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Preface

The idea of writing this book began at least five years ago when the first author taught a one
first-year graduate course, on communications/wireless communications. After this course,
some students pursued advanced topics such as convex optimization prior to their PhD
research. MS students wanted to know more about the field before they began to design
wireless systems. The first author taught such advanced courses regularly, and part of these
materials provided the starting point for this book. After this book project began, additional
authors were added so that we could meet with our deadlines and before the topics become
outdated. Another title of this book could be Advanced Wireless Communications.

The most difficult part was to decide what to exclude. The wireless industry is still
expanding rapidly after two decades of growth. The first author studied the second gener-
ation (2G) system—CDMA and GSM —during his university days. Now, 3G (WCDMA)
and 4G (LTE) systems are available. Each system has its central concept and demands
unique analytical skills. Generally professors find that their most significant responsibil-
ities are to teach students the most difficult mathematical tools required to analyze and
design fundamental system concepts. For example, in a GSM (TDMA) system, the equal-
izers are central to the system. For a CDMA system, a RAKE receiver is central (as is
power control). For an LTE system, a multiple-input, multiple-output (MIMO) system
combined with an orthogonal frequency division multiplexing (OFDM) is central.

This approach is adopted in our book. We cover the system concepts that are central
to the next generation cognitive radio network (CRN). We claim that the following three
analytical tools are central to the CRN: (1) large random matrices; (2) convex optimiza-
tion; (3) game theory. The unified view is the so-called “Big Data”—high-dimensional
data processing. Due to the unique nature of cognitive radio, we have an unparalleled
challenge—having too much data at our disposal. In today’s digital age, making sense
of the data in real-time is central not only to major players like Facebook, Google and
Amazon, but also to our telecommunication vendors. To successfully solve the Big Data
problem however, there are still many hurdles. For one thing, the current tools are inad-
equate. Scientist and engineers with the skills to analyze the data are scarce. Future ECE
students must learn the analytical skills obtained from studying Big Data. In addition to
traditional fields, this book contains results from multi disciplinary fields: machine learn-
ing, financial engineering, statistics, quantum computing, etc. Social networking and the
Smart Grid command more resources. Researchers must become more cost-conscious.
Investments in other fields mentioned above can reduce the costs of solving these prob-
lems. Abstract mathematical connections are the best starting point toward this goal.
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xvi Preface

This justifies our belief in teaching students the most difficult analytical skills that are
not readily obtained after leaving schools. By studying this book, practical engineers will
understand system concepts, and may make connections with other fields. Peer researchers
can use this book as a reference.

Compared with previous systems, the CRN contains radios that are highly pro-
grammable; their modulation waveforms are changing rapidly and their frequencies
are agile; their radio frequency (RF) front-ends are wideband (up to several GHz).
In addition to the highly programmable nature of their physical layer functions, a
CRN radio senses the spectrum at an unprecedentedly low signal-to-noise-ratio (SNR)
(e.g., —21dB required by the FCC). To support this fundamental spectrum sensing
function, the system allocates computing resources with the ultimate goal of real-time
operations. From another viewpoint, this radio is a powerful sensor with almost unlimited
computing and networking capabilities. Through the combination of these two views,
communications and sensing are merged into one function that transmits, receives, and
processes programmable modulated waveforms. Real-time distributed computing is
embedded in these two functions.

It is believed that we lack a coherent network theory that is valid for numerous applica-
tions. Rather, the state-of-the-art network is designed for special needs; when a new need
arises, the network must be redesigned. Costs are wasteful due to the lack of a network
theory. The cognitive radio poses unique challenges in networking.

Wireless technology is proliferating rapidly; the vision of pervasive wireless computing,
communication, sensing and control offers the promise of many societal and individual
benefits. Cognitive radios, through dynamic spectrum access, offer the promise of being
a disruptive technology. Cognitive radios are fully programmable wireless devices that
can (1) sense their environment and (2) dynamically adapt their transmission waveform,
channel access method, spectrum use and networking protocols. It is anticipated that
cognitive radio technology will become a general-purpose programmable radio that will
serve as a universal platform for wireless system development, as microprocessors have
served a similar role for computation. There is, however, a big gap between having a
flexible cognitive radio, effectively a building block, and the large-scale deployment of
cognitive radio networks that dynamically optimize spectrum use. Testbeds are critical
but totally ignored since the materials become outdated when the book is published. We
want to focus on the materials that can last.

One goal is aimed toward a large-scale cognitive radio network; in particular, we need
to study novel cognitive algorithms using quantum information and machine learning
techniques, to integrate FPGA, CPU and graphics processing unit (GPU) technology into
state-of-the-art radio platforms, and to deploy these networks as testbeds in the real-world
university environment. Our applications range from communications to radar/sensing and
Smart Grid technologies. Cognitive radio networking/sensing for unmanned aerial vehicles
(UAVs5) is also very interesting and challenging due to its high mobility. Synchronization
is critical. UAVs can be replaced with robots.

One task will pursue a new initiative of CRN as sensors and explore the vision of a
dual-use sensing/communication system based on CRN. The motivation is to push the
convergence of sensing and communication systems into a unified cognitive network-
ing system. CRN is a cyber-physical system with the integrated capabilities of control,
communications, and computing.
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Preface xvii

Due to the embedded function of cooperative spectrum sensing in CRN, rich information
about the radio environment may be obtained. This information unique to CRN can be
exploited to detect, indicate, recognize, or track the target or intruder in the covered area of
a CRN. The data for this kind of information system are intrinsically high-dimensional and
random. Hence, we can employ quantum detection, quantum state estimation, and quantum
information theory in our new initiative using CRN as sensors. In this way, the sensing
capability of CRN can be explored together with great improvement in performance.

Very often one views a cognitive radio as two fundamental functions: (1) spectrum
sensing; (2) spectrum-aware resources allocation. In this second function, convex opti-
mization plays a central role. Optimization stems from human instinct. We always like
to do something in the best way. Optimization theory gives us a way to realize this kind
of human instinct. With the enhancement of computing capability, optimization theory,
especially convex optimization, is a powerful signal processing tool to handle Big Data. If
the data mining problem can be formulated as a convex optimization problem, the global
optimum can be achieved. There is no doubt about the results or performances. However,
there is still a challenge to make optimization algorithms scalable on the data sets of mil-
lions or trillions of elements. Thus, more effort is needed to explore optimization theory
before we gain the benefit of it.

A collection of nodes are studied. These nodes, in analogy with human beings, can
both collaborate and compete. Game theory captures the fundamental role of competition
for resources. Of course, many algorithms in game theory can be formulated as convex
optimization problems. For the games in CRN, we have provided plenty of working
knowledge of generic games such that the readers can begin the research without reading
specific books on game theory. Several typical examples in CRN are given to illustrate
how to use game theory to analyze cognitive radio. Moreover, many unique concerns of
games in cognitive radio are explained in order to motivate new research directions.

We will explain the networking issues in CRN in a layer by layer manner. Only
challenges specific to CRN are explained in order to distinguish from traditional com-
munication networks. We hope that the corresponding chapter not only explains the
state-of-the-art of CRN, but also motivates new ideas in the design of CRN.

The overall picture of this book is presented in Figure P.1. Novel applications of the
CRN include:

1. The Smart Grid; Security is a challenge.

2. Wireless networking for for unmanned aerial vehicles. Synchronization is a challenge.
3. Cloud computing is integrated with the CRN.

4. The CRN is used as distributed sensing.

Chapter 1 overviews the book. Twelve chapters are included.

Chapter 2 presents basic techniques for spectrum sensing. These techniques can be
implemented in today’s systems. Energy detection is the basis. The second-order statistics
based detection is important. Features extracted using singular value decomposition (SVD)
are also used. Cyclostationary detection is treated for completeness.

Chapter 3 is the core of spectrum sensing. It is also a stepping-stone to understand the
algorithms of Chapter 4 that are believed to be new. The generalized likelihood ratio test
(GLRT) is the culmination of the development of the whole Chapter 3. We focus on three
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major analytical tools: (1) multivariate normal statistics; (2) sample covariance matrix
that is a random matrix; (3) the GLRT. This chapter also prepares us for Chapter 5 (large
random matrices).

Chapter 4 deals with noncommunicative random matrices and their detection. The
nature of this chapter is exploratory. It connects us with some latest literature in quantum
computing, applied linear algebra and machine learning. The basic mathematical objects
are random matrices—matrix-valued random variables that are elements in an algebraic
space such as C* algebra. This chapter is designed not only for practical significance, but
also for conceptual significance. These concepts are basic when we deal with Big Data in
machine learning. A great number of random matrices are processed. The new algorithms
achieve much better performance, compared with the classical algorithms that are treated
in Chapter 3.

Chapter 5 is a long chapter. It was, however, not even included in the initial writing.
In the last stage of the book project, we have reached the insight into its fundamental
significance under our unified view of Big Data. In Chapter 4, we already established that
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the basic mathematical objects are the covariance matrices and their associated sample
covariance matrices. We can asymptotically estimate the former from the data. Recently,
the trend is to use the nonasymptotic sample covariance matrices instead. The data is
huge but is not infinite. The central difficulty arises from the randomness of a sample
covariance matrix that uses finite data samples. When a large collection of those sample
covariance matrices are studied, the so-called random matrix theory is needed. Also, for
detection, quantum information is needed. Under this context, Chapter 4 is connected
when there quantum detection is used. Large random matrices were used to wireless
communication as early as 1999 by Tse and Verdu to study CDMA systems. Later, they
were used to study MIMO systems. They are especially critical to our vision of merging
communications with sensing. Large random matrices are ideal mathematical objects to
collect the intrinsic (quantum) information is a large network of cognitive nodes that are
able to sense, compute, and reason. To study this collection of large random matrices, the
so-called random matrix theory is needed. How to apply this theory in the large sensing
network is clear from this chapter (see also Chapter 12). How to apply this theory for
across-layer applications such as routing, physical layer optimization, etc. remains elusive
at the time of writing. Compressive sensing is another fundamental concept that is only
applied in this chapter. A comprehensive treatment is beyond our scope here. Its relevance
is pointed out for emphasis. Compressive sensing exploits the structure of sparsity of the
physical signals; large random matrices exploits the structure of random entries. Somehow
it is believed that two theories must be combined together. We have only touched the
surface of this issue and further research is still required.

Chapter 6 will give some background information about optimization theory. Optimiza-
tion stems from human instinct. We always like to do something in the best way. Relying
on mathematics, this human instinct can be written down. Convex optimization is a sub-
field of optimization theory. The strength of convex optimization is if a local minimum
exists, then it is a global minimum. Hence, if the practical problem can be formulated as
a convex optimization problem, then global optimum can be obtained. That is the reason
why convex optimization has recently become popular. Linear programming, quadratic
programming, geometric programming, Lagrange duality, optimization algorithm, robust
optimization, and multi objective optimization will be covered. Some examples will be
presented to show the beauty and benefit of optimization theory.

Chapter 7 will give some background information about machine learning. Machine
learning can make the system intelligent. In order to give readers the whole picture of
machine learning, almost all the topics related to machine learning will be covered, which
include unsupervised learning, supervised learning, semi supervised learning, transductive
inference, transfer learning, active learning, reinforcement learning, kernel-based learning,
dimensionality reduction, ensemble learning, meta learning, Kalman filtering, particle
filtering, collaborative filtering, Bayesian network, and so on. Machine learning will be
the basic engine for cognitive radio network.

Chapter 8 will present MIMO transmission technique. MIMO in wireless communi-
cation exploits multiple antennas at both the transmitter and the receiver to improve the
performance of wireless communication without additional radio bandwidth. Array gain,
diversity gain, and multiplexing gain can be achieved. Space time coding, multi-user
MIMO, MIMO network, and so on will be covered. MIMO can explore the spatial radio
resources to support spectrum access and spectrum sharing in cognitive radio network.
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Chapter 9 will present OFDM transmission technique. OFDM is a technique of digital
data transmission based on multi carrier modulation. The critical issues in OFDM sys-
tem including OFDM implementation, synchronization, channel estimation, peak power
problem, adaptive transmission, spectrum shaping, OFDMA, and so on will be discussed.
Spectrum access and spectrum sharing can also be well supported by OFDM in cognitive
radio network.

Chapter 10 is devoted to the application of game theory in cognitive radio. There exist
competition and collaboration in the spectrum, thus resulting in various games in cognitive
radio. In this book, we will provide a brief introduction to game theory and then apply it
to several typical types of games in cognitive radio.

Chapter 11 provides a systematic introduction to the design issues of networking with
cognitive radio. We will explain the algorithms and protocols in various layers of cogni-
tive radio networks. In particular, we will address the unique challenges brought by the
mechanism of cognitive radio. We will also discuss the complex network phenomenon in
cognitive radio networks.

Chapter 12 will describe a new initiative of cognitive radio network as sensors. This
vision tries to explore a dual use sensing/communication system based on cognitive radio
network. Cognitive radio network is a cyber-physical system with the integrated capa-
bilities of control, communication, and computing. Cognitive radio network can provide
an information superhighway and a strong backbone for the next generation intelligence,
surveillance, and reconnaissance. Open issues together with the potential applications in
cognitive radio network as sensors will be under investigation.

The author Qiu wants to thank his PhD graduates for their help in proof-reading:
Jason Bonier, Shujie Hou, Xia Li, Feng Lin, and Changchun Zhang at TTU, especially
Changchun Zhang for drawing numerous figures. Qiu and Hu want to thank their col-
leagues at TTU: Kenneth Currie, Nan Terry Guo, P. K. Rajan for many years’ help.
Qiu and Hu want to acknowledge their program director Dr. Santanu K. Das at Office
of Naval Research (ONR) who supported their research contained in this book. This
work is funded by National Science Foundation through two grants (ECCS-0901420 and
ECCS-0821658), and Office of Naval Research through two grants (NO0O010-10-1-0810
and N00014-11-1-0006). The authors want to thank our editor Mark Hammond for his
interest in this book and his encouragement during the whole process of the book devel-
opment. The authors have received daily help from other editors: initially Sophia Travis
and Sarah Tilley; later Susan Barclay.

For more information, please visit the companion website—www.wiley.com/go/qiu/
cogradio.
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1

Introduction

1.1 Vision: “Big Data”

“Big Data” [1] refers to datasets whose size is beyond the ability of typical database
software tools to capture, store, manage, and analyze.

There is a convergence of communications, sensing and computing towards the objec-
tive of achieving some control. In particular, cloud computing is promising. Sensors
become cheaper. A network becomes bigger. In particular, powered by Internet protocols,
the Smart Grid—a huge network, much bigger than the traditional networks—becomes
an “energy Internet.”

Communications are becoming more and more like “backbones” for a number of appli-
cations. Sensing is a seamless ingredient in the future Internet of Things. In particular, it
is the data acquisition mechanism to support the vision of “Big Data.” Computing will
become a commodity that is affordable by the common needs of everyday applications.

The economy is becoming a “digital economy,” meaning that the jobs are more and
more related to “soft power.” This does not necessarily imply software programming.
Rather, it implies that more and more job functions will be finished by a smart system
which is driven by sophisticated mathematics. While job functions become more and more
“soft,” the needs for analytical analysis become more demanding. As a result, analytical
skills, which are avoided by most of us at first sight, will be most useful in the lifelong
education of a typical graduate student. Most often, our students know how to do their
programing if they know the right mathematics. This is the central problem or dilemma.
Analytical machinery is like our games of sports. Unless we practice with dedication, we
will not become good players.

The book aims to focus on fundamentals, in particular, mathematical machinery. We
primarily cover topics that are critical to cognitive radio network but hard to master
without big efforts.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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2 Cognitive Radio Communications and Networking

1.2 Cognitive Radio: System Concepts

Radio spectrum is one of the most scarce and valuable resources, like real estate, in modern
society. Competition for these scare resources is the basic drive for the telecommunication
industry.

In the most general sense, cognitive radio takes advantage of Moore’s law to capi-
talize on the computational power of the semiconductor industry [2]. When information
is accessible in the digital domain, the force behind this novel radio is computationally
intelligent algorithms. Machine learning and artificial intelligence have become the new
frontier toward this vision—the analogy of robotics. Converting information from the
analog domain to the digital domain plays a central role in this vision: revolutionary
compressed sensing is, therefore, critical to expanding the territory of this new system
paradigm. The agile, software defined radios that can perform according to algorithms
are basic building blocks. When each node is computationally intelligent, wireless net-
working faces a novel revolution. At the system level, functions such as cognitive radio,
cognitive radar and anti-jamming (even electronic warfare) have no fundamental differ-
ence and are unified into a single framework that requires interdisciplinary knowledge.
Radar and communications should be unified since both require dynamic spectrum access
(DSA)—the bottleneck. Spectrum agile/cognitive radio is a new paradigm in wireless
communications—a special application of the above general radio.

Cognitive radio [3] takes advantage of the waveform programmable hardware platform,
that is, so-called software-defined radio. Signal processing and machine learning are the
core of the whole radio, called cognitive core (engine). In its fundamental nature, cog-
nitive radio is a “mathematically-intensive” radio. It is policy based. The policy can be
reasoned through the cognitive engine. In some sense, the whole book is focused on the
fundamentals that are responsible for the cognitive engine. Here, our radio stands for a
generalized sense. The radios can be used for communication networks, or sensor net-
works. So-called cognitive radar [4] is even included in this sense [2]. Our whole book
can be viewed as a detailed spelling-out of Haykin’s vision [3,4]. Similar to Haykin, our
style is mathematical in its nature. At the time of writing, the IEEE 802.22 standard on
cognitive radio [5] was just released in July 2011. This book can be viewed as the mathe-
matical justification for some critical system concepts, such as spectrum sensing (random
matrices being the unifying theme), radio resource allocation (enabled by the convex
optimization engine), and game theory (understanding the competition and collaboration
of radio nodes in networking).

1.3 Spectrum Sensing Interface and Data Structures

Dynamic spectrum sharing in time and space is a fundamental system building block. An
intelligent wireless communication system will estimate or predict spectrum availability
and channel capacity, and adaptively reconfigure itself to maximum resource utilization
while addressing interference mitigation [6]. Cognitive radio [3] is an attempt in this
direction. It takes advantage of the waveform programmable hardware platform, that is,
so-called software-defined radio.

The interface and data structures are significant in the context of system concepts. For
example, we adopt the view of IEEE 1900.6 [6], as shown in Figure 1.1. Let us define
some basic terms:
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< Wireless Access and Sensing Infrastructure >

Storage/Computing

V CE/CE-DA

Cognitive Engine (CE)

Switch/Routing

CE/DA-S

CE/CE-DA

Sensor

Data Archive (DA)

Distributed Sensing

< Sensing Control Information |
[ Sensor Information and Sensing Information >
Figure 1.1 Sample topology of an IEEE 1900.6 distributed RF sensing system [6].

. Sensors. The sensors are sometimes standalone or can form a small network of
collaborating sensors that are inferring information about the available spectrum.

. Data archive. The sensors talk to a data archive (DA), which can be considered a
database where sensed information about spectrum occupancy is stored and provided.

. Cognitive engine. A cognitive engine (CE) is an entity utilizing cognitive capabilities,
including awareness, reasoning, solution making, and optimization for adaptive radio
control and implementation of spectrum access policy. This CE is analogous with the
human brain [3].

. Interface. We need an interface that sensors utilize to talk to each other; so do CEs and
DAs. It is necessary to change information between sensors, DAs and CEs, in order
to disseminate spectrum availability and reduce interference to incumbent spectrum
users.

. Distributed sensing. In distributed scenarios, CEs and DAs must interface with com-
munications devices; hence, generic but focused interface definitions are required.

. IEEE 1900.6. The 1IEEE 1900.6 develops the interface and data structures that enable
information flow among the various entities.

. Spectrum sensing. Spectrum sensing is a core technology for DSA networks; it
has recently been more and more intended not only as a stand-alone and real-time
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4 Cognitive Radio Communications and Networking

technology, but also a necessary tool to constantly update the geolocalized spectrum
map. Spectrum sensing is enabled by distributed mobile or fixed cognitive devices;
this architecture allows the devices to monitor the spectrum occupancy and the overall
level of interference with high precision and timeliness.

Spectrum sensing is fundamental to a cognitive radio. In some sense, a cognitive radio
includes two parts: (1) spectrum sensing; (2) the radio resources are “cognitively” allo-
cated using the available sensed spectrum information. In future evolved schemes, every
“object” connected to the Internet could provide sensing features. This approach is ori-
ented toward both the Internet of Things (IoT) and green radio communication paradigms
[6]. The approach is also to create dynamic wide-area maps of spectrum usage that are
being rapidly updated to optimize the overall electromagnetic emission and global inter-
ference. In this context, the jointly merging the notion of the cognitive radio network and
the Smart Grid is relevant. The latter is a huge network of power grids (many sensors,
mobile or fixed). The size of the network is many times bigger than the usual wireless
communications network. The idea of this merging was explored (for the first time in the
proposal of R. Qiu to the office of naval research (ONR)) [7].

Sensing related information basically consists of four categories:

1. Sensing information denotes any measurement information that can be obtained from
a spectrum sensor.

2. Sensing control denotes any information required to describe the status or configu-
ration, and to control or configure the data acquisition and RF sensing process of a
spectrum sensor.

3. Sensor information denotes the parameters used to describe the capabilities of a spec-
trum sensor.

4. Regulatory requirements are unique to the application area of DSA by CRs.

1.4 Mathematical Machinery

1.4.1 Convex Optimization

Optimization stems from human instinct. We always want to do things in the best way.
Relying on mathematics, this human instinct can be written down in terms of math-
ematical optimization. Practical problems can be formulated as optimization problems
with objective functions, constraint functions, and optimization variables. Mathematical
optimization attempts to minimize or maximize the objective function by systematically
selecting the values of optimization variables from a specific set defined by the constraint
functions.

Convex optimization is a subfield of mathematical optimization, which investigates the
problem of minimizing convex objective function based on a compact convex set. The
strength of convex optimization is if a local minimum exists, then it is a global minimum.
Hence, if a practical problem can be formulated as a convex optimization problem, then
global optimum can be obtained. That is one reason why convex optimization has recently
become popular.

The other reason for the popularity of convex optimization is that convex optimization
can be solved by the cutting plane method, ellipsoid method, subgradient method, or
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Introduction 5

interior point method. Thus the interior point method, which was originally developed
to solve linear programming problems, can also be used to solve convex optimization
problems [8]. By taking advantage of the interior point method, convex optimization
problems can be solved efficiently [8].

Convex optimization includes the well-known linear programming, second order cone
programming (SOCP), semidefinite programming (SDP), geometric programming, and so
on. Convex optimization is a powerful signal processing tool which can be exploited
anywhere, for example, system control, machine learning, operation research, logistics,
finance, management, telecommunication, and so on, due to the prevalence of convex
optimization problems in practice [8].

Besides convex optimization, mathematical optimization also includes integer pro-
gramming, combinatorial programming, nonlinear programming, fractional programming,
stochastic programming, robust programming, multi-objective optimization, and so on.

Unfortunately, there are still a large amount of nonconvex optimization problems in
the real-world. Relaxation is the common way to address the nonconvex optimization
issues. The nonconvex optimization problem is relaxed to the convex optimization prob-
lem. Based on the global optimum to the convex optimization problem, we can find
the sub-optimal solution to the original nonconvex optimization problem. The second
strategy to deal with the nonconvex optimization problems makes use of stochastic meth-
ods. Stochastic methods exploit random variables to get the solution to the optimization
problem. Stochastic methods do not need to explore the structures of objective functions
and constraints. Stochastic methods include simulated annealing, stochastic hill climbing,
genetic algorithm, ant colony optimization, particle swarm optimization, and so on.

When we enjoy the beauty and benefit of mathematical optimization, we cannot for-
get the contributors and the important researchers in mathematical optimization. Joseph
Louis Lagrange found a way to identify optima. Carl Friedrich Gauss and Isaac Newton
gave iterative methods to search for an optimum. In 1939, Leonid Kantorovich published
an article “Mathematical Methods of Organizing and Planning Production,” introducing
the concept and theory of linear programming. Then George Bernard Dantzig devel-
oped simplex method for linear programming in 1947 and John von Neumann invented
Duality Theorem for linear programming in the same year. Von Neumann’s algorithm
can be considered as the first interior-point method of linear programming. In 1984, a
new polynomial-time interior-point method for linear programming was introduced by
Narendra Karmarkar. Yurii Nesterov and Arkadi Nemirovski published a book Interior-
Point Polynomial Algorithms in Convex Programming in 1994. Generally, the interior-
point method is faster than the simplex method for the large-scale optimization problem.
Besides, David Luenberger, Stephen P. Boyd, Yinyu Ye, Lieven Vandenberghe, Dimitri
P. Bertsekas, and so on also made obvious contributions to mathematical optimization.

Mathematical optimization, especially convex optimization, has already greatly
improved the performance of the current telecommunication system. For the next gen-
eration wireless communication system, that is, cognitive radio network, mathematical
optimization will play a critical role. Cognitive radio network opens another stage for
the show of mathematical optimization. Optimization will be the core of the cognitive
engine. We can see the beauties of mathematical optimization in spectrum sensing,
spectrum sharing, coding and decoding, waveform diversity, beamforming, radio resource
management, cross-layer design, and security for cognitive radio network.
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1.4.2 Game Theory

Game theory is an important analysis tool in cognitive radio. Essentially, a game
involves multiple players, each of which makes individual decision and maximizes its
own reward. Since the reward of each players is dependent on the actions of other
players, the player must take the possible response of other players into account. All
players will be satisfied at the equilibrium point, at which any individual deviation from
the strategy only incurs reward loss. A natural question may arise, that is, why game
theory is needed in cognitive radio?

The essential reason for the necessity of game theory is the existence of conflict or
collaboration in cognitive radio. Some examples are given below:

e PUE attack: Primary user emulation (PUE) attack is a serious threat to the cognitive
radio network, in which the attacker pretends to be a primary user and sends interference
signals to scare secondary users away. Then, the secondary users need to evade the
PUE attack. If there are multiple channels to choose, the secondary users need to make
decisions on the channel use while the attacker needs to decide which channel to jam
(if it is unable to jam all channels), thus forming a game.

e Channel synchronization: The control channel is of key importance in cognitive radio.
Two secondary users need to convey control messages through the control channel. If
the control channel is also in the unlicensed band, it is subject to the interruption of
primary users. Hence, two secondary users need to collaborate to find a new control
channel if the current one is no longer available. Such a collaboration is also a game.

e Suspicious collaborator: Collaborative spectrum sensing can improve the performance
of spectrum sensing. However, the reports from a collaborator could be false if the
collaborator is actually a malicious one. Hence, the honest secondary user needs to
make a decision on whether trust the collaborator or not. Meanwhile, the attacker also
needs to decide what type of report to share with the honest secondary user such that
it can simultaneously spoof the honest user and disguise its goal.

The above examples concern zero-sum games, general sum games, Bayesian games
and stochastic games. In this book, we will explain how to analyze a game, particularly
the computation of Nash equilibrium, and apply the game theory to the above examples.

1.4.3 “Big Data” Modeled as Large Random Matrices

It turns out that random matrices are the unifying theme since “big data” can be modeled
as large random matrices. With data acquisition and storage now easy, today’s statisticians
often encounter datasets for which the sample size, n, and the number of variables, p, are
both large [9]: in the hundreds, thousands, millions and even billions in situations such
as web search problems. This phenomenon is so-called “big data.” The analysis of these
datasets using classical methods of multivariate statistical analysis requires some care. In
the context of wireless communications, networks become more and more dense. Spectrum
sensing in cognitive radio collects much bigger datasets than the traditional multiple
input multiple output (MIMO)-orthogonal frequency-division multiplexing (OFDM), and
code division multiple access (CDMA) systems. For example, for a duration of 4.85
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Table 1.1 Analogy of sensors and particles

Particles Sensors Random Matrices
Total energy Information ~ Degrees of freedom
Energy levels Eigenvalues

milliseconds, a data record (digital TV) consisting of more than 10° sample points is
available for data processing. We can divide this long data record into vectors consisting
of only p sample points. A number of sensors n can cooperate for spectrum sensing.
The analogy of sensors and particles is shown in Table 1.1. Alternatively, we can view
n - p = 10° as using only one sensor to record a long data record. Thus we have p = 100
and n = 1,000 for the current example. In this example, both n and p are large and in
the same order of magnitude.
Let X;; be i.i.d. standard normal variables of p x n matrix X

X1 Xpp oo X,
Xy Xn X

X=| . S : (1.1)
Xpl sz Xpn

pxn
The sample covariance matrix is defined as

1 & ! 1

S, =[-) Xu.X, = -XX", 1.2

J=1

where n vector samples of a p-dimensional zero-mean random vector with the population

(or true covariance) matrix I and H stands for conjugate transpose (Hermitian) of a matrix.
The classical limit theorem is no longer suitable for dealing with large dimensional

data analysis. The classical methods make an implicit assumption that p is fixed and n

is growing infinitely large,

p fixed, n — oo. (1.3)

This asymptotic assumption (1.3) was consistent with the practice of statistics when these
ideas were developed, since investigation of datasets with a large number of variables
was very difficult. A better theoretical framework—that is, large p—for modern datasets,
however, is the assumption of the so-called “large n, large p” asymptotics

p—>oo,n—>oo,but£—>c>0, (1.4)
n

where ¢ is a positive constant.

There is a large body of work concerned with the limiting behavior of the eigenvalues of
a sample covariance matrix S, when p and n both go to oo (1.4). A fundamental result is
the Marchenko-Pastur equation, which relates the asymptotic behavior of the eigenvalues
of the sample covariance matrix to that of the population covariance in the “large n, large
p” asymptotic setting. We must change points of view: from vectors to measures.
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8 Cognitive Radio Communications and Networking

One of the first problems to tackle is to find a mathematically efficient way to express
the limit of a vector whose size grows to oco. (Recall that there are p eigenvalues to
estimate in our problem and p goes to 0o.) A fairly natural way to do so is to associate to
any vector a probability measure. More explicitly, suppose we have a vector (y, ..., y,)
in R”. We can associate to it the following measure:

1 P
dG, (x) = 5 > 8,0,
i=1

where §, is the Dirac delta function at x. G, is thus a measure with p point masses of
equal weight, one at each of the coordinates of the vector. The change of focus from vector
to measure implies a change of focus in the notion of convergence—weak convergence
of probability measure.

Following [10], we divide available techniques into three categories: (1) Moment
approach; (2) Stieltjes transform; (3) Free probability. Applications for these basic tech-
niques will be covered.

The Stieltjes transform is a convenient and very powerful tool in the study of the
convergence of spectral distribution of matrices (or operators), just as the characteristic
function of a probability distribution is a powerful tool for central limit theorems. More
important, there is a simple connection between the Stieltjes transform of the spectral
distribution of a matrix and its eigenvalues. By definition, the Stieltjes transform of a
measure G on R is defined as

1
mG(Z) = / x—_ZdG(x) for z € (C+,

where C* £ CN{z:Im(z) >0} is the set of complex numbers with strictly positive
imaginary part. The Stieltjes transform is sometimes referred to as Cauchy or Abel-
Stieltjes transform. Good references on Stieltjes transforms include [11] and [12].

The remarkable phenomenon is that the spectral distribution of the sample covariance
matrix is asymptotically nonrandom. Furthermore, it is fully characterized by the true
population spectral distribution, through the Marchenko-Pastur equation. The knowledge
of the limiting distribution of the eigenvalues in the population, X, fully characterizes the
limiting behavior of the eigenvalues of the sample covariance matrix, S.

In the market for wireless communications, an excellent book by Couillet and Debbah
(2011) [12] has just appeared, in addition to Tulino and Verdu (2004) [13]. Our aim in
this book is to introduce the relevance of random matrix theory in the context of cognitive
radio, in particular spectrum sensing. Our treatment is more practical than in those two
books. Although some theorems are also compiled in our book, no proofs are given. We
emphasize how to apply the theory through a large number of examples. It is our belief
that future engineers must be familiar with random matrix methods since “big data” is
the dominant theme across layers of the wireless network.

“One of the useful features, especially of the large dimensional random matrix theory
approach, is its ability to predict the behavior of the empirical eigenvalue distribution of
products and sums of matrices. The results are striking in terms of accuracy compared to
simulations with reasonable matrix sizes.” [12]
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Introduction 9

“Indeed, engineering education programs of the twentieth century were mostly focused
on the Fourier transform theory due to the omnipresence of frequency spectrum. The
twenty-first century engineers know by now that space is the next frontier due to the
omnipresence of spatial modes, which refocuses the program towards a Stietjes transform
theory.” [12]

In the eyes of engineers, Bai and Silverstein (2010) [14], Hiai and Petz (2000) [11]
and Forrester (2010) [15] are most readable among the mathematical literature. Anderson
(2010) is also accessible [16] and Girko (1998) is comprehensive [17]. One excellent
survey [10] is a good starting point for the massive literature. It is still the best survey.
Two surveys [18] and [19] are very readable.

In the early 1980s, major contributions on the existence of the limiting spectral distri-
bution (LSD) were made. In recent years, research on random matrix theory has turned
toward second-order limiting theorems, such as the central limit theorem for linear spectral
statistics, the limiting distributions of spectral spacings, and extreme eigenvalues.

Many applied problems require an estimate of a covariance matrix and/or of its inverse,
where the matrix dimension is large compared to the sample size [20]. In such situations,
the usual estimator, the sample covariance matrix, is known to perform poorly. When
the matrix dimension p is larger than the number of observations available, the sample
covariance matrix is not even invertible. When the ratio p/n is less than one but not
negligible, the sample covariance matrix is invertible but numerically ill-conditioned,
which means that inverting it amplifies estimation error dramatically. For large p, it is
difficult to find enough observations to make p/n negligible, and therefore it is important
to develop a well-conditioned estimator for large-dimensional covariance matrices such
as in [20].

1.4.3.1 Why is Random Matrix Theory So Successful?

Random matrix theory is very successful in nuclear physics [21]. Here are several reasons:

1. Flexibility. It allows us to build in extra global symmetries, such as time reversal,
spin, chiral symmetry, etc., treating several matrices—while maintaining its exact
resolvability for all correlation functions of eigenvalues.

2. Universality. Random matrix theory can often be used as the simplest, solvable mode
that captures the essential degrees of freedom of the theory. The role of the normal dis-
tribution in the classical limit theorem is played by the distributions arising in random
matrix theory (Tracy-Widom distribution, sine distribution,...) in noncommutative
settings that may or may not involve random matrices.

3. Predictivity. The scale or physical coupling can be extracted very efficiently by fitting
data to random matrix theory’s predictions.

4. Rich mathematical structure. This comes from the many facets of the large-n limit.
The multiple connections of random matrix theory to various areas of mathematics
make it an ideal bridge between otherwise almost unrelated fields (probability and
analysis, algebra, algebraic geometry, differential systems, combinatorics). More gen-
erally, these developed techniques are fluent enough to be applied to other branches
of sciences.
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10 Cognitive Radio Communications and Networking

1.5 Sample Covariance Matrix

The study of sample covariance matrix is fundamental in multivariate analysis. With
contemporary data, the matrix is often large, with number of variables comparable to
sample size (so-called “big data”) [22]. In this setting, relatively little is known about
the distribution of the largest eigenvalue, or principal component variance. A surprise
of the random matrix theory, the domain of mathematical physics and probability, is that
the results seem to give useful information about principal components for quite small
values of n and p.

Let X, defined in (1.1), be an p x n data matrix. Typically, one thinks of n observa-
tions or cases X; of a p-dimensional column vector which has covariance matrix X. For
definiteness, assume that rows x; are independent Gaussian A(0, X). In particular, the
mean has been subtracted out. If we also do not worry about dividing by n, we can call
XX a sample covariance matrix defined in (1.2). Under Gaussian assumption, XX* is
said to have a Wishart distribution W(n, X). If ¥ =1, the “null” case, we call it a white
Wishart, in analogy with time series setting where a white spectrum is one with the same
variance at all frequencies.

Large sample work in multivariate analysis has traditionally assumed that n/p, the
number of observations per variable, is large. Today, it is common for p to be large or
even huge, and so n/p may be moderate to small and in extreme cases less than one.

The eigenvalue and eigenvector decomposition of the sample covariance matrix

1
S=-XX? =ULUY =) Luu”,
n IZ lulul

with eigenvalues in the diagonal matrix L and orthogonal eigenvectors collected as
columns of U. There is a corresponding population (or true) covariance matrix

Y =YTAY?,

with eigenvalues A; and orthogonal eigenvectors collected as columns of Y.

A basic phenomenon is that the same eigenvalues /; are more spread out than the
population A;. This effect is strongest in the null case when all population eigenvalues
are the same.

Data matrices with complex Gaussian entries are of interest in statistics, signal pro-
cessing and wireless communications. Suppose that X = (X;) ., with

1
ReX;;, ImX,;; ~ N, 5),

ij>

all independently of one another. The matrix S = XX’ has the complex Wishart distri-
bution, and its (real) eigenvalues are ordered [, > --- >/ e
Define u,, and o,, as

Hpp = (\/ﬁ + \/F)z’

o= (v (G5 + %)1/3.

Assume that n = n(p) increases with p so that both ,, and o, are increasing in p.
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Theorem 1.1 (Johansson (2000) [23]) Under the forementioned conditions, if n/p —
c > 1, then

where D stands for convergence in distribution.

The center and scale are essentially the same as the real case, but the limit distribution is

F,(s) = exp (—/ (x —s) qz(x)dx) ,
where ¢ is still the Painleve II function defined as

q"(x) = xq(x) +2¢°(x),

q(x) ~ Ai(x) as x - +o0

and Ai(x) denotes the Airy function. This distribution was found by Tracy and Widom
[24,25] as the limiting law of the largest eigenvalue of an p by n Gaussian symmetric
matrix (Wigner matrix).

Simulations show the approximation to be informative for n and p as small as 5.

1.6 Large Sample Covariance Matrices of Spiked
Population Models

A spiked population model, in which all the population eigenvalues are one except for
a few fixed eigenvalues, has been extensively studied [26,27]. In many examples, a few
eigenvalues of the sample covariance matrix are separated from the rest of the eigenval-
ues, the latter being packed together as in the support of the Marchenko-Pastur density.
Examples are so common in speech recognition, mathematical finance, wireless commu-
nications, physics of mixture, and data analysis and statistical learning.

The simplest non-null case would be the population covariance ¥ is a finite rank
perturbation of a multiple of the identity matrix I. In other words, we say

HO:ZZI,
H,: X =A+1, A = finite rank

As mentioned in the above, Johnstone (2001) [22] derived the asymptotic distribution
for the largest sample eigenvalue under the setting of an identity matrix I under Gaus-
sianity. Soshnikov (2002) proved the distributional limits under weaker assumptions, in
addition to deriving distributional limits of the k-th largest eigenvalue, for fixed but
arbitrary k [28].

A few of the sample eigenvalues under H, have limiting behavior that is different from
‘H, when the covariance is identity matrix I.

A crucial aspect is the discovery of a phase transition phenomenon. Simply put, if the
non-unit eigenvalues are close to one, then their sample versions will behave in roughly the
same way as if the true covariance were the identity. However, when the true eigenvalues
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12 Cognitive Radio Communications and Networking

are larger than 1 + /n/p, the sample eigenvalues have a different asymptotic property.
The eigenvectors also undergo a phase transition. By performing a natural decomposition
of the sample eigenvectors into “signal” and “noise” parts, it is shown that when /; > 1 4
/n/p, the “signal” part of the eigenvectors is asymptotically normal [27].

1.7 Random Matrices and Noncommutative Random Variables

Random matrices are noncommutative random variables [11], with respect to the
expectation

L
) =< > E(Hy),
i-1

foran N x N random matrix H, where [E represents the expectation of a classical random
variable. It is a form of the Wigner theorem that

1 2k
_L,N(HZI((N))—) m( k ),N—)OO
if the N x N real symmetric random matrix H(N) has independent identical Gaussian
entries (0, 1/N) so that
oy (H* (V) = 1.

The semicircle law is the limiting eigenvalue distribution density of H(N). It is also
the limiting law of the free central limit. The reason why this is so was made clear by
Voiculescu. Let

X, (N), X, (N),....Xy (N),
be independent random matrices with the same distribution as X(N). It follows from the
properties of Gaussians that the distribution of the random matrix
X NM+X, (V) +...+ Xy (N)
VN

is the same as X(N). The convergence in moments to the semicircle law is understood
in the sense that

X, (N), X, (N), ..., Xy (N)
are in free relation. The conditions for the free relation include
oy ([XT (V) = 7y (X (N)]) 7 ([X5 (V) — 7 (X, (W))]) =0,
which is equivalently expressed as
Ty (X (V) X5 (V)]) = 7y (XF (V) 7y (X (V)

Independent symmetric Gaussian matrices and independent Haar distributed unitary
matrices are asymptotically free. The notion of asymptotic freeness may serve as a bridge
connecting random matrix theory with free probability theory.
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1.8 Principal Component Analysis

Every 20-30 years, principal component analysis (PCA) is reinvented with slight revision.
It has many different names. We model the communication signal or noise as random field.
The Karhunen-Loeve decomposition (KLD) is also known as PCA, the Proper Orthogonal
Decomposition (POD), and Empirical Orthogonal Function (EOF). Its kernel version, that
is, Kernel PCA, is very popular. We apply PCA to spectrum sensing.

PCA is a standard tool for dimensionality reduction. PCA finds orthogonal directions
with maximal variance of the data and allows its low-dimensional representation by
linear projections onto these directions. This dimensionality reduction is a typical pre-
processing setup. A spiked covariance model [29—32] implies that the underlying data is
low-dimensional but each sample is corrupted by additive Gaussian noise.

1.9 Generalized Likelihood Ratio Test (GLRT)

The GLRT is the culmination of the theoretical development for spectrum sensing. Its
kernel version, Kernel GLRT, performs well, in contrast to Kernel PCA.

Both GLRT and PCA (its kernel version Kernel PCA) use sample covariance matrices
as their starting points. As a result, large-dimensional random matrices are natural objects
of mathematics to study.

1.10 Bregman Divergence for Matrix Nearness

When dealing with random matrices, we still need some measure of distance between
them. Matrix nearness problems ask for the distance from a given matrix to the nearest
matrix with a certain property. The use of a Bregman divergence in place of a matrix
norm is, for example, proposed by Dhillon and Tropp (2007) [33]. Bregman divergence is
equivalent to quantum information [34, p. 203]. Let C is a convex set in a Banach space.
For a smooth functional ¥ : C — R,

Dy (X, Y) 2 ¥ (X)— W (Y) — tlirilot_l WY +:rX-Y)) —¥(Y))

is called the Bregman divergence of X, Y € C. Now let C be the set of density matrices
and let

W (p) =Tr plogp.

A density matrix is a positive definite matrix whose trace equals one. It can be shown
that the Bregman divergence is the quantum relative entropy which is the basis for mea-
suring quantum information. Problems of Bregman divergence can be formulated in terms
of convex optimization. The semicircle law, free (matrix-valued) random variables, and
quantum entropy are related [11], when we deal with “big data.”

Functions of matrices are often needed in studying many problems in this book, for
example, in spectrum sensing. The Matrix Function Toolbox contains MATLAB imple-
mentations to calculate functions of matrices [35]. It is available from http://www.maths.
manchester.ac.uk/~higham/mftoolbox/
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2

Spectrum Sensing: Basic
Techniques

2.1 Challenges

Spectrum sensing in a cognitive radio is practically challenging, as shown in Table 2.2
[36,37].

2.2 Energy Detection: No Prior Information about Deterministic
or Stochastic Signal

Energy detection is the simplest spectrum sensing technique. It is a blind technique in that
no prior information about the signal is required. It simply treats the primary signal as
noise and decides on the presence or absence of the primary signal based on the energy
of the observed signal. It does not involve complicated signal processing and has low
complexity. In practice, energy detection is especially suitable for wideband spectrum
sensing. The simultaneous sensing of multiple subbands can be realized by scanning the
received wideband signal.

Two stages of sensing are desirable. The first stage uses the simplest energy detection.
The second stage uses advanced techniques.

We follow [38] and [39-42] for the development below. Although the process is for
band-pass, in general, one can still deal with its low-pass equivalent form and eventually
translate it back to its band-pass type [43]. Besides, it has been verified [38] that both
low-pass and band-pass processes are equivalent from the decision statistics perspective
which is our main concern. Therefore, for convenience, we only address the problem for
a low-pass process, following [41,42].

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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16 Cognitive Radio Communications and Networking

Table 2.1 Receiver parameters for 802.22 WRAN

Parameter Analog TV Digital TV Wireless microphone
Bandwidth 6 MHz 6 MHz 200kHz
Probability of detection 0.9 0.9 0.9
Probability of false alarm 0.1 0.1 0.1

Channel detection time <28 <2s <2s
Incumbent detection threshold —94 dBm —116 dBm —106 dBm
SNR 1dB —21dB —12dB

“Receiver noise figure of 11 dB is assumed in IEEE 802.11 Working Group.

Table 2.2 Challenges for spectrum sensing

Practical challenges Consequences Comments

Very strict sensing See Table 2.1 To avoid “hidden node”
requirements problem

Unknown propagation channel Make coherent detection To relieve the primary user
and nonsynchronization unreliable from the burden

Noise/interference uncertainty Very difficult to estimate Change with time and location

their power

2.2.1 Detection in White Noise: Lowpass Case
The detection is a test of the following hypotheses:

1. Hy: The input is noise alone:
(@ y(1) =n()
(b) E[n(t)] =0
(c) noise spectral density = N, (two-sided)
(d) noise bandwidth = W Hz
2. 'H,: The input is signal plus noise

(a) y() =s(t) +n()
(b) Els(t) +n()] =s()

The output of the integrator is denoted by Y. We concentrate on a particular interval,
say, (0, T), and take the test statistic as Y or any quantity monotonic with Y. We shall
find it convenient to express the false alarm and detection probabilities using the related

uantit
q y ’

.1 )
Y =— [ y(t)dt. (2.1)

The choice of T as the sampling instant is a matter of convenience; any interval of
duration will serve.
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Spectrum Sensing: Basic Techniques 17

It is known that a sample function, of duration 7, of a process which has a bandwidth
W (negligible outside this band) is described approximately by a set of sample values
2TW in number. In the case of low-pass processes, the values are obtained by sampling
the processes at times 1/2W apart. In the case of relatively narrowband band-pass process,
the values are obtained from the in-phase and quadrature modulation components sampled
at times 1/ W apart.

With an appropriate choice of time origin, we may express each sample of noise
as [44]

o0

n(t)= Y n;sincQWr — i) (2.2)

i=—00

i
n,=n (W) . 2.3)

Clearly, each n; is a Gaussian random variable with zero mean and with the same
variance aiz, which is the variance of n(z); that is,

where sinc(x) = sinwx/mx, and

of =2N,W, alli. (2.4)

Using the fact that

o0
[ sinc@Wr —i)sinc@Wt — k)dt = 57, i =k 2.5)

=0, i#k,

—00

we may write

o0 1 o0
2 _ 2
[ K (dt = 5 i_} ocj n. (2.6)

Over the interval (0, T'), n(¢) may be approximated by a finite sum of 27W terms, as
follows:

2TW
n(t) =y nsinc@Wt—i), 0<t<T. (2.7)
i=1
Similarly, the energy in a sample of duration 7" is approximated by 27'W terms of the
right side of (2.6):

2TW

T
1
2(Hdt = — 2, 2.8
/On() 2Wi:1n, (2.8)

More rigor can be achieved by using the Karhunen-Loeve expansion (also called trans-
form). Equation (2.8) may be considered as an approximation, valid for large T, after
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18 Cognitive Radio Communications and Networking

substituting (2.7) into the left-hand side of (2.8), or by using (2.39) and the statement in
Section 2.2.5 to justify taking only 27W terms of (2.6).

We can see that (2.8) is NOY, with ¥ here being the test statistic under hypothesis H,,.
Let us write

n.

P g 2.9

= b (2.9)
2TW

7= g (2.10)
i=1

Thus, Y is the sum of the squares of 27 W Gaussian random variables, each with zero
mean and unit variance. Y is said to have a chi-square distribution with 27 W degrees of
freedom, for which extensive tables exist [45—-47].

Now consider the case H; where the input y(¢) has the signal s(¢) present. The segment
of signal duration 7" may be represented by a finite sum of 27 W terms,

2TW
s() = Z s; sinc2Wt—1), 0<t<T, (2.11)

i=1
where
s; = s /2W). (2.12)

By following the reasoning above, we can approximate the signal energy in the interval
(0, T) by

T | ,
/O s ndr = - izz;s,. (2.13)
Define the coefficients by
B = Si/\/WNo- (2.14)
Then
1 2TW
F@f s2()dt = Z,B . (2.15)

Using (2.11) and (2.2), the total input y(¢) with the signal present can be expressed as:

2TW

Y(t) =Y (& + 5)sinc@QWr —i). (2.16)

i=l
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2.2.2 Time-Domain Representation of the Decision Statistic

The energy of y(¢) in the interval (0, 7') is approximated by

T 1 2TW
2 2
1dt = — 57 2.17
/Oyo 2Wi:Z]m,ﬂ,) (2.17)
Under H,, the test statistic ¥ is

. 1 T 2TW
Y= —/ Voyde =3 &+ B (2.18)

No Jo i=I

The sum in (2.18) is said to have a noncentral chi-square distribution with 27 W degrees
of freedom and a noncentral parameter y given by

N e = £ (2.19)
= P S = — .
r=2 A=y, N

where y, the ratio of signal energy to noise spectral density, provides a convenient defi-
nition of signal-to-noise ratio (SNR).

2.2.3 Spectral Representation of the Decision Statistic

The spectrum component on each spectrum subband of interest is obtained from the fast
Fourier transform (FFT) of the sampled received signal. The test statistic of the energy
detection, within M consecutive segments, is obtained as the observed energy summation,

M
> W(m)l?, H,
Y = =1 (2.20)

Mm
Z;l [S(m) + W(m)|*, H,

where S(m) and W (m) denote the spectral components of the received primary signal and
the white noise on the subband of interest in the m-th segment, respectively. Interference
is ignored in (2.20), to simplify analysis. The decision of the energy detection regarding
the subband of interest is given by

) {HW r=4 (2.21)

0= H, Y <1’

where the threshold A is chosen to satisfy a target false-alarm probability.
Without loss of generality, we assume the noise W (m) is white complex Gaussian with
zero mean and variance two. The SNR of the received primary signal, within M segments,
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is defined as
1 M
=— S(m)|>. 2.22
y ZM;an (2.22)

The statistic of the energy detection Y follows a central chi-square distribution with
2M degrees of freedom under H,. Under H,, the Y follows a noncentral chi-square
distribution with 2M degrees of freedom and a noncentrality parameter

M
=y _|Sm)*=2My. (2.23)
m=1
In other words, )
Xom»  Ho
Fr() ~ { o (2.24)
X2M(M)’ Hl

where f,(Y) denotes the probability density function (PDF) of Y, and X22M and XZZM(M)
denote a central and noncentral chi-square distribution, respectively.
The PDF of Y can then be written as

Y

2M1_l(u)yu—le—7’ 7-[0
fr) = NG . (2.25)
2(%) e 2 I, (V2yy), H,

where I'(-) is the gamma function and /,(-) is the v—order modified Bessel function of
the first kind [45, 48].

