective function but also the two uncertainty limits, the

optimal solution, and the robust solution that only considers Type I and II uncertainties

will have larger performance deviations than Type III robust solution that has taken

into account all Type I, II, and III uncertainties. For Type III robust design, Choi

and his study group (Choi, 2005) presented a response surface method to obtain this

model uncertainty, upon which a robust solution can be derived.

In past decades, much effort has been dedicated to these robust designs. The

systems can be classified into the static system that does not vary over time and the

dynamic system that varies over time. Thus, the robust design methods can also be

classified into two categories: robust design for the static system and robust design

for the dynamic system. All these works will be reviewed in the following sections.

2.3.1 Robust Design for Static Systems

This robust design minimizes the effect of variations, including parameter variation,

noise and variation of design variable, on the static performance. The general robust

design problem is described as

Y = f (d, p) (2.16)

where Y = [y1 ⋯ ym]T represents static performance vector, d = [d1 ⋯ dn]T

is design variable vector, p = [p1 ⋯ pl]
T is design parameter vector, and f (⋅) =

[f1(⋅) ⋯ fm(⋅)]T represents the system model.
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ROBUST DESIGN 29

Work on this topic can be classified into two categories (Li, Azarm, and Boyars,

2006): deterministic robust design and probabilistic robust design.

2.3.1.1 Deterministic Robust Design The objective of deterministic robust

design is to minimize the worst case of the performance caused by deterministic

uncertainties. Its advantage is that it does not require the probabilistic distribution of

parameters. It mainly includes Euclidean norm method, conditional number method,

the sensitivity region measure method, and the robust space search method.

1. Euclidean norm method and conditional number method
Taking Taylor series expansion of Y at the nominal parameter values p0 and

neglecting its high order term, the following equation is obtained.

Y = f (d, p0) + JΔp (2.17)

with the sensitivity matrix J = 𝜕f (d,p)

𝜕p
|p=p0

where p0 is nominal parameter, and parameter variation Δp = p − pc0.

Define the performance variation ΔY as

ΔY = Y − f (d, p0) (2.18)

Then, the sum of the performance variation will be represented as

(ΔY)TΔY = (Δp)TJTJΔp (2.19)

For designers, parameter variation Δp cannot be controlled, and only the

sensitivity matrix J can be designed by selecting a suitable design variable d.

Then, the singular value decomposition is used to decompose the sensitivity

matrix J

JTJ = 𝜁T𝜎𝜁 (2.20)

where 𝜎i is the singular value of the sensitivity matrix J, and the corre-

sponding orthogonal eigenvector is denoted as 𝜁 i, which is one element of

𝜁 = [𝜁1 ⋯ 𝜁n].

Inserting Equation 2.20 into Equation 2.19, the performance variations ΔY
can be expressed as follows (Rajagopalan and Cutkosky, 2003; Caro, Bennis,

and Wenger, 2005; Zhu and Ting, 2001)

‖ΔY‖2
2
=

n∑
i=1

𝜎i(𝜈i)
2 (2.21)

with [𝜈1,… , 𝜈n]T = 𝜁TΔp.

Obviously, from Equation 2.21, the performance in the m-dimensional space

is a hyperellipsoid. Its 2D projection is depicted in Figure 2.3.

The ideal solution requires that all principal axes of this hyperellipsoid be as

long as possible, which would be difficult to realize in practice. Two alternative
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30 OVERVIEW AND CLASSIFICATION

Δp2
v2

v1

Δp1 

FIGURE 2.3 A 2D sensitivity ellipsoid

measurement methods are the Euclidean norm method and the conditional

number method.

The Euclidean norm method is to maximize the length of the shortest prin-

cipal axis (Caro, Bennis, and Wenger, 2005; Zhu and Ting, 2001). Since the

shortest principal axis corresponds to the largest singular value 𝜎max, if the

largest singular value 𝜎max is minimized, then the shortest principal axis will

be maximized. So the robust design in the Euclidean norm method is to mini-

mize 𝜎max.

The condition number method (Caro, Bennis, and Wenger, 2005; Ting and

Long, 1996) is to minimize the ratio of the shortest principal axis to the longest

principal axis. The longest principal axis corresponds to the smallest singular

value 𝜎min and the shortest principal axis corresponds to the largest singular

value 𝜎max. If the condition number 𝜎max∕𝜎min is minimized, then the ratio

between the longest principal axis and the shortest principal axis will have the

relatively smaller value. Thus, the condition number method is to minimize the

condition number 𝜎max∕𝜎min of the sensitivity matrix J.

Caro, Bennis, and Wenger (2005) have compared these two methods on

the damper design. The results have shown that the Euclidean norm method is

more suitable as the robust index than the condition number method. Although

these two design methods have achieved many successful applications, still

they have the following limitations.

� The gradient information of variables has to be known. However, this

gradient information is often difficult to obtain in practical applications.
� Since the design relies on the linear model obtained from the Taylor series

expansion, the design is only applicable to the weakly nonlinear system.
� The requirement for an accurate system model could make the design

ineffective for the partially unknown system.

2. Sensitivity region measure method
As described in Figure 2.4, the sensitivity region measure (Gunawan and

Azarm, 2004) first projects the desirable performance space into the parameter
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Δp1

Δp2
Least sensitivity

direction y2

(b) Most and least sensitive directions of a sensitivity region

y1

(a) Desirable performance space
Most sensitivity direction 

Sensitivity region 

R

FIGURE 2.4 Sensitivity region and robust measure

space using the system model, upon which the sensitivity region is constructed.

Then the most sensitivity direction, which means the minimal distance R from

the bound of the sensitivity region to the central point, is found and used as

a robust measure. The larger the distance R is, the more robust the system is.

Thus, the robust design can be obtained by minimizing the distance R. This

method has been applied to the robust optimization problem (Gunawan and

Azarm, 2004, 2005a, 2005b).

As described in Figure 2.5, another sensitivity region measure is the objective

sensitivity region measure (Li, Azarm, and Boyars, 2006). It first projects

the model parameter space into the desirable performance space, upon which

the objective sensitivity region is constructed. Then, the maximal performance

variation, which is represented by the maximal distance R from the bound

of the objective sensitivity region to its central point, is found and used as a

robust measure. The smaller the distance R is, the more robust the system is.

Thus, the robust design can be obtained by minimizing the distance R. The

comparison between the sensitivity region measure method and Gunawan’s

method (Gunawan and Azarm, 2004) is carried out. The results have shown that

Gunawan’s approach is not applicable if the objective and constraint functions

are discontinuous with respect to parameter variations. This method (Li, Azarm,

and Boyars, 2006) does not require the objective functions to be continuous.

Desirable objective

variation domain 

Largest objective

variation  

R

p2

y2,0

y1,0

y2

y
1

p1

Objective sensitivity region 

(a) Model parameter space

(b) Performance space

FIGURE 2.5 Objective sensitivity region and robust measure
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32 OVERVIEW AND CLASSIFICATION

These robust design methods have the following advantages.
� They do not need to know the gradient information and a presumed proba-

bility distribution of uncontrollable parameters.
� They are applicable to these nondifferentiable and/or discontinuous design

problems.

These robust design methods also have the following limitations.
� The projection will be difficult for the high dimensional system, which re-

quires a high computational cost.
� They need to know the exact system model for obtaining the robust perfor-

mance index.

3. Robust space search method
In the robust space search method (Parkinson, 2000), the tolerance space for

every candidate design is first defined as li ≤ di ≤ ui with the given tolerance

limits li and ui. Then, the maximum and minimum of the performance can

be figured out if design variables vary in their tolerance space. The smaller

the difference between the maximum and minimum of the performance is, the

more robust the design is. Obviously, this method is simple and direct. Thus, the

robust design can be figured out by solving the following optimization problem

min
d0

(yU − yD) (2.22)

where yU and yD are the maximum and minimum of the performance y in the

tolerance space, respectively.

However, they have some limitations as follows.
� If the tolerances of the parameters are unknown, this method will not work.
� The exact system model needs to be available and large computation may be

required for the high dimensional system.

2.3.1.2 Probabilistic Robust Design Since the probabilistic robust design

makes use of probabilistic information of the parameter, it will be less conserva-

tive than the deterministic robust design. Its main objective is to minimize the mean

or variance of the performance. In this section, several probabilistic robust designs

will be reviewed.

1. Monte Carlo simulation
Monte Carlo simulation method is a class of computational algorithms for

performance design. First, the system input is randomly sampled according to

its PDF that is known or assumed beforehand. Then, an experiment is executed

under the generated samples and the performance data are collected. Finally,

the statistic method is used to estimate its PDF from the collected data. It is

well known that a game of chance is constructed from probabilistic properties,

from which the required result is deduced (Melchers, 1999).

Monte Carlo method tends to be used when it is unfeasible or impossible to

compute an exact result using a deterministic algorithm (Hubbard, 2007), and
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ROBUST DESIGN 33

is especially useful in studying systems with a large number of coupled vari-

ables, such as fluids, disordered materials, strongly coupled solids, and cellular

structures. However, it has slow convergence and may require thousands or

millions of data samples to obtain sufficient accuracy. Moreover, it requires the

exact system model. These limitations and disadvantages limit its applications.

2. Taguchi method
Taguchi robust design is an approach to identify design variables that satisfy

a set of performance requirements despite variation in noise factor (Ross, 1988;

Taguchi, 1987, 1993). This method can improve the quality of a product by

minimizing the effect of variations without eliminating their causes. Taguchi

robust design includes experimental design (orthogonal array), quality loss

function, and signal-to-noise ratio.

To measure quality, Taguchi defines a quality loss function. This quality loss

function as shown in Figure 2.6 is a continuous function that is defined in terms

of the deviation of a design parameter from an ideal or target value.

L(y) = K(y − T)2 (2.23)

where L is the loss, y is the performance, T is the target value, and K is a

cost coefficient. This loss function demonstrates the loss degree of the product

when the performance deviates from the target value. The main objective of this

function is to let a product engineer understand what the target value is. This

loss function can approximate the behavior of loss in many instances (Byrne

and Taguchi, 1986).

Taguchi robust design approach for the parameter design starts from ex-

perimental design. In this robust design, the orthogonal array is used as the

experimental design. Control factors and noise factors reside in an inner ar-

ray and an outer array, respectively. The experimental results obtained by all

combinations of control factors and noise factors are recorded. Then, Taguchi

proposed a signal-to-noise ratio for measuring sensitivity analysis of response

to variation of noise factors. Based on the signal-to-noise ratio, the robust design

solution is obtained.

Loss L(y)

T+ΔT–Δ T

A

y

FIGURE 2.6 Taguchi’s loss function
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34 OVERVIEW AND CLASSIFICATION

Although Taguchi’s method has achieved great success, there are certain

assumptions and limitations associated with this method, which have been

criticized by the statistical community (Box, 1988; Nair, 1992; Tsui, 1992).

Use of the Taguchi method will not yield an accurate solution for design

problems that embody highly nonlinear behavior (Chen et al., 1996). Many

of Taguchi’s statistical methods, for example, orthogonal arrays, linear graphs,

and accumulation analysis, are not statistically efficient (Tsui, 1992). Moreover,

the Taguchi’s method cannot handle the variations of design variables. Thus it

is only suitable for Type 1 robust design.

3. Response surface method
The response surface method is a fully data-based modeling method and

usually uses the first- or second-order polynomial to approximate the system.

Statisticians (Box, 1988; Tsui, 1992; Engl, 1992) suggested modeling the mean

response and variance directly with statistical data transformation instead of

the signal-to-noise ratio. Vining and Myers (1990) proposed a dual response

approach, minimizing variability while keeping the mean on target. Nelder and

Lee (1991) and Myers, Khuri, and Vining (1992) suggested applying gener-

alized linear models (GLM) to robust design. Grego (1993) used a GLM for

the variance of the response from replicated classical experiments. A robust

design procedure, which integrated the response surface methodology with the

compromise decision support problem, was developed by Chen et al. (1996) to

overcome the limitations of Taguchi’s methods. Xu and Albin (2003) captured

statistical error bounds for a response surface model constructed with experi-

mental data during a simultaneous confidence interval. The uncertainty in the

response surface model was statistically estimated for the robust optimization.

Although the response surface method has obtained many successful applica-

tions, its full reliance on data without consideration of system information may

lose the modeling accuracy.

4. First- and second-order moment methods
These moment methods, which are derived by Taylor series expansion,

are the most widely used methods to estimate the probabilistic information of

performance. Taylor series expansion is employed to estimate response variance

based on input parameter variances as

𝜎first order(Y) =

(
𝜕f

𝜕p

||||𝜇p

)2

𝜎(p) (2.24)

𝜎second order(Y) =

(
𝜕f

𝜕p

||||𝜇p

)2

𝜎(p) + 1

2

⎛⎜⎜⎝𝜎(p)
𝜕2f

𝜕p2

|||||𝜇p

⎞⎟⎟⎠
2

(2.25)

where 𝜎 and 𝜇 denote variance and mean, respectively.

In the first-order method, the variance of the output is equal to the variance

of the input parameters multiplied by the square of the first sensitivity derivative
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ROBUST DESIGN 35

evaluated at the mean value of the input, as indicated in Equation 2.24. This

method is simple but with relatively low precision because it only takes the

first-order Taylor series expansion. To improve the estimation, the second-

order method incorporates the higher-order term (second-order term) in the

analytical model, as shown in Equation 2.25.

These moment methods are very simple and convenient. Therefore, these

methods are widely used as approximate methods for response estimation

(Rajapopalan and Cutkosky, 2003; Du and Chen, 2000; Al-Widyan and

Angeles, 2005). The robust design for these approximate models is to

minimize the sensitivity derivative so that the variance of the response will be

minimized. Although these methods are good for Gaussian probability distri-

bution, they are very hard to apply to other types of probability distributions

in input parameters (Choi, 2005). Also, the result could be inaccurate when

the system has strong nonlinearity due to the approximation. Thus, the method

highly relies on the accurate system model obtained.

5. Probabilistic performance design
The probabilistic performance design mainly includes Suh’s information

content, design preference index, and design capability indices, which will be

reviewed below.

� Suh’s information content
Suh (1990, 2005) proposed two well-known design axioms,

Axiom 1: The independence axiom
Maintain the independence of performance requirements.

Axiom 2: The information axiom
Minimize the information content of the design (uncoupled design with

less information).

The information axiom is used to evaluate the quality of design so that

an appropriate design can be chosen from available design alternatives. In-

formation content is defined in terms of entropy, which is expressed as the

logarithm of the inverse of the probability of success p as

I = log2
1

p
(2.26)

As shown in Figure 2.7, the design range is the desirable range for meeting

the performances, the system range is the performance of a candidate system,

Design range 
Common

range 
System range

FIGURE 2.7 Design range, common range, and system range
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36 OVERVIEW AND CLASSIFICATION

and the common range is the overlapping region between the design range

and the system range.

In case of uniform probability distribution of design range, the information

content can be expressed as

I = log2

(
system range

common range

)
(2.27)

According to the information axiom, a design candidate that has the

minimal information content should be selected based on the calculated

probability of success.
� Design preference index

Design preference index (DPI) is defined as (Chen and Yuan, 1999;

Wallace, Jakiela, and Flowers, 1996)

DPI = E(p(Y)) = ∫
Ȳ+ΔY

Ȳ−ΔY
p(Y)g(Y)dY (2.28)

where the preference function p(Y) is a function defining the relationship

between the degree of desirability p and the level of performance Y. It is in

the range of zero and one, with “one” representing the full preference, and

“zero” representing no preference, that is, unacceptable. The function g(Y)

is the PDF.

This index is used as a measure to evaluate the goodness of the perfor-

mance. When the DPI of the design is one, this design can fully meet the

design requirements under uncertainty. Otherwise, the design requirements

are difficult to fully satisfy. It is desired to maximize DPI as close as possible

to one.
� Design capability indices

The six standard deviation range (±3𝜎) is a common measure of process

capability, which compares variation of a process to the customer specifica-

tions as below

Cp = USL − LSL

6𝜎
(2.29)

where USL and LSL are the upper specification limit and the lower specifi-

cation limit of the performance, respectively, and 𝜎 is its standard deviation.

If Cp is less than one, the process variation exceeds the specification limits,

and the performance cannot satisfy the requirement. Conversely, if Cp is

greater than one, the process variation is less than the specification limits,

and the performance can satisfy the requirement. If Cp is equal to one, the

process just meets customer specifications, a minimum of 0.3% defectives

will be made (provided that the process mean is centered on the target value).
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ROBUST DESIGN 37

Although Cp is a measurement of the spread of the process in relation to

specification width, it does not measure how well the mean of the process is

close to the target.

The concept of the above capability index was extended to consider the

approximate degree between the mean of the system and the target value

(Chen et al., 1996b, 1999). They proposed the design capability indices

(DCI) as metrics for system robustness. The indices Cdu under the upper

requirement limit, Cdl under the lower requirement limit, and Cdk under the

upper and lower requirement limits are defined as

Cdl =
𝜇 − LRL

3𝜎
, Cdu = URL − 𝜇

3𝜎
, Cdk = min(Cdl, Cdu) (2.30)

where URL and LRL are upper and lower requirement limits.

When the index is smaller than unity, it means that the system performance

can be outside of the system requirement range. If the index is equal to or

greater than unity, then the design will meet the requirement satisfactorily.

Therefore, a designer’s objective is to force the index to be unity so that

the larger portion of performance deviation falls into the range of design

requirements. Forcing the index to be unity is achieved by reducing perfor-

mance deviation and/or locating the mean of performance to the center of the

requirement range. The applications of these indices may be found in Chen

et al. (1999) and Xiao et al. (2005).

Remark: These probabilistic performance designs offer measures for robust per-

formance with a clear physical meaning. The geometrical interpretations of these

methods make it easy to understand and apply. However, in these probabilistic per-

formance designs, the system range, the variance, and mean of the system must be

known beforehand through other design methods, such as Monte Carlo simulation

and moment methods.

2.3.2 Robust Design for Dynamic Systems

In this kind of robust design, the uncertainties are time varying and caused by

variations in either external variables (such as disturbance, etc.) or internal process

parameters (such as heat/mass coefficients, kinetic constant, etc.) (Dimitriadis and

Pistikopoulos, 1995).

2.3.2.1 Robust Stability Design The system stability relies on its eigenvalues.

If all eigenvalues are on the left side of the complex plane, the system is exponentially

stable; if any eigenvalue stays on the right side of the complex plane, the system will

be unstable. Practically, the system eigenvalues are dependent on the parameters that

could include the operating environment variables, model parameters, and manufac-

turing operations. Since variations of these parameters are unavoidable, increasing
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38 OVERVIEW AND CLASSIFICATION

effort has been devoted to consider the effect of variations on system stability at the

process design stage, which may include

� the Lyapunov’s stability matrix equality that can guarantee system stability

under uncertainty and disturbance (Blanco and Bandoni, 2003);
� the matrix measures based robust stability criteria that can provide a single

upper bound for all eigenvalues (Mohideen, Perkins, and Pistikopoulos, 1997;

Kokossis and Floudas, 1994); and
� the manifold-based robust stability design that figures out the bound of parameter

variations, which guarantees all eigenvalues of the process to be smaller than

zero when parameter variations are limited in this bound (Monnigmann and

Marquardt, 2003, 2005; Grosch, Monnigmann, and Marquardt, 2008).

However, they still have some limitations:

� Both the positions and variations of the eigenvalues, which closely relate to

stability and robustness, are of vital importance for the dynamic system. How-

ever, the existing stability designs only consider the system stability with little

consideration of eigenvalue variations. This may cause deviation of the transient

response from the desired performance (Liu and Patton, 1998).
� The reliance on the exact system model will make the design inapplicable to the

partially unknown system.

2.3.2.2 Feasibility Design The flexibility, the ability to maintain feasible op-

eration over a range of uncertain conditions, is a vital important character for the

system operation and should be explicitly incorporated into the design objectives.

The flexibility problem generally consists of two tasks that are complementary to

each other (Dimitriadis and Pistikopoulos, 1995).

� The first task is to determine whether a given design can feasibly operate over

the range of uncertainty considered. This problem is known as the feasibility

problem or flexibility test problem.
� The second task is to calculate a measure to quantify the ability of the design

to operate in the presence of uncertainty. This is known as the flexibility index

problem and is usually tackled by establishing the maximum parameter range

over which the design will be feasible.

The flexibility measure is often used to select the suitable design by compar-

ing different design alternatives (Grossmann and Straub, 1991; Dimitriadis and

Pistikopoulos, 1995), which can be summarized as follows.

� The deterministic flexibility index. This index was defined by Swaney and

Grossmann (1985a) for measuring the flexibility of processes in steady state

where uncertain parameters are described by bound of the operation range.

Many methods are used to figure out this flexibility index, such as the vertex
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ROBUST DESIGN 39

enumeration search method (Swaney and Grossmann, 1985b), the implicit

enumeration procedure (Kabatek and Swaney, 1992), the active set strat-

egy (Grossmann and Floudas, 1987), the sensitivity method (Varvarezos,

Grossmann, and Biegler, 1995), and the KS function method (Raspanti, Bandoni,

and Biegler, 2000). It is also extended to the analysis of dynamic system un-

der time-varying uncertainties (Dimitriadis and Pistikopoulos, 1995; Sakizlis,

Perkins, and Pistikopoulos, 2003; Bansal et al., 2000a & b; Malcolm et al.,

2007).
� The stochastic flexibility index. It is a metric for quantifying the ability of a pro-

cess to maintain feasible operations in the presence of stochastic uncertainties.

For linear steady-state models, the stochastic flexibility index is defined as a

probabilistic metric, upon which a given design will operate feasibly in the pres-

ence of uncertainties described by Gaussian probability distribution functions

(Pistikopoulos and Mazzuchi, 1990; Straub and Grossmann, 1990). Extensions

have also been reported to nonlinear steady-state systems as well as linear dy-

namic systems (Straub and Grossmann, 1993; Pistikopoulos and Ierapetritou,

1995; Bansal, Perkins, and Pistikopoulos, 1998). A parametric programming

framework was presented for the solution of flexibility analysis and the design

optimization problems in linear processes with both deterministic parameters

and stochastic parameters (Bansal, Perkins, and Piskopoulos, 2000, 2002).
� The distance-based flexibility index. The nominal operating point is moved

away from the constraints (called back-off point) so that the constraints would

not become active when disturbance enters the system (Georgakis et al., 2003;

Bandoni et al., 1994). The bigger the distances between the nominal operating

point and the constraint boundaries are, the better the system flexibility is. Its

optimization arithmetic consists of two stages called outer and inner loops. Each

loop is formulated as a semi-infinite optimization problem. Outer loop figures

out the best operating condition for a given set of disturbance. In the inner

loop, the feasibility of the operating conditions obtained in the last outer loop

is tested. Repeat the outer and inner loops, and then a desirable design will be

achieved. Bandoni et al. (1994) and Bahri et al. (1995, 1996) applied this method

to analyze the steady-state flexibility of a chemical plant. This method was also

extended to the analysis of dynamic systems (Bahri et al., 1997; Figueroa et al.,

1996).
� The ratio of the feasible space size to the overall operation space (Lai and Hui,

2007, 2008).

2.3.2.3 Controllability Design The controllability design is to design the sys-

tem to have a good dynamic behavior, so that it can be easily controlled.

1. Resiliency index
Resiliency measures the degree to which a system can meet its design objec-

tives despite external disturbance and uncertainty. Because adequate process

resiliency is a necessary part of the optimal process design, it is desirable to
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40 OVERVIEW AND CLASSIFICATION

consider process resiliency assessment when determining the process structure

and establishing the operating range. The ratio of the control input u to the

disturbance w is often regarded as the resiliency index (Skogestad and Morari,

1987; Wettz and Lewin, 1996; Lewin, 1996)

𝛾I =
||u||2||w||2 (2.31)

This resiliency index measures the effect of the disturbance on the control

input u. Cao, Rossiter, and Owens (1997) applied it to select the control inputs.

Solovyev and Lewin (2003) extended this steady-state resiliency index to the

nonlinear system for the analysis of the designed process.

2. Condition number
The condition number of a matrix is defined as the ratio between the largest

singular value 𝜎(G) and smallest nonzero singular value 𝜎(G) of the transfer

function G(s)

𝛾C = 𝜎(G)∕𝜎(G) (2.32)

The condition number provides a direct measure of the directionality of

the system. A large condition number indicates that the system gain changes

significantly along a certain input direction, which tells that the performance

strongly relies on the specific type of perturbation (Bezzo, Varrasso, and Barolo,

2004; Skogestad and Havre, 1996; Chen, Freudenberg, and Nett, 1994). Thus,

a large condition number does imply that the system is ill conditioned and

sensitive to “unstructured” input uncertainty.

3. Disturbance condition number
The following linear system is considered

y(s) = G(s)u(s) + Gd(s)w(s) (2.33)

where y is output, u is control input, and w is disturbance, and G and Gd are

transform functions.

The disturbance condition number is defined as (Skogestad and Morari,

1987)

𝛾d =
‖‖G−1Gdd‖‖2‖‖Gdd‖‖2

�̄�(G) (2.34)

The disturbance condition number is a measure of the input magnitude to

reject the disturbance along a certain direction, where the control effort is

minimal compared with other directions. Input sets yielding a small 𝛾d are the

most effective for disturbance rejection (Wal and Jager, 2001).
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INTEGRATION OF DESIGN AND CONTROL 41

4. Operability design
The operability measure can quantify the inherent ability of the process to

move from one steady state to another and to reject the expected disturbances.

The operability index is defined as (Vinson and Georgakis, 1998, 2000)

OI = R[AIS ∩ DIS]

R[DIS]
(2.35)

where R is a measurement function calculating the size of the corresponding

space, for example, in two dimensions it represents the area, and in three

dimensions it represents the volume; AIS is the available input space, in which

the inputs of the process are able to change; DIS is defined as the set of input

values on which the entire desired output space can be reached, which is actually

the operating window for the process outputs.

This index can effectively capture the inherent operability of continuous

processes. Its geometrical interpretation makes it easy to understand and ap-

ply. This index has been applied to analyze the linear steady-state system

(Vinson and Georgakis, 1998, 2000), the nonlinear system (Subramanian and

Georgakis, 2000, 2001), and the dynamic system (Uztürk and Georgakis, 1998,

2002; Subramanian, Uztürk, and Georgakis, 2001). All these works have been

properly surveyed by Georgakis et al. (2003).

2.4 INTEGRATION OF DESIGN AND CONTROL

Integrated process design and control will involve continuous control action and

discrete decision. A unified framework for this integration is actually a hybrid dis-

crete/continuous system that will be closely linked to the process topology, equipment

design specifications, control structure configuration, and controller design (Seferlis

and Georgiadis, 2004; Seferlis and Grievink, 2004; Ross, 1999). Both continuous

and discrete variables involved in the integration will be determined through the opti-

mization of multi-objective functions, subject to the static and dynamic performance

requirement under uncertainty.

2.4.1 Control Structure Design

Most available control theories assume the control structure to be given beforehand.

For a complex system, it may not be easy to answer basic questions like, which

variable should be selected to control, and which inputs should be manipulated

(Skogestad and Postlethwaite, 2005).

2.4.1.1 Pairs of Input and Output The main method for selecting pairs of

input and output is the relative gain matrix (RGA), which was originally proposed

by Bristol (1966). The objective of RGA is to provide a measure of interactions for

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 OVERVIEW AND CLASSIFICATION

multivariable square systems (Skogestad and Morari, 1987; Yu and Luben, 1986).

The RGA is defined as

Λ(G) = G(G+)T (2.36)

where G+ is the pseudo-inverse of the system transform function G.

This RGA was used to select the pairs of input and output for feedback control

(Skogestad and Postlethwaite, 2005; Kariwala, Forbes, and Meadows, 2003). It was

also proven that, if the plant has large RGA elements, it will be difficult to achieve

good tracking with feedforward control due to its strong sensitivity to uncertainties

from diagonal inputs (Skogestad and Havre, 1996).

The concept of RGA was applied to design block relative gain, so that partially

decentralized control systems can be handled (Manousiouthakis, Savage, and Arkun,

1986). It was also extended to nonsquare multivariable systems for selection of square

subsystems from the nonsquare system (Chang and Yu, 1990). A dynamic relative

gain was proposed by Avoy et al. (2003) and a tight bound was calculated on the

worst case of relative gains under norm-bounded uncertain systems (Kariwala and

Skogestad, 2006).

2.4.1.2 Selection of Controllable Variables In order to obtain an optimal

performance, you need to know what to control. Although it is not widely acknowl-

edged by control theorists, selection of right variables to control will be crucial

to uncertainty suppression during the entire operation (Alstad and Skogestad, 2007).

Many studies have been reported on this aspect, for example, the singular value-based

method and the local method (Halvorsen et al., 2003), the null space method (Alstad

and Skogestad, 2007), the average loss method (Kariwala, Cao, and Janardhanan,

2008), and so on. The selection of controllable variables has been applied to indirect

control (Hori, Skogestad, and Alstad, 2005).

Some studies have been reported on controller selection according to process

characteristics. Hernjak et.al (2004) selected the control system according to the

process characteristics, such as degree of nonlinearity, dynamic character, and degree

of interaction. Seferlis and Grievink (2001 & 2004) suggested screening the process

design and control structure based on economic and static controllability criteria.

Remark: In the early stage of integration development, the attention is mainly

paid to screen alternative designs according to some controllability indices. These

methods can obtain the desirable steady-state performance by rejecting the poor

performance in an early design stage. However, as presented by Meeuse and Tousain

(2002), the indices are often calculated based on steady-state data only. The relation

between the indices and the closed-loop performance is not fully studied. Thus, the

role of controller is less considered in the process design.

2.4.2 Control Method

Controller design will be a critical issue in the integration of design and control. The

economic performance of the designed process should be considered together with
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PROBLEMS AND RESEARCH OPPORTUNITIES 43

other design constraints. Many control methods have been studied in this kind of

integration, such as PI or PID control (Bansal et al., 2000a and 2000b; Georgiadis et

al., 2002; Mohideen et al., 1996, 1997), Q parameterization method (Swartz, 2004),

model predictive control (MPC) (Sakizlis, Perkins, and Piskopoulos, 2004a, 2004b),

internal model control (IMC) (Chawankul, 2005), and linear quadratic Gaussian

(LQG) (Meeuse and Tousain, 2002). However, they are mainly developed based on

a linear model around the operating point. Thus, they will be less effective when the

system has strong nonlinearity and is working in a large operating region.

2.4.3 Optimization Method

The integration problem is difficult to solve since it involves both discrete design

variables and continuous control variables. To overcome this difficulty, many works

have been developed. A mixed-integer dynamic optimization (MIDO) was presented

to solve the integration problem that involves discrete variables, disturbances, and

parametric uncertainties (Bansal et al., 2000). It was also applied to solve the in-

tegration problem with controller parameters to be tuned (Sakizlis, Perkins, and

Pistikopoulos, 2004a, 2004b). The mixed integer nonlinear program (MINLP) was

applied to solve the integration problem and design the heat-integrated distillation

columns (Luyben and Floudas, 1994; Ross et al., 1999). An extended ant colony

optimization algorithm was also proposed to solve the nonconvex or nondifferential

integration problem (Schluter et al., 2009).

2.5 PROBLEMS AND RESEARCH OPPORTUNITIES

This chapter presents a brief overview on advances in robust design and its integration

with control. Different methods have been studied and classified according to their

fundamental nature. The underlying fundamental ideas are disclosed together with

their strengths and weakness. Based on the above review, the research problems are

proposed for extensive study in rest of the book.

� As discussed in the Section 2.3.1, all the existing robust designs can be classified

into two categories: model-based robust designs and data-based robust designs.

Since the data-based robust designs only depend on experimental data with the

system knowledge fully neglected, they may have poor design performance and

a high experimental cost. Moreover, they cannot handle variations of design

variables. On the other hand, most of the model-based robust designs are based

on the approximate first-order or second-order model, such as the Euclidean

norm method, the conditional number method, and the first- and second-order

moment methods. These designs may not be effective when the system has a

strong nonlinearity or large uncontrollable variations, which leads to Research
Problem 1 (Q1). To handle this problem, new robust methods are proposed

in Chapters 3 and 4 to design a nonlinear system to be insensitive to large

uncontrollable variations. Moreover, there is still no solution for both model
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44 OVERVIEW AND CLASSIFICATION

uncertainty and variations of design variables in these model-based robust de-

signs. Thus, the robust designs cannot effectively design the partially unknown

system with variations of design variables, which leads to Research Problem 2
(Q2). To process Research Problem 2, robust design methods are proposed in

Chapter 5 to design a system to be insensitive to both model uncertainty and

variations of design variables.
� As discussed in the Section 2.3.2.1, stability design is to locate all eigenvalues

of the system on the left side of the complex plane. However, the influence of

parameter variations on the system eigenvalue is not considered, which leads to

Research Problem 3 (Q3). Moreover, no method considers the effect of model

uncertainty on stability and robustness, which leads to Research Problem 4
(Q4). Thus, novel robust design methods are proposed in Chapters 6, 7, and 8,

respectively, to stabilize the system and to minimize variations of all eigenvalues

caused by parameter variations and model uncertainty.
� As discussed in the Section 2.3, there is not much progress on design for control,

namely, to have an easily controlled dynamics through process design. The

robustness of the system is usually achieved through online control. However,

the desired robustness of a system comes more from its inherent robust property

that can only be achieved through system design. These limitations lead to

Research Problem 5 (Q5). Thus, a design-for-control-based integration method

is proposed in Chapter 9 to obtain an easily controlled dynamics through system

design, and integrate the merits of both robust design and online control for a

robust pole placement under parameter uncertainty.
� As discussed in the Section 2.3, most existing approaches for the integration

of design and control are only valid in the vicinity of the operation condition,

since the integration is based on the linear nominal model obtained by the local

approximation method. It will be difficult to obtain the accurate process model

when the nonlinear process works in a large operating region. Another disadvan-

tage is that design optimization becomes extremely difficult since the objective

function in the integration is often nonconvex or nondifferential and affected

by both continuous and discrete design variables. These difficulties lead to Re-
search Problem 6 (Q6). Thus, an effective modeling method will be developed

in Chapter 10 to approximate the nonlinear system in a large operating region,

upon which a suitable control method will be employed to handle this nonlinear

system. The nonconvex or nondifferential integration problem involved will be

handled by a newly proposed global optimization method.
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PART II

ROBUST DESIGN FOR STATIC
SYSTEMS
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CHAPTER 3

VARIABLE SENSITIVITY BASED
ROBUST DESIGN FOR
NONLINEAR SYSTEM

For the robustness of a nonlinear system with parameter variation, variable

sensitivity based deterministic and probabilistic robust design approaches are

presented in this chapter. Simulation examples are used to illustrate the effec-

tiveness of design methods.

3.1 INTRODUCTION

Deterministic robust designs are to minimize the worst case of performance under

variations. Most of the deterministic approaches improve system robustness with

the gradient information of variables and parameters, such as, condition number and

Euclidean norm of the sensitivity matrix to measure the robustness of the system (Ting

and Long, 1996; Zhu and Ting, 2001; Caro, Bennis, and Wenger, 2005), because of

its simplicity and low computational cost. However, these gradient information-based

robust designs are only based on the first-order or second-order approximate model

developed through local linearization. This linear approximation may result in the

design being less effective due to larger approximation errors, especially when the

system has strong nonlinearity under slightly large uncontrollable variations. Two

other common deterministic robust design approaches are sensitivity region measure

method (Li, Azarm, and Boyars, 2006; Gunawan and Azarm, 2004, 2005a, 2005b)

and robust space search method (Parkinson, 2000). However, these methods are

complex and cost a high computation, especially for the high-dimensional nonlinear

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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48 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

system. Moreover, the robust space search method needs to have known tolerances of

parameters. Thus, an effective approach is needed for the deterministic robust design

to handle the strongly nonlinear system to be robust to uncontrollable variations.

Probabilistic robust design approaches use probabilistic information of variables,

usually their mean and variance, to improve system robustness (Al-Widyan and

Angeles, 2005; Du and Chen, 2000). These approaches approximate systems with a

linear or second-order model, so they can work well for the weakly nonlinear system

under small random variations. However, when the system has strong nonlinearity as

well as large random variations, these approaches may be less effective due to large

approximation errors. To the best of our knowledge, there is little work reported for

robust design of the strongly nonlinear system under large random variations. Thus,

an effective approach should be developed to deal with the above problem.

In this chapter, two different robust designs, one in deterministic nature and another

in probabilistic nature, are presented to improve the robustness of the nonlinear

system against uncontrollable variations. Since they consider the nonlinear influence

in a large design region, they can effectively improve the robustness of the nonlinear

system despite uncontrollable variations. In these methods, the nonlinear system

is first formulated into a linear structure, which will be easy to handle by well-

developed robust design methods. This linear structure has a variable sensitivity

matrix to reflect the influence of all nonlinear terms. Then, the bounds of both the

variable sensitivity matrix and its singular values can be calculated in a large design

region. Finally, with the variable sensitivity information incorporated, the influence of

uncontrollable variations to the performance can be minimized under the framework

of the traditional robust design. Both fundamental analysis and numerical simulation

will demonstrate effectiveness of the presented robust design methods.

3.2 DESIGN PROBLEM FOR NONLINEAR SYSTEMS

Many systems in real world are often of strong nonlinearity with uncontrollable

variations. This kind of systems can be expressed in a general format:

Y = f (s) (3.1)

where Y = [y1 ⋯ ym]T represents performance vector; f (s) = [ f1(s) ⋯ fm(s) ]T is the

nonlinear model; the variable s = [d, p]T includes two parts: the controllable design

variable vector d = [ d1 ⋯ dn ]T , whose nominal value can be selected between the

upper and lower bounds, and the model parameter vector p = [ p1 ⋯ pl ]T with the

uncontrollable variation Δp around its nominal value p0. The variation in variable

s is also uncontrollable and expressed as Δs = s − s0 with the nominal value s0 =
[d, p0]. For convenience, f(s) is simply denoted as f in this chapter.

There are some difficulties in designing the robustness of the nonlinear system

(Equation 3.1) under uncontrollable variation Δs due to the following reasons.

(a) influence of the nonlinearity to the performance; and

(b) interaction of variation Δs and the nonlinearity.
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DESIGN PROBLEM FOR NONLINEAR SYSTEMS 49

3.2.1 Problem in Deterministic Design

When the probabilistic information of Δs is unknown, deterministic robust designs

are employed to design system robustness. Usually, common deterministic robust

designs, such as Euclidean norm method or condition number method, are used to

minimize the influence of uncontrollable variations to the performance through the

linear model. This linear model is obtained by local linearization approach, where

Taylor series expansion method is usually used, and expressed as

ΔỸ = J0 ⋅ Δs (3.2)

where the sensitivity matrix J0 = 𝜕f
𝜕s

|||s=s0
and s0 = [d0, p0]T with the nominal values

d0 and p0. It is well known that this linear approximation is only effective around the

neighborhood of the design point.

Obviously, these common methods can work well for linear system or the weakly

nonlinear system because the linear model (Equation 3.2) can have a reasonably well

approximation, as shown in Figure (3.1a). However, when the system is strongly non-

linear, it will produce a larger approximation errorΔe between the linear model (Equa-

tion 3.2) and the nonlinear system (Equation 3.1), especially when the uncontrollable

variation Δs is large. The approximation error Δe can make the common method

less effective because robustness is measured by the performance variation ΔỸ of the

linear model (Equation 3.2). For example, for the point A in Figure (3.1b), common

robust designs measure the robustness with the performance variation ΔỸ calculated

from the linear model (Equation 3.2). However, the actual performance variation ΔY
is ΔỸ + Δe, that is much larger than the estimated performance variation ΔỸ . Thus,

the methods will be less effective if the approximation error Δe is larger. To overcome

this disadvantage, an effective robust design approach should be developed to con-

sider the robustness of the nonlinear system under larger uncontrollable variation Δs.