2.2.4 Detection and False Alarm Probabilities over AWGN Channels

The probability of detection and false-alarm can be defined as
P, =P >AH,)) (2.26)
Py = P(Y > AlH,), (2.27)

where A is the decision threshold. Using (2.25) to evaluate (2.27) yields the exact closed
form expression

(M, %)

where I'(+, -) is the upper incomplete gamma function [45,48].
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Given the target false-alarm probability, the threshold A can be uniquely determined,
using (2.28). Once A is determined, the detection probability can be obtained by

+00
PD=/ P(Y > 2Hy ) £, (0dp
0

. (2.29)

= Oy (Vi VN £ (wd .,

0
where -
@ ))2 ay”
0y la,b)=e > (5) ntab)
n=0 (2.30)

00 a2 +x2
=/b X exp [—T} Iy(x)dx

is the generalized Marcum Q-function and the PDF of n. Making use of [43, Equation
(2.1-124)], the cumulative distribution function (CDF) of Y can be evaluated (for an
even number of degrees of freedom which is 2u in our case) in a closed form as

Fr()=1-0,2y, ), (2.31)
where Q,(a, b) is the generalized Marcum Q-function [49]. Hence,
Py = 0,2y, V). (2.32)

2.2.5 Expansion of Random Process in Orthonormal Series with
Uncorrelated Coefficients: The Karhunen-Loeve Expansion

Representation of random process is the foundation for signal processing. Stationary and
nonstationary processes require different treatment, as shown in Table 2.3.

The Karhunen-Loeve expansion [50-55] is used to show that 27 W terms suffice to
approximate the energy in a finite duration sample of a band-limited process with a
flat power density spectrum. This demonstration is more rigorous than that using the
sampling theorem. This result is especially useful for ultra-wideband (UWB) systems. For

Table 2.3 Mathematical representation for random process

Random process Stationary process Nonstationary process
Continuous-time Fourier Transform Karhunen-Loeve Transform
Discrete-time Discrete Fourier Transform Discrete Karhunen-Loeve
(DFT) Transform (DKLT)
Fast algorithms Fast Fourier Transform (FFT) Singular Value Decomposition
(SVD)
Algorithms complexity O(N log,(N)) O(N?)*

“Fast algorithms.

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



22 Cognitive Radio Communications and Networking

a narrowband example, W = 1 kHz and T = 5 ms, thus 2T W = 10. For a UWB example,
W =1GHz and T = 5ns, thus 2T W = 10. Rigorous treatment of signal detection is
given in [52,53]. The 2T W theorem [56—66] is critical to estimation and detection,
optics, quantum mechanics, laser modes, etc.—to name a few [61]. For transient, UWB
signals, nonstationary random processes are met: Fourier analysis is insufficient. Van Tree
(1968) [54] gives a very readable treatment of this problem.

Consider a zero-mean, wide-sense stationary, Gaussian random process n(t) with a
flat power density spectrum extending over the frequency interval (—W, W). Let its
autocorrelation function R(7) be given by

R(t) = sinc(2Wr1), (2.33)

where sinc(x) = sin(rx) /7w x. The process n(¢) may be represented in the interval (0, 7')
by the expansion of orthonormal functions ¢, (¢):

o0
n(t) =y ke,0), (2.34)
i=1
where A, is given by
T
A= / n(t)e;(t)dt, (2.35)
and the ¢, (r) are the eigenfunctions of t%e integral equation
T
/ R(t — 1)¢;()dt = k;9;(2), (2.36)

0

where «; are the eigenvalues of the equation. The expansion coefficients A; are uncor-
related: statistically independent Gaussian random variables. It is in this case that the
expansion finds its most important application [54]. The form of (2.36) is reminiscent of
the matrix equation

rp =R, 0, (2.37)

where R,, is a symmetric, nonnegative definite matrix. This is the case when the discrete-
time solution of (2.36) is attempted.

The number of terms in (2.34) which constitute a sufficiently good approximation
with a finite number of terms depends on how rapidly the eigenvalues decrease in value
after a certain index. The eigenvalues of (2.36) are the prolate spheroidal wave functions
considered in [61-64, 66]. The cited sources show that the eigenvalues drop off rapidly
after 2T W terms (except for TW = 1). Table 2.4 illustrates this rapid drop-off [54].
Therefore, we approximate (2.34) as

2TW

n(t) ~ Y ke, (t). (2.38)

i=1

The approximation (2.38) is more satisfactory than (2.7) based on sampling functions,
because the rapidity of drop-off of the terms can be judged by how rapidly the eigenvalues
A; drop off after 2T W terms.
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Table 2.4 Eigenvalues for a
bandlimited spectrum

2TW =2.55 2TW =5.10
P
A, = 0.996— — 1.0
2w 2W
P
Ay =0.912— A =0.999—
2 2W 2 W
= 05191 — 09972
3T aw - 2W

P
Ay = 0.110— A :0.961—
4 2W 4 2W

A —0009P A —0748P
5 — ¥ oW 5— ¥

2w
hg = 0.0004— hg = 0321
6T T ow 6T T aw
Ay = 0.061—

T aw

P

Ay = 0.006-—

2w

P
Ay = 0.0004 —
2w

Since the ¢, (¢) are orthonormal, the energy of n(¢) in the interval (0, 7') is, using (2.38),

2TW

T
/ n*(t)dt ~ Z)@ (2.39)

Since the process is Gaussian, then the A; are Gaussian. The variance of A; is «; and
these are nearly the same for i < 27 W. Thus, the energy in the finite duration sample
of n(t) is the sum of 2T W squares of zero mean Gaussian variates all having the same
variance. With the appropriate normalization, we are led to the chi-square distribution.

Definition [54]. A Gaussian white noise is a Gaussian process whose covariance func-
tion is 028(t — u). It may be decomposed over the interval [0, 7] by using any set of
orthonormal functions ¢, (¢). The coefficients along each coordinate function are statisti-

cally independent Gaussian variables with equal variance o2

2.3 Spectrum Sensing Exploiting Second-Order Statistics
2.3.1 Signal Detection Formulation

There are two different frameworks regarding how to formulate spectrum sensing: (1)
Signal Detection; (2) Signal Classification.

The problem is to decide whether the primary signal-—deterministic or random
process—is present or not from the observed signals. It can be formulated as the
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following two hypotheses:

(2.40)

[ i+we. H
Y = {x(t) b +w@), H,

where y(#) is the received signal at the CR user, x(¢) = s(¢) * h(t) with s(¢) the primary
signal and /(¢) the channel impulse response, i (¢) is interference, and w(t) is the additive
Gaussian noise (AWGN). In (2.40), H,, and H, denote the hypotheses corresponding to
the absence and presence of the primary signal, respectively. Thus from the observation
y(t), the CR needs to decide between H,, and 7. The assumption is that the signal x ()
is independent of the noise n(7) and interference i (z).

When the signal waveform is deterministically known exactly, the sensing filter is
matched to the waveform of the signal. A more realistic picture is that the signal is a
stochastic signal with second order statistics that will be exploited for detection.

2.3.2 Wide-Sense Stationary Stochastic Process: Continuous-Time

Due to unknown propagation and nonsynchronization, coherent detection is infeasible. A
good model is that the received signal x () in (2.40) is a stochastic process—wide-sense
stationary (WSS) or not, but independent of the noise w(#) and the interference i(¢). The
noise w(t¢) and the interference i(¢) are also independent. As a result, it follows that

R (1) = R;(t) + R, (1), Hy (241
Yy o R, (1) +R;(x)+R,,(t), H, .

The covariance function R ,(7) is defined as R ;(7) = ffooo f@) f(+ t)dt. To gain
insight, neglecting the interference leads to

— Rw w (T ) ’ 7_(0
R, (7) = { R.(0)+ R, (1), H, (2.42)
For the white Gaussian noise, R, (1) = %8(0 where N, is the two-sided power
spectrum density (in a unit of watts per Hz). Or,

Mos(ry, H
R, (v) = S 0 (2.43)
R, (v)+ Fé(x), H,.
In the spectrum domain, it follows that
No
S, (f) = e NHO (2.44)
Sxx (f) + 70’ H]

where S,,(f) and S, (f) are the Fourier transform of R, () and R, (7). Unfortunately,
for low SNR case, S, (f) is much smaller than that of noise floor N,/2. Practically, we
cannot do spectrum sensing by visualizing the spectrum shape S, (f)—this is the most
powerful approach in most times.
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2.3.3 Nonstationary Stochastic Process: Continuous-Time

For the model of (2.40) y(t) = x(¢t) +n(t), 0 <t < T where n(t) is white Gaussian.
Here the x(¢) can be a nonstationary stochastic process. Then it follows that [54, p. 201,
Equation (143)]

C,(t,5) = %5(: — )+ C(t,9). (2.45)

The Karhunen-Loeve expansion gives [54, p. 181, Equation (50)]

C.(t,s) = Zkiqﬁi(t)qbi(s), 0<t,s<0. (2.46)

i=1

The Gaussian process implies that [54, p. 198, Equation (128)]

8t—s5)=) ¢;"p;(s). 0<t,s<T. (2.47)

i=1
Combining (2.45), (2.46), and (2.47) yields

o0

N,

Ct5)=Y (70 + xi>¢i(r)¢i<s), 0<rs<T. (2.48)
i=1

where the white Gaussian noise uniformly disturbs the eigenvalues across all the degrees

of freedom. When x(#) has the bandlimited spectrum

P
Sx(w)={2_’ fl=W (2.49)

it follows [54, p. 192] that

_ sin2x W(t — )
Cx(f,S) = Pm (250)

The covariance of the y(z) is

_ M _ sin2z W(t—s)
Cyt,s) = 8t —5) + P50
2TW+1

= 2 (2+1)0066), 0=ns=T,

i=1

2.51)

where the eigenfunctions and the eigenvalues are given by [54, p. 192]

_ T2 sin2agW(t —s)

When 2TW = 2.55 and 2T W = 5.1, Table 2.4 gives the eigenvalues.
Example 27W = 2.55.
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Considering the first two eigenvalues: A, = 0.996% and A, = 0.912%. Equation
(2.51) becomes

N, P N,
C,(t,5) = <7 + 0-996W) & (D) (s) + ( +0. 992 )d’z(t)d)z(S)

2TW+1
+-zj( ) 6,(0)9,(5). (2.53)

For the first term, the SNR defined as y, = W o’ which is as low as —21dB. The first

term in (2.53) becomes (1 + 0. 996)/0) 0, (), (s) or, appr0x1mately, 5 ¢ (1), (s) since
Vo = 0.01. Similarly, the second term in (2.53) becomes (1 + 0. 992y0) 0, (1), (s) or
2 ¢2(f)¢2(5)-

We have three practical challenges: (1) SNR y, is as low as —21dB; (2) the signal
power P is changing over time; (3) the noise power is o,>. There is uncertain noise power,
implying that o2 is a function of time.

As a result of the above reasons, the SNR y = 2W 5 1s uncertain over time. So the SNR
is not the best performance criterion sometimes. Ideally, the criterion should be invariant
to the SNR terms in (2.53). The normalized correlation coefficient, fortunately, satisfies
this condition. The normalized correlation coefficient is defined as

“ F(g)dt
p(fg) = Joo f80) , (2.54)

\/ Jo f 2(t)clt\/ Jo g2t

which is 0 < |p| <1 and invariant to rotation and dilation of the functions f(¢) and
g(t). For the case of low SNR in (2.51), by neglecting the signal eigenvalue term A; and
replacing N,/2 with the uncertain noise variance o it follows that

2TW+1
C,(t,5) =0 [(b (D@1 (5) + () Py(s) + Z ¢: () ; (S)}

2TW A1 2,55
=0,12|: ; ¢i(t)¢[(s)i| (39

= o2C (t,s), ifA =1 forl<i<2TW+1

where the third line of the equation is valid for some special cases. According to (2.55),
the C, (¢, s) can be used as a feature for similarity measurement (defined in (2.54)) that
is independent of the noise power term o2. This feature extraction has low computational
cost since no eigenfunction is explicitly required.

In sum, the sensing filter measures the similarity of the received random signal, relative
to the first eigenfunction (first feature) and the second eigenfunction (second feature) of
the covariance function C, (¢, s) defined in (2.40). Calculation of low-order eigenfunctions
may be more accurate numerically. We can first extract the eigenfunctions of the covari-
ance function C (¢, s) as the features. Then the similarity function of (2.54) is used for
classification. When attempting recognition, the unclassified image (or waveform vector)
is compared in turn to all of the database images, returning a vector of matching scores
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(one per feature) computed through normalized cross-correlation defined as (2.54). The
unknown person is then classified as the one giving the highest cumulative score [67].

2.3.3.1 Flat Fading Signal

Let us consider the model of (2.40): y(t) = x(¢) + n(t), where x(¢) is a flat fading sig-
nal. According to (2.55), the C, (¢, s) can be used as the feature for spectrum sensing.
Fortunately, for a flat fading signal, or narrowband fading model [68], the C (¢, s) can
be obtained in closed-form. We can gain insight into the problem by going through this
exercise.

Following [68], the transmitted signal is an unmodulated carrier

s(t) = Re{e/ T/ H00)y = cos(2m f.t + ¢y). (2.56)

where f, is the central frequency of the carrier with random phase offset ¢,,.
For the narrowband flat fading channel, the received signal becomes

N
x(t) =Re { |:Z @, (t)e_-i¢”(t)] eﬂ”f‘"}

n=0
= x,(t) cos2m f .t — x,(t) sin2x f 1, (2.57)

where the in-phase and quadrature components are given by

N (1)

x;(t) = ) a,(t)cose, (1),
=0 (2.58)
N(t)

xp(t) = Zoan(t) sing, (¢),
where there are N(¢) components, each of which includes the amplitude «,(¢) and the
phase ¢, (¢). They are random. If N (¢) is large, the central limit theorem can be revoked to
argue that «,,(¢) and ¢, (¢) are independent for different components in order to approxi-
mate x; () and x, (¢) as jointly Gaussian random processes. As a result, the autocorrelation
and cross-correlation of the in-phase and quadrature received signal components: x, ()
and x,(¢) can be derived, following the Gaussian approximation.
The following properties can be derived [68]:

x; (1) and x (1), respectively, a zero-mean Gaussian process.
. x;(t) and x,(¢) are, respectively, a WSS random process.
3. x;(7) and x,(¢) are uncorrelated, that is,

D=

E[x;()xy ()] = 0. (2.59)

4. The received signal x () = x;(t) cos 27 f.t — x,(t) sin27 f.1 is also WSS with auto-
correlation

R, (v) = E[x(t)x(t + 7)] = R, (r) cos(27 f,.T). (2.60)
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Here the autocorrelation functions of x,(¢) and x,(¢) are equal:
R, (1) = RXQ (r) = P, J,2m fpT), (2.61)

where P, is the power of the total received power, f}, is the Doppler frequency, and
[ _.
Jo(x) = — f e ixesfqp (2.62)
7T Jo

is the Bessel function of zeroth order.

5. The power spectral densities (PSDs) of x;(¢) and x,(#)—denoted by Sy, (f) and
S, 0 (f), respectively—are obtained by taking the Fourier transform of their respective
autocorrelation functions relative to the delay parameter 7:

e ————. IfI= fp
S, ()=S8,,(f)=1 """ V1-G/ip? . (2.63)
2 0, else
The PSD of the received flat fading signal x(z) is
Px 1 _ <
S\ ()=025LS, (f — £+ S0, (f + fl = | 70 Viargazor® /TS =To
0, else

(2.64)

It follows from (2.64) that the flat fading signal can be modeled : to pass two indepen-
dent white Gaussian noise sources with PSD N, /2 through lowpass filter with a frequency
response H (f) that satisfies

N,
Sy (1) = S:o () = FIHNI. (2.65)

The filter outputs corresponds to the in-phase and quadrature components of the nar-
rowband fading process with PSDs S, (f) and S, Q( -

Let us go back to our problem of spectrum sensing using the second order statistics.
Since the fading signal is zero-mean WSS, only the second order statistics are sufficient
for its characterization. Since it is zero-mean, the covariance function is identical to the
autocorrelation function. It follows by inserting (2.61) into (2.60) that

R (v) = E[x({t)x(t +1)] = P.JyQ2m fpt) cos2m f,7), (2.66)
which, from (2.55), leads to
C, (1) Z0,C, (1) = 0, P.J,(27 f,,7) cos(2r f,T), (2.67)

which requires a priori knowledge of f. and f;, = v/A,. where v is the velocity of the
mobile and A, is the wavelength of the carrier wave. If the similarity is used as the
classification criterion, the uncertain noise power o> and the (uncertain) total power of
the received flat fading signal P, are not required. In practice, the real challenge is to know
the mobile velocity v which can be searched from the window v,,;, < v <v,,,... Algorithm
steps: (1) measure the autocorrelation function of the flat fading signal plus white Gaussian
noise C,(7); (2) measure the similarity between C,(7) and J,(27 fp7) cos(2n f,7); (3) If
the similarity is above some pre-set threshold p,, we assign hypothesis H;. Otherwise,
we assign H,,. Note that the threshold p, must be learned in advance.
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2.3.4 Spectrum Correlation-Based Spectrum Sensing for WSS Stochastic
Signal: Heuristic Approach

In general, there are three signal detection approaches for spectrum sensing: (1) energy
detection, (2) matched filter (coherent detection), (3) feature detection. If only the local
noise power is known, the energy detection is optimal [69]. If a deterministic pattern
(e.g., pilot, preamble, or training sequence) of the primary signal is known, then the
optimal detector usually applies a matched filtering structure to maximize the probability
of detection. Depending on the available a priori information about the primary signal, one
may choose different approaches. At very low SNR, the energy detection suffers from
noise uncertainty, while the matched filter faces the problem of lost synchronization.
Cyclostationary detection exploits the periodicity in the modulated schemes but requires
high computational complexity. Covariance matrix based spectrum sensing can be viewed
as the discrete-time formulation of second-order statistics in the time domain.

Results in Sections 2.3.2 and 2.3.3 give us insight into using second-order statistics,
although continuous time has been used there. These classical results are still the foun-
dation of our departure. Here, discrete-time second-order statistics are formulated in the
spectrum domain. The connection of this section with Sections 2.3.2 and 2.3.3 will be
pointed out later. In this section we follow [70] for the exposition of the theory. The
flavor is practical.

The basic strategy is (1) to correlate the periodgram of the received signal with the
selected spectrum features. For example, a particular TV transmission scheme can be
selected as a feature that is constant during the transmissions. Then, (2) the correlation is
examined for decision-making.

The discrete-time form of the problem (2.40) can be modeled as the I-th time instant

Hy:y()=n{), [=0,1,2,...,

(2.68)
Hy:y() =xO) +nl), 1=0,1,2,...,

where y(l) is the received signal by a second user, x(/) is the transmitted incumbent
signal, and n(/) is the complex, zero-mean additive white Gaussian noise (AWGN), that
is, n(l) ~ CN(0, anz). As in problem (2.40), the signal and the noise are assumed to be
independent. Accordingly, the PSD of the received signal Sy (w) can be written as

HO : SY(w) = on’

(2.69)
H,: Sy(w) = Sy(w)+0,, 0<w<2m,
where Sy (w) is the PSD function of the transmitted primary signal. Our task is to dis-
tinguish between H, and H,, by exploiting the unique spectral signature exhibited in
Sy ().
For WSS, the autocorrelation function and its Fourier transform, that is, the PSD, are
good statistics to study. Due to the independence of the x () from the n (), it follows that

Hy: i Sy(@)Sy(@)dw = a, [7 Sy(w)dw,

27 27 27 (270)
Hy: [y Sy(@)Sy(w)ydw = [~ Sx(w)Sx(w)dw + o0, [~ Sx(w)dw,
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It is natural to define the test T~ for the spectral correlation

2
Tse = / Sy(w)Sx(w)dw, (2.71)
0

and compare T~ with the threshold
2w
y = on/ Sy (w)dw,
0

where f()z” Sy(w)dw is the average power of discrete-time random variable X [71]. In
other words, we have

2 H 2
Tse = /0 Sy(w)Sx(w)dw i Un/o Sx(w)dw =y, 2.72)
Ho

where the threshold is a function of the noise PSD and the average power of the stochastic
signal.

In Sections 2.3.2 and 2.3.3, we argue that the autocorrelation function is a good feature
for classification. The results there are also valid for the cases when x(z) is both WSS
and nonstationary processes. The result in this section is valid for WSS only. But the
discrete-time is explicitly considered.

2.3.4.1 Estimating the Power Spectrum Density

Practically, an estimate of Sy (@) must be obtained. The original or “classical” methods
are based directly on the Fourier transform. This approach is preferred here for two good
reasons: (1) the fast algorithm (FFT computation engine) can be used; (2) the spectrum
estimator must be valid for the low SNR region (e.g., —20dB). The so-called “modern”
methods for spectrum estimation [72]—with other terms model-based, parametric, data
adaptive and high resolution—seem be out of reach to our low SNR region. The most
recent “subspace methods” are connected intimately with the spectrum sensing approaches
that are discussed in this chapter. As a result, these methods are not treated as “spectral
estimators,” rather as the spectrum sensing methods. See standard texts [73, 74] for details.

The classical methods of spectral estimation are based on the Fourier transform of the
data sequence or its correlation. In spite of all the developments in newer, more “modern”
techniques, classical methods are often the favorite when the data sequence is long and
stationary. These methods are straightforward to apply and make no assumptions (other
than stationarity) about the observed data sequence (i.e., the methods are nonparametric)
[72]. The PSD is defined as the Fourier transform of the autocorrelation function. Since
there are simple methods for estimating the correlation function—see [72, Chapter 6], it
seems natural to estimate the PSD by using the estimated correlation function.
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Suppose that the total number of data samples is N. The biased sample autocorrelation
function is defined by
N—1-1
Rl =~ Z(; x[n +1x*[n]; 0<I<N, (2.73)

where Iéx [l]= Iéj[—l ] for 0 < [. This estimate is asymptotically unbiased and consistent

[72, p. 586]. The expected value of the estimate is given by

. N — 1]
E{R,[I]} =

R[] (2.74)

and its variance decreases as 1/N, for small values of lag. Here R [/] is the discrete-time
autocorrelation function. It seems reasonable to define a spectral estimate as

N-1
S.ey= > R[lle’™; L<N. (2.75)

I=—N+1
This estimate for the PSD is known as the correlogram. It is typically used with large

N and relatively small values of L (say L < 10%N).
Now assume that the maximum lag [ is taken to be equal to N — 1. We have

N—1
~ . ~ . 1 .
Siel”)y =3 Rillle™ = —IX ()P, (2.76)
I=—N+1
where
N—1
X(e/) =" xlnle " (2.77)

n=0
is the discrete-time Fourier transform of the data sequence. This estimate is called the
periodogram. The N-point DFT approximation of the spectrum is denoted by

S (k) = S, yepmiyys k=0,1,...,N— L (2.78)

2.3.4.2 Spectral Correlation Using the Estimated Spectrum

As done in Sections 2.3.2 and 2.3.3 for continuous time, we assume that the (N-point
sampled) PSD of the signal, S;N) (k) defined by (2.78) is known a priori at the receiver.
We perform the following test:

N—1 Hy

1 >
Ty=5 2 5" 08k Z . 2.79)

k=0 Ho

where y is the decision threshold.
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Under hypothesis H,, we have

N—1
E[Ty,l = %cr,,2 Z S™M k) = a2 P,, (2.80)
k=0
where
1 N—1
Po=5 DSy ), 2.81)
k=0

is the average power transmitted across the whole bandwidth. Similarly, we have

N-—1
E[Ty ] = + ¥ ESV 018 (k)
k=0
. 1N71 - ) (2.82)
~ 0P+ & Y ISV 0T,
k=0

where we have used the fact that the periodogram is an asymptotically unbiased estimate
of the PSD [75,76]. Here, we can use the difference between E[Ty ;] and E[Ty (] to
determine the detection performance.

2.3.5 Likelihood Ratio Test of Discrete-Time WSS Stochastic Signal

Here we mainly follow [69, 70, 77]. Considering a sensing interval of N samples, we can
express the received signal and the transmitted signal in vector form

y =[O, yD),...,yn—D]",
x = [x(0), x(1), ..., x(n — D].

Some wireless signals experience propagation along multiple paths; it may be reasonable
to approximately model them as being a second-order stationary zero-mean Gaussian
stochastic process, as derived in Section 2.3.3 for flat fading signal. Formally,

x ~ CN(O,R,) (2.83)

where R, = E(xx”) is the covariance matrix. Equivalently, Equation (2.69) can be
expressed as

H, : CN(O, R

M, : CN(O, R, + o), (2.84)

where I is the identity matrix.
The Neyman-Pearson theorem states that the binary hypothesis test uses the likelihood
ratio

_ p(yIHp)

L —
= aHy

2 (2.85)

A VR
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where y is the observation. This test maximizes the probability of detection for a given
probability of false alarm. For WSS Gaussian random processes, it follows that

1 1T Tl | H
L(y) = PYIH) oo el AR, 102D P [_5y R, +0,D y] > y (2.86)
I D

The logarithm of the likelihood ratio is given by [78]
log L(y) = 2N logo, — logdet (R, + o) — y' [(R, + 0,31)’1 + 0,711 y. (2.87)

The constant terms can be absorbed into the threshold 7} ;. The optimal detection scheme
in the sense of the Neyman-Pearson criterion requires only the logarithm likelihood ratio
test (LRT) in the quadrature form

H
T —2 2y ! Zl /
Tipr=Y lo, T—gR;+0,D) 1y _v. (2.88)
Ho
2.3.5.1 Estimator-Correlator Structure
Using the matrix inversion lemma
(A+BCD) ' =A""—A"'BDA'B+C ) 'DA!, (2.89)
we have upon using A =02, B=D =1, C =R,
2 —1 1 1 /1 —1 -
R, +0, D)7 = =I-— | 5I+R; , (2.90)
Uﬂ n aﬂ
so that
;11 A\ 1,
Tirr =Y = —I+R; y= ;y X, (2.91)
where
1 /1 N\
X = -2 021 + R} y
which can be rewritten as
—1 —1
S 1 (1 - 1 (1 _
k= L(HTHR) y= (0 RoADRY) y (2.92)

=R R, + onzl)’ly,

and can be viewed as the minimum mean square error (MMSE) estimation of x.
Hence we decide H, if

Tipr =07y x>y (2.93)
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or
N-1
Tirr =0, Y y(m)E(n). (2.94)
n=0

2.3.5.2 White Gaussian Signal Assumption
If we assume that x ~ CN(0,EJI) or R, =EI in (2.84), and that {x[n]},_o, y_; is

.....

an independent sequence, then the estimator-correlator structure (2.91) yields the test
statistic:

E N—-1
a7 2 i, (2.95)
s no,—0

which is the equivalent to the energy detector. Thus the optimal detector is to decide H,
when

N—1

Tep =Yy Ix[nll* > y. (2.96)
n=0
2.3.5.3 Low Signal-to-Noise Ratio
It follows from the Taylor series expansion that

R+ 02D ' =T +0,°R) 0,2

(2.97)
=I- onszx + on’"sz — ) 0,1’2.
Here, we have used the infinite series [79, p. 705]
I+A) "=T-A+A2—A +A*+ ... (2.98)
for all real or complex matrices A of n x n such that
sprad(A) < 1, (2.99)

where
sprad(A) 2 max {IA] - A € spec(A)},

saying that the matrix eigenvalue X belongs to the spectrum spec(A) of matrix A. The
convergence of the series (2.97) is assured if the maximum eigenvalues of o, 2R, are less
than unity, as required by (2.99). This condition always holds in low SNR region where

det'/V(A) « 02, (2.100)

from which equation, by retaining the first two leading terms, (2.97) can be approxi-
mated as

R, +0 D) '~ T-07R,) 0, (2.101)
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By using (2.101), (2.88) is put into a more convenient form

Hy
_ —1 _ >
Trar =¥ [0, 1= Ry +0;D Iy~ o0, 'y Ry Z V' (2.102)
Ho
Or, we have
Hi
I =
Tirrn ™ ﬁy R,y ~ Yirr (2.103)
Ho

and Y,y = 0.}y’/N, which depends on the noise power o;. This noise dependence is
challenging in practice.

2.3.6 Asymptotic Equivalence between Spectrum Correlation
and Likelihood Ratio Test

Let us show the asymptotic equivalence between spectrum correlation and likelihood ratio
detection at low SNR region. Consider a sequence of optimal LRT detectors as defined
in (2.104):

&S

1
Tirron = NYTRXY — ViR N=12,.... (2.104)
Ho

Similarly, we define a sequence of spectral correlation detectors as

N-1
1
T, = ¥ ZS(YN)(k)S;N)(k), N=12,.... (2.105)
k=0

Notice that the LRT detectors are working in the time domain while the spectrum
correlation detectors are in the frequency domain.

The sequence of sp ectrum correlation detector {7} defined in (2.105) are, at very
low SNR, asymptotically equivalent to the sequence of optimal LRT detectors {7} g7 v}
defined as (2.104), that is, '

lim [T, xry — Tyl = 0. (2.106)
N—oo ’

The proof of (2.107) is in order. From the definition of two test statistics, it follows
that

Jim [Ty = Tyl = Jim YRy — y Wi AWyy) (2.107)
where
sMo) ... 0
A= S : (2.108)
0 - sPVw-1
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is a diagonal matrix with the PSD of the incumbent signal in the diagonal, and W, is
the discrete-time Fourier transform (DFT) matrix defined as

1 1 1

1 w,z\, wi\, UQ?V;_IU
W, = L wy wy wy : (2.109)
N—-1 _ 2(N-1) (N=D)(N-=1)
L wy™ wy T Wy

where wy = e~ />"/" being a primitive n-th root of unity. As a resul,

. .1 o1
Sim |7y gy y — Tyl = lim ﬁly*(Rx -~ WyAW )yl = Jim le*(Rx - Cyyl.,
(2.110)

where Cy £ W3, AW, is the circular matrix. As shown in [80], the Toeplitz matrix R, is
asymptotically equivalent to the circurlar matrix C, since the weak norm (Hilbert-Schmidt
norm) of R, — C,, goes to zero, that is,

lim |[R, — Cy| = 0. (2.111)
N—o0

Thus, (2.106) follows from (2.107).

2.3.7 Likelihood Ratio Test of Continuous-Time Stochastic Signals
in Noise: Selin’s Approach

2.3.7.1 Derivation of the Likelihood Ratio

We present an approach that is originally due to Selin (1965) [81, Chapter 8].
The modulated signal with the center frequency f, is

s(1) = Re[S(r)e/*™ /'],
transmitted through the multipath fading channel. The received stochastic signal is
x(1) = Re[X (1)’ /],
and
E[X(®)X*(u)] = 2Ry (t, u).
The noise process is expressed as
n(t) = Re[N (r)e/>™/e].

Following Selin [81], we consider the white Gaussian noise with flat one-sided PSD
2N,. The methods of this section apply to the case in which the PSD of the noise is
not flat.
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Defining Y (¢) as the complex envelope representation of the received waveform y (),
that is,

y(t) = Re[Y (1)e’*7 '],
the test may be expressed as

Hy: Y (1) = N(1),
H, Y (@)= X(@)+ N@).

The present test can be thought as a test for the covariance function of Y (7):

Hy : E[Y (1) Y* ()] = 2No8(t — u),

H, : E[Y()Y*(u)] = 2Ry (¢, u) + 2Ny8(t — u). (2.112)

If the Gaussian envelope of the signal process experiences some deterministic modu-
lation, the signal process is nonstationary.

The Karhunen-Loeve expansion is a good theoretical tool for the purpose of representing
the likelihood ratio. In practice, numerical calculation can be performed in MATLAB.

We seek to represent the stochastic signal

Y1) =)y (0).

k=1

We hope the ¢, (¢) satisfies the following: (1) deterministic functions of time; (2) the
¢, (t) are orthonormal for convenience

T
/ G (D] ()dt =S
0
(3) The random coefficients should be normalized and uncorrelated, that is,
Elxx/]1 =843

(4) If Y (¢) is Gaussian, then the {y,} should also be Gaussian. Fortunately the Karhunen-
Loeve expansion provides these properties.
Taking the ratio and then letting K approach infinity, we have

172
o0

A lyel? = 1
LIY(1)] = exp [Z 4N0(Ij\|kyi No)] T _ (2.113)

A
k
k=1 k=1 \ 1+ 5,

The product term converges provided that

> O/ Ny)

k=1

converges, in other words, provided that the signal-to-noise ratio is finite. The test statistic
is

— >
WD=ZM+%ML (2.114)
k=1
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2.3.7.2 Probabilities of Error
If 'H, is true,

A
= 2N, k 2.115
0 [Z ” +NJ (2.115)

o]

00 2 2
= 8(N0)ZZ: (/\k +"N0) (2.116)

If 'H, is true,

=> i 2Ny + &) (2.117)

Var [Ul=E| ) o No[ink + 7 = 20N + 4]
=2 (2% (2.118)

By the central limit theorem, if

&)
> A/K K N,
k=1

U is approximately normal.
For very weak signals in low SNR region,
o0

Nt \°
Z(Ak+NO> sz, (2.119)

k=1
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and Vary(U) = Var,(U). The signal detection probability depends only on the signal-to-
noise (power) ratio d which is given by

d =~ LE| (U)—E(U)]?
- Var(U)

e 2 T (2.120)

112
[3%]
2
>
=~

This is approximately equal to

1 ad )
T / _IS(pFaf, 2.121)

where S.(f) is the PSD of the signal process if this process is stationary. (2.121) is
essentially identical to the spectrum correlation rule in Section 2.3.4: comparing with
(2.121) and (2.79). In deriving (2.121), we have used the following

Yk = LAy 4091 (dt [ 91wy wdu
= 2\ dt [ dulR.(t —w)?

=2 dr [T dz|R, (1)

= 2 [\ dr [% 1S, (f)I*df, forlargeT,

= 2T [T 1S(P)Idf

(2.122)

2.4 Statistical Pattern Recognition: Exploiting Prior Information
about Signal through Machine Learning

2.4.1 Karhunen-Loeve Decomposition for Continuous-Time
Stochastic Signal

We model the communication signal or noise as random field. KLD is also known as
PCA, POD, and EOF. We follow [82, 83] for an exposition of the underlying model for
turbulence in fluids—a subject of great scientific and technological importance, and yet
one of the least understood. Like turbulence, radio signals involve the interaction of many
degrees of freedom over broad ranges of spatial and temporal scales.

The POD is statistically based, and permits the extraction, from the electromagnetic
field, of spatial and temporal structures (coherent structures) judged essential. The POD is
a procedure for extracting a modal decomposition from an ensemble of signals. Its power
lies in the mathematical properties that suggest it is the preferred basis. The existence of
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coherent structures, which contain most of the energy, suggests the drastic reduction in
dimension. A suitable modal decomposition retains only these structures and appeals to
averaging or modeling to account for the incoherent fluctuations.

Suppose we have an ensemble {u*} of observations (experimental measurements or
numerical simulations) of a turbulent velocity field or an electromagnetic field. We assume
that each {u*} belongs to an inner product (Hilbert) space X. Our goal is to obtain
an orthogonal basis ¢; for X, so that almost every member of the ensemble can be
decomposed relative to the ¢;:

u=> a;p, (2.123)
j=0

where the a; are suitable modal coefficients. There is no prior reason to distinguish
between space and time in the definition and derivation of the empirical basis functions,
but we ultimately want a dynamic model for the coherent structures. We seek the spatial
vector-valued functions ¢;, and subsequently determine the time-dependent scalar modal

coefficients:

ux. 1) = Y _a;(t)g;x). (2.124)
J

Central to the POD is the concept of averaging operation < ->. The operation of
< -> may simply be thought as the average over a number of separate experiments, or,
if we assume ergodicity, as a time average over the ensemble of observations obtained at
different instants during a single experimental run. We restrict ourselves to the space of
functions X which are square integrable, or, in physical terms, fields with finite energy
on this interval. We need the inner product

(f. ) =/Xf(X)g(X)dx,

and a norm

I1F1l = (f. £

24.1.1 Derivation of Empirical Functions

We start with an ensemble of observation {u}, and ask which single (deterministic) element
is most similar to the members of {u} on average? Mathematically, the notion of “most
similar” corresponds to seeking an element ¢ such that

max < |(u, oI > /(9 9), (2.125)

where |- | denotes the modulus. In other words, we find the member of the ¢ which
maximizes the (normalized) inner product with the field {u}, which is most nearly parallel
in function space. This is a classical problem in the calculus of variations. This can be
reformulated in terms of the calculus of variations, with a functional for the constrained
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variational problem
Jlpl =< (u, 9)* > =A(llgll> = D, (2.126)

where ||¢||? = (¢, @) is the L?-norm. A necessary condition for extrema is the vanishing
of the functional derivative for all variations ¢ + ¢y € X:

d
oo+ eyl =0. (2.127)

Some algebra, together with the fact that i (x) is an arbitrary variation, shows that the
condition of (2.127) reduces to

/ <ux, Hu*x, 1) >ex)dx = rp(x). (2.128)
Q

R(x,x")

Here x € 2, where 2 denotes the spatial domain of the experiment. This is a Fredholm
integral equation of the second kind whose kernel is the averaged autocorrelation tensor
R(x,X) =< u(x, t)u*(x, t) >, which we may rewrite as the operator equation Rp = A¢.
The optimal basis is called empirical eigenfunctions, since the basis is derived from the
ensemble of observations u*. The operator R is clearly self-adjoint, and also compact, so
that Hilbert-Schmidt theory assures us that there is a countable infinity of eigenvalues {2}
and eigenfunctions {¢;}. Without loss of generality, for the solutions of (2.128), we can
normalize so that |[¢;|| = 1 and re-order the eigenvalues so that A; > A, . By the first
N eigenvalues (resp. eigenfunctions) we mean A,A,, ..., Ay (r€sp. ¢;,¢,, ..., @y). Note
that the positive semidefiniteness of R implies that 2 ; > 0. As a result, this representation
provides a diagonal decomposition of the autocorrelation function

R(x,X) = Z Ao, (0@ (x). (2.129)
j=1

It is these empirical functions that we use in the model decomposition (2.124) above.
The diagonal representation (2.129) of the two-point correlation tensor ensures that the
modal amplitudes are uncorrelated:

< a;a

i> =5,k (2.130)

In practice, only the eigenfunctions with strictly positive values are of interest. Those
spatial structures have finite energy on average. Let us define the span S of these ¢;

Sz{Zaj¢j|Aj>O,Z|aj|2<oo}. 2.131)

What is the nature of the span S? Which functions can be reproduced by convergent
linear combinations of these empirical eigenfunctions? It turns out that almost every
member of the original ensemble {u*} belongs to S! The span of the eigenfunctions is
exactly the span of all the realizations of u(x), with the exception of a set of measure zero.
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2.4.1.2 Optimality

Suppose we have an ensemble of members of u(x,), decomposed in terms of an arbitrary
orthonormal basis ¥ o

u(x, 1) = ij(t)wj(x). (2.132)
J
Using the orthonormality of the /;, the average energy is given by
f <ux, Hu'(x, 1) >dx =Y <b;(O)b(t)>. (2.133)
Q ,
J

For the particular case of the POD decomposition, the energy in the j-th mode is A,
as claimed by (2.130).

The optimality is stated as follows: For any N, the energy in the first N modes in a
proper orthogonal decomposition is at least as great as that in any other N-dimensional
projections:

N N
luyl> =" <a;nai)> =Y 2= <b)b;1t)>. (2.134)
j j=1 j=1

This follows from the general linear self-adjoint operators: the sum of the first N eigen-
values of R is greater than or equal to the sum of the diagonal terms in any N-dimensional
projection of R. Equation (2.134) states that, among all linear decompositions, the POD
is the most efficient for modeling or reconstructing a signal u(x, ), in the sense of captur-
ing, on average, the most energy possible for a projection on a given number of modes.
This observation motivates the use of the POD for low-dimensional modeling of coherent
structures—dimensionality reduction. The rate of decay of the A; gives the indication
of how fast finite-dimensional representations converge on average, and hence how well
specific truncations might capture these structures.

2.5 Feature Template Matching

From pattern recognition, the eigenvectors are considered as features. We define the
leading eigenvector as signal feature because for nonwhite WSS signal it is most robust
against noise and stable over time [84]. The leading eigenvector is determined by the
direction with the largest signal energy [84].

Assume we have 2 x 1 random vectors X, = X, + X,, where X, is vectorized sine
sequence and x,, is the vectorized WGN sequence. SNR is set to 0 dB. There are 1000
samples for each random vector in Figure 2.1. Now we use eigen-decomposition to set
the new X axes for each random vector samples such that A; is strongest along the
corresponding new X axes. It can be seen that new X axes for x; (SNR = oo dB) and
X,,, (SNR = 0 dB) are almost the same. X axes for x,, (SNR = —o0), however, is rotated
with some random angle. This is because WGN has almost the same energy distributed in
every direction. New X axes for noise will be random and unpredictable but the direction
for the signal is very robust.
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Figure 2.1 The leading eigenvector is determined by the direction with largest signal energy [84].

Based on leading eigenvector, feature template matching is explored for spectrum sens-
ing. The secondary user receives the signal y(z). Based on the received signal, there are
two hypotheses: one is that the primary user is present H;, another one is the primary
user is absent M. In practice, spectrum sensing involves detecting whether the primary
user is present or not from discrete samples of y().

w(n) H,

y(n) = { b H, (2.135)

in which x(n) are samples of the primary user’s signal and w(n) are samples of zero mean
white Gaussian noise. In general, the algorithms of spectrum sensing aim at maximizing
corresponding detection rate at a fixed false alarm rate with low computational complexity.
The detection rate P, and false alarm rate P, are defined as

P, = prob(detect 'H,|y(n) = x(n) + w(n))

P, = prob(detect H,|y(n) = w(n)), (2.136)
in which prob represents probability.
The hypothesis detection is
Hy:y=w
H,:y=x+w. (2.137)
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Assume the primary user’s signal is perfectly known. Given d-dimensional vectors
X, Xy, - -+, X,; of the training set constructed from the primary user’s signal, the sample
covariance matrix can be obtained by

R =—> xx, (2.138)

which assumes that the sample mean is zero,

1 M
u:M;xizﬂ. (2.139)

The leading eigenvector of R, can be extracted by eigen-decomposition of R,

R, = VAV, (2.140)
where A = diag(h,, Xy, ..., 1) is a diagonal matrix. A;,i = 1,2, ---, d are eigenvalues
of R.. V is an orthonormal matrix, the columns of which v,,v,,---, v, are the eigen-
vectors corresponding to the eigenvalues A;,i = 1,2, ---,d. For simplicity, take v, as

the eigenvector corresponding to the largest eigenvalue. The leading eigenvector v, is the
template of PCA.
For the measurement vectors y;, i = 1,2, ---, M, the leading eigenvector of the sample

M
. . _ 1 T . ~ . . .
covariance matrix R, = Z y;¥; is v,. Hence, the presence of signal is determined by

[84, 85],

i=1

> T (2.141)

d
PRALINAIER)
k=1

.....

where T, is the threshold value for PCA method, and p is the similarity between v, and
template v; which is measured by cross-correlation. 7)., is assigned to arrive a desired
false alarm rate. The detection with leading eigenvector under the framework of PCA is
simply called PCA detection.

A nonlinear version of PCA—kernel PCA [86]—has been proposed based on the
classical PCA approach. Kernel function is employed by kernel PCA to implicitly map
the data into a higher dimensional feature space, in which PCA is assumed to work
better than in the original space. By introducing the kernel function, the mapping ¢ need
not be explicitly known which can obtain better performance without increasing much
computational complexity.

The training setx;,i = 1,2, ---, M and received sety,;,i = 1,2, ---, M in kernel PCA
are obtained the same way as with the PCA framework.

The training set in the feature space are ¢ (X,), ¢(X,), ..., ¢(X,,) which are assumed to

M

have zero mean, for example, ﬁ > ¢(x;) = 0. The sample covariance matrix of ¢(x;) is
i=1

1 M
Ry =27 2 ¢x)ex)" (2.142)
i=1
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Similarly, the sample covariance matrix of ¢(y;) is

M
|
R, =D e (2.143)
i=1

The detection algorithm with leading eigenvector under the framework of kernel PCA

is summarized here as follows [85]:

1.

Choose a kernel function k. Given the training set of the primary user’s signal
X[, X, -+, Xy, the kernel matrix is K = (k(x;.x;));;. K is positive semidefinite.
Eigen-decomposition of K to obtain the leading eigenvector B, .

. The received vectors are y,,y,, --,y,. Based on the chosen kernel function, the

kernel matrix K = (k(y;, ¥;));; is obtained. The leading eigenvector ii | 18 also obtained

by eigen-decomposition of K.
The leading eigenvectors for R, and R, can be expressed as

vl = (o), (%), -, 9(x)))B),

f ~ (2.144)
Vi = (@), 9(2). -, oY) By
4. Normalize v{ and {,{ to scale B, and B I-
5. The similarity between v] and ?{ is
p=B'KB,. (2.145)
6. Determine the presence or absence of primary signal by evaluating p > Tj,., or not.

p 1is derived as

foof ul L s
p = <V,V >=< Zﬂ[(p(xi)v Z Biw(y;) >
i=1 =1

= {(@x)), (X)), s 0 (X)) By} -
{(o(yD), 0(¥2), -, (Y1) B}

(o(xl)T
T p(x,)" ~
= B, . (e(y1), 9(¥2)s s 0(Y1)) By (2.146)

@(X.M)T

kX, ¥, k(X;,¥2), ..., (X, ¥ur)
ﬂT k(X27yl),k(X2»Y2)7 m,k(Xz,yM) Bl

k(X7 Y1) KXz, ¥2)s oo KXy, ¥r)

—

=B ITKZﬁl-
K' is the kernel matrix between ¢(x;) and ¢(y;). A measure of similarity between V{
and ?{ has been obtained without giving Vlf and ;,{ based on (2.146).
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Typeq 18 the threshold value for kernel PCA algorithm. The detection with leading
eigenvector under the framework of kernel PCA is simply called kernel PCA detection.

DTV signal [87] captured in Washington D.C. will be employed to the experiment of
spectrum sensing in this section. The first segment of DTV signal with L = 500 is taken
as the samples of the primary user’s signal x(n).

First, the similarities of leading eigenvectors of the sample covariance matrix between
first segment and other segments of DTV signal will be tested under the frameworks
of PCA and kernel PCA. The DTV signal with length 10° is obtained and divided into
200 segments with the length of each segment 500. Similarities of leading eigenvectors
derived by PCA and kernel PCA between the first segment and the rest 199 segments are
shown in Figure 2.2. The result shows that the similarities are very high between leading
eigenvectors of different segments’ DTV signal (which are all above 0.94), on the other
hand, kernel PCA is more stable than PCA.

The detection rates varied by SNR for kernel PCA and PCA compared with estimation-
correlator (EC) and maximum minimum eigenvalue (MME) with P, = 10% are shown
in Figure 2.3 for 1000 experiments.

Experimental results show that kernel methods are 4 dB better than the corresponding
linear methods. Kernel methods can compete with EC method.

;
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Figure 2.2 Similarities of leading eigenvectors derived by PCA and kernel PCA between the first
segment and other 199 segments [85].
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Figure 2.3 The detection rates for kernel PCA and PCA compared with EC and MME with
Pf = 10% for DTV signal [85].

2.6 Cyclostationary Detection

Generally, noise in the communication system can be treated as wide-sense stationary
process. Wide-sense stationary has time invariant autocorrelation function. Mathematically
speaking, if x(¢) is a wide-sense stationary process, the autocorrelation function of x(¢)
is

R.(t,7) = E{x(t)x"(t — 1)} (2.147)
and
R.(t,7) = R (7), Vt. (2.148)

Generally, manmade signals are not wide-sense stationary. Some of them are cyclosta-
tionary [88]. A cyclostationary process is a signal exhibiting statistical properties which
vary cyclically with time [89]. Hence, if x(¢) is a cyclostationary process, then

R.(t,7) =R (t + T, 1), (2.149)

where 7 is the period in 7 not in 7.
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Define cyclic autocorrelation function for x () as

N

“ .1 T\ ., T :
RY(1) _Tlgr;ﬁ/rx <r+ 5))6 (z - 5) exp(— j2rat)dr, (2.150)

[

where « is cyclic frequency. If the fundamental cyclic frequency of x(¢) is «,, RS (7)
is nonzero only for integer multiples of ¢, and identically zero for all other values of «
[88,90,91]. And spectral correlation function of x(#) can be given as

SY(f) = /oo R% (1) exp(—j2nf1)dr, (2.151)

where PSD is a special case of spectral correlation function when « is zero.
In practice, S¢(f) can also be calculated based on the two following steps [92]:

+L

X, f) =/ " x(v) exp(— 27 fv) dv. (2.152)

(S}

A
o . Y A, o
Se(f) = Algr;oTh_)ngo 27/ . X; (z,f+ 5) X (z,f - 5) dt. (2.153)

2

Both cyclic autocorrelation function R¢ () and spectral correlation function S¥(f) can
be used as features to detect x(¢) [88,92]. Assume x(¢) is the signal and w(?) is AWGN.
The observed signal y(t) is equal to x(¢) + w(#). The optimal cyclostationary detector
based on spectral correlation function can be [92—94],

z= Z/ ST(f)SU(f) df- (2.154)

A novel approach to signal classification using spectral correlation and neural networks
has been presented in [95]. a-profile is used as the feature in neural network for signal
classification. The signal types under investigation include BPSK, QPSK, FSK, MSK,
and AM [95]. a-profile is defined as [95],

profile(«) = mng{Cf(f)}, (2.155)

where C2(f) is the spectral coherence function of x(¢) [95],
« Se(f)
Ci(f) = f T (2.156)
(S2(f+5) s (F-9))°

Similarly, signal classification based on spectral correlation analysis and SVM in cog-
nitive radio has been presented in [96].

A low-complexity cyclostationary based spectrum sensing for UWB and WiMAX coex-
istence has been proposed in [97]. The cyclostationary property of WiMAX signals
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because of the cyclic prefix is used [97]. Cooperative cyclostationary spectrum sens-
ing in cognitive radios has been discussed in [94, 98]. Cooperative spectrum sensing can
improve the performance by the multiuser diversity [94]. The cyclostationary detector
requires long detection time to obtain the feature, which causes inefficient spectrum uti-
lization [99]. In order to address this issue, the sequential detection framework is applied
together with the cyclostationary detector [99].

In an OFDM based cognitive radio system, cyclostationary signatures, which may be
intentionally embedded in the communication signals, can be used to address a number
of issues related to synchronization, blind channel identification, spectrum sharing and
network coordination [100—102]. Hence, we can design cyclostationary signatures and
the corresponding spectral correlation estimators for various situations and applications.

Besides, the blind source separation problem with the assumption that the source signals
are cyclostationary has been studied in [103]. MMSE reconstruction for generalized under-
sampling of cyclostationary signals has been presented in [104]. Signal-selective direction
of arrival (DOA) tracking for wideband cyclostationary sources has been discussed in
[105]. Time difference of arrival (TDOA) and Doppler estimation for cyclostationary
signals based on multicycle frequencies has been considered in [106].
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3

Classical Detection

3.1 Formalism of Quantum Information

Fundamental Fact: The noise lies in a high-dimensional space; the signal, by contrast,
lies in a much lower-dimensional space.

If a random matrix A has i.i.d rows A;, then A*A = Y, A;A;” where A* is the adjoint
matrix of A. We often study A through the n x n symmetric, positive semidefinite matrix,
the matrix A*A. The eigenvalues of |A| = +/A*A are therefore nonnegative real numbers.

An immediate application of random matrices is the fundamental problem of esti-
mating covariance matrices of high-dimensional distributions [107]. The analysis of the
row-independent models can be interpreted as a study of sample covariance matrices.
For a general distribution in R”, its covariance can be estimated from a sample size of
N = O(nlogn) drawn from the distribution. For sub-Gaussian distributions, we have an
even better bound N = O (n). For low-dimensional distributions, much fewer samples are
needed: if a distribution lies close to a subspace of dimension r in R”, then a sample of
size N = O(rlogn) is sufficient for covariance estimation.

There are deep results in random matrix theory. The main motivation of this subsection
is to exploit the existing results in this field to better guide the estimate of covariance
matrices, using nonasymptotic results [107].

3.2 Hypothesis Detection for Collaborative Sensing

The density operator (matrix) p is the basic building block. An operator p satisfies:
(1) (Trace condition) p has trace equal to one, that is, Trp = 1; (2) (Positivity) p is a
positive operator, that is, p > 0. Abusing terminology, we will use the term “positive” for
“positive semide finite (denoted A > 0).” Covariance matrices satisfy the two necessary
conditions. We say A >0 when A is a positive definite matrix; B > A means that B — A
is a positive definite matrix. Similarly, we say this for nonnegative definite matrix for
B — A > 0. The hypothesis test problems can be written as

HO:A:Rn

MH,:B=R;+R, 3.1)

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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where R, is the covariance matrix of the noise and Ry that of the signal. The signal is
assumed to be uncorrelated with the noise. From (3.1), it follows that R¢ > 0 and R, > 0.
In our applications, this noise is modeled as additive so that if x(n) is the “signal” and
w(n) the “noise,” the recorded signal is

y(n) = x(n) + w(n).

Often, this additive noise is assumed to have zero mean and to be uncorrelated with
the signal. In this case, the covariance of the measured data, y(n), is the sum of the
covariance of x(n) and w(n). Specifically, note that since

ry(k, 1) = E{y(k)y* (D} = E{[x(k) + w®]lx() + wD]"}
= E{x(k)x* (D} + E{w(0)w* (D} + E{x(Hw* (D} + E{wk)x* (D)},
if x(n) and w(n) are uncorrelated, then
E{x(w* (D} = E{w(k)x*()} =0
and it follows that
ry(k, D) =r (k, 1) +r,k, D). (3.2)
Discrete-time random processes are often represented in matrix form. If
x = [x(0), x(D), ..., x(p]"
is a vector of p + 1 values of a process x(n), then the outer product

x(0)x*(0) x(0)x*(1) x(0)x*(p)
x(Dx*0) x(Dx*(1)

H(Px*0) x(Px () - x(p)x(p)

isa(p+1) x (p+ 1) matrix. If x(n) is wide-sense stationary, taking the expected value
and using the Hermitian symmetry of the covariance sequence, r, (k) = r}(—k), leads to
the (p + 1) x (p + 1) matrix of covariance values

r,(0) ry(1) ri(p)
. n) @ - 1)
R, = E{xx"} = : . : (3.3)
rx(p) rx(p - 1) T rx(o)

referred to as the covariance matrix. The correlation matrix R, has the following structure:

R, =7 (0OI+R, TR, =0, (3.4)

where I is identity matrix and TrA represents the trace of A. The covariance matrix has
the following basic structures:
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1. The covariance matrix of a WSS random process is a Hermitian Toeplitz matrix,
R, =R".

2. The covariance matrix of a WSS random process is positive semidefinite, R, > 0.
In other words, the eigenvalues, A;, of this covariance matrix are real-valued and
nonnegative, that is, A, > 0.

A complete list of properties is given in Table 3.1. When the mean values m, and
m,, are zero, the autocovariance and matrices are equal. We will always assume that all
random processes have zero mean. Therefore, we use the two definitions interchangeably.

Example 3.1 (Covariance matrices for sinusoids and complex exponentials)

An important random process in radar and communications is the harmonic process.
An example of a real-valued harmonic process is the random phase sinusoid, which is
defined by

x(n) = Asin (nw, + ¢),

where A and w), are fixed constants and ¢ is a random variable that is uniformly distributed
over interval —z and 7. The mean of this process can easily be shown to be zero. Thus,
x(n) is a zero mean process. The covariance of x(n) is

ro(k, 1) = E{x(k)x*()} = E{Asin (ko, + ¢) Asin (lo, + ¢)}.
Using the trigonometric identity
2sin A sin B = cos(A — B) — cos(A + B),
we have
1 1
rok, D) = 5|A|2E{cos [(k — D) ]} — §|A|2E{cos [(k + Dy + 20)]}.

Note that the first term is the expected value of a constant and the second term is equal
to zero. Therefore,

rok,l) = %|A|zcos [(k = Day)] .-

Table 3.1 Definition and properties for correlation and covariance matrices [108, p. 39]

Auto-correlation and covariance R, = E{xx*} C, =E{(x — Ex)(x —Ex)*}
Symmetry R, =R/~ Cc,=Cr’

Positive semidefinite R, >0 C.>0

Interrelation R, =C. +mm* m, = E{x},m, = E{y}
Cross-correlation and cross-covariance R, = E{xy*} ny =E{(x - mx)(y m,)*}
Relation to R, and C,, R,, =R, C,=C,

Interrelation ny = ny + mxmy* m, = E{x}, m, = E{y}
Orthogonal and uncorrelated x, y orthogonal: R,/ =0 x, y uncorrelated: C,, =0
Sum of R,,, =R, +R| C., =C +C,

x and y if x, y orthogonal if x,y uncorrelated
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As another example, consider the complex harmonic process
x(n) = Ae./'(nwo-ﬁﬁ)’

where, as with the random phase sinusoid, ¢ is a random variable that is uniformly
distributed between —m and 7. The mean of this process is zero. The covariance is

r,(k, l) = E{x(k)x*(D)} = E{Ae/(k“’(’*"’)A*e_/(1‘”0”’)}
=|A| E{e/(k l)wo} — |A|2e!(/< D

Consider a harmonic process consisting of L sinusoids

L
x(n) = Z A sin (nw; + ;).
=1

Assuming the random variables ¢; and A; are uncorrelated, the covariance sequence is

L

rk)=>" %E{AIZ} cos (k).

=1

The 2 x 2 covariance matrix for L = 1 sinusoid is

1|A|2[ 1 cosw,

k=3 cosw, 1

1
s=3 } = §|A|2 (I + 0y coswy) .

The 2 x 2 covariance matrix for L sinusoids is

L

1 L; Z %E{Alz} cos (w;)
L > LE(A]) =
v =2 B oGl -
=1 — > 5E{A,z}cos () 1
> LE(A7)
Li=1 .
(I+ bo))
where
| |
a=Yy EE{A%},b SE {A}} cos ().
=1 3 %E A } =1

=1

As another example, consider the complex-valued process consisting of a sum of two
complex exponentials

y(n) = Al 101181 | ppi (entdn)
The covariance sequence for two uncorrelated processes is

ro(k) = |APe 1 4 [APe/ 2,
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The 2 x 2 covariance matrix for two complex exponentials is

2 e_jwl + e—jwz 1 e_.fwl + e_jw2
2 2
R, = |A] [e-fw1+e—fwz ; }=§|A| [I+(f ol g

Example 3.2 (Covariance matrix for white noise)
The 2 x 2 covariance matrix for white additive noise is

L (10

R, =0, 01 =olL

In practice, we must deal with this form

X X
R, =0I+02 (" "2 | =62l + 02X,
X1 X22
where the elements of X are approximately zero-mean random variables whose variances
are 10dB lower than the diagonal elements of R,. At low SNR, such as —20dB, these
random variables make R, a random matrix. One realization example is

3 <0.043579 0.10556)

0.10556 0.14712 U

Let A be a Hermitian operator with gI < A < QI. The matrices QI — A and A — ¢l
are positive and commute with each other [109, p. 95]. Since R, is positive (of course,
Hermitian), we have

gl <R, <QL

The random matrix X = SR, — I is Hermitian, but not necessarily positive. X is

loF
Hermitian, since its eigenvaluués must be real. The Hoffman-Wielandt is relevant in this
context.

Lemma 3.1 (Hoffman-Wielandt) [/6, p. 21] Let A and B be N x N Hermitian matrices,
with eigenvalues )\‘f < k‘; <...< A% and )»If < )»]23 <...< )\,'i,. Then,

N
SO =P = TrA - BY, (3.5)

i=I

where X and Y are random symmetric matrices.

(3.5) can be used to bound the difference of the eigenvalues between A and B.

3.3 Sample Covariance Matrix

In Section 3.2, the true covariance matrix is needed for hypothesis detection. In practice,
we only have access to the sample covariance matrix which is a random matrix. We first
present some basic definitions and properties related to a sample covariance matrix. The
determinant of a random matrix S, detS, also called generalized variance, is of special
interest. It is an important measure of spread in multidimensional statistical analysis.
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3.3.1 The Data Matrix

The general (n x N) data matrix will be denoted X or X(n x N). The element in row i
and column j is x;;. We write the matrix X = (x;;). The rows of X will be written as

T T T
X ,Xp, ..., X,.
Or
x|
X3
X = : = [X1), X@2)s - - Xy |,
X,
where
Xi1 X1
Xi2 . *2j
X; = : (i=12,....n),x; = (G=12,...,N)
XiN XNj

Example 3.3 (Random matrices)
MATLAB Code: N=1000; X=randn(N,N); This code generates a random matrix of size
1000 x 1000.

r = randn(n) returns an n-by-n matrix containing pseudorandom values drawn from the
standard normal distribution. randn returns a scalar. randn(size(A)) returns an array the
same size as A.

(1) Generate values from a normal distribution with mean 1 and standard deviation 2.

r=1+ 2.*randn(100,1);

(2) Generate values from a bivariate normal distribution with specified mean vec-
tor and covariance matrix. mu = [1,2]; Sigma = [I1 .5; .5 2]; R = chol(Sigma); 7z =
repmat(mu,100,1) + randn(100,2)*R; O

3.3.1.1 The Mean Vector and Covariance Matrix

The sample mean of the ith variable is

1 n
== X, (3.6)
n
=1

and the sample variance of the ith variable is

1 n
si=-Y (y—%¥)=si=1...N. (3.7)
n
=1

The sample covariance between the ith and jth variable is

1 ¢ _ _
sij = ;;(x,i — %) (x; — X)) (3.8)
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The vector of means,

T
Il

(3.9)

is called the sample mean vector, or simply the “mean vector.” The N x N matrix
S = (s j)

is called the sample covariance matrix, or simply ‘“covariance matrix.” It is more con-
venient to express the statistics in matrix notation. Corresponding to (3.6) and (3.9), we
have

I 1o,

X = —le =-X'1, (3.10)

where 1 is a column vector of n ones. On the other hand,

l n
Sij = = E Xii X1 =X X
e

so that
1 n 1 n
S=-Y x-0x-%"=-) xx - (3.11)
n n
I=1 I=1
This may be expressed as
1 1 1
S=-X"X—xx" = - X"X - -X"117X),
n n n
using (3.10). Writing
1
H=1--117,
n
where H is called the centering matrix, we obtain the following standard form
1
S = - X"HX, (3.12)
n

which is a convenient matrix representation of the sample covariance matrix. We need a
total of nN points of samples to estimate the sample covariance matrix S. Turning the
table around, we can “summarize” information of n/N points of samples into one single
matrix S. In spectrum sensing, we are given a long record of data about some random
variables, or a random vector of large data dimensionality.

Example 3.4 (Representation of sample covariance matrix)

Given a total of 10° points of samples, how many sample covariance matrices are needed?
Collect a data segment consisting of 1024 points to form N-dimensional vectors, where
N = 32. These N-dimensional data vectors are used to form a sample covariance matrix
Sof N x N.
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58 Cognitive Radio Communications and Networking

By doing this, we have K = 10°/1025 = 97 segments. From each segment, we estimate
a sample covariance matrix. Thus we have K = 97 sample covariance matrices; in other
words, a series of K matrices, S, S,, ---,Sg are obtained. Il

Let us check the most important property of S: S is a positive semidefinite matrix.
Since H is a symmetric idempotent matrix: H = H”, H = H?, for any N-vector a,

1 1
a’Sa=—-a’X"H'"HXa = —y’y > 0,
n n

where y = HXa. Thus, the covariance matrix S is positive semidefinite, writing
S>0.

For continuous data, we expect S is not only positive semidefinite, but positive definite,
writing

S>0,

ifn >N+ 1.
It is often convenient to define the covariance matrix with a divisor of n — 1 instead
of n. Set
1 n

S,=—X"HX =
n—1 n—1

S.

If the data forms a random vector sample from a multivariate distribution, with finite
second moments, then S, is an unbiased estimate of the true covariance matrix. See
Theorem 2.8.2 of [110, p. 50].

The sample correlation coefficient between the ith and the j variables is

Yo s

Unlike s,;, the correlation coefficient is invariant under both changes of scale and
origin of the ith and the jth variables. This property is the foundation of detection of
correlated structures among random vectors. Clearly,

0<lp;l =1,
where |a| is the absolute value of a. Define the sample correlation matrix as
X =(p;)
with p;; = 1. It follows that
> >0.

If ¥ =1, we say that the variables are uncorrelated. This is the case for white Gaussian
noise. If D = diag(s;), then

>=D'SD"',S=DZD.
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3.3.1.2 Measure of Multivariate Scatter

The matrix S is one possible multivariate generation of the univariate notion of variance,
measuring scatter above the mean. Physically, the variance is equivalent to the power of
the random vector. For example, for a white Gaussian random variable, the variance is
its power.

Sometimes, for example, for hypothesis testing problems, we would rather have a single
number to measure multivariate scatter. Of course, the matrix S contains many more
structures (“information”) than this single real number. Two common such measures are

1. the generalized variance detS, or |S|.
2. the total variance, TrS.

A motivation for these measures is in principle component analysis (PCA) that will be
treated later. For both measures, large values indicate a high degree of scatter about the
mean vector X—physically larger power. Low values represent concentration about
the mean vector X. Two different measures reflect different aspects of the variability
in the data. The generalized variance plays an important role in maximum likelihood
(ML) estimation while the total variance is a useful concept in principal component
analysis. In the context of low SNR detection, it seems that the total variance is a more
sensitive measure to decide on two alternative hypotheses.

The necessity for studying the (empirical) sample covariance matrix in statistics arose
during 1950s when practitioners were searching for a scalar measure of dispersion for the
multivariate data [111, Chapter 2]. This scalar measure of dispersion is relevant under the
context of hypothesis testing. We need a scalar measure to set the threshold for testing.

3.3.1.3 Linear Combinations

Linear transformations can simplify the structure of the covariance matrix, making inter-
pretation of the data more straightforward. Consider a linear combination

vi=ax, Fayx,+---Fayxy,l=1,2,...,n,

where a, - -+, ay are given. From (3.10), the mean is
y ! i y laT i x, =a’x
— " =1 ] ’
and the variance is
1 n 1 n
= > -9’ =- Y aT(x, — 9(x, — %) a=a’S,a,
=1 =1

where (3.11) is used.
For a g-dimensional linear transformation, we have
y, =Ax;,+b,[=1,2,...,n,
which may be written as
Y =XA" +1b",

where Y is a ¢ x g matrix and b is a g-vector. Usually, ¢ < N.
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The mean vector and covariance matrix of the new objects y,; are
y=Xx+Db,
S, =13 -9 -9 =AS,AT.
If A is nonsingular (so, in particular, ¢ = N), then
S, = A_ISy(AT)‘1 = A_IS},A_T.

Here we give three most important examples: (1) the scaling transform; (2) Mahalanobis
transform; (3) principal component transformation (or analysis).

3.3.1.4 The Scaling Transform

The n vectors of dimension N are objects of interest. Define the scaling transform as
y, =D7l(x, —%),[=1,2,...,n
D = diag(s;).

This transformation scales each variable to have unit variance and thus eliminates the
arbitrariness in the choice of scale. For example, if x(;, measures lengths, then y, will
be the same. We have

S, =%

3.3.1.5 Mahalanobis Transformation

If S> 0, then S™! has a unique symmetric positive definite square root S™/2. See A.6.15
of [110]. We define the Mahalanobis transformation as

7, =S"°(x, —%),[=1,2,...,n.
Then
S, =1,

so that this transformation eliminates the correlation between the variables and standard-
izes the variance of each variable.

3.3.1.6 Principle Component Analysis

In the era of high-dimensionality data processing, PCA is extremely important to reduce
the dimension of the data. One is motivated to summarize the total variance using much
fewer dimensions. The notion of rank of the data matrix occurs naturally in this context.
For zero-mean random vector, it follows, from (3.12), that

1
S=-X"X.
n

This mathematical structure plays a critical role in its applications.
By spectrum decomposition theorem, the covariance matrix S may be written as

S =UAU,
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where U is an orthogonal matrix and A is a diagonal matrix of the eigenvalues of S,
A =diag[ A} Ay -+ Ay ].
The principal component transformation is defined by the unitary rotation
w,=U"(x, - %),/ =1,2,...,N.
Since
S, =U"S U=A,

the columns of W, called principal components, represent uncorrelated linear combina-
tions of the variables. In practice, one hopes to summarize most of the variability in the
data using only the principal components with the highest variances, thus reducing the
dimensions. This approach is the standard benchmark for dimensionality reduction.

The principal components are uncorrelated with variances

)\,1, }\‘2, A ’)\‘N'

It seems natural to define the “overall” spread of the data by some symmetric monotoni-
cally increasing function of A, A,, - - -, A,,, such as the geometric mean and the arithmetic
mean

N N

Using the properties of linear algebra, we have

N
det S, =detA =[] A;,
i=1

N
TrS, = TrA = )_ A,.

i=1

We have used the facts for a N x N matrix

N N
detA:l_[ki, TrA:ZA,-,
i=1 i=1

where A, is the eigenvalues of the matrix A. See [110, A.6] or [112], since the geometric
mean of the nonnegative sequence is always smaller than the arithmetic mean of the
nonnegative sequence, or [113]

im o Gtat---+a,

(a1a2 tte an) = n I

where g; are nonnegative real numbers. Besides, the special structure of S > 0, implies
that all eigenvalues are nonnegative [114, p. 160]

%(S) = 0.
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The arithmetic mean-geometric mean inequality is thus valid for our case. Finally
we obtain

1
(detS,)V < TS, (3.13)

The rotation to principal components provides a motivation for the measures of multi-
variate scatter. Let us consider one application in spectrum sensing. The key idea behind
covariance-based primary user’s signal detection that the primary user signal received at
the CR user is usually correlated because of the dispersive channels, the utility of multiple
receiver antennas, or even oversampling. Such correlation can be used by the CR user to
differentiate the primary signal from white noise.

Since S, is a random matrix, detS, and TrS, are scalar random variables. Girko studied
random determinants [111]. (5.21) relates the determinant to the trace of the random matrix
S.. In Chapter 4, the tracial functions of S, are commonly encountered.

Example 3.5 (Covariance-based detection)
The received signal is

y(n)=0s(n) +wn),0<n<N -1

where 6 = 1 and 6 = 0 denote the presence and absence of the primary signal, respec-
tively. The sample covariance matrix of the received signal is estimated as

. 1 &
R, =) yinly[n]
n=l1

ylnl = [y[nl, yln — 10,..., yln — L +1]]".

(3.14)

When the number of samples N approaches infinity, li\ converges in probability at
R, = E {ylnly[n]"} = 6R, +R,,

where R, and R, are, respectively, the L x L covariance matrices of the primary signal
vector and the noise vector

sin] = [s[n], s[n = 11,...,s[n — L+ 1717,
win] = [wn],wln =11, ..., wrn — L+ 1]]".

Our standard problem is

HOIRxZRw

H,:R, =R +R,, (.15)

where R and R, are, respectively, covariance matrices of signal and noise.
Based on the sample covariance matrix Ry, various test statistics can be used. Let 4,

and pu,,,, denote the minimum and maximum eigenvalues of R,. Then

) 2
Hy:0, <A <o,

. 2 2
Hl  Oin +071 = )‘i = Umax +Un’
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where o, and a,;, are the maximum and minimum eigenvalues of R, and R,, = 0,1,
is assumed, where 0?2 is the noise power and I, is the L x L identity matrix. Because of

the correlation among the sampled signal, o, > o;,. Thus, if there is no primary signal

H’max — 1

lu’min
otherwise "

Mmin

Based on the above heuristic, the max-min eigenvalue algorithm is formulated as fol-
lows:

1. Estimate the covariance matrix of the received signal according to (3.14).

2. Calculate the ratio of the the maximum and minimum eigenvalues.

3. If the ratio % > 1, claim H, otherwise claim H,,. O
min

The max-min eigenvalue algorithm is simple and has a fairly good performance under
the context of low SNR. At extremely low SNR, say —25dB, the calculated eigenvalues
of the sample covariances matrix are random and look identical. This algorithm breaks
down as a result of this phenomenon. Note that the eigenvalues are the variances of the
principal components. The problem is that this algorithm depends on the variance of one
dimension (associated with the minimum or the maximum eigenvalues).

The variances of different components are uncorrelated random variables. It is thus
more natural to use the total variance or total variation.

3.4 Random Matrices with Independent Rows

We focus on a general model of random matrices, where we only assume independence of
the rows rather than all entries. Such matrices are naturally generated by high-dimensional
distributions. Indeed, given an arbitrary probability distribution in R”, one takes a sample
of N independent points and arranges them as the rows of an N x n matrix A. Recall
that n is the dimension of the probability space.

Let X be a random vector in R”. For simplicity we assume that X is centered, or EX = 0.
Here EX denotes the expectation of X. The covariance matrix of X is the n x n matrix
¥ = EXX”. The simplest way to estimate X is to take some N independent samples
X; from the distribution and form the sample covariance matrix X, = % Z,N: XX,
By the law of large numbers, X, — X almost surely as N — oco. So, taking sufficiently
many samples we are guaranteed to estimate the covariance matrix as well as we want.
This, however, does not address the quantitative aspect: what is the minimal sample size
N that guarantees approximation with a given accuracy?

The relation of this question to random matrix theory becomes clear when we arrange
the samples X; =: A, as rows of the N x n random matrix A. Then, the sample covariance
matrix is expressed as X, = %A*A. Note that A is a matrix with independent rows but
usually not independent entries. The reference of [107] has worked out the analysis of
such matrices, separately for sub-Gaussian and general distributions.
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We often encounter covariance estimation for sub-Gaussian distribution due to the
presence of Gaussian noise. Consider a sub-Gaussian distribution in R” with covariance
matrix X, and let & € (0, 1), ¢ > 1. Then with probability at least 1 — 2 exp(—t2n) one has

If N > C(t/e)*n, then ||Z, — X|| < e. (3.16)

Here C depends only on the sub-Gaussian norm of a random vector taken from this
distribution; the spectral norm of A is denoted as ||A||, which is equal to the maximum
singular value of A, that is, s,,, = ||A]].

Covariance estimation for arbitrary distribution is also encountered when a general noise
interference model is used. Consider a sub-Gaussian distribution in R” with covariance
matrix ¥ and supported in some centered Euclidean ball whose radius we denote ./m.
Let ¢ € (0, 1) and t > 1. Then, with probability at least 1 — n"z, one has

If N > C(t/e)*||Z|| 'mlogn, then ||Z, — X|| < ¢||Z]]. (3.17)

Here C is an absolute constant and log denotes the natural logarithm. In (3.17), typically
m = O(||X||n). The required sample size is N > C(t/¢)*nlogn.

Low rank estimation is used, since the distribution of a signal in R” lies close to a low-
dimensional subspace. In this case, a much smaller sample size suffices for covariance
estimation. The intrinsic dimension of the distribution can be measured with the effective
rank of the matrix X, defined as

_Ti(®)
Iz

where Tr(X) denotes the trace of X. One always has 7(X) < rank(X) < n, and this bound
is sharp. The effective rank r = r(X) always controls the typical norm of X, as E|| X| |22 =
Tr(X) = rX. Most of the distribution is supported in a ball of radius /m where m =
O(r||Z|]). The conclusion of (3.17) holds with sample size N > C(t/&)*r logn.

Summarizing the above discussion, (3.16) shows that the sample size N = O (n) suf-
fices to approximate the covariance matrix of a sub-Gaussian distribution in R" by the
sample covariance matrix. While for arbitrary distribution, N = O(nlogn) is sufficient.
For distributions that are approximately low-dimensional, such as that of a signal, a much
smaller sample size is sufficient. Namely, if the effective rank of X equals r, then a
sufficient size is N = O (r logn).

Each observation of the sample covariance matrix is a random matrix. We can study
the expectation of the observed random matrix. Since the expectation of a random matrix
can be viewed as a convex combination, and also the positive semidefinite cone is convex
[115, p. 459], expectation preserves the semidefinite order [116]:

r(X)

(3.18)

B > A > 0 implies EB > EA. (3.19)

Noncommunicativity of two sample covariance matrices: If positive matrices X and Y
commute, then the symmetrized productis: X oY = %(XY + YX) > 0, which is not true,’
if we deal with two sample covariances. A simple MATLAB simulation using two random

"' This is true, if we know the true covariance matrices, rather than the sample covariance matrices.
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Classical Detection 65

matrices can verify this observation. It turns out that this observation is of an elemen-
tary nature: Quantum information is built upon this noncommunicativity of operators
(matrices). If the matrices A and B commute, the problem of (3.1) is equivalent to the
classical likelihood ratio test [117]. A unifying framework including classical and quantum
hypothesis testing (first suggested in [117]) is developed here.

When only N samples are available, the sample covariance matrices can be used to
approximate the actual ones. A random vector X € R” is used to model the noise or
interference. Similarly, a random vector S € R” models the signal. In other words, (3.1)
becomes

N
1 -
Hy: A= § XX, =R,

N N N N
1 1 1 1
=—Y88"+ > XX +-Y'SX"+->"X8] (3.20)
N i=1 N i=1 N i=1 N i=1

=R + R, + Rgy + Ry,

where ﬁs > 0; ﬁn >0;A>0.
_For any A >0, all the eigenvalues of A are nonnegative. Since some eigenvalues of
Ry and Ry are negative, they are indefinite matrices of small tracial values. Under
extremely low signal-to-noise ratios, the positive term (signal) S in (3.20) is extremely
small, compared with the other three terms. All these matrices are random matrices with
dimension n.

Our motivation is to use the fundamental relation of (3.19). Consider (sufficiently large)
K i.i.d. observations of random matrices A and B:

1 1
HO:EA%EZAk;Hl :]EB%?ZB,(. (3.21)

The problem at hand is how the fusion center combines the information from these K
observations. The justification for using the expectation is based on the basic observation
of (3.20): expectation increases the effective signal-to-noise ratio. For the K observations,
the signal term experiences coherent summation, while these other three random matrices
go through incoherent summation.

Simulations: In (3.20), TrRSX + TrRXS is no bigger than 0.5, so they do not have
significant influence on the gap between Tr(RS +R ,) and TrR Figure 3.1 shows that
this gap is very stable. A narrowband signal is used. The covariance matrix RS is 4 x 4.
About 25 observations are sufficient to recover this matrix with acceptable accuracy. Two
independent experiments are performed to obtain R, and R, . In our algorithms, we need

to set the threshold first for the hypothesis test of H,; we rely on ﬁno for H,,. To obtain
every point in the plot, N = 600 is used in (3.20).

Denote the set of positive-definite matrices by F”*". The following theorem [115, p.
529] provides a framework: Let A, B € ""*", assume that A and B are positive semidef-
inite, assume that A < B, assume that f(0) =0, f is continuous, and f is increasing.
Then,

Trf(A) < Trf(B). (3.22)
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Figure 3.1 The traces of covariances at extremely low SNR as a function of K observations.
(a) SNR = —30dB; (b) SNR = —34dB.

A trivial case is: f(x) = x. If A and B are random matrices, combining (3.22) with
(3.19) leads to the final equation

Trf(EA) < Tr f (EB). (3.23)

Algorithm 3.1 (/) Claim hypothesis H, if matrix inequality (3.22) is satisfied; (2) other-
wise, H, is claimed.

Consider a general Gaussian detection problem: H,, : X = w, H, : X = s + w where w ~
MO, C,), x ~ N(p,, C,), and s and w are independent. The Neyman-Pearson detector
decides H, if "’(z—ZB > y. This LRT leads to a structure of a prewhitener followed by
an EC [118, p. 167]. In our simulation, we assume that we know perfectly the signal
and noise covariance matrices. This serves as the upper limit for the LRT detector. It is
amazing to discover that Algorithm 3.1 outperforms the LRT by several dBs!

Related Work : Several sample covariance matrix based algorithms have been proposed
in spectrum sensing. Maximum-minimum eigenvalue (MME)[119] and arithmetic-to-
geometric mean (AGM) [120] uses the eigenvalues information, while feature template
matching (FTM) [121] uses eigenvectors as prior knowledge. All these algorithms are
based on covariance matrices. All the thresholds are determined by probability of false
alarm.

Preliminary Results Using Algorithm 3.1 : Sinusoidal signals and DTV signals captured
in Washington D.C are used. For each simulation, zero-mean i.i.d. Gaussian noise is
added according to different SNR. 2,000 simulations are performed on each SNR level.
The threshold obtained by Monte Carlo simulations is in perfect agreement with that
of the derived expression. The number of total samples contained in the segment is
N, =100, 000 (corresponding to about 5ms sampling time). The smoothing factor L
is chosen to be 32. Probability of false alarm is fixed with P, = 10%. For simulated
sinusoidal signal, the parameters are set the same.
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Figure 3.2 Probability of detection. (a) Simulated Narrowband Signal; (b) Measured DTV Data.

Hypothesis detection using a function of matrix detection (FMD) is based on (3.23).
For more details, we see [122]. It is compared with the benchmark EC, together with
AGM, FTM, MME, as shown in Figure 3.2. FMD is 3dB better than EC. While using
simulated sinusoidal signal, the gain between FMD and EC is 5dB. The longer the data,
the bigger this gain.

3.5 The Multivariate Normal Distribution

The multivariate normal (MVN) distribution is the most important distribution in science
and engineering [123, p. 55]. The reasons are manifold: Central limit theorems make it
the limiting distributions for some sums of random variables, its marginal distributions
are normal, linear transformations of multivariate normals are also multivariate normal,
and so on. Let

T
X=[X X, - Xy|
denote an N x 1 random vector. The mean of X is
m=EX = [ml m, -+ My ]T.

m; = EX;.
The covariance matrix of X is

R=EX-m)X-m’ ={r;},
ri = E(X;, — mi)(Xj — mj).

The random vector X is called to be multivariate normal if its density function is

fx)

1 1
= (Zn)N/Z(det R)1/2 exp |:_§(X - m)TR_] (x— m)] . (3.24)
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We assume that the nonnegetive definite matrix R is nonsingular. Since the integral of
the density function is unit, this leads to

1
/ exp |:—§(X -m) R (x— m):| dx = 2m)N/?(detR)"/2.
The quadratic form
d?=x-m'R'x—m)

is a weighted norm called Mahalanobis distance from x to m.

Characteristic Function

The characteristic function of X is the multidimensional Fourier transform of the density

d (@) = Ee 19X = /

—iw! _l _ TR—l/v
dx(zﬂ)N/z(detR)uz exp|: Jjo'X 2(x m)" R (x m)i|.

By some manipulation [123], we have
T L
®=expl—jw m-— Ea) Ro; . (3.25)

The characteristic function itself is a multivariate normal function of the frequency
variable w.

Linear Transforms

Let Y be a linear transformation of a multivariate normal random variable:
Y =ATX
AT :m x N(m < N).

The characteristic function of Y is
. ) 1
P (w) = Ee”wTY = Ee’fwTATX = exp {—ijATm — EwTATRAw} .

Thus, Y is also a multivariate normal random variable with a new mean vector and
new variance matrix

Y =ATX: MA"m,ATRA]

if the matrix A”RA is nonsingular.

Diagonalizing Transforms

The correlation matrix is symmetric and nonnegative definite. In other words, R > 0.
Therefore, there exists an orthogonal matrix U such that

U'RU = diag[rx] - 231
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The vector Y = U”X is distributed as

Y = U'X: MU m, diag[A] --- A% 11
The random variables Y,, Y,, ..., Yy are uncorrelated since
EY-U'm)(Y-U'm)" =U'RU =diag[»] - 13 ].

In fact, Y, are independent normal random variables with mean U”m and variances A2:

N
fm=ﬂ@m%“mﬂ7%m—m%m1

This transformation Y = U”X is called a Karhunen-Loeve or Hotelling transform. It
simply diagonalizes the covariance matrix

R:U'RU = A2

Such a transform can be implemented in MATLAB, using a function called eig or svd.

Quadratic Forms in MVN Random Variables

Linear functions of MVN random vectors remain MVN. In GLRT, quadratic forms of
MVNs are involved. The natural question is what about quadratic forms of MVNs? In
some important cases, the quadratic forms have a x? distributions. Let X denote an
N[m, R] random variable. The distribution

0=X-m'R'X-m)

is x% distributed. The characteristic function of Q is

d(w) = Ee /92 = /dxexp [—joX —m) R (X —m)]

1 1 _
X (2n)N/2(detR)1/2 exp [_E(X_m)TR l(x—m)]
B 1 1 N
_fﬁa+wwW%%WW®mW”Hﬂw)

X exp [—%(X —m) R T+ 2jol)(x — m):|

1
(1 +2jo)N

which is the characteristic function of a chi-squared distribution with N degrees of free-
dom, denoted X,%,. The density function for Q is the inverse Fourier transform

I SN 1 7 B Y8
f@) = rv 2 e 1% q >0.
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70 Cognitive Radio Communications and Networking

The mean and variance of Q are obtained from the characteristic function

EQ=N
VarQ = 2N.

Sometimes we encounter more general quadratic forms in the symmetric matrix P:

0=X-mPX—m)
X : N[m, R].

The mean and variance of Q are

EQ = TrPR
Var = 2Tr(PR)?.

The characteristic function of Q is

1 1
D (w) = /dx T G P |:—§(X —m)" I+ 2jwPR)(x — m)i|

1 1 1
= | dx
f Q)M (det [RA + 2jwPR)' ]}/ [det A + 2jwPR)]?
X exp [—%(x —m)" I +2j0PR)(x — m)i|

1
" [det(I+ 2jwPR)]'?

If PR is symmetric: PR = RP, the characteristic function is

1
CD(C()) - N )

[T +2jwr,)"?

n=1

where A, are eigenvalues of PR. This is the characteristic function of a x2 random variable
iff

W= l,n=1,2,...,r
" \10n=r+1,...,N °

If R = I, meaning X consists of indepedent components, then the quadratic form Q is
x2 iff P is idempotent:

P> =P.

Such a matrix is called a projection matrix. We have the following result: if
X is MO,I] and P is a rank r projection, the linear transformation Y =PX is
MO, P], and the quadratic form Y7Y = X’PX is x2. More generally, if X is
MO, R], R=UAU", A?=diag[ 2] 23 --- 23 ] and P is chosen to be UA,'U”
with A2 =diag[kf2 Az_z )@2], then PRP = U/ U” and the quadratic form
Y'Y is x?2.
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Let Q = (X —m)"R™'(X — m) where X is V[0, R]. Equivalently,

N
0=> (X,—w/o’
n=1
is a quadratic form in the ii.d. Mu, 0?%] random variables X, X5, -+, Xy. We have
shown that Q is XI%,. Form the random variable

y- 2N
= v
The new random variable V asymptotically has mean 0 and variance 1, that is, asymp-
totically N0, 1].

The Matrix Normal Distribution

Let X(n x N) be a matrix whose rows X|,---,x!, are independently distributed as

N(u,R). Then X has the matrix normal distribution and represents a random matrix
observation from N(ux, R). Using (3.24), we find that the density function of X is [110]

1 n
. —n/2 - VIR (v, —
f(X) =[det 2r R)] exp: 3 ,-Ezl (x; —mn) R (x; [L)}
=[da(2nR)]"ﬂexp{—%ikuxI(X-—luT)TR%X-—luTn},

where 1 is a column vector having the number 1 as its elements.

Transformation of Normal Data Matrices
We often encounter random vectors. Let

ST &

be a random sample from N(w, ¥) [110]. We call

a data matrix from AM(p, X) or simply a “normal data matrix.” This matrix is a basic
building block in spectrum sensing. We must understand it thoroughly. In practice, we
deal with data with high dimensionality. We use this notion as our basic information
elements in data processing.
Consider linear functions
Y = AXB,

where A(m x n) and B(p X g) are fixed matrices of real numbers. The most important
linear function is the sample mean

. 1¢ 14T
X = - x, =n 1°X,

where A =n~'17 and B = L,
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72 Cognitive Radio Communications and Networking

Theorem 3.1 (Sample mean is normal) If X (n x p) is a data matrix from N »(, X)),
and if nx = X'1, then X is ./\/p (m, n~'X) distribution.

Theorem 3.2 (Y = AXB is a normal data matrix) If X(n x p) is a normal data matrix
Sfrom N (1, X), and if Y = AXB, then Y is a normal data matrix if and only if

1. Al = «1 for some scalar «, or BT[L =0, and
2. AAT = B1 for some scalar 8 or BTYB = 0.

When both conditions are satisfied, then Y is a normal data matrix from
/\/:I(aBT/L, BBTIB).

Theorem 3.3 The elements of Y = AXB are independent of those of Z = CXD.
If X(n x p) is a normal data matrix from N(w, X), and if Y = AXB and 7. = CXD,
then the elements of Y are independent of Z if and only if

1. BTXD or
2. ACT = 0.

Under the conditions of Theorem 3.3, x = n~'X”1 is independent of HX, and thus is
independent of S = n~'X"HX.

The Wishart Distribution

We often encounter the form X7 CX where C is a symmetric matrix. This is a matrix-
valued quadratic function. The most important special case is the sample covariance matrix
obtained by putting C = n~'H, where H is the centering matrix. These quadratic forms
often lead to the Wishart distribution, which is a matrix generalization of the univariate
chi-squared distribution, and has many similar properties.

If M(p x p) is

M = X"X,

where X(m x p) is a data matrix from N(0, X), then M is said to have a Wishart distri-
bution with scale matrix ¥ and degrees of freedom parameter m. We write

M~ W,(Z, m).

When X = I, the distribution is said to be in standard form.

When p = 1, the W, (02, m) distribution is given by x” x, where the elements of x(m x
1) are i.i.d. N(0, 02) variables; that is the W, (0%, m) distribution is the same as the o2 x2
distribution.

The scale matrix X plays the same role in the Wishart distribution as o does in the

a?x2 distribution. We shall usually assume

¥ >0.
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Theorem 3.4 (The class of Wishart matrix is closed under linear transformation) If
M~ W (X, m) and B is a (p x q) matrix, then

B"MB ~ W ,(B" B, m).
The diagonal submatrices of M themselves have a Wishart distribution. Also,
TTAMETE ~ W L m).
If M~ W,(I,m) and B(p x q) satisfies BB = I, then
B'MB ~ W, (I, m).

Theorem 3.5 (Ratio transform) [fM ~ W (X, m), and a is any fixed p-vector such that
a’Xa #£0, then

a’Ma
—_— X .
aT Za m

2,2
Also, we have m;; ~ o/ ;.

Theorem 3.6 (The class of Wishart matrix is closed under addition) If M, ~
WP(E, my) and M, ~ Wq(Z, m,), then

M, +M, ~ W, (X, m +m,).

Theorem 3.7 (Cochran, 1934) If X(n x p) is a data matrix from N » 0, %), and if C(n x
n) is a symmetric matrix, then

1. XTCX has the same distribution as a weighted sum of independent W »(X, 1) matrices,
where the weights are eigenvalues of C.
2. X" CX has a Wishart distribution if and only if C is idempotent, in which case

X"CX ~ W, (Z,r),

where r is the rank r = TrC = rankC;
3. S = n 'XTHX is the sample covariance matrix, then

nS~ W, (X,n—1).
Theorem 3.8 (Craig, 1943; Lancaster, 1969, p. 23) If the rows of X(n x p) are i.i.d.
/\/p (m, X), and if C,, ..., C, are symmetric matrices, then
X'Cc\X,....x"'¢,x

are jointly independent if C,C, = 0 for all r # s.
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74 Cognitive Radio Communications and Networking

The Hotelling 72 Distribution

[110, p. 73] Let us study the functions such as d"M~'d, where d is normal, M is Wishart,
and d and M are independent. For example, d may be the sample mean, and d proportional
to the sample covariance matrix. Hotelling (1931) initiated the work to derive the general
distribution of quadratic forms.

If « is used to represent md”M~'d where d and M are independently distributed as
N » (0,T) and Wp (I, m), respectively, then we say that « has the Hotelling T2 distribution
with parameters p and m. We write a ~ T?(p, m).

Theorem 3.9 (T2 distribution) If x and M are independently distributed as N (1, X)
and W (X, m), respectively, then

mx—m) M (x = p) ~ T(p, m).

If x and S are the mean vector and covariance matrix of a sample of size n from
N,(r, %) and S, = (n/(n — 1))S, then

n—-DE-w)'ST'®X—p) =n&-—pw)'S;' ®—p)~T*(p.n—1).
The T? statistic is invariant under any nonsingular linear transformation x — Ax + b.

% ~ B(%(m —p+1), %p) where B(-, -) is a beta variable.

Theorem 3.10 (d”Md is independent of M +d’d) If d and M are independently
distributed as N,,(O, I) and W, m), respectively. Then, d"Md is independent of
M+d"d.

Wilks’ Lambda Distribution

Theorem 3.11 (Wilks’ lambda distribution) If A ~ W(X, m) and B ~ W(X, n) are
independent and if m > p and n > p. Then,

¢ = det(A"'B) = j::i,

is proporational to the product of p independent F variables, of which the i-th has degrees
of freedomn —i +1andm —i + 1.
If A~W(X,m) and B~ W(X, n) are independent and if m > p, we say that

_ det A B 1
" det(A+B) det(I+A-'B)

~ A(pa m, n)7

has a Wilks’ lambda distribution with parameters p, m, n.

The A family of distributions occurs frequently in the context of likelihood ratio test.
The parameter p is dimension. The parameter m represents the “error” degrees of freedom
and n the “hypothesis” degrees of freedom. Thus m + n represents the “total” degrees of
freedom. Like the 72 statistic, Wilks’ lambda distribution is invariant under changes of
the scale parameters of A and B.
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Theorem 3.12 (Independent variables Wilks’ lambda distribution)
A(psmvn) ~ l_[uia
i=1

where Uiy ..., U, are independent variables and
B —1 ( i — p) —1 | =1
e m N N PP (8
U; +i1—p p l

Theorem 3.13 (Total degrees of freedom) 7The A (p,m,n) and A (n,m +n — p, p)
distributions are the same.

If A ~ W(XZ, m) is independent of B ~ W(X, n) where m > p. Then, the largest eigen-
value 6 of (A + B)"'B is called the greatest root statistic and its distribution is denoted
0(p,m,n).

If X is an eigenvalue of A~'B, then ﬁ
is a monotone function of A, 6 is given by

is an eigenvalue of (A + B)~!B. Since this

)"1
0 = ,
142,

where 1, is the largest eigenvalue of A~'B. Since Ay >0, we see that 0 <6 < 1.
For multisample hypotheses, we see [110, p. 138].

Geometric Ideas

The multivariate normal distribution in N dimensions has constant density on ellipses or
ellipsoids of the form

x—mw'E 7 x—p) = (3.26)

where ¢ is a constant. These ellipsoids are called the contour of the distribution or the
ellipsoids of equal concentration. For u = 0, these contours are centered at x = 0, and
when ¥ =1 the contours are circles or in higher dimensions spheres or hyperspheres.

The principal component transformation facilitates interpretation of the ellipsoids of
equal concentration. Using the spectral decomposition

Y = TAIT,

where A = diag(X, A,, - - -, Ay) is the matrix of eigenvalues of X, and I is an orthogonal
matrix whose columns are the corresponding eigenvectors. As in Section 3.3.1, define the
principal component transform by

y=T"x—p).
In terms of y, (3.26) becomes
N o 2
>i-e
i=1

so that the components of y represents axes of the ellipsoid.
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In the GLRT, the following difference between two ellipsoids is encountered

G- S x—w) — - B - ) = - ) (5] - B - ) = dP,
(3.27)

where d is a constant. When the actual covariance matrices X, and X, are perfectly
known, the problem is fine. Technical difficulty arises from the fact that sample covariance
matrices X, and X, are used in replacement of X, and X,. The fundamental problem is
to guarantee that (3.27) has a geometric meaning; in other words, this implies

x—mw'ET = Z7Hx—p) = 0. (3.28)

As in Section A.3, the trace function, TrA = ) ;a
[110] for matrices A, B, C, D, X and scalar «:

satisfies the following properties

i’

Tra = a, Tr(A £ B) = TrA & TrB, Tra A = «TrA

TrCD = TiDC = ) ¢;;d);.
ij

Tr(x— ' = ZHEx -]l =T(E = EHx—mx— w1 =0 (3.29)
Using the fact that for A, B > 0, we have
(TrA)(TrB) > Tr(AB) > 0,
we have the necessary condition (for (3.28) to be valid)
T2 - 2,1 >0, (3.30)
since
Tr{(x — )" (x = W1 = 0. (3.31)

The necessary condition (3.30) is easily satisfied when the actual covariance matrices
¥, and X are known. When, in practice, the sample covariance matrices X, and X, are
known, instead, the problem arises

&, - £, > 0. (3.32)

This leads to a natural problem of sample covariance matrix estimation and the related
GLRT. The fundamental problem is that the GLRT requires the exact probability distri-
bution functions for two alternative hypotheses. This condition is rarely met in practice.
Another problem is intuition that the random vectors fit the exact probability distribution
function. In fact, the empirical probability distribution function does not satisfy this con-
dition. This problem is more obvious when we deal with high data dimensionality such
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as N = 10°, 10° which are commonly feasible in real-world spectrum sensing problems.
For example, N = 100,000 corresponding to 4.65 milliseconds sampling time.

3.6 Sample Covariance Matrix Estimation and Matrix
Compressed Sensing

Fundamental Fact: The noise lies in a high-dimensional space; the signal, on the contrast,
lies in a much lower-dimensional space.
If a random matrix A has i.i.d column A;, then

AA =) AAT

where A* is the adjoint matrix of A. We often study A through the n x n symmetric,
positive semidefinite matrix, the matrix A*A; in other words

A*A > 0.
The absolute matrix is defined as
IA| = VA*A.
A matrix C is positive semidefinite,
C=>0,
if and only all its eigenvalues A; are nonnegative
A; > 0.
The eigenvalues of |A| are therefore nonnegative real numbers or
D =|A]| > 0.

An immediate application of random matrices is the fundamental problem of estimating
covariance matrices of high-dimensional distributions [107]. The analysis of the row-
independent models can be interpreted as a study of sample covariance matrices.

There are deep results in random matrix theory. The main motivation of this subsection
is to exploit the existing results in this field to better guide the estimate of covariance
matrices, using nonasymptotic results [107].

We focus on a general model of random matrices, where we only assume indepen-
dence of the rows rather than all entries. Such matrices are naturally generated by
high-dimensional distributions. Indeed, given an arbitrary probability distribution in R”,
one takes a sample of N independent points and arranges them as the rows of an N x n
matrix A. Recall that n is the dimension of the probability space.

Let X be a random vector in R". For simplicity we assume that X is centered, or
EX = 0. Here EX denotes the expectation of X. The covariance matrix of X is the n x n
matrix

¥ = EXXT.
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78 Cognitive Radio Communications and Networking

The simplest way to estimate X is to take some N independent samples X; from the
distribution and form the sample covariance matrix

N
1
Ty=—y XX
N N ; P4
By the law of large numbers,
Xy — X,

almost surely as N — oo. So, taking sufficiently many samples we are guaranteed to
estimate the covariance matrix as well as we want. This, however, does not address the
quantitative aspect: what is the minimal sample size N that guarantees approximation
with a given accuracy?

The relation of this question to random matrix theory becomes clear when we arrange
the samples

X, =A,i=12..N,

as rows of the N x n random matrix A. Then, the sample covariance matrix is expressed
as

1
T, = —A*A.
NTN

Note that A is a matrix with independent rows but usually not independent entries.
The reference of [107] has worked out the analysis of such matrices, separately for
sub-Gaussian and general distributions.

We often encounter covariance matrix estimation for sub-Gaussian distribution due to
the presence of Gaussian noise. Consider a sub-Gaussian distribution in R” with covari-
ance matrix X, and let ¢ € (0, 1), + > 1. Then with probability of at least

1 — 2exp(—t*n),
one has
If N > C(t/e)’n, then ||Zy — Z|| <e. (3.33)

Here C depends only on the sub-Gaussian norm of a random vector taken from this
distribution; the spectral norm of A is denoted as ||A||, which is equal to the maximum
singular value of A, that is,

Smax = ||AIl.

Covariance matrix estimation for arbitrary distribution is also encountered when a
general noise interference model is used. Consider a sub-Gaussian distribution in R" with
covariance matrix X and supported in some centered Euclidean ball whose radius we
denote /m. Let ¢ € (0, 1) and ¢ > 1. Then, with probability at least 1 — n”z, one has

If N > C(t/e)*||Z|| 'mlogn, then ||Z, — Z|| < ¢&||Z]]. (3.34)
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Here C is an absolute constant and log denotes the natural logarithm. In (3.34), typically
m = O(|[X]|n).
Thus the required sample size is
N > C(t/e)*nlogn.