3.2.2 Problem in Probabilistic Design

When the probabilistic information of Δs can be gained, probabilistic robust designs

are employed to design system robustness. Generally, the random variation Δs = [Δd,

Linear model

Practical system

s0

Y

s

(a)

A

sAs0

Δs
Linear model

Practical system

~ΔY

Y

Δe

s

(b)

FIGURE 3.1 Deterministic robust design for nonlinear system: (a) weakly nonlinear system;

(b) strongly nonlinear system
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50 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

Δp] follows Gaussian distribution with a nonzero mean and a nonidentical standard

deviation. The expected value 𝜇s and the covariance matrix 𝜎s of the random variation

Δs can be expressed as

𝜇s = E[Δs] (3.3)

𝜎s = E[(Δs − 𝜇s)(Δs − 𝜇s)
T ] = E[ΔsΔsT ] − 𝜇s𝜇

T
s

(3.4)

where E[⋅] is the expected-value operator.

Usually, traditional probabilistic robust designs (Al-Widyan and Angeles, 2005)

are to minimize performance covariance based on the linear model (Equation 3.2).

Obviously, from Equations 3.2 and 3.3, the expected value �̃�Ỹ of the estimated

performance ΔỸ can be expressed as

�̃�Ỹ = E[ΔỸ] = J0𝜇s (3.5)

and the corresponding covariance matrix �̃�Ỹ of ΔỸ is derived as

�̃�Ỹ = E[(ΔỸ − 𝜇Y )(ΔỸ − 𝜇Y )T ] (3.6)

Inserting Equations 3.2 and 3.5 into Equation 3.6, the covariance matrix �̃�Ỹ may

be rewritten as

�̃�Ỹ = E
[
J0(Δs − 𝜇s)(Δs − 𝜇s)

TJT
0

]
= J0 ⋅ E[(Δs − 𝜇p)(Δs − 𝜇s)

T ] ⋅ JT
0

(3.7)

Inserting Equation 3.4 into Equation 3.7, the covariance matrix �̃�Ỹ is rewritten as

�̃�Ỹ = J0𝜎sJ
T
0

(3.8)

Then, traditional probabilistic robust designs are to minimize the estimated co-

variance matrix �̃�Ỹ .

Obviously, when the system (Equation 3.1) is linear or weakly nonlinear, tra-

ditional probabilistic robust design methods can effectively work, since the model

(Equation 3.2) can approximate the system (Equation 3.1) well, as indicated in Fig-

ure 3.2a). However, when the system (Equation 3.1) has strong nonlinearity and

works under large random variation Δs, traditional methods will be less effective due

to large approximation error between this linearization model (Equation 3.2) and the

system (Equation 3.1). As an example, at point s0 of Figure 3.2b), the traditional

methods measure the system robustness with the estimated performance covariance

�̃�. But the actual covariance 𝜎 could be very different to the estimated performance

covariance �̃� because of the nonlinear effect. This difference can make the traditional

methods less effective for the strongly nonlinear system.

Thus, an effective probabilistic robust design approach should be developed for

the nonlinear system under larger random variation.
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CONCEPT OF VARIABLE SENSITIVITY 51
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FIGURE 3.2 Probabilistic robust design for nonlinear system: (a) weakly nonlinear system;

(b) strongly nonlinear system

3.3 CONCEPT OF VARIABLE SENSITIVITY

The concept and the basic idea of variable sensitivity are briefly explained below.

As illustrated in Figure 3.3, given the nonlinear system (Equation 3.1), the variable

sensitivity J is formulated such that ΔY = Δf (s) = JΔs with J ∈ [Jmin, Jmax] as s ∈
[sl, su]. The performance variation ΔY of any given point in s ∈ [sl, su] may be

expressed as the product of the variation Δs and the sensitivity J. This sensitivity J
is equal to the gradient of the straight line between the given point and the design

point. For example, the performance variation ΔY at point A relative to design point

B is equal to ΔY = JAB(sA − s0), where JAB is the sensitivity to be the same with

the gradient of the line AB. Thus, all performance variations may be expressed as

ΔY = JΔs in s ∈ [sl, su], while the sensitivity J at different points may have a different

value. Obviously, maximal and minimal values of the variable sensitivity in s ∈ [sl, su]

can be figured out through the system model and denoted as J ∈ [Jmin, Jmax]. This

method for processing variable sensitivity has the following advantages:

� All nonlinear terms are fully formulated into the variable sensitivity matrix

without approximation.
� A linear structure is constructed, which is easy to handle by the well-developed

robust design approaches.

Line AB

ΔY

Practical system

B

A

sA susl

Y
JmaxΔs

JminΔs

s0 s

FIGURE 3.3 The method for processing variable sensitivity
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52 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

3.4 VARIABLE SENSITIVITY BASED DETERMINISTIC

ROBUST DESIGN

A robust design approach is briefly pictured in Figure 3.4 to design the nonlinear

system to be robust to uncontrollable variation. First, the nonlinear system is modeled

as a linear structure using the variable sensitivity approach, which will make the design

relatively easier by using the well-developed robust design theories. Moreover, since

the sensitivity matrix of this linear structure is formulated to consider the influence of

the nonlinear terms, this matrix would be variable, instead of the constant matrix J0

generated in common deterministic robust designs. Then, a variable sensitivity based

robust design is developed to minimize the influence of the uncontrollable variation

to the performance. Since this presented robust design method considers the effect of

the nonlinearity in a larger design region, the designed system will be robust under

uncontrollable variations.

3.4.1 Robust Design for Single Performance/Single Variable

Under the single performance function Y and the single variable s, the sensitivity

matrix J is a scalar. The robust design for this case is relatively simple.

3.4.1.1 Variable Sensitivity Based Modeling First, the original system

(Equation 3.1) can be easily formulated in the following linear structure around

the design point s0

ΔY = JΔs (3.9)

with J = f (s)−f (s0)

s−s0
.

When s is close to s0, J is equal to J0, as defined in (Equation 3.2) so that the

presented method is the same with traditional deterministic robust design methods.

However, when s has a slightly large variation around s0, J will be variable under

different variables s. It is clear that this variable sensitivity matrix J incorporates the

nonlinear information of the system. Thus, this linear structure (Equation 3.9) can

Large uncontrollable

variation p
d Y

Variable sensitivity based

deterministic robust design

variable using Modeling

sensitivity approach

• Linear structure
• Variable sensitivity

Nonlinear system

FIGURE 3.4 Variable sensitivity based robust design methodology
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VARIABLE SENSITIVITY BASED DETERMINISTIC ROBUST DESIGN 53

well express the nonlinear system in a large design region. Also, it is clear that the

traditional deterministic robust design becomes a special case of the presented design

method.

Then, the minimal value Jmin and maximal value Jmax of J can be obtained through

the following optimizations when Δs ∈ [Δsl,Δsu]:

Jmax = max
Δs∈[Δsl,Δsu]

J, Jmin = min
Δs∈[Δsl,Δsu]

J (3.10)

Thus, J will be bounded in [Jmin, Jmax].

Example 3.1: This simple example is used to show how the variable sensitivity

approach works. The system is described as follows:

Y = f (s) = 3s2 and s ∈ [1, 3] (3.11)

From Equation 3.11, the performance variation ΔY at the design point s0 = 2 can

be derived as

ΔY = f (s) − f (s0) = 3s2 − 3s2
0
= (3s + 3s0)Δs (3.12)

Thus, its sensitivity matrix J is

J = 3s + 3s0 (3.13)

and the maximal and minimal values of the sensitivity matrix J are obtained from the

optimization (Equation 3.10) as

Jmin = 9 and Jmax = 15 (3.14)

Note: From Equation 3.13, it is clear that J is equal to J0 defined in Equation 3.2

when s is close to s0. Thus, the linear model (Equation 3.2) is a special case of the

variable sensitivity model (Equation 3.9).

3.4.1.2 Variable Sensitivity Based Robust Design Variable sensitivity

based robust design aims to minimize the worst case of the performance variation

ΔY. Two different cases are discussed as follows.

1. Design for the same sign of Jmax and Jmin
In this case, the worst-case ΔYmax of the performance variation ΔY is equal

to max(|Jmin|, |Jmax|) ⋅ Δs, as shown in Figure 3.5, where max(|Jmin|, |Jmax|)
is actually the maximal value between |Jmin| and |Jmax|. For example,

if Jmax and Jmin are minus, then max(|Jmin|, |Jmax|) is |Jmin|. Otherwise,
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54 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

ΔYmax

Y

JminΔs

JmaxΔs

s0 s

FIGURE 3.5 Robust design for the same sign of Jmax and Jmin

max(|Jmin|, |Jmax|) is |Jmax|. Thus the robust design is equivalent to the mini-

mization of max(|Jmin|, |Jmax|) without controlling Δs.

min
d0

max(|Jmin|, |Jmax|)
st. h(s) = 0, l(s) ≤ 0 (3.15)

where h(s) and l(s) are constraints from other design aspects. Its solution can

make the nonlinear system robust to uncontrollable variations.

2. Design for the different sign of Jmax and Jmin
Similarly, the worst-case ΔYmax is equal to |Jmax − Jmin| ⋅ Δs, as shown in

Figure 3.6. Thus the robust design problem is equivalent to the minimization

of |Jmax − Jmin|
min

d0

|Jmax − Jmin|
st. h(s) = 0, l(s) ≤ 0 (3.16)

Its solution can make the nonlinear system robust to uncontrollable

variations.

3.4.2 Robust Design for Multiperformances/Multivariables

When there are multiple performance functions Y and multiple variables s, the per-

formance variations ΔY can be easily expressed as below:

ΔY = Δf (s) = JΔs (3.17)

where the variable sensitivity matrix J becomes an m × (n + l) matrix.

Y

ΔYmax

JmaxΔs

JminΔs

s0 s

FIGURE 3.6 Robust design for the different sign of Jmax and Jmin
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VARIABLE SENSITIVITY BASED DETERMINISTIC ROBUST DESIGN 55

Let Δs ∈ [Δsl,Δsu] and then the system model may be used to calculate the

minimal value Jmin
i,j and the maximal value Jmax

i,j of Ji,j, which is an element of J:

Jmax
i,j = max

Δs∈[Δsl,Δsu]
Ji,j, Jmin

i,j = min
Δs∈[Δsl,Δsu]

Ji,j (3.18)

Then, the performance variations ΔY in Equation 3.17 may be rewritten as

(Δf (s))TΔf (s) = (Δs)TBΔs (3.19)

with B = JTJ.

From Equations 3.18 and 3.19, matrix B is a bound matrix with its bound elements

derived as

Bi,j ∈
[
Bmin

i,j , Bmax
i,j

]
(3.20)

Moreover, according to the singular value decomposition (SVD) theory, any real

symmetric matrix B may be decomposed as

B = 𝜁diag(𝛿1,… , 𝛿n+l)𝜁
T (3.21)

where 𝛿i is the singular value of J, and the corresponding orthogonal eigenvector is

denoted as 𝜁i, which is one element of the vector 𝜁 = [ 𝜁1 ⋯ 𝜁n+l ].

Since matrix B varies within its bounds, its singular values are also bounded as

𝛿i ∈
[
𝛿min

i , 𝛿max
i

]
(3.22)

This bound can be calculated from matrix B.

Example 3.2: The nonlinear system is described as

Y = f (s) =

[
s2

1
+ s3

2

3s1 + 2s2
2

]
and s = [s1, s2]T with s1 ∈ [1, 3], s2 ∈ [1, 3] (3.23)

From Equation 3.23, the performance variation ΔY around the design point s0 =
[2, 2]T can be formulated as

ΔY = f (s) − f (s0)

=

[
s2

1
+ s3

2
− s2

1,0
− s3

2,0

3s1 + 2s2
2
− 3s1,0 − 2s2

2,0

]

=

[
s1 + s1,0 s2

2
+ s2,0s2 + s2

2,0

3 2(s2 + s2,0)

][
Δs1

Δs2

] (3.24)
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56 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

Thus, its sensitivity matrix is

J =
[

s1 + s1,0 s2
2
+ s2,0s2 + s2

2,0

3 2(s2 + s2,0)

]
(3.25)

Thus, the bound of matrix J can be calculated as below

J1,1 ∈ [3, 5], J1,2 ∈ [7, 19], J2,2 ∈ [6, 10] (3.26)

Then, matrix B may be figured out

B =

[
J2

1,1
+ J2

2,1
J1,1J1,2 + J2,1J2,2

J1,1J1,2 + J2,1J2,2 J2
1,2

+ J2
2,2

]
(3.27)

Thus, the bound of matrix B can be calculated as below

B1,1 ∈ [18, 34], B1,2 = B2,1 ∈ [39, 125], B2,2 ∈ [85, 461] (3.28)

Moreover, the singular value of matrix J can be expressed as

𝛿1 = 0.5(B2,2 + B1,1 +
√

(B2,2 + B1,1)2 − 4
(
B2,2B1,1 − B2

1,2

)
(3.29a)

𝛿2 = 0.5(B2,2 + B1,1 −
√

(B2,2 + B1,1)2 − 4
(
B2,2B1,1 − B2

1,2

)
(3.29b)

Thus, the bound of the singular values can be calculated as below

𝛿1 ∈ [97, 490.6], 𝛿2 ∈ [3.96, 7.72] (3.30)

Note: From Equation 3.25, it is clear that J is equal to J0 defined in Equation 3.2

when s is close to s0. Thus, the linear model (Equation 3.2) is a special case of

the variable sensitivity model (Equation 3.17) even for the system with multiperfor-

mances/multivariables.

Moreover, inserting Equation 3.21 into Equation 3.19, the performance Yr may be

expressed as follows

Yr =
n+l∑
i=1

𝛿i(zi)
2 (3.31)

with Yr = ‖ΔY‖2
2
= (Δf (s))TΔf (s) and [z1,… , zn+l]

T = 𝜁TΔs.

Since both the singular values and the eigenvectors in Equation 3.31 vary within

a bound, the performance Yr in the m-dimensional space is a set of hyper-ellipsoids

as defined in Equation 3.31. Its two-dimensional projection is depicted in Figure 3.7.
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FIGURE 3.7 Multiple sensitivity ellipsoids

Every hyper-ellipsoid has the following characteristics:

(a) The performance Yr defined in (Equation 3.31) is the same for every point on

the hyper-ellipsoid.

(b) The length of the ith principal axis of the jth hyper-ellipsoid is Yr∕𝛿
j
i , where

the singular value 𝛿
j
i is a value bounded in [𝛿min

i , 𝛿max
i ]. The smaller 𝛿

j
i is,

the longer the ith principal axis will be. The longest/shortest principal axis

corresponds to the least/most sensitive direction for the given hyper-ellipsoid.

For all hyper-ellipsoids,

(a) The length of the ith principal axis of all hyper-ellipsoids is bounded in[
Yr

𝛿max
i

,
Yr

𝛿min
i

]
.

(b) The longest/shortest principal axis in all hyper-ellipsoids indicates the

least/most sensitive direction for the nonlinear system.

According to the robust design theory, all principal axes in all hyper-ellipsoids

should be made as long as possible, especially the shortest principal axis in all

hyper-ellipsoids. The shortest principal axis in all hyper-ellipsoids corresponds to

the maximal singular value 𝛿max in all singular values. If the maximal singular value

𝛿max can be minimized, then the shortest principal axis will achieve the largest length.

So the design variable d for the robust performance can be figured out through the

following min-max optimization.

min
d0

max
i

(
𝛿max

i

)
st. h(s) = 0, l(s) ≤ 0

(3.32)
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Design for nonlinear system (Equation 3.1)

Calculation of maximal and minimal

sensitivity matrix (Equations 3.10 and 3.18)

Variable sensitivity-based robust

designs (Equations 3.15, 3.16, and 3.32)

Robust design

Variable sensitivity method for

modeling (Equations 3.9 and 3.17)

FIGURE 3.8 Deterministic robust design flowchart

The solution of the optimization (Equation 3.32) can achieve the robustness under

uncontrollable variations.

3.4.3 Design Procedure

The presented deterministic robust design methodology is summarized in Figure 3.8.

Nonlinear system is first formulated as a linear structure just as Equations 3.9 and

3.17, using the variable sensitivity method. Since its sensitivity matrix incorporates

the effect of the nonlinear terms, it can express the nonlinear system better than

the common linearization approach with a constant sensitivity matrix J0. Then, the

bound of this sensitivity matrix is calculated from the system model. For multiper-

formances/multivariables system, the maximal and minimal singular values should

also be calculated as Equation 3.22. Finally, based on the obtained sensitivity matrix,

the variable sensitivity based robust approaches as given in Equations 3.15, 3.16,

and 3.32 can achieve the robustness of the nonlinear system under uncontrollable

variations.

3.5 VARIABLE SENSITIVITY BASED PROBABILISTIC

ROBUST DESIGN

A novel probabilistic robust design approach is proposed in Figure 3.9 to design

the robustness of the nonlinear system under large random variations. Initially, the

nonlinear system is formulated under a linear structure using the variable sensitiv-

ity approach. Then, the nonlinear system will be designed for robustness through

minimization of performance covariance. Since this proposed approach considers the
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FIGURE 3.9 New probabilistic robust design method

effect of the nonlinearity and the probabilistic information of variations, it can ensure

the robustness of the nonlinear system even if large random variation exists.

3.5.1 Single Performance Function Under Single Variables

First, the variable sensitivity based modeling method is used to obtain its model

(Equation 3.9). Then, an effective approach is developed to design the nonlinear

system to be robust. According to the standard definition, the expected value 𝜇Y and

the covariance matrix 𝜎Y can be expressed as

𝜇Y = J𝜇s, 𝜎Y = J2𝜎s (3.33)

The robust design requires the covariance matrix 𝜎Y to be minimized. Since the

term 𝜎s on the right of Equation 3.33 cannot be controlled by the designer, this robust

design becomes the following optimization problem

min
d

J2 (3.34)

Since J is bounded in [Jmin, Jmax] according to Equation 3.10, the robust design

can be transformed into

min
d

max(|Jmax|2, |Jmin|2)

s.t. h(s) = 0, l(s) ≤ 0
(3.35)

where max(|Jmax|2, |Jmin|2) is to select a maximal value between |Jmax|2 and |Jmin|2.

This min-max optimization is a most common problem in robust design and its

objective is to minimize the worst case of performance variation. When this worst

case is minimized, all performance variations will be minimal and thus guarantee the

system to be robust.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



60 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

3.5.2 Single Performance Function Under Multivariables

In case of the single performance function Y and multivariables s, the variable sensi-

tivity matrix J in Equation 3.9 becomes a 1 × (n + l) vector. Then, the minimal and

maximal values of the ith element of J can be calculated from the variable sensitivity

model as follows

Ji,max = max
Δs∈[Δsl,Δsu]

Ji, Ji,min = min
Δs∈[Δsl,Δsu]

Ji (3.36)

The expected value 𝜇Y and the covariance matrix 𝜎Y are expressed as

𝜇Y = J 𝜇s, 𝜎Y = J𝜎sJ
T (3.37)

According to the matrix theory, we have

𝜎Y = J𝜎sJ
T ≡ ‖‖J̃‖‖2

𝜎s
(3.38)

where J̃ denotes the single row of J in vector form, that is, as a column array, and‖ ⋅ ‖𝜎s
is the weighted Euclidean norm of vector (⋅) with respect to the positive-define

matrix 𝜎s. Through the matrix transformation, the following inequality is satisfied

‖‖J̃‖‖2
𝜎s

= J̃T𝜎sJ̃ = tr(J̃J̃T𝜎s) ≤ tr(J̃J̃T )tr(𝜎s) = ‖‖J̃‖‖2
2 tr(𝜎s) = JJT tr(𝜎s) (3.39)

where || ⋅ ||2 and tr(⋅) are the Euclidean norm and the trace of (⋅) respectively.

Thus, from Equations 3.38 and 3.39, the covariance matrix 𝜎Y is bounded as

𝜎Y ≤ JJT tr(𝜎s) (3.40)

Obviously, the designer cannot control tr(𝜎s), so this robust design actually be-

comes the minimization of JJT . From Equation 3.36, JTJ will be constrained by

JJT ≤
n∑

i=1

max(|Ji,max|2, |Ji,min|2) (3.41)

Thus, the minimization of JTJ can be transformed into the following optimization,

min
d

n∑
i=1

max(|Ji,max|2, |Ji,min|2)

s.t. h(s) = 0, l(s) ≤ 0

(3.42)

The solution of Equation 3.42 can ensure the robustness of the nonlinear system

even if large random variation exists.
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VARIABLE SENSITIVITY BASED PROBABILISTIC ROBUST DESIGN 61

3.5.3 Multiperformance Functions Under Multivariables

In case of multiperformance functions Y and multivariables s, the variable sensitivity

matrix J in Equation 3.9 becomes an m × (n + l) matrix. Let Δs ∈ [Δsl,Δsu] and

then the minimal value Jmin
i,j and the maximal value Jmax

i,j of the element Ji,j of J can

be calculated as

Jmax
i,j = max

Δs∈[Δsl,Δsu]
Ji,j, Jmin

i,j = min
Δs∈[Δsl,Δsu]

Ji,j (3.43)

The expected value 𝜇Y and the covariance matrix 𝜎Y of the performance variation

ΔY can be expressed as

𝜇Y = J𝜇s, 𝜎Y = J𝜎sJ
T (3.44)

According to the matrix theory, the covariance matrix 𝜎Y may be rewritten as

‖𝜎Y‖F ≤
√

1

m
tr(JTJ)tr(𝜎s) (3.45)

where ‖⋅‖F is the Frobenius norm of (⋅). Thus, minimization of the performance

covariance can be transformed into minimization of its upper bound in Equation

3.45. Since the term tr(𝜎s)
√

1

m
cannot be controlled by the designer, this robust

design changes to the following optimization

min
d

tr(JTJ) (3.46)

According to the matrix norm theory, tr(JTJ) may be rewritten as

tr(JTJ) = ‖J‖2
F =

n+l∑
i=1

𝛿2

i
(3.47)

where 𝛿i is the singular value of J.

According to the discussion in Section 3.3.2 and Equation 3.22, its singular values

are bounded as 𝛿i ∈ [𝛿min
i , 𝛿max

i ]. Thus, the robust design may be figured out through

the following optimization,

min
d0

max
𝛿i∈[𝛿min

i , 𝛿max
i ]

(
n+l∑
i=1

𝛿2
i

)
s.t. h(s) = 0, l(s) ≤ 0

(3.48)

The solution of the optimization problem (Equation 3.48) can ensure the robustness

of the nonlinear system even if there is large random variation.

Note: The min-max optimization appeared in the proposed methods is a common

problem in the system design/control. When their objective functions are convex

function, they can easily be solved by the traditional gradient algorithm. When they
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62 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

are nonconvex and nonlinear functions, some intelligent algorithms or nontraditional

methods, such as particle swarm optimization (PSO) and genetic algorithm (GA),

could be used to explore the near-optimal solution.

3.6 CASE STUDY

3.6.1 Deterministic Design Cases

The presented deterministic robust design method will be compared with the common

Euclidean norm method in two different cases. Since deviation from its objective can

be estimated as ‖Y(d0 + Δd, p0 + Δd) − Y(d0, p0)‖2
2
, the performance index Er will

be defined as

Er = ‖‖Y(d0,T + Δd, p0 + Δp) − Y(d0,T , p0)‖‖2

2

− ‖‖Y(d0,p + Δd, p0 + Δp) − Y(d0,p, p0)‖‖2

2

(3.49)

where d0,T and d0,p are the design variables gained by the Euclidean norm method

and the presented robust design method, respectively. If the percentage of Er > 0

is larger than 50%, when Δp and Δd are randomly sampled from their variation

space, then the presented method is more robust than the Euclidean norm method.

Otherwise, the Euclidean norm method is better.

Example 3.3: Robust design of a belt Belts are used in transmission of power

between shafts with either parallel or skewed axes. The power transmitted by a belt is

W = f (s) (3.50)

with f (s) = (1 − e−𝜁𝜃)(T − MV2)V .

where M and 𝜃 are the mass of the belt per unit length and the contact angle respec-

tively, V and T are the belt speed and the tension in the belt. respectively, and 𝜁 and W
are the coefficient of friction and the transmitted power, respectively. The coefficient

of friction 𝜁 , the tension T, the nominal mass M, and the contact angle 𝜃 are 0.2, 15

Nm, 1 kg, and 𝜋∕4, respectively. The design variable and the performance function

are

s = V , Y = W

The design task is to achieve a robust performance against the variation Δs = ΔV
through identifying the design variable V0 from the design space [0.5, 2.5].

First, the robust design calculated by the Euclidean norm approach is

VT = 2.5 (3.51)
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CASE STUDY 63

Then, the presented robust design is used to design the belt under ΔV ∈ [−R, R].

From Equation 3.31, the performance variation ΔW can be expressed as

ΔW = JΔV = JΔs (3.52)

with J = (1 − e−𝜁𝜃)[T − M(V2 + VV0 + V2
0

)].

The maximal value Jmax and minimal value Jmin of J are easily calculated as

Jmin = (1 − e−𝜁𝜃)
[
T − M

(
(V0 + R)2 + (V0 + R)V0 + V2

0

)]
,

Jmax = (1 − e−𝜁𝜃)
[
T − M

(
(V0 − R)2 + (V0 − R)V0 + V2

0

)] (3.53)

If Jmax and Jmin have the same sign, then the robust design can be figured out

from Equation 3.15 under the given bound R. Otherwise, it will be figured out from

Equation 3.16 under the given bound R.

For performance comparison and verification, let ΔV be an uniformly distributed

random variation in (−R, R) and a total of 1000 samples are taken to compare the

worst case of the performance variation (ΔW)2 with respect to the variation ΔV .

Designs under different variation bounds R are shown in Figure 3.10, where it is clear

that the worst case of the performance variation obtained by the presented robust

design is better (smaller) than the common Euclidean norm approach. Thus, the

presented robust design has a better robust performance than the common Euclidean
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FIGURE 3.11 Performance Er

norm approach. This is because it considers the influence from the nonlinear term

but the Euclidean norm approach does not.

Finally, the performance Er is compared. Let R = 0.1 and thus ΔV be bounded

in (−0.1, 0.1). Under this bound, the presented robust design is Vp = 2.24. A total

of 1000 samples are taken to compare the performance Er. From Figure 3.11, it is

clear that it has about 81.8% (for Er > 0) chances to have a better design than the

common one. Thus, the presented approach is more robust than the Euclidean norm

method.

Example 3.4: Robust design of a damper The design problem of a damper is

shown in Example 1.1 in Chapter 1. The design variable d, the model parameter p,

and the performance functions Y are

d = M, p = Cd, s = [M Cd]T , Y =
[

X
𝜙

]
F and w are set as 200 N and 31.4 rad/s, respectively. The model parameter Cd

is equal to Cd0
± H with the nominal value Cd0

= 50, and the design variable M has

the variation ΔM ∈ [−R, R] around its design point M0. The objective is to select the

suitable design variable M0 from M0 ∈ [2kg, 3kg] to make the system robust to the

uncontrollable variation Δs ∈ [ΔCd,ΔM]T .

For the design problem (Equation 1.1) in Chapter 1, the robust design calculated

by the Euclidean norm method is MT = 2.5. The presented robust design for the
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CASE STUDY 65

damper design can be easily figured out from Equation 3.32, with the given bounds

H and R.

For performance comparison and verification, let ΔM and ΔCd be uniformly

distributed random variations in (−R, R) and (−H, H) respectively, and a total of

1000 samples are taken to compare the worst case of the performance variation

ΔW = [(ΔX)2+(Δ𝜙)2]. Define

Difference of worst case = max(ΔWT ) − max(ΔWp) (3.54)

where ΔWT and ΔWp are worst cases of the performance variation ΔW =
[(ΔX)2+(Δ𝜙)2] obtained by the Euclidean norm method and the presented robust

design method, respectively. Only if this difference is positive, the presented ro-

bust design has a better robust performance than the Euclidean norm method. This

difference under the variation bounds R and H is shown in Figure 3.12, where the

positive difference clearly indicates that the presented robust design has a better

robust performance than the Euclidean norm approach.

For comparison of Er, let R = 0.3 and H = 15 and thus ΔM and ΔCd are bounded

in (−0.3, 0.3) and (−15, 15) respectively. Under these bounds, the presented robust

design is Mp = 2.28. A total of 1000 samples are taken for the comparison of perfor-

mance Er as shown in Figure 3.13, where it shows about 64.1% (for Er > 0) chances

to have a better design than the Euclidean norm method. Since the percentage is larger

than 50%, the presented method is more robust than the Euclidean norm method.

In conclusion, the presented robust design method is more effective for the

nonlinear system under uncontrollable variations.
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FIGURE 3.13 Performance Er

3.6.2 Probabilistic Design Case

The low-pass filter design example in the reference (Al-Widyan and Angeles, 2005) as

shown in Figure 3.14 is taken to verify the effectiveness of the proposed probabilistic

design. The design variables are the resistance R and the inductance L. The current

i(t) is harmonic of the form i(t) = I cos(wt + 𝜙), with I and 𝜙 as the amplitude and

the phase of i(t). The amplitude I is kept at a nominal value I0 = 10A. V and w are the

amplitude and the frequency of the excitation voltage v(t) = V coswt, respectively.

The performance Y is expressed as

Y = f (d) =

⎡⎢⎢⎢⎢⎣
V0√

R2 + w2
0
L2

tan−1

(
w0L

R

)
⎤⎥⎥⎥⎥⎦

(3.55)

V

Resistance R

Inductance
L

Current IPower

FIGURE 3.14 A low-pass filter
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CASE STUDY 67

where the design variable d and the performance function Y are

d =
[

R
L

]
, Y =

[
I
𝜙

]
The design variable d has variation around its nominal value and this variation

follows Gaussian distribution with 𝜇d and 𝜎d. Moreover, the known nominal value

V0 and w0 are 110 V and 60 Hz, respectively.

Usually, these random variations can be expressed as

ΔR = T × 𝜂 and ΔL = H × 𝜂 (3.56)

with 𝜂 ∼ N(−0.5, 1), known parameters T and H.

The robust design variable d figured out by the traditional design approach (Al-

Widyan and Angeles, 2005) is (R0 = 0.068 Ω, L0 = 10.21 H). The proposed robust

design can be easily figured out from Equation 3.48 with the given T and H.

Then, the performance comparison can be conducted. Define a performance index,

Ecov = ‖𝜎Y ,T
‖F − ‖𝜎Y ,p‖F (3.57)

where 𝜎Y ,T and 𝜎Y ,p are the covariance 𝜎Y obtained by the traditional design and the

proposed design, respectively. From Equation 3.57, it is clear that, only when those

with Ecov are larger than zero, the proposed approach has a better robust performance

than the traditional approach. The performance index Ecov under different T and H is

shown in Figure 3.15, where it is clearly shown that all Ecov are bigger than zero.

Moreover, statistical test is carried out. Samples from the proposed robust design

and the traditional robust design are averagely divided into K groups. Then, the

F-norm of the covariance of the ith group is calculated as ‖𝜎Y ,i
‖F (i = 1, . . . , K).

Hypothesis is set up as follows:

H0 :
1

K

K∑
i=1

‖‖𝜎T
Y ,i

‖‖F = 1

K

K∑
i=1

‖‖𝜎p
Y ,i

‖‖F and H1:
1

K

K∑
i=1

‖‖𝜎T
Y ,i

‖‖F >
1

K

K∑
i=1

‖‖𝜎p
Y ,i

‖‖F

(3.58)

where ‖𝜎T
Y ,i

‖F and ‖𝜎p
Y ,i

‖F are the F-norm of the covariance of the ith group obtained

by the traditional robust design and the proposed robust design, respectively.

The following two-sampling t-test is used to conduct the test

t =

1

K

K∑
i=1

‖‖𝜎T
Y ,i

‖‖F − 1

K

K∑
i=1

‖‖𝜎p
Y ,i

‖‖F√
(S2

T + S2
p)∕K

(3.59)

where S2
T and S2

p are the standard deviation of the covariance’s F-norm of all groups

obtained by the traditional method and the proposed method, respectively.
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FIGURE 3.15 The performance Ecov under T and H

If H0 is rejected and H1 is accepted, the proposed method has a smaller covari-

ance than the traditional method. Using ttest2 function of Matlab software, all H0

are rejected and all H1 are accepted when T ∈ [0.0002, 0.002] and H ∈ [0.2, 1.6].

For example, since t = 14.6 obtained at T = 0.0004 and H = 0.4 is larger than

ta = 0.05 = 1.81, H0 is rejected and H1 is accepted. Thus, the covariance gained by the

proposed method is smaller than the traditional method. This means that, from the

statistical viewpoint, the proposed method will have better robust performance than

the traditional method.

Finally, define

Emean = Mean
(‖ΔYT‖2

)
− Mean

(‖ΔYp‖2

)
(3.60a)

Evar = Var(‖‖ΔYT‖2

)
− Var(‖ΔYp‖2) (3.60b)

where Mean(⋅) and Var(⋅) represent mean and variance of (⋅), and ΔYp and ΔYT
are the performance variations obtained by the traditional design and the proposed

design, respectively.

Only if both Emean and Evar are bigger than zero, the proposed design has a better

robust performance than the traditional design. Emean and Evar under different T and

H are shown in Figure 3.16, where it is clearly shown that all Emean and Evar are

bigger than zero.

Thus, from the statistical test and Figures 3.15 and 3.16, the proposed method

has better robust performance than the traditional approach, because it considers the

nonlinear influence and the large random variation that the traditional method does

not consider.
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FIGURE 3.16 Comparison of the performance variation under T and H. (a) Emean; (b) Evar
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70 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM

3.7 SUMMARY

In this chapter, two new approaches are presented for robust design of the nonlinear

system under uncertainties. These design approaches consider not only the inherent

nonlinearity of the system but also uncontrollable variations caused externally. First,

the variable sensitivity approach is constructed to express the nonlinear system since

it can handle nonlinear influence. Then, the design developed from the variable sen-

sitivity, either in deterministic or probabilistic nature, can demonstrate a better robust

performance even for the strongly nonlinear system under uncontrollable variations.

The performance comparisons on simulation examples confirm the effectiveness of

the proposed design.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHAPTER 4

MULTI-DOMAIN MODELING-BASED
ROBUST DESIGN

This chapter will develop an approach to design a strongly nonlinear system to

be robust against large parameter variation. Based on the idea of linearization,

complex nonlinear system in the whole parameter space can be decomposed

into a series of linear systems at each subdomain. Modeling of each linear

system at the subdomain would be much easier than modeling of the original

system in the whole parameter space. Design of the nonlinear system under

large parameter variation can be achieved through multi-optimizations over

these subdomains.

4.1 INTRODUCTION

For a high quality production, mechanical systems used in complex manufacturing

environment are required to have a consistent performance over a large working

region. These systems may have strongly nonlinear characteristics and have to work

under larger uncontrollable variations, as indicated in Figure 4.1. For simplicity, the

system can be described by:

y = f (d, p) (4.1)

where y represents performance vector, f(d, p) is the nonlinear model, d is the design

variable vector that needs to be figured out from its working pace Sd, and p is the model

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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FIGURE 4.1 Model behavior at different operating domains of the parameter

parameter vector suffered from large uncontrollable variation Δp with its nominal

value p0 within its working space Sp. Obviously, this kind of system is difficult to

obtain consistent performance under large variations.

Although the sensitivity-based robust design method is simple and effective for

many linear or weakly nonlinear systems, they are still difficult to gain consistent

performance for this strongly nonlinear system with large parameter variation. The

main reasons include the following:

� Larger parameter variation is not considered in the traditional design.
� The influence of nonlinear term is not considered in most of the methods when

using a linear mode to design the system, such as Euclidean norm method,

conditional number method, and first- and second-order moment methods. As

indicated in Figure 4.2a, this kind of method cannot produce a good design due

to large model errors generated.
� Even if some methods consider the influence of nonlinear term in a small

design domain, such as the robust design approach in Chapter 3, the result is

very conservative because only maximum variation is roughly considered as

indicated in Figure 4.2b.

Thus, an effective robust design should be developed for these kind of systems.

In this chapter, a multi-domain modeling-based robust design approach is pre-

sented to design a nonlinear system to be robust under large parameter variations.

Since this approach integrates the merits of both multi-domain modeling and robust

design to handle the influence of system nonlinearity as well as large parameter

variations, it can effectively ensure robustness of the nonlinear system even if large

parameter variation exists. In this method, the large parameter region is first divided

into many small subdomains. At each small subdomain, the complexity of the non-

linear system will be reduced so that the system can be approximated by a linear

model. Thus, a robust design method is developed to minimize variation influence

at all subdomains in relation to design performance. Finally, several examples are
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FIGURE 4.2 Robust design for the nonlinear system: (a) linear model approximation;

(b) variable sensitivity model approximation

conducted to demonstrate and confirm the effectiveness of the presented method in

comparison with two common design methods.

4.2 MULTI-DOMAIN MODELING-BASED ROBUST

DESIGN METHODOLOGY

It is well known that the system is easy to handle if its model has a well linear

structure. In general, a well-developed system model should have a satisfactory per-

formance near its working condition. In order to have a robust performance over the

larger working area, an effective design approach should consider the influence of

both nonlinear term and large parameter variation simultaneously. Thus, for the non-

linear design problem (Equation 4.1), a multi-domain modeling-based robust design

approach is developed, as indicated in Figure 4.3. Since this approach integrates the

merits of both multi-domain modeling and robust design, it can effectively ensure

robustness of the nonlinear system in a large parameter variation domain.

In this method, the parameter region is first divided into many small subdo-

mains, so that the nonlinear system at each subdomain can be approximated by
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• Linear structure

• Multiple models
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FIGURE 4.3 A multi-domain modeling-based robust design method

a linear model. Then, a robust design is developed to minimize the influence of

parameter variation at all these subdomains. The proposed method has the following

advantages:

� It has a high modeling precision since the method considers the influence of the

system nonlinearity in a large parameter region.
� It can be easily handled by well-developed robust design theories, since the

model built owns a well linear structure.
� It can make a nonlinear system to be robust against large parameter variation.

4.2.1 Multi-Domain Modeling Approach

Most robust design approaches use the linearization model built at the nominal value

p0 to design the system robustness since the model obtained is simple and easily

handled by the developed robust design method. However, when the system is strongly

nonlinear and has a large parameter variation, it is well known that the linearization

model built at the nominal value p0 is difficult to describe this system well due to

large approximation error. Alternatively, a multi-domain modeling approach is often

used to model the nonlinear system in the control field. This method has a well

linear structure and satisfactory modeling performance. However, it is never applied

in robust design of nonlinear system under large parameter variation.

A simple example for single parameter and single performance is indicated in

Figure 4.4 for the explanation of the multi-domain modeling method. The whole

parameter region is divided into many small subdomains, and the system at each

subdomain is approximated by a local linearization model around its center point. If

the subdomain is small enough, its local linearization model can very well describe

the behavior of the system at this subdomain. Thus, this modeling approach has the

following advantages: (a) using a group of linear models, it can express the nonlinear

system well within a large parameter domain; (a) the model built has a well linear

structure.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MULTI-DOMAIN MODELING-BASED ROBUST DESIGN METHODOLOGY 75

Local linear model

…

i th domain

JiΔpi

Δfi
0

pi …

Practical nonlinear

system

p1 pn

y

p… p0

FIGURE 4.4 Multi-domain modeling approach

Since the whole domain is first divided into n small subdomains, for p at the ith
subdomain, the corresponding performance of the system can be approximated by

yi = fi(d, pi) + JiΔpi (4.2)

with Ji =
𝜕f
𝜕p
|||p=pi

and Δpi = p − pi.

where pi is the center of the ith domain and fi(d, pi) is the performance value at its

center.