Low rank estimation is often used, since the distribution of a signal in R” lies close
to a low-dimensional subspace. In this case, a much smaller sample size suffices for
covariance estimation. The intrinsic dimension of the distribution can be measured with
the effective rank of the matrix X, defined as

Tr(X)
YY) = ,
ATl

(3.35)

where Tr(¥) denotes the trace of . One always has
r(X) <rank(X) < n,
and this bound is sharp. The effective rank
r=r(%),
always controls the typical norm of X, as
E[X|3 = Tr(Z) = rX.
Most of the distribution is supported in a ball of radius /m, where
m = O(r|[X]]).
The conclusion of (3.34) holds with sample size
N > C(t/¢)*r logn.
Summarizing the above discussion, (3.34) shows that the sample size
N =0(n)

suffices to approximate the covariance matrix of a sub-Gaussian distribution in R" by the
sample covariance matrix. While for arbitrary distribution,

N = O(nlogn)

is sufficient. For distributions that are approximately low-dimensional, such as that of a
signal, a much smaller sample size is sufficient. Namely, if the effective rank of ¥ equals
r, then a sufficient size is

N = O(rlogn).
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80 Cognitive Radio Communications and Networking

As in Section 3.3.1, our standard problem (3.15) is

HO:szRw’
Hl:Rx:Rs+Rw7

where R, and R, are, respectively, covariance matrices of signal and noise. When the
sample covariance matrices are used in replacement of actual covariance matrices, it
follows that

H() . RX = R

T e (3.36)
H,:R, =R, +R,.

We must exploit the fundamental fact that lis requires only O (r logn) samples, while
ﬁw requires O (n). Here the effective rank r of R, is small. For one real sinusoid signal,
the rank is only two, that is, » = 2. We can sum up the K sample covariance matrices
R, = Zf:] lix’k, for example, K = 200. Let us consider the three-step algorithm:

1. break the long record of data into a total of K segments. Each segment has a length
of p. In other words, a total of pK is available for signal processing.

HO X,k T I}w,k’

X (3.37)
Hl :Rx,k _RSJ( +Rw.k’k = 1,2,...,K.

2. Choose the p such that p > O(r logn); so the sample covariance matrix lA{S_ ¢ accurately
approximates the actual covariance matrix:

HO xk_ka’

(3.38)
H] RkNRk+ka,k:1,2,...K
3. We can sum up the K estimated sample covariance matrices IA{X’ «
Zk 1 xk - Zk 1 wk’ (339)

Zkl ok NKRH"‘Zkl

where, without loss of generality, we have assumed Ry ; = Rm.

In Step 3, the signal part coherently adds up and the noise part randomly adds up. This
step enhances SNR, which is especially relevant at low SNR signal detection. This basic
idea will be behind the chapter on quantum detection.

Another underlying idea is to develop a nonasymptotic theory for signal detection.
Given a finite number of (complex) data samples collected into a random vector x € C”,
the vector length n is very large, but not infinity, in other words, n < co. We cannot simply
resort to the central limit theorem to argue that the probability distribution function of
this vector x is Gaussian since this theorem requires n — oo.

The recent work on compressed sensing is highly relevant to this problem. Given n,
we can develop a theory that is valid with an overwhelming probability. As a result, one
cornerstone of our development here is compressed sensing to recover the “information”
from n data points X. Another cornerstone is the concentration of measure to study sums
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of random matrices. For example what are the statistics of the resultant random matrix
2 A
Rx = Zk:l Rx,k ()

This problem is closely related to classical multivariate analysis [110, p. 108]. Section
3.6.1 will show that the sum of the random matrices is the ML estimation of the actual
covariance matrix.

3.6.1 The Maximum Likelihood Estimation

The problem of Section 3.6.1 is closely related to classical multivariate analysis [110, p.
108]. Given k independent data matrices

X17X21”'1Xk7
where the rows of X;(n x p) are i.i.d.
Np(ui, X),i=1,2,...,k,

what is the ML estimation of the sample covariance matrix?
In practice, the most common constraints are

()X, =...=2%,

or
b):X,=...=%2, and p,=...=pn,.

If (b) holds, we can treat all the data matrices as constituting one matrix sample from a
single population (distribution).

Suppose that x;, ..., X, is a random vector sample from a population (distribution)
with the pdf f(x, @), where @ is a parameter vector. The likelihood function of the whole
sample is

LX:0) =[] fx:6).
i=1

[(X; 0)) = log L(X; ) = ) _logf (x;: ).

i=1

Given a matrix sample X, both /(X; @)) and L(X; #)) are considered as functions of the
vector parameter 6.
Suppose X, ..., X, is a random sample from ./\fp (e, X). We have

1 .
L(X; p; ) = [det 2 )] " exp [—5 ,2:1 x— w2 - m]
and

1 n
IX;p; X)=logL(X; pu; X) = —% logdet 2n X) — 3 Z (x; — M,)TE’I(XI- — ).
i=1

(3.40)
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Let us simplify these equations. When the identity
&= E & - =& -9 ETE -+ - T E -
+2x - (x - %),

is summed over the index i = 1, ..., n, the final term on the right-hand side vanishes,
giving
> - Z(x T D G- BT E - ).
(3.41)

Since each term (x; — )_()T):_l(xl- — X) is a scalar, it equals the trace of itself. Thus
using

TrAB = TrBA,
we have

x —%"Z7'x -%)=Trz'(x, - X)(x; —%)". (3.42)
Summing (3.42) over index i and substituting in (3.41) gives
Y- E ) =TrET Y % - -0 &) &)
i=1

i=1

(3.43)
Writing
Y X -0 -% =
i=l
and using (3.40) in (3.43), we have
n n ~1 n o Ts—1,g T
(X5 u; X)) = —3 logdet 2 X) — ETrE S — E(X )T XxX=pn). (3.44)
For the special case X =TI and g = 0 then (3.44) becomes
1(X: 0) = —% log(27) — %TrS _ g(i —0)’s '&—0). (3.45)

To calculate the ML estimation if (a) holds, from (3.44), we have

k
=" [n;logdet @) +nTrE'(S, + d,d])], (3.46)
=1

where S; is the covariance matrix of the i-th matrix sample, i =1, .., k, and d;, =X; — ;.
Since there is no restriction on the population means, the ML estimation of u; is X

Setting
k
=3
i=1

i
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(3.46) becomes

1 1
| = —Enlogdet Q2r¥) — ETr):’IW,

% (3.47)
W=>"nS,.

i=1

Differentiating (3.47) with respect to X and equating to zero yields
k

T=n"'W=n"') ns, (3.48)

110

i=1

which is the ML estimation of X under the conditions stated.

3.6.2 Likelihood Ratio Test (Wilks’ A Test) for Multisample

Hypotheses
Consider k independent normal matrix samples X, ..., X, whose likelihood is consid-
ered in Section 3.6.1.
Ho : XN, Z), =+ =py, given L, =--- =3,
Hyipmy # - # Ry, given X = = X,

In Section 3.6.1, the ML estimation under H, is X and S, since the observation can be
viewed under H,; as constituting a single random matrix sample. The ML estimation of
i; under the alternative hypothesis H,, is X;, the i-th sample mean, and the ML estimation
of the common sample covariance matrix is n~'W, where, following (3.47), we have

k
W= Znis,.,
i=I

is the “within-groups” sum of squares and products (SSP) matrix and n = Zf:l n;. Using
(3.46), the LRT is given by

det W n/2 _ [d t T—lw ]n/2 3.49
!det(nS)} = [det (TW)I™. (349)

Here
T =nS

is the “total” SSP matrix, derived by regarding all the data matrices as if they constituted
a single matrix sample. In contrast, the matrix W is the “within-group” SSP and

k
B=T-W=> n&-%&-%’
i=1
may be regarded as the “between-groups” SSP matrix. Thus, from (3.49), we have
o detW 1
~ det(B+W) det(I+W-'B)’
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The matrix W~'B is an obvious generalization of the univariate variance ratio. It will
tend to zero if H,, is true.
If n > p 4k, under H,,

[det A+W 'B)|"' ~ A(p,n —k, k—1) (3.50)

where Wilks” A statistics is described in Section 3.5.
Let us derive the statistics of (3.50). Write the k matrix samples as a single data matrix

Xl
X=1| : [,
Xk

where X; (n; x p) is the i-th matrix sample, i =1, ..., k. Let 1; be the n-vector with 1 in
the places corresponding to the i-th sample and O elsewhere, and set I; = diag(1;). Then
I=>TI,and1=)1,. Let

H=I-n""11"

be the centering matrix for the i-th matrix sample. The sample covariance matrix can be
expressed as

n;S; = X,"H,X.

C,=) H.C,=) n"1,1," —n 11"

We can easily verify that

Set

W =X"CX,B =X"CX.

Further, C, and C, are idempotent matrices of rank n — k and k — 1, respectively, and
C1C2 = O.

Under H,, H is data matrix from A(g, ). Thus by Theorem 3.7 and Theorem 3.8,
we have

W=X'CX~W,(un—k),
B=X'C,X~W,(uk—1),

and, furthermore, W and B are independent. Therefore, (3.50) is derived.

3.7 Likelihood Ratio Test

3.7.1 General Gaussian Detection and Estimator-Correlator Structure

The most general signal assumption is to allow the signal to be composed of a determin-
istic component and a random component. The signal then can be modeled as a random
process with the deterministic part corresponding to a nonzero mean and the random part
corresponding to a zero mean random processes with a given signal covarance matrix. For
generality the noise covariance matrix can be assumed to be arbitrary. These assumptions
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lead to the general Gaussian detection problem [118, 167], which mathematically is writ-
ten as

Hy:ylnl=w[n],n=0,1,...,N —1
H, :y[n]l =x[n]+wln],n=0,1,...,N — 1.

Define the column vector

y = [y[0ly[1]-- - y[N1I", (3.51)
and similarly for x and w. In vector and matrix form
Hy:y=w; C,=C,=A
Hy:y=x+w; C, =C,+C, =B,
where w ~ N(0, C,), and x ~ N(u,, C,), and x and w are independent. The LRT decides
H, if
_ p(Y;Hy)
— >

Ay) =
® p(y; Hy)

)

where

P(y, Hl) = (Zﬂ)N/Zdetll/Z (Cx+Cy) exp [_%(y - I’Lx)*(cx + Cw)il(y - ”’x)]
. _ 1 [P :
p(ys Ho) = Gowmaairz ey, SXP [—3v°C.'y]

Taking the logarithm, retaining only the data-dependent terms, and scaling produces the
test statistic

T(y)=y*C,'y— (y — n)*(C, + C,)"'(y — »,,)
= y*c;ly - y*(cx + C‘Ll))_ly + 2y*(CX + CUJ)_]IL)C - IL;(CX + CU))_IM)C'
(3.52)

From the matrix inverse lemma [114, p. 43] [118, 167]
C,'-(C, +C)'=¢Cl'c(C +¢C,), (3.53)

for p, =0, (3.52) is rewritten as
1 1 1 .
Ty =3yIC,' = (C,+C) 'y = 2y'C,/C.(C, +C,) "y = 2y'C.'%,

where X = C,(C, + C,)) "'y is the MMSE estimator of x. This is a prewhitener followed
by an estimator-correlator.
Using the properties of the trace operation (see Section A.3)

Tre = o, Tr(A £ B) = TrA + TrB, TreA = o TrA, TrAB = TrBA, (3.54)

where « is a constant, we have

1
T(y) = Tr[T(y)] = ETr{y*[C;‘ —(C,+C,) "y}

1
= STHIC,' = (€, + C,) 'y} 2 T, (3.55)
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where the matrix yy* is of size N x N and of rank one. We can easily choose 7, > 0,
since 7T (y) > 0 that will be obvious later. Therefore, (3.55) can be rewritten as

2 JTHIC; = (€, + €)' Iyy'} > Ty (3.56)
Let A > 0 and B > 0 be of the same size. Then [112,329] (see Section A.6.2)
0 < TrAB < (TrA)(TrB),

0 < 2J/TrAB < TrA + TrB. (3:57)
With the help of (3.57), on one hand, (3.56) becomes
THC;' — (€, + €)™+ Tr(yy") = 2y THICa' — (C, +C,) "' Iyy*} > 7.
Or,
Tr(yy") = T, = Tr[C,' — (C, + C,) '], (3.58)
if
Tr[C,' — (C,+C,)"'1>0. (3.59)
Using (3.57), on the other hand, (3.55) becomes
Hy
TrC,' = (C, +C,) Iy = THIC;' = (€, + €)'y} _ T, (B.60)
Ho
Tr(yy*) % — 4l — = f‘ —, (3.61)
o Tr[C, —(C,+C,)" ] Tr(A™ —B7)
if
Tr[C,' — (C,+C,)'1=Tr(A™' =B~ ") >0, (3.62)
(which is identical to (3.59)) whose necessary condition to be valid is:
A<B or C, <C,+C,, (3.63)

due to the following fact: If A < B for A > 0 and B > 0, then (see Section A.6.2)
A~ >B. (3.64)

Note that A= +B~! £ (B +A)~".
Starting from (3.53), we have

Tr[C,' — (C, +C,)~']1 = Tr[C,,'C,(C, + C,) '] = Tr[C,(C, + C,)~'C,']
= Tr{[C,(C, + C,)]'C,} = Tr(A™'B), (3.65)
with

A=C,(C,+C,),B=C,A>0,B>0, (3.66)
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Classical Detection 87

where (3.54) is used in the second step and, in the third step, we use the following [114,
p. 43]

(AB)"' =B~ 'A,
Let A >0 and B > 0 be of the same size. Then [114, p. 181]

TrA TrB
> —— TrA >0, TrB > 0, (3.67)
@A) =~ TrA

TrA™'B >

)\' max

where A, (A) is the largest eigenvalue of A. Due to the facts A >0 and B > 0 given in
(3.66), with the help of (3.65) and (3.67), (3.61) becomes

Hi

o > T TrA Tr[C,(C, + C,)]
Tr(yy") _ ———>T— =T, . (3.68)
= Tr(A"'B) TiB TrC,
Combining (3.65) and (3.67) yields
THC;' — (C, +C,) '] > TrC, >0 (3.69)
v ! v - Tr[C,(C, +C,)] ' '

Using (3.69), (3.58) turns out to be

1 Ter
1= ;
Tr[C,(C, + C,)]

|Tr(yy*) — T,| > Tr[C,,' — (C, +C,)

since
Tr[C,' — (C, +C,) '1>0.

Here |a| is the absolutue value of a. The necessary condition of (3.63) is satisfied even if
the covariance matrix of the signal C, is extremely small, compared with that of the noise
C,,- This is critical to the practical problem at hand: sensing of an extremely weak signal
in the spectrum of interest. At first sight, the necessary condition of (3.63) seems be trivial
to achieve; this intuition, however, is false. At extremely low SNR, this condition is too
strong to be satisfied. The lack of sufficient samples to estimate the covariance matrices
C,, and C, is the root of the technical difficulty. Fortunately, the signal covariance matrix
C, lies in the space of lower rank than that of the noise covariance matrix C,. This
fundamental difference in their ranks is the departure point for most of developments in
Chapter 4.

(3.68) is expressed in a form that is convenient in practice. Only the traces of these
covariance matrices are needed! The traces are, of course, positive scalar real values,
which, in general, are random variables. The necessary condition for (3.68) to be valid is
3.63)C,<C,+C,.
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88 Cognitive Radio Communications and Networking

3.7.1.1 Divergence

Let y : N[O, C,] denote an N x 1 normal random vector with mean zero and covariance
matric C,. The problem considered here is the test:

HO:CyZCO
HI:C),ZCI'

In particular, we have C, = C,, and C;, = C,, + C,. Divergence [123] is a coarse measure
of how the log likelihood distinguishes between H,, and H,:

J = Ey L(y) — Ey L(y),

where
L(y) =yQy.Q=C;' - C/".

The matrix Q can be rewritten as
Q= CgT/2(I _ S)Cgl/z
CO — C(l)/zcg/z; Cg/2 — (C(l)/Z)T
S — CEI/ZCICO_T/Z; C&T/z _ (Cal/2)T
The log likelihood ratio can be rewritten as

Ly)=2'0-S")z
z= Cgl/zy.

The transformed vector z is distributed as A0, C.], with C, =1 for H, and C, =S
for H,. S is called the signal-to-noise-ratio matrix.

3.7.1.2 Orthogonal Decomposition

The matrix S has an orthogonal decomposition

s =¢C,"*c,c;"* =uau”
SU = UA ’

where A is a diagonal matrix with diagonal elements A; and U satisfies U'U = L. This
implies that (C; Ty, A) solves the generalized eigenvalue problem

C,(C;"U) — Co(C;"PU)A = 0.
With this representation for S, the log likelihood ratio may be expressed as
L(y) =zU(I — A"HU g,
where the random vector y has covariance matrix UAU” under H, and I under H,;:

Ey zz" =S
Eyzz" =L
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Classical Detection 89

3.7.1.3 Rank Reduction
A reduced-rank version of the log likelihood ratio is
L.(y) =zUd, — A;HU 2,

where I, and A" are reduced-rank versions of I and A~ that retain r nonzero terms and
N —r zero terms.

This rank reduction is fine, whenever the discarded eigenvalues A; are unity (noise
components). The problem is that nonunity eigenvalues are sometimes discarded with
much penalty. We introduce a new criterion, divergence, a coarse measure of how the log
likelihood distinguishes between H,, and H,

J = Ey L(y) — Ey,L(y) = U0 — A~HU"UAU" — TrUd — A-HU"UU"
= Tr(A + A~ = 2I)

N
SA, +AN—=2) =Tr(S+ 87" —2I).

n=1

We emphasize that it is the sum of A, + A, not A,, that determines the contribution of
an eigenvalue. It will lead to penalty when we discard the small eigenvalues. At extremely
low SNR, the eigenvalues are almost uniformly distributed, it is difficult to do reduced-
rank processing. The trace sum of S and S~! must be considered as a whole. Obviously,
we require that

1 -1
since

A > B = TrA > TrB,

where A, B are Hermitian matrices. The matrix inequality condition %(S—i—S’l) >1
implies

J=Tr(S+S~!'-2I) >0,
or,

J =Ti[(C;' — C;HC, 1= Tr[(Cy ' — C;HCyl = Tr[(Cy ' — €71 (Cy — €)1 > 0.

The rank r divergence is identical to the full-rank divergence when N —r of the
eigenvalues in the original diagonal matrix A are unity. To illustrate, consider the case

P
Hy: Co=Q+ ) oluuf
i=1
P
H,:C,=Q+ Y ofvu}.
i=1
The difference between C, and C; is

p P
— 2 * 2 * __ *
C,—-Cy, = Y o/vvf — ) ofu;uf =LDL

i=1 i=1

L = [vp+1’12)p+2’ '2”vp+q7u%3"'9uﬁy] 5 5
D = d1ag[0p+l,ap+2,---,crp+q,—al,—02 ~~~,ap].
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90 Cognitive Radio Communications and Networking

Assuming af > 0, then rank(R; — R;) =rank(L) and a rank(L) detector has the same
divergence as a full-rank detector.

Example 3.6 (An optimal rank-one detector)
Consider building a low-rank detector for H, versus H; when the observed data is dis-
tributed as AV(0, R,) under H, and NV(0, R,) under H;:
Hy: Cy = o1+ pB2ww*
H,:C, = o1+ B2ww* + vv*.
After some manipulation, we get the following signal-to-noise-ratio matrix:

S =1+U0Xv*
) diag [v*C,yv, 0,0, -+, 0].

The eigenvalues of S are
)\.1 =1+V*COV,)\2: 1,)\‘32 1,“',)\.N= 1.

A rank-one detector is optimum for this problem. It is constructed using the eigenvector
corresponding to A;. At extremely low SNR, the eigenvector is a more reliable feature
to detect than the eigenvalue. In N-dimension geometric terms, the eigenvector is the
direction of the data point, while the eigenvalue the length of this data point. |

Example 3.7 (Gaussian signal plus Gaussian noise)
We can extend the previous example to a general Gaussian signal problem
Hy : Gy
Hl :CI :C0+Cs,
yielding
S=1+C,"*CcyC, "%

Clearly, all eigenvalues are greater than one. This does not mean, however, that eigen-
values close to one cannot be discarded in order to approximate log likelihood with a
low-rank detector. At extremely low SNR, this approximation will most often not work
since maybe all eigenvalues are close to one. |

3.7.2  Tests with Repeated Observations

Consider a binary hypothesis problem [124] with a sequence of independent distributed
random vectors y, € CV. If
_ P

p(y: Hy)

denotes the likelihood radio function of a single observation, an LRT for this problem
takes the form

A(y)

£ =
[TaGo Z @), (3.70)
k=1 Ho
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Classical Detection 91

where 7(K) denotes a threshold that may depend on the number of observations, K.
Taking the logarithms on both sides of (3.70), and denoting Z, = In(A(y,)), we find that

-, 2 @)
vk = 2
o K
k=0 Ho
When 7(K) tends to a constant as K — o0, y(K) 2 limg_, ¥ (K)=0.
Taking the logarithm, retaining only the data-dependent terms, and scaling produces
the test statistic (setting u, for brevity)

_ H,
1 e _ >
T() =5 Y WilC,' = (C.+C) Iy _ Ty (3.71)
= Ho
Using the following fact
K—1
Tr Z x;Ax, = Tr(AX), whereX = Zxkx]’:, (3.72)
k=0
(3.71) becomes
Yo
—1 >
Tt {[Cw —(C,+C)7 Z Vit [ < < (3.73)
0

If the following sufficient condition for the LRT for repeated observations is satisfied
C,'—(C,+C,)"'>0, (3.74)
implying (see Section A.6.2)
Tr[C,' — (C, +C,)"'1>0,

using (3.57), we have

K-1
H 1
Tr{[C,' — (C, +cw)—1]}Tr< Zykyk> > —T,. (3.75)
Or,
Z ul : T (3.76)
ykyk K Tr[c;l _ (CJ\ + Cw)_l] 0- .
The covariance matrix of y is defined as
C, =E@y".
The asymptotic case of K — 00 is
Hy 1 1
TrC, > — T, — 0, (3.77)

YT KTiC,' —(C,+C,)"°
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92 Cognitive Radio Communications and Networking

since the sample covariance matrix converges to the true covariance matrix, that is

, = Jim — Z YiVe-
To guarantee (3.74), the following stronger condition is enough
C,<C. +C,, (3.78)
due to (3.64).

3.7.2.1 Case 1. Diagonal Covariance Matrix on ,: Equal Variances

When x[n] is a complex Gaussian random process with zero mean and covariance matrix
C, and w(n] is complex white Gaussian noise (CWGN) with variance matrix o 2. The
probability distribution functions (PDFs) are given by

-1
p(y; Hy) = m exp[—y*(C, + 0;1) Y]
p(y: Ho) = 52w expl— 5yl

’

where I is the identity matrix of N x N, and TrI = N.
The log-likelihood ratio is

_ 1
InL(y) = —y*[(C, + oT) f — 1y — Indet (C, + 0,/T) + Indeto,,”.
g,

n

Consider the following special case:

1 1
—1 . . 27. -1 _ 2 21
€l = S1C =0l (C+C) =T +oiD ! = 1,
and
N 2
TrC; ' TrC, Tr(C, + C,)~" = %

o2(c2+02)
The LRT of (3.79) becomes

Hl 1
. 3.79
( Zkak> KTHIC. — (C. +Cw)_1]}T0 (3.79)

Using the matrix inverse lemma

C;l - (Cx + (jw)_1 = C;lcx(cx + Cw)_l’

we have

Hl TO n (Gs + 0112) ~ O'r?
E YiYe .= =T ) ~ T K
K TrC,,'TrC, Tr(C, 4+ C,,)~ K No:; KNo

N

(3.80)

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa
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when the signal is very weak, or 02 < o2, TrC, is the total power (variation) of the
received signal plus noise. Note y, are vectors of length N.
Consider the single observation case, K = 1, we have

N-1

Tr(yy*) = ) Iy,

i=0
which is the energy detector. Intuitively, if the signal is present the energy of the received
N—

data increases. In fact, the equivalent test statistic 7 = Z |y[i1]* can be regarded as

an estimator of the variance. Comparing this to a threshold recognlzes that the variance
under H, is o but under H, is 02 + o 2.

3.7.2.2 Case 2. Correlated Signal

C_021p
x_spl’

where p is the correlation coefficient between x[0] and x[1].

Now assume N = 2 and

_ 1 _ o’ +o? o2\ _
C,'=5L(C, +C) " = ( el o er ) =1+ oD+ polQl

01
fab\ ., 1 a —b S S 2a
A_<b a)’A _m<—b a)’TrA =€ +C) a2 —bp*’

where

n

where

A=C,+C,,a=0+0a’b=po’.

If A >0, then

n -1
(Z ail-) <TrA™".
i=l

Obviously, C,, + C, > 0. From (3.77), we have

H] 1
T,. 3.81
( Zy"”‘) KTiC, = (€, +C) 1" A
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94 Cognitive Radio Communications and Networking

3.7.3 Detection Using Sample Covariance Matrices

If we know the covariance matrices perfectly, we have

H():RYZA,AZO
M, :R,=A+B,B>0"

In practice, estimated covariance matrices such as sample covariance matrices must be
used:

HO:R),ZA(),AOZO
M,:R,=A; +B,A;,B>0,

where A, and A, are sample covariance matrices for the noise while B is the sample
covariance matrix for the signal. The eigenvalues A; of

(A+B)'A,
where A is positive semidefinite and B positive definite, satisfy
0<ax =<1
Let A be positive definite and B symmetric such that det (A + B) # 0, then
(A+B)"'BA+B) <A™ - A+B)"".

The inequality, known as Olkin’s inequality, is strict if and only if B is nonsingular.
Wilks’ lambda test [110, p. 335]

det A L
)
= det (A + B) l:[ + )

where A; are the eigenvalues of A~'B.
The equicorrelation matrix is [112, p. 241]

L p- p
o 1 P
E = . 9
popo 1
or,
where p is any real number and J is a unit matrix Jp =117, 1=(1,..., DT. Then
e; =1, ¢; = p, fori# j. For statistical purposes this matrix is most useful for —(p —

1)~! < p < 1. Direct verification shows that, if p # 1, —(p — 1)~', then E~! exists and
is given by

E''=1-p) "{I-p[l+(p—Dpl '}
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Its determinant is given by
detE = (1 - p)""'[1+(p = Dpl.

Since J has rank 1 with eigenvalues p and corresponding eigenvector 1, we see that the
equicorrelation matrix E = (1 — p)I + pJ has eigenvalues:

M=14+p-Dp,ry=---=4,=14+(p—Dp,
and the same eigenvectors as J. logdet A is bounded:

detA

1
A TE A1B) = < exp(Tr(A™'B)),

where A and A + B are positive definite, with equality if and only if B = 0. If A > 0 and
B > 0, then [112,329]

0 <TrAB < (TrA)(TrB)
~TrAB < (TrA + TrB)/2.

3.7.4 GLRT for Multiple Random Vectors

The data is modeled as a complex Gaussian random vector X : Q — CV with probability
density function

p(x) = exp[—(x — p) "R (x — )],

1
aNdetR,
mean ., and covariance matrix R, .. Consider M independent, identically distributed
(i.i.d.) random vectors

X = [X], Xy, -+, Xy],

drawn from this distribution. The joint probability density function of these vectors is
written as

PX) = g eX [ Z (x,, — )R (x,, ILX)}
= 7 MN(detR,,)” Mexp[ MTr(R:!S )],

XX XX
where S, is the sample covariance matrix

M

1 1
S, =— X, — x, — )= —xx —m_,
XX M Z( m ILX)( m I'LX) M X

and m, is the sample mean vector

1 M
mx = M;Xm
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96 Cognitive Radio Communications and Networking

Our task is to test whether R, has structure O or the alternative structure 1:

Hy : R, € Ry,
H,:R,, €R,.

The GLRT statistic is
- phax p(x)

max p(x)
phax p(x)

The actual covariance matrices are not known, they are replaced with their ML estimates
computed using the M random vectors. If we denote by R, the ML estimate of R, under
'H, and by R, the ML estimate of R, under H,, we have

A—1 A A —] A —1
L =det” (R, R)exp[-MTr(R, S,, —R; S, )]

XX

If we assume further that R, is the set of positive definite matrices (no special restrictions
are imposed), then R; = S x, and

L =det (R,'S,.)exp[MN — Tr(R; 'S,,)].
The generalized likelihood ratio for testing whether R has structure R, is
I =LYMN) = gexp(l —a),
where a and g are the arithmetic and geometric means of the eigenvalues of li; 1Sm:

a

8

A —1
%Tr(R(l 1SM),
[det (R, S, )1V,

Based on the desirable probability of false alarm or probability of detection, we can
choose a threshold /,. So if [ > [,, we accept hypothesis H,, and if [ < [,, we reject it.
Consider a special case

R, = {R,, = o’}

where o2 is the variance of each component of x. The ML estimate of R, under H,, is
R, = 621, where the variance is estimated as 62 = %TrS“,. Therefore, the GLRT is

,_ (dets )"
%Trsxx

This test is invariant under scale and unitary transformation.
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3.7.5 Linear Discrimination Functions

Two random vectors can be stochastically ordered by using their likelihood ratio. Here, we
take our liberty in freely borrowing materials from [123]. Linear discrimination may be
used to approximate a quadratic likelihood ratio when testing y : MV(0, C;) under hypothe-
sis H;. The Neyman-Pearson test of H,, versus H,; will have us compare the log likelihood
ratio to a threshold:

fmwén
Jo,(¥) 7_70 .

Ly)=In

We hope, on the average, L(y) will be larger than n under H,; and smaller than n
under H,,. An incomplete measure of how the test of H,, versus H,; will perform is the
difference in terms of L(y) under two hypotheses:

Jo,(¥) Jo, ()
—— —E, In .
fao ¥) ! f@o ¥)

This function is the J-divergence between H, versus H; introduced previously in Section
3.7.1. It is related to information that a random sample can bring about the hypothesis
‘H;. The J-divergence for the multivariate normal problem H; : 'y : N(0O, C;) is computed
by carrying out the expectations:

J = Trl(Cy' — C7HC 1 = Tr[(Cy ' — €7 HCyl

= Tr[(Cy' — C;)(Cy — C))]
= Tr(C,C;' + C,C;' —21) > 0.

J = E4 L(y) — Eg L(y) = E, In

This expression does not completely characterize the performance of a likelihood ratio
statistic, but it does bring useful information about the “distance” between H,, and H,.

3.7.5.1 Linear Discrimination

Assume that the data y is used to form the linear discriminant function (or statistic)
z =w'y.

This statistic is distributed as N[0, w*R,;w] under H,. If a log likelihood ratio is formed
using the new variable z, then the divergence between H,, versus H, is

1 (Ww'Rw  WwWRyw

J== =+ 0 2.

2 \wRyw  w*R|w

Let us define the following ratio of quadratic forms
w Qw

wRyw’

AQI =

Then we may rewrite the divergence as

1 1
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It is remarkable to note that the choice of the discriminant w that maximizes divergence
is also the choice of w that maximizes a function of a quadratic form. The maximization
of quadratic forms is formulated as a generalized eigenvalue problem [123, p. 163]. Let
us rewrite divergence as

J—1|:A[R]+ ! —2]—1[x1/2[k]—#]2
T2 ETOIR, ] T2 YR

The function of J is convex in A. It achieves its maximum either at A
Amax and A .. respectively, are maximum and minimum values of

C,C,".

orat A where

max min>

min>»

The divergence is maximized as follows:

Wi 1 Apax > 7—
W= . pin
Winin» if )“max <

Amin

The linear discriminant function is either the maximum eigenvector of C,C; ! or the
minimum eigenvector of C,C;"', depending on the nature of the maximum and minimum
values. It is not always the maximum eigenvector. The choice of w = w,, or w = w_..
is also called a principal component analysis (PCA). Without loss of generality, w may
be normalized as w*w = 1. Then, if R, = I, the linear discriminant function is distributed
as follows

MO, 1] under H,

Z=Wy: { MO, A, or MO, A;,] under H,.

max min

3.7.6 Detection of Correlated Structure for Complex Random Vectors

For the assessment of multivariate association between two complex random vectors X
and y, our treatment here draws materials from [125, 126]. Consider two real zero-mean
vectors X € R™ and y € R" with two correlation matrices

R , = Exx’, R, = Eyy’.

We assume both correlation matrices are invertible. The cross-correlation properties
between x and y are described by the cross-correlation matrix

ny = ExyT,

but this matrix is generally difficult to explain. In order to illuminate the underlying
structure, many correlation analysis techniques transform x and y into p-dimensional
internal representation

& = Ax, » = BY,

with p = min{m, n}. The full rank matrices A, B are chosen such that all partial sums
over the absolute values of the correlations

k; = E§;w;,
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are maximized
maXE k|, r=1,...,p. 3.82
: — | [| ( )

The solution to the maximization problem (3.82) leads to a diagonal cross-correlation
matrix between & and

K = Etw’ = diag(k, ky, -+ . k), (3.83)
with
ky>ky> >k, >0.

In order to summarize the correlation between x and y, an overall correlation coefficient
p 1is defined as a function of the diagonal correlations {k;}. This correlation coefficient
shares the invariance of the {k;}. Because of the maximization (3.82), the assessment of
correlation is allowed in a lower-dimensional subspace of rank

r < p = min(m, n).

There is a variety of possible correlation coefficients that can be defined based on the
first r canonical correlations {k.;’_,} for a given rank r.

2
kCt’

< =
M\

Pc, =

i=1

pC2=1—]_[1(1 k%l

2
Ik

2
i= 11*kc,

Pcy =

- +(p— r)

ol

.
i C.i

For r = p, these coefficients can be expressed in terms of the original correlation matrices
pe, = 1Tr(R ‘R, R'R]) = lTr(CCT)
pe, =1 —det(— R 'R RI'R]) =1 —det(I—-CC"),

-1 1
Do = Tr[Ryy Ry RT, (Rey —Roy Ry RY) 1 Tr[ccT(I—ccT) ]
- —1 - —1
G Tr[Ryx (Rex—Rey Ry RE) ] Tr(I-CCT)

where
—1/2 T2
C=R_7°R R

These coefficients share the invariance of the canonical correlations, that is, they are
invariant under a nonsingular linear transformation of x and y. For jointly Gaussian x and
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Y. Pc, determines the mutual information between x and y

1 1
I(x:y) = —3 > log(l —kg,) = —3 log(l = pc,).

i=1

The complex version of correlation analysis is discussed in [125, 126].
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4

Hypothesis Detection
of Noncommutative
Random Matrices

4.1 Why Noncommutative Random Matrices?

The most basic building block for quantum information is the covariance matrix. We are
dealing with the matrix space whose elements are covariance matrices. The sufficient and
necessary conditions for a matrix to be a covariance matrix are semidefinite positive. As
a result, the basic elements for us to manipulate are the SDP matrices. Naturally, convex
optimization (SDP matrices are of course convex) is the new calculus under this context.
For any two elements (matrices) A and B, we need to define the basic metric to order
them. If they are random matrices, we call this order the stochastic order, for example,

st
B>A,

if B is stochastically greater than A.

More generally, A and B are two matrix-valued random variables, in contrast with the
scalar random variables. Recall that every entry of A and B is a scalar random variable.
The focus of the current engineering curriculum is on the scalar random variable. When
we deal with “Big Data” [1] in a high-dimensional vector space, the most natural objects
of mathematical operations are such (SDP) matrix-valued random variables.

The matrix operation is fundamentally different from its scalar counterpart in that the
matrix multiplication is not communicative. The quantum mechanics is built upon this
mathematical fact.

When we process the data, we argue in this chapter that the so-called quantum infor-
mation [127] must be preserved and extracted. Data mining is about quantum information
processing [128, 129]. For more details, we refer to the standard text [128].

Now, random matrices are our new objects of interest. We will dedicate an entire
chapter to study this connection. The fundamental reason for us to study random matrices

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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102 Cognitive Radio Communications and Networking

is that a sample covariance matrix (in practice, we do not know the exact covariance
matrix) is a large-dimensional random matrix. Random matrices are a special case of
noncommunicative (matrix-valued!) random variables.

See Appendix A.5 for details on noncommunicative matrix-valued random variables:
random matrices are their special cases.

4.2 Partial Orders of Covariance Matrices: A < B

Example 4.1 (Positivity of covariance matrices)
Consider the 2 x 2 covariance matrix of form

g
Rs:(él).

What is the condition that guarantees the positivity of R;? A Hermitian matrix A is
positive if and only if all eigenvalues of A are positive. The eigenvalues of R, are

M=1+¢

The condition |&] < 1 is sufficient to make two eigenvalues nonnegative, thus R, positive.
The covariance matrices illustrated in Example 3.1 are special cases of this example. [

For a general 2 x 2 matrix, it is easy to check the positivity:
R, = (Z i) > 0if a > 0 and bb < ac

since _ [ 5 T
M =a/2+c/2+ 5(a” — 2ac + ¢* + 4bb)

Ay =a/2+c/2 — 5(a* —2ac + c* + 4bb)'/%.

If the entries are n x n matrices, then the condition for positivity is similar but it is more
complicated. Matrices with matrix entries are called block-matrices.

Theorem 4.1 (Positivity of block matrices) The self-adjoint block-matrix

(5 )

is positive if and only if A, C > 0 and there exists an operator X such that | X|| < 1 and
1 1
B = C2X2. When A is invertible, then this condition is equivalent to

BA~'B* < C.

Theorem 4.2 (Schur) Let A and B be positive n x n matrices. Then
C;=A;B; (=i, j=n)

determines a positive matrix.

! After we get used to this notion, we can drop the words of “matrix-valued.”
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Hypothesis Detection of Noncommutative Random Matrices 103

The matrix C of the previous theorem is called the Hadamard (or Schur) product of
the matrices A and B. In notation, C = A o B.

Let A and B be self-adjoint operators. A < B if B — A is positive. The inequality
A < B implies XAX* < XBX* for every operator X. The partial order between A and
B can be defined. It is called Loewner’s order [109, 114, 130—133]. Generally, stochastic
order [132] can be defined for two random operators A and B.

Example 4.2 (Hypothesis testing in terms of covariance matrices)
From Example 3.2 in Chapter 3, we have
Ho: A =02l+02X

H,:B =R, +021+02X, “.1)

where R, is the covariance matrix of the signal. For the complex exponentials, R, is
given in Example 3.1. Thus, we have

Hy: A =o02l+02X

H,:B =R +021+02X=LA*1+a0)) + 02l +02X.

w

Without loss of generality, we set o2 = 1. It follows that

HOA=I+X

H, :B =SNR(I+ac,) +1+Y. “2)

O

The hypothesis testing problem, see Example 4.2 for an illustraion, can be viewed
as a problem of partial ordering of two covariance matrices H, : A and H, : B for two
hypotheses. Matrix inequalities are the basis of the proposed formalism. Often, Hermitian
matrices (or finite-dimensional self-adjoint operators) are objects of study. The positivity
of these matrices is required for many recent results developed in quantum information
theory. The fundamental role of positivity of covariance matrices is emphasized here.

For positive operators A and B,

IA —BII} + 4(Tr(A'?B'/?))* < (Tr(A + B))*. (4.3)
Let A and B be positive operators, then for 0 < s < 1,
Tr(A'’B'?) > Tr(A + B — |A — B|)/2 (4.4)
or
2Tr(A'°B'/?) 4+ Tr|A — B| = 2Tr(A'’B'/?) 4 ||A — B||, > Tr(A + B). 4.5)
If f is convex then
fE = fO)—&=nf)=0
and

Trf(B) > Trf(A) + Tr(B — A)f (B). (4.6)
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104 Cognitive Radio Communications and Networking

In particular, for f () = tlog¢, the relative entropy of two states is positive:
S(A||B) = TrAlogA — TrBlogB > Tr(B — A). 4.7)
This is the original Klein inequality. A stronger estimate is obtained [34, p. 174]:
S(A||B) > %Tr(B — A (4.8)

From (4.3) to (4.8), the only requirement is that A and B are positive operators (matrices).
Of course, they are valid for A < B.

Let A,B € M, be positive semidefinite. Then for any complex number z, and any
unitarily invariant norm [133],

[|A — |zIB|| < [|A + zB|| < [|A + |z|B]|.

4.3 Partial Ordering of Completely Positive Mappings:
®(A) < ®(B)

It has long been realized that trace-preserving, completely positive maps seem to be the
appropriate mathematical structure needed to model noise in quantum communication
channels and quantum computers [134].

We define a quantum operation @ as a map from the set of density operators of the
input space Q) to the set of density operators for the output space Q,, with the following
three axiomatic properties [128]:

e Al: First, Tr[®(p)] is the probability that the transformation p — ®p takes place;
0 < Tr[®(p)] < 1 for any state p.

e A2: Second, @ is a convex-linear map on the set of density operators, that is, for
probabilities {p;} of states p;,

% <Z PiPi) = Zpiq)(pi)' (4.9)

e A3: Third, ® is a completely positive map. That is, if ® maps density operators of sys-
tem Q, to density operators of system Q,, then ®(A) must be positive for any positive
operator A. Furthermore, if we introduce an extra system R of arbitrary dimensionality,
it must be true that (Z ® ®)(A) is positive for any positive operator A on the combined
system RQ,, where Z denotes the identity map on system R.

The following theorem is fundamental to the adopted formalism: The map & satisfies
axioms Al, A2, A3 if and only if

®(p) =Y E;pE’, (4.10)

for some set of operators E; which map the input Hilbert space to the output Hilbert
space, and ) . E;E;* < I where I is the identity operator and * denotes the conjugate
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Hypothesis Detection of Noncommutative Random Matrices 105

and transpose. ® is obviously linear. The map ® sends a density matrix into another
one, thus ®A and ®B are density matrices that satisfy the conditions for (3.22).
The hypothesis test (3.22) is, thus, generalized by replacing the expectation with the
map &:

TroA < TrdB. 4.11)

Algorithm 4.1 (1) Claim hypothesis 'H, if matrix inequality (4.11) is satisfied; (2) other-
wise, H,, is claimed.

The map ® in (4.11) is very general. The whole body of knowledge of quantum infor-
mation theory [127] can be borrowed. Two maps are of the most important significance:
(1) positive linear maps; (2) completely positive maps. The mathematical foundation is
treated in textbooks [109, 130]. A positive linear map (also unital) & may be thought as
a noncommutative analogue of an expectation map.

Since positivity is a useful and interesting property, it is natural to ask what linear
transformations preserve it [109, Chapter 2]. It is instructive to think of positive maps as
noncommutative (matrix) averaging operations [109, 115, 130, 133].

In this section we use the symbol ® for a linear map from M, to M,. When k =1,
such a map is called a linear functional, and we use the lower-case symbol ¢ for it. A
linear map ®: M, — M, is called positive if ®(A) > 0 where A >0 and M, is the
space of n x n matrices. It is said to be unital if ®(I) = I. We say ® is strictly positive
if ®(A) >0 where A > 0. It is easy to see that a positive linear map is strictly positive if
and only if ®(I) > 0.

Any positive linear combination of positive maps is positive. Any convex combination
of positive, unital maps is positive and unital. There are ten basic examples in [109,
Chapter 2]. The combination of these basic maps allows us to form many combined maps
that are suitable for specific needs across the layers of the cognitive radio network. This
subtask needs further investigation.

From (4.11), it is required that: (1) the map P is positive: positive matrices are mapped
to positive matrices, that is, ®A > 0 for any A > 0; (2) the map is trace-preserving,
that is, Trd&A = TrA. This special class of positive maps, called completely positive,
trace-preserving (CPTP) linear maps [109, Chapter 3], is central to the proposed research.
The map in (4.10) is such a map. A CPTP linear operation takes statistical operators to
statistical operators. Such maps in (4.10) are also called quantum channels in quantum
information theory.

4.4 Partial Ordering of Matrices Using Majorization: A < B

B > A is very strong condition at extremely low SNR such as —20 dB. The weak majoriza-
tion A <, B is equivalent to 0, (A) < o, (B) for all k. This is hardly satisfied at extremely
low SNR, due to the presence of two random matrices, for example, X and Y in (4.2).
The majorization A < B holds if and only if

A+al <B+al (4.12)
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for some a € R. By shifting a self-adjoint matrix, we can make it to be positive always.
When discussing the properties of majorization, we can restrict ourselves to positive
(definite) matrices.

Theorem 4.3 (Majorization) Let p, and p, be states. The following statements are
equivalent.

1. py < py.
2. p, is more mixed than p,.
n
3. py = > AU;p,U; for some convex combination X; and for some unitaries U,.

i=1
4. Trf(p,) < Trf(p,) for any convex function f : R — R.

Theorem 4.4 (Wehrl) Let p be a density matrix of finite quantum system B(H) and f :
R* — R* a convex function with f(0) = 0. The p is majorized by the density

_ f(p @.13)

21~ Tef (o)

Theorem 4.5 (Majorization for nonnegative increasing convex function [135]) If f is
a nonnegative increasing convex function on [0, co] with f(0) = 0, then

A(f(A) + f(B)) <, A(f(A+B)) (4.14)

for all A, B > 0, or equivalently
HICfA) 4+ fFBI <, [[LF A+ B[] (4.15)
_ Here, ||| - ||| stands for the symmetric, unitarily invariant norm. Given two covariances

A and B, these covariance matrices are affected by random signals experiencing fading
and network control. It is difficult to guarantee that the covariance matrix of the noise or
interference, B = R, is known (due to noise power uncertainty). We can work on the
“blind” version of the algorithms. The covariance matrices can be normalized by their

traces. The impact of this normalization process is described by (4.13) in Wehrl’s theorem.

Example 4.3 (Positive operator valued hypothesis testing)
This example is continued from Examples 3.1 and 4.2. For sinusoidal signals, we have
Hy: A =021+02X
1 1 -
H,:B=-|A]? |: I cosay } + 021+ 02Y = - |A[? (I+R,)+ ool +02Y,
2 COS wy 1 2

where R, = 0, cos w,. Obviously, TrR, = 0 since Tro; = 0. If we set o2 = 1, then we
2
can define SNR as SNR = 1AL O

2(7,,2U :
Using the structure of (3.4) and considering the unit power of additive noise (without
loss of generalization), auz} =1, we have

Hy:A=R, =1+X,A>0,TrX=0 (4.16)
H,:B=R,+R, =SNRA+R)+I1+Y,B>0,TrR, =0, TrY =0
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B+A=Q2+SNRI+X+Y @.17)
B—A=SNRI+SNRR +Y —X,Tr(B—A) = SNR :

With the aid of (4.17) and Tr(A + B) = TrA + TrB, one detection algorithm using the
preset threshold 7, can be stated as following:

Algorithm 4.2 (Threshold detection algorithm using the traces of two hypotheses)

1. Claim H,, if Tr(B) > Tr(A) + n,, with n, = SNR.
2. Otherwise, claim H,,.

The beauty of Algorithm 4.2 is that Tr(A) is independent of the measured signals. We
can use the statistics of the additive noise (interference), TrA, a random variable, to set
the threshold for the measured signals plus noise, TrB, also a random variable.

If we have the prior knowledge of R, we can consider

H,:R*R,,R,>0,R,>0

H,:R}R, +R,) =R*R, + R‘'R, = |R,|> + R*R,,R, >0,R, >0, (4.18)

where R* is used to match the signal covariance matrix R, to get the absolute value |R,|%.
Recall that |A| = (A*A)?.
Consider K independent copies A,k =1,2,..., K

HOZAk =R k’Ak>0’
W 4.1
Hy By =R + R, ;, B >0. @19
Let C, > 0 and D, > 0 be of the same size. Then [114, p. 166]
C,+D,>D, , k=1,2,... K. (4.20)

For 'H,, with the aid of (4.20), both sides of these K inequalities in (4.19) are summed
up to yield

K
ZBk = (Rs,l +Rs,2+ +Rs,K) + (Rw,l +Rw,2 + - +Rw,K) = Rw,l
k=1

+R,,+ - +R, . 4.21)

Algorithm 4.3 (Threshold detection algorithm using the traces of two hypotheses
(many copies))

1. Claim H,, if Te(B,+B,+ ---+By)>Tr(A; +A,+ -+Ay)+n  where

n= Z/f=1 R, >0.
2. Otherwise, claim 'H,,.

Tr|B, + B, + -+ Bg|>Tr[A; + A, + - + Al + 1 (4.22)
Tr|A; + Ay + -+ Ag| < TrlA |+ TrlAy| + - - + Tr|Ag]. (4.23)

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



108 Cognitive Radio Communications and Networking

Two covariances A and B are normalized first using (4.13) in Wehrl’s theorem:

-

A — — 1 —
Ho: A =55 = 31+ X TrA = 1,LA>0 424
H:B=2=1I+R +Y TiB=1B>0,

where X, Y and ﬁx are self-adjoint random matrices with TrX = 0, TrY = 0 and Trlix =
0, and N = TrlI is the dimensionality of identity matrix I. X and Y are two independent,
identical distributed copies whose rows are independent (see Section 3.4). It follows that

A+B=ZI+R +Y+X

y (4.25)
B-A=R +Y-X

Note that Tr(B — A) = 0 which implies that TrU*(B — A)U = 0, where U is an arbitrary
unitary matrix. Consider

B—Al=|R, +Y—-X|
Using (A.6) [114, p. 239]: Tr|A + B| < Tr|A| 4 Tr|B|, it follows that

TrB — Al =) [,(B) — 4, (A)| < TrR,| + Tr|Y — X, (4.26)

i

where ||X — Y]|; = Tr|Y — X] is the distance between two random matrices, also called
trace norm. A; is the i —th eigenvalue. If Tr|l~(X| = 0 and Tr|Y — X[, then Tr|B — A| =0,
which implies that A and B cannot be distinguished from each other.

In (4.25), generally we can not claim that B — A is positive, although B — A is still
Hermitian. Let A and B be positive operators, then for 0 < s < 1,

Tr(B°A'™*) > Tr(A+B — |B — Al)/2. 4.27)
In general, if A, B > 0, we have
TrAB > 0. (4.28)

However, the product of AB is not a Hermitian matrix. Note that although AB + BA
is Hermitian, it is generally not positive semidefinite. In (4.27), we are interested in
the absolute value of B — A only, in terms of ||[A — B||, = Tr|B — A|. This trace norm
[|A — B||, is a natural distance between complex n x n matrices A and B, A, B € M, (C).
Similarly,

1/2

IA=Bll,=| > IA; —B,

ij
is also a natural distance. We can define the p— norm as

IX[], = (TrX*X)*")/7 1 < p, X € M,(C).
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It was Von Neumann who showed first that the Hoelder inequality remains true in the
matrix setting

1 1
IABI|, < IAll,I[BIl,, — + — = 1.
P g

For A € M, (C), the absolute value |A] is defined as +/A*A and it is a positive matrix.
If A is a self-adjoint and written as

A= Zkieief,
i

where the vector e; forms an orthonormal basis, then it is defined as

A>0)=A, =) reei(A<0)=A = > ree.