Define

Δyi = yi − f (d, p0) and Δf 0
i = fi(d, pi) − f (d, p0) (4.3)

From Equations 4.2 and 4.3, we have

Δyi = Δf 0
i + JiΔpi (4.4)

From Equation 4.4, it is clear that the performance variationΔyi at each subdomain

is decided by two parts: central variationΔf 0
i and domain variation JiΔpi, as indicated

in Figure 4.2. The central variation represents the distance between the nominal

value p0 and the center of every domain, and the domain variation represents the

performance variation within each domain around its center. Thus, minimization of

these two variations Δf 0
i and JiΔpi are required to achieve the robustness in each

subdomain.

4.2.2 Variation Separation-Based Robust Design Method

From Equation 4.4, the sum of all performance variations on all domains may be

written as

ΔY =
n∑

i=1

‖‖‖Δf 0
i + JiΔpi

‖‖‖ (4.5)

with ΔY =
∑n

i=1
‖‖Δyi

‖‖
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Nonlinear system with large parameter variation 
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FIGURE 4.5 Variation separation-based robust design

When this variation sum (Equation 4.5) is minimized, then the nonlinear system

is robust. However, it is difficult to directly minimize this variation sum since it is

affected by two coupling parts: the central variation and the domain variation, and

these two parts have the nonlinear relation with design variable d.

According to the inequality theory, the equality (Equation 4.5) may be expressed

as

ΔY ≤
n∑

i=1

‖‖‖Δf 0
i
‖‖‖ +

n∑
i=1

‖‖JiΔpi
‖‖ (4.6)

From this design problem (Equation 4.6), if the upper bound of the performance

variation is minimized, then the system will be robust even if the large parameter

variation exists.

Thus, a variation separation-based robust design method is developed, as shown

in Figure 4.5. First, the central variation and the domain variation are separated,

upon which the complex design will be reduced into two simple subtasks. One is

to minimize the sum of all central variations. The other is to minimize all domain

variations using the robust design method. Then, to simultaneously consider their

effects, these two subtasks are integrated into a unified optimization framework to

ensure the robustness of the nonlinear system under circumstance of large parameter

variations.

4.2.2.1 Minimization of the Central Variation First, the first term∑n
i=1

‖‖Δf 0
i
‖‖ on the right side of the inequality (Equation 4.6) is only controlled by

centers of all subdomains and has no relationship to parameter variation Δp. Since
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MULTI-DOMAIN MODELING-BASED ROBUST DESIGN METHODOLOGY 77

all domains’ centers need to be close to the performance nominal value, the design

variable d should be chosen to minimize all Δf 0
i (i =1, . . . , n) at all domains

C1(d):
min

d

1

n

n∑
i=1

‖‖‖Δf 0
i
‖‖‖2

s.t. d ∈ Sd, p ∈ Sp

(4.7)

The solution of C1(d) can make all domains’ centers close to the performance

nominal value.

4.2.2.2 Minimization of the Domain Variation The domain variation can be

reduced by minimizing other term
∑n

i=1 ‖JiΔpi‖ on the right side of the inequality

(Equation 4.6). Define

Δri = JiΔpi (4.8)

From Equation 4.8, we have

‖‖Δri
‖‖2

2 = ΔpT
i JT

i JiΔpi (4.9)

According to the singular value decomposition theory, we have

‖‖Δri
‖‖2

2 =
m∑

j=1

𝜎i,jw
2
i,j (4.10)

with [wi,1,… , wi,m]T = VT
i Δpi.

where 𝜎i,j is the jth singular value of JT
i Ji, and its orthogonal eigenvector is denoted

as Vi = [Vi,1 ⋯ Vi,m].

According to the sensitivity-based robust design approach, only if the maximal

singular value 𝜎i,max is minimized, the performance Δri will be less sensitive to the

parameter variation Δpi. For the robustness of the whole system, all maximal singular

values at all subdomains should be minimized. This can make every subdomain to

have small variation around its center. Thus, in order to minimize Δr in the whole

parameter region, together with minimization of
∑n

i=1 ‖JiΔpi‖, the design variable d
should be chosen to minimize all maximal singular values 𝜎i,max(i =1, . . . , n)

C2(d): s.t.

min
d

1

n

n∑
i=1

max
j=1,…,m

(𝜎i,j)

‖‖Δri
‖‖2

2 =
m∑

j=1

𝜎i,jw
2
i,j(i = 1,… , n)

d ∈ Sd, p ∈ Sp

(4.11)
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78 MULTI-DOMAIN MODELING-BASED ROBUST DESIGN

The solution of Equation 4.11 can minimize the influence of the domain variation,

which means that performance at every subdomain is close to the performance at the

center of the domain.

4.2.2.3 Integrated Design This above designs will be integrated to simultane-

ously consider the influence of the central variations and the domain variations. This

will make the performance of the designed system close to its nominal performance

value and, thus, it can ensure the robustness of the nonlinear system even if large

parameter variation exists. In this sense, a multi-objective optimization is constructed

for the integration design.

⎧⎪⎨⎪⎩
min

d
C1(d)

min
d

C2(d)

s.t. d ∈ Sd, p ∈ Sp

(4.12)

The most common method to solve the multi-objective optimization is the

weighted-sum (WS) method, which optimizes the weighted sums of several ob-

jectives as below:

min
d
𝛽

C1(d)

C1(d+)
+ (1 − 𝛽)

C2(d)

C2(d+)

s.t. d ∈ Sd, p ∈ Sp

(4.13)

where the objectives C1(d) and C2(d) are normalized by their central values C1(d+)

and C2(d+) with the central point d+ of d, and 𝛽 is a trade-off weight in the range

0 ≺ 𝛽 ≺ 1.

Obviously, the robust design problem can be solved from Equation 4.13 with a

proper choice of the weight factor 𝛽. In order to obtain this proper weight factor 𝛽,

an intelligent approach is presented for optimal solution, as shown in Figure 4.6. It

mainly includes the following steps:

Step 1: Initialize the weight factor 𝛽.

Step 2: Solve the optimal problem (Equation 4.13).

Step 3: Check the solution to make sure whether it satisfies the robust performance.

If not, this weight factor 𝛽 needs to be updated. Here, the well-developed particle

swarm optimization method is employed to update the weight factor 𝛽 and then

the program goes to Step 2.

Step 4: Repeat Steps 2 and 3 until the design satisfies the robustness criteria.

4.2.3 Design Procedure

In industrial application, many systems have strong nonlinearity as well as large

parameter variation. The presented method is to ensure the robustness of this kind

of systems and is summarized in Figure 4.7. Since it integrates the merits of both
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FIGURE 4.6 Configuration for intelligent optimization

Design of nonlinear system (Equation 4.1) 

Variation separation-based robust design  

Minimization of central variation (Equation 4.7) 

Minimization of domain variation (Equation 4.11)

Integration design (Equation 4.13) 

Robust design 

Multi-domain modeling approach

[(Equations 4.2, 4.3, and 4.4)]  

FIGURE 4.7 Design flowchart
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80 MULTI-DOMAIN MODELING-BASED ROBUST DESIGN

multi-domain modeling and robust design to handle the influence of system nonlin-

earity as well as large parameter variation, it can effectively ensure robustness of the

nonlinear system even if large parameter variation exists.

Obviously, when there is only one subdomain, the above presented approach will

be the same with the traditional robust design method that is based on the linearization

model at the nominal value, such as Euclidean norm method, conditional number

method, and first- and second-order moment methods. These traditional robust design

methods can be considered as a special case of the presented approach.

4.3 CASE STUDY

Two practical nonlinear cases are used to demonstrate the effectiveness of the pro-

posed design method. Define the relative modeling error RE as

RE(i) =
|||yi − ⌢

y
i||||yi| × 100% (4.14)

where y and
⌢
y represent the practical performance and the estimated performance

respectively, and i refers to the ith sample.

4.3.1 Robust Design of a Belt

Belts are used in transmission of power between shafts with either parallel or skewed

axes. The power transmitted by a belt is

W = f (s) (4.15)

with f (s) = (1 − e−𝜉𝜃)(T − MV2)V
where M and 𝜃 are the mass of the belt per unit length and the contact angle respec-

tively, V and T are the belt speed and the tension in the belt, respectively, 𝜉 and W are

the coefficient of friction and the transmitted power, respectively. The coefficient of

friction 𝜉, the mass M, and the contact angle 𝜃 are 0.5, 1 kg, and 𝜋∕4, respectively.

The design variable d, the design parameter p, and the performance function y are

d = T , p = V , y = W

This design task is to find the design variable T from the design space [10, 22] to

have a robust performance against variation Δp = ΔV .

4.3.1.1 Comparison of Modeling Performance The modeling performance

is first compared using 1000 samples. Since the design parameter V varies within

[0.8, 2.4], it is divided into four subdomains, each with the interval equal to 0.4 at the

proposed method. From Figure 4.8, it is clear that the proposed method has smaller
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FIGURE 4.8 Comparison of relative errors: proposed method—(mean: 0.541, variance:

0.236); linearization method—(mean: 8.68, variance: 75.27)

relative error, because the largest RE obtained by the proposed method is 2% but the

one obtained by linearization method around the nominal parameter is 30%, and its

mean and variance are also smaller than the linearization method. Thus, the proposed

method has a better modeling performance than the traditional method because it

considers system nonlinearity.

4.3.1.2 Comparison of Design Performance After the above modeling, the

design performance is compared in Table 4.1 under different design methods and large

parameter variation. From Table 4.1, it is clear that the mean and the variance of the

performance variation Δy gained by the proposed method are smaller than the other

two common methods: Euclidean norm method (Ting and Long, 1996; Zhu and Ting,

2001) and sensitivity-region-based robust design (Li, Azarm, and Boyars, 2006).

Moreover, according to six sigma theory in quality engineering (Chen et al., 1996,

1999), 99.73% of variations will fall into the range of mean ± 3 standard deviations,

under assumption that the variation is normally distributed. Thus, the smaller range of

mean ± 3 standard deviations, the better robustness that the method has. Obviously,

the proposed method has better robustness than the other two methods.

4.3.2 Robust Design of Hydraulic Press Machine

The forging workings of the hydraulic press machine are shown in Figure 4.9. Since

its working plate has a great inertia and forged work piece has ultrahigh strength and
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82 MULTI-DOMAIN MODELING-BASED ROBUST DESIGN

TABLE 4.1 Performance Comparison Under Different Design Methods

Sensitivity-

Linearization- Region-Based

Based Robust Robust Design Proposed Robust

Design Method Method Design Method

Design d∗ 15.4 16.6 16.48

ΔY Mean −0.6591 −0.6585 −0.6585

Variance 0.3660 0.3565 0.3546

Mean ± 3 standard

deviation

[−1.7572, 0.4390] [−1.7282, 0.4111] [−1.7224, 0.4053]

is big in size, it needs a huge driving force to forge a metal work piece and to propel

the working plate to move up and down. This calls for a complex hydraulic driven

system, including a pump, valve, pipe, and cylinder. The objective of this design is

to achieve robustness of the dynamic process under parameter variation, because it is

easy to estimate and predict system performance when the dynamic process is robust.

According to Newton’s second law, the force model of the working plate can be

derived as

m
d2x
dt2

= AP − Bc
dx
dt

+ mg − f (4.16)

where m is mass of the working plate, x is position of the working plate, A is area sum

of all hydraulic cylinders, P is pressure, f is load force, and Bc is viscous damping

coefficient.

The flow model of the hydraulic cylinder can be represented by

q = A
dx
dt

+
V0

𝛽e
⋅

dp

dt
(4.17)

where q is flow, V0 is initial volume that is equal to the product of the cylinder area

and the piston position h, and 𝛽e is the spring moment of medium.

Driven force

Work piece

Upper mold

Working plate 

Down mold

Hydraulic 

driven system

Equivalent hydraulic

cylinder 

(a) (b)

FIGURE 4.9 The hydraulic press machine system and its operation principle: (a) hydraulic

press machine; (b) forging process

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CASE STUDY 83

The pressure P can be divided into two parts:

P = P0 + ΔP (4.18)

where P0 and ΔP are the nominal pressure and the pressure variation, respectively,

nominal pressure is used to balance both weight and load force, and pressure variation

is used to offer the desired dynamic trajectory. Since displacement during the forging

process is small and its speed is also low, the nominal pressure P0 that is usually

known can be estimated as follows

AP0 + mg − f = 0 (4.19)

Inserting Equations 4.18 and 4.19 into Equations 4.16 and 4.17, we have

m
d2x
dt2

= AΔP − Bc
dx
dt

(4.20)

q = A
dx
dt

+
V0

𝛽e
⋅

dΔP
dt

(4.21)

Operating Equations 4.20 and 4.21 using Laplace transform and inserting Equa-

tion 4.21 into Equation 4.20, the system model can be obtained as follows:

v = dx
dt

= 1

s2

𝜔2
+ 2𝜉

𝜔
s + 1

u (4.22)

where v is speed, u = q
A

and

the frequency:

𝜔 =
√
𝛽cA

hm
(4.23a)

the damping ratio:

𝜉 =
Be

2

√
h

m𝛽eA
(4.23b)

From Equation 4.22, it is clear that the dynamic performance of this system is the

function of its frequency 𝜔 and damping ratio 𝜁 . Thus, the dynamic robust perfor-

mance may be transformed equivalently into robustness of these two characteristic

variables. Since the parameter p =
[
A 𝛽e

]
has variation Δp around its nominal value

p0, the design variable d = h is required to choose from the design space h ∈ [0.5, 5]
to ensure the robustness of these two characteristic variables, in order to guarantee

the dynamic robustness of the system under parameter variation.
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FIGURE 4.10 Comparison of relative error: (a) relative error of the presented method (mean:

0.0077, variance: 4.53 × 10−5); (b) relative error of the common linearization method (mean:

0.0165, variance: 1.22 × 10−4)
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CASE STUDY 85

TABLE 4.2 Mean and Variance of Modeling Error

Modeling Error

Mean Variance

Presented method 5.53 × 10−6 2.34 × 10−11

Linearization method 3.45 × 10−5 5.17 × 10−10

4.3.2.1 Comparison of Modeling Performance This design parameter p
randomly varies in [−5%p0, 5%p0] and is divided into nine subdomains. The model-

ing performance of this presented approach is compared to the linearization method

around the nominal point under 1000 samples.

From Figure 4.10, it is clear that the presented method has smaller relative error,

because the largest RE obtained by the presented method is 0.035%, and the one

obtained by the linearization method is 0.05%. Furthermore, the mean and variance

obtained in the proposed method are also smaller than the linearization method. From

Table 4.2, the modeling error, including its mean and variance, is also smaller than

the one obtained by the linearization method around the nominal parameter. Thus,

the presented method has better modeling performance than the linearization method,

because it has considered the system nonlinearity.

4.3.2.2 Comparison of Design Performance The comparison of the design

performance under different design methods is shown in Table 4.3 when large pa-

rameter variation exists. From Table 4.3, it is clear that the mean and variance of the

performance variation Δy gained by the presented method are smaller than the per-

formance variation Δy gained by the other two common methods: Euclidean norm

method (Ting and Long, 1996; Zhu and Ting, 2001) and sensitivity-region-based

robust design (Li, Azarm, and Boyars, 2006).

Moreover, according to six sigma theory in quality engineering, 99.73% of varia-

tions will fall into the range of mean ± 3 standard deviations, under assumption that

the variation is normally distributed. It is obvious that the range of mean ± 3 standard

deviation obtained by the presented method is smaller than the ones obtained by the

TABLE 4.3 Performance Comparison Under Different Design Methods

Δy = ‖‖y(d, p0)‖‖2

2
− ‖‖y(d, p0 + Δp)‖‖2

2

Mean Variance

Mean ± 3 Standard

Deviation

Euclidean norm method −5.31 × 10−6 1.820 × 10−8 [−0.529, −0.532] × 10−5

Sensitivity region

method

4.178 × 10−6 1.404 × 10−8 [0.419, 0.416] × 10−5

Presented method −7.77 × 10−7 5.193 × 10−10 [−0.776, −0.778] × 10−6
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86 MULTI-DOMAIN MODELING-BASED ROBUST DESIGN

other two methods. Thus, the presented method has better robustness than the two

common design methods.

4.4 SUMMARY

A design method is presented for robustness of a nonlinear system against large pa-

rameter variations. Since the parameter space is divided into many small subdomains,

a local linearization model can be well developed at each subdomain. The nonlinear

system can then be described well by the multi-domain modeling approach in a large

parameter space. The variation separation-based robust design method developed

can effectively minimize the influence of parameter variation on design performance.

Since this presented method integrates the merits of both multi-domain modeling

and robust design, it can ensure the robustness of the nonlinear system under large

parameter variations. Effectiveness of the method is illustrated in comparison with

the two common design approaches for designing a practical nonlinear system. The

results show that it can obtain the desired robust performance and demonstrates its

superiority over the traditional design methods when the system is strongly nonlinear

and has large parameter variations.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHAPTER 5

HYBRID MODEL/DATA-BASED
ROBUST DESIGN UNDER MODEL
UNCERTAINTY

The previous two chapters mainly discussed robust design under parameter

variations. In this chapter, two hybrid model/data-based, probabilistic and de-

terministic, robust design approaches are proposed for a partially unknown

system under parameter variations as well as model uncertainty. The system is

first formulated into a linear structure that will be easy to handle by the well-

developed robust design theories. Its sensitivity matrix incorporates all model

uncertainties and nonlinearities. Then, the bound of the sensitivity matrix can

be estimated from data. Since modeling of the bound is easier than direct mod-

eling of the matrix perturbation, the two model-based robust design methods,

one in deterministic nature and another in probabilistic nature, are developed

to minimize the influence of parameter variation to the performance.

5.1 INTRODUCTION

In manufacturing process, many systems used are partially unknown due to vari-

ous reasons. Model uncertainty could be caused by incomplete system information,

simplification, and idealization at the design stage. If this model uncertainty is not

properly considered at the design stage, it may cause failure in future operations. Thus,

in order to achieve desirable robust performance, the influence of model uncertainty

on performance should be minimized.

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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88 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

However, as presented in Chapter 2, since data-based robust designs do not rely

on the process knowledge, they may lead to a relatively coarse solution and need

large amounts of experimental data at high cost. On the other hand, model-based

robust design approaches are not applicable to unknown systems because of the

unavailability of accurate relationship between performance and design variables.

This model uncertainty will be a major challenge to robust design. So far, there is

still no effective work reported in the area of robust design to handle the partially

unknown nonlinear system.

In this chapter, two hybrid model/data-based robust design methods, which inte-

grate the advantages of the model-based robust design and the data-based modeling,

are presented to achieve the robustness of the partially unknown nonlinear system.

First, the system is formulated into a linear structure. Its sensitivity matrix, incorpo-

rating influences of model uncertainty and nonlinearity, is different from the common

constant sensitivity matrix. With the help of this estimated sensitivity bound and the

nominal model of the system, two model-based robust design methods, one in deter-

ministic nature and another in probabilistic nature, are then developed to minimize

the influence of parameter variation to performance. Finally, the presented methods

are compared with several common robust design methods on the selected examples.

5.2 DESIGN PROBLEM FOR PARTIALLY UNKNOWN SYSTEMS

Robust design problem for the partially unknown nonlinear system is considered as:

Y = f (d, p) (5.1)

where Y = [y1 ⋯ ym]T represents performance vector; d = [d1 ⋯ dl]
T is ad-

justable design variable vector; p = [p1 ⋯ pn]T denotes uncontrollable parame-

ter vector; and f (d, p) = [f1(d, p) ⋯ fm(d, p)]T includes two parts: known model

information f0(d, p) and model uncertaintyΔf (d, p) = f (d, p) − f0(d, p). This known

model information, also called as the nominal model here, can be obtained from

the process knowledge and the expert’s experience, and model uncertainty is often

caused by assumption and simplification at the design stage. For convenience, f (d, p),

f0(d, p), and Δf (d, p) are simply denoted as f, f0, and Δf.

5.2.1 Probabilistic Robust Design Problem

When the probabilistic information ofΔp is available, the probabilistic robust designs

can be derived to design system robustness. Generally, the parameter p follows

Gaussian distribution with nonzero mean and nonidentical standard deviation. The

expected value 𝜇p and the covariance matrix 𝜎p of the parameter variation Δp can be

expressed as

𝜇p = E[Δp] (5.2a)

𝜎p = E[(Δp − 𝜇p)(Δp − 𝜇p)T ] = E[ΔpΔpT ] − 𝜇p𝜇
T
p

(5.2b)
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DESIGN PROBLEM FOR PARTIALLY UNKNOWN SYSTEMS 89

where the parameter variation Δp is defined as Δp = p − p0, p0 is the nominal value,

and E[∙] is the expected-value operator.

There are some difficulties in robustness design of the system (Equation 5.1) due

to the following reasons.

1. unknown influence of the model uncertainty Δf to performance; and

2. simultaneous influence of both the uncontrollable variation Δp and the model

uncertainty Δf.

Traditional probabilistic robust design (TPRD) method (Al-Widyan and Angeles,

2005) is to design system robustness based on its nominal model f0 without

consideration of model uncertainty. Taylor series expansion of the performance Y is

usually taken at the nominal values p0 as follows:

ΔỸ = J0Δp (5.3)

with the nominal sensitivity matrix J0 = 𝜕f0(d, p)

𝜕p
||p0
.

Obviously, from Equations 5.2a and 5.3, the expected value �̃�Ỹ of the performance

variation ΔỸ can be expressed as

�̃�Ỹ = E[ΔỸ] = J0𝜇p (5.4)

and the corresponding covariance matrix �̃�Ỹ of ΔỸ is derived as

�̃�Ỹ = E[(ΔỸ − 𝜇Y )(ΔỸ − 𝜇Y )T ] (5.5)

Inserting Equations 5.3 and 5.4 into Equation 5.5, the covariance matrix �̃�Ỹ may

be rewritten as

�̃�Ỹ = E
[
J0(Δp − 𝜇p)(Δp − 𝜇p)TJT

0

]
= J0 ⋅ E

[
(Δp − 𝜇p)(Δp − 𝜇p)T

]
⋅ JT

0

(5.6)

Inserting Equation 5.2b into Equation 5.6, the covariance matrix �̃�Ỹ is rewritten as

�̃�Ỹ = J0𝜎pJT
0

(5.7)

Then, the TPRD method is to minimize the estimated covariance matrix �̃�Ỹ through

optimizing the design variable d.

Since the model uncertainty can lead to a larger error between nominal model

(Equation 5.3) and practical system (Equation 5.1), this error may make the TPRD

method less effective. As an example, at point A of Figure 5.1, the TPRD method

uses the performance covariance �̃� in Equation 5.7 to measure the system robustness.

However, the practical covariance 𝜎 is very different with the estimated performance

covariance �̃� due to model uncertainty. The solid curve is denoted as the nominal
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90 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

Nominal system

A

Low limit 

~

Y

p

Upper limit Linear model

σ

σ

σ0

FIGURE 5.1 Disadvantage of the TPRD method

system and the dotted curve is represented as the upper and lower limits of the

practical system in Figure 5.1.

Moreover, even if there is no model uncertainty, the linear approximation will

produce large approximate error, which can also deteriorate system performance. For

example, at design point A of Figure 5.1, the performance covariance �̃� is different

with the nominal performance covariance 𝜎0 of the nominal model f0 due to the effect

of the nonlinearity.

Thus, an effective probabilistic robust design approach should be developed to

design robustness of the partially unknown nonlinear system.

5.2.2 Deterministic Robust Design Problem

When the probabilistic information of Δp is not available, the deterministic robust

designs will be employed to design system robustness. Taking Taylor series expansion

of Y at the nominal value p0, the performance variation ΔY can be approximated by

linear series expansion

ΔY = J ⋅ Δd (5.8)

where the nominal sensitivity matrix J0, the perturbation sensitivity matrix ΔJ, and

the sensitivity matrix J are defined as

J0 =
𝜕f

𝜕p
|||p=p0

(5.9a)

ΔJ =
𝜕Δf

𝜕p
|||p=p0

(5.9b)

J = J0 + ΔJ (5.9c)

From Equation 5.8, the performance variation ΔY can be easily expressed as‖‖ΔY‖‖2

2 = ΔpTBΔp (5.10)

with ‖ΔY‖2
2
=

∑m
i=1 (Δyi)

2 and B = JTJ
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DESIGN PROBLEM FOR PARTIALLY UNKNOWN SYSTEMS 91

Define

B0 = JT
0

J0 (5.11)

According to the singular value decomposition (SVD) theory, the real symmetric

matrices B and B0 may be decomposed as

B = 𝜁diag
(
𝛿1,… , 𝛿n

)
𝜁T (5.12a)

B0 = 𝜁0diag
(
𝛿0

1
,… , 𝛿0

n

)
𝜁T

0
(5.12b)

where 𝛿i and 𝛿0
i are the singular values of J and J0, respectively, and the corre-

sponding orthogonal eigenvectors are denoted as 𝜁i and 𝜁0
i , which are one element of

𝜁 = [𝜁1 ⋯ 𝜁n] and 𝜁0 = [𝜁0
1

⋯ 𝜁0
n ].

The traditional deterministic robust design is to reduce the influence of the varia-

tions Δp based on the nominal model, and condition of J = J0 and B = B0. Thus, by

inserting Equation 5.12b into Equation 5.10, the performance variations ΔY in the

traditional robust method may be expressed as follows

‖‖ΔY‖‖2

2 =
n∑

i=1

𝛿0
i

(
x0

i

)2
(5.13)

with [x0
1
,… , x0

n]T = 𝜁T
0
Δp.

Furthermore, the robust design variables d can be figured out by minimizing the

largest singular value 𝛿0
max of J0 as well as the Euclidean norm method or minimizing

the condition number
𝛿0
max
𝛿0
min

of J0 as well as the condition number method

C1(d): min
d

max
(
𝛿0

i

)
or min

d

(
𝛿0
max
𝛿0
min

)
st. h (d, p) = 0

l (d, p) ≤ 0

(5.14)

where h and l are constraints from other design aspects.

There exist two cases

� Case 1: There is no model uncertainty in the system, then J = J0.
� Case 2: There is model uncertainty in the system, then J ≠ J0.

Obviously, the traditional deterministic robust design methods, including Eu-

clidean norm method and condition number method, can work well in Case 1. How-

ever, in Case 2, since J is not equal to J0 and B is not equal to B0, there exists the

difference Δ𝛿i between the singular values 𝛿0
i and 𝛿i, as shown in Figure 5.2. This

difference will result in the largest singular value 𝛿max or the condition number
𝛿max
𝛿min
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92 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

J

J0

BδΔ

AδΔ

δ

d
Design A 

(Traditional solution) 

Design B

FIGURE 5.2 Influence of model uncertainty to singular value 𝛿

of J not being minimal under the traditional robust design. Thus, the traditional robust

design methods are less effective in this case. For example, design A in Figure 5.2 is a

robust solution obtained by Euclidean norm method. However, its singular value will

change significantly (Δ𝛿A) due to the effect of ΔJ. Thus, it is not robust under model

uncertainty. But the singular value 𝛿B in design B changes little under perturbation

between J and J0. Therefore, design B is less sensitive to the model uncertainty than

design A.

If the singular value variation Δ𝛿 is very small, only the nominal variation 𝛿0

should be minimized so that the traditional deterministic robust design methods are

still effective. Thus, the robust design problem under the model uncertainty can be

decomposed into two subproblems. One is to reduce the influence of the variations

Δp to the performance variations based on the nominal model. The other is to reduce

influence of the model uncertainty to the variations of the singular values, which

represents Δ𝛿 in Figure 5.2, so that the nominal singular value 𝛿0 is close to the

singular value 𝛿.

5.3 HYBRID MODEL/DATA-BASED ROBUST DESIGN

METHODOLOGY

It is well known that the more the designer makes use of the system knowledge, the

better the design can be achieved with fewer data samples required. Thus, to make

better use of the system knowledge and reduce the uncertainty effect, the model-based

robust design should be integrated with the data-based modeling approach for the

partially unknown nonlinear system. This is because the model-based robust design

can make full use of the known system information and the data-based modeling

approach can effectively compensate uncertainty effect.

Based on this idea, a hybrid model/data-based robust design methodology is pre-

sented in Figure 5.3 to design robustness of the partially unknown nonlinear system.

On one hand, the data-based uncertainty compensation method can extract useful

information hidden in the data to compensate the effect of model uncertainty. On

the other hand, with help of the data-based uncertainty compensation and the known
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+

Model-based robust design

Data-based uncertainty

compensation

Hybrid model/data-

based robust design

FIGURE 5.3 Hybrid model/data-based robust design methodology

nominal model, the model-based robust design approach can effectively minimize

the influence of the parameter variation on the performance. Thus, this method inte-

grates the advantages of both model-based robust design and data-based uncertainty

compensation, and can be effectively applied to the partially unknown nonlinear

system.

In the following two sections, two design methods, probabilistic robust design and

deterministic robust design, will be discussed in detail.

5.3.1 Probabilistic Robust Design

5.3.1.1 Model Transformation for Linear Structure The most popular and

mature sensitivity-based robust design methods, such as the condition number ap-

proach, the TPRD approach, and Euclidean norm approach, are based on a linear

model. In order to make use of their advantages, the system is formulated into a lin-

ear structure. Taking Taylor series expansion of the nominal model f0 at the nominal

value p0, the performance variation ΔY can be expressed as

ΔY = J0 ⋅ Δp + g (Δp) + Δf (5.15)

with J0 = 𝜕f0
𝜕p

|||p=p0
, and g(Δp) includes all high order nonlinear terms of the nominal

model f0
Let

ΔJ ⋅ Δp = g (Δp) + Δf (5.16)

At the given design variable d, the meaning of Equation 5.16 can be illustrated

approximately in Figure 5.4, where the perturbation sensitivity matrixΔJ is expressed

from the geometric relation. For example, ΔJ in point B is equal to the slope of the

linear BO. Thus, this ΔJ incorporates the effect of all nonlinear terms as well as

model uncertainty.

Since this ΔJ is a function of Δp, it varies under the given d, as illustrated in

Figure 5.5, where solid curve denotes its mean and dotted curve represents the upper

and lower limits.
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94 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

O
α

B

Δp

Δf + g(Δp)

FIGURE 5.4 Meaning of perturbation matrix

From Equations 5.15 and 5.16, the performance variation ΔY can be rewritten as

ΔY = JΔp (5.17)

with the sensitivity matrix J = J0 + ΔJ.

Since the effect of the nonlinear terms and the model uncertainty are fully consid-

ered into ΔJ, the model (Equation 5.17) can well express the system (Equation 5.1).

Moreover, the model (Equation 5.17) has a linear structure that would be easily

designed by the model-based robust design approaches under condition that the sen-

sitivity matrix J is known.

However, in Equation 5.17, only the nominal sensitivity matrix J0 is known, while

ΔJ is unknown due to unknownΔf. Thus,ΔJ needs to be identified from experimental

data via Equation 5.17. Direct modeling of the perturbation sensitivity matrixΔJ from

data will be extremely difficult because: (a) its model structure is difficult to know,

especially for strongly nonlinear systems; (b) sufficient sample data are difficult to

obtain due to economic constraints; and (c) parameter variations are usually random.

To reduce this difficulty, the bound model of the system could be used to provide

some useful information of the system.

5.3.1.2 Data-Based Uncertainty Estimation In the bound model, the upper

and lower bound of every element in the perturbation sensitivity matrix will be

d 

Upper limit 

Lower limit

Mean ΔJ0

ΔJ

FIGURE 5.5 Perturbation sensitivity
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HYBRID MODEL/DATA-BASED ROBUST DESIGN METHODOLOGY 95

estimated. The robust model of ΔJ at the given design variable d is mathematically

represented as follows:

ΔJ =

⎡⎢⎢⎢⎢⎣
ΔJ0

1,1
± 𝜃1,1 ⋯ ΔJ0

1,n ± 𝜃1,n

⋮ ⋱ ⋮

ΔJ0
m,1

± 𝜃m,1 ⋯ ΔJ0
m,n ± 𝜃m,n

⎤⎥⎥⎥⎥⎦
(5.18)

Given a design variable d, the element ΔJi,j of ΔJ is limited between two extreme

values, specified by [ΔJ0
i,j − 𝜃i,j,ΔJ0

i,j + 𝜃i,j] with the mean value ΔJ0
i,j and bound

value 𝜃i,j.

For identification of Equation 5.18, let the parameter p randomly vary and then the

sampling data of the performance variation ΔY in Equation 5.15 be collected under

different design variable d. With the collected ΔY and the known nominal sensitivity

matrix J0, the sampling data of ΔJ can be obtained from Equation 5.17 at the given

design variable d. Based on these sampling data of ΔJ, the mean value model of

ΔJ can be identified from the least-square fitting, whereas the bound associated with

each of the model elements can be calculated from the variance matrix (Choi and

Allen, 2009).

Mean value model

Usually, a polynomial model is used to approximate the mean model

ΔJ0 = g(x, 𝛽) (5.19)

where g is a polynomial function, x is the polynomial vector about d, such as x =
[1 d d2]T, and 𝛽 is the unknown coefficient vector of the polynomial. With the

sampling data of the performance variation ΔY at hand, it is easy to identify the

coefficient vector 𝛽 using the common least-square method.

Bound estimation

This bound estimation can be found in Choi and Allen (2009) with some revisions.

When ΔJ is not normal distribution, a suitable projection may transform it into the

normal distribution. For simplification without loss of generalization, we assume that

ΔJ is a normal distribution as

ΔJi,j ∈ N
(
ΔJ0

i,j, 𝜂i,j

)
(5.20)

where 𝜂 is the variance, which is usually modeled by an exponential function as

𝜂i,j = exp(𝛾i,j ⋅ x) (5.21)
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96 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

Then, the unknown parameter 𝛾i,j can be estimated by the following logarithm

method as

min
𝛾i,j

N∑
i=1

[
log

(
ΔJi,j − ΔJ0

i,j

)2
− 𝛾i,j ⋅ x

]2

(5.22)

Thus, from Equations 5.20 and 5.21, the bound for the mean model can be obtained

using the interval estimation with a 100(1-a) confidence level:

𝜃i,j = tN−q,1−a∕2 exp(𝛾i,j ⋅ x) (5.23)

where t refers to t distribution, and N and q are the number of sampling data and

predictors, respectively.

5.3.1.3 Hybrid Model/Data-Based Robust Design After obtaining the

bound model (Equation 5.18), the following task is to design the system robustness.

Obviously, from Equations 5.2a and 5.17, the expected value 𝜇Y of the performance

variation ΔY can be expressed as

𝜇Y = E[ΔY] = J𝜇p (5.24)

and the corresponding covariance matrix 𝜎Y of ΔY is derived as

𝜎Y = E
[
(ΔY − 𝜇Y )(ΔY − 𝜇Y )T] (5.25)

Inserting Equations 5.17 and 5.24 into Equation 5.25, the covariance matrix 𝜎Y
may be rewritten as

𝜎Y = E[J(Δp − 𝜇p)(Δp − 𝜇p)TJT ]

= J ⋅ E[(Δp − 𝜇p)(Δp − 𝜇p)T ] ⋅ JT
(5.26)

Inserting Equation 5.2b into Equation 5.26, the covariance matrix 𝜎Y is

rewritten as

𝜎Y = J𝜎pJT (5.27)

Then, the robust design is to minimize the covariance matrix 𝜎Y through optimiza-

tion of design variable d. Since it is difficult to simultaneously minimize all elements

of the covariance matrix 𝜎Y , a common method is to minimize its Frobenius norm.

According to the matrix theory (Al-Widyan and Angeles, 2005), the Frobenius

norm of the covariance matrix 𝜎Y in Equation 5.27 may be expressed as

‖‖𝜎Y
‖‖F ≤

√
1

m
tr(JTJ)tr(𝜎p) (5.28)
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HYBRID MODEL/DATA-BASED ROBUST DESIGN METHODOLOGY 97

where || ⋅ ||F is the Frobenius norm of (⋅). From Equation 5.28, it is clear that

minimizing the performance covariance can be formulated as the minimization of

its upper bound. Since the designer cannot control the term tr(𝜎p)
√

1

m
, this robust

design problem reduces to the following minimization

min
d

tr(JTJ) (5.29)

According to the matrix norm theory, tr(JTJ) may be rewritten as

1√
m

tr(JTJ) = ‖‖J‖‖2

F =
n∑

i=1

𝛿2

i
(5.30)

where 𝛿i is the singular value of J. The next task is to estimate these singular values.

Define B = JTJ and

B0 = JT
0

J0 (5.31)

From Equations 5.17 and 5.31, the matrix B can be rewritten as

B = B0 + JT
0
ΔJ + ΔJTJ0 + ΔJTΔJ (5.32)

The eigenvalues 𝜆0
i (i = 1,… , n) of the matrix B0 are related to the corresponding

eigenvectors U0
i (i = 1,… , n) by the equation

B0U0 = U0Λ0 (5.33)

where U0 = [U0
1
,… , U0

n] and Λ0 = diag(𝜆0
1
,… , 𝜆0

n) are the right eigenvector set and

the right eigenvalue set of B0, respectively.

According to Bauer–Fike theorem (Stewart and Sun, 1990; Ralph and Stephen,

1989), if B0 has an additive perturbation ΔB = JT
0
ΔJ + ΔJTJ0 + ΔJTΔJ, then a

bound on the sensitivity of the eigenvalue is given by

||𝜆i − 𝜆0
i
|| ≤ K ⋅ ‖‖ΔB‖‖2 (5.34)

where 𝜆 and 𝜆0 are the eigenvalue set of B and B0, respectively, the condition number

K is the ratio of the largest singular value 𝜎U max to the smallest singular value 𝜎U min
of U0, and ||ΔB||2 is the Euclidean norm of ΔB.

According to the matrix norm theory, the norm matrix ||ΔB||2 may be derived as

‖‖ΔB‖‖2 ≤ (2‖J0
‖‖2 + ‖‖ΔJ‖‖2) ⋅ ‖‖ΔJ‖‖2 (5.35)
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98 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

Then, from the inequalities (Equations 5.34 and 5.35), we obtain

||𝜆i − 𝜆0
i
|| ≤ K ⋅

(
2‖‖J0

‖‖2 + ‖‖ΔJ‖‖2

)
⋅ ‖‖ΔJ‖‖2 (5.36)

According to the definition of the singular value, the following relation exists

𝛿i =
√
𝜆i, 𝛿

0
i =

√
𝜆0

i (5.37)

Thus, from Equations 5.36 and 5.37, the upper bound of 𝛿i can be expressed as

(𝛿i)
2 ≤ (

𝛿0
i

)2 + K ⋅
(
2‖‖J0

‖‖2 + ‖‖ΔJ‖‖2

)
⋅ ‖‖ΔJ‖‖2 (5.38)

In order to obtain the upper bound of 𝛿i given in Equation 5.38, the bound of‖ΔJ‖2 is required to be estimated. Then, given the bound model Equation 5.18, the

upper bound of ‖ΔJ‖2 can be obtained through the following optimization

𝛾 (d) = max
ΔJi,j∈

[
ΔJ0

i,j−𝜃i,j,ΔJ0
i,j+𝜃i,j

] ‖‖ΔJ‖‖2

s.t. Eq.(5.18), Eq.(5.19) and Eq.(5.23)

(5.39)

where 𝛾 is the upper-bound value of ‖ΔJ‖2 under the given design variable d. The

model 𝛾(d) can be obtained through the following three steps. First, identify the model

(Equations 5.18, 5.19, and 5.23) using data; then obtain 𝛾 through the optimization

(Equation 5.39) under a given design variable d using design of experiment (DoE),

and finally build the model 𝛾(d) using RSM.

From Equations 5.38 and 5.39, the upper bound of 𝛿i can be rewritten as

(𝛿i)
2 ≤ (

𝛿0
i

)2 + K ⋅
(
2‖‖J0

‖‖2 + 𝛾(d)
)
⋅ 𝛾(d) (5.40)

Then, from Equations 5.29, 5.30, and 5.40, the robust design variable d can be

figured out from the following optimization.

min
d

n∑
i=1

((
𝛿0

i

)2 + K ⋅
(
2‖‖J0

‖‖2 + 𝛾(d)
)
⋅ 𝛾(d)

)
s.t. B0U0 = U0Λ0

(5.41)

The optimization (Equation 5.41) can achieve the robustness of the nonlinear

system under both model uncertainty and parameter variation.