110
i:Aj=0 i:hj<0

Then A={A>0}+{A<0}=A_+A_ and [A|={A>0}-{A<0}=A, —A_.
The decomposition is called the Jordan decomposition of A.

4.5 Partial Ordering of Unitarily Invariant Norms: |||A]]|] < ||IB]]|

Theorem 4.6 (A matrix subadditivity inequality for a nonnegative function of matrix
[136]) Let A,B > 0 and let f : [0, 00] — [0, 00] be a convex function with f(0) = 0.
Then, for all symmetric (or unitarily invariant) norms

Lf(A+B) =1 (A) + fFB)]]]. (4.29)

Let A,B > 0 and let g : [0, 0o] — [0, 0o] be a concave function with g(0) = 0. Then, for
all symmetric norms

I1lg(A+B)l[| < [llg(A) + gB)]]. (4.30)

For the trace norm, Theorem 4.6 is a classical inequality. Recall that ||Al|, =
1
Tr(A*A)2 = ) . 0;, where o; is the singular value. Special cases: (1) f(t) =", m =
1,2,..5(2) g(t) = /1.

4.6 Pa;;tial Orderil?g of Positive Definite Matrices of Many Copies:
ket Ak = i1 B

Theorem 4.7 (Unitarily invariant norms with nonnegative convex/concave function
[135]) Let A, A,, ..., Ax = 0. Then for every nonnegative convex function f on [0, 00]
with f(0) = 0 and for every unitarily invariant norm ||| - |||

HFAD + fA) 4+ fFADIN < I A+ Ay + - Al (4.31)
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110 Cognitive Radio Communications and Networking

If g is a nonnegative concave function, the inequality of (4.31) is reversed:
11g(A) + g(Ay) + - (A = 1Ig(A) + Ay + - - Al (4.32)

The function f :[0,oc] — R, defined by f(x) = %((x — 1)+ |x — 1|) satifies the
inequality of (4.32). We interpret Theorem 4.7 as a norm-matrix generation of the
scalar inequality f(a) + f(b) < f(a + b), where a,b > 0 and f : [0, o] — [0, o] is
a convex function with f(0) = 0.

4.7 Partial Ordering of Positive Operator Valued Random
Variables: Prob(A < X < B)

Consider K matrix-valued observations:

Hy: Ay = R, =07, 1+X)), TrX, =0,

H, B, = R, +R, =02, (0+8) +02,A+Y,), TS, =0, Try, =0, ¢

where X, Y;, and S; are of zero trace and denote the nondiagonal elements of the
covariance matrices.
K K K K
Ho: > Ay = ( U,ik>l+ Yo X = (TrZAk>I+ > or X,
k=1 k=1 k=1

k=1

Siaivgle

K K K
Hy: ) By = [ (07 + O—nz,k)i| I+ 028+ XY 0. Y, (4.34)
= =1 =1

k

Il
-

K K K
= (Tr > Bk) I+ O.vz,ksk + X Onz,kYk’
=1 k=1 =1

where the diagonal terms are associated with I with

K K K K K K
TrZAk = ZTrAk = Zonz.k, TrZBk = ZTer = Z (02, +o,12’k).
k=1 k=1 =1 k=1 k=1 =1

Using the central limit theorem, the total trace (or total power) can be reduced to (scalar)
Gaussian random variables.

Algorithm 4.4 (Detection using traces of sums of covariance matrices)

1. Claim H, if

K K
Try A, =£<Try B,
k=1 k=1

2. Otherwise, claim H,,.

Only diagonal elements are used in Algorithm 4.3; in (4.34), however, nondiagonal
K

elements ) 02, S, contain information of use to detection. The exponential of a matrix
k=1
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provides one tool. See Example 4.4. In particular, we have
TreA™® < Trefe®.
The following matrix inequality
TreAB+C < TreAoBeC

is known to be false.
Let A and B be two Hermitian matrices of the same size. If A — B is positive semidef-
inite, we write [114]

A>BorB<A. (4.35)

> is a partial ordering, referred to as Lowner partial ordering, on the set of Hermitian
matrices, that is,

1. A > A for every Hermitian matrix A,
2. if A>Band B > A, then A =B, and
3. if A>B and B > C, then A > C.

The statement A > 0 < X*AX > 0 is generalized as follows:
A > B & X"AX > X*BX, (4.36)

for every complex matrix X.

A hypothesis detection problem can be viewed as a problem of partially ordering the
measured matrices for individual hypotheses. If many (K') copies of the measured matrices
A, and B, are at our disposal, it is nature to ask this fundamental question:

Is B; + B, + - - - + By (statistically) larger than A; + A, +--- + Ay ?

To answer this question motivates this whole section. It turns out that a new theory is
needed. We freely use [137] that contains a relatively complete appendix for this topic.

The theory of real random variables provides the framework of much of modern proba-
bility theory, such as laws of large numbers, limit theorems, and probability estimates for
large deviations, when sums of independent random variables are involved. Researchers
develop analogous theories for the case that the algebraic structure of the reals is substi-
tuted by more general structures such as groups, vector spaces, etc.

At the hands of our current problem of hypothesis detection, we focus on a structure
that has vital interest in quantum probability theory and names the algebra of operators?
on a (complex) Hilbert space. In particular, the real vector space of self-adjoint operators
(Hermitian matrices) can be regarded as a partially ordered generalization of the reals, as
reals are embedded in the complex numbers.

A matrix-valued random variable X : Q@ — A, where

A, ={AcA:A=A% (4.37)

is the self-adjoint part of the C*— algebra A [138], which is a real vector space. For
more details, we refer to Appendix A.4. Let £L(H) be the full operator algebra of the

2 The finite-dimensional operators and matrices are used interchangeably.
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112 Cognitive Radio Communications and Networking

complex Hilbert space H. We denote d = dim(+), which is assumed to be finite. Here
dim means the dimensionality of the vector space. In the general case, d = Trl, and A
can be embedded into £(C?) as an algebra, preserving the trace.
The real cone
A, ={AeA:A=A" >0} (4.38)

induces a partial order < in .A;. We can introduce some convenient notation: for A, B € A,
the closed interval [A, B] is defined as

[A,B]={X€A,:A<X<B} (4.39)

Similarly, open and half-open intervals (A, B), [A, B), etc.
For simplicity, the space €2 on which the random variable lives is discrete. Some
remarks on the operator order is as follows.

1. <is not a total order unless A = C, in which case A, = R. Thus in this case (classical
case), the theory developed below reduces to the study of the real random variables.

2. A > 0 is equivalent to saying that all eigenvalues of A are nonnegative. These are d
nonlinear inequalities:

A > 0 & Vp density operator Tr(pA) > 0

< Vmr one — dim.projector Tr(wA) > 0. (4.40)

3. The operator mapping A — A’, for s € [0, 1] and A + log A are defined on A_, and
both are operator monotone and operator concave. In contrast, A — A’, for s >2 and
A — exp A are neither operator monotone nor operator convex. Remarkably, A — A*,
for s € [1, 2] is operator convex (though not operator monotone).

The mapping A +— Trexp A is monotone and convex.

Golden-Thompson-inequality: for A, B € A,

Trexp(A 4+ B) < Tr((exp A)(exp B)). 4.41)

ook

Note that a rarely few of mappings (functions) are operator convex (concave) or operator
monotone. Fortunately, we are interested in the trace functions that have much bigger
sets. Take a look at (4.42) for example. In (4.33), since H,: A=1+X, and A € A4,
(even stronger A € A,), it follows from (4.42) that

H, : Trexp(A) = Trexp(I + X) < Tr((expI)(exp X)). (4.42)

The use of (4.42) allows us to separately study the diagonal part and the nondiagonal

part of the covariance matrix of the noise, since all the diagonal elements are equal for a

WSS random process (see (3.4)). At low SNR, the goal is to find some ratio or threshold

that is statistically stable over a large number of Monte Carlo trials.

Algorithm 4.5 (Ratio detection algorithm using the trace exponentials)

1. Claim 'H,, if§ = % > 1, where A is the measured covariance matrix with
or without signals and X = % —L

w

2. Otherwise, claim H,.
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Example 4.4 (Exponential of the 2 x 2 matrix)
The 2 x 2 covariance matrix for L sinusoidal signals in Example 3.1 has symmetric
structure with identical diagonal elements

R, = TrR (I + ba,),

01
7=(Vo)

and b is a positive number. Obviously, Tro; = 0. We can study the diagonal elements
and nondiagonal elements separately. The two eigenvalues of the 2 x 2 matrix [126]

ab
n=(20)
A, = 3TrA + 3V/Tr2A — 4detA

and the corresponding eigenvectors are, respectively,

= (1= ()
P gl \ A —a ) T ) \ A —a )

To study how the zero-trace 2 x 2 matrix o, affects the exponential, consider

= (00).
The exponential of the matrix X, eX, has positive entries, and in fact [139]
X cosh\/g \/% sinh\/g
© - ﬁ sinh \/g cosh \/g ' O

Theorem 4.8 (Markov inequality) Let X a random variable with values in A, and
expectation

where

are

M=EX=) PriX =x}x, (4.43)

and A > 0. Then
Pr{X £ A} < Tr(MA™"). (4.44)

Theorem 4.9 (Chebyshev inequality) Let X a random variable with values in A,, expec-
tation M = EX, and variance

VarX = §? = (X — M)?) = E(X?) — M>. (4.45)
For A >0,
Pr{|X — M| £ A} < Tr(S*A ). (4.46)
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114 Cognitive Radio Communications and Networking

Recall that
X-M <A< X-M?<A?

since 4/(-) is operator monotone.

If X, Y are independent, then Var(X +Y) = VarX + VarY. This is the same as in the
classical case but one has to pay attention to the noncommunicativity that causes technical
difficulty.

Corollary 4.1 (Weak law of large numbers) Let X, X, X,, ..., X, be identically, inde-
pendently, distributed (i.i.d.) random variables with values in A,, expectation M = EX,
and variance VarX = S%. For A > 0, then

1 n 1 -
Pr{;nZ:;Xi ¢[M—A M+ A]} < ;Tr(SzA 7,

) (4.47)
Pr {in ¢ [nM — nA, nM — ﬁA]} < %Tr (S’°A77%).

n=1

Lemma 4.1 (Large deviations and Bernstein trick) For a random variable Y, B € A,
and T € A such that T*T > 0

Pr{Y £ B} < Tr (Eexp (TYT* — TBT")). (4.48)

Theorem 4.10 (i.i.d random variables) Let X, X, ..., X, be iid. random variables
with values in A, A € A;. Then for T € A, T*T >0

Pr {in e nA} <d - ||Tr (Eexp(TXT* — TAT")) ||". (4.49)
n=1

Define the binary I-divergence as
D(ullv) = u(logu —logv) + (1 — u)(log(l — u) — log(1 — v)). (4.50)

Theorem 4.11 (Chernoff) Let X, X, ..., X, be i.i.d. random variables with values in
0,Ilc A, EX<mlLA>al,1>a>m>0. Then

Pr ZXi £nA} <d-exp(—nD (al||m)), (4.51)
n=1
Similarly, EX > mI, A <al, 0 <a <m < 1. Then
Pr in #nAt <d-exp(—nD (a|lm)), (4.52)
n=1
As a consequence, we get, for EX =M > uland 0 < e < %, then
P 1iX ¢l —e)M, (1 + )M} <2d il (4.53)
ry— : —e)M, & <2d-exp|-—n- . .
n PU" 2m2
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4.8 Partial Ordering Using Stochastic Order: A <;, B

If x <, y, then Ex < Ey.

Let x have a multivariate normal density with mean vector zero and variance matrix
%,. Let y have a multivariate normal density with mean vector zero and variance matrix
2, + X,, where X, is a nonnegative definite matrix. Then [132, p. 14]

1113 <, 1I¥I1, (4.54)
1
where ||| is the Euclidean norm defined as |[x||, = (}__, [x(i)*)? = v/x*x, for

x € R".

4.9 Quantum Hypothesis Detection

We consider the two hypotheses H,, (null):p and H, (alternative):o. We identify a state
with a density operator, that is, a linear positive operator with trace one on finite-
dimensional Hilbert space H. Physically discriminating between the two hypotheses
corresponds to performing a generalized (POVM) measurement on the quantum system.
In analogy to the classical proceeding, one accepts H,, or H,; according to a decision
rule based on the outcome of the measurement. There is no loss of generality assuming
the POVM consists of only two elements, which denotes by {/ — IT, [T}, where IT may
be any linear operator on H with 0 < II <[ and [ is identity operator. Neyman and
Pearson introduces the idea of similarly making a distinction between type I and type
IT errors: (1) The type I error or false positive, denoted by «, is the error of accepting
the alternative hypothesis when in reality the null hypothesis holds; (2) The type II error
or false negative, denoted by f, is the error of accepting the null hypothesis when the
alternative hypothesis is the true state of nature. The type-I and type-II error probabilities
a and f are the probabilities of mistaking o for p, and vice-versa, and are given by

o = Tr(Ilp)
B=Tr[(I —IDo]"

The average error probability P, is given by
P, =myo + 1B = myTr(Ilp) 4+ 7, Tr[({ — IT)o] (4.55)

The Bayesian distinguishably problem consists of finding the IT that minimizes P,. A
special case is the symmetric one where the prior probabilities m, and 7, are equal.

Let us first introduce some basic notations. Abusing terminology, we will use the term
‘positive’ for ‘positive semidefinite’(denoted A > 0). We use the positive semidefinite
ordering on the linear operators on H throughout, that is, A > B if and only if A — B > 0.
For each linear operator A € B(H) the absolute value |A| is defined as |A| = (A*A)%
where A* is the transpose and conjugate (Hermitian) of A. The Jordan decomposition of
a self-adjoint operator A is given by A = A, — A_, where

A =(Al+A)/2,A_=(A[-A)/2 (4.56)

are the positive part and negative part of A, respectively. Both parts are positive by
definition, and A, A_ = 0. There is a very useful variational characterization of the trace
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of the postitive part of a self-adjoint operator A:

Tr(A,) = max(Tr(AX) : 0 < X <1}, (4.57)

In other words, the maximum is taken over all positive contractive operators. Since the
extremal values of the set of positive contractive operators are exactly the orthogonal
projector, we also have

Tr(A,) = m}'glx{Tr(AP) :P>0,P=P?%. (4.58)
The maximizer on the right-hand side is the orthogonal projector onto the range of A .

Lemma 4.2 (Quantum Neyman-Pearson Lemma) Let p and o be the density opera-
tors associated to hypotheses H, and H,, respectively. Let ¢ be a fixed positive number.
Consider the POVM with elements {1 — IT*, I1*} where I1* is the projector onto the range
of (co — p),, and let a* = Tr(I1*p) and B* = Tr(I — I1*)o be the associated errors. For
any other POVM {1 — I1, I1}, with associated errors a = Tr(I1p) and B = Tr[(I — IT)o],
we have

a+cf>a*+cpt=c—Til(co —p),] (4.59)

Thus if « < o*, then B > B*.
Proof 4.1 By formulae (4.57) and (4.58), for all 0 < IT < I we have
Tr[I1 (co — p) < Tr[Il(co — p), = Tr[IT* (co — p) . (4.60)
In terms of «, B, a*, B*, this reads
c(l=p)—a<c(l =" —a,

which is equivalent to the statement of the Lemma. O

The Lemmas say that the POVM {I — IT*, [T*} is the optimal one when the goal is
to minimize the quantity o + ¢B. In symmetric hypothesis testing the positive number
c is taken to be the ratio m,/m, of the prior probabilities. The goal of the Bayesian
distinguishability problem is to minimize the average error probabilities P, defined in
(4.55) and can be rewritten as

P, =, — Ti[Il(7,0 — myp)].

By the Neyman-Pearson Lemma, the optimal test is given by the projector IT* onto the
range of (7,0 — myp),, and the obtained minimal error probability is given by

Py = m —Tr[(myo —myp) ] =m — Tr(myo — myp) — Trl|mo — mypl/2]

¢ 461
= L = Imo — moll,), (“4.61)

where ||A[|, = Tr|A| is the trace norm. We call IT* the Holevo-Helstrom projector. Note
Trp = Tro = 1 since p and o are arbitrary density operators. Our goal in this task is to
establish the connection of the heuristic hypothesis testing defined by (3.23) with quantum
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hypothesis testing. Consider a quantum system H whose state is represented by the density
matrix p and o; more precisely, H, : p and H, : o. This procedure may be expressed as
a Hermitian matrix.

Let us define the projection {X > 0} with respect to a Hermitian matrix X with a
spectral decomposition X =} . x; Ey ;:

X>0}=> Ex,

x; =0

When the state is p, the probability of the set {x; >0} is ) TrpEx; = Trp{X > 0}.
X,'ZO

This notation generalizes the concept of the subset to the noncommunicative case. It
is known that two noncommunicative Hermitian matrices X and Y cannot be diagonal-
ized simultaneously by a common orthonormal basis. This fact causes many technical
difficulties.

The two-valued POVM {T, I — T} for a Hermitian matrix T satisfying I > T > 0 allows
us to perform the discrimination. Thus, T will be called a test. The following theorem
[140, 141] holds for an arbitrary real number ¢ > 0: The average probability of error is

ImTinO(Tr,o X—=T)+ cTroT) = Trp{p — co <0} + cTro{p — co >0} (4.62)

The minimum value is achieved when T = {p — o > 0}. In particular, if ¢ = 13, it
follows that

min (Trp(I—T) +cTroT) =1 — 3 Yp -0l (4.63)

The optimal average probability of correct discrimination is
% r>n n(TroX—=T) 4+ cTroT) =Trp{p —0 <0} + Tro{p — 0o >0} = % + %H,o —oll;.
(4.64)

Therefore, the trace norm gives a measure for the discrimination of two states. Here
IAll, = Tr|A| and the absolute value |A| is defined as |A| = ~/AA*. From (4.63), the
necessary condition for quantum detection is: ||p — o||; = Tr|p — o| > 0. Since only the
absolute value is involved, the trace norm distance is symmetric. Without loss of gener-
ality, considering o > p > 0 the necessary condition reduces to

Tro > Trp or Trf(EA) > Trf(EB), (4.65)

if p = f(EA) and o = f(EB). Condition (4.65) is exactly identical to (3.22) used in
Algorithm 3.1. Therefore, it is shown that Algorithm 3.1 is equivalent to the Holevo-
Helstrom tests [142, 143], which are noncommunicative generalizations of the classical
LRT. The above “proof” paves the way for systematically exploiting the deep work done
for quantum hypothesis testing [142, 144—217]. This subtask may lead to algorithms for
spectrum sensing with unprecedented performance.

3 Two hypotheses have two equal prior probabilities in this Bayesian test.
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4.10 Quantum Hypothesis Testing for Many Copies

A single copy of the quantum system is not enough for a good decision. One should
make independent measurement on several identical copies, or joint measurements. The
basic problem is to identify how the error probability P, behaves in the asymptotic limit,
that is, when one has to discriminate between the hypotheses H, and H, corresponding
to either n copies of p or n copies of o. To do so, we need to study the quantity

Pl = = llmo® —mp™"[I,)/2. (4.66)
where p®" = p ® p--- ® p is the nth-tensor powers of p. Such states can be regarded
—_—

as the quantum version of independent, identical distributions (i.i.d). It turns out that P,
exponentially decreases in n: P;, ~ exp(—n§,cp). This exponential decrease is very
desirable for cooperative sensing of RF spectrum, where a large number n of copies are
feasible.

Theorem [34, 142, 143]: For any two states p and o on a finite-dimensional Hilbert
space, occurring with prior probabilities 7r; and m,, respectively, the rate limit of P, as

e,n’
defined by (4.66), exists and is equal to the quantum Chernoff distance &, p

n—00

1
lim <—— log P:n> =&ocp = —10g< inf Tr(pljas)> . (4.67)
n ’ 0<s<I

This recent result provides a convenient tool for quantifying the asymptotic limit of the
cooperative sensing of RF spectrum. For a general test with n different states H, : p =
P®---®p,and H,:0 =0, ®--- ® 0,, the necessary condition for (4.66) to be valid
takes a new look:

0<lp® - ®p,—0,® 0, <Y lo—oll, =D Trlp, — o]

i=1 i=1

which, if o; > p;, reduces to

Tan:pi < Tan:oioan:Trpi < Xn:Trcri.
i=1 i=1 i=1 i=1

This is equivalent to a special form of (3.23): by replacing the expectation with the
average of n copies and letting f(x) = x in (3.23).

This subtask can borrow from the use of many copies for coding, basic to quantum
information [34, 117,127,129, 140—143,218-250].
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Large Random Matrices

5.1 Large Dimensional Random Matrices: Moment Approach,
Stieltjes Transform and Free Probability

The necessity of studying the spectra of large dimensional random matrices, in particular,
the Wigner matrices, arose in nuclear physics in the 1950s. In quantum mechanics, the
energy levels of quantum are not directly observable (very similar to many problems in
today’s wireless communications and the Smart Grid), but can be characterized by the
eigenvalues of a matrix of observations [10].

Let X;; be i.i.d. standard normal variables of n x p matrix X

Xll X12 Xln
XZ X22 : X n
x=| 1 ;
Xﬂl XP2 le pxn

The sample covariance matrix is defined as

P

] n
S, = ; E inij >
k=1 ij=1

where n vector samples of a p-dimensional zero-mean random vector with population
matrix /.

The classical limit theorem are no longer suitable for dealing with large dimensional data
analysis. In the early 1980s, major contributions on the existence of the limiting spectral
distribution (LSD) were made. In recent years, research on random matrix theory has
turned toward second-order limiting theorems, such as the central limit theorem for linear
spectral statistics, the limiting distributions of spectral spacings, and extreme eigenvalues.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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120 Cognitive Radio Communications and Networking

Many applied problems require an estimate of a covariance matrix and/or of its inverse,
where the matrix dimension is large compared to the sample size [20]. In such situations,
the usual estimator, the sample covariance matrix, is known to perform poorly. When
the matrix dimension p is larger than the number n of observations available, the sample
covariance matrix is not even invertible. When the ratio p/n is less than one but not
negligible, the sample covariance matrix is invertible but numerically ill-conditioned,
which means that inverting it amplifies estimation error dramatically. For a large value
of p, it is difficult to find enough observations to make p/n negligible, and therefore
it is important to develop a well-conditioned estimator for large-dimensional covariance
matrices such as in [20].

Suppose A, is an N x N matrix with eigenvalues A;(Ay), ..., Ay(Ay). If all these
eigenvalues are real (e.g., if Ay is Hermitian), we can define a one-dimensional dis-
tribution function. The empirical cumulative distribution of the eigenvalues, also called
the empirical spectrum distribution (ESD), of an N x N Hermitian matrix A is denoted
by Fy

Number of eigenvalues of A, < x . 1
N N

1

FAN x) = HA(Ay) < x}, (5.1

N
=1
where 1{} is the indicator function.

Following [10], we divide available techniques into three categories: (1) Moment
approach; (2) Stieltjes transform; (3) Free probability. Applications for these basic tech-
niques will be covered.

The significance of ESD is due to the fact that many important statistics in multivari-
ate analysis can be expressed as functionals of the ESD of some random matrices. For
example, the determinant and the rank functions are the most common examples. The
most significant theorem relevant to our applications is the convergence of the sample
covariance matrix: the Marchenko-Pastur law.

Theorem 5.1 (Marchenko-Pastur law [251]) Consider a p x N matrix X, whose entries

. . . . 2
are independent, zero-mean complex (or real) random variables, with variance % and

N
fourth moments of order O (ﬁ) As

p,N = oo with % Soa, (5.2)

the empirical distribution of XX converges almost surely to a nonrandom limiting dis-
tribution with density

. _ A =)t (b—x)t
f) =0 —-a ) 8(x) + Y=, (5.3)

a=0*(1—Ja) b=0c*1+ Ja)

Example 5.1 (Determinant of a positive definite matrix)
Let A, be a positive definite matrix of N x N. Then

N 0
det (Ay) =[]»; =exp (N / logx Fy, (dx)) .
0

j=1
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Large Random Matrices 121

When N — oo, the determinant of A,, det (Ay), is approaching a nonrandom
limit value. O

Example 5.2 (Hypothesis testing)
Let the covariance matrix of the received signal have the form [14, p. 5]
Ty=3%,+0°L

where the dimension of X is p and the rank of X, is g(< p). Note that N and p are
different. Suppose Sy is the sample covariance matrix based on N i.i.d. vector samples
drawn from the signal. The eigenvalues of S, are

A=Ay = A

The test statistic for the hypothesis problem
H, : rank (X,) = q,

H, :rank (X,) >gq, 5.4)
is given by
2
e £ ()
P s S S (5.5)
= L [0 X2 Fy, (dx) — [ﬁ o xFy, (dx)]z.
where T is the variance of the sequence of eigenvalues. O

The ultimate goal of hypothesis testing is to search for some metrics that are “robust”
for decision making by setting a threshold. For example, the trace functions are commonly
used. To represent the trace functions, we suggest four methodologies: moment method,
Stieltjes transform, orthogonal polynomial decomposition and free probability. We only
give the basic definitions and their relevance to our problems of spectral sensing. We refer
to [14] for details.

The goal of random matrix theory is to present several aspects of the asymptotics of
random matrix “macroscopic” quantities [252] such as

1 I n
Ly = —Tr(A] - Al),

where i, € {1,...,m},1 <k < p and (A’;,)lspsm are some n X n random matrices whose
size n goes to infinity. (A’;,)15 p<m are most often Wigner matrices, that is Hermitian
matrices with independent entries, and Wishart matrices.

5.2 Spectrum Sensing Using Large Random Matrices
5.2.1 System Model

The most remarkable intuition of random matrices is that in many cases the eigenvalues
of matrices with random entries turn out to converge to some fixed distribution, when
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122 Cognitive Radio Communications and Networking

both the dimensions of the signal matrix tend to infinity with the same order [253]. For
Wishart matrices, the limiting joint distribution called Marchenko-Pastur Law has been
known since 1967 [251]. Then, most recently, the marginal distribution of single ordered
eigenvalues have been found. By exploiting these results, we are able to express the largest
and the smallest eigenvalues of sample covariance matrices using their asymptotic values
in closed form. The closed-form, exact expression for the standard condition number
(defined as the ratio of the largest to the smallest eigenvalue) is available.

We often treat the asymptotic limiting results for large matrices to the finite-size matri-
ces. The power of large random matrices is such that the approximate technique is often
stunningly precise. If the matrices under consideration are larger than 8 x 8, the asymptotic
results are accurate enough to approximate the simulated results.

The received signal contains L vectors y,, [ =1,..., L

Hy: ylil=wlil,i=1,...N

(5.6)
H, :oyli]l = wylils i1+ wlil,i =1,...N

where A,[i] is the channel gain (often having a Rayleigh fading distribution) for the i-th
sample time of the /-th sensor. This is similar for signal vector s, and noise vector w;.
Lety be a n x 1 vector modeled as

y =Hs +w,

where H is an n x L matrix, s is an L x 1 “signal” vector and w is an n x 1 “noise”
vector. This model appears frequently in many signal processing and communications
applications. If s and w are modeled as independent Gaussian vectors with independent
elements with zero mean and unit variance matrix (identity covariance matrix), then y is
a multivariate Gaussian with zero mean and covariance matrix written as

¥ =R =E{yy"} =HH" + L (5.7)
In most practical applications, the true covariance matrix is unknown. Instead, it is
estimated from N independent observations (“snapshots”) y;,¥,, ..., Yy as:
RS ol H
Sy = N iz_:y,yi = NYnYn )
where Y, =[y,, ¥, ..., Yyl is referred to as the “data matrix” and S, is the sample

covariance matrix.
When n is fixed and N — oo, it is well-known that the sample covariance matrix
converges to the true covariance matrix. However, when both n, N — oo with

n/N:o{>O,

this is no longer true. Such a scenario is very relevant in practice where stationarity
constraints limit the amount of data (N) that can be used to form the sample covari-
ance matrix. Free probability is an invaluable tool in such situations when attempting to
understand the structure of the resulting sample covariance matrices [254].
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Large Random Matrices 123

In matrix form, we have the following L x N matrix:

yi[1l y[2] --- y/[N]
Y11 y,[2] -+ y,[N]

= (5.8)
o1l yo[2] - v IN1/ |y
Similarly, we do this for H, S, W. (5.8) can be rewritten in matrix form as
Y=HS+W=X+W. (5.9)
where X = HS. Using (5.9), (5.6) becomes our standard form:
Hy: YYH = WWH,
H,: YY? = XX + WwWH, (5-10)
where we have made the assumption that
X+W X+ W =xxX"+ww" (5.11)

(5.11) can be justified rigorously using random matrix theory.

In general, knowing the eigenvalues of two matrices, say A, B, is not enough to find
the eigenvalues of the sum or product of the two matrices, unless they commute. Free
probability gives us a certain sufficient condition, called asymptotic freeness, under which
the asymptotic spectrum of the sum A + B or product AB can be obtained from the
individual asymptotic spectra, without involving the structure of the eigenvectors of the
matrices [255]. [13, p. 9] [256]

Theorem 5.2 (Wishart matrices) If W has a Wishart distribution with m degrees of
freedom and true covariance matrix X, write W ,(X, m), and C is a g x p matrix of rank
q, then

CWC" ~ W, (CWC" m).

The sample covariance matrix S, based on Y, which contains N samples and L column

vectors, 1S |
Sy = —YYX,
N

The sample covariance matrix S, is related to the true covariance matrix X, by the
property of Wishart distribution (see Theorem 5.2)

S, =X,2722"%,'?, (5.12)
where Z is a L x N i.i.d. Gaussian zero mean matrix. In fact,
W(x) ! 77" (5.13)
o) = — .
N

is the Wishart matrix.
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124 Cognitive Radio Communications and Networking

For a standard signal plus noise model, the true covariance matrix X, has the form
Y, =Xy + Xy (5.14)

where Xy and Xy, are, respectively, the true covariance matrix of the signal and the
noise; also Xy, = oI if the white noise is assumed.

Comparing the true covariance matrix (5.14) with its sample counterpart (5.11) reveals
the fundamental role of a rigorous random matrix theory. We really cannot say much about
the relation between the two versions of equations, generally for small sample size N.
Luckily, when the sample size N is very large, the two versions can be proven equivalent
(which will be justified later). This is the reason why random matrix theory is so relevant
to wireless communications since a majority of wireless systems can be expressed in the
form of (5.9). For example, CDMA, MIMO and OFDM systems can be expressed in such
a form.

5.2.2 Marchenko-Pastur Law

The Marchenko Pastur law stated in Theorem 5.1 serves as a theoretical prediction
under the assumption that the matrix is “all noise” [255]. Deviations from this theo-
retical limit in the eigenvalue distribution should indicate nonnoisy components, in other
words, they should suggest information about the matrix.

Example 5.3 (Spectrum sensing using the ratio . /A, [119,255,257,258])
We mainly follow [255] in this example. (5.8) is repeated here for convenience. In matrix
form, the received signal model is expressed as the following L x N matrix

yil1l » 2] --- y[N]
W1l y,[2] -+ y,[N]

, (5.15)

v 1 w21 - wINT ),

where N samples are recorded at L sensors.

For a fixed L and N — oo, the sample covariance matrix ﬁYYH converges to oI
This is the consequence of using the Central Limit Theorem. However, in practice, N
can be of the same order of magnitude as L; this scenario is what the random matrix
theory offers.

In the case where the entries of Y are independent (irrespective of the specific proba-
bility distribution, which corresponds to the case where no signal is present—"H,,), results
from asymptotic random matrix theory can be used. Theorem 5.1 proposed by Marchenko
and Pastur (1967) is valid for this case as L, N — 0o with % — .

Interestingly, the support of the eigenvalues is finite, even if there is no signal. The
theoretical prediction offered by the Marchenko-Pastur law can be used to set the threshold
for detection.
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To illustrate, let us consider the case when only one signal is present for H,:

s[1] -+ s[N]
e 0N i)

Y= ; . : . : ’
hy 0 o ZL.[I] <o z,[N]

where s[i] and z[i] = on,[i] are, respectively, the independent signal and noise with unit
variance at instant i and sensor /. Let us denote by T the matrix:

h, o 0

T=| : .
hy 0O o
Clearly, TT# has only one “significant” eigenvalue

L
A =Z|hj|2+02,)\i =0%i=1,2,...,min(L, K).
j=1

The behavior of %TTH is related to the study of the eigenvalues of large sample

covariance matrices of spiked population models [26]. Let us define the signal to noise
ratio y as

L

> 1hyl?

j=1

Y=o

Baik and colleagues [26,259] show recently that, when

L L
—<landy >,/ —,
N N

the maximum eigenvalue of %TT” converges almost surely to

Hy: by = <2L: |hj|2+02) <l+%),

j=1
Hy: b =01+ Ja),

where b, is superior to b, that is also defined in Theorem 5.1. The difference between b,
and b, can be used to sense the spectrum. Whenever the distribution of the eigenvalues
of the sample covariance matrix %YYH —all entries are observable and the size of the
matrix is finite—departs from the predicted distribution obtained using the Marchenko-
Pastur law, the detector knows that the signal is present. This approach of sensing non-null
hypothesis is standard. But the metric and the mathematical tools are novel. |
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126 Cognitive Radio Communications and Networking

5.2.2.1 Noise Distribution Unknown, Variance Known
The criteria is

Hoy : &; € la, bl,

decison = .
‘H, : otherwise,

where a and b are defined in Theorem 5.1. The results are based on the asymptotic
eigenvalue distribution.

5.2.2.2 Both Noise Distribution and Variance are Unknown

The ratio of the maximum and the minimum eigenvalues in the H,, case does not depend
on the variance of the noise. This allows us to circumvent the need for the knowledge of

the noise:
Ho < (V@2
decision = 0" Amin = (1—y@)?’
H, : otherwise.

The test H, provides a good estimator of the SNR y. The ratio of the largest eigenvalue
b, and the smallest a of %YYH is related solely to y and o

b (1+y)(1+§)
a” d-yay

For extremely low SNR such as y = 0.01, that is, —20dB, the above relation becomes

ﬁ B (1+)/)(1+%) - (1 + 100a)
a 1-v&y — (d-ya©
Typically, we have « = 1/2 and o = 1/10.

Example 5.4 (Spectrum sensing using the ratio . /A,,;,, [260])
The example is continued from Example 5.3. We define the normalized covariance
matrix as

1

R= =YY",
o

whose largest eigenvalue and smallest one are, respectively, /,,. and [,;, . In contrast,
Amax and A, . are the corresponding ones of the sample covariance matrix %YYH . Under
Ho, R turns out to be complex white Wishart matrix and by the Machenko-Pastur law, the
eigenvalue support is finite [10]. Under H,, the covariance matrix belongs to the class of
“spiked population models” and its largest eigenvalue increases outside the Marchenko-

Pastur support [26]. This property suggests using
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Large Random Matrices 127

as test statistic for signal detection. Denoting 7|, the decision threshold, the detector claims
H, if T > T,; otherwise, it claims H,,.

Example 5.4 uses the asymptotic properties of Wishart matrices. The smallest and
largest eigenvalues of R under ‘H, almost surely to

lmax - amax = (ﬁ+ ,\/Z)z,

i = i = (VN = V)2, (5.16)

in the limit L
N,L—>oowithﬁ—>oz (5.17)

where @ € (0, 1) is a constant.
A semi-asymptotic approach [257] can be used. It is shown in [22] that under the same
assumption of (5.17), the random variable

with

1/3
v=N++L )< ) :

NN
converges in distribution to the Trace-Widow law of order 2 defined in (5.50). The decision
threshold [257] can be linked to the probability of false alarm defined as

P;, = P(T > Ty[H,),

by using the asymptotic limit for the smallest eigenvalue (5.16) and the Tracy-Widom
culmination distribution function for the largest one. The threshold can be expressed as

T, =
"7 a (NL)1/6

TW2(1 Pfa))

min

where F, is the inverse Tracy-Widom culmination distribution function of order 2.

Recently, it is established [261] that the smallest eigenvalue also converges to the
Tracy-Widom culmination distribution as K, L — oo, up to a proper rescaling factor. In
particular, the random variable

with

RV R

converges to the Tracy-Widom culmination distribution function of order 2.

As a consequence of (5.17), n is always negative in the considered range of «. The
test statistic may be expressed as
_ vL max + Amax

min /’LLmin + Amin
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128 Cognitive Radio Communications and Networking

The test statistic can be linked to the probability of false alarm. For details, we refer
to [260]. (]

5.2.2.3 On the Empirical Distribution of Eigenvalues of Large Dimensional
Information-Plus-Noise Type Matrices

Sample covariance matrices for systems with noise are the starting point in many prob-
lems, for example, spectrum sensing. Multiplicative free deconvolution has been shown in
[262] to be a method. This method can assist in expressing limit eigenvalues distributions
for sample covariance matrices, and to simplify estimators for eigenvalue distributions of
covariance matrices.

We adopt a problem formulation from [263]. Let X, be n x N containing i.i.d. complex
entries and unit variance (sum of variances of real and imaginary parts equals 1), o >0
constant, and R, an n x N random matrix independent of X, . Assume, almost surely,
as n — oo, the empirical distribution function (e.d.f.) of the eigenvalues of %RHR,’,J
converges in distribution to a nonrandom probability distribution function (p.d.f.), and the
ratio % tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the
eigenvalues of

1
Cy = N(Rn +oX,)R, + GX11)H (5.18)

converges in distribution. The limit is nonrandom and is characterized in terms of its
Stieltjes transform, which satisfies a certain equation. n and N both converge to infinity
but their ratio §; converges to a positive quantity c. The aim of [263] is to show that,
almost surely, F, converges in distribution to a nonrandom p.d.f. F. (5.18) can be
thought of as the sample covariance matrices of random vectors r, + oX,, where r, can
be a vector containing the system information and x,, is additive noise, with o a measure
of the strength of the noise.

The matrix Cy can be viewed as the sample correlation matrix of the columns of
R, + 0X,,, which models situations where relevant information is contained in the R;’s
and can be extracted from %Ran . Since R is corrupted by X, the creation of this
matrix C, is hindered. If the number of samples N is sufficiently large and if the noise
is centered, then C, would be a reasonable estimate of %RnR,‘:’ + 0?1 (I denoting the
n x n identity matrix), which could also yield significant (if not all) information. Under

the assumption
n
— = c>0, (5.19)
N

Cy models situations where, due to the size of n, the number of samples N needed
to adequately approximate %RanH + oI is unattainable, but is of the same order of
magnitude as n. (5.19) is typical of many situations arising in signal processing where one
can gather only a limited number of observations during which the characteristics of the
signal do not change. This is the case for spectrum sensing when fading changes rapidly.

One application of the matrix C, defined in (5.18) is the problem of spectrum sensing,
for example, in Example 5.3. The beauty of the above model is that ¢ is arbitrary. Of
course, this model applies to the low SNR detection problem for spectrum sensing.

Assume that N observations for n sensors. These sensors form a random vector r, +
0X,, and the observed values form a realization of the sample covariance matrix C,.
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Based on the fact that C, is known, one is interested in inferring as much as possible
about the random vector r,, and hence on the system (5.18). Within this setting, one
would like to connect the following quantities:

1. the eigenvalue distribution of C,;
2. the eigenvalue distribution of %Ran .

5.2.2.4 Statistical Eigen-Inference from Large Wishart Matrices

The measurements are of the form
X, =As;+z,i=1,...,n,

where z; ~ N, »(0, X)) denotes a p-dimensional (real or complex) Gaussian noise vector
with covariance matrix X_, s; ~ N (0, X,) denotes a k-dimensional zero-mean (real or
complex) Gaussian signal vector with covariance matrix X, and A is a p x k unknown
nonrandom matrix.

5.3 Moment Approach

Most of the material in this section can be found in [10]. Throughout this section, only
Hermitian matrices are considered. Real symmetric matrices are treated as special cases.
Let A be an n x n Hermitian matrix, and its eigenvalues be denoted by

A=Ay > A,

Then, from the Definition 5.1, the k-th moment of F, can be expressed as

Boi(A) = / h xKFy(dx) = %Tr(Ak). (5.20)

o]

(5.20) plays a fundamental role in random matrix theory. Most results in finding limiting
spectral distribution were obtained by estimating the mean, variance or higher moments
of 1Tr(A).

To motivate our development, let us see an example first.

Example 5.5 (Moments-based hypothesis testing)
Continued from Example 5.5.
The hypothesis problem (5.4) is reformulated as
Ho: Te(E,) = 4IIZ, I,
Hl : Tr(zq) > q “Zq ||7

by using the effective rank r

_ Tr(A)
COlAl
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where [|A]| is the maximum singular value of A, and the matrix inequality (this bound is
sharp) [107]

r(A) <rank(A) < n.

Claim H,, if the test statistic (5.5) is replaced with the new statistic k-th moment

1 M
T = —§ Tr(A%) > T,.
n
k=1

For the case of the moment M =1, it has been found that the algorithm performs
very well. O

When sample covariance matrices S that are random matrices are used instead of X,
the moments of S are scalar random variables. Girko studied the random determinants
det S for decades [111]. Repeat (5.21) here for convenience:

1
TiS. (5.21)

|
det )V < —
(det S) =5

5.3.1 Limiting Spectral Distribution

To show that F, converges to a limit, say F, we often employ the Moment Conver-
gence Theorem,

Bi(A) — B = /x"F(dx),

in some sense, for example, almost surely (a.s.) or in probability and the Carleman’s
condition

[o.¢]

Z BT < o,

k=1

Thus the Moment Convergence Theorem can be used to show the existence of the limiting
spectral distribution.

5.3.1.1 Wigner Matrix

The celebrated semicircle law (distribution) is related to a Wigner matrix. A Wigner matrix
W of order n is defined as an n x n Hermitian matrix whose entries above the diagonal are
i.i.d. complex random variables with variance o2, and whose diagonal elements are i.i.d.
real random variables (without any moment requirement). We have the following theorem.

Theorem 5.3 (Semicircle law) under the conditions described above, as n — o0, with
probability 1, the empirical spectral distribution tends to the semicircle law with scale
parameter o, whose density is given by

L V402 =2, if |x| < 20,

— ] 2702 5.22
Po (%) { , otherwise. ( )
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For each n, the entries above the diagonal of W are independent complex random variables
with mean zero and variance o2, but they may not be identically distributed and depend
on n. We have the following theorem.

Theorem 5.4 If E(w (”)) =0, IE|w(")|2 = o2, and for any § >0
lim —ZE|ka| I W5 = 0, (5.23)

where I (-) is the indication function, then the conclusion of Theorem 5.3 holds.

In Girko’s book (1990) [111], (5.23) is stated as a necessary and sufficient condition
for the conclusion of Theorem 5.4.

5.3.1.2 Sample Covariance Matrix
Suppose that x;,, j,n = 1,2, ...1s a double array of i.i.d. complex random variables with

mean zero and variance o 2. Write

T
X, =[xy, 00X, X =[x, Xy ]

The sample covariance matrix is defined as

N
s = Z X"

Marchenko and Pasture (1967) [251] had the first success in finding the limit spectral
distribution of S. The work also provided the tool of Stieltjes transform. Afterwards, Bai
and Yin (1988) [264], Grenander and Silverstein (1977) [265], Jonsson (1982) [266],
Wachter (1978) [267] and Yin (1986) [268] did further research on the sample covari-
ance matrix.

Theorem 5.5 ([268]) Suppose that % — ¢ € (0, 00). Under the assumptions stated at the
beginning of this subsection, the empirical spectral distribution of S tends to a limiting
distribution with density

—Jb—x)x —a), fa<x<b

0, otherwise

f(X) f— { 2mcolx

and a point mass 1 — c¢=" at the origin if ¢ > 1, where

a=0c%(1—+c)2 b=0c>(1+ o)

The limit distribution of Theorem 5.5 is called the Marchenko-Pastur law (distribu-
tion) with ratio index ¢ and scale index o2. The existence of the second moment of the
entries is necessary and sufficient for the Marchenko-Pastur law since the limit spectral
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distribution involves the parameter o2. The condition of zero mean can be relaxed to have
a common mean.

Sometimes, in practice, the entries of X depend on N and for each N, they are inde-
pendent but not identically distributed. We have the following theorem.

Theorem 5.6 Suppose that for each N, the entries of Xy are independent complex vari-
ables, with a common mean and variance o>. Assume that % — ¢ € (0, 00), and that for
any § >0,

)2
N7 zk:mxjk 01 sy = O (5.24)
J

Then, Fg tends almost surely to the Marchenko-Pastur distribution with ratio index ¢ and

scale index 2.

Now consider the case p — oo, but £ — 0. Almost all eigenvalues tend to 1 and thus
the empirical spectrum distribution of S tend to a degenerate one. For convenience, we
consider instead the matrix

W= \/7 (S—o%) = (XXH NoI).

When X is real, under the existence of the fourth moment, Bai and Yin (1988) [264]
showed that its empirical spectrum distribution tends to the semicircle law almost surely
as p — oo. Bai (1988) [10] gives a generalization of this result.

Theorem 5.7 ([10]) Suppose that, for each N, the entries of the matrix X are independent
complex random variables with a common mean and variance o*. Assume that, for any
constant § >0, as p — oo with p/N — 0,

p(gz\/— ZEI 51w = 00, (5.25)
and
1 4
(N) _
N Xk:Elxjk 0 s ) = 0D (5.26)
J

Then, with probability 1, the empirical spectral distribution of W tends to the semicircular

law with scale index o2

Conditions (5.25) and (5.26) hold if the entries of X have bounded fourth moments.

Theorem 5.8 (Theorem 4.10 of [14]) Let F =SSy, where Sy, and Sy, are sample
covariance matrices with dimension p and sample size N; and N, with an underlying
distribution of mean 0 and variance 1. If Sy, and S, are independent,

p/Ny = y; € (0,00), p/N, = ¥, € (0, 1).
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Then, the limit spectral density F, . of F exists and has a density

2
A=y (b—x)(x—a)

O
0, otherwise,

, a<x<b,

Further, if y, > 0, then F,, has a point mass 1 — 1/y, at the origin.

Example 5.6
Consider an example to apply Theorem 5.8. Consider

H] :SNZBN+WN’

where W, is an underlying distribution of mean 0 and variance 1 and
Mo : SyiSyz s Wy
H, :Sy;Sys i By + Wy

Under H,,, we can apply Theorem 5.8 to get the density function. Under H,, the density
is different from that of H,,. O

5.3.1.3 Product of Two Random Matrices

The motivation of studying products of two random matrices arises from the fact that the
true covariance matrix X is not a multiple of an identity matrix I, and that of multivariate
F=S,S,7". When S, and S, are independent Wishart, the limit spectral distribution of
F follows from Wachter (1980) [267].

Theorem 5.9 ([10]) Suppose that the entries of X are independent complex random
variables satisfying (5.24), and assume that T(= Ty) is a sequence of p x p Hermi-
tian matrices independent of X, such that its empirical spectral distribution tends to a
nonrandom and nondegenerate distribution H in probability (or almost surely). Further,
assume that

P, e 0, 00).
N

Then, the empirical spectral distribution of the matrix product ST tends to a nonrandom
limit in probability (or almost surely).

5.3.2 Limits of Extreme Eigenvalues
5.3.2.1 Limits of Extreme Eigenvalues of the Wigner Matrix

The real case of the following theorem is obtained in [269] and the complex case is
in [10].

Theorem 5.10 ([10,269]) Suppose that the diagonal entries of the Wigner matrix W are
i.i.d. real random variables, the entries above the diagonal are i.i.d. complex random
variables, and all these variables are independent. Then, the largest eigenvalue X\, of
N"2W tends to 20 >0 with probability 1 if and only if the following four conditions
are true:
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1. E((wh)?) < oo

2. E(w,) is real and < 0;
3. E(lwy, —Ewp)l) =0
4. E(Juwi,]) < oo;

where x* = max(x, 0).

For the Wigner matrix, symmetry between the largest and smallest eigenvalues exists.
Thus, Theorem 5.10 actually proves the following: the necessary and sufficient conditions
(for both the largest and the smallest eigenvalues) to have finite limits almost surely are
(1) the diagonal entries have finite second moments; (2) the off-diagonal entries have zero
mean and finite fourth moments.

5.3.2.2 Limits of Extreme Eigenvalues of Sample Covariance Matrix

Geman (1980) [270] proved that, as % — ¢, the largest eigenvalue of a sample covariance
matrix tends to b(c) almost surely, assuming a certain growth condition on the moments
of the underlying distribution, where b(c) = o2(1 + /c)? defined in Theorem 5.5. The
real case of the following theorem is in [271], and their result is extended to the complex
case in [10].

Theorem 5.11 ([10,271]) In addition to the assumptions of Theorem 5.5, we assume that
the entries of X have finite fourth moment. Then,

—2c0? < th infA (S —o’(14+0c)I) < Nlim infA, . (S — (1 +o)I) < 2co?, a.s.

If we define the smallest eigenvalue as the (p — N + 1)-st smallest eigenvalue of S when
p > N, then from Theorem 5.11, we immediately reach the following conclusion:

Theorem 5.12 ([10]) Under the assumptions of Theorem 5.11, we have

Nlim Aoin(S) = 02(1 — Vo)?, a.s.
—00
lim A, (S) =o*(1 + )% a.s.
N—o0

The first work to exploit Theorem 5.12 for spectrum sensing is [258] with their conference
version published in 2007. Denote the eigenvalues of Sy by A; <A, <--- < XA,. Write
Apmax = Ay and

max

)\' _ )\']’ pSN7
min Apni1» P>N.

Using the convention above, Theorem 5.12 is true [14] for all ¢ € (0, 00).

Theorem 5.13 (Theorem 5.9 of [14]) Suppose that the entries of the matrix Xy =
{*jtn+ J < P,k < N} are independent (not necessarily identically distributed) and satisfy
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1 E(xjy) =05

2. xpnl = VNS

3. max,  |Elx;y|* — 0% = 0, as N — o0; and
4. Elx oyl < b(VNS,)= forall | > 3;

where §5 — 0and b> 0. Let Sy, = %XNXﬁ Then, for any x > ¢ > 0 and integers j, k >
2, we have

Plhya(Sy) = 0°(1 + /&) +x]1 < CNH o> (1 + /&) + x — 17

for some constant C > Q.

5.3.2.3 Limiting Behavior of Eigenvectors

Relatively less work has been done on the limiting behavior of eigenvectors than eigen-
values. See [272] for the latest additions to the literature.

There is a good deal of evidence that the behavior of large random matrices is asymptot-
ically distribution-free. In other words, it is asymptotically equivalent to the case where the
basic entries are i.i.d. mean 0 normal, provided that some moment requirements are met.

5.3.2.4 Miscellanea

The norm (N~!/2X)¥ is sometimes important.
Theorem 5.14 (1269]) If E(jw’,|) < oo, then

Nlim sup [(N~'2X)"| < (1 + k)o*, a.s., for all k.
—00

The following theorem is proven independently by [273] and [269].

Theorem 5.15 ([269,273]) IfIE(|w‘l‘1 ) < 00, then

lim sup max |)Lj(N71/2X)| <o0,a.s.
N—o0 J<N

5.3.2.5 Circular Law—Non-Hermitian Matrices

We consider the non-Hermitian matrix. Let

1
VN
be an N x N complex matrix with i.i.d. entries x;, of mean zero and variance 1. The
eigenvalues of Q are complex and thus the empirical spectral distribution of Q, denoted
by Fy(x,y), is defined in the complex plane. Since the 1950s, it has been conjectured
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that Fy(x, y) tends to the uniform distribution over the unit disc in the complex plane,
called the circular law. The problem was open until Bai (1997) [274].

Theorem 5.16 (Circular Law [274]) Suppose that the entries have finite (4 + €)-th
moments, and that the joint distribution of the real and imaginary parts of the entries,
or the conditional distribution of the real part given the imaginary part, has a uniformly
bounded density. Then, the circular law holds.

5.3.3 Convergence Rates of Spectral Distributions
5.3.3.1 Wigner Matrix

Consider the model of Theorem 5.4, and assume that the entries of W above or on the
diagonal are independent and satisfy

E(w;) =0, forall 1 <k < j <N;
E(|wi ) =1, forall 1 <k < j < N;

E(uwl) =1, forall 1 < j < N; (5.27)
Sl,i,pékn;);NE('w?kD <M < 0.
Theorem 5.17 ([275]) Under the conditions in (5.27), we have
IEFy-12w) — Fll = O(N™'%),
where F is the semicircular law with scalar parameter 1.
Theorem 5.18 ([276]) Under the four conditions in (5.27), we have
IFn-12w, = Fll = O,(N~'%),
where “p” stands for probability.
5.3.3.2 Sample Covariance Matrix
Assume the following conditions are true.
E(x;) = 0,E(lx3 ) = 1, forall j. k,n
(5.28)

4
supsupIE(|xjk|)I(|Xjk‘ZM) — 0, as M — oo.
N ik

Theorem 5.19 ([275]) Under the assumptions in (5.28), for 0 <0 < ® <lorl <6 <
0O < o,

sup ||EFg — F, Il = O(N~'%,
cp€(6,0)
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where ¢, = p/N and F, is the Marchenko-Pastur distribution with dimension-ratio ¢ and
parameter 0> = 1.

Theorem 5.20 ([275]) Under the assumptions in (5.28), for any 0 < ¢ < 1,

sup  [EFs — F,, | = O(N~/%),

cpe(l—e,1+e)

Theorem 5.21 ([275]) Under the assumptions in (5.28), the conclusions in Theorems 5.19
and 5.20 can be improved to

sup ||Fg — F, Il = O,(N~%),
cpe(0,0)

and

Sup ”FS - Fcp ” = O])(N75/48)'
cpe(l—e,1+e)

Consider Sy = %T,IV/ZXNXﬁT,IV/Z, where Xy = (x;;) is a p X p matrix consisting of
independent complex entries with mean zero and variance one, T, is a p X p nonrandom
positive definite Hermitian matrix with spectral norm uniformly bounded in p. If

supsupIE|xij|8 < 00,
N ij

and ¢y = p/N < 1 uniformly as N — oo, we obtain [277] that the rate of the expected

empirical spectral distribution of S, converging to its limit spectral distribution is

O(N _%). Under the same assumption, it can be proved that for any n > 0, the rates of

the convergence of the empirical spectral distribution of S,, in probability and the almost

sure convergence are (’)(N_%) and O(N_%+").

5.3.4 Standard Vector-In, Vector-Out Model

Random vectors are our basic building blocks in our signal processing. We define the
standard vector-in, vector-out model (VIVO)' as

y,=Hx,+w,,n=1,...,N

where y, is an M x 1 complex vector of observations collected from M sensors, X, is

K x 1 complex vector of transmitted waveform, H is an M x K matrix, and w, is an

M x 1 complex vector of additive Gaussian noise with mean zero and variance o 2.
Defining

Y=I[y,.....yn. X=1[x,....xXy], W=1[w, ..., Wyl,

! Multiple-input, multiple-output (MIMO) has a special meaning in wireless communications.
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we have
Y=HX+W.
The sample covariance matrix is defined as
1 1
S=—-YY" = —(HX + W)HX + W)".
N N( + W)(HX + W)

For the noise-free case, that is, olﬁ = 0, we have
1 1

S = —(HX)(HX)” = —HXX"H".
N N

We can formulate the problem as a hypothesis testing problem
1
Hy:S = —WW7,
N

H,:S= %(HX + W)(HX + W),
5.3.5 Generalized Densities

In the generalized densities, the moments of the matrix play a critical role. Assume that
the matrix A has a density
pyA)Y=HOy, ..., A,).
The joint density function of its eigenvalues is of the form

Py i) =cd Oy A HG, . 1),
Hy, .. h) =[] g0,
k=1

J=T10—2)" kﬁ h, (A,).
=1

i<j

For example for a real Gaussian matrix, 8 = 1 and &, = 1, for a complex Gaussian matrix,
B =2 and h, =1, for a quaternion Gaussian matrix, f =4 and s, = 1, and for a real
Wishart matrix with n > p, B =1 and h,, = x"~7. The following examples illustrate this.

1. Real Gaussian matrix, that is, symmetric, AT = A:

402

1
py(A) = cexp (— —Tr(AZ)) )
The diagonal entries of A are i.i.d. real V{0, 20%) and entries above diagonal are i.i.d.

real N0, o?).
2. Complex Gaussian matrix, that is, Hermitian, A* = A:

1
py(A) = cexp (— FTr(Az)) )

The diagonal entries of A are i.i.d. real AV(0, o?) and entries above diagonal are i.i.d.
complex N(0, 0%) (whose real and imaginary parts are i.i.d. NV(0, 02/2)).
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3. Real Wishart matrix, of order p x n:
1 *
py(A) =cexp —FTr(A A) ).

The entries of A are i.i.d. real AV(0, o2).
4. Complex Wishart matrix, of order p x n:

1
py(A) = cexp (——2Tr(A*A)) .
o
The entries of A are i.i.d. complex N(0, o%).

For generalized densities, we have

1. Symmetric matrix:
py(A) = cexp(~TrG(A)),
where G(t?) is a polynomial of even orders with a positive leading coefficient, such
as G(1%) = 4r* + 21> 4 3.
2. Hermitian matrix:

Pn(A) = cexp(=TrG(A)),

where G(t?) is a polynomial of even orders with a positive leading coefficient.
3. Real covariance matrix, of dimension p and degrees of freedom n:

py(A) = cexp(—=TrG(ATA)),
where G(t) is a polynomial with a positive leading coefficient, such as G(t) = 4t> +
21> + 3t + 5.
4. Complex covariance matrix, of dimension p and degrees of freedom n:

pn(A) = cexp(=TrG(A"A)),

where G () is a polynomial with a positive leading coefficient.

The book of [14] mainly concentrates on results without assuming density conditions.

5.4 Stieltjes Transform

We follow [10] closely for the definition of the Stieltjes transform. Let G be a function
of bounded variation defined on the real line. Then, its Stieltjes transform is defined by

m(z)é/w ! G(dx), (5.29)

o X =2
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where z = u +iv with v > 0. The integrand in (5.29) is bounded by 1/v, the integral
always exists, and

oo

1 v

This is the convolution of G with a Cauchy density with a scale parameter v. If G is
a distribution function, then its Stieltjes transform always has a positive imaginary part.
Thus, we can easily verify that, for any continuity points x, < x, of G,

lim N %Im(m(z))du =G(xy) — G(x)). (5.30)

X1

(5.30) provides a continuity theorem between the family of distribution functions and the
family of their Stietjes transforms.

Also, if Im(m(z)) is continuous at x, + {0, then G(x) is differentiable at x = x,, and
its derivative equals %Im(m (xo +i0)). (5.30) gives an easy way to find the density of a
distribution if its Stieltjes transform is known.

Let G be the empirical spectral distribution of a Hermitian matrix Ay of N x N. It is
seen that

1 N 1
mq(z) = —Tr(A —zD)™' = — 5.31
6(2) = 3 Ti( ) N; Ty — (5.31)

where «; is the i-th column vector of A with the i-th entry removed and A, is the matrix
obtained from A with the i-th row and column deleted. (5.31) is a powerful tool in
analyzing the spectrum of large random matrix. As mentioned above, the mapping from
distribution functions to their Stieltjes transforms is continuous.

Example 5.7 (Limiting spectral distributions of the wigner matrix)
As an illustration of how to use (5.31), let us consider the Wigner matrix to find its
limiting spectral distribution.

Let my(z) be the Stieltjes transform of the empirical spectral distribution of N~1/°W.
By (5.31), and noticing w;; = 0, we have

1 & 1
my(z) = —
N N; o H(N I/2W —ZIN 1) Ot
N
1 1
= = — 8 3
Z z—osz(z)+8 —z4+02my(2) +ow

i=1
where

g =0"my@) — +al (NTVPW, —zI,_D7a;,
N

—&.
Sy = — i )
NTN ; (—z—0%my(2) + &) (—z — 0’my(2))
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For any fixed v, >0 and B > 0, with z = u + iv, we have (omitting the proof)

sup 8y (@) =o(l),a.s. (5.32)

[u|<B,vp<v<B

Omitting the middle steps, we have

1 2
my(z) = 252 |:Z + 8Nc72 — \/(z —8y02)" — 402} . (5.33)
From (5.33) and (5.32), it follows that, with probability 1, for every fixed z with v >0,

—F[Z—VZZ—ALO’{I.

Letting v — 0, we find the density of the semicircle law as given in (5.22). |

my(z) = m(z) =

Let Ay be an N x N Hermitian matrix and F,  be its empirical spectral distribution.
If the measure p admits a density f(x) with support Q:

du(x) = f(x)dx on €,
Then, the Stieltjest transform of Fy  is given for complex arguments by

Say(@ =9, @) = [ {5dFy () = 3 Tr(Ay — 2D~

3 > (5.34)
=-Y Z*(k“rl)(fg xkf(x) dx)=—Y Zf(kH)Mk,
k=0 =0

where M, = fQ x¥ f(x)dx is the k-th moment of F. This provides a link between the
Stieltjes transform and the moments of A,. The moments of random Hermitian matrices
become practical if direct use of the Stieltjes transform is too difficult.
Let A € CN*M B e CM*VN_ such that AB is Hermitian. Then, for z € C\R, we have
[12, p. 37]
N-M1

N 7z

N A (@) =mpy @) +
In particular, we can apply AB = XX*.
Let X € CN*N be Hermitian and a be a nonzero real. Then, for z € C\R

1
Mg < (z) = ;mFx (2).

There are only a few kinds of random matrices for which the corresponding asymptotic
eigenvalue distributions are known explicitly [278]. For a wider class of random matrices,
however, explicit calculation of the moments turns out to be unfeasible. The task of
finding an unknown probability distribution given its moments is known as the problem
of moments. It was addressed by Stieltjes in 1894 using the integral transform defined in
(5.34). A simple Taylor series expansion of the kernel of the Stieltjes transform

m —1
— lim d” Gls )=m!/x'"dF(x)

s—o00 dx™ s
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shows how the moments can be found given the Stieltjes transform, without the need for
integration. The probability density function can be obtained from the Stieltjes transform,
simply taking the limit

1
p(x) = lim —ImG(x + jy),
y—=0+ 7T

which is called the Stieltjes inverse formula [11].
We follow [279] for the following properties:

1. Identical sign for imaginary part

f)
Im‘lfﬂ(Z) = Im(z) o mdk,

where 3 is the imaginary part of z € C.
2. Monotonicity. If z = x € R\Q, then ¥, (z) is well defined and

/i(ﬂ) dr>0= W (2) / on \Q.

3. Inverse formula

fx)=— hm ImY(x + jy). (5.35)

Note that if x € R\S2, then ¥, (x) e R = f(x) =0
4. Dirac measure. Let 6, be the Dirac measure at x

1 if x € A,
8,(A4) = { 0 else.

Then,
1
wsx (2) = q’so (2) =

An important example is

M

e 1 1
= MZ% :>\IJLM(Z) = MZ

k=1 k=1 M= 2

5. Link with the resolvent. Let X be a M x M Hermitian matrix
Ay 0
X=U . u”
0 Ay

and consider its resolvent Q(z) and spectral measure L,

1 M
Q@) =(X—zD Ly =36,
k=1
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The Stieltjes transform of the spectral measure is the normalized trace of the resolvent
1 1 4
\IJLM (Z) = MTI'Q(Z) = MTI(X — ZI) .

Gaussian tools [280] are useful. Let the Z/s be independent complex Gaussian random
variables denoted by z = (Z,, -- -, Z,).

1. Integration by part formula

E(Z,®(z, 7)) = E|Z,|*E <£>
k ’ B k aZk '

2. Poincaré-Nash inequality

var(®(z, 7)) < Z|Zk|2( i

2 ‘ D

A

)
5.4.1 Basic Theorems

Theorem 5.22 ([281]) Let my(z) be the Stieltjes transform of a distribution function
F, then

1. my is analytic over CT;
2. ifz € CT, thenmy(z) € Ct,;
3. ifz€ C Imp(2)] < g and Im(G-) < —Im(2);
4. if F(07) = 0, then m is analytic over C\R™. Moreover, z € C* implies zm (z) € C*

and we have the inequalities

1
@) 2 € C\R
Imp(2)| < Lz<0

lz]”

I +
@R <€ C\R
with dist being the Euclidean distance.
Conversely, if my(z) is a function analytical on Ct such that mp(z) € Ct if z € C*
and

lim —iympg(iy) =1,
y—>00

then m ;(2) is the Stieltjes transform of a distribution function F given by

b
F) — F(a) = 1irr(1)%/ Im (mp(x + jy))dx.

If, moreover, zm(z) € C* for z € C*, then F(07) = 0, in which case m () has an
analytic continuation on C\R™.

Our version of the above theorem is close to [12] with slightly different notation.
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Let t >0 and m(z) be the Stieltjes transform of a distribution function F. Then, for
z € C* we have [12]

1
14+ 1tmp(z)

|z]
~ Im(z)

Let x € CV,t>0 and A € CV*N be Hermitian, nonnegative definite. Then, for z € C*
we have [12]

Iz
~ Im(z)
The fundamental result in the following theorem [282] states the equivalence between

pointwise convergence of Stieltjes transform and weak onvergence of probability
measures.

1
'1—|—txH(A —zD7'x

Theorem 5.23 (Equivalence) Let (i,) be probability measures on R and (¥, ), ¥, the
associated Stieltjes transform. Then the following two statements are equivalent:

I' \Ill’-n (Z) n—_>)oo \IJ//. (Z) f0r Clll Z € (C+,

2., 5 .

n—oo

Let the random matrix W be square N x N with i.i.d. entries with zero mean and variance
%. Let ©Q be the set containing eigenvalues of W. The empirical distribution of the
eigenvalues

1
Py (2) £ N'M € Q2 :Rer <Rez and Im A < Im z}|

converges a nonrandom distribution functions as N — oo. Table 5.2 lists commonly used
random marices and their density functions.

Table 5.1 compiles some moments for commonly encountered matrices from [278].
Calculating eigenvalues A, of a matrix X is not a linear operation. Calculation of the
moments of the eigenvalue distribution is, however, conveniently done using a normalized
trace since

N

1 m 1 m
NZ ¢ =T,
k=1

Thus, in the large matrix limit, we define tr(X) as
s .o 1
tr(X) = lim —Tr(X).
N—oo N

Table 5.2 is made self-contained and only some remarks are made here. For Haar
distribution, all eigenvalues lie on the complex unit circle since the matrix T is unitary.
The essential nature is that the eigenvalues are uniformly distributed. Haar distribution
demands for Gaussian distributed entries in the random matrix W. This condition does
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Table 5.1 Common random matrices and their moments (The entries of W are i.i.d. with zero

mean and variance +; W is square N x N, unless otherwise specified. tr(H) = Nlim %Tr(H))

N
Convergence Laws Definitions Moments
Full-Circle Law W square N x N
Semicircle Law K = Wens w ) = -1 ( 2,;” )
. m - 1
Quarter Circle Law Q = VWWH tr (Q") = % @ —li- ) ( mﬂ ) Y m odd
0 2 2
— JWH
Deformed Quarter Circle Law ?’V_e (C"‘X ﬂXV’
R2 tr(R2n1)=iz<"{1)<'m )ﬁl
m=\ i i—1
1
Haar Distribution T= W(WH W)_ 2
Inverse Semicircle Law Y=T+T4

Table 5.2 Definition of commonly encountered random matrices for convergence laws (the
entries of W are i.i.d. with zero mean and variance %; W is square N x N, unless otherwise
specified)

Convergence Laws Definitions Density Functions
Full-Circle Law W square N x N (z) = % 2l <1
d Pw) =10 elsewhere
1 2
..  wawH VA= xT x| <2
Semicircle Law K= VA pk (2) = [ 0 elsewhere
0<x<2
L /4 _ 2 =4 =
Quarter Circle Law Q = vWWH P =1 " 4-x 2
0 elsewhere
1 4—x
— O0<x<4
Q’ pp (@) =12V x V==
0 elsewhere
V4B—(x2—1-p)*
r—— a<x<b
. R =+VWHIW, PR (2) = T -~
Deformed Quarter Circle Law W e CVxAN ( 1— \/B)+ 5(x) elsewhere
a=|1-yB|.b=1+VB
, «/45—;;;1—&2 @2 <x <P
R pre (2) = ’ .
(1= +/B) 8(x) elsewhere
1
Haar Distribution T=WW/W)"2  pr(z)=5£8(zl—1)
1 x| <2
Inverse Semicircle Law Y=T+TH" py (2) = 4—x2
0 elsewhere
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Table 5.3 Table of Stieltjes, R- and S-transforms

Stieltjes Transform R-Transform S-Transform
A A L S@ ==Y,
G(2) = [ dP (x), R(z)=G ' (—2)—z N
Im z>0,Im G(z) > 0 Y =-z"'G7" (1) -1
) = 7= R,(x) =« Sa@ =1
Gg(2) = R () =z Sk () = undefined
2 14 _z
2 272
Golo) = R2(d) = i S0 = 7z
1—%(%—arcsm%)—§—ﬁ
G =3/1-1—3 Ry (2) = Sk (@) = gz
Gre(2) = Ry(2) = by e 'ZIHZZ Sy (z) = undefined
A=p* 148 1 1 _ (=P
2 » Ti T2 o
Gy(@) = =2 Rox (2) = Ry (@2) San(3) = 5,25y ()
Gy (@) = 2 lim R(2) = [ xdP(x)
Gy (2) = BGyny (2) + L, Ry (2) = Ry (2) Ry (2)
X € CV*#N

GA+B (RA+B (=2) — Z_l) =2z

Gxiwywr () =
Gy (Z —BJ m%)

CxrwywH @

Im z>0,X,Y, W jointly independent.

Gwwr (2) = fol u(x, z)dx,

u(x,z) =
—1
_ B w(x,y)dy
|: Tt ‘/;) 1+f01 u()c’,z)w(x"y)dx’] ’
x €[0,1]

not seem to be necessary, but allowing for any complex distribution with zero mean and
finite variance is not sufficient.

Table 5.3 lists some transforms (Stieltjes, R-, S- transforms) and their properties. The
Stieltjes transform is more fundamental since both R-transform and S-transform can be
expressed in terms of the Stieltjes transform.

2 This table is primarily compiled from [278].
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5.4.1.1 Products of Random Matrices
Almost surely, the eigenvalue distribution of the matrix product
P =W'WX

converges in distribution, as K, N — oo but § = K/N.

5.4.1.2 Sums of Random Matrices

Consider the limiting distribution of random Hermitian matrices of the form [251, 283]
A + WDW#,

where W(N x K), D(K x K), A(N x N) are independent, with W containing i.i.d.
entries having second moments, D is diagonal with real entries, and A is Hermitian.
The asymptotic regime is

K/N — «a as N — oo.

The behavior is expressed using the limiting distribution function Fj , wpw# (x). The
remarkable result is that the convergence of

FxiwpwH (X)

to a nonrandom F.

Theorem 5.24 ([251,283]) Let A be an N x N Hermitian matrix, nonrandom, for which
F\(x) converge weakly as N — oo to a distribution function A. Let Fy(x) converges
weakly as N — oo to a distribution function denoted D. Suppose the entries of N NW
i.i.d. for fixed N with unit variance (sum of the variances of the real and imaginary parts
in the complex case). Then, the eigenvalue distribution of A + WDW! converges weakly
to a deterministic F. Its Stieltjes transform G(z) satisfies the equation:

T
G(Z) = GA (Z - C(/ TG(Z)dT(T)) .

Theorem 5.25 ([284]) Assume

— 1 : . .
1. X, = E(X[(;’)), where 1 <i <n,1<j < p, and X, ; y are independent real random
variables with a common mean and variance o>, satisfying

1 2
e 2 XG11Xy| z /) = 0,
LJ

where 1(x) is an indication function and &2 is a positive sequence tending to zero;

2. f—) y>0asn— oo;

3. T, is an p X p random symmetric matrix with Fy, converging almost surely to a dis-
tribution H(t) as n — o0,
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n—n
surely to Fy, a (possibly defective) nonrandom distribution;

5. Xy, Ty, Ay are independent.

4. B, =A,+X,T, X, where A, is a random p x p symmetric matrix with Fy, almost

Then, as n — 00, FB,, converges almost surely to a nonrandom distribution F, whose
Stieltjes transform m(z) satisfies

m(z) = my(2) (z - y/ 1++m(z)dH(x)> )

Theorem 5.26 ([285]) Let S, denote the sample covariance matrix of n pure noise vectors
distributed N0, azlp). Let | be the largest eigenvalue of S,. In the joint limit p, n — 00,
with p/n — ¢ > 0, the distribution of the largest eigenvalues of S, converges to a Tracy-

Widom distribution
1, /0% —
Pr M N Fﬂ(s),
Enp

with B = 1 for real valued noise and B = 2 for complex valued noise. The centering and
scaling parameters, w, , and §, , are functions of n and p only.

Theorem 5.27 ([285]) Let [, be the largest eigenvalue as in Theorem 5.26. Then,
2
Pr {11/02 > (1 + \/E) + e} < exp(—nJ ()
n

]LAG(S) _ flx (x — )(1+c)»+2f dy ’

(y+B)? o

where

c:p/n,x:l—i—%ﬁ,B:%.

Consider the standard model for signals with p sensors. Let {x; = x(#;)}/_, denote p-
dimensional i.i.d. observations of the form

x(t) = As(t) + on(t), (5.36)
sampled at n distinct times 7, where A = [a,, ..., a,]” is the p x K matrix of K lin-
early independent p-dimensional vectors. The K x 1 vector s(t) = [s,(), ..., sg(1)]"

represents the random signals, assumed zero-mean and stationary with full rank covari-
ance matrix. o is the unknown noise level, and bfn(¢) is a p x 1 additive Gaussian noise
vector, distributed A(0, I ») and independent of s(z).

Theorem 5.28 ([285]) Let S, denote the sample covariance matrix of n observations
Jfrom (5.36) with a single signal of strength A. Then, in the joint limit p,n — 0o, with
p/n — ¢ > 0, the largest eigenvalue of S, converges almost surely to

ws. | AP 2= Ypn
Amax (S,) = )
(A+a2)(1+5 ,\) r>o%/p/n
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Theorem 5.29 ([286]) Let C € 7*P be positive semidefinite. Fix an integer | < p and
assume the tail

{)‘-i (C) }i >1

of the spectrum of C decays sufficiently fast that

Y 3,(C) = 0, (O)).

i>1

Let {x;}!_, € R? be i.i.d. samples drawn from a N(0, C) distribution. Define the sample

covariance matrix

O
H
C= . Z X X; .
i=l1
Let k; be the condition number associated with a dominant [-dimensional invariance sub-
space of C,
MO
| — .
2 (C)

If
n = Qe *k}log p),
then with high probability
104 (C,) = 2, (C| < ex (C), fork =1,..., L.

Theorem 5.29 says, assuming sufficiently fast decay of the residual eigenvalues, n =
Q(e %k}l log p) samples ensure that the top [ eigenvalues are captured with relative
precision.

5.4.2 Large Random Hankel, Markov and Toepltiz Matrices

Two most significant matrices, whose limiting spectral distributions have been extensively
studied, are the Wigner and the sample covariance matrices. Here, we study other struc-
tured matrices. The important papers include Bryc, Dembo, and Jiang [287], Bose et al.
[288—-294], and Miller et al. [295,296]. We mainly follow Bryc, Dembo, and Jiang (2006)
[287] for this development. For a symmetric n x n matrix A, let A j (A),1 < j <n,denote
the eigenvalues of the matrix A, written in a nonincreasing order. The spectral measure of
A, denoted [i(A), is the empirical spectral distribution (ESD) of its eigenvalues, namely

) 1 n
w(A) = . 21: W
j=

where §, is the Dirac delta measure at x. So when A is a random matrix, (A) is a
random measure on (R, B).
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The ensembles of random matrices are studied here. Let X, : k=0,1,2,... be a
sequence of i.i.d. real-valued random variables. We can visualize the Wigner matrix as

Xy X Xz o0 Xigoy X
Xy Xpp Xoz o0 Xy X

Xpl Xp2 Xp3 Xp(n—l) Xpn

It is well known that almost surely, the limiting spectral distribution of n~'/2(W ) is
the semicircle law.
The sample covariance matrix S is defined as

1 T
S, =-W,W.,

Pn

1. If p— 0o and p/n — 0, then almost surely, the limiting spectral distribution of
%(S » — 1) is the semicircle law.
2. If p—> ooand p/n — ¢ € (0, 00), then almost surely, S, is the Marchenko-Pastur law.

In view of the above discussion, it is thus natural to study the limiting spectral distribution
of matrices of the form S, = %XPXIT, where X, is a p x n suitably patterned (asymmetric)
random matrix. Asymmetry is used very loosely. It just means that X, is not necessarily
symmetric. One may ask the following questions [290]:

1. Suppose that p/n — ¢,0 < ¢ < co. When does the limiting spectral distribution of
S, = 1X X7 exist?
2. Suppose that p/n — 0. When does the imiting spectral distribution of
n (1 :
\/; (X, X7 —1,) exist?
For n € N, define a random n x n Hankel matrix H, = [X,, ;] ;<

X, X, o0 e X, ., X

. . n n
X, Xy oo X Xy
Hn — Xn+1 Xn+2
Xn72 anl - . .
Xon X, Xon—z Xop
Xn Xn+1 """" X2n72 X2n71

and a random n x n Toeplitz matrix T, = [X;,_; ;< j<n>

XO Xl X2 Xn—2 Xn—l

X, Xy X; o X,

T — X, X, Xy :
) X,

X, o X X

X Xpa - Xy Xy X

n—
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Theorem 5.30 (Toeplitz matrices by Bryc, Dembo, and Jiang (2006) [287]) Let
X, :k=0,1,2,... be a sequence of i.i.d. real-valued random variables with variance
one Var(X,) = 1. Then, with probability 1, the empirical spectral distribution of ﬁTn,
or ((T,//n), converges weakly, as n — oo, to a nonrandom symmetric probability
measure, yp, which does not depend on the distribution of the entries of X, and has
unbounded support.

Theorem 5.31 (Hankel matrices by Bryc, Dembo, and Jiang (2006) [287]) Let
X, :k=0,1,2,... be a sequence of i.i.d. real-valued random variables with variance
one Var(X,) = 1. Then, with probability 1, the empirical spectral distribution of ﬁHn
or L(H,/\/n), converges weakly, as n — oo, to a nonrandom symmetric probability
measure, yy, which does not depend on the distribution of the entries of X, and has
unbounded support and is not unimodal.

A symmetric distribution v is said to be unimodal, if the function x + v((—o0, x]) is
convex for x < 0.

To state the theorem on the Markov matrices, define the free convolution of two prob-
ability measures p and v as the probability measure whose nth cumulant is the sum of
the nth cumulants of © and v.

Let us define the Markov matrices M,,. Let X, ; j =i >1 be an infinite upper tri-
angular array of i.i.d. random variables and define X;; = X forj >i > 1. Let M,, be a
random n X n symmetric matrix given by

Mn :Xn _Dm

where X, = [X;;],; j<, and D, = diag| > Xij) is a diagonal matrix, so each of
j=1 <i<n
the rows of M,, has a zero sum. The values of X, jl are irrelevant for M,,.

Wigner’s classical result says that ji(X,//n) converges weakly as n — oo to the
(standard) semicircle law with the density +/4 — x2/(27) on (—2,2). For normal X,
and normal i.i.d. diagonal D, independent of X,, the weak limit of (X, — D, //n) is
the free convolution of the semicircle and standard normal measures; see [297] and the
references therein. The predicted result holds for the Markov matrix M,,, but the problem
is nontrivial since D, strongly depends on X,,.

_ZXIj X12 X13 Xln
Jj=2
XZl - ZXZj X23 X2n

i#2
Mn = n
Xkl Xk2 T Z ij e an
i#
n—1

an Xn2 T - Z Xn]
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Theorem 5.32 (Markov matrices by Bryc, Dembo, and Jiang (2006) [287]) Let the
entries of a Markov matrix M,, be i.i.d. real-valued random variables with mean zero
and variance one. Then, with probability one, the empirical spectral distribution of ﬁMn
converges weakly, as n — 0o, to the free convolution of the semicircle and standard nor-
mal measures. This measure is a nonrandom symmetric probability measure with smooth
bounded density, which does not depend on the distribution of the entries of the underlying
random variables and has unbounded support.

5.4.3 Information Plus Noise Model of Random Matrices

We follow [282] for this subsection. We consider M, N € N such that N = M(N), M <
N and cy = M/N — c € (0,1) as N — oo. A Gaussian information plus noise model
matrix is a M x N random matrix defined by

Ty =By + Wy, (5.37)
where matrix B, is deterministic such that
sup Byl < By < 00,
and the entries W, ; y of Wy are i.i.d. and satisfy
W, ;n ~ EMO,0%).

Most results can be also extended to the non-Gaussian case.
The convergence of the empirical spectral measure of X, X, defined by

| M
~ A .
My = MZSM,N’
i=1

with §, is the Dirac measure at point x.
We define the resolvent of matrix X, X, by

QN(Z) = (ENENH - ZIM)_la

z € C\R™. Its normalized trace %TrQN (z) can be written as the Stieltjes transform of
1y (2) y(z) defined as

i I .
(D) = - TrQy () = /R A

The weak convergence of f[iy(z) can be studied by characterizing the convergence
of iTrQN(z) as N — oo, with the aid of (5.4.3). The main result is summarized in
this theorem.

Theorem 5.33 There exists a deterministic probability measure [Ly, satisfying supp(ity) €
R*, and such that iy — puy — 0 as N — oo with probability one. Equivalently, the
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Stieltjes transform my (z) of iy satisfies my(z) —my(z) = 0 almost surely ¥z € C\RT.
Moreover, V7 € C\R™, m(z) is the unique solution of the equation

1
—TrTy(2)

my(z) M

B, B!

14+ 02cymy(2)

—1
—Lﬂ(—dl+a%wm“@HM+a%L—%ﬂM+ ) (5.38)

M
satisfying Im(m y (z)) > 0 for z € C*.

This result was first proven by Girko [298] and later Dozier-Silverstein [263]. This
result is also valid for the non-Gaussian case.
If the spectral distribution

1
F 2 _card{k: A, y <
v (x) M { LN =X }
of matrix ByB% converges to the distribution F(x) as N — oo, then
w
My = 1
with p probability measure, whose Stieltjes transform
N 1
m(z) = | ——du®)
R A—2Z

satisfies

1
me) = /R T S——— s g T B S R

14+02cm(z)
The convergence of 71y (z) can be guaranteed by the following theorem.

Theorem 5.34 (The convergence of 7y (z)) Forall z € C\R,

1 1
my(2) —my@)| < —=P(zDP| —— ).
|y (2)) —my(2)] N2 1z 2<|Im(z)|>
for all large N, with P, P, two polynomials with positive coefficients independent of N, z.

According to Theorem 5.33, lTrQN (z) is a good approximation of iTrTN (2). The
following theorem shows that the entries of Q, (z) also approximate the entries of T (z).

Theorem 5.35 (The entries of Qy (z) approximate the entries of Ty (z)) Let T (z) be
defined in (5.38). Let (d; y) and (d, y) be two sequences of deterministic vectors such that

suplld; yll, sup|ld, vl < oo.
N N
Then,

d{{N(QN (z) — TN(Z))di N:)OOO
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almost surely for all z € C\R. Moreover,

1 1
[A7xQy(2) = Ty D3y ]| < 5 Pz Py (m) :

for all large N, with P, P, two polynomials with positive coefficients independent of N, z.
Theorem 5.35 is valid for the non-Gaussian case that is proven in [299].

Definition 5.1 (Assumption 5.1) Matrix B, has rank K = K(N) < M, and the eigen-
values of ByBy"™ has multiplicity one for all N.

Definition 5.2 (Assumption 5.2) The rank K >0 of ByBy" does not depend on N and
Jorallk =1,..., K, the positive sequence {Ay ., y} is expressed as

Av—k+en = Vi T &n
with
lim & y =0
N—o00
and increasing values

Vi <...< Vg

The support of py is studied in [300]. Under further assumption such as Assump-
tion 5.1, this is studied in [299]. Assumption 5.2 is stronger than Assumption 5.1.
Assumption 5.2 says the rank of BB, is independent of N.

Theorem 5.36 (Exact separation of the eigenvalues for the spiked model [299]) Under
Assumption 5.2, define

§

1

K, 2 —card{k : A, > 02/c}
M

and assume that

o> Ved i vkhs

that is,

Vi< oo < Vi_k, <ONC<Vg_go1 < < Vi
Thus, for N large enough, the support Qy has Q = K, + 1 clusters, that is,

R O
Qy =U,2 [x, %, 8]

The first cluster is associated with A ., ..., Ay _g,  y and is given by

1 1
v == yet o+ OF () andxfy =02+ ek + 07 ().
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For q=2,3,...,K,+1 and k =q — 1, the cluster [x;N, x;fN] is associated with
Am—g+kn and

Xgn =80y _gpunscn) — OF ( 1

Xgn = 8y_gns cy) +OF (ﬁ ;
_ 020 (to)
g, ¢) = GHA0HO

B

and O (ﬁ) is a positive O <\/LN) term.
Under the spiked model assumption, measure (i, is intuitively expected to be very
close to the Marchenko-Pastur distribution p, and particularly €2, should be close to

supp(p) = [02(1 — Jey)*, o2 (1 + /o).

Theorem 5.36 shows that the first cluster [x; N,xffN] is very close to the support of
the Marchenko-Pastur distribution; we have the presence of additional clusters, if the
eigenvalues of BB, are large enough. Indeed, if K, eigenvalues of BB, " converge
to different limits, above the threshold azﬁ, then there will be K additional clusters in
the support of €2, for all large N.

Theorem 5.36 also states that the smallest M — K eigenvalues of BB, are associ-
ated with the first cluster, or equivalently that

M—K,
M

k]

- +
pnlxy ys Xyl =

and that

,uN[x,;N,xZN]zM,k:Z,...,KS.

The conditions for the support €2, to split into several clusters depend in a nontriv-
ial way on o, the eigenvalues of B NBNH, the distance between them. However, under
stronger Assumption 5.2 (K independent of N and convergence of the eigenvalues to
different limits), explicit conditions for the separation of the eigenvalues are obtained:
an eigenvalue of ByB, " is separated from the others if its limit is greater than o,/c.
The nonseparated eigenvalues are those associated with py[x; v, lefN]. Therefore, in the
spiked model case, the behaviors of the clusters of €2, are completely characterized.

The spectral decomposition of ByB% and X, X are expressed as

BB = UyAU# and =, X% = U, AUY

with Uy, fJN unitary matrices and A = diag(A; y, ..., Ay n)s A= diag()N\,,N, ...,)N\MqN).
The eigenvalues of ByBY and XX} are decreasingly ordered such that 0 <1, y <
oS Aynyand 0 <Ay y <... <Ay, respectively.

Theorem 5.37 Under Assumption 5.2,

a.s. :02(1+ﬁ)’ k=0

A
M—Ks+k,N gy0) k=1,...,K.

N—o00
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156 Cognitive Radio Communications and Networking

Let us consider the eigenvectors of ByB¥ and X, X H . Let us first start with a problem
of DOA estimation, and then convert the problem into the standard information plus noise
model defined in (5.37).

The observed M-dimensional time series y, for the n-vector sample are expressed as

K
yn=Zaksk,n—|—vn=Asn—|—vn,n=1,...,N
k=1

with
T
S, = (Sysevs8k,) A= (a;,...,ag),

where s, collects K < M nonobservable “source signals,” the matrix A of M x K is
deterministic with an unknown rank K < M, and (v,),.; is additive white Gaussian
noise such that E(v,v¥) = o%I,,. Here Z denotes the set of all integers.

In matrix form, we have Yy = (y;, ..., ¥n), Observation matrix of M x N. Similarly,
we do this for Sy and V. Then,

Yy =ASy +V,.
Using the normalized matrices

1 1 1

Xy=—Yy, By = —AS, W, = —
N \/NN N \/ﬁ N N \/N

we obtain the standard model

Vu,

ZN =BN+WN' (539)

which is identical to (5.37). Recall that

e B, is a rank K deterministic matrix;
e W, is a complex Gaussian matrix with i.i.d. entries having zero mean and variance
a?/N.

The “noise subspace” is defined as

{ul'N,...,uM,K,N},

that is, the eigenstate associated with 0 of ByB%, and the “signal space” the orthogonal
complement, that is, the eigenspace associated with the non-null eigenvalues of ByB%.
The goal of subspace estimation is to find the projection matrix onto the noise subspace,

that is,
M—-K

_ H
Iy = E Uy U N
k=1

The subspace estimation problem we consider here is to find a consistent estimation of
ny = dyTdY, when N — oo,

where (dy) is a sequence of deterministic vectors such that supy ||dy|| < oo.
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Traditionally, n, is estimated by

M—-K

S qH Sy~ H
ny =dyllydy = Z dyu vy ydy,
k=1

in other words, by replacing the eigenvectors of true signal covariance ByB% (informa-
tion only) with those of their empirical estimates ¥, X4 (information plus noise). This
estimator only makes sense in the regime where M does not depend on N (thus ¢y — 0),
because from the classical law of large numbers, we have

IZyEH — ByBE + LIl = 0.
N—oo

whose convergence is not true in general, if ¢y — ¢ > 0. It can be shown that ny — 1y
does not converge to zero.

Fortunately, we can derive a consistent estimate of n, by using the results concerning
the convergence of bilinear forms of the resolvent of X, X¥.

Theorem 5.38 (Consistent estimate for the spiked model [282]) Let

o IOk n)
n —diy s KN
Agpite.n = diy Zydy + E dijo, yulydy (1 - ————,
k=M—K+1 F(g p)mg y)

where I'(x) = xm(x)m(x), and m(x) is the Stieltjes transform of the Marchenko-Pastur

law, expressed as
1

—z(1 +co?m(z) + 02(1 —¢))’

m(z) =

and
1—c¢

m(x) = cm(x) —
Then, under Assumption 5.2, if

: _ 2
m dy_ gy n =0 >0V,
N—oo

it holds that
F’spike.N vy

This theorem is derived using a different method [301].

5.4.4 Generalized Likelihood Ratio Test Using Large Random Matrices

The material in this subsection can be found in [302]. Denote by N the number of
observed samples

Ho :ylnl= winl, n=0,1,...,N—1,

H, :yln] = hs[n]l+wln], n=0,1,...,N -1,
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158 Cognitive Radio Communications and Networking

where

e (w[n]),n=20,..., N —1 represents an indepdent and identically distributed (i.i.d.)
process of K x 1 vectors with circular complex Gaussian entries with mean zero and
covariance matrix oIy ;

e vector h € C**! is deterministic, signal s[n],n =0,..., N — 1 denotes a scalar i.i.d.
circular complex Gaussian process with zero mean and unit variance;

e (wn]),n=0,...,N—1and s[n],n=0,..., N —1 are assumed to be independent
processes.

We stack the observed data into a K x N matrix

Y = [y[0], y[1], y[N — 1]].
Denote by R the sample covariance matrix defined as
1

NYYH. (5.40)

R =

We denote by p,(Y; 0?) and 1 (Y; 0?) the likelihood functions of the observation
matrix Y indexed by the unknown parameters h and o under hypotheses H, and H,.

As Y is a K x N matrix whose columns are i.i.d Gaussian vectors with covariance
matrix X

Hy: T = o’l,

H, : £ =hh" +o°I,.
When parameters h and o? are known, the Neyman-Pearson procedure gives a uni-
formly most power test, defined by the likelihood function

_ D1 (Y; (72)
po(Y; 02)

In practice, this is not the case: parameters h and o are not known. We will deal with
this case in the following. No simple procedure guarantees a uniformly most powerful
test, and a classical approach called GLRT considers

_supy ,2p(Y; 0?)
o supy, ,2po(Y; 02)°
The GLRT rejects hypothesis ‘H,, when L is above some threshold &

Hy
Ly = &y, (5.41)
<

Ho

where &) is selected in order that the probability of false alarm Py (L, >&,) does not
exceed a given level «.
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With the aid of [303,304], the closed form expression of the GLRT L, is derived in
[302]. Denote by

AM>Ay>- > A >0
the ordered eigenvalues of R (all distinct with probability one).

Proposition 5.1 Let T be defined by

Ty = —1. (5.42)
K

Then, the GLRT writes
C

@V - L1y)

Ly v = Pnx(Ty), (5.43)

where

Since Ty, € (1, K) and ¢ (-) is an increasing function in this interval, (5.43) is equiva-
lent to

Ty = oy (Ly). (5.44)

Using (5.44), (5.41) is rewritten as

Ty = vy (5.45)

with
Yn = bnlk En)-

The GLRT (5.45) requires setting the threshold y, which is a function of N. Let p (¢)
be the complementary c.d.f. of the statistics T, under the null hypothesis H,,

py(@) =Py(Ty >1).
The threshold y,, is thus defined as
Yn = Oy k(@)

which guarantees that the probability of false alarm P,(T) > t) is kept under a desired
level a € (0, 1).
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160 Cognitive Radio Communications and Networking

Since py(t) is continuous and decreasing from 1 to O in the interval ¢ € [0, co), the
threshold p;,l («) is well defined. It is more convenient to rewrite the GLRT (5.45) as the
final form

Hy

py(Ty) = o (5.46)
<
Hy

The exact expression required in (5.46) has been derived in [302]. The fundamental
point is that 7 is only a function of the eigenvalues of A, ..., A, of the sample covari-
ance matrix R defined in (5.40). The adopted approach is to study the asymptotic behavior
of the complex c.d.f. py as the number of observations N goes to infinity. The asymptotic
regime is defined as the joint limit where both the number K of sensors and the number
N of snapshots go to infinity at the same speed

. . A K .
Asymptoticregime : N — 00, K — 00,cy = v —c, with0 <c < 1. (5.47)

This asymptotic regime (5.47) is relevant in cases where the sensing system must be
able to perform source detection in a moderate amount of time, that is, both the number
K of sensors and the number N of snapshots are of the same order. Very often, the
number of sensors is lower than the number of snapshots; hence, the ratio ¢ is lower
than 1.

(5.47) is particularly the case for “cognitive radio network as sensors” presented in
Chapter 12. The basic idea behind this concept is that spectrum sensing is required in
the cognitive radio systems. The availability of so much information that is used for
spectrum sensing can also be exploited for sensing the radio environment (as “sensors”);
in this manner, a cognitive radio network is used as sensors. Note that the cognitive radio
network has much more information at its disposal than the traditional sensors such as
ZigBee and Wi-Fi. The programmability of software defined radios must be exploited.
Waveforms are programmable in these systems. Waveform diversity for remote sensing
is thus enabled. .

Under hypothesis H,, ¥ = Iy. Sample covariance matrix R is a complex Wishart
matrix. Its mathematical properties are well studied. .

Under hypothesis H,, £ = I + hhf. Sample covariance matrix R follows a single
spiked model, in which all the population eigenvalues are one except for a few fixed
eigenvalues [26].

The sample covariance matrix is not only central to the GLRT, but also to multivariate
statistics. In many examples, indeed, a few eigenvalues of the sample covariance matrix
are separated from the rest of the eigenvalues. Many practical examples show that the
samples have non-null covariance. It is natural to ask whether it is possible to deter-
mine which non-null population model can possibly lead to the few sample eigenvalues
separated from the Marchenko-Pastur density.

The simplest non-null case would be when the population covariance is finite rank
perturbation of a multiple of the identity matrix. In other words, all but finitely many
eigenvalues of the population covariance matrix are the same, say equal to 1. Such a
population model has been called “spiked population model”: a null or purely noise
model “spiked” with a few significant eigenvalues. The spiked population model was first
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proposed by [22]. The question is how the eigenvalues of the sample covariance matrix
would depend on the nonunit population eigenvalues as N, K — oo, as for example, a
few large population eigenvalues would possibly pull up a few sample eigenvalues.

Since the behavior of T), is not affected if the entries of Y are multiplied by a given
constant, we find it convenient to consider the model

¥ =1I; +hh”.
Define the signal-to-noise ratio (SNR) as
[l
Pk = 52
The matrix
¥ = UDU”,

where U is a unitary matrix and
D = diag (pg, I,..., 1).

The limiting behavior of the largest eigenvalue A, can change, if the signal-to-noise ratio
Pk 1s large enough, above a threshold.

The support of the Marchenko-Pastur distribution is defined as [A~, A*], with A~ the
left edge and A™ the right edge, where

A== ey,
A=+ Ve

A further result due to Johnstone [22] and Nadler [305] gives its speed of convergence
O(N~273). Let A, be defined as

A, = N3 Ty = (+ /ey’
1 bN s

(5.48)

(5.49)

1 1/3
ith by =1+ ./ — +1 ,
W1 N 1+ C}\/)( _CN + )

then A, converges in distribution toward a standard Tracy-Widom random variable with
c.d.f. Fy defined in (5.50). The Tracy-Widom distribution was first introduced in [24, 25],
as the asymptotic distribution of the centered and rescaled large eigenvalue of a matrix
from the Gaussian Unitary Ensemble.

Definition 5.3 (Trace-Widom Law [24])

+o00
Frys(s) =exp (—/ (x — 5)g*(x) dx) ,Vx € R, (5.50)
where q(s) is the solution of the Painleve II differential equation
d’q(s
10) _ 54(5) +24°9),
ds

satisfying the condition q(s) ~ —Ai(s) (the Airy function) as s — +00.
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Tables of the Tracy-Widom law are available, for example, in [306], and a practical
algorithm [307] is used to efficiently evaluate (5.50). Refer to [19] for an excellent survey.

Definition 5.4 (Assumption 5.1) The following constant p € R exists
h|
(= lim o).

K—o0

= lim
p K—oo O

We call p the limiting SNR. We also define
~ c
Ak = (1 + p) 1+; .

Under hypothesis H,, the largest eigenvalue has the following asymptotic behavior [26]
as N, K — o©

Ay —>

a.s. )‘ggk’ P> \/E
Hi AT,

where k;fk is strictly larger than the right edge A™. In other words, if the perturbation is
large enough, the largest eigenvalue converges outside the support of Marchenko-Pastur
distribution [A~, AT]. The condition for the detectability of the rank one perturbation is

p > /. (5.51)

Proposition 5.2 (Limiting behavior of Ty, under H, and H,) Let Assumption 5.1 hold
true and further assume (5.51) is true, that is, p > «/c. Then,

Ty % (14 /¢)*, and
0

TN“—‘>“'(1+p)<1+5>,asN,1<—>oo.
Hy IO

In Theorem 5.39, we take advantage of the fundamental fact: the largest eigenval-
ues of the sample covariance matrix R, defined in (5.40), converge in the asymptotic
regime, defined in (5.47). The threshold and the p-value of interest can be expressed
in terms of Tracy-Widom quantiles. Related work includes [24,25,308-311], Johnstone
[9,19,22,312-318], and Nadler [305].

Theorem 5.39 (Limiting behavior of GLRT [319]) Consider a fixed level « € (0, 1) and
let yy be the threshold for which the power of (5.45) is maximum, that is,

H

Ty = vn (5.52)
<
Ho

with

Yn = bnlk En)-
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Then,

1. The following convergence is true

Fry ().
,K—o00 TW(a)

N
v E ==V | =
N N—oo
2. The probability of false alarm of the following test
I‘;] N2/3
Ty = (4 ey’ + —— Fry(@)
< N
Hy

converges to d.
3. The p-value py(Ty) associated with the GLRT can be approximated by

NPTy — (1 + ﬂﬁ))

By (Ty) = Fryy ( g
N

in the sense that

Py (Ty) — py(Ty) — 0.

Definition 5.5 (Hypothesis test of the condition number) Define the random variable
of the condition number x as
oy B
AR
where A and Ay are the largest and the lowest eigenvalue of the sample covariance matrix
R defined as (5.40).

A related test [257] uses the ratio of the maximum to the minimum of the eigenvalues
of the sample covariance matrix. As for T, x, is independent of the unknown noise
power o2, This test x, is based on an observation based on (5.48).

Under hypothesis H,), the spectral measure of R weakly converges to the Marchenko-
Pastur distribution with support (1, A1) with A~ and At defined in (5.48). The largest
eigenvalue of R, A, converges toward A* under H,, and Afgk under H;.

The lowest eigenvalue of ﬁ, A, converges to [26,271,320]

hx =0T =021 — o),
under both H,, and H,. Therefore, the statistic x, admits the following limit
2
_hag it (140

S A (1= o)
A as 2% (L)1 +9)
= =

X =
Ag i AT (1— /o)
with 235 = (1 + p) <1 +5>
0

X

, for p>4/c

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



164 Cognitive Radio Communications and Networking

The test is based on the observation that the limit of x, under the alternative H, is
strictly larger than the ratlo , at least when the SNR p is large enough.