Remark: Obviously, when the system is fully unknown, where the nominal singular

value (𝛿0
i )2 in Equation 5.40 is zero, the presented method becomes the experimental-

data-based design method, such as meta-modeling method (Choi and Allen, 2009).

When the model is fully known, where K ⋅ (2||J0||2 + 𝛾(d)) ⋅ 𝛾(d) in Equation 5.40 is

zero, the presented method becomes the model-based robust design method, such as
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HYBRID MODEL/DATA-BASED ROBUST DESIGN METHODOLOGY 99

Nominal

model f0
 (Equation 5.15)

Design problem with model uncertainty

and uncontrollable variation (Equation 5.1)

Modeling for the linear structure (Equation 5.17)

Δp ΔJJ0

Data-based modeling

(Equations 5.18, 5.19,

and 5.23)

Estimation of singular value (Equation 5.40)

Model-based robust design (Equation 5.41)

Robust design

FIGURE 5.6 Design configuration

Euclidean norm method. When the model is partly known, this method is to integrate

the advantages of these two methods to achieve the robustness.

5.3.1.4 Design Procedure In manufacturing applications, assumptions and ide-

alization in a system often lead to model uncertainty. This model uncertainty is usually

neglected by using the nominal model only for design and control. These designs de-

rived from the nominal model only will be less robust because the model uncertainty

neglected still affects the system performances. The proposed robust design method

is to minimize the effect of the model uncertainty to the system performances.

The presented robust design methodology is summarized in Figure 5.6. The sys-

tem is first modeled into a linear structure (Equation 5.17), where the perturba-

tion sensitivity matrix ΔJ incorporates the effect of the nonlinear terms and model

uncertainty (as Equation 5.16). Then, the data-based modeling approach is to esti-

mate the model uncertainty from the process data (as Equations 5.18, 5.19, and 5.23).

Finally, with the help of the estimated model and the known nominal model, the

model-based method is developed to minimize the effect of the parameter variation

to the performance (as Equation 5.41). Thus, the developed robust design approach

can achieve the robustness of the nonlinear system under both the model uncertainty

and the parameter variation.

5.3.2 Deterministic Robust Design

The perturbation bound S is used to estimate Δ𝛿 and defined as

max
(||Δ𝛿i||) ≤ S (5.42)

with Δ𝛿i = 𝛿i − 𝛿0
i
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100 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

System with model

uncertainty

Nominal model

min ( ΔY
Δp, Δf

)

Minimization of

Nominal sensitivity J0

Minimization of

perturbation bound S

Multiobjective optimization

Robust design

Model uncertainty

FIGURE 5.7 The new robust design methodology

If the perturbation bound S can be set very small by the selection of the suitable

design variables d, then the singular value 𝛿 may be close to the nominal one 𝛿0. This

means that the model uncertainty has small effect to the singular value 𝛿. Under this

condition, the traditional deterministic robust design methods are still effective.

Accordingly, these two subproblems can be transformed into two minimizations

as shown in Figure 5.7. One is to minimize the nominal sensitivity matrix J0 just

as what the traditional methods do. This minimization can be achieved by solving

the optimization problem C1(d) in Equation 5.14. The other is to minimize the

perturbation bound S. Then, based on these two minimizations, a multi-objective

optimization problem is proposed to minimize the performance variations ΔY caused

by both the model uncertainty Δf and the variations Δp, which is conceptually

expressed as min (
ΔY

Δp,Δf
) in Figure 5.7.

5.3.2.1 Minimization of the Perturbation Bound S From the equality

(Equation 5.10), matrix B can be rewritten as

B = B0 + JT
0
ΔJ + ΔJTJ0 + ΔJTΔJ (5.43)

The eigenvalues 𝜆0
i (i = 1,… , n) of the matrix B0 are related to the corresponding

eigenvectors U0
i (i = 1,… , n) by the equation

B0U0 = U0Λ0 (5.44)

where U0 = [U0
1
,… , U0

n] and Λ0 = diag(𝜆0
1
,… , 𝜆0

n) are the right eigenvector set and

the right eigenvalue set of B0, respectively.
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HYBRID MODEL/DATA-BASED ROBUST DESIGN METHODOLOGY 101

According to Bauer–Fike theorem (Stewart and Sun, 1990; Ralph and Stephen,

1989), if B0 has an additive perturbation ΔB = JT
0
ΔJ + ΔJTJ0 + ΔJTΔJ, then a

bound on the sensitivity of the eigenvalue is given by|||𝜆i − 𝜆0
i
||| ≤ K ⋅ ‖‖ΔB‖‖2 (5.45)

where 𝜆 and 𝜆0 are the eigenvalue sets of B and B0, respectively; the condition number

K is the ratio of the largest singular value 𝜎U max to the smallest singular value 𝜎U min
of U0.

According to the matrix norm theory, we have‖‖ΔB‖‖2 ≤ (
2‖‖J0

‖‖2 + ‖‖ΔJ‖‖2

)
⋅ ‖‖ΔJ‖‖2 (5.46)

Then, from the inequalities (Equations 5.45 and 5.46), we obtain|||𝜆i − 𝜆0
i
||| ≤ K ⋅

(
2‖‖J0

‖‖2 + ‖‖ΔJ‖‖2

)
⋅ ‖‖ΔJ‖‖2 (5.47)

The inequality (Equation 5.47) may be rewritten as

𝜆0
i − K ⋅

(
2‖‖J0

‖‖2 + ‖‖ΔJ‖‖2

)
⋅ ‖‖ΔJ‖‖2 ≤ 𝜆i ≤ 𝜆0

i + K ⋅
(
2‖‖J0

‖‖2 + ‖‖ΔJ‖‖2

)
⋅ ‖‖ΔJ‖‖2

(5.48)

Since 𝜆i and 𝜆0
i are the eigenvalues of B = JTJ and B0 = JT

0
J0, respectively, 𝜆i and

𝜆0
i are not smaller than zero. From the inequality Equation 5.48), if 𝜆0

i is smaller than

K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2, then the lower bound of 𝜆i can be negative, which is

contradictory with 0 ≤ 𝜆i. In order to avoid such a case, the lower bound should take

the maximal value between zero and 𝜆0
i − K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2. Thus, the

inequality Equation 5.48 becomes

max
(
𝜆0

i − K ⋅
(
2 ‖‖J0

‖‖2 + ‖ΔJ‖2

)
⋅ ‖ΔJ‖2 , 0

) ≤ 𝜆i ≤ 𝜆0
i + K ⋅ (2 ‖‖J0

‖‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2

(5.49)

where max(𝜆0
i − K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2, 0) means that a maximal value be-

tween 𝜆0
i − K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2 and zero is chosen.

According to the definition of the singular value, we have

𝛿i =
√
𝜆i, 𝛿

0
i =

√
𝜆0

i (5.50)

Thus, if the eigenvalues 𝜆0
i and 𝜆i are very close, then their singular values 𝛿0

i
and 𝛿i are also very close. From the inequality (Equation 5.47) and the equality

(Equation 5.50), if K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2 is very small, then

1. 𝛿i is close to 𝛿0
i .

2. Δ𝛿i is less sensitive to ΔJ.
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102 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

Moreover, if K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2 ≈ 0, then 𝛿i will be approximately

equal to 𝛿0
i . Thus, minimizing the perturbation bound S can be transformed into the

minimization of K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2 as

C2(d): min
d

K ⋅ (2 ‖‖J0
‖‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2

s.t. B0U0 = U0Λ0

h(d) = 0

l(d) ≤ 0

(5.51)

The solution of Equation 5.51 guarantees that Δ𝛿i is small and 𝛿0
i is close to 𝛿i.

In the proposed robust design, only the bound of ‖ΔJ‖2 is required to be known.

This bound can be easily estimated by experimental or simulation data, such as

modeling method in Section 5.4.2. This proposed method can work well only if the

variation of ‖ΔJ‖2 is limited within the estimated bound.

5.3.2.2 Multi-objective Optimization Multi-objective optimization is con-

structed to have the trade-off between two minimizations C1 in Equation 5.14 and C2

in Equation 5.51. The robust design variables d can be figured out from the following

multi-objective optimization. {min
d

C1(d)

min
d

C2(d)

S.t.
B0U0 = U0Λ0

h (d, p) = 0

l (d, p) ≤ 0

(5.52)

The most common method for the multi-objective optimization is the weighted-

sum (WS) method, which optimizes the weighted sums of several objectives. The

multi-objective optimization (Equation 5.52) can be easily derived by the WS methods

as below:

min
d
𝛽

C1(d)

C1(d+)
+ (1 − 𝛽)

C2(d)

C2(d+)
S.t.
B0U0 = U0Λ0

h(d, p) = 0

l(d, p) ≤ 0

(5.53)

where the objectives C1(d) and C2(d) are normalized by their central values C1(d+)

and C2(d+) with the central point d+ in the design variables space, and 𝛽 is a trade-off

weight in the range 0 ≤ 𝛽 ≤ 1.

The design variables d can be solved from Equation 5.53 with a proper choice of

the weight factor 𝛽. In the proposed method, the weight 𝛽 is selected according to the

effect of the model uncertainty to performances. If the model uncertainty has smaller
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HYBRID MODEL/DATA-BASED ROBUST DESIGN METHODOLOGY 103

System with the model

uncertainty (Equation 5.1)

Nominal model

(Equation 5.14)

0
i

d
C1 : min max(     )σ

(Equation 5.51)

0 222
))•

d
JJJC2 : min(K•(2 ΔΔ+

min (
YΔ

Δp
)

min S (Equation 5.42)

(Equation 5.45)
SVD(J0

TJ0) (Equation 5.12b)
0 1ζ 0ζTdiag( = ),... ,0σ n

0σ
0

2ii K• Bλλ Δ≤−

Robust design

Model uncertainty

min (
σΔ

Δf
)

+ (1 –    )min
d

C1(d)

C1(d+)

C2(d)

C2(d+)
ββ  (Equation 5.53)

FIGURE 5.8 Design details of the proposed approach

influence to the performances, the objective function C1 actually plays a bigger role.

Then a big 𝛽 should be chosen. When 𝛽 = 1, it becomes the traditional deterministic

robust design. On the other hand, if the model uncertainty has larger influence to

the performances, the objective function C2 would be more important and a smaller

𝛽 should be chosen. When 𝛽 = 0, it only minimizes the influence from the model

uncertainty.

5.3.2.3 Design Summary The proposed robust design procedure is summa-

rized in Figure 5.8, which is decomposed into two subproblems: one is to minimize

the influence of the model parameter to the performance (ΔY∕Δp) by using the nom-

inal model only, and the other is to minimize influence of the model uncertainty to the

performance (Δ𝛿∕Δf ) by making the nominal singular value 𝛿0
i close to the singular

value 𝛿i. Then, these two subproblems are solved respectively from the two following

minimizations:

� The first optimization is to minimize the nominal sensitivity matrix J0 just

as what the traditional methods do. Using the singular value decomposition

theory, minimizing the nominal sensitivity matrix J0 can be transformed into
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104 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

minimizing the largest nominal singular value 𝛿0
max. Here, Euclidean norm is

used as the robust index.
� The second optimization is to minimize the perturbation bound S. According to

Bauer–Fike theorem, minimization of the perturbation bound S may be trans-

formed into minimization of K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2.

A WS method can balance these two minimizations to make the performances less

sensitive to both the model uncertainty and variations of the design variables. Since

only the norm bound of the perturbation sensitivity matrix is needed, this proposed

method can be easily realized.

5.4 CASE STUDY

5.4.1 Probabilistic Robust Design

Two cases are employed to compare the presented robust design method with the

TPRD method. The performance index Er is defined as

Er = ‖‖Yp − 𝜇p
‖‖2 − ‖‖YT − 𝜇T

‖‖2 (5.54)

where Yp and YT are performances gained by the presented method and the TPRD

method, respectively, and 𝜇p and 𝜇T are their means. Since the difference ‖Y − 𝜇‖2

between the performance Y and its mean 𝜇 can estimate the degree of the deviation

from its mean, the performance index Er would be a better indication. Only if

those with Er < 0 is larger than 50%, then the robustness is improved with better

performance than the TPRD method. Otherwise, the TPRD method performs better.

Example 5.1: Robust design for a pneumatic cylinder The design problem of

a pneumatic cylinder is shown in the Example 1.2 in Chapter 1. The distance L,

the pressure P, the nominal mass m0, the nominal friction force F0, and w are l m,

1.5 N/m2, 1 kg, 0.01 N, and 0.001 N, respectively. The design variable d is chosen

from [0.2 m, 0.3 m] to make the system robust to model uncertainty and parameter

variations.

The nominal sensitivity matrix J0 is

J0 =

[
− 1

2m

√
gl(𝜋D2P − 4F)

2m
−
√

2gl

m(𝜋D2P − 4F)

]
(5.55)

Then, bound model (Equation 5.18) of the perturbation sensitivity matrix

ΔJ = [ΔJ1, ΔJ2] is estimated from data with the confidence level a = 99.73%, where

the perturbation sensitivity matrix ΔJ is limited in the bound, as shown in Figure 5.9.

Given the nominal sensitivity matrix J0 and the estimated model of the perturbation

sensitivity matrix ΔJ, the approximate ability of the model (Equation 5.17) to the

practical system (Equation 1.2) is shown in Figure 5.10, from which it is clear that
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FIGURE 5.9 Data-based estimation for ΔJ: (a) estimation of ΔJ1: (b) estimation of ΔJ2

almost all performance variations are limited in the bound. Thus, it has a good ca-

pability to estimate the nonlinear system (Equation 1.2). It also shows that bound

modeling (Equation 5.18) is much easier than direct modeling of all data points (circle

points in Figure 5.10), because the sampling data have both strong nonlinearity and

random nature.

Based on the obtained model (Equation 5.17), the presented robust design solution

is Dp = 0.3m through the optimization (Equation 5.41). The TPRD method is DT =
Dmin = 0.2m.

Verification is carried out for comparison. Assume that Δm and ΔF follow the

normal distribution with mean 𝜇m = 0.05, 𝜇F = 0.005 and variance 𝜎m = 0.01, 𝜎F =
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FIGURE 5.10 Bound modeling for the performance variation ΔY
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106 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

TABLE 5.1 Performance Comparison Under Parameter
Variations and Model Uncertainty

Performance V TPRD Method Presented Method

Variance 𝜎V 0.0153 0.0109

0.0001, respectively. A total of 1000 samples are taken for comparison of the variance

𝜎V with respect to Δm, ΔF, and the model uncertainty. From Table 5.1, we can see

that the variance 𝜎V gained by the presented method is smaller than that obtained

by the TPRD method. As shown in Figure 5.11, it has about 61.6% (for Er < 0)

chances to have a better design than the TPRD method. Thus, the presented method

is more robust than the TPRD method, because the presented method considers model

uncertainty while the TPRD method does not.

Example 5.2: Robust design for a low pass filter A low pass filter is shown in

Figure 5.12. The design variable is the resistance R and the inductance L. The current

I should be kept at a nominal value I0 equal to 10A. V and w are the amplitude and

the frequency of the excitation voltage v(t) = V coswt, respectively. The current i(t)
is of the form i(t) = I cos(wt + 𝜙), with I and 𝜙 as the amplitude and the phase of the

current.

The design variable d, the model parameter p, and the performance function Y are

d = p =
[

R
L

]
, Y =

[
I
𝜙

]
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FIGURE 5.11 Comparison under parameter variations and model uncertainty
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V

R

L

I

FIGURE 5.12 A low pass filter

The design variable d is the same with the design parameter p, which means that

the design variable d has the variation around its nominal value. The design variable

L0 is decided by R0 in order to make the nominal value I0 = 10A.

The performance Y is expressed as

Y =
[
ΔY1

ΔY2

]
= f (d, p) =

⎡⎢⎢⎢⎢⎢⎣

V0√
R2 + w2

0
L2

tan−1

(
w0L

R

)
⎤⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
f0

+Δf (5.56)

where the model uncertainty Δf =
⎡⎢⎢⎣

V√
R2+w2L2

− V0√
R2+w2

0
L2

tan−1
(

wL
R

)
− tan−1

(
w0L

R

)⎤⎥⎥⎦ is unknown and a

black box for designers.

The design variable d has variation around its design value and this variation

follows Gaussian distribution with 𝜇d and 𝜎d. Moreover, the known nominal values

V0 and w0 are 110 V and 60 Hz, respectively, which have variations ΔV = 0.8(L0 +
ΔL) and Δw = 100(R0 + ΔR) around their nominal values.

The nominal sensitivity matrix J0 is formulated by

J0 =
⎡⎢⎢⎢⎣
𝜕f0,1

𝜕R

𝜕f0,1

𝜕L
𝜕f0,2

𝜕R

𝜕f0,2

𝜕L

⎤⎥⎥⎥⎦ (5.57)

with f0 =
[

f0,1

f0,2

]
.

Then, the bound model (Equation 5.18) of the perturbation sensitivity matrix ΔJ
is estimated from data with the confidence level a = 99.73%. Given the nominal

sensitivity matrix J0 and the estimated model of the perturbation sensitivity matrix
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108 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY
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FIGURE 5.13 Bound modeling for the performance variation ΔY: (a) bound modeling for

ΔY1; (b) bound modeling of ΔY2

ΔJ, the approximate ability of the model (Equation 5.17) to the practical system

(Equation 5.44) is shown in Figure 5.13. Since almost all performance variations are

limited within the bound, it has good ability to approximate the nonlinear system

(Equation 5.56). It is clear that the bound modeling (Equation 5.18) is much easier

than direct modeling of all data points (circle points in Figure 5.13), because the

sampling data have both strong nonlinearity and random nature.

A robust design should be chosen from the design variable space R0 ∈
[0.05Ω, 0.13Ω] and L0 ∈ [7H, 11H] to minimize the performance covariance. The

robust design variables d figured out by the TPRD method and the presented method

are (R0 = 0.068 Ω, L0 = 10.21 H) and (R0 = 0.105 Ω, L0 = 7.76 H), respectively.

To demonstrate the effectiveness of the presented method, verification is carried

out for comparison. Let ΔR and ΔL follow the normal distribution with mean 𝜇R =
−0.05, 𝜇L = −0.05 and variance 𝜎R = 0.01, 𝜎L = 0.01. The variations ΔV and Δw
are 0.8(L0 + ΔL) and 100(R0 + ΔR), respectively. A total of 1000 samples are taken

for the comparison of the performance covariance with respect to both the parameter

variations and the model uncertainty. From Table 5.2, we can see that the performance

covariance gained by the presented method is smaller than that obtained by the TPRD

method. As shown in Figure 5.14, it has about 86.4% (for Er < 0) chances to have

a better design than the TPRD method. Thus, the presented method is more robust

than the TPRD method, because the presented method considers model uncertainty,

while the TPRD method does not.

TABLE 5.2 Performance Comparison Under Parameter
Variations and Model Uncertainty‖‖𝜎Y

‖‖F TPRD Method Presented Method

Covariance 0.044 0.019
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FIGURE 5.14 Comparison under parameter variations and model uncertainty

5.4.2 Deterministic Robust Design

Example 5.3: Structure uncertainty design Consider the structure uncertainty

design problem:

Y = f + Δf (5.58)

with f =
[
ln(||csc(d1) − tan(d1)||) + 3d2

3d1 + d2

]
and Δf =

[
0.05 ln(||csc(d1) − tan(d1)||) + 0.1

3
d3

1
+ 0.01d2

0.01d1 − 0.05 cos(d2)

]
From Equation 5.58, the performance variations ΔY can be expressed as

ΔY = J0 ⋅ Δd + ΔJ ⋅ Δd (5.59)

with J0 =

[
1

sin(d1)
3

3 1

]
, ΔJ =

[
0.05

sin(d1)
+ 0.1d2

1
0.01

0.01 0.05 sin(d1)

]
, Δd =

[
Δd1

Δd2

]
.

Here, the variation of the model parameter is replaced by the variation of the

design variable. The matrix B0, the singular value 𝛿0
i , and the condition number K

can be calculated using Matlab program, respectively. The upper bound of ‖ΔJ‖2 is

estimated from simulation data.

The design objective is to select the design variable d1 from d1 ∈ [1, 2.5] to have a

robust performance against uncertainty. Here, the nominal value d0
2

of design variable
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FIGURE 5.15 Maximal singular values of J0 and J versus the design variable d1: (a) 𝛿0
max

and 𝛿max; (b) the difference Δ𝛿max

d2 is equal to 5. The maximal singular values of J0 and J are shown in Figure 5.15.

From Figure 5.15, it is clear that there exists the difference Δ𝛿max between the

maximal singular value 𝛿max and 𝛿0
max due to the effect of the model uncertainty.

From Figure 5.16, all |Δ𝜆| are smaller than the bound S1, which is equal to

K ⋅ (2‖J0‖2 + ‖ΔJ‖2) ⋅ ‖ΔJ‖2 in Equation 5.47. Moreover, the bound S1 is minimal

at d1=1, which means the minimal variation |Δ𝛿|. From Figure 5.17, it is clear that

the lower and upper bounds of 𝛿max are very close at d1 = 1. This also means that

𝛿max is close to its nominal singular 𝛿0
max, which can be verified in Figure 5.15.
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FIGURE 5.16 |Δ𝜆| and the bound S1
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FIGURE 5.17 Lower and upper bounds of 𝜎max

Designs from different 𝛽 are shown in Table 5.3. The traditional robust designs,

which are figured out by Euclidean norm method or condition number method

(Equation 5.14) (the results of these two methods are the same in this case), are

taken as 𝛽 = 1. From Equation 5.59, performance variations may be rewritten as

‖‖ΔY‖‖2

2 = (r1Δd1 + 3.01Δd2)2 + (3.01Δd1 + r2Δd2)2 (5.60)

with r1 = 1.05

sin(d1)
+ 0.1d2

1
, r2 = 1 + 0.05 sin(d1).

For performance variations in Equation 5.60, smaller parameters r1 and r2 will

have smaller performance variations, that is, better robustness. From Table 5.3, it is

clear that both r1 and r2 obtained by the proposed robust design method with 𝛽 = 0.95,

0.9, 0.85 are smaller than that by the traditional robust design methods (when 𝛽 = 1).

Thus the proposed robust design with 𝛽 = 0.95, 0.9, 0.85 has better robustness than

TABLE 5.3 Robust Designs and Performance Under Different 𝜷

Weight 𝛽 1 0.95 0.9 0.85 0.8 0.75 0.7 0.5 0.2

Design d1
∗ 1.55 1.35 1.25 1.15 1.05 1 1 1 1

r1 1.2905 1.2584 1.2627 1.2826 1.3207 1.3478 1.3478 1.3478 1.3478

r2 1.05 1.0488 1.0474 1.0456 1.0434 1.0421 1.0421 1.0421 1.0421
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112 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

TABLE 5.4 Performance Comparison Under 𝚫d and the Model Uncertainty

Weight 𝛽 1 0.95 0.9 0.85 0.8 0.75

Design d1
∗ 1.55 1.35 1.25 1.15 1.05 1‖ΔY‖2

2
Mean 0.0182 0.0181 0.0181 0.0181 0.0182 0.0183

Variance 2.7082 ×
10−4

2.6607 ×
10−4

2.6669 ×
10−4

2.6951 ×
10−4

2.6955 ×
10−4

2.7884 ×
10−4

the traditional robust designs. This is because the proposed robust design method

considers model uncertainty, while the traditional robust design methods do not.

The above comparisons clearly show that a larger 𝛽 should be selected since the

model uncertainty Δf is smaller than 5% of the nominal model f. Thus, when the

nominal model is dominant, a large 𝛽 should be chosen.

To demonstrate the effectiveness of the proposed robust design method, verification

is carried out by letting both Δd1 and Δd2 randomly vary in [−0.05, 0.05]. A total

of 1000 samples are taken to compare the performance variation ΔY with respect to

Δd under model uncertainty. From Table 5.4, we can see that the mean and variance

of the performance variations ΔY gained by the proposed robust design method with

𝛽 = 0.95, 0.9, 0.85 are smaller than the traditional design methods. It also shows that

the best robust design is achieved when 𝛽 = 0.95. The difference of the performance

variations is defined as

T = ‖‖ΔYp
‖‖2

2 − ‖‖ΔYC
‖‖2

2 (5.61)

where ΔYp and ΔYC are the performance variations gained by the proposed robust

design method with 𝛽 = 0.95 and the traditional robust design methods, respectively.

The comparison in Figure 5.18 shows that the proposed robust design can have more

than 63% (for T < 0) chance to have a better design than the traditional one. In

other words, for every 100 designs, the new approach can get more than 63 better

designs while the traditional one can get only less than 37 better designs. Only if

this percentage is larger than 50%, then the proposed method is said to have better

robustness than the traditional methods.

Example 5.4: Robust design of a damper The damper design example is shown

in Figure 5.19. The design variables are mass M and damping coefficient Cd which

are to be determined with the aim of keeping the magnitude of displacement X0

at a nominal value of 3 m, while the magnitude F0 of the excitation force F(t) =
F cos(𝜔 ⋅ t) and its pulsation 𝜔 undergo considerable variations. The displacement

is equal to X(t) = X cos(𝜔 ⋅ t + 𝜙), where 𝜙 is the phase. Moreover, the following

relations exist:

X = F

𝜔
√

C2
d + 𝜔

2M2

, 𝜙 = tan−1

(
𝜔M
Cd

)
(5.62)
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FIGURE 5.18 Comparison of the proposed robust design (𝛽 = 0.95) with the traditional

robust design (𝛽 = 1)

The design variables d, the design parameters p, and the performance functions

Y are

d =
[

M
Cd

]
, p =

[
F
w

]
, Y =

[
X
𝜙

]
The design model with model uncertainty can be expressed as

[
X
𝜙

]
⏟⏟⏟

Y

=

⎡⎢⎢⎢⎢⎢⎣

F0

𝜔0

√
C2

d + 𝜔
2
0
M2

tan−1

(
𝜔0M

Cd

)
⎤⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (d)

+
[
Δf1
Δf2

]
⏟⏟⏟
Δf (d)

(5.63)

M Cd

X(t)

F(t)

FIGURE 5.19 Damper
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114 HYBRID MODEL/DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY

TABLE 5.5 Performance Comparison Under 𝚫d, 𝚫p, and Model Uncertainty

Weight 𝛽

1

(Euclidean

Norm

Method) 0.8 0.6 0.4 0.2 0

Condition

Number

Method

Design M∗ 2.668 2.6560 2.6390 2.6060 2.5360 2.5220 3

Design Cd
∗ 39.9644 40.2829 40.7273 41.5686 43.2658 43.5919 25.059‖ΔY‖2

2
Mean 8.1287 8.1286 8.1286 8.1284 8.1284 8.1285 8.1594

Variance 0.0076 0.0075 0.0074 0.0073 0.0071 0.0069 0.0154

Only the nominal model f(d) is known to designers. The nominal value of F0 and w0

are 200 N and 20 rad/s, respectively, and the design parameters p have the variations

F = F0 ± 10 and w = w0 ± 2. The objective is to select the design variables M from

M ∈ [2kg, 3kg] and Cd from Cd ∈ [25Ns∕m, 55Ns∕m] to have a robust performance

against both model uncertainty and parameter variations.

Designs from different 𝛽 in Table 5.5 are compared with Euclidean norm method

(𝛽 = 1) and the condition number method in Table 5.5. To demonstrate the effec-

tiveness of the proposed robust design method, verification is carried out by letting

ΔM, ΔCd, ΔF, and Δw randomly vary in (−0.1, 0.1), (−2, 2), (−10, 10), and (−2, 2),

respectively. A total of 1000 samples are taken to compare the performance variations

ΔY with respect to Δd, Δp, and model uncertainty. From Table 5.5, we can see that

the mean and variance of the performance variations ΔY gained by the proposed

robust design method with 𝛽 = 0, 0.2, 0.4 are smaller than the other two traditional

design methods.

It is clear that a small 𝛽 should be selected since the nominal model is not

always dominant compared to the model uncertainty. For example, the nominal

model 𝜙0 = tan−1(
w0M
Cd

) and the model uncertainty Δ𝜙 = tan−1(
wM
Cd

) − tan−1(
w0M
Cd

)

are taken as 0.3323 and 0.4779, respectively, when w changes from the nominal value

w0 = 20 to w = 18, and M = 2.5 and Cd = 40. Thus, when model uncertainty has

larger effect on system performances, a smaller 𝛽 should be chosen.

In Figure 5.20, the proposed robust design with 𝛽 = 0.2 is compared with the tra-

ditional robust design methods, including Euclidean norm method and the condition

number method. It is clear that it has about 56.3% (for T1 < 0) and 80.5% (for T2 < 0)

chances to have a better design than the traditional one. Only if this percentage is

larger than 50%, then is better robustness achieved compared with the traditional

methods. So the proposed robust design method is more robust than the other two

traditional design methods, because the proposed robust design method considers

model uncertainty.

5.5 SUMMARY

In this chapter, hybrid model/data-based deterministic and probabilistic robust design

methods are presented to minimize the covariance of the partially unknown nonlinear
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FIGURE 5.20 Comparison underΔd,Δp and model uncertainty: (a) Euclidean norm method

versus proposed method; (b) condition number method versus proposed method

system. Bound modeling is easy to realize and can effectively estimate both the

influence of model uncertainty and the nonlinearity of the nominal model. Since the

presented methods properly integrate the data-based uncertainty compensation and

the model-based robust design method, it can effectively design the system robustness

even if both parameter variation and model uncertainty exist. These proposed methods

are also compared with the traditional design methods on selected case studies and

show their superiority when model uncertainty and parameter variation exist. These

methods should be applicable in complex manufacturing environment.
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ROBUST DESIGN FOR
DYNAMIC SYSTEMS
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CHAPTER 6

ROBUST EIGENVALUE DESIGN
UNDER PARAMETER VARIATION—
A LINEARIZATION APPROACH

System design is usually for static system. In this chapter, design for the dy-

namic system will be presented. The proposed approaches will integrate several

methods, such as stability design, robust eigenvalue design, and tolerance de-

sign, to achieve the optimal dynamic performance, including both stability and

robustness, under parameter variations.

6.1 INTRODUCTION

In manufacturing industry, many systems work in open loop without any external

adjustment and control due to some physical and economic constraints. Operation

performance fully depends on system design. For this kind of systems, a good design

is crucial to achieve a desirable performance. Otherwise, the system will deviate from

the ideal target. Most of the existing system methods are for static systems, a few for

dynamic systems. The difficulty of dynamic system is that the system characteristic

is varying over time. System stability is one of the major issues that is not considered

in the static design.

The dynamic behavior of many systems in manufacturing is closely related to the

eigenvalue of the Jacobian matrix that is often called the system or state matrix. The

elements of the Jacobian matrix are dependent on the parameters that usually include

design variables, operating environment variables, and manufacturing operations.

Since variations of these parameters are unavoidable, the sensitivity of the eigenvalues

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.
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120 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

of this Jacobian matrix with respect to parameter variations is extremely important to

the overall system performance (El-Kady and Al-Ohaly, 1997; Gürgöze, 1998; Orbak,

Eskinat, and Turkay, 2004). If these eigenvalues are less sensitive to disturbances or

parameter variations, the system will be robust. Under the closed-loop control, this

robust performance is achieved by the robust eigenvalue assignment, which had been

studied for decades (Ralph and Stephen, 1989; Kautsky, Nichols, and Dooren, 1985;

Hu and Wang, 2002; Labibi, Marquez, and Chen, 2006). However, little work has

been reported to address the robust eigenvalue design for the processes working under

the open-loop environment.

In this chapter, two robust design methods are presented to integrate stability

design and robust eigenvalue design for the dynamic process with weak nonlinearity.

� One is a linearization-based robust eigenvalue design proposed for small pa-

rameter variations. First, the stability theory is applied to obtain a set of design

variables and bounds of their variations. The system will be stable when design

variables stay within these bounds. Then, the robust eigenvalue design is devel-

oped to make the dynamic response less sensitive to variations. Furthermore,

the tolerance space of the obtained robust design will be maximized to meet the

specified performance requirement of the dynamic response.
� Another is a multi-model-based robust design proposed for large uncontrollable

variations. A multi-model approach is initially developed to formulate the non-

linear relation between dynamic performance and model parameters. A stability

design is then developed to guarantee the stability of the dynamic system under

large uncontrollable variations. Moreover, a robust design is proposed to achieve

dynamic robustness.

Finally, several examples will be provided to demonstrate and confirm the effec-

tiveness of the proposed methods.

6.2 DYNAMIC DESIGN PROBLEM UNDER PARAMETER VARIATION

In this section, two problems on stability and robustness are concerned for design of

the weak nonlinear dynamic system under parameter variation.

6.2.1 Stability Design Problem

Consider an autonomous dynamic system:

ẋ = f (x, d, p), f (0, d, p) = 0 (6.1)

where x∈Rn represents the state vector, d = [d1,… , dm]T is design variables vector,

which needs to be decided for the desirable performance, and p is the model parameter
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DYNAMIC DESIGN PROBLEM UNDER PARAMETER VARIATION 121

vector and has large parameter variation Δp around its nominal value p0, f(⋅) is the

nonlinear function vector.

Take Taylor series expansion of f(x, d, p) at x = 0

ẋ = A(d, p)x + f1(x, d, p) (6.2)

where the Jacobian matrix A(d, p) = 𝜕f (x, d, p)

𝜕x
|||x=0

. If nonlinearity is weak, the system

can be approximated into the linear system at the working point x = x0, with the high-

order term f1(x0, d, p) ignored. For convenience, A(d, p) is simply denoted as A.

Obviously, stability is critical to the dynamic system. According to the stability

theory, the system is asymptotically stable if all eigenvalues of A have negative real

parts (A is a Hurwitz matrix), and unstable if one or more eigenvalues of A have

positive real parts. Thus, the objective of the stability design is to properly choose a

set of the design variables d to make the real part of these eigenvalues 𝜆 = [𝜆1,…,

𝜆n] of the Jacobian matrix A smaller than zero.

6.2.2 Dynamic Robust Design Problem

The relationship between an eigenvalue and its associated eigenvector can be ex-

pressed by

AU = UA (6.3)

where U = [u1,… , un] is the eigenvector matrix and ui (i = 1,… , n) is the right

eigenvector corresponding to the eigenvalue𝜆i, ∧ = diag[𝜆1,… , 𝜆n].

The transient response of the system state x(t) can be expressed as

x(t) = Ue∧tU−1x(0) (6.4)

where x(0) is the initial value.

From Equation 6.4, the transient response of the system is characterized by the

eigenvalues together with the eigenvectors. The eigenvalues determine the decay (or

growth) rate of the response. The variation of eigenvalues will result in variation of

the transient response. Thus, the eigenvalues should be selected to be insensitive to

uncertainties as they are critical to system response. As illustrated in the specific

constraint domain in Figure 6.1, eigenvalues should be constrained by both stability

and robust performance. Under the guaranteed system stability, variations of the

eigenvalues should be minimal with the smallest domain in Figure 6.1. Moreover,

the tolerances of the design variables can be derived reversely from the constraint

domain to guarantee the desired dynamic performance of the system.
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122 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

Constrain domain

Im 

Re

Eigenvalue 

FIGURE 6.1 Eigenvalues constrained by both stability and robustness

6.3 LINEARIZATION-BASED ROBUST EIGENVALUE DESIGN

In this section, a linearization-based robust eigenvalue design is proposed for the

system under small parameter variation. The objectives are

� to guarantee the system stability in the given parameter region;
� to achieve the dynamic robustness under parameter variation; and
� to obtain a best tolerance of the robust design variable.

For simplicity and without loss of generality, we assume that the design variables d
have variations around their nominal values without considering parameter variations.

Thus, matrix A is only the function of design variables d with variations Δd, rewritten

as A(d).

6.3.1 Stability Design

The objective of the stability design is to choose design variables d to have the

real part of all eigenvalues 𝜆 = [𝜆1, … , 𝜆n] of the Jacobian matrix A smaller than

zero. These design variables d can be figured out by solving the following feasible

problem (P1):

Feasible (P1): Find (d)

to make
Re(𝜆i(A(d))) < 0 (i = 1,… , n)

h(d) = 0

l(d) ≤ 0

(6.5)

where h(d) and l(d) are constraints from other design aspects. All the possible so-

lutions of the feasible problem (P1) form a nominal stability parameter space Sn, in

which every design variable will guarantee the system stability.

Generally, variations of design variables are inevitable. From the view of the

robust stability, the maximum variation bound should be properly designed to allow

larger tolerance for stability. When the design variables stay within these bounds,
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LINEARIZATION-BASED ROBUST EIGENVALUE DESIGN 123

the system stability can still be maintained. The bigger these bounds are, the larger

stability region the system will have. If these bounds are too small, it may cause a

higher manufacture cost and the system may become unstable when encountering

larger variations of the design variables. Thus, it is very important to have large

variation bounds of design variables for the stability design. However, most stability

designs are only to choose suitable design variables without consideration of their

variation bounds at the design stage.

Thus, variation bounds of design variables around the nominal values should

be figured out to restrain the variation effects of stability. First, the variation

bounds of these design variables in the nominal stability parameter space Sn are

figured out. Then, variations of the design variables are limited in the bounds

{Δd1 ∈ [−D1, D1],… ,Δdm ∈ [−Dm, Dm]} with D1, … , Dm as the maximum values

of Δd1, … , Δdm. When the design variables vary within the bounds, the system is

still stable. Such bounds can be obtained from the solution of the following feasible

problem (P2):

Feasible (P2) : Find (D1,… , Dm
to make
Re(𝜆1(A(d + Δd))) < 0 (i = 1,… , n)

Δdj ∈ [−Dj, Dj] (j = 1,… , m)

h(d + Δd) = 0

l(d + Δd) ≤ 0

d ∈ Sn

(6.6)

Then, the design variables with the large variation bounds should be chosen from

the nominal stability parameter space Sn. The reason is that the design variables

with the large variation bounds have a good ability to restrain the variation effect of

the design variables to stability. The larger these bounds are, the less sensitive (i.e.,

more robust) the design is. As an example, in Figure 6.2, design b is more robust

than design a since the variation bound of design b is bigger. The triangles show the

nominal value of the designs, and the dashed rectangles indicate the variation bounds

in Figure 6.2.

d1

a

Bound of Δd
due to stability

Nominal design 

b 

d2

FIGURE 6.2 Variation bounds
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124 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

Thus, it is important to judge whether the bounds (D1, … , Dm) are larger than

the given level (𝜀1, … , 𝜀m). If the conditions 𝜀1 ≤ D1 and … and 𝜀m ≤ Dm are met,

these stability design variables d can be accepted. All these accepted stability design

variables d and their variation bounds form a stability parameter space Ss. When the

design variables d vary within this stability parameter space Ss, the system stability

will be maintained.

6.3.2 Robust Eigenvalue Design

In this section, the robust eigenvalue design will be chosen from the stability parameter

space Ss to make variations of all eigenvalues minimal, so that the system dynamic

response will be less sensitive to variations.