The threshold must be determmed before using the condition number test. It is proven
in [302] that 7 outperforms x,. A, is defined in (5.49) (repeated below) and Ay is

defined as
2
A, = N2 (TN — (14 ./ey) ) |

by

AK=N2/3 AK_(]—FM)Z 1/3
(k)

Then, both A, and Ay converge toward Tracy-Widom random variables

(A1 Ap) = (X.Y),

where X and Y are independent random variables, both distributed according to Fyy, (x).
A direct use of the Delta method [321, Chapter 3] gives the following convergence in
distribution

sl M U+ ey’
e (L= o)’

_(1+¢E>2<L+1>1/3
_(l—f)2 Ve ’

(1+ o) ( 1) "
The optimal threshold is found to be

(Je— 1 \Ve
N (1+ Jcy) _
v = N?? (VN (- g) ) ax+by(°‘)
with o = Py(xy > yy), @ € (0, 1).

)—)(aX—i-bY)

where

b=

N—>oo K—o0
In particular, &, is bounded as N, K — oo.

5.4.5 Detection of High-Dimensional Signals in White Noise

We mainly follow [322] for this development. We observe M samples (“snapshots™) of
possibly signal bearing N-dimensional snapshot vectors X, ..., X,,. For each i,

Xi ~ NN(O, 021),
where x; are mutually independent. The snapshot vectors are modelled as

H, : x; = z;, No signal
‘H, : x; = Hs; + z;, Signal present, i = 1,...,M,
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where

oz ~ N, N(O,O’ZI), denotes an N-dimensional (real or circularly symmetric complex)
Gaussian noise vector whose o2 is assumed to be unknown;

e s, ~ N (0,R,) denotes a K-dimensional (real or circularly symmetric complex) Gaus-
sian signal vector with R;

e and H is a N x K unknown nonrandom matrix.

e H encodes the parameter vector associated with the j-th signal whose magnitude is
described by the j-th element of s;.

Since the signal and noise vectors are independent of each other, the covariance matrix
of x; can be decomposed as

R=R +°1

S
where
R, = HR H”.

The sample covariance matrix is defined as
1 — 1
R=— xx7 = — XX,
W XX =

where
X =[x]...[xy]

is the matrix of observations (samples).
It is assumed that the rank of R; is K. Equivalently, the N — K smallest eigenvalues
of R, are equal to zero. Denote the eigenvalues of R by

AMZhry == Ay,
then the smallest N — K eigenvalues of R are all equal to o2 so that
Agp1 =Agpp = " =Ay =)=0

In practice, we have to estimate the value of K, so called rank estimation.

We assume M > N and x; € CV, Similarly to the case of the true covariance matrix,
the eigenvalues of R are ordered

L>1>- >y

Our estimator developed here is robust to high-dimensionality and sample size
constraints.

A central object in the study of large random matrices is the empirical distribution
function (e.d.f.) of the eigenvalues. Under H,, the e.d.f. of R converges to the Marchenko-
Pastur density Fy, (x). The almost sure convergence of the e.d.f. of the signal-free sample
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166 Cognitive Radio Communications and Networking

covariance matrix (SCM) implies that the moments of the eigenvalues converge almost
surely, so that

1L
NZlk%/xdFW(x) MY,
i=1

k; J+1< )(k;l)

For finite N and M, the sample moments, that is, Zl , will fluctuate about these

where [266]

limiting values.

Proposition 5.3 (Convergence of moments in distribution [322]) Let R denote a signal-
Jfree sample covariance matrix found from a N x M matrix of observations with i.i.d.
Gaussian samples of mean zero and variance A = o>. For the asymptotic regime

N
N, M — oo, and cM:M—>ce(O,oo),

we have

EgY: 0 2 pRrs 2x3¢(1 +¢)
(% —Di’c | g 22%c(c+ 1) 20%c2? +5¢+2) | |
\—/_—J Q
o

where the convergence is in distribution.

Proposition 5.4 (Convergence of the statistic g, ) Assume R satisfies the hypothesis of
Proposition 5.3 for some ). Consider the statistic

1 N 2
ﬁ;li

1 N :
(v20)

N
N, M — oo, ana’cMzﬁ—)ce(O,oo),

qdn =

Then, as
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we have

oo ={ (3 )ee)

where the convergence is in distribution.

The two Propositions 5.3 and 5.4 deal with H,,. Now we introduce the two propositions
in the signal-bearing case H;. In the signal-bearing case, a so-called phase transition
phenomenon is observed, in that the largest eigenvalue will converge to a limit different
from that in the signal-free case only if the “signal” eigenvalues are above a certain
threshold.

Proposition 5.5 (Convergence of the eigenvalues of ﬁ) Let R denote a sample covari-
ance matrix formed froma N x M matrix of observations with i.i.d. Gaussian observations
whose columns are independent of each other and identically distributed with mean zero
and variance R. Denote the eigenvalues of R by

MZA > 2 A > Ay = Ay = A
Let l; be the j-th largest eigenvalue ofﬁ. Then,
. N
N,M—>oo,w1tth:M—>ce((),oo),

we have

AL+ 2y if >l :
lj:{ ARSI Y (14O forj=1,...,K,

ML+ A <A1+ o)

where convergence is almost certain.

This result appears in [26] for a very general setting. A matrix theoretic proof for the
real-valued SCM case may be found in [27] while a determinental proof for the complex
case may be found in [259]. A heuristic derivation appears in [323].

The “signal” eigenvalues strictly below the threshold described in Proposition 5.5
exhibit, on rescaling, fluctuations described by the Tracy-Widom distribution [24,25].
An excellent survey is given in [19].

Proposition 5.6 (Convergence of the eigenvalues of ﬁ) Assume R and R satis-
fies the hypotheses of Proposition 5.5. If 1; > A(1 +./¢) has multiplicity 1 and if

~vMlc—N/M| — 0, then

Ac D 2, c
ﬁ[lj — %, (1 i _/\)] XN<O’ 3% (1 arwsT _)L)2>)

where the convergence in distribution is almost sure.

A matrix theoretic proof for the real-valued SCM case may be found in [27] while a
determinental proof for the complex case may be found in [259]. The result has been
strengthened for non-Gaussian situations by Baik and Silverstein for general ¢ € (0, 00).
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168 Cognitive Radio Communications and Networking

Theorem 5.40 (The eigenvalues of R and R converge to the same limit) Ler R and R
be two N x N sized covariance matrices whose eigenvalues are related as

A =diag Ay, ..., A, hpigseeenhg, hyoi s A)
A =diag Ay, ... p hyoiyR),

where for some c € (0, 00), and
A<t <a1+4c), ali=p+1,...,K.

Let R and R be the associated sample covariance matrices formed from M snapshots.
Then, for

every N, M(N) — oo, and c,; = % — ¢ € (0, 00)
Prob (K = j|R) > Prob (K = jIR) for j=1,...,p
and
Prob (K > p|R) — Prob (K > p|R) for j =1, ..., p,

where the convergence is almost surely and K is the estimate of the number of signals
obtained using the algorithm in [322].

By Proposition 5.3, we heuristically define the effective number of (identifiable) signals as

| N
Keff(R) = Number of eigenvalues of R > o? (1 + M) .

Consider an example of
2o oH 2o oH 2
R=o05vV] +05v,v; +071,

which has the N —2 smallest eigenvalues Ay =--- =2y =02 and the two largest
eigenvalues

2 2 2 2 2 2 2
@I+ oR vV @INIE = 0Bl + 4o oty vyl
o+ +

A =
! 2 2

’

2 2 2 2 2 2 2
@I+ 0B lvlD) V@IV = 0Bl + 403031ty va)]
2 B 2

respectively. Applying the result in Proposition 5.3, we can express the effective number

of signals as
2, ifo? (1+\/§) <,
K, =11 if/\2502(1+\/§)<,\1
0, ifx1502(1+\/g).

)\,220—2"_
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In the special situation when

2 2 2
Ivill = lIv2ll = [lvll and o5, = o5, = 0%,

we can (in an asymptotic sense) reliably detect the presence of both signals from the
sample eigenvalues alone, whenever we have the following condition

Vi,V N
Asymptotic identifiability condition: c752||v||2 (l - %) >q? A
v

We define Z?ep as

S (1 * M(A ) (l i ' >
ep
77 =
! 2 N
\/ﬂN)‘J (l - M(Aj—az))

which measures the (theoretical) separation of the j-th “signal” eigenvalue from the largest
“noise” eigenvalue in standard deviations of the j-th signal eigenvalue’s fluctuations.
Simulations suggest that reliable detection (with the empirical probability greater than
90% ) of the effective number of signals is possible if Z?ep lies between 5 and 15.

5.4.6 Eigenvalues of (A + B)™'B and Applications

Roy’s largest root test [324] is relevant under this context. We follow [325] for this devel-
opment. Let X be an m x p normal data matrix: each row is an independent observation
from N, »(0,X). A px p matrix A = XHX is then said to have a Wishart distribution

A~ W, (X, m).
Let
B~ WP(E,n).

Assume that m > p; then A~! exists and the nonzero eigenvalues of A 'B generalize
the univariate F ratio. The scale matrix X has no effect on the distribution of these
eigenvalues; without loss of generality we assume that ¥ = I. We follow the definition
of [110, p. 84] for the greatest root statistic.

Definition 5.6 (Greatest root statistic) Let A ~ W, (X, m) is independent of
B ~ W, (X, n), where m > p. Then the largest eigenvalue 6 of (A + B)~'B is called the
greatest root statistic and a random variate having this distribution is denoted »,(p, m, n)
or Ay , for short.

Since A is positive definite, 0 < A; < 1, for the i-th eigenvalue. Equivalently,
Ay (p, m, n) is the largest root of the determinantal equation

det [B—A(A+B)]=0.
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170 Cognitive Radio Communications and Networking

The parameter p stands for dimension, m the “error” degrees of freedom and n the
“hypothesis” degrees of freedom. Thus m + n represents the “total” degrees of freedom.
The greatest root distribution has the property

)\'l(p9m7n)=)\’l(nam+n_ps p)7 (553)
useful in the case when n < p. [110, p. 84]

Assume p is even and that p, m = m(p), n = n(p) all go to infinity together such that

fim TP o i P, (5.54)
p—~>oo m-—+n p—>0o0 m

Define the logit transform W, as

W =logith, =lo M
p g 1,p — g 1— )\'l,p .

Johnstone (2008) [325] shows W , is, with appropriate centering and scaling, approxi-
mately Tracy-Widom distributed:

— =2~ A

The distribution function F; was found by Tracy and Widom to be the limiting law of
the largest eigenvalue of a p x p Gaussian symmetric matrix [25].
The centering and scaling parameters are

16 1
K, = 2logtan <m> ,03 = 53 - —, (5.55)
2 (m+n—1)sin” (¢ + y) singsin y

where the angle parameters y, ¢ are defined by

sin? <Z> _ min(p, n) — 1/2, Gin? (f) _ max(p, n) — 1/2'

(5.56)
2 m+n—1 2 m+n—1

Theorem 5.41 (Johnstone (2008) [325]) Assume that m(p),n(p) — o0 as p — o0
through even values of p according to (5.54). For each t, € R, there exists C >0 such
that for t > t,,

|PW, < 1, +0,t} = F ()] < Cp~?Pe™2,
Here C depends on (y, ¢) and also on t; if t, < 0.

Data matrices X based on complex-valued data rises frequently in signal processing
and communications. If the rows of X are drawn independently from a complex normal
distribution CA(p, X), then we say

A =X"X ~CW,(Z,n).
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In parallel with the real case definition, if
A~ (CWP(I, m) and B~ (CWP(I, n)
are independent, then the joint density of the eigenvalues
1> =2k>-22,20

of (A 4+ B)™'B, or equivalently

det [B—A(A+B)] =0,
is given by [326]

P
Foy=c[Ta=a" a0 =2
i=1 i<j

The largest eigenvalue A (p, m, n) of (A + B)'B is called the greatest root statistic,
with distribution A€ (p, m, n). The property (5.53) carries over to the complex case.
Again, we define

A
Wy = logitA{ , = log (1 — fc ) .
Lp

Theorem 5.42 (Johnstone (2008) [325]) Assume that m(p),n(p) — 0o as p — o0
according to (5.54). For each t, € R, there exists C > 0 such that for t > t,,

|PIWy <y, +opt) = Fy)] < Cp~2Pel2,
Here C depends on (y, ¢) and also on t; if t, < 0.

The centering Mg and scaling apc are given in [325]. Software implementation is also
available. See [325] for details.

We are now in a position to consider several settings in multivariate statistics using
double Wishart models.

5.4.7 Canonical Correlation Analysis

Suppose that there are N observations on each of L 4+ M variables. For definiteness,
assume that L < M. The first L variables are grouped into an N x L data matrix

X=[xx, --X/]
and the last M into N x L data matrix
Y=I[yy yul
Write
Syx = X'X, Sy, =X'Y,S,, =YY,

for cross-product matrices. Canonical correlation analysis (CCA), or more precisely, the
zero-mean version of CCA, seeks the linear combinations a”x and b’y that are most
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highly correlated, that is, to maximize

a’S,,b
J/aTS,xa /7S, b’
This leads to a maximal correlation p; and associated canonical vectors a; and b,,

usually each taken to have unit length. The procedure may be iterated. We restrict the
search to vectors that are orthogonal to those already found:

aTSXYb : aTSXXa = stYYb —=1,and
aTSXXaj = bTSYij =1,forl <j<k|"

p = Corr(a’x, bTy) = (5.57)

pp = max {

The successive canonical correlations p; > p, > --- > p; > 0 may be found as the roots
of the determinantal equation

det (SyySyySyx — 0*Sxy) = 0. (5.58)

See, for example, [110, p. 284]. A typical question in applications is how many of the
oy are significantly different from zero.
After some manipulations, (5.58) becomes

det (B — p*(A +B)) = 0. (5.59)

Now assume that Z = [XY] is an N x (L 4+ M) Gaussian data matrix with mean zero.
The covariance matrix is partitioned into

Under these Gaussian assumptions, X and Y variable sets will be independent if and
only if

Xy =0.
This is equivalent to asserting that
Hy:pp=py=---=p,=0.
The canonical correlations (p,, ..., p;) are invariant under block diagonal transforma-

tions
(Xi7 yl) - (Bxi9 Cyl)

of the data (for B and C nonsingular L x L and M x M matrices, respectively). It follows
that under hypothesis
HO : EXY - O,

the distribution of the canonical correlations can be found (without loss of generality) by
assuming that

HO . ZXX = IL’ ZYY == IM
In this case, the matrices A and B of (5.59) are

A~CW, (I, M),B~CW, I, N — M).

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



Large Random Matrices 173

From the definition, the largest squared canonical correlation A, = p? has the A(L, N —
M, M) distribution under the null hypothesis Xy, = 0.

In practice, it is more common to allow each variable to have a separate, unknown
mean. One can correct the mean using the approach, for example, in [325].

5.4.8 Angles and Distances between Subspaces

The cosine of the angle between two vectors u, v € R" is given by

lu”v]|
costy =o0(u,v) = ——.
lall, (vl
(5.57) becomes
p = o (Xa, Yb).
5.4.9 Multivariate Linear Model
In the multivariate model,
Y=HX+W

where

1. Y of N x M is an observed matrix of M response variables on each of N individuals
(sensors);

2. Hof N x K is a known design matrix (channel response);

X of K x M is a matrix of unknown regression parameters;

4. W of N x M is a matrix of unobserved random distributions (additive white Gaussian
noise). It is assumed that W is a normal matrix of N vector samples from N,,(0,%),
so that the rows are independent Gaussian, each with mean 0 and common covariance
matrix X.

(O8]

The model matrix H remains the same for each response; however, there are separate
vectors of unknown coefficients and errors for each response; these are organized into X
of regression coefficients and N x M matrix E of errors [327]. Assuming for now that
the model matrix H has full rank, the least squares estimator is

X=HH 'HY.
Consider the linear hypothesis
HO . CIX = 0,

where C, is a r x K matrix of rank r. For more details about C,, we refer to [327].
The hypothesis sums and errors sums of squares and product matrices become

E=Y'PX=Y'(I- HH'H) 'HY,
D =Y'P,Y = (C,X)"(C,H'H)"'cT)C,X.
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It follows [327] that
E~W,d N -K),
and under hypothesis H,,
D~W,dr);

in addition, D and E are independent. Generalization of the F-test is obtained from the
eigenvalues of the matrix E~'D, or equivalently, the eigenvalues of (D + E)~'D.

Thus, under the null hypothesis C;X = 0, Roy’s maximum root statistic A; has null dis-
tribution

Ay~ A(M,N — K, r) where
M = dimension, r = rank(C,), K = rank(H), N = samples.

5.4.10 Egquality of Covariance Matrices

Suppose that independent samples from two normal distributions N, (,, ;) and
Ny (,, X,) lead to covariance estimates S; and S, which are independent and Wishart
distributed on N; and N, degrees of freedom:

A, =N;S; ~Wy,(Z;,N),i =1,2.
Then the largest root test of the null hypothesis
HO . 21 = 22

is based on the largest eigenvalue A of (A, + A,)"'A,, which under H, has the
A(M, N,, N,) distribution [328].

5.4.11 Multiple Discriminant Analysis

Suppose that there are K populations, the i-th population being assumed to follow an
M-variate normal distribution Ny, (g;, X;), with the covariance matrix assumed to be
unknown, but common to all populations. A sample of size N; (vector) observations is
available from the i-th population, leading to a total of N = ) N, observations. Multiple
discriminant analysis uses the “within groups” and “between groups” sums of squares and
products matrices W and B to construct linear discriminant functions based on eigenvec-
tors of W™'B. A test of the null hypothesis that discrimination is not worthwhile

ILIZ...Z"LK

can be based, for example, on the largest root of W~!B, which leads to use of the
A(M, N — K, K — 1) distribution [110, pages 318 and 138].
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5.5 Case Studies and Applications
5.5.1 Fundamental Example of Using Large Random Matrix

We follow [279] for this development. Define an M x N complex matrix as

Xy Xia Xin

X X X
X — 21 .22 2N

Xur Xy - Xyw

where (X;;)i<j<m1<j<y are (a number of MN) iid. complex Gaussian variables
CN(0, 6?). X, X,, ..., Xy are columns of X. The covariance matrix R is

R = Exx” = ¢°1,,.

The empirical covariance matrix is defined as

1 N
ﬁ: N;anf.

In practice, we are interested in the behavior of the empirical distribution of the eigen-

values of R for large M and N. For example, how do the histograms of the eigenvalues

(A))i—1...m of R behave when M and N increase? It is well known that when M is fixed,
M

but N increases, that is, v is small, the large law of large numbers requires

&
lim — E x,x7 ~ Exx” = o’I,,.
N—o0 N

fixed M 1=1

In other words, if N > M, the eigenvalues of %XXH are concentrated around o2,
On the other hand, let us consider the practical case when M and N are of the same
order of magnitude. As

M, N — +o00 such that % =ce€la,bl,a>0,b < +o0, (5.60)
it follows that
lAll ;= o5, y
but
IR; — oLl
does not converge toward zero. Here || - || denotes the norm of a matrix. It is remark-

able to find (by Marchenko and Pastur [251]) that the histograms of the eigenvalues

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



176 Cognitive Radio Communications and Networking

of R tend to concentrate around the probability density of the so-called Marchenko-
Pastur distribution

L_J(@a=x)(x = D), x €[a,b] (5.61)

— ) 2mex
pe(x) = { e 0, otherwise
with
a=0c%1—4c) b=0c*(1+0)

(5.61) is still true in the non Gaussian case. One application of (5.61) is to evaluate the
asymptotic behavior of linear statistics

iim )= STH(f(R)) ~ / f () p.(x)dx (5.62)
M = MM ¢ ’

where f(x) is an arbitrary continuous function. The use of (5.61) allows many problems
to be treated in closed forms. To illustrate, let us consider several examples:

. f(x)= Usmg (5.62), it follows that

pe(x) dx = my(—p?),

1 .
—Tr(R 21,y ! z/
Y r(R+o M) p2+x

where m y(—p?) is a unique positive solution of the equation
1
my(—=p*) = >
P+

l4co2 my (— ,02)

2. f(x)=log(1+ ;‘—2). Using (5.62), it is found that the expression
1 1 4
i logdet | I, + ?R

Hog(1 + comy(—p?)) + log (1 +colmy(—p?) + (1 — C)‘;é)
—pPamy (—p?) (emy(—p?) + ).

is nearly equal to

(5.63)

The fluctuations of the linear statistics (5.62) can be cast into closed forms. The bias
of the linear estimator is

1 A 1
E [MTf(f(R))} = /f(X)Pc(x) dx +0O (W) .
The variance of the linear estimator is
1 5 2
M MTr(f(R)) — [ f®)p.(x)dx | = NO, A%),
where A? is the variance and A denotes the normal Gaussian distribution. In other words,

AZ
LT R) f f@)p.(x) dx ~/\/< Mz)
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5.5.2 Stieltjes Transform
We here follow [329]. Let us consider

WW# + o1
where ~/NW is an N x K matrix with i.i.d. entries with zero mean and variance one, for
K/N — a as N — oo.
Denote A = oI and D = Iy x. For this case, we have

dA(x) = 8(x —o?)
dD(x) =8(x — 1).

Applying Theorem 5.25, it follows that

G(z) = G,y (z —o [ Bl 1)dt>

1+7G(2)
_ _ o
= Gz 1+G(z))
—f _8(02—x) (5.64)
X ’+1+G<)

1
2_ o .
A w6 T6o)

G,2(z) is the Cauchy transform of the eigenvalue distribution of matrix o’I. The
solution of (5.64) gives

l—« 1 "
2(62—z7) 2 2((72

GQ) = \/(02—z+a—1) +4(02 - 2).

The asymptotic eigenvalue distribution is given by

(1 —a)*8(x) if o2+ (Ja—1)°
fx) = + iy x—02—i(x—02+1—a) <x <o+ (Ja+1)
0 otherwise

where §(x) is a unit mass at 0 and [z]T = max(0, z).
Another example is the standard vector-input, vector-output (VIVO) model®

y = Hx +n, (5.65)

where x and y are, respectively, input and output vectors, and H and n are channel transfer
function and additive white Gaussian noise with zero mean and variance o2. Here H is
a random matrix. (5.65) covers a number of systems including CDMA, OFDM, MIMO,
cooperative spectrum sensing and sensor network. The mutual information between the

3 MIMO has a special meaning in the context of wireless communications. This informal name VIVO captures
our perception of the problem. Vector nature is fundamental. Vector space is the fundamental mathematical space
for us to optimize the system.
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input vector x and the output vector y is a standard result in information theory

C= %]N(X; y) = %logdet (I+HHY)
=13 log (1 + ﬁxi(HHH))
i=1 N
= [log (1 + ;—2,\) LS 800 — 2, (HH?))dA
i=1
= [log (1 4 ;—2,\) Fygggrt ) .

Differentiating C with respect to o2 yields

L
L3 _ f1og<H 421> Feggn (1) d.

L/ g(1+ a2 l)FHHH(A)dA

=— L+ [log 1+ 52) Fan () d2

1
— =5 + mygn (=0?).

It is interesting to note that we get the closed form in terms of the Stieltjes transform.

5.5.3 Free Deconvolution

We follow the definitions and notations of the example shown in Section 5.5.1. For more
details, we see [12,329,330]. For a number of N vector observations of x;,7 =1,..., N,
the sample covariance matrix is defined as

N
N ;
R=x L xx, (5.66)
= R'?WW"R'”,

Here, Wisan M x N matrix consisting of i.i.d. zero-mean, Gaussian vectors of variance
1/N. The main advantage of free deconvolution techniques is that asymptotic “kick-in”
at a much earlier stage than other techniques available up to now [329]. Often, we know
the values of R which are the theoretical values. We would like to find R. If we know the
behavior ofAthe matrix WW? | with the aid of (5.66), R can be obtained. Thus, our problem
of finding R is reduced to understand WW?# . Fortunately, the limiting distribution of the
eigenvalues of WW# is well-known to be the Marchenko-Pastur law.

Due to our invariance assumption on one of the matrices (here WW*), the eigenvector
structure does not matter. The result enables us to compute the eigenvalues of R, by
knowing only the eigenvalues of R. The invariance assumption “frees,” in some sense,
one matrix from the other by “disconnecting” their eigenspaces.

5.5.4 Optimal Precoding of MIMO Systems

Given M receive antennas and N transmit antennas, the standard vector channel model is

y = Hx + n, (5.67)
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where the complex entries of H of M x N are the MIMO channel gains and H is a
nonobservable Gaussian random matrix with known (or well estimated) second order
statistics. Here, x is the transmitted signal vector and n is the additive Gaussian noise
vector at the receiver with Enn = p°1,,.

The optimum precoding problem is to find the covariance matrix Q of x in order to
maximize some figure of merit of the system. For example, the optimization problem can
be expressed as

Maximize 1(Q) = E [log det (IM + pleQHHﬂ
Subject to Q > 0; -Tr(Q) < 1.

A possible alternative is to maximize a large system approximation of 7 (Q). Closed-form
expressions (5.63) can be used [331]. For more details, see [279].

5.5.5 Marchenko and Pastur’s Probability Distribution

We follow [279] for this development. The Stieltjes transform is one of the numerous
transforms associated with a measure. It is well suited to study large random matrices
and was first introduced in this context by Marchenko and Pastur [251]. The Stieltjes
transform is defined in (5.34).

Consider

1
Wy =V (5.68)

where V,, is a M x N matrix with i.i.d. complex Gaussian random variables CN (0, 0,).
Our aim is the limiting spectral distribution of X = WNWNH . Consider the associated
resolvent and its Stieltjes transform

1 1
Q@) =X —zD) ity (z) = 37 Q) = 2 Tr(X — )~ (5.69)

The main assumption is: The ratio cy = % is bounded away from zero and upper bounded,
as M, N — oo.

The approach is sketched here. First one derives the equation that is satisfied by the
Stieltjes transform of the limiting spectral distribution 11 (z) defined in (5.69). Afterwards,
one relies on the inverse formula (see (5.35)) of Stieltjes transform, to obtain the so-called
Marchenko-Pastur distribution.

There are three main steps:

1. To prove that var(iiy (z)) = O(N~2). This enables us to replace sy (z) by its expec-
tation [Erm () in the derivation.

2. To establish the limiting equation satisfied by Eni  (z).

3. To recover the probability distribution, with the help of the inverse formula of Stieltjes
transform (5.35).

The Stieltjes transform in this work of large random matrices plays a role analogous
to the Fourier transform in a linear, time-invariant (LTI) system.
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5.5.6 Convergence and Fluctuations Extreme Eigenvalues
We here follow [279] for presentation. Consider the WW# defined in (5.68). Denote by

5\1,1\1 >doy = > )A‘N,N
the ordered eigenvalues of WW . The support of Marchenko-Pastur distribution is
(©*(1 = ey)’, o (1 + Je)).

One theorem is: If ¢y, — c,, we have

My = et + o)

U N.M—o0
~ a.s.
A = 021 = Jen)?
NN s (I — /ey,

where “a.s.” denotes ‘“almost surely.” The ratio of two limit expressions is used for
spectrum sensing in Example 5.4.

A central limit theorem holds for the largest eigenvalue of matrix WW# as M, N —
0o. The limiting distribution is known as Tracy-Widom Law’s distribution (see (5.50))
for fluctuations of ):1. N-

The function Fyy,(s) stands for Tracy-Widom culmination distribution function. MAT-
LAB codes are available to compute [332].

Let us ¢y — c,. When corrected centered and rescaled, 5\1, n converges to a Tracy-
Widom distribution:

N2 Gy =+ o)t L
X

1/3
N,M—o00
(1+ /—cN)(—;N + 1)

Frws.
o2 TW2

5.5.7 Information plus Noise Model and Spiked Models

We refer to [263,279,299,300,302,333-335] for more details. The observed
M-dimensional time series y,, for the n-vector sample are expressed as

K
yn:Zakskqn—kvn:As,,—l—v,,,n:l,...,N
k=1

with
T
Sy = (Spseen8g,) A= (ag, ..., ay),

where s, collects K < M nonobservable “source signals,” the matrix A is deterministic
with an unknown rank K < M, and (v,),.c7 is additive white Gaussian noise such that
E(v,vi) = 0%1,,. Here Z denotes the set of all integers.

In matrix form, we have Yy = (y,, ..., yN)T, observation matrix of M x N. We do
this for Sy and V. Then,

Y, =AS, +V,.
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Using the normalized matrices

1 1 1
Yy=—Y,, By =—AS,, Wy, =—V,,
NTUN VTN TN TN T N Y
we obtain
Yy =By + Wy (5.70)

Detection of the presence of signal(s) from matrix X, is to tell whether K =1 versus
K = 0 (noise only) to simplify. Since K does not scale with M, that is, K < M, a spiked
model is reached.

We assume that the number of sources K is K > N. (5.39) is a model of

%y = Matrix with Gaussian iid elements + fixed rank perturbation.
The asymptotic regime is defined as
N — oo, M/N — c,, and Kis fixed.

Let us further assume that S, is a random matrix with independent CN(0, 1) elements
(Gaussian iid source signals), and A is deterministic. It follows that

Ty = AVATL +671,)17X,

where B, is M x N with independent CN(0, 1) elements.
Consider a spectral factorization of AyA¥

A 0
AyAl = U, Ul
Let P, be the M x M matrix

A 2 A 2 A 2
Pdeiag<\/ 1:20 ,\/ 2:20 ""’\’%’1"”’1>'

Uz, =oP,UIX, 2P, W,

Then

where Wy, is M x N with independent CN(0, 1) elements and D denotes weak con-
vergence. Since P, is a fixed rank perturbation of identity, we reach the so-called
multiplicative spike model

eigenvalues of X, X, = eigenvalues of P, W, WHZP.

Similarly, we can define the additive spike model. Let us assume that Sy is a deter-
ministic matrix and

B, = N '?A,S,
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is such that
rank (By) = K (fixed) .
The additive spike model is defined as
Xy =By +W,.

A natural question arises: What is the impact of B, on the spectrum of X X in the
asymptotic regime?

Let F\ and F) be the distribution functions of the spectral measures of X, X, and
W, W respectively. Then

. 1
sup| Fyy — Fy| < - rank (N — WyWih L0

Thus XX ," and Wy W# have identical (Marchenko-Pastur) limit spectral measure,
either for the multiplicative or the additive spike model.

We use our measured data to verify the Marchenko-Pastur law. There are five USRP
platforms serving as sensor nodes. The data acquired from one USRP platform are seg-
mented into twenty data blocks. All these data blocks are used to build large random
matrices. In this way, we emulate the network with 100 sensor nodes. If there is no sig-
nal, the spectral distribution of noise sample covariance matrix is shown in Figure 5.1(a)
which follows the Marchenko-Pastur law in (5.3). When signal exists, the spectral dis-
tribution of sample covariance matrix of signal plus noise is show in Figure 5.1(b). The
experimental results well agree with the theory. The support of the eigenvalues is finite.
The theoretical prediction offered by the Marchenko-Pastur law can be used to set the
threshold for detection.

Main results on the eigenvalues can be summarized into the theorem [279].

Gaussian noise sample covariance Sinusoidal signal plus gaussian noise sample
matrix with size 100100 covariance matrix with size 10010
16 T T - - - 35 T T T T T T
[ Frequency histogram | ' ' [ Frequency histogram
o 14 ) Marcenko-Pastur 1 e - Marcenko-Pastur
g distributiol % distribution
E ©
8 120 - N L7 S Y~ | P
5% 5
SEVT BRI ] S sollN
5 5
28 of SRR 28
53 B 5PN
o% st IS Py
S5 Q =)
T ° S 10PN - -]
g 4 2 ‘ ‘

& 8 o
TR o 5t RN R
o om m @

0 0.5 1 1.5 2 25 3 3.5 4 0 0.5 1 1.5 2 25 3 3.5
Eigenvalues of sample covariance ~ x 10710 Eigenvalues of sample covariance x107°
matrix matrix

Figure 5.1 Spectral distribution. (a) Spectral distribution of noise sample covariance matrix; (b)
Spectral distribution of sample covariance matrix of signal plus noise.
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Theorem 5.43 (Main result on the eigenvalues) The additive spike model is
Xy =By + Wy,
where By, is a deterministic rank-K matrix such that
M = Px

fork=1,...,K, and Wy is a M x N random matrix with independent CN(0, O'Z/N)
elements. Letz < K be the maximum index for which p, > o> /c,. Then, for k = 1, i

s (@ extp (@) 2 2
—> = % >
M T Ve o o*(1+ /)" H,

Aisin N‘io o2(1 + /)% H,.

where 'H, denotes the presence of signal(s) while H the absence of signall(s).

5.5.8 Hypothesis Testing and Spectrum Sensing

This example is continued from the example shown in Section 5.5.7. For more details,
we see [263,279,299,300,302,333-335]. One motivation is to exploit the asymptotic
limiting distribution for spectrum sensing.

The hypothesis test is formulated as

H,: Xy =By + W, (noise)
Hy: Xy =W,  (Information + noise).

Assume further K = 1 source for convenience.
_a—l2
By =N"""a ys y,
is a rank one matrix such that
IByII? P 0.

The GLRT is

Ty = 1y . (5.71)
M-1Tr(Z 27
The natural question is: what is the asymptotic performance of 7, under the assumption

of large random matrices?
Under H,, and H,, we have

_ a.s.
M'E 2 S ol
N“N
N—o00

As a consequence of Theorem 5.43, under H,, if p > o%,/c,, then

2
)\'1 N _) Y = (a C*+p)(0 +p) >O’2(1 +\/—)2

N—o00

hoy 5 o1+ @)2.
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If p < 0?,/c,, then
Ay S o1+ /)
" N—oo
Using the above result in (5.71), under H,, we have
Ty — (14 /)2
N—o0
Under H,, if p >o0?,/c;, we have

a.s. 2 2
s (0%, + )0 +p)

T
NN*)OO 0'2,0

> (14 /c)?,

If p < o?,/c,, we have

a.s.
T2 (Ve

Recall that

M
Cy = — — ¢,
N N *
The limit of detectability by the GLRT is given by
p>a’/c,.
Defining SNR = (%, we have
SNR > \/c,.

For extremely low SNR, it follows that ¢, must be very small, implying
N> M.

With the help of the Tracy-Widom law, false alarm probability can be evaluated and
linked with the decision threshold 7).

For finite, low rank perturbation of large random matrices, the eigenvalues and eigen-
vectors are studied in [335].

Example 5.8 (Dozier and Silverstein [263,279,300])
According to Dozeir and Silverstein [263,279,300] it exists a deterministic probability
measure @, by R such that

M

1

M Z 3 — Apy) — uy — 0 weakly almost surely.
k=1

Consider the additive spike model (5.70) repeated here for convenience

Xy =B, +W,. (5.72)
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The approach to characterize p, is sketched here: The Stieltjes transform of w, is
defined on C — R* as

1
mN(Z)=/EﬂN(dl),
+

1
my(z) = MTrTN(Z)

with
B,BY

—1
—_— —z(1 2 NI 2(1 — I .
1+UZCNmN(Z) z(1+o CNmN(Z)) uto ( CN) M) O

TN(Z) = <

5.5.9 Energy Estimation in a Wireless Network

Consider a wireless (primary) network [330] in which K entities are transmitted data
simultaneously on the same frequency resource. Transmitter k € (1, ..., K) has transmit-
ted power P, and is equipped with n, antennas. We denote

K
n = % nk
k=1

the total number of transmit antennas of the primary network.

Consider a secondary network composed of a total of N, N > n, sensing devices: they
may be N single antennas devices or multiple devices embedded with multiple antennas
whose sum is equal to N. The N sensors are collectively called the receiver. To ensure
that every sensor in the second network roughly captures the same amount of energy from
a given transmitter, it is assumed that the respective transmitter-sensor distances are alike.
This is realistic assumption for anb in-house femtocell network.

Denote H, € C"*" the multiple antenna channel matrix between transmitter k and the
receiver. We assume that the entries of /N H, are independent and identically distributed
(i.i.d.), with zero mean, unit variance, and finite fourth-order moment.

At time instant m, transmitter k£ emits the multi-antenna signal vector X,Em) € C", whose
entries are assumed to be i.i.d., with zero mean, unit variance, and finite fourth-order
moment.

Further, we assume that at time instant m, the received signal vector is impaired by
an additive white Gaussian noise (AWGN) vector, denoted ow™ e CV, whose entries
are assumed to be i.i.d., with zero mean, variance o,, and finite fourth-order moment on
every sensor. The entries of aw,((m) have unit variance.

At time m, the receiver senses the signal y"™ € CV defined as

K
ym = Z,/Pkax,(:") +ow™.
k=1

It is assumed that at least M consecutive sampling periods, the channel fading coeffi-
cients are constant. We concatenate M successive signal realizations into

Y=[y?V, ...y eCchHM,
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we have
with X, =[xV, ..., x™] e CM W, = [wD, ... wM]eCVM,

for every k. This can be further recast into the final form

1
Y = HP2X + oW (5.73)

where P € R"*” is diagonal with first n; entries P,, subsequent n, entries P,, ..., last ng
entries Py,

H=[H,,...,Hg], and X = [X], ..., X}] € C"M,
By convention, it is assumed that
P <. < Pyg.

H, W and X have independent entries of finite fourth-order moment. The entries of
X need not be identically distributed, but may originate from a maximum of K distinct
distributions.

Our objective is to infer the values of P, ---, Py from the realization of the random
matrix Y. The problem at hand is to exploit the eigenvalue distribution of ﬁYYH as N,n
and M grow large at the same rate.

Theorem 5.44 (Stieltjes transform of AilYYH ) Let
1
By = —YY”,
N M
where Y is defined in (5.73). Then, for M, N, n growing large with limit ratios

M,N,n—>oo,ﬁ—>c,——>ck,0<c,cl,...,c,(<oo,
ny

the eigenvalue distribution function Fg, of By, referred to as the empirical spectral func-
tion (e.s.d.) of By, converges almost surely to the deterministic distribution function F,
referred to as the limit spectral function (Ls.d.) of By, whose Stieltjes transform m;(z)
satisfies, for z € C*

1
mp(z) = cmf(z) + (c — 1)2

where m(z) is the unique solution with positive imaginary part of the implicit equation

ll’ll’)’lf

in which we denote f the value

f=a —c)mf —czm%.

For Assumption 5.3 and Assumption 5.4—too long to be covered in this context—that
are used in the following theorem, we refer to [330].
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5.5.10 Multisource Power Inference
Let By, € C¥*V be defined as in Theorem 5.45, and

A=, o A A S S Ay,

be the vector of the ordered eigenvalues of B, . Further assume that the limiting ratios
¢, ¢y, ...,cg and P are such that Assumptions 5.3 and 5.4 are fulfilled for some k €

{1,...,K}. Then, as N,n, M grow large, we have ISk - P, 230 where the estimates ISk
is given by

o if M #N,

~ NM
Pk:mZ(m—m)

ieNy
e if M =N,
v -1

A N n;
Pk - o

-0 2 |\ 2y

in which
k-1 k

N, = Zni—i—l,...,Zni ,

i=1 i=1

(ny,...,ny) are ordered eigenvalues of the matrix diag(A) — %ﬁﬁ and
(M1, ..., pmy) are the ordered eigenvalues of the matrix diag(A) — ﬁﬁﬁ

A blind multisource power estimation has been derived in [330]. Under the assumptions
that the ratio between the number of sensors and the number of signals are not too small,
and the source transmit powers are sufficiently distinct from one another, they derive a
method to infer the individual source powers if the number of sources are known. This
novel method outperforms the alternative estimation techniques in the medium to high
SNR regime. This method is robust to small system dimensions. As such, it is particularly
suited to the blind detection of primary mobile users in future cognitive radio networks.

5.5.11 Target Detection, Localization, and Reconstruction

We follow [336] for this development. A point reflector can model a small dielectric
anomaly in electromagnetism; a small density anomaly in acoustics, or more generally,
a local variation of the index of refraction in the scalar wave equation. The contrast of
the anomaly can be of order one but its volume is small compared to the wavelength.
In such a situation, it is possible to expand the solution of the wave equation around the
background solution.

Consider the scalar wave equation in a d-dimensional homogeneous medium with the
index of refraction n,,. The reference speed of propagation is denoted by c. It is assumed
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188 Cognitive Radio Communications and Networking

that the target is a small reflector of inclusion D with the index of refraction n,,, # ny.
The support of the inclusion is of the form D =x,,, + B, where B is a domain with
small volume. Thus the scalar wave equation with the source S(z, x) takes the form

n’(x)
c2

E — A E = S(t,x),
where the index of refraction is given by

n(x) =ny+ (n,,; — ng)1p(x).

For any y,,z, far from x,,, the field Re[(y,, z,)e /'], observed at y,, when a point
source emits a time-harmonic signal with frequency w at z,,, can be expanded as powers
of the volume as

m?>

E(yn’ Zm) = G(yn’ Zm) + kgprefG(YW Xref)G(Xref’ Yn) + @ (|B| d ) ’

where ky = nyw/c is the homogeneous wavenumber, p,,, is the scattering amplitude

2
nref
re ( n’

and é(y, z) is the Green’s function or fundamental solution of the Helmhotz equation
with a point source at z:

A Gx,z)+ kG (x,2) = —5(x — 7).
More explicitly, we have

. LHY (kolx —z|) d =2,
G(X7 Z) = Jkolx—z
¢ d =3,

4 |x—z|

where Hél) is the Hankel function of the first kind of order zero.
When there are M sources (z u and N receivers (y,),_;
matrix is the N x M matrix

o m=1,... v the response

defined by
Hy,y = EG,.2,) = G, 2,.).
This matrix has rank one:
Hy = 0,00,/

The nonzero singular value is

N 172 , N 1/2
N 2 N 2
Orep = ko Prer (Z 1G (v, %) ) (Z Gz, %) ) : (5.74)
=1 =1
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The associated left and right singular vectors u,,, and v,,, are given by

uref = u(xref)’ uref = V(Xref)’

where the normalized vectors of Green’s functions are defined as

G*(zm,x)
v NE
(l_ZIIG(ZpX)I )

G(y,. %)
N 5 1/2
(;|G<y,,x)| )

where * denotes the conjugation of the function.

The matrix H,, is the complete data set that can be collected. In practice, the measured
matrix is corrupted by electronic or measurement noise that has the form of an additive
noise. The standard acquisition gives

, V(X) =

u(x) =

n=l1,..., N m=1,....M

H=H0+W

where the entries of W are independent complex Gaussian random variables with zero
mean and variance o>/ M. We assume that N > M.
The detection of a target can be formulated as a standard hypothesis testing problem

H0:H=W
HI:HZH0+W.

Without target H, the behavior of W is has been extensively studied. With target H,,
the singular values of the perturbed random response matrix are of interest. This model is
also called the information plus noise model or the spiked population model. The critical
regime of practical interest is that the singular values of an unperturbed matrix are of
the same order, as the singular values of the noise, that is, Oref is of the same order
of magnitude as o. Related work is in [24,25,308-311], Johnstone [9, 19,22,312-318],
and Nadler [305].

Proposition 5.7 (The singular values of the perturbed random response matrix
[336]) In the regime M — 00,

1. The normalized 1>-norm of the singular values satisfies
1 Z 2 M
M — 00
M| LS @y o |52, vz,
j=1

where Z, follows a Gaussian distribution with zero mean and variance one and “D”
denotes convergence in distribution.
2. Ifo, < yY4o, then the maximum singular value satisfies

)] in distribution,

_ 3 1
o/ =o [V”z +1+ 1+y7"z, 40 <M2/3

2M?2/3

where Z, follows a type-2 Tracy-Widom distribution.
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190 Cognitive Radio Communications and Networking

3. If o, =y'%0, 0, < y'*0, then the maximum singular value satisfies

N 1 _1\1/3 1 e
GI(M) >~ [yl/z + 14+ m(] +y 1/2) Zs+o (W)] in distribution,

where Z, follows a type-3 Tracy-Widom distribution.
4. If 0,0 > 4, then the maximal singular value has Gaussian distribution with the
mean and variance given by

o? ot 1
E [o’l(M)] =0, |:l +(1+ )/)T + Y +o <—>:| s

O‘ref Gref M1/2
o? - )/[; :
Var [0/"] = — ool — +o(1)
M+ a4+ +r 5
Uref Uref

The type-3 Tracy-Widom distribution has the cdf ®;y5(z) given by

o0
®ry;(2) = exp (‘/ [p(x) + (x — Z)‘PZ(X)]dX) .
Z
The expectation of Z; is E[Z;] = —0.49 and its variance is Var[Z;] = 1.22.

The singular eigenvectors of the perturbed response matrix are described in the follow-
ing proposition. Define the scalar product as

(u,v) = u'lv.

Proposition 5.8 (The singular vectors of the perturbed random response matrix
[336]) In the regime M — 00,

L Ifo,, < y'/40, then the angles satisfy

(0,0, u™) > =0+ o(1) in probability,
(Ve V)2 = 0+ 0(1)  in probability.

2. If 0,0 > yY40o, then the angles satisfy

+ o(1) in probability,

VM2 = — " 4 5(1) in probability.
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A standard imaging function for target localiztion is the MUSIC function defined by
H -1/2 o\ —1/2
e = [ — (™) "o = (1= out )

where u(x) is the normalized vector of Green’s function. It is a nonlinear function of a
weighted subspace migration functional
2\, H M)2
Ly (%) =1 = Lyyge®) 7 ui™’ >,
The reconstruction can be formulated in this context. Using Proposition 5.7, we can
see that the quantity

124 1/2
5 o 2 o 2 :
5., = — —1- ) —1—y| -4 5.75
Uref \/E 6_ )/+ 6‘ Y Y ( )

is an estimator of o, provided that o,,, > y'/*G. From (5.74), we can estimate the
scattering amplitude p,,; of the inclusion by

s /N 172,y —1/2
. C A A 2 A A 2 .
Pror =3 <Z 1G(@, X0, ¥, ) (Z G, X,/ 2,) ) Gref

n=1 m=1

with 6,,, the estimator of (5.75) of o,,, and X,,, is an estimator of the position of the
inclusion. This estimator is not biased asymptotically since it compensates for the level
repulsion of the first singular value due to the noise.

5.5.12 State Estimation and Malignant Attacker in the Smart Grid

A natural situation to use the large random matrices is in the Smart Grid where the big
network is met. We use one example to illustrate this potential. We follow the model of
[337] for our setting. State estimation and a malignant attack on it are considered in the
context of large random matrices.

Power network state estimators are broadly used to obtain an optimal estimate from
redundant noisy measurements, and to estimate the state of a network branch which, for
economical or computational reasons, is not directly monitored.

The state of a power network at a certain instant of time is composed of the voltage
angles and magnitudes at all the system buses. Explicitly, let x € R” and z € R” be,
respectively, the state and measurements vector. Then, we have

z=hX)+7, (5.76)

where /(x) is a nonlinear measurement function, and » is a zero mean random vector sat-
isfying

Elpp'1=%,=%," >0.
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192 Cognitive Radio Communications and Networking

The network state could be obtained by measuring directly the voltage phasors by means
of phasor measurement devices. We adopt the approximated estimation model that follows
from the linearization around the origin of (5.76)

z=Hx+v,
where
He R E[v]=0,E[w/ ]=% =X" >0.

Because of the interconnection structure of the power network, the measurement matrix
H is sparse.

We assume that z; is available from i =1 to i = N. We denote by Z, the p x N
observation matrix. (5.76) can be rewritten as

Z, =HX, +Vy (5.77)
where
Zy=Iz,....2y], Xy =[X},....Xy], Vy = [V, ..., Vy].

From this matrix Z,, we can define the sample covariance matrix of the observation as
. 1 "
Ry = NZNZN’
while the empirical spatial correlation matrix associated with the noiseless observation
will take the form
1
NHXNxﬁHH.
To simplify the notation in the future, we define the matrices
Z, B HX,, Vu
= iy N = e N = e
VN VN v N

so that (5.77) can be equivalently formulated as

Xy

T, =B,y +W,, (5.78)

where X is the (normalized) matrix of observations, B, is a deterministic matrix con-
taining the signals contribution, and W, is a complex Gaussian white noise matrix with
i.i.d. entries that have zero mean and variance o>/ N.

If N — oo while M is fixed, the sample covariance matrix of the observations

Ry, =3%,3,"
of Z, converges toward the matrix
H 2
Ry =ByBy +071,,
in the sense that

IRy —ByBY — 021p|| — 0 almost surely (a.s.). (5.79)
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However, in the joint limits
asymptotic region N — oo, p — oo, but % — c,

which is the practical case, (5.79) is no longer true. The random matrix theory must be
used to derive the consequences. (5.78) is a standard form in [282, 333,338, 339].
Given the distributed nature of a power system and the increasing reliance on local area
networks to transmit data to a control center, it is possible for an attacker to attack the
network functionality by corrupting the measurements vector z. When a malignant agent
corrupts some of the measurements, the new state to measurements relation becomes

Hy:z=Hx+v,

H,:z=Hx+v+a, (5.80)

where a € R” is chosen by the attacker, and thus, it is unknown and unmeasurable by
any of the monitoring stations.

(5.80) is a standard hypothesis testing problem. The GLRT can thus be used, together
with the random matrix theory. Following the same standard procedure as above, we have

Hy:Zy =HXy +V,,
H,:Zy=HX,+V,y+A,,

where
Ay =la,,...,ayl

By studying the sample covariance matrix
- 1
Ry = —Z\Z},
N=NEN
we are able to infer different behavior under hypothesis H,, or H,. It seems that this result
for this example is reported for the first time.

5.5.13 Covariance Matrix Estimation

We see [340] for more details. Consider a discrete-time complex-valued K-user N-
dimensional vector channel with M channel uses. We define o £ % and B & % We
assume the system load 8 < 1(K < N); otherwise the signal subspace is simply the entire
N-vector space. In the m-th channel use, the signal at the receiver can be represented by

an N-vector defined by

K
yom) = hy, X, + wim) (5.81)

k=1
where h,,, is the channel symbol of user k, having unit power, X, is the signature waveform
of user k (note that s, is independent of the sample index m), and w(m) is additive noise.
By defining

Xk = X0 oo Xl Mg () = [ 1

(5.81) is rewritten as
y(m) = Xh(m) + w(m). (5.82)
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194 Cognitive Radio Communications and Networking

We do not assume specific distribution laws of the entries in H, x, w, thereby making the
channel model more general [340]:

e The entries of X are mutually independent random variables, each having zero expec-
tation and variance LN Therefore, Vk, ||x,|| — 1 almost surely, as N — oo.

e The entries of h(m) are mutually independent random variables. The random vectors
{h(m)},,_;  are mutually independent for different values of m and satisfying

E{h(m)h” )} = Iy, g, Eth(m)h” (m)} = 04«

e The entries of w(m) are mutually independent random variables. The random vectors
w(m),,_, , are mutually independent for different values of m and satisfy

E{w(m)w (m)} = 6Ly, y. E{x(m)x" (m)} = 0y, y.
e X, h(m), w(m) are jointly independent.