The eigenvalues 𝜆i (i = 1, … , n) of the Jacobin matrix A, which are assumed to

be distinct, are related to the corresponding eigenvector 𝜇i (i = 1, … , n) of A by the

equation

A𝜇i = 𝜆i𝜇i (6.7)

According to the orthogonal theory of eigenvector, we have

𝜇T
i vi = vT

i 𝜇i = 𝛿ij (6.8)

where 𝛿ij is Kronecher delta and vi is left eigenvector with

ATvj = 𝜆jvj (6.9)

Differentiating Equation 6.7 with respect to the design variables d, we have

𝜕A
𝜕d
𝜇i + A

𝜕𝜇i

𝜕d
=
𝜕𝜆i

𝜕d
𝜇i + 𝜆i

𝜕𝜇i

𝜕d
(6.10)

Multiplying Equation 6.10 by vT
i and reordering the terms, we have

𝜕𝜆i

𝜕d
= vT

i
𝜕A
𝜕d
𝜇i (6.11)

If the design variables d have variations Δd at the operating point d0, the system

eigenvalue can be expressed as

𝜆i(d0 + Δd) = 𝜆i(d0) +
𝜕𝜆i

𝜕d

||||d0

Δd + O(Δd) (6.12)

where O(Δd) are high-order terms about Δd.
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LINEARIZATION-BASED ROBUST EIGENVALUE DESIGN 125

Inserting Equation 6.11 into Equation 6.12 and neglecting the high-order terms, a

first-order model of the eigenvalue is obtained as

𝜆i(d0 + Δd) ≈ 𝜆i(d0) +
(

vT
i
𝜕A
𝜕d
𝜇i

)||||d0

Δd (6.13)

From Equation 6.13, the variation Δ𝜆i of the eigenvalue with respect to variations

of the design variables can be expressed as

Δ𝜆 = JX (6.14)

with Δ𝜆i = 𝜆i(d0 + Δd0) − 𝜆i(d0), Δ𝜆 = [Δ𝜆i ⋯Δ𝜆n]T ,

J =

|||||||||||||||

(
vT

1

𝜕A
𝜕d1

𝜇1

)|||||d0

⋯
(

vT
1

𝜕A
𝜕dm
𝜇1

)|||||d0

⋮ ⋱ ⋮(
vT

n
𝜕A
𝜕d1

𝜇n

)|||||d0

⋯
(

vT
n
𝜕A
𝜕dm
𝜇n

)|||||d0

|||||||||||||||
, X =

⎡⎢⎢⎣
Δd1

⋮
Δdm

⎤⎥⎥⎦
The sensitivity matrix J of the eigenvalues is defined as the ratio of eigenvalue

variations to parameter variations, which is very important to the system robustness

(El-Kady and Al-Ohaly, 1997). Since JTJ is usually a complex matrix, the real part

and the imaginary part of the complex matrix JTJ need to be considered separately.

Therefore, Equation 6.14 may be rewritten as

Re(Δ𝜆) + iIm(Δ𝜆) = [Re(J) + iIm(J)] X (6.15)

Easily we have

Re(Δ𝜆) = Re(J)X (6.16a)

Im(Δ𝜆) = Im(J)X (6.16b)

By taking a norm for both the real part and the imaginary part, we have performance

limits for each part respectively.

(Re(Δ𝜆))TRe(Δ𝜆) = XT (Re(J))TRe(J)X (6.17a)

(Im(Δ𝜆))T Im(Δ𝜆) = XT (Im(J))T Im(J)X (6.17b)

The performance S of the system is defined and expressed as

S2 = XTBX (6.18)
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126 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

with B = Re(J)TRe(J) + Im(J)T Im(J) and

S2 = ‖Re(Δ𝜆)‖2
2
+ ‖Im(Δ𝜆)‖2

2
= (Re(Δ𝜆))TRe(Δ𝜆) + (Im(Δ𝜆))T Im(Δ𝜆) (6.19)

According to the singular value decomposition theory, the proper symmetric matrix

B may be decomposed as

B = Vdiag(𝜎1,… , 𝜎m)VT (6.20)

where the symmetric matrix B describes the effect of the component variations to

the system performance, 𝜎i is its singular value, and the corresponding orthogonal

eigenvector is denoted as Vi, which is one element of V = [V1, . . . , Vm].

Inserting Equations 6.19 and 6.20 into Equation 6.18, the performance will be

directly related to the design variables as follows:

‖‖Re(Δ𝜆)‖‖2

2 + ‖‖Im(Δ𝜆)‖‖2

2 =
m∑

i=1

𝜎iz
2
i (6.21)

with [z1,… , zm]T = VTX.

The performance in the m-dimensional space is a hyper-ellipsoid, as defined

in Equation 6.21. Its two-dimensional (2D) projection is depicted in Figure 6.3,

where both real and imaginary parts of eigenvalue are considered. It has similar

characteristics presented by Zhu and Ting (2001) and Caro et al. (2005)

1. The performance S defined in Equation 6.19 is the same for every point on the

hyper-ellipsoid.

2. The length of the ith principal axis of the hyper-ellipsoid is (‖Re(Δ𝜆)‖2
2
+‖Im(Δ𝜆)‖2

2
)∕𝜎i. The smaller 𝜎i is, the longer the ith principal axis is. The

longest principal axis and the shortest principal axis correspond to the least and

most sensitive direction, respectively.

2σ

Δd2

z2

z1

Δd1

2σ
+2 2

2 2

2 2

2 2
Re(Δ )λ Im(Δ )λ

σ1

+2 22 2

2 2
Re(Δ )λ Im(Δ )λ

+2 2

2 2

2 2

2 2
Re(Δ )λ Im(Δ )λ

FIGURE 6.3 A 2D eigenvalue sensitivity ellipsoid
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LINEARIZATION-BASED ROBUST EIGENVALUE DESIGN 127

Thus, the robust design requires that all principal axes have larger length, especially

the shortest principal axis. Since the shortest principal axis corresponds to the largest

singular value 𝜎max, if the largest singular value 𝜎max can be minimized, then the

shortest principal axis will have relatively large length. So the design variables d for

robust performance can be figured out from the following min-max optimization in

the stability domain.

min
d

max(𝜎i)

st.

‖Re(Δ𝜆)‖2
2
+ ‖Im(Δ𝜆)‖2

2
=

m∑
i=1

𝜎iy
2
i

d ∈ Ss

(6.22)

where d ∈ Ss is the requirement of the system stability and feasibility. All possible

solutions of the optimization (Equation 6.22) form a feasible parameter space Sf, on

which the system stability and robustness are guaranteed.

6.3.3 Tolerance Design

In order to limit the variation of the dynamic response under the given performance

constraint, tolerance in the feasible parameter space Sf should be figured out for the

feasible design. If the performance constraint is specified as Yr by users, then the

performance S has to be limited in the constraint domain as follows,

S ≤ Yr or ‖‖Re(Δ𝜆)‖‖2

2 + ‖‖Im(Δ𝜆)‖‖2

2 ≤ Y2
r (6.23)

The tolerance design is to have the maximum variation space for design variables

under the performance constraint Yr and maintain the stability and robustness of the

system. For simplicity, a 2D design problem will be discussed as shown in Figure 6.4.

The variations of the design variables should be limited in the tolerance space St {Δd1

∈ [−𝛿d1, 𝛿d1], Δd2 ∈ [−𝛿d2, 𝛿d2]} with 𝛿d1 and 𝛿d2 as the largest variation of the

δd2δd1

Feasible domain 
Tolerance space 

Δd2 z2 

z1  

Δd1 

FIGURE 6.4 Tolerance synthesis
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128 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

design variables d1 and d2. The tolerance space St is a rectangular space, as shown in

Figure 6.4.

The principle of the tolerance design is to maximize the tolerance space within

the sensitivity ellipsoid (feasible domain) (Caro, 2005). The tolerance of the design

variables can be obtained from the following tolerance optimization:

max
𝛿d1,𝛿d2

𝛿d1𝛿d2

st. ‖Re(Δ𝜆)‖2
2
+ ‖Im(Δ𝜆)‖2

2
≤ Y2

r
𝛿d1 ≤ D1

𝛿d2 ≤ D2

d ∈ Sf

(6.24)

where 𝛿di ≤Di represents that tolerance is constrained in the stability parameter space

Ss. This design will guarantee the system to have the desired stability and robustness

when the design variables vary within the tolerance space.

6.3.4 Design Procedure

The presented robust design procedure is summarized as follows:

Step 1: Find the nominal stability parameter space Sn by solving the feasible

problem (P1). These nominal design variables guarantee the nominal system

stability.

Step 2: Find the stability parameter space Ss within the nominal stability parameter

space Sn by solving the feasible problem (P2). When the design variables vary

within this stability parameter space Ss, stability is still maintained.

Step 3: Find the robust eigenvalue design within the stability parameter space

Ss by solving the optimization problem (Equation 6.22). This robust design

minimizes the variations of eigenvalues so that the system dynamic response

will be less sensitive to variations.

Step 4: Find the tolerance of the robust design by solving the optimization problem

(Equation 6.24). If variations of the design variables are within this tolerance

space, this design will be stable with the satisfactory dynamic performance.

6.4 MULTI-MODEL-BASED ROBUST DESIGN METHOD

FOR STABILITY AND ROBUSTNESS

In this section, large uncontrollable variation will be considered. The system stability

and dynamic robustness are nonlinearly influenced by the model parameters as the

state matrix A is a nonlinear function of these parameters, as shown in Equation 6.2.

A challenge is posed to find a suitable design variable d to guarantee the asymptot-

ical stability as well as the satisfactory robust performance under large variation of

uncontrollable parameters.
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FIGURE 6.5 Multi-model-based robust design method

In order to meet this challenge, a new design approach is proposed as in Figure 6.5.

The parameter space is first divided into many small subdomains. Through the idea

of linearization, the complex nonlinear relation between dynamic performance and

model parameter can always be decomposed into a series of linear relations at each

subdomain. Modeling at each subdomain will be much easier than modeling the orig-

inal nonlinear relation. Using the concept of multi-models, a stability design method

is then developed to guarantee system stability under parameter variations. After-

wards, a dynamic robust design approach will be proposed to minimize the influence

of parameter variation on the dynamic performance. Since this approach integrates

the merits of both multi-models and robust design, it can effectively ensure stability

and robustness of the system under large variation of uncontrollable parameters. This

method has the following advantages:

� This modeling method considers the nonlinear influence of large parameter

variation on the dynamic performance.
� The model built owns a well linear structure, which can be easily handled by

existing robust design theories.
� Stability and dynamic robustness can be achieved by the proposed design method

even under large variation of uncontrollable parameters.

6.4.1 Multi-Model Approach

It is well known that the system eigenvalues 𝜆 are critical to the dynamic system as

they directly influence stability and robustness of the system. It is always a challenge

to design the system eigenvalues as they are nonlinearly influenced by the model

parameter with large uncontrollable variation. Here, a multi-model approach is first

developed to handle this nonlinear influence. Although the approach is often em-

ployed in control field (Patil, 2012; Özkan, 2006; Chung, 2006), it has not yet been

applied to system design for stability and robustness.

The basic concept of this multi-model method is illustrated in Figure 6.6 as an

example of single parameter and single eigenvalue. The whole parameter variation

space is divided into many subdomains at which a local linearization model is ap-

proximated around the center of the subdomain. Since every subdomain is small
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FIGURE 6.6 Multi-model approach

enough, each local linearization model can describe the behavior of the subdomain

well. Thus, this modeling approach has the following advantages:

� It is a simple and straightforward way to decompose the complex modeling

work (global) into a group of simple modeling tasks (local).
� It can represent any nonlinear relation well within a large parameter space.
� The model built has a well linear structure.

All these advantages will make the system easier to design by the existing design

theory.

According to this modeling approach, the whole parameter variation space is first

divided into m subdomains. Then, according to the orthogonal theory of eigenvector,

the ith estimated eigenvalue 𝜆i,j(i = 1,… , n) at the jth subdomain ( j = 1, . . . , m) is

approximated by the below linear model

𝜆i,j(d, p) ≈ 𝜆i,j(d, pj) + Ji,j(p − pj) (6.25)

with Ji,j = (vT
i,j
𝜕A
𝜕P
𝜇i,j)

|||pj
.

where pj is the center of the jth subdomain, and 𝜇i,j and vi,j are the right eigenvector

and the left eigenvector corresponding to the eigenvalue 𝜆i,j(d, pj), respectively. The

derivation of Equation 6.25 may be found in Section 6.3.

Obviously, the number m of the subdomains depends on the system feature. If

the nonlinear relation is strong and its model parameter has large variation, then m
would be large or else it is small. Usually, the larger the m is, the better the modeling

performance is, though it can produce a large computational cost. Therefore, there is

always a compromise between modeling performance and computational cost when

selecting m.

6.4.2 Stability Design

Stability design is to ensure the system to be stable under parameter variations

by selecting a suitable design variable. Since the system eigenvalues under large
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MULTI-MODEL-BASED ROBUST DESIGN METHOD FOR STABILITY AND ROBUSTNESS 131

variations can be decomposed into two parts in Equation 6.25, stability design can

also be achieved by following two separate designs.

1. Nominal stability design (stability at the centre of every domain)—to deal the

first item in Equation 6.25.

It aims to find a nominal stability variable space Sn, which contains all

designs that have negative eigenvalues 𝜆i,j(d, pj) of the nominal matrix A(d, pj)

at center of every subdomain.

2. Stability design within subdomain—to deal with the second item in Equation

6.25.

It aims to choose stability design variable from Sn to ensure the system

stability within every subdomain in spite of uncontrollable parameter variations.

The above two designs can ensure the system to be stable even under large

uncontrollable parameter variations.

6.4.2.1 Stability Design at Center Point This design is to make the real part

of all eigenvalues 𝜆i,j(d, pj) of the nominal matrix A(d, pj) to be negative by selecting

suitable design variables. Such design variables d can be figured out by the following

feasible problem (P3):

Feasible (P3): Find (d)

to make
Re(𝜆i,j(d, pj)) < 0 (i = 1,… , n; j = 1,… , m)

h(d) = 0, l(d) ≤ 0

(6.26)

where Re(𝜆) denotes the real part of.𝜆 All possible solutions of the feasible problem

(P3) form a nominal stability variable space Sn, in which any design variable will

ensure system stability at center points of all subdomains.

6.4.2.2 Stability Design Within Subdomain Then, the real part of the eigen-

value 𝜆i,j(d, p) at every subdomain should be negative. The variation Δpi,j of the

ith parameter at the jth subdomain is less than its own bound value Si,j, namely the

width of its corresponding subdomain. Thus, the parameter variation P − Pj is less

than its corresponding bound value Sj = [S1,j,… , Sn,j]. To ensure stability at every

subdomain, the stability theorem is proposed below.

Theorem: Consider this nonlinear design problem (Equation 6.1) under parameter

uncertainty. Given the nominal stability variable space Sn, if
∑n

k=1 |Jk,ijSk,ij| is smaller

than |Re(𝜆i,j(d, pj))|, where k refers to the kth element of its corresponding vector,

then all eigenvalues of A(d, p) have negative real parts and the system (Equation 6.1)

is asymptotically stable even if parameter variations exist.
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132 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

Proof: Since all design variables are within the nominal stability variable space Sn,

Re(𝜆i,j(d, pj)) is less than zero. Since Sj is the upper bound of the parameter variation

P − Pj at the jth subdomain, according to the matrix inequality, it has

|Jij(p − pj)| ≤ n∑
k=1

|Jk,ijSk,ij| (6.27)

From the inequality (Equation 6.27), if
∑n

k=1 |Jk,ijSk,ij| is smaller than|Re(𝜆i,j(d, pj))|, then

|Jij(p − pj)| < |Re(𝜆i,j(d, pj))| (6.28)

Thus, from Equation 6.25, it is clear that the real part of 𝜆i,j(d, p) is less than zero

if
∑n

k=1 |Jk,ijSk,ij| is less than |Re(𝜆i,j(d, pj))|. This means that the system (Equation

6.1) is asymptotically stable.

According to this theorem, the stability design can be figured out by solving the

following feasible problem (P4):

Feasible (P4): Find (d)

to make
n∑

k=1

|Jk,ijSk,ij| < |Re(𝜆i,j(d, pj))| (i = 1,… , n; j = 1,… , m)

d ∈ Sn

(6.29)

The inequalities
∑n

k=1 |Jk,ijSk,ij| < |Re(𝜆i,j(d, pj))| can guarantee all system eigen-

values to be negative even under large uncontrollable parameter variation. All possible

solutions of the feasible problem (P4) form a stability variable space Ss, in which any

design variable will guarantee the system stability even under large uncontrollable

parameter variations.

Feasible problems (Equations 6.26 and 6.29) widely exist in the system de-

sign/control and can be solved by common inequality solver methods, such as

discretization algorithm (Blanco and Bandoni, 2003; Dimitriadis and Pistikopoulos,

1995).

6.4.3 Dynamic Robust Design

This design is developed to achieve the dynamic robustness by making the system

eigenvalues less sensitive to uncertainty. If the system (Equation 6.1) is robust,

parameter variation will have less influence on the system eigenvalues. This means

that the eigenvalues of all subdomain models are close to its nominal eigenvalues.
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MULTI-MODEL-BASED ROBUST DESIGN METHOD FOR STABILITY AND ROBUSTNESS 133

The nominal eigenvalues 𝜆(d, p0) can be calculated from the following nominal

model under p = p0

ẋ = A(d, p0)x (6.30)

Define

Δ𝜆i,j = 𝜆i,j(d, p) − 𝜆i(d, p0)

and

Δ𝜆0
i,j = 𝜆i,j(d, pj) − 𝜆i(d, p0) (6.31)

From Equations 6.25 and 6.31, we have

Δ𝜆i,j = Δ𝜆0

i,j
+ Ji,j(P − Pj) (6.32)

From Equation 6.32, it is clear that system eigenvalues are dependent on two parts:

the center variation Δ𝜆0
i,j and the domain variation Ji,j(p − pj). The center variation

represents the distance between the nominal value p0 and the center of every domain,

and the domain variation represents performance variation within each domain around

its center.

According to the matrix norm theory, Equation 6.32 may be rewritten as

|Δ𝜆i,j| = ||Δ𝜆0
i,j + Ji,j(p − pj)

||
≤ ||Δ𝜆0

i,j
|| + n∑

k=1

|Jk,ijSk,ij| (6.33)

If |Δ𝜆0
i,j
| +∑n

k=1 |Jk,ijSk,ij| is very small, then

1. 𝜆i,j(d, p) is close to 𝜆i(d, p0); and

2. 𝜆i,j(d, p) is less sensitive to parameter variation p.

Under this sense, if all |Δ𝜆0
i,j
| +∑n

k=1 |Jk,ijSk,ij| in all subdomains are very small,

then 𝜆(p, d) will be close to 𝜆(p0, d) and, thus, this dynamic system is robust. Thus,

the design variable d for the robust eigenvalue design can be figured out by solving

the following robust design problem

min
d

n∑
i=1

m∑
j=1

(||Δ𝜆0
i,j
|| + n∑

k=1

||Jk,ijSk,ij
||)

s.t. d ∈ Ss

(6.34)
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134 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

where d ∈ Ss is the requirement of stability and feasibility. This min-max opti-

mization problem (Equation 6.34) is a common optimization problem in the system

design/control. The solution can be easily obtained using the traditional gradient

algorithm if their objective functions are convex function, and difficulties could be

encountered if they are nonconvex and nonlinear. Then, some intelligent algorithms,

such as particle swarm optimization and genetic algorithm, could be very useful to

explore the possible solution. The solution of this robust design problem (Equation

6.34) can ensure the stability as well as the dynamic robustness of the system under

large uncontrollable parameter variations.

6.4.4 Summary

Many manufacturing systems are often nonlinearly influenced by model parameters

with large uncontrollable variations. The proposed design will be able to ensure

system stability as well as system robustness under uncontrollable variations. Its

design procedure is summarized as follows:

Step 1: This nonlinear relation between the dynamic performance and model pa-

rameter is modeled using the multi-model method. Since every subdomain is

made small enough, local linearization model could approximate each subdo-

main properly. Modeling at each subdomain will be much easier than modeling

of the original nonlinear relation. The model built also has a well-designed

linear structure.

Step 2: The nominal stability parameter space Sn is found by solving the feasible

problem (P3). These nominal design variables could ensure system stability at

all center points of the subdomains.

Step 3: The stability parameter space Ss is found within the nominal stability

parameter space Sn by solving the feasible problem (P4). These stability design

variables could ensure system stability under large uncontrollable parameter

variations.

Step 4: The robust dynamic design is found within the stability parameter space

Ss by solving the robust design problem (Equation 6.34). This dynamic robust

design could effectively achieve the desired dynamic response under large

uncontrollable variations.

Obviously, when there is only one subdomain, the above proposed design approach

will be the same, with the linearization-based robust eigenvalue design method pre-

sented in Section 6.3. Thus, that previous approach in Section 6.3 can be considered

as a special case of the newly proposed approach in this section.

6.5 CASE STUDIES

6.5.1 Linearization-Based Robust Eigenvalue Design

Consider the laval rotor systems in Example 1.3 given in Section 1.1.2 of Chapter 1.

In this design, we assume that model uncertainty in the example may be neglected and
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CASE STUDIES 135

TABLE 6.1 Parameter Values

di de db K Kb Ω

1 (N∙s/m) 5 (N∙s/m) 10 (N∙s/m) 100 (N/m) 400 (N/m) 50 Hz

only variations of design variables are considered. Thus, the state-space equations

for the rotor system are

ẋ = Ax (6.35)

with A = A0 =
[
−M−1D −M−1R

I4×4 04×4

]
, x

[
q̇
q

]
.

The parameter values are shown in Table 6.1.

The objective is to select the design variables m and mb from m ∈ [1kg, 4kg] and

mb ∈ [1kg, 5kg] to make the system stable and minimize the eigenvalue sensitivity.

6.5.1.1 Design of the Nominal Stability Parameter Space Sn A nominal

stability parameter space Sn is figured out by solving the feasible problem (P1). This

space Sn is shown in Figure 6.7, where the blank space stands for the unstable design

and the shadow space for the stable design.

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

mb

m

Instability space

FIGURE 6.7 Nominal stability parameter space Sn
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136 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

mb

m

Unacceptable space

FIGURE 6.8 Stability parameter space Ss

6.5.1.2 Design of the Stability Parameter Space Ss Then, the stability pa-

rameter space Ss is figured out by solving the feasible problem (P2) from a nominal

stability parameter space Sn, with the given level 𝜀1 = 𝜀2 = 0.2. This space Ss is

shown in Figure 6.8, where the blank spaces stand for the failure design space and

the shadow space stands for the acceptable design space.

6.5.1.3 Robust Eigenvalue Design The eigenvalues of the system with the

nominal mass m = 2 kg and mb = 2 kg are obtained from matrix A in Equa-

tion 6.35. The nominal mass m and mb have small variations Δm = 0.02 kg and

Δmb = 0.02 kg, respectively. The exact eigenvalue 𝜆real of the system with mass

m + Δm and mb + Δmb is calculated from matrix A in Equation 6.35 via MATLAB

and the eigenvalue 𝜆model is estimated approximately from its first-order model given

in Equation 6.13. The relative approximation error 𝜂 is defined as below

𝜂 =
||𝜆real − 𝜆model

||||𝜆real
|| (6.36)

The exact eigenvalues, their approximations, and the relative approximate error

given in Table 6.2 demonstrate the effectiveness of the simple first-order model

approximation.
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CASE STUDIES 137

TABLE 6.2 Estimated Eigenvalues and Their True Value as m = 2 kg and mb = 2 kg

Eigenvalues Δm Δmb 𝜆1, 𝜆2 𝜂1,2 𝜆3,𝜆4 𝜂3,4 𝜆5, 𝜆6 𝜂5,6 𝜆7,𝜆8 𝜂7,8

True value −0.35 ±
6.27i

−2.50 ±
6.24i

−3.92 ±
15.85i

−1.65 ±
15.82i0.02

kg

0.02

kg

0.5% 0.54% 0.41% 0.44%
Estimated

value

−0.36 ±
6.30i

−2.52 ±
6.27i

−3.95 ±
15.92i

−1.66 ±
15.89i

The robust parameters and the min-max singular value gained from Equation 6.22

are shown in Table 6.3, where we can see that the real parts of all eigenvalues are

negative. So the design not only achieves robustness at m = 2 kg and mb = 4.6 kg but

also guarantees the system to be stable.

6.5.1.4 Tolerance Design Assume that the performance constraint is defined as

Yr = 3.1 × 10−16. The largest tolerance space of the selected robust design variables

m = 2 kg and mb = 4.6 kg will be solved from Equation 6.24. The tolerance space

and the maximum variation of the design variables are shown in Table 6.4. These

tolerances are easy to realize because these tolerances 0.33 and 0.2 kg are easy

to manufacture and measure using a common manufacture process and a common

balance.

6.5.1.5 Design Verification The performance S2 as defined in Equation 6.18

due to the variations Δm and Δmb is

S2 = ‖‖Re(Δ𝜆)‖‖2

2 + ‖‖Im(Δ𝜆)‖‖2

2

The difference e(mi, mb,j) between the performance variation S2
(mi,mb,j)

obtained

in the design variables (m = mi, mb = mb,j) and S2
robust obtained in the robust design

(m = 2 kg, mb = 4.6 kg) is defined as

e(mi, mb,j) = S2
(mi,mb,j)

− S2
robust

Let Δm and Δmb vary randomly in [−0.01, 0.01]. A total of 1000 samples are

taken to check the robust design. From Figure 6.9, we can see that the mean and

variance of all e(mi, mb,j) are larger than zero, which shows that the robust design has

smaller performance variations than other designs and is thus more robust than other

designs.

TABLE 6.3 Stability-Based Robust Parameters

m mb 𝜆1, 𝜆2 𝜆3, 𝜆4 𝜆5, 𝜆6 𝜆7, 𝜆8

Min–Max

Singular Value

2 kg 4.6 kg −0.20 ±
11.02i

−2.57 ±
10.85i

−0.49 ±
6.02i

−2.13 ±
6.19i

1.0048 × 10−15
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138 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION

TABLE 6.4 Performance-Based Tolerance

Yr Largest Tolerance Space Tolerance 𝛿m Tolerance 𝛿mb

3.1 × 10−16 0.066 0.33 0.2

6.5.2 Multi-Model-Based Robust Design Method

Example 6.1 Consider the following nonlinear design problem.[
ẋ1(t)
ẋ2(t)

]
=

[
0.094864(p2 − 2) − 1 1.0094864

0.05d − sin(p) − 1

][
x1(t)
x2(t)

]
(6.37)

There is uncontrollable variation Δp around its nominal value p0 = 3.25 due to

manufacturing error and operating error. The design variable d can be chosen from

its design space d ∈ [−7, 2] to stabilize the system and achieve the desired dynamic

robustness under uncontrollable variation Δp.

6.5.2.1 Stability Design Stability domains, obtained respectively by the pro-

posed stability design method and the linearization-based stability design method

(LSDM) presented in Section 6.3, are shown in Figure 6.10. It is easily seen that the

stability domain of the proposed method is [−7, 1.2] and that of LSDM is [−7, 2].

The proposed design shows an unstable region at [1.2, 2], while the LSDM does not.

A further analysis, as shown in Table 6.5, has confirmed that this unstable region

does exist as the corresponding eigenvalues are positive. Thus, the proposed design

method is demonstrated to be more effective than the existing method.

6.5.2.2 Robust Design The effectiveness of the proposed robust design method

is verified when Δp randomly varies in [−0.05p0, 0.05p0]. The parameter variation

domain is divided into five subdomains for the multi-model approach. The robust

solution is d = −7. A total of 1000 samples are taken to compare variation of the

transient response with respect to Δp.

Performance variations under the constant initial condition and Δp are shown in

Figure 6.11. It is clear that the transient responses of the state x1 and x2 are stable and

robust under parameter variation.

Moreover, let the initial value randomly vary in [1, 1.2]. From Figure 6.12, it

is clear that transient responses of state x1 and x2 are also stable and robust under

parameter variation.

6.5.2.3 Design Comparison Effectiveness of the proposed robust design

method is demonstrated in comparison with the linearization-based robust eigen-

value design method (LREDM) when Δp randomly varies in [−0.05p0, 0.05p0]. The

performance comparison is shown in Table 6.6, where the transient response of the
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FIGURE 6.9 Mean and variance of the difference e(mi, mb,j) (a) mean; (b) variance
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FIGURE 6.10 Stability design

TABLE 6.5 Instability Design

D p 𝜆1 𝜆2

1.28 3.409 0.00063 −0.82

1.55 3.396 0.0079 −0.851

1.82 3.38 0.0123 −0.882

2 3.36 0.0112 −0.907
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FIGURE 6.11 Performance under parameter variation Δp: (a) transient response of x1(t);
(b) transient response of x2(t)
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FIGURE 6.12 Performance under variation of initial condition andΔp: (a) transient response

of x1(t); (b) transient response of x2(t)

existing design (d = −2.5) clearly has a larger performance variation than the pro-

posed method under both constant and variable initial values. Thus, the proposed

method is less sensitive to parameter variations than the existing method.

Example 6.2 The actuating process is very important in providing a desired dis-

placement in the manufacturing industry. A key requirement for a high-quality actu-

ator is to provide a dynamic response that is less sensitive to parameter variations,

thus making its dynamic behavior easy to estimate and predict.

As shown in Figure 6.13, a practical high-precision magnetic actuator consists

of a pair of linked and guided rigid masses m1 and m2. The magnetic force is used

to provide the required actuating force, which is produced by the electromagnetic

induction through the current i on an iron core. It therefore has advantage in obtaining

the actuating force without any contact. Due to cost minimization from users, the

constant power should be set without any adjustment during the operation. Equiva-

lently, this system works in the open loop (without external control).

TABLE 6.6 Performance Comparison Under Different Design Methods

Performance variation: Δ =
√‖x1(t) − x10(t)‖ + ‖x2(t) − x20(t)‖

(where x10, x20 are responses under nominal model parameter)

When the initial value is constant When the initial value is variable

Mean Variance Mean Variance

LREDM 103 5241 105 3772

Proposed

method

47.29 1080 48.46 771
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FIGURE 6.13 Diagram of a practical vibration machine

The magnetic force f and the resistance f1 may be expressed by

f = 𝛾𝜇0N2i2Ax (6.38a)

f1 = cx (6.38b)

where i is the current of coil, N is the turn number of coil, 𝜇0 is the magnetic

conductivity of air, x is the displacement of m1, A is the area of magnetic pole; and

c is coefficient; 𝛾—its nominal value 𝛾0 is known but there is unknown variation

around its nominal value 𝛾0.

From Equation 6.38a, this magnetic force may be equivalent to a spring system

and its stiffness k is equal to

k = 𝛾𝜇0N2i2A (6.39)

According to Newton’s second law and conservation of momentum, the motions

of m1 are derived at the working point (x10 = 5 and x20 = 6) as

[
ẋ1

ẋ2

]
=

⎡⎢⎢⎢⎣
0 1

(−K − m2g + c)
√

l2 − x2
10

m1(l2 − x2
10

) + m2x2
10

−m2l2x10x20

m1(l2 − x2
10

) + m2x2
10

(l2 − x2
10

)

⎤⎥⎥⎥⎦
[

x1

x2

]
(6.40)

where x1 = x and x2 = ẋ.

In this magnetic actuator design, the design variable d includes k and l, with

nominal values chosen from their design space k ∈ [7, 15] and l ∈ [6, 11]. However,
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CASE STUDIES 143

TABLE 6.7 Instability Design

D 𝜆1 𝜆2

k = 8.21, l = 6 0.003 −0.859

k = 8.18, l = 8 0.0062 −0.862

k = 8.19, l = 10 0.0088 −0.465

there are uncontrollable variations Δk and Δl around their nominal values. These

variations could come from the magnetic leak and the manufacturing error. A key

issue for the high-precision actuator is to choose suitable design variables to ensure

both stability and robustness under uncontrollable uncertainty.

6.5.2.4 Stability Design The stability domains obtained by the proposed sta-

bility design method and the LSDM are { (k, l)| 8.7 ≤ k ≤ 15, 6 ≤ l ≤ 11} and
{(k, l)| 8.3 ≤ k ≤ 15, 6 ≤ l ≤ 11}, respectively. The proposed design shows an un-

stable region at the design { (k, l)| 8.3 ≤ k < 8.7, 6 ≤ l ≤ 11}, while the LSDM does

not. A further analysis, as shown in Table 6.7, has confirmed that this unstable region

does exist as the corresponding eigenvalues are positive. Thus, the proposed design

method is demonstrated to be more effective than the existing method.

6.5.2.5 Robust Design The effectiveness of the proposed robust design method

is verified when uncontrollable variations Δd randomly vary in [−0.05 d0, 0.05 d0].

The parameter variation domain is divided into nine subdomains for the multiple-

model approach. The robust solution is k = 15 and l = 11. A total of 1000 samples

are taken to compare variation of the transient response with respect to Δd.

The transient responses under the constant initial condition and Δd are shown in

Figure 6.14. From Figure 6.14, it is clear that the transient responses of the state x1

and x2 are stable and robust under parameter variation.

Moreover, let the initial value randomly vary in [1, 1.2]. From Figure 6.15, it is

clear that the transient responses of state x1 and x2 are also stable and robust under

parameter variation.

6.5.2.6 Design Comparison Effectiveness of the proposed robust design

method is demonstrated in comparison with the LREDM when Δd randomly varies

in [−0.05 d0, 0.05 d0]. The performance comparison is shown in Table 6.8, where

the transient response of the existing design (k = 8.7, l = 7.5) clearly has a larger

performance variation than the proposed method under both constant and variable

initial values. Thus, the proposed method is less sensitive to uncontrollable variation

than the existing method.
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FIGURE 6.14 Performance under uncontrollable variations Δd: (a) transient response of

x1(t); (b) transient response of x2(t)
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FIGURE 6.15 Performance under variation of initial condition andΔd: (a) transient response

of x1(t); (b) transient response of x2(t)

TABLE 6.8 Performance Comparison Under Different Design Methods

Performance variation: Δ =
√‖x1(t) − x10(t)‖ + ‖x2(t) − x20(t)‖

(where x10, x20 are response under nominal design parameter)

When the initial value is constant When the initial value is variable

Mean Variance Mean Variance

LSEDM 2.818 1.22 1.665 3.208

Proposed design

method

1.511 0.209 0.189 1.302
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SUMMARY 145

6.6 SUMMARY

For small variation in the system, a linearization-based robust eigenvalue design

method can effectively ensure the stability and robustness of a weak nonlinear dy-

namic system. First, a set of the design variables and bounds of their variations are

figured out to guarantee system stability based on the stability theory and to be able to

maintain the stability when design variables stay within these bounds. Then, in order

to make the dynamic response less sensitive to variations, the robust eigenvalue de-

sign is considered to minimize the sensitivity of eigenvalues to parameter variations.

Finally, tolerance space of robust design variables is maximized for the feasible de-

sign. An example is provided to demonstrate the effectiveness of the presented robust

design method.

For large variations of uncontrollable parameters in the system, a multi-model-

based robust design method is presented to ensure the stability as well as the robust-

ness of the dynamic system. The multi-model approach could express the nonlinear

relation well between dynamic performance and model parameters. The model built

also has a linear structure that will be easy to design. Moreover, the developed design

method has adequate ability to ensure the stability and dynamic robustness of the

system even under large variations of uncontrollable parameters. The selected cases

successfully demonstrate the effectiveness of the proposed method. The proposed

method should be able to work under complex manufacturing environment.
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CHAPTER 7

ROBUST EIGENVALUE DESIGN
UNDER PARAMETER VARIATION—
A NONLINEAR APPROACH

Chapter 6 takes into account the dynamic performance of linear system. This

chapter will develop an approach to design stability and robustness of non-

linear system under large variations of uncontrollable parameters. A sector-

nonlinearity (SN) method is first employed to model a nonlinear system. A

stability design is then developed to ensure stability of this nonlinear system

under parameter variations. The influence of parameter variations on eigenval-

ues of the system will also be minimized to maintain system robustness.

7.1 INTRODUCTION

The whole manufacturing process usually consists of many machines and systems.

Due to physical and economic constraints, some functions or systems used in the

process may not employ external controllers. Then, dynamic performance of these

systems can only rely on system design. If the system can be designed to be inherently

robust, a satisfactory performance will be easily achieved and insensitive to parameter

variations. Clearly, robust design will be crucial to gaining a satisfactory dynamic

performance.

Eigenvalues of the dynamic system play a crucial role in system design. The

positions of eigenvalues critically dictate system stability, and their sensitivity to

parameter variations will determine system robustness. Thus, both the positions and

variations of eigenvalues are of vital importance for design of the dynamic system.

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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148 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

At the design stage, effort should be devoted to considering the effects of uncertainty

on system stability. Significant research has been reported on this aspect (Blanco and

Bandoni, 2003; Mohideen, Perkins, and Pistikopoulos, 1997; Kokossis and Floudas,

1994; Monnigmann and Marquardt, 2003, 2005). However, they may not work well

for the system with strong nonlinearity, because the stability designed at the operation

point may not work well in other location due to nonlinear characteristics (Liaw

and Lee, 2006; Hachicho, 2007). Moreover, a good design should have minimum

sensitivity of the system eigenvalues to parameter variations. Though a few studies

have been presented recently to minimize the sensitivity of the eigenvalues with

respect to parameter variations, such as methods in Chapter 6, linearization-based

approach will generate a large approximation error for the strongly nonlinear system.

In general, effective design is still needed to maintain both stability and dynamic

robustness for the nonlinear dynamic system.

Generally, there are two significant factors that hinder the development of eigen-

value design in dynamic systems. First, system eigenvalues have a nonlinear rela-

tionship with model parameters, which is difficult to express explicitly (Blanco and

Bandoni, 2003). Second, the eigenvalue design often has a nonlinear, even noncon-

vex or nondifferentiable objective function that is difficult to solve mathematically

(Malcolm et al., 2007). Intelligent method, such as particle swam optimization (PSO)

(Clerc 2006; Valle et al., 2008), would be a good choice to solve this complex

optimization problem without analytical solutions.

In this chapter, a design method is proposed to achieve stability and robustness of

a nonlinear dynamic system under parameter variations. A sector-nonlinearity (SN)

method is first employed to model a nonlinear system. A stability design is then

developed to ensure the nonlinear system to be stable in a desirable domain under

variations. Furthermore, dynamic robustness will be achieved by minimizing the

sensitivity of the system eigenvalues to parameter variations. This design optimiza-

tion will be figured out by a newly constructed PSO-based two-loop optimization

method. Finally, a practical example is used to demonstrate the effectiveness of the

proposed method.

7.2 DESIGN PROBLEM

If external controllers are not used in manufacturing systems, the dynamic perfor-

mance of such systems fully depends on their own design. Design of this kind of

systems is not easy due to the strong nonlinearity and large parameter variation. The

systems can be described as:

ẋ = f (x, d) (7.1)

where x ∈ Rn represents a state vector, f (⋅) is a nonlinear function, and d =
[d1,… , dm]T is a design parameter vector whose nominal value is required to design.

It is assumed that there is an uncontrollable variation Δd around the nominal value

of this design parameter resulting from manufacturing and operating errors.
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DESIGN PROBLEM 149

Stability Design

For a nonlinear dynamic system (Equation 7.1), the stability design needs to select the

most appropriate design parameter to guarantee its asymptotic stability. The common

design methods for the stability of the system (Equation 7.1), such as the methods in

Chapter 6, are based on the following linearization model:

ẋ = A0x (7.2)

with the constant nominal state matrix A0 = 𝜕f
𝜕x

|||x=x0
.

Then, a suitable design parameter is selected to have negative real parts of all

eigenvalues of A0. While these methods can obviously guarantee stability at the

operating point, they cannot ensure stability in the whole state domain. A suitable

stability domain will be crucial to robust performance of the nonlinear dynamic

system (Hachicho, 2007; Liaw and Lee, 2006), as shown in Figure 7.1. Thus, further

development is needed to achieve stability of a nonlinear dynamic system at a suitable

domain instead of the operating point only.

Dynamic Robust Design

While parameter variations are unavoidable in practice, a dynamic robust design

should be able to minimize its influence on a transient response. A small change of

the transient response caused by parameter variations indicates a good robustness

of the system. For the example shown in Figure 7.2, the design b is more robust than

the design a because it has a smaller variation in the transient response.

According to the dynamic theory, the transient response of a system is decided

by its eigenvalues (Liu and Patton, 1998; El-Kady and Al-Ohaly, 1997). Thus, the

robust design of the dynamic system should have eigenvalues to be insensitive to

large parameter variations. Although a few studies have been reported to minimize

sensitivity of the eigenvalues to parameter variations based on the linearization model

(Equation 7.2), such as the methods presented in Chapter 6, they are less effective

to the nonlinear system since the neglected nonlinear terms still affect the system

Stability

domain 

x2

x1

Boundary between

stability and instability 

Operating

point 

FIGURE 7.1 Stability domain of a nonlinear system
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150 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

Upper and lower bounds

under design a

State x

t

Upper and lower

bounds under design b 

(These bounds caused by parameter variation)

FIGURE 7.2 Variation bounds of transient response under different designs

response. Thus, effective design approach is required for the nonlinear system to have

robust performance.

7.3 SN-BASED DYNAMIC DESIGN

Although sector-nonlinearity (SN) approach has often been used in the control field

(Tanaka and Wang, 2001), it was hardly applied in design of a dynamic system except

the case of static system design mentioned in Chapter 3. Here, it will be employed

for the first time in designing a nonlinear dynamic system. The nonlinear system

(Equation 7.1) will be transformed into the following form:

ẋ = f (x, d) = A(x, d)x (7.3)

where the state matrix A(x, d) is a function of x and d. This SN approach is illustrated in

Figure 7.3 under the given design variable d. Any state derivative ẋ may be expressed

as the product of the state x and the state matrix A(x, d). The state matrix A(x, d)

is equal to the slope of the straight line between its state point and the operating

point O. For example, the state derivative ẋ at point B is equal to ẋB = ABOxB, where

the state matrix ABO is equal to the slope of the line BO. Thus, any point of the

Line BO

Practical system 

O

B

xl

xB xu

x AmaxΔx

AminΔx

x

FIGURE 7.3 Sector nonlinearity modeling approach
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SN-BASED DYNAMIC DESIGN 151

nonlinear system may be expressed as ẋ = A(x, d)x. Since this model does not have

any approximation, it can express the nonlinear system effectively.

Maximal and minimal values of the state matrix A(x, d) within a given state domain

[xl, xu] can be easily calculated from the model, and expressed as:

Ai,j(x, d) ∈ [(Ai,j(d))min, (Ai,j(d))max] (7.4)

with

(Ai,j(d))min = min
x∈[xl,xu]

Ai,j(x, d)

(Ai,j(d))max = max
x∈[xl,xu]

Ai,j(x, d)

where Ai,j is the (i, j) element of A.

Example This simple example illustrates the mechanism of the SN method. The

system is described as follows:(
ẋ1(t)
ẋ2(t)

)
=

(
−x1(t) + x1(t)x2

2
(t)

x2(t) + x3
1
(t)x2(t)

)
(7.5)

with x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1].

Equation 7.5 may be rewritten as:(
ẋ1(t)
ẋ2(t)

)
=

[
−1 x1(t)x2(t)
1 x2

1
(t)x2(t)

](
x1(t)
x2(t)

)
(7.6)

Thus, its state matrix A is:

A =
[
−1 x1(t)x2(t)
1 x2

1
(t)x2(t)

]
(7.7)

Maximal and minimal values of its every element are easily estimated as:

(A1,2)min = min
x1,x2∈[−1,1]

x1(t)x2(t) = −1 and (A1,2)max = max
x1,x2∈[−1,1]

x1(t)x2(t) = 1

(7.8a)

(A2,2)min = min
x1,x2∈ [−1,1]

x2
1
(t)x2(t) = −1 and (A2,2)max = max

x1,x2∈[−1,1]
x2

1
(t)x2(t) = 1

(7.8b)
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152 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

7.3.1 Stability Design

Stability design is to ensure the nonlinear system to be stable in the given state domain

by selecting a suitable design parameter. Here, a new approach for stability design is

developed with two following issues to satisfy:

1. Stability design under the nominal parameter. This design finds a nominal

stability parameter space Sn, which is composed of design parameters that

guarantee the eigenvalues of the nominal matrix A(x, d) to be negative.

2. Tolerance design. This design finds the tolerances of all design parameters in

Sn so that the eigenvalues of A(x, d + Δd) are negative only if their variations

Δd are limited in the tolerances. From the viewpoint of robustness, these design

parameters should have big tolerances.

Through these two designs, the system can be deemed stable when Δd is limited

in its tolerance.

7.3.1.1 Stability Design Under the Nominal Parameter Stability of the

nominal system in the given state domain x ∈ [xl, xu] is designed without consid-

ering the influence of parameter variations. This design problem may be transformed

to find design parameter d to make the Lyapunov function V̇(x) less than zero in

accordance with the stability theory, where V(x) = xTPx and P is a symmetrically

positive definite matrix:

Feasible (P1): Find (d) to make

V̇(x) = AT (x, d)P + PA(x, d) < 0

P > 0, P = PT

Ai,j(x, d) ∈ [(Ai,j(d))min, (Ai,j(d))max]

h(d) = 0, l(d) ≤ 0, x ∈ [xl, xu]

(7.9)

Where h(d) and l(d) are constraints from other design aspects.

The feasible problem P1 is difficult to address directly, as it places an infinite

number of inequalities corresponding to all the possible values of A(x, d). According

to Sandoval, Budman, and Douglas (2008), the feasible problem P1 can be reduced to

a finite set of Linear Matrix Inequalities (LMIs), where only a particular combination

of the extreme values of all the elements at the state space matrix A is required:

Feasible (P2): Find (d) to make

ArP + PAr < 0

(Ai,j(d))min or (Ai,j(d))max is selected as the element Ar,(i,j)

P > 0, P = PT

h(d) = 0, l(d) ≤ 0

(7.10)
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SN-BASED DYNAMIC DESIGN 153

where the vector r denotes the set of 2mn combinations. All possible solutions of

the feasible problem (P2) form a nominal stability parameter space Sn, in which any

design parameter could ensure the stability of the nominal system in the given state

domain x ∈ [xl, xu].

7.3.1.2 Tolerance Design This design finds tolerances of all of the design pa-

rameters in Sn. The nonlinear system (Equation 7.1) remains stable as x ∈ [xl, xu] if

every parameter variation Δdi is limited in its tolerance Di, even Di = max(|Δdi|)
(i = 1,… , m). Such a tolerance may be obtained by solving the following feasible

problem (P3):

Feasible (P3): Find (D1,… , Dm) to make

Ãr P + PÃr < 0(Ãi,j(d))min or (Ãi,j(d))max

is selected as the element Ãr,(i,j)

(Ãi,j(d))min = min
x∈[xl,xu]
Δd ∈[−D,D]

(Ai,j(x, d + Δd))

(Ãi,j(d))max = max
x∈[xl,xu]
Δd∈[−D,D]

(Ai,j(x, d + Δd))

Di = max(|Δdi|),
P > 0, P = PT

h(d + Δd) = 0, l(d + Δd) ≤ 0

d ∈ Sn

(7.11)

From a robustness view, the larger the tolerance is, the better the stability is. In this

sense, the tolerance Di should be larger than the desirable level 𝜀i. To be precise, such

a design parameter d in Sn should be accepted only if its tolerance is larger than the

desirable level. All accepted design parameters form a stability parameter space Ss.

7.3.2 Dynamic Robust Design

The relationship between the eigenvalue and its associated eigenvector can be ex-

pressed as follows

A(x, d + Δd)U = UΛ (7.12)

where U = [u1,… , un] and Λ = diag[𝜆1,… , 𝜆n] are eigenvector matrix and eigen-

value matrix, respectively. While the state matrix A in the SN method is variable, its

eigenvalue 𝜆i is also variable in a bound:

𝜆i ∈
[
𝜆min

i
, 𝜆max

i

]
(7.13)
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154 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

It is well known that the transient response of the system can be expressed as:

x(t) = UeΛtU−1x(0) (7.14)

where x(0) is an initial value. From Equation 7.14, the time response x(t) is mainly

decided by the eigenvalue 𝜆i of the state matrix A. If the eigenvalue 𝜆i is sensitive to

parameter variations, the dynamic behavior will deviate from the desired response.

This is undesirable for a practical engineering system. Thus, a dynamic robust design

should be developed by choosing a suitable design variable d from the stability

parameter space Ss to make all eigenvalues less sensitive to parameter variations.

According to the orthogonal theory of eigenvector, the system eigenvalue 𝜆i (i =
1, . . . , n) is shown below with the detailed derivation in Chapter 6:

𝜆i(x, d + Δd) = 𝜆i(x, d) +
(

vT
i (x, d)

𝜕A(x, d + Δd)

𝜕Δd

||||Δd=0
ui(x, d)

)
Δd (7.15)

where v and u are the left and the right eigenvector of the eigenvalue 𝜆i, respectively.

Define

Δ𝜆i = 𝜆i(x, d + Δd) − 𝜆i(x0, d) (7.16)

From Equations 7.15 and 7.16, we have

Δ𝜆i = 𝜆i(x, d) − 𝜆i(x0, d) +
(

vT
i (x, d)

𝜕A(x, d + Δd)

𝜕Δd

||||Δd=0
ui(x, d)

)
Δd (7.17)

From Equation 7.17, the eigenvalue variation Δ𝜆i is simultaneously affected by

both the parameter variation Δd and the nonlinear term of the system (Equation 7.1).

This creates a challenge in minimizing Δ𝜆i as a result of complexity and interaction.

Here, a design approach (Figure 7.4) is proposed to decompose this complex

design problem (Equation 7.17) into two simple subproblems. One is to minimize

Minimize eigenvalue variation Δλ

Minimize the influence of

system nonlinearity  

Minimize the influence of

parameter variation  

Integration design 

Stability design and robust design 

FIGURE 7.4 New robust design method
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SN-BASED DYNAMIC DESIGN 155

the influence of the system nonlinearity to eigenvalue variation (Δ𝜆/x). The other is

to minimize the influence of parameter variations on eigenvalue variation (Δ𝜆/Δd).

Finally, these two subproblems are integrated into a unified optimization framework,

where robust solution can be achieved in the given state domain.

7.3.2.1 Minimizing the Influence of System Nonlinearity First of all, the

first and second term 𝜆i(x, d) − 𝜆i(x0, d) on the right side of Equation 7.17 are min-

imized. Even though these terms are related to the nonlinearity of the system, they

are not related to Δd. According to the developed SN model, the maximal varia-

tion of eigenvalues can be obtained in the given state domain through the following

optimization.

Δ𝜆max
i,x

= max
xl<x<xu

|𝜆i(x, d) − 𝜆i(x0, d)| (7.18)

In order to minimize the nonlinear influence on the system eigenvalues, a suitable

design variable d will be chosen to minimize this maximal eigenvalue Δ𝜆max
i,x

:

C1(d)

min
d

m∑
i=1

Δ𝜆max
i,x

s.t. d ∈ Ss

(7.19)

where d ∈ Ss is the requirement for stability and feasibility.

7.3.2.2 Minimizing the Influence of 𝚫d In addition, the other term

(vT
i (x, d)

𝜕A(x,d+Δd)

𝜕Δd
||Δd=0 ui(x, d))Δd on the right side of Equation 7.17 is minimized.

This can be defined as

Δ𝜆i,d =
(

vT
i (x, d)

𝜕A(x, d + Δd)

𝜕Δd

||||Δd=0
ui(x, d)

)
Δd (7.20)

For convenience, v(x, d) and u(x, d) can be denoted simply as v and u. Obviously,

Equation 7.20 may be rewritten as:

Δ𝜆d = J𝜓 (7.21)

where

Δ𝜆d =

[
Δ𝜆1,d

⋮
Δ𝜆m,d

]
, 𝜓 =

[Δd1

⋮
Δdm

]
,

J =

⎡⎢⎢⎢⎢⎢⎣

(
vT

1

𝜕A(x, d + Δd)

𝜕Δd1

𝜇1

) ||||Δd=0
⋯

(
vT

1

𝜕A(x, d + Δd)

𝜕Δdm
𝜇1

) ||||Δd=0

⋮ ⋱ ⋮(
vT

n
𝜕A(x, d + Δd)

𝜕Δd1

𝜇n

)||||Δd=0
⋯

(
vT

n
𝜕A(x, d + Δd)

𝜕Δdm
𝜇n

)||||Δd=0

⎤⎥⎥⎥⎥⎥⎦
.
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156 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

From Equation 7.21, it is clear that 𝜓 represents variation of the design parameter,

while J is only affected by x. Since the designer cannot control the term 𝜓 , this

robust design problem is reduced to the minimization of its sensitivity matrix J. Thus,

performance will directly relate to the design parameter as follows:

‖‖Re(Δ𝜆d)‖‖2
2 + ‖‖Im(Δ𝜆d)‖‖2

2 =
m∑

i=1

𝜎iy
2
i (7.22)

with [y1,… , ym]T = VT𝜓.

where 𝜎i is the singular value of Re(J)TRe(J) + Im(J)T Im(J), and the corresponding

orthogonal eigenvector is denoted as Vi, which is one element of V = [ V1 ⋯ Vm ].

The performance Δ𝜆d will be less sensitive to parameter variation Δd if the

maximal singular value 𝜎max is minimized, according to sensitivity-based robust

design approaches. Thus, in order to minimize Δ𝜆d, the design variable d should be

chosen to minimize the maximal singular value 𝜎max as: Δ𝜆max
i,x

:

C2(d)

min
d

max
xl<x<xu

(𝜎i)

s.t. ‖‖Re(Δ𝜆d)‖‖2
2 + ‖‖Im(Δ𝜆d)‖‖2

2 =
m∑

i=1

𝜎iy
2
i

d ∈ Ss

(7.23)

Therefore, the solution of Equation 7.23 can minimize the influence of parameter

variation on Δ𝜆d.

7.3.2.3 Integration Design This design simultaneously considers influences

from both the nonlinear term and parameter variations, where two objective functions

C1 in Equation 7.19 and C2 in Equation 7.23 are integrated into a unified objective

function using the weighted-sum method:

C3(d): min
d
𝛽

C1(d)

C1(d+)
+ (1 − 𝛽)

C2(d)

C2(d+)
s.t. d ∈ Ss

(7.24)

where the objectives C1(d) and C2(d) are normalized by their central values C1(d+)

and C2(d+) with the central point d+ of d, while 𝛽 is a trade-off weight in the range

0 ≺ 𝛽 ≺ 1.

A desirable robust design can be obtained by solving the integration problem

(Equation 7.24) with an optimal weight factor 𝛽∗. However, as the singular 𝜎 has

a complex nonlinear relation with the design parameter, the integration problem

(Equation 7.24) is often a nonconvex and nonlinear constrain optimization problem.
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SN-BASED DYNAMIC DESIGN 157

Moreover, this nonlinear relation is often difficult to express mathematically. As a

result, the integration problem can be difficult to solve by many analytical methods.

7.3.2.4 A PSO-Based Two-Loop Optimization Method Here, a PSO-based

two-loop optimization method is applied to address this problem. This method de-

composes the integration problem into two nested optimizations: optimization of

design parameter (inner loop) and optimization of weight factor (outer loop).

1. Optimization of design parameter (inner loop)
This optimization solves the integration problem (Equation 7.24) when the weight

factor 𝛽 is given. This optimization strategy is shown in Figure 7.5 and summarized

as follows:

Step 1: The weight factor 𝛽 is offered by optimization of weight factor (outer loop)

and the design variable d is initialized.

Step 2: C1(d), C2(d), and the integration design cost (Equation 7.24) are computed.

Step 3: Judge whether the integration design cost (Equation 7.24) satisfies the

requirement. If it is satisfactory, then the design will be accepted and the opti-

mization design is finished. Otherwise, the design variable d must be updated.

Here, the PSO method as presented in next section is employed to update the

design variable d, and then the program goes to Step 2.

Step 4: Steps 2–3 are repeated until a stopping criterion is met.

d

Yes 

No 

Roust design under given β

Initialization (given d, β)

Satisfactory?

C2(d)C1(d)

Integration design (7.24)

PSO-based

design update

Design variable (d)

FIGURE 7.5 Optimization of design parameter (inner loop)
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158 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

In the particle swarm optimization, each individual possible solution can be mod-

eled as a particle that moves through the problem hyperspace (Eberhart and Kennedy,

1995). The position of the ith particle at a certain iteration time t is determined by

the vector of the coordinates

di(t) = [d1i(t),… , d𝛽i(t)] (7.25)

where the component dji ∈ [dmin
ji , dmax

ji ] represents the jth design variable of the ith
particle, and 𝛽 is the number of design variables namely the dimension of the search

space.

The information available for each individual is based on its own experience and

the knowledge of other individuals. Since the relative importance of these two factors

can vary from one decision to another, it is reasonable to apply random weights to

each part. Therefore, the velocity vi of the ith particle will be determined by

vi(t) = 𝛿vi(t − 1) + 𝜑1 ⋅ rand1 ⋅ (pbest,i(t − 1) − di(t − 1))

+ 𝜑2 ⋅ rand2 ⋅ (gbest,i(t − 1) − di(t − 1))
(7.26)

where 𝛿 is an inertia weight, 𝜑1 and 𝜑2 are two positive numbers, and rand1, rand2

are two random numbers with uniform distribution in range of [0, 1], and pbest,i and

gbest,i give the best position of the ith particle and the entire swarm, respectively.

Then, the position of the ith particle is updated according to

di(t + 1) = di(t) + vi(t) (7.27)

When the value of a coordinate of a particle lies outside the acceptable interval,

it means that the particle leaves the search space. The velocity and position of this

particle should be modified to bring it back inside the search space (Naka et al., 2003)

dji ∉ [dmin
ji , dmax

ji ] ⇒

⎧⎪⎨⎪⎩
vji(t) = 0

dji ≺ dmin
ji ⇒ dji = dmin

ji
dji ≻ dmax

ji ⇒ dji = dmax
ji

(7.28)

where vji(t) is the jth element of vi(t).
The following procedure can be used for implementing the PSO algorithm (Clerc,

2006):

Step 1: Initialize the swarm by assigning a random position in the problem hyper-

space to each particle.

Step 2: Evaluate the fitness function C3(d) for the ith particle and judge the

feasibility of the ith particle. The feasibility test is to check all constraint

conditions. If all constraint conditions are feasible, then such a particle will be
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SN-BASED DYNAMIC DESIGN 159

accepted. Otherwise, this particle is unaccepted and then the program goes to

Step 5.

Step 3: For each individual particle, compare the particle’s fitness value C3(d) with

its pbest,i. If the current value is better than pbest,i value, then set this value as

pbest,i and the current position of the particle di as pi.

Step 4: Identify the particle with the best fitness value. The value of its fitness

function is identified as gbest,i and its position as pg.

Step 5: Update the velocities and position of all the particles using Equations 7.26

and 7.27. Then, judge whether the particle leaves the search space. If yes, then

carry out Equation 7.28.

Step 6: Repeat Steps 2–5 until a stopping criterion is met. Finally, the optimal

design variables are taken from pg.

2. Optimization of weight factor (outer loop)
This optimization is developed as shown in Figure 7.6 to find the optimal weight

factor. It mainly includes the following steps:

Step 1: The weight factor 𝛽 is initialized.

Step 2: The optimization of design parameter (inner loop) is performed.

Step 3: Check whether its solution satisfies the robust performance. If it is sat-

isfactory, then the design is considered robust and the optimization design is

finished. Otherwise, the weight factor 𝛽 needs to be updated, and then the

program goes to Step 2. Here, the PSO method is also used for the updating.

Step 4: Steps 2–3 are repeated until a stopping criterion is met.

Yes

NoRobust performance

satisfied ?

Robust design

β update using PSO

method

Design parameter

optimization (inner loop)

Weight β

FIGURE 7.6 Optimization of weight factor (outer loop)
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160 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

7.3.2.5 Design Summary Many manufacturing systems are often strongly non-

linear and their model parameters have a large variation domain. The proposed design

will be able to maintain the system stability as well as the system robustness. Its design

procedure is summarized as follows:

Step 1: A nonlinear system is modeled using the SN approach. Since this modeling

has an equivalent expression as the original system, it will have less approxi-

mation than the traditional linearization approach in a large state region.

Step 2: The nominal stability parameter space Sn is found by solving the feasi-

ble problem (P2). The stability of the nominal nonlinear system can thus be

guaranteed.

Step 3: The stability parameter space Ss is found within the nominal stability pa-

rameter space Sn by solving the feasible problem (P3). When variation of design

parameter from Ss is limited in its tolerance, its stability is still maintained.

Step 4: The dynamic robust design from Ss is obtained by solving the optimization

problem (Equation 7.24) using the PSO-based two-loop optimization method.

Since it considers the influences from both the nonlinear term and parameter

variations, it will be more effective in obtaining the desirable dynamic response

of a nonlinear system under large parameter variations.

7.4 CASE STUDY

A magnetic actuator example with a variable working point as presented in Chapter 6

is used to verify the effectiveness of the proposed method. In this magnetic actuator

design, the design parameters are k and l, with nominal values chosen from their

design space k ∈ [1, 6] and l ∈ [3, 8]. However, there are uncontrollable variations

Δk and Δl around their nominal values. These variations could come from magnetic

leak and manufacturing error. A key issue for high precision actuator is to choose

suitable design parameters to ensure both stability and robustness of the system within

the given state domain x1(t) ∈ [−2.5, 2.5] and x2(t) ∈ [−2.5, 2.5] under uncertainty.

7.4.1 Stability Design

Stability domains obtained by the proposed stability design method and the

linearization-based robust eigenvalue design as presented in Chapter 6 are compared

under the desirable level 𝜀k = 𝜀l = 0.01. As shown in Figure 7.7, the white blank

space represents the unstable designs while the blue shadow space represents the

stable designs. The proposed design can identify an unstable region at bottom around

the parameter l = 3.25, while the linearization-based robust eigenvalue design fails.

A further analysis, as shown in Table 7.1, has confirmed that this unstable region is

correct as the corresponding eighenvalues (𝜆1, 𝜆2) are positive. Thus, the proposed

design method is demonstrated to be more effective than the linearization-based

robust eigenvalue design method because of less approximation in modeling.
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FIGURE 7.7 Stability design under different design methods: (a) stability design obtained

by the proposed method; (b) stability design obtained by linearization-based robust eigenvalue

design method
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162 ROBUST EIGENVALUEDESIGNUNDER PARAMETER VARIATION—ANONLINEAR APPROACH

TABLE 7.1 Unstable Solution at Design Parameter l = 3.25

k L x1 x2 𝜆1 𝜆2

1 3.25 2.5 −2.5 0.75 0.75

2 3.25 0 0 0.67 7.41

3 3.25 6 3 0.64 0.64

4 3.25 −0.5 0.5 0.94 7.43

5 3.25 −2.5 2.5 0.38 0.38

6 3.25 0 0 2.09 4.29

7.4.2 Dynamic Robust Design

Ten particles are employed for the PSO method, respectively, in the inner loop and

the outer loop. The iterative process of the outer loop is shown in Figure 7.8. The de-

veloped PSO-based two-loop optimization method is used to obtain the robust design

solution d∗I (k∗ = 3.153, l∗ = 8, 𝛽∗ = 0.795) for the design problem (Equation 7.24).

The performance comparison with the existing method, the linearization-based

robust eigenvalue design in Chapter 6, demonstrates the effectiveness of the proposed

robust design method when both Δk and Δl vary randomly in [−0.01, 0.01]. A total

of 1000 samples from random variation of Δk and Δl are used and every sample

produces a corresponding transient response.

Upper and lower bounds among 1000 transient responses are shown in Figure 7.9

under the consistent initial condition. From Figure 7.9, it is evident that the transient

responses of state x1 and x2 obtained by the existing design have a larger variation

than the proposed method.
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FIGURE 7.8 Iterative process in the outer loop

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CASE STUDY 163

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

(a)

(b)

-: Upper and lower bounds of
x1 using proposed method

--: Upper and lower bounds of
x2 using existing method

0 1 2 3 4 5 6
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

-: Upper and lower bounds of
x1 using proposed method

--: Upper and lower bounds of
x2 using existing method

FIGURE 7.9 Performance comparison under Δk and Δl: (a) transient response of x1(t); (b)

transient response of x2(t)
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FIGURE 7.10 Performance comparison under variation of initial condition and Δk and Δl;
(a) transient response of x1(t); (b) transient response of x2(t)
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SUMMARY 165

The initial value is also allowed to vary randomly in [1, 1.2]. Under the variation

of the initial value, the upper and lower bounds obtained by the proposed method

and the existing method are compared in Figure 7.10. The transient response of the

existing design clearly has a larger performance variation than the proposed method.

Thus, the proposed method is less sensitive to parameter variations than the existing

method, because it effectively considers the influence of the nonlinear term in large

parameter variation, while the existing method does not.

7.5 SUMMARY

A design method is proposed for the nonlinear dynamic system for improving stabil-

ity and robustness. The SN method provides a well-designed model for the nonlinear

system working in a large state region. Thus, this novel design method could achieve

both stability and dynamic robustness of the system under large parameter variations.

The selected case on design of a practical nonlinear system demonstrates the effec-

tiveness of the proposed method. It would be a more realistic method for design of

the manufacturing system.
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CHAPTER 8

ROBUST EIGENVALUE DESIGN
UNDER MODEL UNCERTAINTY

The methods presented in Chapter 6 and Chapter 7 are to minimize the ef-

fect of parameter variations on dynamic performance without considering the

influence of model uncertainty. This chapter will develop a novel approach

to design the system to be stable and robust under parameter variations as

well as model uncertainty. With the help of the known model information and

data-based uncertainty estimation, design variables and their variation bounds

are first configured to make the system stable. A perturbation theory-based

robust design is then developed to make the dynamic response less sensitive to

parameter variations as well as model uncertainty.

8.1 INTRODUCTION

Due to complex dynamics and boundary conditions in manufacturing, it is often dif-

ficult to obtain accurate models for many systems used in manufacturing production.

A nominal model, derived from simplicity and ideal assumptions, is often used to

approximate the original system. For example, fluid process, like epoxy dispensing

(Hong and Li, 2003) and snap curing (Deng, Li, and Chen, 2005) in IC/LED packag-

ing industry, are generally described in a nonlinear partial differential equation with

complex boundary conditions, which are difficult to solve analytically. Thus, they are

often simplified into a set of nominal differential equations under some assumptions

(Li and Qi, 2010, 2011). This simplification will cause model uncertainty, in either

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.
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168 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY

parameter or structure. If these uncertainties are not considered in design, system per-

formance will be deteriorated. Thus, designers should seriously consider the effect

of model uncertainty on system performance.

In recent several decades, much effort has been devoted to consider system dy-

namics at the process design stage, for example, chemical process design (Blanco

and Bandoni, 2003) and rotor systems design (Kliem, Pommer, and Stoustrup, 1998).

However, these studies still have their limitations: (a) they paid no attention to the

effect of model uncertainty on system stability at the stage of process design; and

(b) they did not consider the influence of model uncertainty on dynamic response and

thus the designed system was often less robust.

In this chapter, a design method is developed to achieve the desired dynamic

performance under model uncertainty. First, the stability theory is applied to obtain a

feasible space for design variables under model uncertainty. When design variables

stay within this feasible space, the system is still stable even if both model uncertainty

and fluctuations of design variables exist. Then, the robust eigenvalue design is

developed to minimize the effect of uncertainties on system eigenvalues using the

matrix perturbation theory, which will guarantee the dynamic response less sensitive

to uncertainties. Furthermore, the tolerance space of the obtained robust design will be

maximized under specified performance constraints. Finally, an example is provided

to demonstrate the effectiveness of the proposed approach.

8.2 DESIGN PROBLEM FOR PARTIALLY UNKNOWN

DYNAMIC SYSTEMS

Consider the model uncertainty design problem:

ẋ = f (x, d) + Δf (x, d) (8.1)

where x ∈ Rn represents state vector, d = [d1 ⋯ dm]T is design variable vector, f (d) =
[f1(d)⋯ fn(d)]T is known nominal model,Δf (d) = [Δf1(d)⋯Δfn(d)]T is model uncer-

tainty.

Taking Taylor series expansion of the model (Equation 8.1) at x = 0 and neglecting

the high-order term, the system model can be expressed as

ẋ = A(d)x (8.2)

where the nominal Jacobian matrix A0(d), the perturbation Jacobian matrix ΔA(d),

and the Jacobian matrix A(d) are defined as

A0(d) =
𝜕f (x, d)

𝜕x
||x=0 (8.3a)

ΔA(d) =
𝜕Δf (x, d)

𝜕x
||x=0 (8.3b)

A(d) = A0(d) + ΔA(d) (8.3c)
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STABILITY DESIGN 169

Since Δf is unknown, ΔA is also unknown. For convenience, A0(d), ΔA(d), and

A(d) are simply denoted as A0, ΔA, and A respectively.

Obviously, stability is critical to the dynamic system. The objective of the stability

design is to select the design variables d to make the real parts of 𝜆 smaller than

zero. However, since there is model uncertainty in the system, it is difficult to directly

obtain 𝜆, which poses a challenge to design.

Moreover, since variations of these design variables are unavoidable, their vari-

ation bounds, around their nominal values, should be calculated to restrain their

influences on stability. Due to simultaneous existence of model uncertainty and vari-

ations of design variables, it is difficult to obtain these bounds, which will pose

another challenge to design.

Furthermore, under the guaranteed system stability, how to make the system

dynamic response less sensitive to both parameter variations and model uncertainty

is the third challenge to deal with.

8.3 STABILITY DESIGN

In this section, a stability design method is developed to guarantee the system stability

under parameter variations as well as model uncertainty.

8.3.1 Stability Design for Nominal Model

The objective of this design is to choose such design variables d to make the real part

of all eigenvalues 𝜆0 = [𝜆0
1
𝜆0

2
⋯ 𝜆0

n] of the nominal Jacobian matrix A0 smaller than

zero. These design variables d can be figured out by the following feasible problem

(P1):

Feasible (P1): Find (d)

to make
Re(𝜆i(A0(d))) < 0 (i = 1,… , n)

h(d) = 0, l(d) ≤ 0
(8.4)

where h(d) and l(d) are constraints from other design aspects, and Re(𝜆) denotes the

real part of 𝜆. All possible solutions of the feasible problem (P1) form a nominal

stability variable space Sn, in which every design variable will guarantee the stability

of the nominal system.

8.3.2 Stability Design Under Model Uncertainty

The eigenvalues 𝜆0
i (i = 1,… , n) of A0 are related to its eigenvectors U0

i (i = 1,… , n)

by the equations

A0U0 = U0Λ0 (8.5)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



170 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY

where U0 = [U0
1
,… , U0

n] and Λ0 = diag(𝜆0
1
,… , 𝜆0

n) are the right eigenvector set and

the right eigenvalue set of A0, respectively.

According to the Bauer–Fike theorem (Stewart and Sun, 1990; Ralph and Stephen,

1989), if A0 has an additive perturbation ΔA, then a bound on the variations of the

eigenvalues is given by

||𝜆i − 𝜆0
i
|| ≤ K ⋅ ‖ΔA‖2 (8.6)

where 𝜆i and 𝜆0
i are the eigenvalues of A and A0 respectively, the condition number

K is the ratio of the largest singular value 𝜎U max to the smallest singular value 𝜎U min
of U0.

The upper bound S of the model uncertainty is estimated as

‖ΔA‖2 ≤ S (8.7)

This is easy to ascertain by means of system knowledge, experience, or sample

data, such as, the method in Chapter 5 for estimation of this upper bound from data.

This estimation can effectively compensate the effect of model uncertainty on system

performance.

Then, from inequalities (Equations 8.6 and 8.7), we obtain

||𝜆i − 𝜆0
i
|| ≤ K ⋅ S (8.8)

Inequality (Equation 8.8) may be rewritten as

Re(𝜆0
i ) − K ⋅ S ≤ Re(𝜆i) ≤ Re(𝜆0

i ) + K ⋅ S (8.9)

Theorem 8.1 Consider system (Equation 8.1) with model uncertainty. Given the

nominal stability variable space Sn and the condition (Equation 8.7), if K ⋅ S is

smaller than |Re(𝜆0
i )|, then all eigenvalues of A have negative real parts (A is a

Hurwitz matrix) and system (Equation 8.1) is asymptotically stable even if model

uncertainty exists.

Proof: Since all design variables are within the nominal stability variable space

Sn, Re(𝜆0
i ) is smaller than zero. From the inequality (Equation 8.9), if K ⋅ S is smaller

than|Re(𝜆0
i )|, the upper bound Re(𝜆0

i ) + K ⋅ S of Re(𝜆i) will be smaller than zero.

Therefore, system (Equation 8.1) is asymptotically stable.

Thus, the stability design for model uncertainty can be obtained by solving the

following feasible problem (P2):

Feasible (P2): Find (d)

to make
K ⋅ S < ||Re

(
𝜆0

i

)||(i = 1,… , n)

d ∈ Sn

(8.10)
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STABILITY DESIGN 171

According to the above proof, the inequalities K ⋅ S < |Re(𝜆0
i )| (i = 1,… , n) will

guarantee all eigenvalues to be negative even if model uncertainty exists in the system.

All possible solutions of the feasible problem (P2) form a stability variable space Ss,

in which any design variable will guarantee system stability even if model uncertainty

exists.

8.3.3 Stability Bound of Design Variables

When the design variables d have small variationsΔd, the Jacobian matrix A becomes

A(d + Δd) = A0(d + Δd) + ΔA(d + Δd) (8.11)

Taking Taylor series expansion of A0(d + Δd) and neglecting the high-order term,

the Jacobian matrix A(d + Δd) may be rewritten as

A(d + Δd) = A0(d) + ΔÃ (8.12)

with ΔÃ = 𝜕A0(d+Δd)

𝜕Δd
||Δd=0 Δd + ΔA(d + Δd).

According to the Bauer–Fike theorem and the matrix norm theory, we have

||�̃�i − 𝜆0
i
|| ≤ K‖ΔÃ‖2

= K ⋅
‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

Δd + ΔA(d + Δd)
‖‖‖‖2

≤ K ⋅
(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

Δd
‖‖‖‖2

+ ‖ΔA(d + Δd)‖2

) (8.13)

where �̃�i is the eigenvalue of A(d + Δd).

Assume that ‖ΔA(d + Δd)‖2 is still smaller than S. Then the inequality (Equation

8.13) may be rewritten as

Re(𝜆0
i ) − K

(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

Δd
‖‖‖‖2

+ S

)
≤ Re(�̃�i)

≤ Re
(
𝜆0

i

)
+ K

(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
||Δd=0 Δd

‖‖‖‖2
+ S

)
(8.14)

Then, the variation bounds of these design variables in the stability vari-

able space Ss are determined. Limit variations of the design variables in the

bounds {Δd1 ∈ [−D1, D1],…, Δdm ∈ [−Dm, Dm]} with Di as the maximum

values of Δdi. When design variables vary within their bounds, the variation term

K ⋅ (‖ 𝜕A0(d+Δd)

𝜕Δd
|
Δd=0

Δd‖2 + S) is smaller than all |Re(𝜆0
i )| (i = 1,… , n) so that the

real part of �̃�i is smaller than zero. As a result, these variation bounds will guarantee
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172 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY

that the system is still stable. Such bounds can be obtained by solving the following

feasible problem (P3):

Feasible (P3): Find (D1,… , Dm)

to make

K ⋅
(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

Δd
‖‖‖‖2

+ S

)
< min

i

(|||Re
(
𝜆0

i

)|||)
Δdj ∈ [−Dj, Dj] (i= 1,… , n; j= 1,… , m)

h(d + Δd) = 0, l(d + Δd) ≤ 0

d ∈ Ss

(8.15)

The inequalities K ⋅ (‖ 𝜕A0(d+Δd)

𝜕Δd
|
Δd=0

Δd‖2 + S) < min
i

(|Re(𝜆0
i )|)(i = 1,… , n)

mean that all system eigenvalues are smaller than zero, even if model uncertainty and

variations of the design variables exist in the system.

Finally, it is important to judge whether the bounds (D1,… , Dm) are larger than

the desirable levels (𝜀1,… , 𝜀m) specified by users according to their practical re-

quirements. If 𝜀1 ≤ D1 and … and 𝜀m ≤ Dm, then these stability design variables d
can be accepted. All these accepted stability design variables d and their variation

bounds form a robust stability variable space Sr. When the design variables d vary

within this robust stability variable space Sr, system stability will be maintained.

8.4 ROBUST EIGENVALUE DESIGN AND TOLERANCE DESIGN

8.4.1 Robust Eigenvalue Design

In this section, the robust eigenvalue design will be chosen from the robust stability

parameter space Sr to minimize the variations of eigenvalues so that the system

dynamic response will be less sensitive to both model uncertainty and variations of

the design variables.

Equation 8.13 may be rewritten as

||�̃�i − 𝜆0
i
|| ≤ K ⋅

(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

‖‖‖‖2
⋅ ‖Δd‖2 + ‖ΔA(d + Δd)‖2

)
(8.16)

Since ‖ΔA(d + Δd)‖2 ≤ S and ‖Δd‖2 ≤ R which can be derived from the bounds

of the design variables, from the inequality (Equation 8.16), if K ⋅ (‖ 𝜕A0(d+Δd)

𝜕Δd
|
Δd=0

‖2 ⋅

R + S) is very small compared to|𝜆0
i |, then

1. �̃�i is close to 𝜆0
i .

2. �̃�i is less sensitive to ΔÃ.
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ROBUST EIGENVALUE DESIGN AND TOLERANCE DESIGN 173

Moreover, if K ⋅ (‖ 𝜕A0(d+Δd)

𝜕Δd
|
Δd=0

‖2 ⋅ R + S)≪ |𝜆0
i |, then 𝜆i will be approximately

equal to 𝜆0
i , which means that the eigenvalues of the practical system are less sensitive

to both model uncertainty and variations of the design variables. As a result, the

system will have a robust eigenvalue design. Thus, if K ⋅ (‖ 𝜕A0(d+Δd)

𝜕Δd
|
Δd=0

‖2 ⋅ R + S)

is minimized by selecting a set of suitable design variables d, then 𝜆0 will be close

to 𝜆, even if there exist model uncertainty and variations of the design variables.

Such variables d for the robust eigenvalue design can be determined by solving the

following optimization problem

min
d

K ⋅
(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

‖‖‖‖2
⋅ R + S

)
s.t. d ∈ Sr

(8.17)

where d ∈ Sr is the requirement of stability and feasibility. The robust design obtained

from the optimization (Equation 8.17) can achieve both stability and robustness for

the dynamic system despite uncertainties.

8.4.2 Tolerance Design

In order to ensure that the system has a satisfactory dynamic response, the eigenvalue

variations of the obtained robust design should be limited in a desirable domain Yr
defined by users,

‖‖Δ𝜆‖‖2

2 ≤ Y2
r (8.18)

This constraint (Equation 8.18) may be satisfied by designing the tolerance of the

obtained robust design. Let the tolerance space St as {Δd1 ∈ [−𝛿d1, 𝛿d1],…, Δdm ∈
[−𝛿dm, 𝛿dm]}, where 𝛿d1,…, 𝛿dm is the largest variation of the design variables under

the condition (Equation 8.18). The principle of the tolerance design is to maximize the

tolerance space under the performance constraint Yr while maintaining the stability

and robustness of the system.

From (Equation 8.16) and ‖ΔA(d + Δd)‖2 ≤ S, the inequality (Equation 8.18) can

be rewritten as

‖Δ𝜆‖2
2
=

n∑
i=1

(||�̃�i − 𝜆0
i
||)2

≤ n

(
K ⋅

(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

𝛿d
‖‖‖‖2

+ S

))2

≤ Y2
r

(8.19)
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174 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY

The tolerance of the design variables can be obtained by solving the following

tolerance optimization:

max
𝛿d1,…, 𝛿d2

m∏
i=1

𝛿di

st.√
n

(
K ⋅

(‖‖‖‖𝜕A0(d + Δd)

𝜕Δd
|||Δd=0

𝛿d
‖‖‖‖2

+ S

))
≤ Yr

𝛾i ≤ 𝛿di ≤ Di i = 1,… , m

(8.20)

where 𝛾 is the lower bound of the tolerance 𝛿d and is specified by users according to

their practical requirements; the constraint 𝛿di ≤ Di represents that the tolerance is

constrained in the robust stability variable space Sr, which will guarantee the stability

and robustness of the system; and the constraint
√

n(K ⋅ (‖ 𝜕A0(d+Δd)

𝜕Δd
|
Δd=0
𝛿d‖2 + S)) ≤

Yr means that the eigenvalue variations are limited within a desirable range. Thus,

the system is still stable and robust, and produces a satisfactory dynamic response

when the robust design varies within its tolerance space.

8.4.3 Design Procedure

The design procedure for the newly presented robust approach is summarized as

follows:

Step 1: Find the nominal stability space Sn for design variables by solving the

feasible problem (P1). These nominal design variables guarantee the nominal

system stability.

Step 2: Find the stability space Ss for design variables within the nominal sta-

bility space Sn by solving the feasible problem (P2). When design variables

vary within this stability space Ss, stability is also maintained even if model

uncertainty exists.

Step 3: Find the robust stability space Sr for design variables within the stability

space Ss by solving the feasible problem (P3). When design variables vary

within this robust stability space Sr, stability is still maintained, even if there

exist model uncertainty and variations of the design variables.

Step 4: Find the robust eigenvalue design within the robust stability space Sr by

solving the optimization problem (Equation 8.17). This robust design mini-

mizes variations of eigenvalues so that the system dynamic response will be

less sensitive to uncertainties.

Step 5: Find the tolerance of the obtained robust design by solving the optimization

problem (Equation 8.20). If the robust design varies within its tolerance space,

this design will feature a satisfactory dynamic response.
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CASE STUDY 175

8.5 CASE STUDY

Consider the laval rotor systems as Example 1.3 given in Section 1.1.2 of Chapter 1.

The state-space equation for the rotor system is

ẋ = Ax (8.21)

with the Jacobian matrix A = A0 + ΔA and the nominal matrix A0 =[
−M−1D −M−1R

I4×4 04×4

]
.

The parameter values are shown in Table 6.1, and the model parameter p can vary

randomly in [0, 1] and is uncontrollable. The objective is to select the design variables

m and mb from m ∈ [1kg, 4kg] and mb ∈ [1kg, 5kg] to make the system stable and

minimize the effect of model uncertainty and variations of the design variables on

the eigenvalues.

8.5.1 Design of the Nominal Stability Space

A nominal stability space Sn for design variables is figured out by solving the feasible

problem (P1). This space Sn is shown in Figure 8.1, where the blank space stands for

unstable design and the shadow space stands for stable design.

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

mb

m

Instability space

FIGURE 8.1 Nominal stability space Sn for design variables (m, mb)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



176 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY

4

3.5
Unacceptable

3

2.5

2

1
1 2 2.5 3

mb

m

3.5 4 4.5 51.5

1.5

FIGURE 8.2 Stability space Ss for design variables (m, mb)

8.5.2 Design of the Stability Space

Then, the stability space Ss for design variables is derived by solving the feasible

problem (P2) within the nominal stability variable space Sn. From the estimation

ofΔA, the upper bound S of ‖ΔA‖2 is equal to 0.01. This space Ss is shown in

Figure 8.2, where the blank spaces stand for the failure design space and the shadow

space stands for the acceptable design space.

8.5.3 Design of the Robust Stability Space

Furthermore, the robust stability space Sr for design variables is determined by

solving the feasible problem (P3) within the stability space Ss with the desirable

level 𝜀1 = 𝜀2 = 0.2 according to practical requirements. This space Sr is shown in

Figure 8.3, where the blank space stands for the failure design space and the shadow

space stands for the acceptable design space.

8.5.4 Robust Eigenvalue Design

The robust design variables gained from Equation 8.17 are m = 3.5 kg and mb = 5 kg.

The relative approximation error 𝜁 between the exact eigenvalue 𝜆i and the nominal

eigenvalue 𝜆0
i is defined as below

𝜁 =
||𝜆i − 𝜆0

i
||||𝜆0

i
|| (8.22)
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FIGURE 8.3 Robust stability space Sr for design variables (m, mb)

The exact eigenvalues and the relative approximate error under different parameter

p are shown in Table 8.1, where the real parts of all eigenvalues are negative and

all relative approximate errors are very small. So the robust design (m = 3.5 kg and

mb = 5 kg) not only achieves robustness but also guarantees the system to be stable

even if the model uncertainty exists.

8.5.5 Tolerance Design

Assume that the performance constraint is defined as Yr = 0.01. The largest tolerance

space of the obtained robust design (m = 3.5 kg and mb = 5 kg) will be solved

from Equation 8.20. The tolerance space and the maximum variation of the design

variables are shown in Table 8.2. These tolerances are easy to realize because

the tolerance 0.0031 kg is simple to manufacture and measure using a common

manufacturing process and a common balance.

8.5.6 Design Verification

Let Δm and Δmb vary randomly in [−0.01, 0.01] and the parameter p also varies

randomly in [0, 1]. A total of 1000 samples are taken to check the presented robust

design.

For more effective verification, comparison is carried out utilizing two design

methods: (a) the present robust design method, and (b) the previous robust design

method in Chapter 6 that considers the effect of variations of the design variables
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CASE STUDY 179

TABLE 8.2 Performance-Based Tolerance

Yr Largest Tolerance Space Tolerance 𝛿m Tolerance 𝛿mb

0.01 9.61 × 10−4 0.0031 0.0031

TABLE 8.3 Comparison Under the Model Uncertainty

Performance Variation W Previous Method Present Method

Mean 𝜇W 0.0062 0.003

Variance 𝜎W 3.1523e-005 9.5256e-006

only without considering the model uncertainty. The solution of the second method

is m = 2 kg and mb = 4.6 kg.

The performance variation Wis defined as

W = ‖‖Δ𝜆‖‖2

2

The performance index E is defined as

E = WT − Wp

where WT and Wp are the performance variation W gained by the previous robust

design method and the present robust design method, respectively. The performance

index E will tell their difference. Only if the percent of E > 0 is larger than 50%, the

robustness of the present method will be better than the previous one. Otherwise, the

previous robust design is better.

Less robust
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FIGURE 8.4 Comparison under the model uncertainty
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180 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY

From Table 8.3, we can see that both the mean and variance of the performance

variation W gained by the present robust design method are smaller than those by the

previous design method. From Figure 8.4, it is clear that the present approach has

about a 98.7% (for E > 0) chance to achieve a better design than the previous one.

So the present robust design method is more robust than the previous robust design

method, because the present robust design method considers model uncertainty,

whereas the previous robust design method does not.

8.6 SUMMARY

A novel robust design method is presented to ensure stability and robustness of

the system under model uncertainty. In this design method, stability design can

effectively guarantee system stability even if model uncertainty exists. Moreover,

robust eigenvalue design is able to minimize the effect of uncertainties on system

eigenvalues, so that desirable dynamic performance can be achieved. Given the

performance constraints, tolerance design can further maximize the working space

for design variables while maintaining the stability and robustness unchanged. The

selected case study also demonstrates the effectiveness of this method.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PART IV

INTEGRATION OF DESIGN
AND CONTROL
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CHAPTER 9

DESIGN-FOR-CONTROL-BASED
INTEGRATION

A design-for-control-based integration method is presented for nonlinear sys-

tem with hybrid discrete/continuous variables in this chapter. The system is first

designed to have approximately linear dynamics. This designed dynamics can

be easily handled by a simple controller. Under this framework, robust design

and control are integrated to achieve the desired dynamic performance under

parameter uncertainty.

9.1 INTRODUCTION

Most of the manufacturing processes consist of both discrete and continuous vari-

ables. The hybrid discrete/continuous system is more complex than the traditional

system. System design is usually a discrete function that sets design variables offline,

while process control is a continuous function that keeps adjusting the process vari-

ables online. With the increasing production accuracy, it would be difficult to obtain

high performance manufacturing by sequential approach at which system design and

control are separated. This is because design constraints are not considered in con-

tinuous control development and controllability is not taken into account at the stage

of process design. If system design and control can be integrated effectively, it would

greatly enhance the overall performance of manufacturing process.

In control engineering, many nonlinear control techniques are developed to con-

trol the nonlinear process. However, these techniques must satisfy many stringent

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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184 DESIGN-FOR-CONTROL-BASED INTEGRATION

conditions (Sun and Hoo, 2000), which often cause them impractical and difficult to

realize. Alternatively, many nonlinear processes are often replaced by linear models

since they can be described very well by linear models in the area of interest (Sun

and Hoo, 2000). Then this kind of nonlinear processes can be controlled very well

by linear control methods. In these alternative approaches, the extent of a system’s

nonlinearity needs to be examined first in order to make sure that the linear system

analysis and controller synthesis methods are adequate to use. If system nonlinearity

is strong, it should be minimized first through discrete process design. Inappropriate

selection of design variables could make the system more nonlinear that would be

difficult to the subsequent continuous control. On the other hand, proper selection of

design variables could make the system more linear for an easy control later. Thus, a

key problem is to find these suitable design variables for reducing nonlinearity and

complexity of the system. Although existing integration approaches considered the

dynamic performance in design and control simultaneously, they paid less attention

to reduction of system nonlinearity and complexity at the stage of process design.

This may cause the designed process difficult to control or the developed controller

difficult to realize. Moreover, robustness of the system depends on not only system

control but also system design. Although there are many works reported to achieve

robust pole assignment at the stage of control, there is still no similar work for the

system design, let alone the integration of design and control. An effective integration

approach is very necessary to develop for the robust pole assignment in both process

design and process control.

An integrated design and control method is presented in this chapter for the

nonlinear system with hybrid discrete/continuous variables. First, in order to simplify

controller design, a design-for-control approach is presented to make the complex

system to have a well linear approximation and controllable property. Then, the robust

design and control is integrated to guarantee system stability as well as the robust

pole placement. Finally, effectiveness of this integration method is demonstrated first

on the numerical simulation and then on the real manufacturing process.

9.2 INTEGRATION PROBLEM

Consider a nonlinear hybrid system:

ẋ(t) = f (x(t), d) + Bu(t) (9.1)

where x ∈ Rn represents state vector, f (⋅) is nonlinear function, u is the continuous

control variable that will be adjusted online, B is the constant matrix, and d ∈ Rm is

the discrete parameter with the nominal value needs to design offline. It is assumed

there is uncontrollable variation around the nominal value of the design parameter.

Generally, design parameter has a significant impact on process dynamics. How-

ever, the traditional process design usually considers only the static performance of

the system and leaves the transient dynamics for the controller to handle. The system

designed may exhibit undesired dynamic behavior. As an example, in Figure 9.1,
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Dynamic behavior under design a 

y

t

Dynamic behavior under design b

FIGURE 9.1 Dynamic behavior under different designs

the design a demonstrates more nonlinear and complex behaviors than the design b.

This complex nonlinear system renders difficulties for control engineers to develop

a suitable control method. Even if the controller can be found for this kind of sys-

tem, it may be complex and not easy to implement. For a satisfactory performance

using a relatively simple control algorithm, the nonlinearity and complexity of the

system should be minimized first at the stage of process design. Of course, it would

be even better if the system designed can be approximated well by a linear model.

Therefore, an effective method should be proposed to design the system to have an

approximately linear property without loss of other design performances.

From the point of view of production, the system should have a desirable robust

dynamic performance to obtain consistent production. From the point of view of

control, the system should be controllable and have an approximately linear behavior.

From the point of view of economics, economic criteria must be desired so that the

system designed is reasonable and realizable. Thus, the integration of design and

control problem can be described as

min
d, u

(Dynamic robust performance)

s.t. Feasible problem
(9.2a)

with

Feasible problem : find d for linear approximation∕controllability
s.t. h(x(t), d, u(t)) ≤ 0, dL≤, d≤d U , u ∈ U

(9.2b)

where h(.) is the constraint function, including economic constraints and other con-

straints in manufacturing industry, such as equipment size and weight, dL and dU are

lower and upper bound of design variable d, and u is the control variable defined on

the space U.
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186 DESIGN-FOR-CONTROL-BASED INTEGRATION

9.3 DESIGN-FOR-CONTROL-BASED INTEGRATION METHODOLOGY

It is well known that the performance of any system depends on not only the external

control but also its own design. On the one hand, since design variable has a signifi-

cant impact on process dynamics, the system design becomes critical to the transient

response of any dynamic system. A good design has many advantages for control. It

can share some working load of the controller, such that a simple controller could be

used without sacrificing the overall performance. On the other hand, the system dy-

namic performance depends more on the controller design. Thus, an integrated design

and control method is presented in Figure 9.2 to achieve the desirable design/control

performance. First, a design-for-control approach is used to design the system to have

a well linear approximation and controllable property. This advantage may simplify

the controller design. Then, the process design and a common feedback control are

integrated to simultaneously consider the stability and the robust pole placement. A

robust design method is employed to obtain design variables and control parameters

for this integration. This integration method has the following characteristics:

� System task will be shared by discrete design and continuous control: the easy-

control property is considered at the stage of process design, upon which a

simple controller will be designed latter for a robust global performance.
� The robust pole placement can be considered simultaneously in both process

design and controller synthesis.

9.3.1 Design for Control

In order to achieve a satisfactory dynamic performance using a relatively simple

and easy-realization controller, a design-for-control method is presented as shown in

Figure 9.3 to reduce system nonlinearity and guarantee its controllability through the

process design. First, a feasible design is employed to obtain all acceptable design

Controllability 

Task
decomposition Design

Simple
Controller 

Integrated design
and control

Stability and robust
pole placement 

Nonlinearity
reduction 

Design for control

Robust design method 

Complex dynamic
system 

FIGURE 9.2 Integrated design and control methodology
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u

~
y

y

Linear model 

Complex nonlinear
system 

dm

Nonlinearity
measurement 

Parameter feasible
design 

Controllability

design

dc

FIGURE 9.3 Design-for-control methodology

variables for a desirable linear approximation. Then, a controllability design is used

to guarantee desirable positions of the system poles.

9.3.1.1 Feasible Design for Linear Approximation Nonlinearity measure-

ment is to estimate the approximation degree between the nonlinear system and the

most suitable linear system chosen from the linear operator space under the given

input space. A common nonlinearity measurement (Schweickhardt and Allgower,

2004, 2007; Lu et al., 2011) is described as:

𝜙(d) = sup
u∈U

‖Nu − Lu‖‖Nu‖ (9.3)

where N : u → x is the model of the original system (Equation 9.1), and L : u → x
denotes a linear model ẋ(t) = Āx(t) + Bu(t) that is obtained by the linearization

method at the operating point. Both the model nonlinearity N and its linear ap-

proximation L are functions of design variable d. The measurement 𝜙(d) is a number

between zero and one, with its value close to zero indicating the existence of a linear

approximation to the system and its value close to one indicating a highly nonlinear

system.

Based on this nonlinearity measurement, in order to make the system to have a

well linear approximation, the measurement 𝜙(d) should be smaller than a desirable

value 𝜙0 set by users. Thus, a set of suitable design variables should be chosen to

satisfy this condition.

(P1): Find (d)
To make

𝜙(d) ≤ 𝜙0, h(x(t), d, u(t)) ≤ 0, dL ≤ d ≤ dU (9.4)

All solutions of the feasible problem (P1) form the suitable space Sm for design

variables, in which any design variable will make the system to have a well linear

approximation.

9.3.1.2 Controllability Design Then, according to the dynamic theory, the con-

dition that the system poles can be placed at arbitrary positions is that the system can
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188 DESIGN-FOR-CONTROL-BASED INTEGRATION

be fully controllable. Thus, the design variable should be chosen to make the pair

(Ā, B) fully controllable.

(P2): Find (d)
To make

(Ā, B) is fully controllable (9.5)

h(x(t), d, k) ≤ 0, d ∈ Sm

where d ∈ Sm is to guarantee a well linear approximation. All solutions of the con-

trollable problem (P2) form a space Sc for controllable parameters, in which any

design variable will make the system to have a well linear dynamic behavior and

controllable property.

9.3.2 Control Development

After the design-for-control is carried out, the systems in the space Sc for suitable

design variables have a well linear dynamic behavior and controllable property. This

can make their dynamic performance easier to obtain using a simple controller. Thus,

a relatively simple state-feedback controller is adopted to control these systems since

it is a common control method widely used in manufacturing. This state-feedback

control rule will be described as

u(t) = kx (9.6)

where k is the gain matrix. Thus, the total system model can be rewritten as

ẋ = A(d, k)x (9.7)

with A = Ā + Bk.

The design variable d and the control gain matrix k in the parametric model

(Equation 9.7) are required to be optimized simultaneously for the global robust

dynamic performance.

9.3.3 Integration Optimization for Robust Pole Assignment

It is well known that the positions and robustness of the system eigenvalues are

extremely important to the dynamic performance. This section will integrate the

process design and control to consider them in order to guarantee the system stability

and achieve its dynamic robustness.

The objective of this integration of design and control is to choose the suitable

design variable d and control gain k to make the eigenvalues of the system to be in the
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DESIGN-FOR-CONTROL-BASED INTEGRATION METHODOLOGY 189

desirable locations and less sensitive to uncertainty. For this objective, two sequential

designs are developed:

1. Pole assignment of the nominal system without considering parameter vari-
ations. It is to find a nominal parameter space Sn, consisting of these design

and control gains that can place eigenvalues of the nominal matrix A(d, k) to be

in desirable locations.

2. Stability design and robust pole assignment. It is to choose robust design

variable and control gain from Sn to guarantee the system stability and make

all eigenvalues less sensitive to uncertainty.

9.3.3.1 Pole Assignment of the Nominal System This design is to realize

the pole placement of the nominal system. The desirable self-conjugate eigenvalue

𝜆r
i and its set Λ0 are given as below

Λ0 = diag
{
𝜆r

1
,… , 𝜆r

n

}
(9.8)

Then, design variable and control gain are chosen to make eigenvalues 𝜆(d, k)

of the nominal matrix A(d, k) to be the desirable eigenvalues Λ0 and satisfy other

constraints

(P3): Find (d, k)

To make

Λ0 = 𝜆(d, k), (9.9)

h(x(t), d, k) ≤ 0, d ∈ Sc

where d ∈ Sc can guarantee the system poles to be arbitrarily placed and make the

system designed to have a well linear approximation. All solutions of the nominal pole

placement problem (P3) form a nominal parameter space Sn, in which every design

variable will make the nominal system to have a desirable dynamic performance.

9.3.3.2 Stability Design and Robust Pole Assignment This design is to

choose design variable and control gain from the nominal parameter space Sn to have

system stability and robust pole assignment under uncertainty.

1. Stability design
According to the orthogonal theory of eigenvector, the system eigenvalue 𝜆i

(i = 1, . . . , n) is shown below with the detailed derivation in Chapter 6

𝜆i(d + Δd, k) ≈ 𝜆i(d, k) +
(

vT
i
𝜕A
𝜕Δd

𝜇i

) |||dΔdT (9.10)

where 𝜇i and vi are the right eigenvector and the left eigenvector for the eigenvalue

𝜆i, respectively.
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190 DESIGN-FOR-CONTROL-BASED INTEGRATION

From the pole assignment of the nominal system, it is clear that

𝜆i(d, k) = 𝜆r
i (d, k) (9.11)

where 𝜆i(d, k) and 𝜆r
i (d, k) are the ith element of 𝜆(d, k) and Λ0, respectively.

Inserting Equations 9.11 into 9.10, we have

𝜆i(d + Δd, k) ≈ 𝜆r
i (d, k) +

(
vT

i
𝜕A
𝜕Δd

𝜇i

) ||||dΔdT (9.12)

In order to have the system stability under uncertainty, the real part of 𝜆i(d + Δd, k)

should be smaller than zero. Thus, we have the following theorem:

Theorem 9.1 Consider the system (Equation 9.1) with variation of design variable.

Under the design-for-control (Equations 9.3, 9.4, and 9.5) and given the nominal

parameter space Sn and Equation 9.11, if |Re((vT
i
𝜕A
𝜕Δd
𝜇i)|dΔdT )| < |Re(𝜆

𝛾
i (d, k))| is

satisfied when Δd arbitrarily varies in its constraint space, where Re(⋅) means the real

part of (⋅), then all eigenvalues of A have negative real parts (A is a Hurwitz matrix)

and the system (Equation 9.1) is asymptotically stable even if uncertainty exists.

Proof: Since all design variables are limited within Sn, Re(𝜆r
i (d, k)) is smaller than

zero. From Equation 9.12, if |Re((vT
i
𝜕A
𝜕Δd
𝜇i)|dΔdT )| < |Re(𝜆

𝛾
i (d, k))|, the real part

of 𝜆i(d + Δd, k) will be smaller than zero. Therefore, the system (9.1) is asymptoti-

cally stable.

Thus, the suitable design variables and control gains should be found to satisfy

this stability condition, which forms the following stability problem (P4):

(P4) : Find (d, k)

to make|||||Re

((
vT

i
𝜕A
𝜕Δd

𝜇i

) ||||dΔdT

)||||| < ||Re
(
𝜆r

i (d, k)
)||

ΔdL ≤ Δd ≤ ΔdU , (d, k) ∈ Sn

(9.13)

where ΔdL and ΔdU are a lower and upper bound of perturbation of design vari-

able, (d, k) ∈ Sn can guarantee the eigenvalues of the nominal system placed on the

desirable poles. All possible solutions of the stability problem (P4) form a stability

variable space Ss, in which every parameter will guarantee system stability even if

uncertainty exists.

2. Robust pole assignment
From Equation 9.10, the eigenvalue variation Δ𝜆i with respect to perturbation of

design variable can be expressed as

Δ𝜆 = JΔd (9.14)
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DESIGN-FOR-CONTROL-BASED INTEGRATION METHODOLOGY 191

where

Δ𝜆i = 𝜆i(d + Δd, k) − 𝜆r
i (d, k),Δ𝜆 = [Δ𝜆1 … Δ𝜆n]T ,

J =

⎡⎢⎢⎢⎢⎢⎢⎣

(
vT

1

𝜕A
𝜕Δd1

𝜇1

) ||||d ⋯
(

vT
1

𝜕A
𝜕Δdm

𝜇1

) ||||d
⋮ ⋱ ⋮(

vT
n
𝜕A
𝜕Δd1

𝜇n

) ||||d ⋯
(

vT
n
𝜕A
𝜕Δdm

𝜇n

) ||||d

⎤⎥⎥⎥⎥⎥⎥⎦
As presentation in Chapter 6, performance will be directly related to design vari-

able and control gain as follows:

‖‖Re(Δ𝜆)‖‖2

2 + ‖‖Im(Δ𝜆)‖‖2

2 =
m∑

i=1

𝜎iy
2
i (9.15)

with [y1,… , ym]T = VT Δd.

where Im(⋅) means the imaginary part of (⋅), 𝜎i represents the singular value of

Re(J)T Re(J) + Im(J)T Im(J) and is a function of design variable and control gain,

and the corresponding orthogonal eigenvector is denoted as Vi, which is one element

of V = [ V1 ⋯ Vm ].

According to the Euclidean norm method, only if the maximal singular value 𝜎max
is minimized, the performance Δ𝜆 will be less sensitive to uncertainty Δd. Thus, in

order to minimize Δ𝜆, design variable and control gain should be chosen to minimize

the maximal singular value 𝜎max as follows.

min
d,k

(𝜎max)

s.t. ‖‖Re(Δ𝜆d)‖‖2

2 + ‖‖Im(Δ𝜆d)‖‖2

2 =
m∑

i=1

𝜎iy
2
t

(d, k) ∈ Ss

(9.16)

where the condition (d, k) ∈ Ss can guarantee system stability under uncertainty.

The solution of Equation 9.16 can minimize the influence of uncertainty on system

eigenvalues. This means that it can effectively obtain the robust eigenvalue placement

under uncertainty.

9.3.4 Integration Procedure

This integrated design and control methodology is summarized in Figure 9.4. First,

the system is designed to have a well linear approximation and controllable property,

for which a relatively simple controller can be applied. Then, the system design
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192 DESIGN-FOR-CONTROL-BASED INTEGRATION

Nonlinear

manufacturing system

Design for control

Integration of design

and control 

Desirable dynamic

performance 

Design for controllability

and linear approximation

Stability and robust pole

placement under uncertainty

Optimal design and control 

Well-controlled design space 

FIGURE 9.4 Design and control integration

and control design are integrated to guarantee the system stability and achieve the

desirable robust performance under uncertainty. This integration method can achieve

the robustness of the nonlinear system under uncertainty even if a relatively simple

controller is used.

9.4 CASE STUDY

Example 9.1: Consider a design and control problem of a nonlinear system:[
ẋ1(t)
ẋ2(t)

]
=

[
(d2 − 2)(x1(t))3 − x1(t) + x2(t) + 0.1x2

1
(t)x2(t)

(− sin(d) − 1)x2(t) + 0.05x1(t)x2(t)

]
+

[
2

1

]
u (9.17)

The design variable is d with the nominal value chosen from the design space

d ∈ [1, 2]. There is uncontrollable variation Δd around the nominal value due to

manufacturing and operating errors. To make the system well controlled, a set of

suitable values should be found for d to have a well linear approximation under

constraints. Then the control variable u could be determined optimally for a global

robust dynamic performance.

9.4.1 Design for Control

In this design, the desirable value 𝜙0 in Equation 9.4 is set as 0.05, which is close

to zero and thus this value can guarantee a well linear approximation to the original

nonlinear system. The nonlinearity measurement calculated from Equation 9.3 is
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FIGURE 9.5 Nonlinearity measurement of design variable d

shown in Figure 9.5, from which it is clear that the suitable design space Sm is

d ∈ [1.07, 1.63]. Then, the approximation performance between the nonlinear system

and the linear model under d = 1.41 is shown in Figure 9.6, where it is clear that the

linear model can approximate the nonlinear system well under this design.

9.4.2 Robust Pole Assignment

Suppose that a good dynamic response requires the desired poles to be on −1 and −2.

In order to achieve this pole placement, the nominal design is conducted first to assign

the poles of the nominal system to be the desired locations. Given the desired poles

in the design, the nominal parameter space Sn is calculated next in Equation 9.9.

Then, the robust dynamic design is obtained from this nominal parameter space Sn by

solving the optimization problem Equation 9.16. The solution obtained are d = 1.57

and K = [0 0.317 × 10−6], and will be verified in Figure 9.7. Since the corresponding

control gain K is already determined once the desired poles are given, so only the

design variable is demonstrated in the figure. Obviously, the desired poles of the

nominal system are −1 and −1.999999. The proposed design has achieved the goal.

9.4.3 Design Verification

The response of the system (x1 and x2) under the robust design can be considered as

the nominal performance and shown in Figure 9.8. It is clear that the system is stable

under nominal parameters derived from the proposed robust design.

Then, let Δd randomly varies in (−0.05d∗, 0.05d∗)where d∗ is the robust design,

and 1000 samples are used to evaluate the effectiveness of the presented method.
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194 DESIGN-FOR-CONTROL-BASED INTEGRATION
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FIGURE 9.6 Approximation performance between the original system and the linear model:

(a) state x1; (b) state x2
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FIGURE 9.7 Maximal singular value under different design variable

Define the performance variations E1 and E2 as

E1,j(t) = x1(t) under d∗ + Δdj − x1(t) under d∗ (9.18)

E2,j(t) = x2(t) under d∗ + Δdj − x2(t) under d∗ (9.19)

where j is the jth sample of 1000 samples.
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FIGURE 9.8 Nominal performance of the system under the robust design
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196 DESIGN-FOR-CONTROL-BASED INTEGRATION

All performance variations E1 and E2 from 1000 samples are calculated with the

typical samples shown in Figure 9.9. It is clear that performance variations of the

system are very small and can be ignored compared to the nominal performance of

the system in Figure 9.8. Thus, the presented approach is very robust to parameter

variations.

0 1 2 3 4 5 6

–3

–2

–1

0
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E
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variation

0 1 2 3 4 5 6
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E
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d = 1.6168

Maximal performance 
variation

d = 1.5833
d = 1.4916
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d = 1.505
d = 1.5923
d = 1.6168

FIGURE 9.9 Performance variation caused by parameter variation Δd: (a) E1; (b) E2
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CASE STUDY 197

Finally, the robust design is compared to other designs in the design space. Define

the maximal root square mean error (RSME) as

RSME(t, j) =

√√√√ 2∑
i=1

(xi(t) under d + Δdj − xi(t) under d)2 (j = 1,… , 1000)

(9.20)

The maximal value, mean, and variance of all RSME during the simulation period

are compared for different design variables in Figure 9.10, where it is clear that

the maximal value, mean, and variance obtained by the presented robust design are

smaller than all the other designs. Thus, the presented method can obtain the better

robust performance.

Example 9.2: The forging press machine in manufacturing industry, as shown

in Figure 9.11, uses a hydraulic driven system, including pump, valve, pipe, and

cylinder, to drive the up and down movement of the working plate and to offer the

required forging force. In this machine, the oil of all hydraulic cylinders is offered by

a single hydraulic drive system and, thus, all hydraulic cylinders may be regarded as

a single cylinder whose area is equal to the sum of the area of all hydraulic cylinders.

The objective of this design is to make the system easier to control and guarantee the

robustness of the whole dynamic process under parameter variations and constraint

conditions.
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0.04

Design variable

Maximal value
Mean
Variance

FIGURE 9.10 Maximal value, mean, and variance of RSME under different design variable
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FIGURE 9.11 The forging press machine system in manufacturing: (a) practical forging

press machine; (b) sketch of forging system
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CASE STUDY 199

According to Newton’s second law, the force model of the working plate can be

derived as:

m
d2x
dt2

= aP − Bc
dx
dt

+ mg − fc − fl (9.21)

where m is the mass of the working plate, x is the position of the working plate, P
is the pressure, Bc is the viscous damping coefficient, and fc and fl are the friction

force and the known load force, respectively. The parameter a is the area sum of all

hydraulic cylinders that is one of design parameters.

The flow model of the hydraulic cylinder can be represented by

Klu = a
dx
dt

+ V + ax
𝛽e

× dP
dt

+ ctP (9.22)

where V is initial volume, ct is leak coefficient, and 𝛽e is the spring moment of

medium that is another design parameter. The control variable is u with the gain of

valve Kl as the control gain.

The friction force can be described as

fc = fd + (fs − fd)e
−(

v
vs

)2

+ 𝜎v (9.23)

where fd and fs are the Coulomb and static friction values, and vs and 𝜎 are the

Stribeck velocity and the friction coefficient.

The control variable u and the process variable P at the local working point can

be expressed as

u = u0 + Δu and P = P0 + ΔP (9.24)

where u0 and Δu are the nominal control and the control variation, and P0 and ΔP
are the nominal pressure and the pressure variation, respectively. The nominal values

are used to balance the weight, the static friction, and the load force, and the variation

values are used to adjust the desirable dynamic trajectory. Thus, we have

aP0 + mg − fd − ff = 0 and Klu0 = ctP0 (9.25)

From Equations 9.21–9.25, the model of the system can be derived as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d2x
dt2

= 1

m

(
aΔP − Bc

dx
dt

− (fs − fd)e
−( v

vs
)2

− 𝜎v

)
dΔP

dt
=

𝛽e

V + ax
×
(

KlΔu − a
dx
dt

− ctΔP
)

v = dx
dt

(9.26)
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FIGURE 9.12 Nonlinearity measurement
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FIGURE 9.14 Approximation performance between the practical system and the linear

model: (a) state x2; (b) state x3

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



202 DESIGN-FOR-CONTROL-BASED INTEGRATION

–100

–80

–60

–40

–20

0

20

40
x 2

0 1 2 3 4 5 6 7 8 9 10
–6

–4

–2

0

2
× 108

Time (s)

x 3

FIGURE 9.15 The nominal performance of the system under the robust design

Define the states x1 = x, x2 = v, x3 = ΔP. The design variables are d = [a 𝛽e],

with their nominal values chosen from the design space a ∈ [0.4, 0.9] and Be ∈
[4 × 108, 1.4 × 109]. However, there are uncontrollable variations Δd around the

nominal values due to manufacturing errors and environment variations. To make the

system easy to control, a set of suitable design variables should be found to have a

well linear approximation of the system. Then the control gain K could be figured

through the integration with robust design for the desired dynamic performance.

9.4.4 Design for Control

The desired value 𝜙0 is set as 0.1. The nonlinearity measurement and the suitable

variable space Sm are shown in Figures 9.12 and 9.13, respectively. The blank space

stands for infeasible designs and the shadow space stands for feasible designs in

Figure 9.13. Moreover, the approximation performance between the practical system

and the linear model under d = [0.4, 4 × 108] is shown in Figure 9.14, from which it

is clear that the linear model can represent the forging press system well.

9.4.5 Robust Dynamic Design and Verification

Suppose that a good dynamic response requires the desired poles to be on −1, −1.2,

and −1.4. In order to achieve this pole placement, the nominal design is first to assign

the poles of the nominal system to be on the desired positions. Once the desired poles

are given, the nominal parameter space Sn is calculated from Equation 9.9. Then,
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FIGURE 9.16 Performance variation caused by parameter variation Δd; (a) E1; (b) E2

the robust dynamic design can be obtained from this nominal parameter space Sn by

solving the optimization problem (Equation 9.16). The derived design solutions are

d = [0.9, 4 × 108] and K = [0.000007 −0.915 −0.00000034], and the poles of

the nominal system obtained are −1, −1.2, and −1.399999. The proposed design has
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204 DESIGN-FOR-CONTROL-BASED INTEGRATION

achieved the goal. Moreover, the transient response of the nominal system under the

robust parameters is shown in Figure 9.15. Obviously, the system is stable and can

converge to the equilibrium quickly.

For robustness test, assume that parameter variations Δd randomly vary in

(−0.01d∗, 0.01d∗) where d∗ is the robust design, then 1000 samples are be used

to evaluate the effectiveness of the proposed method. As shown in Figure 9.16, the

bounds of performance variations (E1 and E2) are smaller than 0.5% of the nominal

performance of the system in Figure 9.15. Thus, the proposed approach is very robust

to parameter variations.

9.5 SUMMARY

In this chapter, an integrated design and control method is presented for the nonlinear

system with hybrid discrete/continuous variables. With the robust pole placement,

the design-for-control approach can effectively obtain a well linear approximation

for a complex system. Afterwards, the designed system can be effectively controlled

by a relatively simple controller. More importantly, this integrated design and control

approach can easily achieve the robust pole placement since it has combined the merits

of both robust design and control. The simulation results show that this method can

obtain the desired performance even by using a simple feedback controller.
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CHAPTER 10

INTELLIGENCE-BASED HYBRID
INTEGRATION

The method presented in Chapter 9 is suitable for the simple system working in

a small operation region. This chapter will develop an integration method for

the strongly nonlinear process with unmeasured overall performance to work in

a lager operation region. Fuzzy modeling technique is first used to approximate

the nonlinear system in a large operation domain, upon which system design and

process control can be further integrated for the desired overall performance. A

PSO-based hierarchical optimization method is proposed to explore the optimal

solution of this complex design and control integration.

10.1 INTRODUCTION

The integrated design and control methods introduced in Chapter 9 can only handle

the weak nonlinear system because a linear nominal model of the system is used at the

given operating point. This integration method may not be applicable to the system

working in a large operating region, which is a common practice in manufacturing. On

the other hand, one of the most difficult problems in manufacturing is that the ultimate

target or the overall performance of the system is difficult to measure and cannot be

directly controlled. The real manufacturing system can be simplified as the hybrid

system in Figure 10.1. The system at the machine-level is a nonlinear but continuous

process to produce the required product. At the supervision level, the ultimate goal

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.
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FIGURE 10.1 The hybrid system in manufacturing

of the production is to meet the specific high level criteria, for example, economic

criteria in manufacturing. The overall performance of manufacturing actually takes

into account both the continuous process output and the static economic index. This

kind of system has two level objectives, which will be much more complex to handle

than the one-level system discussed in previous chapters. The dynamic performance

of this hybrid system depends on not only the low level process control but also the

high level system design. So far, there is little research carried out in this aspect.

In the past decades, much progress has been made in controller design of nonlinear

systems using the so-called Takagi–Sugeno (T–S) fuzzy model (Takagi and Sugeno,

1985) since it can combine the merits of both fuzzy logic theory and the linear system

theory (Takagi and Sugeno, 1985; Tanaka and Wang, 2001; Wu and Li, 2008; Tseng,

Chen, and Uang, 2001). It is well known that the fuzzy system provides a simple and

straightforward way to decompose the complex task into a group of simple tasks. The

T-S fuzzy model has been reported to smoothly approximate any nonlinear system in

a large working region (Tanaka and Wang, 2001). However, the application of fuzzy

modeling and control for the integrated design and control has not yet been reported

for the hybrid system as shown in Figure 10.1.

Generally, optimization problems in the integrated design and control are often

too complex to solve using analytical methods because the objective function for-

mulated may be nonconvex or nondifferential (Schluter et al., 2009). Particle swarm

optimization (PSO) (Eberhart and Kennedy, 1995) is a good alternative tool for this

kind of optimization problems. Since the particle swarm method is inspired by social

behavior of a flock of birds and insect swarms, the PSO is not affected by the non-

linearity, nonconvex, and nondifferential property of the problem and can converge

to the optimal solution when most of the analytical methods fail (Valle et al., 2008).

Therefore, it can be effectively applied to different optimization problems with ad-

vantages over many other similar optimization techniques, like the genetic algorithm

(GA) (Clerc, 2006; Naka et al., 2003; Valle et al., 2008). So far, this PSO has not

yet been applied to system design and control integration for the proposed hybrid

system.

In this chapter, intelligence-based design and control integration will be proposed

for the manufacturing system in Figure 10.1 that has a hybrid discrete/continuous
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PROBLEM IN HYBRID SYSTEM IN MANUFACTURING 207

dynamics. The fuzzy modeling method is first used to approximate the nonlinear

process in a large operating region, upon which fuzzy control rules are developed

to stabilize the process with the desired robust tracking performance. Then, the

steady-state economic design and the controller design are integrated into a unified

optimization, which will be solved by a PSO-based hierarchical optimization method.

This intelligent solution can achieve the desired economic performance as well as

the satisfactory dynamic performance. Finally, the proposed method is compared

with the traditional sequential design method and a traditional integration method on

controlling the temperature profile of a curing process in IC packaging industry.

10.2 PROBLEM IN HYBRID SYSTEM IN MANUFACTURING

Generally, a nonlinear process with discrete design parameter d and continuous

control variable can be described in the following mathematical formula:

f (ẋ(t), x(t), y(t), u(t), d, w(t)) = 0 (10.1)

where f(⋅) is nonlinear function; x∈Rn, u∈Rnu , and y∈Rny represent state vector,

control variables, and process outputs, respectively; d∈Rnd denotes discrete design

variables which are fixed during the entire period of operation; and w is disturbance.

This nonlinear process is supposed to work in a large operating region.

The manufacturing system should be designed from both machine level and su-

pervision level in terms of two different objectives: economic cost and variability

cost, as illustrated in Figure 10.1. The overall performance of the hybrid system in

manufacturing should incorporate both the variability cost and the economic cost.

The variability cost is function of the dynamic performance of the process, while the

economic cost covers the process capital and the operating cost.

Since the economic cost is static and closely related to steady-state performance

of the process, it can be designed by selecting the optimal discrete parameter d in

the system. The design problem for economic cost can be expressed in the following

steady-state form:

min
d

EC(xstatic, ystatic, d)

s.t. f (ẋ, x, y, u, d, w) = 0 (Prediction of the steady-state behavior)
(10.2)

where EC(xstatic, ystatic, d) is a steady-state economic cost that includes the process

capital and the operating cost. The optimization (Equation 10.2) can guarantee an

optimal design performance. However, the solution may not prevent the poor process

dynamics, such as long settling time or even unstable behavior (Grosch, Monnigmann,

and Marquardt, 2008). This is because the dynamic performance of the process is not

considered in design optimization.
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208 INTELLIGENCE-BASED HYBRID INTEGRATION

In control fields, a satisfactory dynamic performance of the process can be easily

achieved by optimizing the following variability cost

min
d,X,Y1,…,Yr

VC(e(t))

s.t. f (ẋ, x, y, u, d, w) = 0

Controller design, Stalibity, Robust performance

(10.3)

where the variability cost VC(e(t)) is a function of the tracking error e(t) of the

process. The optimization (Equation 10.3) can guarantee the stability and robustness

of the process under the external disturbance.

From the point of view of production, the system should have not only a desirable

dynamic performance but also a small economic cost. Process control engineers

can control the dynamic process well but may not have a global view over the

manufacturing system. On the other hand, optimal design of economic cost only may

cause undesirable dynamics of the process. Obviously, a lack of proper consideration

of both criteria may lead to an undesirable production. Thus, an effective integration

of design and control method should be developed to consider the low level nonlinear

process control as well as the high level system design simultaneously.

10.3 INTELLIGENCE-BASED HYBRID INTEGRATION

10.3.1 Intelligent Process Control

10.3.1.1 FuzzyModeling It is well known that fuzzy modeling has a good ability

to approximate any nonlinear process in a large operating region. Thus, a fuzzy model

will be used to approximate the nonlinear process (Equation 10.1). First, a simple

linear model, usually called the local model, is obtained at each operating point.

Then the fuzzy technique is used to integrate these local models into a global model,

which can approximate any nonlinear process in a large operating region. Moreover,

this fuzzy model will be easily controlled by the well-known fuzzy control system

because both systems can be designed using the same fuzzy theory.

The nonlinear process model can be represented by the following fuzzy system:

Model rule i:
IF z1(t) is z1,i and . . . and zn(t) is zn,i
THEN {

ẋ(t) = Aix(t) + Biu(t) + w(t)
y(t) = Cix(t)

i = 1, 2,… , r (10.4)

where zj and zj,i are the premise variable of the process and its fuzzy set respectively,

r is the number of IF-THEN rules of the process, A and B are the known matrices

obtained from Taylor expansion in the local operating point.
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INTELLIGENCE-BASED HYBRID INTEGRATION 209

The final fuzzy model is derived as follows:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))[Aix(t) + Biu(t) + w(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(10.5)

where

𝜇i(z(t)) =
n∏

j=1

Mj,i(zj(t))

hi(z(t)) =
𝜇i(z(t))

r∑
i=1

𝜇i(z(t))

The term Mj,i(zj(t)) is the grade of membership of zj(t) in the ith rule. Since

𝜇i(z(t)) > 0

r∑
i=1

𝜇i(z(t)) > 0 i = 1, 2,… , r

We have

r∑
i=1

hi(z(t)) = 1 and 0 < hi(z(t)) i = 1, 2,… , r

The state space model of each rule in the fuzzy model (Equation 10.4) describes the

process behavior at a small neighbourhood of the nominal operating point. Since there

are many rules for describing different nominal operating points, the fuzzy model

(Equation 10.5) can approximate any nonlinear process model in a large working

region.

10.3.1.2 Fuzzy Control In practical application, tracking performance is often

one of the control objectives. The following model can be considered as the tracking

reference:

ẋr(t) = Arxr(t) + Brr(t) (10.6)

where xr∈Rnr is the reference state, and r(t) is the reference input, Ar and Br are

specific matrices with appropriate dimensions, and xr(t) is a desired trajectory for x(t)
to track.
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FIGURE 10.2 Fuzzy-model-based fuzzy control

The robust tracking performance under external disturbance may be achieved by

using the following H∞ performance:

tf

∫
0

[eT (t)Qe(t)]dt ≤ eT (0)Pe(0) + 𝛾2

tf

∫
0

[w̃(t)Tw̃(t)]dt (10.7)

where e(t) = xr(t) − x(t) is the tracking error, and 0 ≤ Q = CT
Q

CQ ∈ Rn×n is the wei-

ghting matrix that are specified beforehand according to the design purpose, 0 ≤ P ∈
Rn×n is an unknown matrix, 𝛾 > 0 is a prescribed attenuation level, and w̃(t) is equal

to [ w(t) xr(t) ]T . In general, it is desirable to make 𝛾 as small as possible to achieve

the optimal disturbance attenuation performance.

Given the fuzzy model (Equation 10.5), fuzzy control is a natural selection to

obtain the system stability and robustness because both of them can be designed

using the same fuzzy theory. The controller structure is shown in Figure 10.2.

Based on the parallel distributed compensation scheme (PDC) (Tanaka and Wang,

2001), the following fuzzy control law for the fuzzy model (Equation 10.5) is devel-

oped as

Model rule i:
IF z1(t) is z1,i and . . . and zn(t) is zn,i
THEN

u(t) = Kie(t) (10.8)

where Ki ∈ Rnu×n is the controller gain.
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INTELLIGENCE-BASED HYBRID INTEGRATION 211

Obviously, the fuzzy control law may be represented by

u(t) =
r∑

i=1

hi(z(t))Kie(t) (10.9)

Inserting the control law (Equation 10.9) into Equation 10.5, the closed-loop

system may be written as

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) =

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))[Aix(t) + BiKje(t) + w(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(10.10)

Theorem 10.1: Consider the process model (Equation 10.1) and the fuzzy model

(Equation 10.5). Given the fuzzy controller (Equation 10.9), if there exists a common

matrix P > 0 satisfying

⎡⎢⎢⎣
(A − Cv)X + XT (A − Cv)T − B(d)Yw − YT

wBT (d)

+ 𝛾−2(A − Cv)(A − Cv)T + 2𝛾−2I XT

X −Q−1

⎤⎥⎥⎦ < 0 (10.11)

with X = P−1, Yw = KwX.

Then the closed-loop model (Equation 10.10) is exponentially stable in the absence

of w̃(t) and the H∞ control performance (Equation 10.7) is guaranteed in the presence

of w̃ (t).
Proof: Choose a Lyapunov function candidate as

V(t) = eT (t)Pe(t) (10.12)

Calculate the derivative of V(t) along the trajectory of system (Equation 10.10)

and yield

V̇(t) =
r∑

v=1

r∑
w=1

hv(x(t))hw(x(t))
[
eT (t)(PÃ + ÃTP)e(t) − xT

r (t)(A − Cv)TPe(t)

− eT (t)P(A − Cv)xr(t) − wT (t)Pe(t) − eT (t)Pw(t)
]
+ ẋT

r (t)Pe(t)

+ eT (t)Pẋr(t) (10.13)

with Ã = A − Cv − B(d)Kw (10.14)
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212 INTELLIGENCE-BASED HYBRID INTEGRATION

Adding and subtracting some terms on the right side of the equality (Equation

10.13), the equality (Equation 10.13) can be rewritten as

V̇(t) =
r∑

v=1

r∑
w=1

hv(x(t))hw(x(t))[eT (t)(PÃ + ÃTP)e(t) − 𝛾2(xr(t)

+ 𝛾−2(A − Cv)TPe(t))T (xr(t) + 𝛾−2(A − Cv)TPe(t)) + 𝛾2xT
r

(t)xr(t)

+ 𝛾−2eT (t)PT (A − Cv)(A − Cv)TPe(t) − 𝛾2(w(t) + 𝛾−2Pe(t))T (w(t)

+ 𝛾−2Pe(t)) + 𝛾2wT (t)w(t) + 𝛾−2eT (t)PTPe(t)] − 𝛾2(ẋr(t) − 𝛾−2Pe(t))T (ẋr(t)

− 𝛾−2Pe(t)) + 𝛾2ẋT
r (t)ẋr(t) + 𝛾−2eT (t)PTPe(t)

≤
r∑

v=1

r∑
w=1

hv(x(t))hw(x(t))[eT (t)𝜁 (t)e(t) + 𝛾2w̃T (t)w̃(t)] (10.15)

where 𝜁 (t) = PÃ + ÃTP + 𝛾−2PT (A − Cv)(A − Cv)TP + 2𝛾−2PTP
Obviously, if the following inequality holds:

𝜁 (t) ≺ −Q (10.16)

then, from the inequality (Equation 10.15), we get

V̇(t) ≤ −eT (t)Qe(t) + 𝛾2w̃T (t) w̃ (t) (10.17)

when w̃(t) = 0, the inequality (Equation 10.17) may be written as

V̇(t) ≤ −eT (t)Qe(t) ≤ 0 (10.18)

Thus, if the inequality (Equation 10.16) holds and w̃(t) = 0, then V̇(t) ≤ 0 and the

system is stable.

Assume that the inequality (Equation 10.16) holds and P > 0. From the inequality

(Equation 10.16) and the equality (Equation 10.14), we have

P(A − Cv − B(d)Kw) + (A − Cv − B(d)Kw)TP + 𝛾−2PT (A − Cv)(A − Cv)TP

+ 2𝛾−2PTP + Q < 0 (10.19)

Pre- and post-multiplying XT and X with P = X−1

(A − Cv − B(d)Kw)X + XT (A − Cv − B(d)Kw)T + 𝛾−2(A − Cv)(A − Cv)T

+ 2𝛾−2I + XTQX < 0 (10.20)
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INTELLIGENCE-BASED HYBRID INTEGRATION 213

Let Yw = KwX. Then the inequality (Equation 10.20) can be rewritten as

(A − Cv)X + XT (A − Cv)T − B(d)Yw − YT
w

BT (d) + 𝛾−2(A − Cv)(A − Cv)T

+ 2𝛾−2I + XTQX < 0 (10.21)

The inequality (Equation 10.21) may be transformed into LMI form

⎡⎢⎢⎣
(A − Cv)X + XT (A − Cv)T − B(d)Yw − YT

wBT (d)

+ 𝛾−2(A − Cv)(A − Cv)T + 2𝛾−2I XT

X −Q−1

⎤⎥⎥⎦ < 0 (10.22)

Thus, the stable condition (Equation 10.16) is transformed into Equation 10.12

(the same with Equation 10.22), which can be solved by LMI.

If the inequality (Equation 10.12) is satisfied, the inequality (Equation 10.17) will

hold. Integrating Equation 10.17 from t = 0 to t = tf yields

V(tf ) − V(t0) ≤ −

tf

∫
t0

eT (t) Qe (t) dt + 𝛾2

tf

∫
t0

w̃T (t) w̃ (t) dt (10.23)

Since the Lyapunov function V(tf) > 0, the inequality (Equation 10.23) is rewrit-

ten as

tf

∫
t0

eT (t) Qe (t) dt ≤ V(t0) + 𝛾2

tf

∫
t0

w̃T (t) w̃ (t) dt (10.24)

Thus, we can get the H∞ tracking performance (Equation 10.7) from Equa-

tion 10.24.

In addition, when w̃(t) = 0, the inequality (Equation 10.17) may be written as

V̇(t) ≤ −eT (t)Qe(t) ≤ −𝜆min(Q)eT (t)e(t) ≤ −
𝜆min(Q)

𝜆max(P)
V(t) (10.25)

From the above inequality (Equation 10.25), we have V(t) ≤ V(0)e
− 𝜆min(Q)

𝜆max(P)
t
, so

that ‖e(t)‖ ≤
√
𝜆max(P)

𝜆min(P)
e
− 𝜆min(Q)

2𝜆max(P)
t ‖e(0)‖ for all trajectories.

Therefore, the closed-loop fuzzy system (Equation 10.10) with w̃(t) = 0 is expo-

nentially stable. ■
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214 INTELLIGENCE-BASED HYBRID INTEGRATION

The upper bound of the robust tracking performance (Equation 10.7) can be

minimized by solving the following constraint optimization:

min
X,Y1,…,Yr

𝛾2

subject to 𝛾 > 0, X > 0, the inequality (10.11)
(10.26)

This optimization problem can be solved by linear matrix inequality (LMI), and

its solution will guarantee that the system is stable and has a desirable robust tracking

performance. After obtaining X, Y1,… , Yr from Equation 10.26, the controller gain

is expressed as

Kj = YjX
−1 (10.27)

10.3.2 Hybrid Integration Design

In order to have optimal overall performance, both design and control constraints are

needed to consider simultaneously. Thus, the steady-state economic cost (Equation

10.2) and the variability cost (Equation 10.3) are integrated into a unified objective

function as follows:

min
d,X,Y1,…Yr

J = EC(xstatic, ystatic, d) + VC(e(t))

s.t. f (ẋ, x, y, u, d, w) = 0

the equalities (10.9) and (10.27)

the inequality (10.11)

𝛾 < 𝛾0

(10.28)

where the equalities (Equations 10.9 and 10.27) are the control rules and the control

gains, respectively, and the inequality (Equation 10.11) is the requirement of the

stability. The constraint 𝛾 < 𝛾0 can guarantee the robust tracking performance, with 𝛾0

as a limiting value determined by users for the acceptable attenuation of disturbance.

The proposed integration of design and control contains two main parts, as shown

in Figure 10.3.

� Part 1 is to design the steady-state economic cost. It minimizes the process capital

and the operating cost (Equation 10.2) by optimizing the design variables d of

the steady-state process. The optimal design performance can be obtained.
� Part 2 is to design the control system, which includes the process modeling

and controller design. The nonlinear process is globally approximated by the

fuzzy modeling method. Then, based on this fuzzy model, a fuzzy controller is

derived to stabilize the system and minimize the variability cost, and guarantee

the feasibility as well.

The optimal solution of this hybrid integration (Equation 10.28) can simultane-

ously achieve the optimal performance for both high level system design and the low

level process control.
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INTELLIGENCE-BASED HYBRID INTEGRATION 215

Design
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(Equation 10.1)

 Economic cost
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Variability cost
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Integration cost

(Equation 10.28)
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design and control(1) Economic cost design 

Control

performance

Design

performance

FIGURE 10.3 Integration framework for the hybrid system

10.3.3 Hierarchical Optimization of Integration

Obviously, integration (Equation 10.28) is a nonlinear optimization problem con-

strained by both design and control requirements. The identification of the con-

troller gains and the design variables using mathematical programming algorithms is

very difficult due to discontinuous and nonconvex property in the integration space

(Malcolm et al., 2007). Thus, it is nearly impossible to optimize design variables and

fuzzy controller gains simultaneously using traditional optimization methods.

In order to make the integration problem easier to tackle, a hierarchical opti-

mization framework proposed by Malcolm et al. (2007) is employed to decompose

the integration problem into two nested optimizations: the embedded control opti-

mization (inner loop) and the master design optimization (outer loop), as shown in

Figure 10.4.

10.3.3.1 Embedded Control Optimization Given the design variables, the

embedded control optimization (inner loop) is to guarantee system stability and

robustness. This optimization strategy is shown in Figure 10.5, and summarized as

follows:

Step 1 (Initialization): Design variables are determined by master design opti-

mization and the weighting matrix Q is specified as performance requirement.
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216 INTELLIGENCE-BASED HYBRID INTEGRATION
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FIGURE 10.5 Embedded control optimization
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INTELLIGENCE-BASED HYBRID INTEGRATION 217

Step 2 (Fuzzy modeling): The nonlinear process model can be obtained according

to process knowledge. Then it will be modeled by fuzzy modeling method, and

represented as the fuzzy model (Equation 10.5).

Step 3 (Model verification): Input/output data of the nonlinear process are used to

verify the fuzzy model. If the approximation error is large, then return to Step

2 to reconstruct the fuzzy model by adding more rules r and adjusting local

models.

Step 4 (Fuzzy control design): Based on the obtained fuzzy model, the fuzzy

controller is determined by solving Equations 10.9 and 10.27 using LMI. Then,

the integration cost can be obtained from the feedback loop system.

10.3.3.2 Master Design Optimization The master design optimization is con-

ducted in outer loop, as shown in Figure 10.6. It aims to determine the optimal design

variables by solving the integration problem (Equation 10.28), where the control

variable u and the attenuation level 𝛾 have already been obtained in the embedded

control optimization. Usually, this kind of optimization is too complex for analyt-

ical methods to handle since the problem could be nonconvex or nondifferential.

Here, the intelligent PSO method presented in Chapter 7 is used to solve this master

optimization.

In summary, since the control system design is embedded into the master design

optimization, the successive iterations of the master design loop will gradually im-

prove the integration performance. Since the PSO-based design is integrated with the

fuzzy modeling/control, this integration method combines the merits of both fuzzy

modeling/control and PSO. Thus, it is able to deal with the complex nonlinear prob-

lem in a large operating region, and can achieve the desired design performance for

the high level system as well as the satisfactory control performance of the low level

process.

No

Yes

Satisfactory

integration cost?

(Equation 10.28)

End

PSO-based

design
Embedded control optimization

Design variables

FIGURE 10.6 Master design optimization
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218 INTELLIGENCE-BASED HYBRID INTEGRATION

10.4 CASE STUDY

Consider the curing oven design given in Example 1.4 in Section 1.1.3 of Chapter 1.

The objective is to optimize design variables d = [𝜃, H] and control the power of

the heaters to obtain a satisfactory tracking performance and a uniform temperature

distribution on the lead frame (LF).

The view factor Fi,j(d) is expressed as

Fi,j(d) = F(xi, yj, 0) + F(xi, b − yj, 0) (10.29)

where b and (xi, yj, 0) are the breadth of heater block and the coordinate of the zone

(i, j) as shown in Figure 1.5, respectively, and the function F(x, y, 0) can be derived

according to the definition of view factor and Stokes’s theorem (Siegel and Howell,

2002) and expressed as

F(x, y, 0) = F1 + F2 + F3 + F4

with

F1 =
b
2
− y

2𝜋

√(
b
2
− y

)2

+
(

H + b
2
ctg

(
𝜃

2

))2

⎛⎜⎜⎜⎜⎝
atan

l − x√(
b
2
− y

)2

+
(

H + b
2
ctg

(
𝜃

2

))2

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
atan

x√(
b
2
− y

)2

+
(

H + b
2
ctg

(
𝜃

2

))2

⎞⎟⎟⎟⎟⎠
F2 =

y

2𝜋
√

y2 + H2

(
atan

l − x√
y2 + H2

+ atan
x√

y2 + H2

)

F3 = − l − x

2𝜋
√
𝜂2 + (l − x)2 + (l − x)2(tg𝜃)2

×

(
atan

(
(−y)(1+(tg𝜃)2)+𝜂 × tg𝜃√
𝜂2 + (l − x)2 + (l − x)2(tg𝜃)2

)

−atan

((
b
2
− y

) (
1 + (tg𝜃)2

)
+ 𝜂 × tg𝜃√

𝜂2 + (l − x)2 + (l − x)2(tg𝜃)2

))

F4 = x

2𝜋
√
𝜂2 + x2 + x2(tg𝜃)2

×

(
atan

((
b
2
− y

)
(1 +

(
tg𝜃)2

)
+ 𝜂 × tg𝜃√

𝜂2 + x2 + x2(tg𝜃)2

)

− atan

(
(−y)

(
1 + (tg𝜃)2

)
+ 𝜂 × tg𝜃√

𝜂2 + x2 + x2(tg𝜃)2

))
𝜂 = −yctg

𝜃

2
− H
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CASE STUDY 219

Define

x(t) =
[
T1,1(t) ⋯ Ti,p−1(t) Ti,p(t) Ti+1,1(t) Ti+1,2(t) ⋯ Tn,p(t)

]T
,

w(t) =
[
ŵ1,1(t) ⋯ ŵ

i,p−1
(t) ŵi,p(t) ŵ

i+1,1
(t) ŵi+1,2(t) ⋯ ŵn,p(t)

]T
,

z(t) = diag

([
T3

1,1
(t) ⋯ T3

i,p−1
(t) T3

i,p
(t) T3

i+1,1
(t) T3

i+1,2
(t) ⋯ T3

n,p
(t)

]T
)

(10.30)

where Tij(t) is the temperature at the (i, j) zone on the LF at time t. The system model

(Equation 1.5) is rewritten as the vector form

ẋ(t) = Ax(t) − Cz(t)x(t) + B(d)u(t) + w(t) (10.31)

where u is control variable to offer heating power, and matrixes A, B(d), and C can

be derived from Equations 1.9 and 10.30.

Obviously, the model (Equation 10.31) has strong nonlinearity and must work

in a large operating region (Temperature range: 40◦C∼200◦C) as it has to track the

required temperature profile.

10.4.1 Objective

10.4.1.1 Ideal Process Output The length, breadth, and height of the LF are

240, 90, and 0.2 mm, respectively. The LF is uniformly divided into 36 zones. The

desired temperature profile (◦C) is given as

Tr(t) =
{

40 + 7t for 0 ≤ t ≤ 20

180 for 21 ≤ t ≤ 50
(10.32)

10.4.1.2 Design for Economic Cost One important criterion for a curing pro-

cess to satisfy the high quality packaging is the uniform temperature distribution

under the steady state. A desired uniformity is that the static temperature at each

point on the LF is close to the desired reference temperature. The most natural goal to

obtain this optimal uniformity is to minimize the error between the static temperature

of the LF and the desired reference. Thus, the typical steady-state economic cost can

be considered as:

EC = 𝛿1

⎛⎜⎜⎜⎝
1

30

t=50

∫
ts=21

(
6∑

i=1,n=1

6∑
j=1,m=1

Tij(ts) − Tnm(ts)

)
dt

⎞⎟⎟⎟⎠
1∕2

(10.33)
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220 INTELLIGENCE-BASED HYBRID INTEGRATION

where 𝛿1 is a conversion factor to convert the temperature distribution performance

(
1

30
∫ t=50

ts=21 (
∑6

i=1,n=1

∑6
j=1,m=1 Tij(ts) − Tnm(ts))dt)1∕2 to the economic cost, and ts is

time when the system settles down in steady state.

10.4.1.3 Design for Process Control Another important criterion is to guaran-

tee that the dynamic error between the maximal temperature Tmax(t) and the minimal

temperature Tmin(t) on the whole LF should be less than 10◦C, and the steady-state

error between the maximal static temperature Tmax,static and the minimal static tem-

perature Tmin,static on the whole LF should be less than 5◦C. Thus, the constraints

considered will be,

Tmax(t) − Tmin(t) ≤ 10 (10.34a)

Tmax,static − Tmin,static ≤ 5 (10.34b)

Furthermore, the disturbance is

ŵi,j(t) = norm(0, 1) (10.35)

where norm (0,1) denotes Gaussian distributions with zero mean and the identical

standard deviation.

In order to track the required temperature profile, the variability cost VC(e(t)) is

considered as

VC(e(t)) = 𝛿2
⎛⎜⎜⎝ 1

50

t=50

∫
t=0

(
6∑

i=1

6∑
j=1

eij(t)
Teij(t)

)
dt
⎞⎟⎟⎠

1∕2

(10.36)

with spatio-temporal error: ei,j(t) = Tr(t) − Ti,j(t).
where 𝛿2 is a conversion factor to convert the tracking error

(
1

50
∫ t=50

t=0 (
∑6

i=1

∑6
j=1 eij(t)

Teij(t))dt)1∕2 to the variability cost. The conversion

factors should be determined according to the economic situation on the manufactur-

ing site. For our example here, the factors 𝛿1 and 𝛿2 are set as 1($/◦C) and 1.5($/◦C),

respectively. The objective is to obtain a uniform temperature distribution (Equation

10.33) on the LF and a satisfactory tracking performance (Equation 10.36) through

the simultaneous optimization of the controller and the design parameters (𝜃 and H),

under the constraints 𝜃∈(160◦, 180◦) and H∈(4 mm, 14 mm).

10.4.2 Integration Method for the Curing Process

Since the curing oven is fully symmetric about x axis and y axis, only a quarter

portion of the LF is required for design and control. The nonlinear curing model

with uncertainty is first approximated by the fuzzy model (Equation 10.5). The

membership function hv(x(t)) for the fuzzy sets of x(t) is shown in Figure 10.7.
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FIGURE 10.7 Membership functions

The fuzzy T–S controller (Equation 10.9) is used to control the fuzzy model

(Equation 10.5). Then, 20 particles are employed for PSO in the master design

optimization. The velocity and position of the particle vi are determined by Equations

7.26 and 7.27 with 𝛿 = 0.7, 𝜑1 = 𝜑2 = 1.47. As shown in Figure 10.8, the iteration

process finally converges when the integration cost remains steady. The final optimal
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FIGURE 10.8 Iterative process of PSO
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222 INTELLIGENCE-BASED HYBRID INTEGRATION

design variables d∗I = [𝜃∗, H∗] are equal to [172◦, 4.5 mm] under the weighting

matrix Q = 0.1I with I as the unit matrix. The controller gains under the optimal

design parameters d∗ are listed as follows:

K1 = [20.4888 20.5920 20.5409 21.1160 21.1725 21.2168 21.1909 21.2750

21.1530]

K2 = [20.3419 20.4449 20.3938 20.9658 21.0219 21.0665 21.0403 21.1242

21.0012]

K3 = [20.4552 20.5584 20.5072 21.0817 21.1380 21.1824 21.1564 21.2405

21.1182]

K4 = [20.6381 20.7417 20.6905 21.2688 21.3256 21.3697 21.3441 21.4283

21.3074]

K5 = [20.1817 20.2844 20.2333 20.8019 20.8577 20.9024 20.8760 20.9597

20.8355]

10.4.3 Verification and Comparison

Since the cure temperature can change from 40◦C to 200◦C, the system has a large

working region. The robust tracking performance and the uniform temperature per-

formance are shown in Figure 10.9. In Figure 10.9a, the maximal and minimal

temperature trajectory on the whole surface of the LF are very close to the refer-

ence signal. In Figure 10.9b, all dynamic temperature differences ed(t) (defined as

ed(t) = Tmax(t) − Tmin(t)) between the maximal temperature Tmax(t) and the minimal

temperature Tmin(t) on the whole LF are less than 4◦C. This means that it has a

good variability cost. In Figure 10.9(c), since all steady-state temperature errors ei,j
(defined as ei,j(tf) = Tr(tf) − Ti,j(tf) with the end time tf) are less than 3◦C, it has

a good economic cost. Thus, the design satisfies temperature uniformity (Equation

10.33) under constraints (Equation 10.34). Thus, it is clear from Figure 10.9 that

this integration method can obtain the desired robust tracking performance and the

uniform temperature distribution as well.

For a better verification, this integration method is compared with the two existing

methods. Some performance indexes are set up for an easy comparison as follows:

� Mean squared error

MSE = 1

36 × 50

50∑
t=1

6∑
i=1

6∑
j=1

ei,j(t)
2

� Spatial normalized absolute error

SNAE(t) = 1

36

6∑
i=1

6∑
j=1

|||ei,j(t)
|||
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FIGURE 10.9 Robust tracking performance: (a) tracking performance; (b) dynamic temper-

ature difference; (c) steady-state temperature error on the LF

� Time normalized absolute error

TNAE(i, j) = 1

50

50∑
t=1

|ei,j(t)|
� Difference of time normalized absolute error

DTNAE(i, j) = TNAET (i, j) − TNAEP(i, j)

where TNAET and TNAEp are the time normalized absolute error obtained by

the existing method and the newly proposed integration respectively.

1. Comparison with the traditional sequential design method
The sequential design method first obtains the design variable d through optimizing

the steady-state economic design problem (Equation 10.2), followed by the control

design for the optimal variability cost (Equation 10.3). The optimal design variable

calculated by the sequential method is d∗T = [166◦, 4 mm].
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FIGURE 10.10 Performance comparison: (a) SNAE; (b) DTNAE

The SNAE and DTNAE are shown in Figure 10.10.

� From Figure 10.10a, we see that the SNAE of the proposed integration method

is much smaller than the traditional sequential method when the process works

in the dynamic environment (from 0s to 20s). This comparison shows that this

integration method can improve the dynamic performance and keep a better

steady-state performance than the traditional sequential method.
� From Figure 10.10b, since all DTNAE are larger than zero, the proposed inte-

gration method has a smaller TNAE than the traditional sequential method. This

comparison shows that the integration method can obtain a better performance

than the traditional sequential method.

Finally, MSE are compared for both methods, with 4.2855 for the proposed inte-

gration method and 4.9117 for the sequential method, respectively. It is clear that the

proposed integration method has a better MSE than the sequential method.

Based on the above comparisons, it is clear that the proposed integration method

has a better performance than the sequential method.

2. Comparison with a traditional integration method
The proposed integration method is compared with the traditional integration

method (Meeuse and Tousain, 2002). In Meeuse’s integration method, a linear model,

which is obtained by linearization-based modeling around the operating point, is first

used to approximate the process model. Then the Linear Quadratic Gaussian (LQG)

controller and the design variables are designed together based on the obtained linear

model. The optimal design variables calculated by Meeuse’s integration method are

d∗LQG = [170◦, 5 mm].
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FIGURE 10.11 Performance comparison of practical process and models: (a) model perfor-

mance in zone 1; (b) model performance in zone 10

� Comparison for modeling performance

Let the control input u randomly vary in [60, 70] and the design variables d are set as

[170◦, 5 mm]. A total of 1000 samples are taken to compare approximate performance.

From Figure 10.11, it is clear that the fuzzy model approximates the nonlinear process

better than the linearization-based model around the working point (Meeuse and

Tousain, 2002). This is because the fuzzy modeling approach can approximate the

nonlinear process well in a large working domain but the linearization-based model

does not.

The spatio-temporal error ei,j(t) is defined as the difference between the practical

process and the approximate model, and TNAET and TNAEP are the time normalized

absolute error obtained by the linearization-based modeling and the fuzzy modeling,

respectively. The SNAE and DTNAE are shown in Figure 10.12. From Figure 10.12a,

it is clear that the SNAE of the fuzzy modeling method is much smaller than that
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FIGURE 10.12 Comparison of modeling performance: (a) SNAE; (b) DTNAE
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FIGURE 10.13 Comparison of control performance: (a) SNAE; (b) DTNAE

of the linearization-based modeling in the whole operation. From 10.12b, since all

DTNAE are larger than zero, the fuzzy modeling method has a smaller TNAE than the

linearization-based method. This comparison shows that the fuzzy modeling method

can obtain better approximation performance than the linearization-based modeling

method.

Finally, MSE are also compared for both methods, with 0.8923 for the fuzzy model-

ing method and 30.7271 for the linearization-based modeling method, respectively. It

is clear that the fuzzy modeling method has a better MSE than the linearization-based

modeling method.

� Comparison for integration performance

Let the spatio-temporal error ei,j(t) = Tr(t) – Ti,j(t), and TNAET and TNAEP are

the time normalized absolute error obtained by Meeuse’s integration method and

the proposed integration method, respectively. The SNAE and DTNAE are shown in

Figure 10.13. From Figure 10.13a, it shows that the SNAE of the proposed integration

method is much smaller than that of Meeuse’s integration method in the whole

operation. In Figure 10.13b, since all DTNAE are larger than zero, the proposed

method has a smaller TNAE than Meeuse’s integration method. These comparisons

show that the proposed intelligent integration can obtain a better performance than

Meeuse’s integration method.

Moreover, MSE are compared for both methods, with 4.2855 for the proposed

integration method and 4.899 for Meeuse’s integration method, respectively. It is

clear that the intelligent integration method proposed has a better MSE than Meeuse’s

integration method.

Thus, from the above comparisons, it is clear that this new intelligent integration

method has a better performance than Meeuse’s integration method. This is because

the intelligent integration proposed can approximate and control the nonlinear process

well, but it is difficult for Meeuse’s integration method to approximate and control

the nonlinear process well when working in a large operating region.
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SUMMARY 227

10.5 SUMMARY

The intelligence-based design and control integration is presented for the hybrid

manufacturing system. At the machine level, the fuzzy modeling method can approx-

imate the nonlinear process very well in a large operating region, and fuzzy control

can maintain the stability and robustness of the nonlinear process. At the supervision

level, the economic cost and other factors will be considered for the overall perfor-

mance of manufacturing. The hierarchical strategy proposed will optimally integrate

high level manufacturing design and low level process control for a better overall

performance of the system. The simulation on a snap-curing process in IC packaging

industry shows that the proposed method can achieve better overall performance than

the traditional approach.
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CHAPTER 11

CONCLUSIONS

This chapter summarizes all methods introduced in the book, and discusses

future challenges in this area.

11.1 SUMMARY AND CONCLUSIONS

As higher speed, higher precision, and higher intelligence become common require-

ments in advanced manufacturing, it has led to higher quality design of every compo-

nent and part in the manufacturing system. One of the serious problems in design is

inconsistent performance caused by uncontrollable variations. Robust design and its

integration with control are the most important methods commonly used to achieve

the robust performance for the system. Studies of robust design and its integration

with control become more and more active and important.

After an overview of robust design and its integration with control, the existing

robust designs and integrated design and control methods have some limitations,

for example, robust design under model uncertainty, robust eigenvalue design, and

integration problem for the hybrid system working in a large operating region. The

book focuses on developing new robust design methods and new approaches to

integrate design and control solutions in order to break through these limitations. The

contributions of this book can be briefly summarized as follows:

� First, several novel robust design approaches are proposed to minimize the

influence of parameter variations and model uncertainty to the static system.

System Design and Control Integration for Advanced Manufacturing, First Edition. Han-Xiong Li and XinJiang Lu.

© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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230 CONCLUSIONS

� Second, several novel robust design approaches are proposed for the dynamic

system to consider system stability and robustness.
� Finally, two novel integration methods are proposed to design and control the

hybrid system.

Novel contributions of these new methods can be summarized below.

1. Two novel variable sensitivity robust design approaches are developed to design

the robustness of the nonlinear system under small parameter variations. Since

the nonlinear system is formulated under a linear structure, it is easy to handle

using the existing robust design methods. By minimizing its variable sensitivity

matrix, two different robust designs are developed, one in deterministic nature

and another in probabilistic nature. These two methods could effectively achieve

the robustness for the nonlinear system under deterministic or probabilistic

uncertainties despite uncontrollable variations.

2. A new design method is developed for a nonlinear system to maintain robustness

under large parameter variations. Since the parameter space is divided into many

small subdomains, a local linearization model can be well developed at each

subregion. Thus, the nonlinear system can be well described by multiple local

models in a large parameter space. With the help of multi-domain modeling,

the proposed robust design method could ensure the robustness of the nonlinear

system under large parameter variations.

3. Two novel robust design approaches are proposed to design the partially un-

known system with variations of design variables. Data-based uncertainty

compensation method could extract useful information hidden in the data to

compensate the effect of model uncertainty. By integrating both model-based

robust design approach and data-based uncertainty estimation, the proposed

design approaches are able to design the nonlinear system to be robust not

only to deterministic/probabilistic variation of parameters but also to model

uncertainty.

4. Three novel robust eigenvalue design approaches are proposed to minimize the

influence of parameter variations to eigenvalues of the dynamic system. First,

several modeling methods, first-order modeling, multiregion modeling, and SN

modeling, can effectively approximate the eigenvalue variation respectively

for linear system, approximately linear system, or nonlinear system under

parameter variations. Then, the developed sensitivity design method could

effectively handle the complex sensitivity matrix problem derived from the

obtained model. The solution obtained can guarantee stability and robustness

of the designed system under parameter variations.

5. A novel robust design is proposed to achieve stability and robustness of the

system when model uncertainty exists. This proposed robust design is to min-

imize the influence of parameter variations and model uncertainty to system

eigenvalues. By integrating the stability theory and the perturbation theory, the

method can effectively design the system to be stable and robust under model

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHALLENGE 231

uncertainty. Moreover, the tolerance design can further achieve the best perfor-

mance under given constraints as long as design variables stay in the tolerance

space.

6. A new design-for-control-based integration method is presented for the non-

linear process with hybrid discrete/continuous variable. The approach can

effectively obtain a well linear approximation for the complex system, so that

the controller design can be simplified under the robust pole placement. The ad-

vantage is that the designed system can be controlled effectively by a relatively

simple and easy-realization controller. More importantly, this integrated design

and control approach can easily achieve the satisfactory robust pole placement

since it has combined the merits of both robust design and control.

7. A novel intelligence-based integration method is proposed for the hybrid

system—a nonlinear process with unmeasured overall performance working

in a large operating region. The fuzzy modeling method can approximate the

nonlinear process very well in a large operating region and the PSO-based

optimization method can effectively handle the nonconvex and nondifferential

integration problem. This proposed integration design can achieve the desired

overall performance of the production as well as local dynamics of the nonlinear

system.

Effectiveness of the presented design approaches is verified on selected cases in

manufacturing industry. These methods and approaches could be applicable to a wide

range of industrial applications.

11.2 CHALLENGE

In addition to the progress achieved so far, there are still many challenges in robust

design and control integration, which are discussed in the following examples.

1. Robust optimal design under model uncertainty. Though the proposed robust

designs can achieve the satisfactory performance, they do not consider perfor-

mance optimization under model uncertainty. The solutions achieved are robust

but may not be optimal. It would be a challenge to incorporate the robust design

into a proper optimization approach so that solutions are not only robust but

also optimal.

2. Robust design for the strongly nonlinear system under model uncertainty.
Since performance variations are usually approximated by the linear model in

the existing robust designs, although the higher order term neglected may be

regarded as model uncertainty, the proposed method will be conservative when

the system is strongly nonlinear. Thus, an effective robust design should be

developed for the strongly nonlinear system under model uncertainty.

3. Integration of design and control for the partially controllable system. For

the partially controllable system, only controllable variables can be directly
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232 CONCLUSIONS

adjusted online and uncontrollable variables have to rely on process design.

In difference to the fully controllable system, the design of this system has

two different tasks. One is to have the robust performance of uncontrollable

variables through the off-line design, and the other is to adjust controllable

variables online to have the optimal control performance. Since these control

and design variables are coupled in the complex process, such an integration

for the robust and optimal performance will be a long-standing challenge in

future research.

4. Robust design for the nonlinear distributed parameter system (DPS) with
model uncertainty and parameter variation. The nonlinear DPS usually has

strong spatio-temporal, or infinite-dimensional dynamics, which can be de-

scribed by nonlinear parabolic partial differential equations (PDEs) with com-

plex boundary conditions. The input, output, and even parameters of DPS can

vary both temporally and spatially. All the existing design methods have not

been applied to DPS for parameter design due to the overcomplexity of this kind

of system. It would be a great challenge and an extremely difficult endeavor to

achieve a feasible robust design for DPS.

5. Integration of design and control for the DPS with model uncertainty and
parameter variation. Design variables and controllable variables can signifi-

cantly change process dynamics. The design variables are discrete variables,

while the controllable variables are continuous variables. However, the discrete

design and continuous control have not been properly integrated to optimize

the performance even for the lumped process, let alone DPS. It is even a bigger

challenge to design and control these factors to have an optimal performance

for DPS.
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Fuzzy control, 209

Fuzzy model, 205, 208

Gaussian distribution, 50

Generalized linear models, 34
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Operability index, 41
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Packaging industry, 167

Parallel distributed compensation scheme,
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Probabilistic analysis, 21
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Probabilistic sensitivity analysis, 24
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Probability distribution, 7
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Sensitivity region measure method, 30, 47

Sequential design method, 223

Sequential method, 13

Signal-to-noise ratio, 33

Singular value decomposition, 29, 91, 126

Stability design, 120, 122, 130, 149, 152,
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Stability design at center point, 131

Stability design within subdomain, 131

Stability parameter space, 128, 153

State-feedback control, 188

Static system, 4, 5, 45

Stochastic flexibility index, 39

Subdomain, 71, 130

Suh’s information content, 35

Taguchi method, 6, 27, 33

Takagi–Sugeno fuzzy model, 206

Taylor series expansion, 29, 30, 34,168

Tolerance design, 127, 153, 173

Tolerance space, 128, 174

Tracking performance, 209

Transient response, 121
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Two-loop optimization method, 157

Type I robust design, 27, 28

Type II robust design, 27, 28

Type III robust design, 28
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Weighted Euclidean norm, 60
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