Such a model is useful for CDMA and MIMO systems.
The covariance matrix of the received signal (5.81) is given by

R 2 E{y(m)y” (m)} = XX + 021y, y. (5.83)
Based on (5.82) and
E{wm)w (m)} = o3y .y,
the unbiased sample covariance matrix estimate is defined as

D _ 1 o H _ 1 H
R_MZy(m)y (m) = — (XH + W) (XH + W), (5.84)

m=1

where
H=2h,....,h,],W=[w,,...,w,]

By applying the theory of noncrossing partitions, one can obtain explicit expressions
for the asymptotic eigenvalue moments of the covariance matrix estimate [340]. Here we
only give some key results.

5.5.13.1 Noise-Free Case

When o2 = 0, the sample covariance matrix is given by
N 1 " 1 u
R=—XH)(XH)" = —XHH"X.
M M

The generic eigenvalue of R is denoted by A and one defines the eigenvalue moments as

A = lim E{}}.

P K.N.M—oo

The explicit expressions are derived in [340].
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Corollary 5.1 ([340]) The eigenvalue moments of the matrix %ZXXH 71, where Z is an
M x N matrix with mutually independent entries having unit variance, are the same as
those of the matrix %HXXH H.

The Stieltjes transform of X is denoted by m; (z).

Corollary 5.2 ([340]) When o2, the Stieltjes transform of A satisfies
Z2m’(2) + 2 — o = zm’ (@) = (@z — (1 = B)(1 —a)m_(2) —a =0. (5.85)

(5.85) can be used to derive the cumulation distribution function (CDF) and the probability
distribution function (PDF) of A, through the inverse formula for the Stieltjes transform.

Lemma 5.1 ([340]) There exist a constant C >0 and p, € N such that
A, < CP,¥p>p,.

Theorem 5.45 ([340]) The distribution of A converges weakly to a unique distribution
determined by the eigenvalue moments as K, N, M — oo.

Theorem 5.46 ([340]) When o2, ¥x >0, the PDF f(x) of the random variable X is
given by

A

1
f(x) = =Im (m; (x)).
T

The closed-form PDF of i within its support has been derived in [340] and is too long
to be included here.

Theorem 5.47 ([340]) The PDF f (x) has the following properties:
1. the support of f(x) is given by ():max, ):mm), where

min max
A>0 A0

2
2. A < A < xmax<1 + min (\/g \/%)) ,.

3. for sufficiently large o, (Apin, Amax) C ():mim Xmax)’. and
4. for sufficiently small o < B, Ay < A

Amin 2 A0f (R), Ay 2 sup(h).

max*

5.5.13.2 Noisy Case

We extend the anaysis to the general case of 01% > 0. When 03) > (, the exact covariance
matrix is of full rank and there is a mass point at A = o2 with probability 1 — B.

Theorem 5.48 ([340]) The distribution of eigenvalues of the matrix % (XH + W)(XH +
W) is the same as that of the matrix ﬁZ(XXH + Uuz)INxN)ZH, as K, M, N — oo, where
Z is an M x N matrix, whose entries are mutually independent random variables with
unit variance.
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196 Cognitive Radio Communications and Networking

Similar to the noise-free case, the eigenvalue moments of XX + 021,  are derived
in a closed form in [340]. Let us give the first four moments

E{}) =02 +8
E(2) = (é + 1) (02 + B+ B

s 1 3 ) 5 1 )
E{A }=<—2+—+1>(ow+,3) +3(—+l>ﬂ(ow+ﬂ)+ﬂ
o o o
E{i“}:<%+%+§+l)(a£+ﬂ)4+<%+E+6>ﬁ(0£+ﬁ)2
o o o o o
+é(4ﬁa§+6ﬂ2)+6ﬂ2+4ﬂaj+ﬂ.

The asymptotic eigenvalue moments of the estimated covariance matrix are larger than
those of the exact covariance matrix (except for the expectation). This is true for both
noisy and noise-free cases.

The Stieltjes transform of the eigenvalue A, denoted by m, is given by

aizzm;(z) + (az? +2(1 — a)aiz)m;(z) + (1 —a)Y ol +aR—a—f— a,,%)z)mz(z)

—a(az— (1 —a)(1—pB — au%))mi (z) —a?=0.

We define
A A . NP A
)‘min = . lan ()")5 )‘max = sup ()\')
f)>0,A>0 f(i)>0,;\>a,%
Their counterparts for the exact covariance matrix, denoted by A,,;,. A,,.» and A, ., are

given by (1 ++/B)* +02,02, and (1 — /B)> + o2, respectively.

Theorem 5.49 ([340]) There is no mass point for any positive eigenvalue . The support
of f satisfies the following properties:

1. for sufficiently large «, the support of A is not continuous interval when al>0;

2
20 dpax < ):max < Amax<1 + min <\/g, ﬁ)) :

3. for sufficiently large o, (Ains Amax) C (imm, ):max); and
4. for sufficiently small o < B, ):mm < Apax-
The properties 3 and 4 in Theorem 5.47 are the same as in Theorem 5.49. Property 1 is
completely different. The essential reason is the existence of a mass point at o2. When
o2 = 0, the mass point at 0 always exists with probability 1 — 8 and the support on pos-
itive eigenvalues is continuous. When ouz} >0, and 1 < o < o0, the estimated covariance
matrix is of full rank and there is no mass point. When o — o0, the support of positive
eigenvalues has to be separated into at least two disjoint intervals such that the support
around o shrinks to a point.
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5.5.14 Deterministic Equivalents

Deterministic equivalents for certain functions of large random matrices are of interest.
The most important references are [281, 341-344]. Let us follow [281] for this presenta-
tion. Consider an N x n random matrix Y, = (Y;}), where the entries are given by
yn = Zii ) X"
ij \/ﬁ ij»
n. Here (O’ij (n),1 <i <N,1<j<n)is a bounded sequence of real numbers called
a variance profile; the X7, are centered with unit variance, independent and identically
distributed (i.i.d.) with finite 4 + ¢ moment. Consider now a deterministic N X n matrix

A, whose columns and rows are uniformly bounded in the Euclidean norm.
Let

%, =Y, +A,.

This model has two interesting features: the random variables are independent but not
ii.d. since the variance may vary and A, the centering perturbation of Y,, can have a
very general form. The purpose of our problem is to study the behavior of

1
NTr(EnEnT -7y ze C—R,

that is, the Stieltjes transform of the empirical eigenvalue distribution of £,% when
n—>oo,andN—>ooinsuchawaythat%—>c,0<c<oo.

There exists a deterministic N x N matrix-valued function T,(z) analytic in C — R
such that, almost surely,

1 1

li —Tr(%, =) —zly) — =TT =0.
n~>+o<131,11\l//c~>c (N r( nen < N) N r n(Z)>

In other words, there exists a deterministic equivalent to the empirical Stieltjes transform

of the distribution of the eigenvalues of X, %]. It is also proved that %TrTn (z) is the

Stieltjes transform of a probability measure 7, (dA), and that for every bounded continuous

function f, the following convergence holds almost surely

1 < o0
T2 s [ roman = o
k=1

where the (A;),.y are the eigenvalues of ¥,%!. The advantage of considering
%TrT,,(Z) as a deterministic approximation instead of ]E%Tr(Z,,EnT —zIy)~! (which
is deterministic as well) lies in the fact that T, (z) is in general far easier to compute
than E%Tr():nEnT —zIy)~! whose computation relies on Monte Carlo simulations.
These Monte Carlo simulations become increasingly heavy as the size of the matrix
X, increases.

This work is motivated by the MIMO wireless channels. The performance
of these systems depends on the so-called channel matrix H, whose entries
(H,-'j", 1 <i < N,1<j<n)represent the gains between transmit antenna j and receive
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antenna i. Matrix H,, is often modeled as a realization of a random matrix. In certain
context, the Gram matrix H, H’ is unitarily equivalent to a matrix (Y, +A,)(Y, +A,)*
where A, is a possibly full rank deterministic matrix. As an application, we derive a
deterministic equivalent to the mutual information:

1 > xT
C, (0% = —Elogdet (I + 2|,
N o2
where o2 is a known parameter.
Let us consider the extension of the above work. Consider
yn — Ju () X"
ij \/H ij»
where (al-j (n),1 <i < N,1<j <n) is uniformly bounded sequence of real numbers,
and the random variables X [”j are complex, centered, i.i.d. with unit variance and finite
8th moment.
We are interested in the fluctuations of the random variable

1
I,(p) = N logdet (Y, Y, + ply)

where Y, is the Hermitian adjoint of Y,, and p > 0 is an additional parameter. It is proved
[342] that when centered and properly scaled, this random variable satisfies a Center Limit
Theorem (CLT) and has a Gaussian limit whose parameters are identified. Understanding
its fluctuations and in particular being able to approximate its standard deviation is of
major interest for various applications such as for instance the computation of the so-called
outage probability.

Consider the following linear statistics of the eigenvalues

N
1 1
I,(p) = I logdet (Y, Y + pIy) = N ZlOgO‘i +p),

i=1

where A; is the eigenvalue of matrix Y,Y;. This functional is of course the mutual
information for the MIMO channel. The purpose of [342] is to establish a CLT for /,(p)
whenever n — 00, ¥ — ¢,0 < ¢ < o0.

There exists a sequence of deterministic probability measure 7, such that the mathe-
matical expectation E/, satisfies

Eln(p)—flog(k+p)ﬂn(dk) — 0.

We study the fluctuations of

1
v logdet (Y, Y, + pIy) — / log(t + p)m, (d1),

and prove that this quantity properly rescaled converges toward a Gaussian random vari-
able. In order to prove the CLT, we study the quantity

N, (p) —EL(p)).
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from which the fluctuations arise and the quantity

NEL(p) - / log(h + ), (A1),

which yields a bias.
The variance of ®> of N (I,(p) —EI,(p)) takes a remarkably simple closed-form
expression. In fact, there exists a n x n deterministic matrix A, whose entries depend

on the variance profile o;; such that the variance takes the form:

@; =logdet (I, — A,) + «TrA,,,

where k = E|X,,|* — 2 in the fourth cumulant of the complex variable X, and the CLT
is expressed as:

N
o (P = EL (o)) = NO.D).

The bias can be also modeled. There exists a deterministic quantity B, such that:

N <Eln(p) - / log(% + p)ﬂ,,(d)\)> —B,(») - 0.

In [343], they study the fluctuations of the random variable:

1 1 &
1,(p) = 5 logdet (2,5 + ply) = - 3 log(; + p), p >0,

i=1
where
—12n1/2v T2
¥, =n"'’D)?X,D)* +A,,

as the dimensions of the matrices go to infinity at the same pace. Matrices X, and
A, are respectively random and deterministic N x n matrices; matrices D, and D, are
deterministic and diagonal. Matrix X, has centered, i.i.d., entries with unit variance, either
real and complex. They study the fluctuations associated to noncentered large random
matrices. Their contribution is to establish the CLT regardless of specific assumptions
on the real or complex nature of the underlying random variables. It is in particular
not assumed that the random variables are Gaussian, neither that whenever the random
variables X;; are complex, their second moment IEX,ZJ is zero nor is it assumed that the
random variables are circular.
The mutual information 7, has a strong relationship with the Stieltjes transform

1 T —1
f.(2) = NTr(EnEn —zI)

of the spectral measure of X, X7

*® /1
() =togp + (— - fn<—w)dw).
o w
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Accordingly, the study of the fluctuations of 7, is also an important step toward the study
of general linear statistics of the eigenvalues of ¥, %! which can be expressed via the
Stieltjes transform:

1 1S 1
(5,5 = 4 Y o) = -5 ygch(Z)fn(z)dZ-

i=l

5.5.15 Local Failure Detection and Diagnosis

The joint fluctuations of the extreme eigenvalues and eigenvectors are studied for a large
dimensional sample covariance matrix [345], when the associated population covariance
matrix is a finite-rank perturbation of the identity matrix, corresponding to the so-called
spiked model in random matrix theory. The asymptotic fluctuations, as the matrix size
grows large, are shown to be intimately linked with matrices from the Gaussian uni-
tary ensemble (GUE). When the spiked population eigenvalues have unit multiplicity,
the fluctuations follow a central limit theorem. This result is used to develop an origi-
nal framework for the detection and diagnosis of local failure in large sensor networks,
from known or unknown failure magnitude. This approach is relevant to the Cognitive
Radio Network and the Smart Grid. This approach is to perform fast and computationally
reasonable detection and localization of multiple failure in large sensor networks through
this general hypothesis testing framework. Practical simulations suggest that the proposed
algorithms allow for high failure detection and localization performance even for networks
of small sizes, although for those much more observations than theoretically predicted
are in general demanded.

5.6 Regularized Estimation of Large Covariance Matrices

Estimation of population covariance matrices from samples of multivariate data has always
been important for a number of reasons [344,346,347]. Principals among these are:

1. estimation of principal components and eigenvalues in order to get an interpretable
low-dimensional data representation (principal component analysis, or PCA);

2. construction of linear discriminant functions for classification of Gaussian data (linear
discriminant analysis, or LDA);

3. establishing independence and conditional independence relations between components
using exploratory data analysis and testing;

4. setting confidence intervals on linear functions of the means of the components.

(1) requires estimation of the eigenstructure of the covariance matrix while (2) and (3)
require estimation of the inverse. In signal processing and wireless communication, the
covariance matrix is always the starting point.

Exact expressions were cumbersome, and multivariate data were rarely Gaussian. The
remedy was asymptotic theory for large sample and fixed relatively small dimensions.
Recently, due to the rising vision of “big data” [1], datasets that do not fit into this
framework have been very common—the data are very high-dimensional and sample
sizes can be very small relative to dimension.
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It is well known by now that the empirical covariance matrix for samples of size n from
a p-variate Gaussian distribution, C(u, X p), is not a good estimator of the population
covariance if p is large. Johnstone and his students [9, 19,22,312-318,325,327] are
relevant here.

The empirical covariance matrix for samples of size n from a p-variate Gaussian
distribution has unexpected features if both p and n are large. If p/n — ¢ € (0, 1), and the
covariance matrix X , = I (the identity), then the empirical distribution of the eigenvalues
of the sample covariance matrix X, follows the Marchenko-Pastur law [348], which is

supported on , ,
[(1 =), (1+ Vo)l

Thus, the larger p/n (thus c), the more spread out the eigenvalues.

Two broad classes of covariance estimators [347] have emerged: (1) those that rely on
a natural ordering among variables, and assume that variables far apart in the ordering are
only weakly correlated, and (2) those invariant to variable permutations. However, there
are many applications for which there is no notion of distance between variables at all.

Implicitly, some approaches, for example, [312], postulate different notions of sparsity.
Thresholding of the sample covariance matrix has been proposed in [347] as a simple and
permutation-invariant method of covariance regulation. A class of regularized estimators
of (large) empirical covariance matrices corresponding to stationary (but not necessarily
Gaussian) sequences is obtained by banding [344].

We follow [346] for notation, motivation, and background.

We observe X, ..., X, i.i.d. p-variate random variables with mean 0 and covariance
matrix ¥ p and write

X, =X, ... X,)"

For now, we assume that X; are multivariate normal. We want to study the behavior of
estimates of X p as both p and n — oo. It is well known that the ML estimation of X »
the sample covariance matrix,

n

. 1 _ _
%= ; X, - X)X, - X)7

—1/2

behaves optimally if p is fixed, converging to X , atrate n™ /= If p — o0, )3 » can behave

very badly, unless it is “regularized” in some fashion.

5.6.1 Regularized Covariance Estimates
5.6.1.1 Banding the Sample Covariance Matrix
For any matrix A = [aij]pxp, and any 0 < k < p, define
Bi(A) = [a;1(li — j| < k)]
and estimate the covariance % kp = ik =B(% »)- This kind of regularization is ideal in
the situation where the indexes have been arranged in a such a way that in X, = [0};]

we have
li —jl>k=0;=0.
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202 Cognitive Radio Communications and Networking
This assumption holds, for example, if ¥ » is the covariance matrix of Y, ..., Y[,,
where Y, ..., Y, is a finite inhomogeneous moving average (MA) process,

k
Yz = § % 1%,
j=1

and x; are i.i.d. mean 0. Banding an arbitrary covariance matrix does not guarantee
positive definitiveness.
All our sets will be the subsets of the so-called well-conditioned covariance matrices,
Zp, such that, for all p,
O<e<A

(2) <A (X)) <1/e < o0.

min max

Here, A, (¥) and A
independent of p.
Examples of such matrices [349] include

min

(%) are the maximum and minimum eigenvalue of X, and ¢ is

Y, =X, +W,i=12 ...

where X; is a stationary ergodic process, and W; is a noise process independent of {X}.
This model also includes the “spiked model” of Paul [27], since a matrix of bounded rank
is Hilbert-Schmidt. We discuss this model in detail elsewhere.

We define the first class of positive definite symmetric well conditioned matrices X =
[o; j] as follows:

li — j| >k} < Ck= for all k>0,

lj|:

Y :max ) {lo;
Joi

U(gy, o, C) = { =) <1
<

} . (5.86)

and 0 < g; <A (X) <1/gyg <0

min max

The class U in (5.86) contains the Toeplitz class 7 defined by

Teg,m, C) = { X :0;; = o (i — j)(Toeplitz) with spectral density fy } ’

and 0 < &) < |Ifgl,, < &' < o0, Iff"|l,, < C

where fg") denotes the mth derivative of f. By [350], ¥ is symmetric, Toeplitz, ¥ =
[o(i — j)], with o(—k) = o (k), and X has an absolutely continuous spectral distribution
with Radon-Nikodym derivative fy (¢), which is continuous on (—1, 1), then

IZIl = sup [fx ], =7 = [irtlflfz(t)l]_l-
13

A second uniformity class of nonstationary covariance matrices is defined by
K@m,C)={X:0; <Ci™, all i}.

The bound independent of dimension identifies any limit as being of “trace class” as
operator for m > 1.
The main work is summarized in the following theorem.
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Theorem 5.50 (Bickel and Levina (2008) [346]) Suppose that X is Gaussian
and U(gy, o, C) is the class of covariance matrices defined in (5.86). Then, if
kn ~ (1’171 10g p)fl/(Z(aH))’

log p

>a/(2(a+1))

= 1%, - =, (5.87)

1%y, — 5l = 0P<

uniformly on X € U.

5.6.2 Banding the Inverse

Suppose we have
X=(X,....x,)"

defined on a probability space, with probability measure P, which is A ,0,%), %, =
[o;;]. Let

%= a,x, =2a, (5.88)
=1

be the L£,(P) projection of )A(j on the linear span of X,,...X; ,, with Z; =

(Xy,....X; " the vector of coordinates up to j — 1, and a; = (a;,,....a, ;)" the

vector of coefficients. If j = 1, let 5(1 = 0. Each vector a ; can be computed as
a; = (var(Zj))_ICov(Xj, Z)). (5.89)

Let the lower triangular matrix A with zeros on the diagonal contain the coefficients a;
arranged in rows. Lete; = X ; — )2’], df = Var(g;) and let D = diag(d?, ..., df,) be a diag-
onal matrix. The geometry of £,(P) or standard regression theory implies independence
of the residuals. After applying the covariance operator to the identity

e=1-A)X,
we obtain the modified Cholesky decomposition of X, and Z;l:

2, =0-A)"DIA-A"T,

' =0-A)'D'd-A). (5-90)

Suppose now that k < p. It is natural to define an approximation to X, by restricting
the variables in regression (5.88) to
k) _

Z; = (X

T
max(j—k,1)> -+ Xjo1) -

In other words, in (5.88), we regress each X; on its closest k predecessors only. Let

Af be the k-banded lower triangular matrix containing the new vectors of coefficients
(k)

a

i »andlet D, = diag(djz., ) be the diagonal matrix containing the corresponding residual

variance. Population k-banded approximations X, , and Zk_; are obtained by plugging in
A, and D, in (5.90) for A and D.
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If
=TT (X)D '(D)T(®)
with T(X) lower triangular, T(X) = [1;; ()], let

Y:max ) |t;(X)| <Ck®forallk <p—1,
U (gy, at, C) = i . (5.91)
and 0 < &y < Apin(Z) < Ay (T) < g5 < 0

min max

Theorem 5.51 (Bickel and Levina (2008) [346]) Uniformly for £ € U '(g,, o, C), if
k, < (n"log p)~1/@tD) and n='og p = O(1),

o/Q2(a+1))
-1 _ log p -
126, — 5 =0P( - ) =%,

ol (5.92)

Corollary 5.3 (Bickel and Levina (2008) [346]) For m > 2, uniformly on 1(g,, m, C),
if k, < (n""log p)~'/>m,

(m=1)

logp\ 2 -
£ ) =%, -, (5.93)

~—1 B
1Z6,, = ;1 = 0P<

5.6.3 Covariance Regularization by Thresholding

Bickel and Levina (2008) [347] considers regularizing a covariance matrix of p variables
estimated from n (vector) observations, by hard thresholding. They show that the thresh-
olded estimate is consistent in the operator norm as long as the true covariance matrix is
sparse in a suitable sense, the variables are Gaussian or sub-Gaussian, and (log p)/n — 0,
and obtain explicit rates.

The approach of thresholding of the sample covariance matrix is a simple and
permutation-invariant method of covariance regularization. We define the thresholding
operator by

T (A) = [aij1(|aij| z S)],

which we refer to as A thresholded at s. T, preserves symmetry and is invariant under
permutations of variables labels, but does not necessarily preserve positive definiteness.
However, if

[T, — Tyl <& and A, (A) > e,

min
then T, (A) is necessarily positive definite, since for all vectors v with ||v||, = 1, we have

VIT,Av > v/ AV — & > 2. (A) — &> 0.

min

Here, A, (A) stands for the minimum eigenvalue of A.

min
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U(ey, o, C) in (5.86) defines the uniformity class of “approximately bandable” covari-
ance matrices. Here, we define the uniformity class of covariance matrices invariant under
permutations by

p
U (q,co(p),A) = (X :0; <A, Z 0,1 < co(p), foralli,0<q <1

Jj=1

If ¢ =0, we have

p
U0, co(p),A)={Z:0, <A, 21(0,.]. #£0) < cy(p) }
j=1

is a class of sparse matrices. Naturally, there is a class of covariance matrices V(g, v, C)
that satisfy both banding and thresholding conditions. Define a subset of U(g,, o, C) by

T oyl < Cli — jI7 ™, foralli, j:|i—j|>1,
V(So, o, C) - )
and 0 < g < A, (X)) < A (X)) < 1/g
for o > 0.
We consider n i.i.d. p-dimensional observations X, ..., X, distributed according to a

distribution F, with EX = 0 (without loss of generality), and E(XX") = X. We define
the empirical (sample) covariance matrix by

P 5 o
T=-) X -XX -X)7,
n k=1
where X = n~! > X, and write 3= [6ij].
k=1

Theorem 5.52 (Bickel and Levina (2008) [347]) Suppose F is Gaussian. Then, uniformly
on U, (0, cy(p), A), for sufficiently large M', if

log p
n

t, =M

and k’% = o(1), then

R l (1—‘1)/2
IT, (3) - 2| =0, <Co(P)( °ep ) )

n

and uniformly on U, (q, cy(p), A),

H (Ttn()A:))_1 - E—IH =0, (co(p)<logp)“—q>/2) |

n

This theorem is in parallel with the banding result of Theorem 5.50.
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206 Cognitive Radio Communications and Networking

5.6.4 Regularized Sample Covariance Matrices

Let us follow [344] to state a certain central limit theorem for regularized sample covari-
ance matrices. We just treated how to band the covariance matrix X; here we consider how
to band the sample covariance matrix X = X’ X. We consider regularization by banding,
that is, by replacing those entries of X’ X that are, at distance, exceeding b = b(p) away
from the diagonal by 0. Let Y = Y”’ denote the thus regularized empirical matrix.

Let X, ..., X, be real random variables on a common probability space with moments
of all orders, in which the characteristic function

k
Eexp (thin)

i=1
is an infinitely differentiable function of the real variables ¢, ..., f,. One defines the joint
cumulant C(X,, ..., X;) by the formula

ok :
— i~k
CXy,....X) =C{X;}, = o i, osEe (;sz) =t =0
(5.94)
(The middle expression is a convenient abbreviated notation.) The quantity
C(X,, ..., X;,) depends symmetrically and R-multilinearly on X,,..., X;. Moreover,

dependence is continuous with respect to the £¥-norm. One has in particular

C(X) = EX, C(X, X) = varX, C(X, Y) = cov(X, Y).

Lemma 5.2 [f there exists 0 < < k such that the o-fields G{Xi}i=1 and G{Xi}leﬂ are
independent, then C(X,, ..., X;) =0.

Lemma 5.3 The random vector X, ..., X, has a Gaussian joint distribution if and only
lfC(Xll, e, X[r) = 0 for every integer r > 3 and sequence iy, ..., i, € 1,... k.
Let
{Z}2

be a stationary sequence of real random variables, satisfying the following conditions:

1. Assumption 5.5. As p — oo, we have b — oo, n — oo and b/n — 0, with b < p.
2. Assumption 5.6.

E(|Z,|*) < oo for all k > 1 (5.95)
EZ, = 0, (5.96)
> > IC(Z. Zy - Z,)] forall T > 1 (5.97)

Let us turn to random matrices. Let

{{z)2

j=—ooli= l
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o]

be an i.i.d. family of copies of {Z;}72 . Let X = X be the n x p random matrices

with entries

1 .
. . (i)
X(. ) =X, = =2,

Let B =B be the p x p deterministic matrix with entries
BG. ) =B, = { 1) i’ ||li :Jj|| S
Let Y = Y” be the p x p random symmetric matrix with entries
YG, j) =Y; =B;X"X),; (5.98)
and eigenvalues {1}/,
For integers j, let
R(j) = Cov(Zy, Z,) = C(Zy, Z,).

For integers m > 0 and all integers i and j, we write

0, = ZC(Z,., 20, Zj, 2)),

= (5.99)
R™ =RxRx---xR(i), R” =5,

m

Here, the convolution « is defined for any two summable functions F, G : Z — R:

(FxG)(j) =Y _F(j —kG(k).

keZ

Now we are in a position to state a central limit theorem.

Theorem 5.53 (Anderson and Zeitouni (2008) [344]) Let Assumption 5.5 and Assump-
tion 5.6 hold. Let Y = Y'P) be as in (5.98). Let Q;; and Ri(m) be as in (5.99). Then the

process
n o]
{ \/i (TrY* — ETrYk)}
p k=1

converge in distribution, as p — oo, to a zero mean Gaussian process {G }72,, with
covariance specified by

1 (k+1) (k—1) (l-1)
TEGG = 2R + XE:Z R0, RV,
LJ

Example 5.9 (Some stationary sequences satisfying Assumption 5.6 [344])
Fix a summable function & : Z — R and an i.i.d. sequence {W;};°__ of mean zero random
variables with moments of all orders. Now convolve: put

Z,= Zh(j + )W, for every j.
1
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208 Cognitive Radio Communications and Networking

It is obvious that (5.95) and (5.96) hold. To see the summability condition (5.97) on joint
cumulants, assume at first that /# has finite support. Then, by standard properties of joint
cumulants (Lemma 5.2), we get the formula

C(Zy i Z)) =Y h(g+1D) - h(j, +DC Wy, ..., Wy).
1 I —
r+1

By a straightforward calculation, this leads the analogous formula without the assumption
of finite support of #, whence in turn verification of (5.97). g

5.6.5 Optimal Rates of Convergence for Covariance Matrix Estimation

Despite recent progress on covariance matrix estimation, there has been remarkably lit-
tle fundamental theoretical study on optimal estimation. Cai, Zhang and Zhou (2010)
[351] establish the optimal rates for estimating the covariance matrix under both the
operator norm and Frobenius norm. Optimal procedures under two norms are different,
and consequently matrix estimation under the operator norm is fundamentally different
from vector estimation. The minimax upper bound is reached by constructing a special
class of tapering estimators and by studying their risk properties. The banding estimator
treated previously in Section 5.6.1 is suboptimal and the performance can be significantly
improved using the technique to be covered now.

We write a, < b, if there are positive constants ¢ and C independent of n such that
¢ < a,/b, < C. For matrix A, its operator norm is defined as ||A|| = sup,,_; |AX]|,.
We assume that p < exp(yn) for some constant y > 0.

Y : max ol i —jl>ki < Mk~ for all k,
Fy=F,(My, M) = i ,Z{l glili=jl= k) < . (5.100)
and A, (X) < M,
where 1, (%) is the maximum eigenvalue of the matrix X, and o« > 0, M > 0 and M, > 0.

Theorem 5.54 (Minimax risk by Cai, Zhang and Zhou (2010) [351]) The minimax risk
of estimating the covariance matrix X over the class P, satisfies
infsupE|E — £|?> < min {nZ“/@“*D + (5.101)

log p E}
P ’

n n

The proposed procedure does not attempt each row/column optimally as a vector. This
procedure does not optimally trade bias and variance for each row/column. This pro-
posed estimator has good numerical performance; it nearly uniformly outperforms the
banding estimator.

Example 5.10 (Tapering estimator [351])
For a given even integer with 1 < k < p, we define a tapering estimator

=3, = w0 (5.102)

ijoij/pxp?
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. . . &k .
where o;; are the entries in the ML estimator X and the weights

s k=1 — Dy =y — i — D},

where k;, = k/2. Without loss of generality, we assume that k is even. The weights w;
can be rewritten as

1, when |i — j| <k,
w;; = 2_‘%', when k, < |i — j| <k, (5.103)
0, otherwise.

The tapering estimators are different from the banding estimators used in [346]. See also
Section 5.6.1. O

Lemma 5.4 The tapering estimator b3 given in (5.102) can be expressed as

3 =k 1SR — gy, (5.104)

Assume that the distribution of the X;’s are sub-Gaussian in the sense that there is
o > 0 such that

P{Iv' (X, —EX)v|>1t} < e for all t > 0 and ], = 1. (5.105)

Let P, =P,(My, M, p) denote the set of distributions of X, that satisfy (5.100)
and (5.105).

Theorem 5.55 (Upper bound by Cai, Zhang and Zhou (2010) [351]) The tapering

estimator X, defined in (5.104), of the covariance matrix X . , with p > n!/Ce+D) satisfies
A k+1

SpE[S — X2 < X T 08P | g2 (5.106)
n

Pa

for k = o(n), log p = o(n) and some constant C > 0. In particular, the estimator ¥ - ik
with k = n'/®+D satisfies

1
supE|Z — Z|? < cn~2/Ceth 4 c ==L 2P
Pa n

(5.107)

From (5.106), it is clear that the optimal choice of k is of order n=2%/G*+D_The upper
bound given in (5.107) is thus rated optimal, among the class of the tapering estimators
defined in (5.104). The minimax lower bound derived in Theorem 5.56 shows that the
estimator ¥, with k = n~2¢/@*+D s in fact rated optimal among all estimators.

Theorem 5.56 (Lower bound by Cai, Zhang and Zhou (2010) [351]) Suppose p <
exp(yn) for some constant y > 0. The minimax risk for estimating the covariance matrix
X over P, under the operator norm satisfies

A lo
infsupE|$ — )% > cn—20/Cath | (08P
5 Py n
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Theorem 5.55 and Theorem 5.56 together show that the minimax risk for estimating

the covariance matrices over the distribution space P, satisfies, for p > n!/Ge+D,
. ~ lo
infsupE|| X — |7 =< p2/Ceth 4 ﬂ (5.108)
2 Py n

The results also show that the tapering estimator fﬁk with tapering parameter k =
n'/@«+D attains the optimal rate of convergence n~2/Ge+D) 4 122,
It is interesting to compare the tapering estimator with the bandmg estimator of [346].

1/Qa+1)
A banding estimator with bandwidth k = (k’%) was proposed and the rate of

log p af(a+1)
convergence of ( was proven.

Both the tapering estimator and the banding estimator are not necessarily positive
semidefinite. A practical proposal to avoid this would projecting the estimator ¥ to the
space of positive semidefinite matrices under the operator norm. One may first diagonalize
% and then replace negative eigenvalues by zeros. The resulting estimator will be then
positive semidefinite.

In addition to the operator norm, the Frobenius norm is another commonly used matrix
norm. The Frobenius norm of a matrix A is defined as the /, vector norm of all entries
in the matrix

Al = az;.

ij
iJj

This is equivalent to treating the matrix A as a vector of length p?. It is easy to see that
the operator norm is bounded by the Frobenius norm, that is, [|[A| < [[A[l 5.

Consider estimating the covariance matrix X from the sample {X, ..., X,}. We have
considered the parameter space F, defined in (5.100). Other similar parameter spaces
can be also considered. For example, in time series analysis it is often assumed the
covariance |o;;| decays at the rate [i — j17@=D for some « > 0. Consider the collection
of positive-definite symmetric matrices satisfying the following conditions

Gy =G, My, M) ={ % :|o;| < Myli — jI7“*V fori # j and A, (%) < M, |,
(5.109)

max

where A, (%) is the maximum eigenvalue of the matrix X. G, is a subset of F,,(M,, M)
as long as M| < oM.

Let P, =P, (M,, M) denote the set of distribution of X, that satisfies (5.105) and
(5.109).

Theorem 5.57 (Minimax risk under Frobenius norm by Cai, Zhang and Zhou (2010)
[351]) The minimax risk under Frobenius norm satisfies

mfsup]E—nz |3 AlnfsupE—HE X |12 =< min{p~GetD/CerD) 3}. (5.110)
p P P n

£ Py

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



Large Random Matrices 211

The inverse of the covariance matrix ¥ is of significant interest. For this purpose, we
require the minimum eigenvalue of X to be bounded away from zero. For § > 0, we define

Ly ={%:,, (%) >4 (5.111)

min

Let P, = P,(My, M, p,8) denote the set of distributions of X that satisfy (5.100),
(5.105), and (5.111), and similarly, distribution in P, = P,(M,, M, p, ) that satisfy
(5.105), (5.109), and (5.111).

Theorem 5.58 (Minimax risk of estimating the inverse covariance matrix by Cai,
Zhang and Zhou (2010) [351]) The minimax risk under Frobenius norm satisfies

logp p

A—1
infsupE||X — X7'[|? < min{n 2@+ 4 , (5.112)
X p n n

where P denotes either P, or P,

5.6.6 Banding Sample Autocovariance Matrices of Stationary Processes

Nonstationary covariance estimators by banding a sample covariance matrix or its
Cholesky factor were considered in [352] and [346] in the context of longitudinal and
multivariate data. Estimation of covariance matrices of stationary processes was consid-
ered in [353]. Under a short-range dependent condition for a wide class of nonlinear
processes, it is shown that the banded covariance matrix estimates converge, in operator
norm, to the true covariance matrix with explicit rates of convergence. Their consistency
was established under some regularity conditions when

n,p — oo and nillogp—>0,

where n and p are the number of subjects and variables, respectively. Many good refer-
ences are included in [353].

Given a realization of X, ..., X, of a mean-zero stationary process {X,}, its autoco-
variance function o, = cov(X,,, X;) can be estimated by

n—|k|
Y XX k=0.£l... E£n-—1). (5.113)
i=1

N 1
0, = —
n
It is known that for fixed k € Z, under ergodicity condition, 6, — o, in probability.
Entry-wise convergence, however, does not automatically imply that in = (0;_)1<i,j<n
is a good estimator of X, = (0;_;),; j<,- Indeed, although positive definite, )Aln is not
uniformly close to the population (true) covariance matrix X, in the sense that the largest
eigenvalue or the operator norm of in — X, does not converge to zero. Such uniform
convergence is important when studying the rate of convergence of the finite predictor
coefficients and performance of various classification methods in time series.
Not necessarily positive definite, the covariance matrix estimator is of the form

2, = O L ji<) =i (5.114)
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where / > 0 is an integer. It is a truncated version of E preserving the d1ag0nal and the
2] main subdiagonals; if [ > n — 1, then ) nl = Z By following [346], Z is called
the banded covariance matrix estimate and l its band parameter.

Hannan and Deistler (1988) [354] have considered certain linear ARMA processes and
obtained the uniform bound

||)A3n‘, — %, |l = OG/loglogn//n), 1 < (logn)*, a < co.

Here, we consider the comparable results for nonlinear processes, mainly following the
notation and results of [353].

Let ¢;,i € Z, be independent and identically distributed (i.i.d.) random variables.
Assume that {X;} is a causal process of the form

X, =g(C-,&_1,8), (5.115)

where g is a measurable function such that X; is well-defined and E(X?) < oo. Many
stationary processes fall within the framework of (5.115).

To introduce the dependent structure, let (¢;);., be an independent copy of (g;);., and
& =1(--,¢&_1,¢;). Following [355], for i > 0, let

E = (6 1,800 E1s--r8_1,8), Xi = g(&]).
For o > 0, define the physical dependence of measure
8, (@) = 11X; — Xill- (5.116)
Here, for a random variable Z, we write Z € L%, if
1Zll, = [E(Z1)]"* < oo,

and write || - || = || - ||,. Observe that X; = g(&/) is a coupled version of X; = g(§;) with
& in the latter replaced by an i.i.d. copy . The quantity §,(i) measures the dependence
of X; on g,. We say that {X;} is short-range dependent with moment « if

A, = Z(Sa(i) < o0. (5.117)

That is, the cumulative impact of &, on future values of the process or {X;},., is finite,
thus implying a short-range dependence.

Example 5.11 ([353])
Let

[S]
Xj =g (Zaisjl-) N
i=0

[o.¢]
where q; are real coefficients with ) |a;| < 0o, ¢; are i.i.d. with ¢; € £L* o > 1, and g is
i=0

a Lipschitz continuous function. Then, Z a;&;_; is a well-defined random variable and

8,(@) = O(la;|). Hence we have (5. 117) O
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Example 5.12 ([353])
Let ¢; be i.i.d. random variables and set

X, =g(X;,_1,¢8),

where g is a bivariate function. Many nonlinear time series models follow this
framework. ]

Let p%(A) is the largest eigenvalue of AT A. The n x n matrix A has the operator norm

p(A).
We define the project operator P, as

P =E(|&) —ECI&_)), k € Z.

Theorem 5.59 (No convergence in probability [353]) Assume that the process X; in
(5.115) satisfies

o0
Y IPX < oo

i=0

o0 A
If Y P.X;|| >0, then, p(X, — X,) does not converge to zero in probability.
i=0

Theorem 5.60 (Convergence in probability [353]) Let2 <« < 4 and g = /2. Assume
(5.117) and 0 <1 < n — 1. Then,

l n
. 2 ,
1o = 2Dl < ca+Dn X Ay + 23 Tlojl +2 ) lojl, (5.118)
j=1 j=l+1

where c, > 0 is a constant depending only on «.

5.7 Free Probability

In quantum detection, tensor products are needed. For a large number of random matri-
ces, tensor products are too computationally expensive for our problem at hand. Free
probability is a highly noncommunicative probability theory with independence based on
free products instead of tensor products [356]. Basic examples include the asymptotic
behavior of large Gaussian random matrices. The freeness (its beauty and fruitfulness) is
the central concept [357].

Independent symmetric Gaussian matrices which are random matrices (also noncom-
munitative matrix-valued random variables) are asymptotic free. See Appendix A.5 for
details on noncommunicative matrix-valued random variables: random matrices are their
special cases.

In this subsection, we take the liberty of drawing material from [12, 13]. Here we
are motivated for spectrum sensing and (possible) other applications in cognitive radio
network. Free probability is a mathematical theory that studies noncommunitative random
variables. The “freeness” is the analogue of the classical notation of independence, and
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it is connected with free products. This theory was initiated by Dan Voiculescu around
1986, who made the statement [16]:

[free probability theory = noncommunitative probability theory + free independence.

His first motivation was to study the von Neumann algebras of free groups. One of
Voiculescu’s central observations was that such groups can be equipped with tracial states
(also called states), which resemble expectations in classical probability.

What is the spectrum of the sum A + B [358]? For deterministic matrices A and B one
cannot in general determine the eigenvalues of A 4+ B from those of A and B alone, as
they depend on the eigenvectors of A and B as well. However, it turns out that for large
random matrices A and B satisfying a property called freeness, the limiting spectrum of
the sum A + B can indeed be determined from the individual spectra of A and B. This
is a central result in free probability theory.

Define the functional ¢ as

1
P(A}) = —Tr(EA}).
n

¢ stands for the normalized expected trace of a random matrix.
The matrices A, ..., A, are called free if

¥ ([pl(Ail) e pk(Aik)]) =0

whenever

® py, ..., p, are polynomials in one variable;
e i, #i,#iy---# I, (only neighboring elements are required to be distinct);
° (p(pj(Aii)) =O0forall j =1,... k.

For independent random variables, the joint distribution can be specified completely by
the marginal distributions [359]. For free random variables, the same result can be proven,
directly from definition. In particular, if X and Y are free, then the moments ¢[(X + Y)"]
of X and Y can be completely specified by the moments of X and the moments of Y.
The distribution is naturally called free convolution of the two marginal distributions.
Classical convolution can be computed via transforms: the log moment generating func-
tion of the distribution of X +Y is the sum of the log moment generating function of
the individual distributions of X and Y. In contrast, for free convolution, the appropri-
ate transform is called the R-transform. This is defined via the Steltjes transform given
by (5.34).

Asymptotic Freeness

To apply the theory of free probability to random matrix theory, we need to extend the
definition of free to asymptotic freeness, by replacing the state functional ¢ by ¢

$(A) = lim %ETr(A,,).
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The expected asymptotic pth moment is ¢ (A”) and ¢ (I) = 1. The definition of asymptotic
freeness is analogous to the concept of independent random variables. However, statistical
independence does not imply asymptotic freeness.

The Hermitian random matrices A and B are asymptotic free if for all / and for all
polynomials p;(-) and ¢;(-) with 1 <i <[ such that

#(p;(A)) = ¢(q;(B)) =0,
é(p1(A)q,(A)--- p(A)g (A)) = 0.

We state the following useful relationships for asymptotically free A and B

¢ (A'B') = ¢ (A" (B),
#(ABAB) = ¢2(B)¢(A2) + ¢2(A)p(B2) — p2(A)¢*(B).

One approach to characterize the asymptotic spectrum of a random matrix is to obtain its
moments of all orders. The moments of a noncommunicative polynomial p(A, B) of two
asymptotically free random matrices can be computed from the individual moments of
A and B. Thus, if p(A, B), A and B are Hermitian, the asymptotic spectrum of p(A, B)
depends on only those of A and B, even if they do not have the same eigenvectors!

Example 5.13 (Moments of polynomial matrix function p(A, B)=A + B)
Let us consider the important special case of p(A, B) = A + B. Under H,, the sample
covariance matrix has the form

$(A+B) =¢(A) + ¢(B),
Pl(A +B)*] = ¢(A?) + ¢(B?) +2¢(A)¢(B),
Pl(A+B)’] = ¢*(A) + ¢ (B) + 3¢(A)p(B) + 3¢ (B)g (A?),
ol(A +B)'] = ¢*(A) + ¢ (B*) + 4¢(A)p (BY)
+4¢(B)¢(A’) + 267 (B)gp (A?)
+ 207 (M) (B?) + 26 (B*)$ (A”).

All higher moments can be computed analogously. |

[13] compiles a list of some of the most useful instances of asympotic freeness that
have been shown so far. Let us list some here:

1. Any random matrix and the identity are asymptotically free.

2. Independent Gaussian standard Wigner matrices are asymptotically free.

3. Let X and Y be independent standard Gaussian matrices. Then {X, X*} and {Y, Y}
are asymptotically free.

4. Independent standard Wigner matrices are asymptotically free.

Sum of Asymptotic Free Random Matrices

Free probability is useful mainly due to the following theorem.
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Theorem 5.61 (Sum of two asymptotic free random matrices) If A and B are asymp-
totically free random matrices, then the R-transform of their sum satisfies

Ry48(2) = Ry (2) + Rg(2).

In particular, the following translation property is valid
Rp11(2) = Ry (2) + R 1(2) = Ry (2) + .

Theorem 5.62 (Free probability central limit theorem) If A, A,, ... are a sequence
of N x N asymptotically free random matrices. Assume that ¢ (A;) = 0 and qb(AiZ) =1
Further assume that supi|¢(Af~‘)| < 00 for all k. Then, as m, N — 00, the asymptotic
spectrum of

1
—— A+ A A,
m

Jm

converges in distribution to the semicircle law, that is, for every k,

] 0, k odd
¢(—(A1+A2+-~Am)k) — L (kY ok even.

Let us revisit the problem of sum of K random matrices in Section 3.6. The K sample
covariance matrices are asymptotic free.

Example 5.14 (HH? [13])

Let H be an N x m random matrix whose entries are zero-mean i.i.d. Gaussian random

. . . 1
variables with variance TN and denote

1

—Jm=c.

N S
We can represent

] m
HH" = — 3 s/’ (5.119)
\/% i=1

with s; an N-dimensional vector whose entries are zero-mean i.i.d. with variance \LFN’ it
can be shown that as N, m — oo with % — 0, the asymptotic spectrum of the matrix

HH" — ¢/N1

is the semicircle law. ]

Example 5.15 (Sum of K (random) sample covariance matrices in Section 3.6)
The sample covariance matrices have the form

S—lYYHk—lz K
k_Nkkﬂ — Ly &5 ey )
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where Y, have m row vectors and N column vectors. A long data record is divided into
K segments; each segment can be used to estimate the sample covariance matrix. The
sum of K sample covariance matrices is

K 1 K
Sy=) 8 = N;kaf.
=1

k=1

Under H,: only Gaussian noise is present, each S, is of the form of (5.119). Thus the
sum has the form

mK
1
Sy = —— 3 st

The sum of K sample covariance matrices will make the asymptotic spectrum more like

the semicircle law since in practice % — oo with faster rate. U

Products of Asymptotic Free Random Matrices
The S-transform plays an analogous role to the R-transform for products (instead of sum)

of asymptotically free matrices.

Theorem 5.63 Let A and B be nonnegative asymptotically free random matrices. The
S-transform of their products satisfies

EA+B(X) = X, () Xg(x).

The S-transform is the free analog of the Mellin transform in classical probability
theory, whereas the R-transform is the free analog of the log-moment generating function
in classical probability theory.

There are useful theorems [11] to calculate ¢[(A + B)"] and ¢[(AB)"].

Moments of the Sums and Products

Theorem 5.64 ([13]) Consider matrices A, ..., A; whose size is such that the prod-
uct Ay, ..., A, is defined. Some of these matrices are allowed to be identical. Omitting
repetitions, assume that the matrices are asymptotically free. Let p be the partition of
{1,...,1} determined by the equivalence relation j =k if i; = iy. For each partition o
of {1, ..., 1}, let
bo= ] 0@, A
(1o ir)Em
<<

There exist universal coefficients c(w, p) such that

A, A=) (@, P,

w<p

where w < p indicates that @ is finer than p.
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Finding an explicit formula for the coefficients c¢(w, p) is a nontrivial combinatorial
problem that has been solved by Speicher [360]. From Theorem 5.64, ¢(A,---A)) is
completely determined by the moments of the individual matrices.

Theorem 5.65 ([11]) Let A and B be nonnegative asymptotically free random matrices.
Then, the moments of their sum A + B are expressed by the free cumulants of A and B as

SLA+B)T=Y"T] (v +c B)

o Vew

where the summation is over all noncrossing partitions of 1, ..., n, ¢;(A) denotes the lth
free cumulant of A, and |V | denotes the cardinality of V.

Theorem 5.65 is based on the fact that, if A and B be nonnegative asymptotically free
random matrices, the free cumulants of the sum satisfy

¢/(A+B) =c,(A) +¢,(B).

Theorem 5.66 ([11]) Let A and B be nonnegative asymptotically free random matrices.
Then, the moments of their sum A + B are expressed as

slABYT= Y T @ [T cry®
wy, @) View) Vyewy

where the summation is over all noncrossing partitions of 1, ..., n.

5.7.1 Large Random Matrices and Free Convolution
5.7.1.1 Random Matrices and Free Random Variables

In free probability, large random matrices is an example of “free” random variables.
Let Ay be an N x N symmetric (or Hermitian) random matrix with real eigenvalues.
So the two-dimensional complex problem is converted into a one-dimensional real-value
problem. The probability measure on the set of its eigenvalues

A Agsooos by
(counted with multiplicities) is given by
1 N
'LLAN = N Zé)‘t

We are interested in the limiting spectral measure 1, as N — oo. This limiting spectral
measure is uniquely characterized by its moments, when compactly supported. We refer
to A as an element of the “algebra” with probability measure ©, and moments above.
For two random matrices A, and B, with limiting probability distribution p, and (g,
we would like to compute the limiting probability distribution for Ay 4+ B, and AyBy
in terms of the moments of n, and ug. As treated above, the appropriate structure of
“freeness,” analogous to independence for ‘“classical” random variables, is what we need
to impose on A, and B, in order to compute these distributions. Since A and B do
not commute we are dealing with noncommutative algebra. Since all possible products
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Large Random Matrices 219

of A and B are allowed, we have the “free” products, that is, all words in A and B are
allowed. We have already dealt with how to compute the moments of these products.
The connection with random matrices comes in, because a pair of random matrices A,
and B, are asymptotically free, that is, in the limit of N — o0, so long as at least one
of Ay or By has what amounts to eigenvectors that are uniformly distributed with Haar
measure. This result is stated precisely in [356].

Table 5.3 lists definitions of R-transform and S-transform and their properties.

5.7.1.2 Free Additive Convolution

When A and B, are asymptotically free, the (limiting) spectral measure 1,5 for random
matrices of the form

Ay +By

is given by the free additive convolution of the probability measures pu, and pug and
written as [356]

Marp = Ma B g, (5.120)

An algorithm in terms of the so-called R-transform exists for computing 11, p from
s and ug. See [356] for details and [361] for computational issues.

5.7.1.3 Free Multiplicative Convolution

When A, and B, are asymptotically free, the (limiting) spectral measure j,p for random
matrices of the form

AyBy

is given by the free multiplicative convolution of the probability measures p, and gy and
written as [356]

Pas = 1a B g, (5.121)

The algorithm for computing g is given in [254,361-364].

The convolution operators on the noncommunicative algebra of large random matrices
exist, and can be computed efficiently (e.g., in MATLAB codes). Symbolic computational
tools are now available to perform these nontrial computations efficiently [361,362].
These tools enable us to analyze the structure of sample covariance matrices and design
algorithms that take advantage of this structure [254].

5.7.1.4 Applications to Rank Estimation and Spectrum Sensing

Since the Wishart matrix so formed in (5.13) has eigenvectors that are uniformly dis-
tributed with Haar measure, the matrices R and W(«) are asymptotically free! Thus the
limiting probability measure up can be obtained using free multiplication convolution as

Ui = Mg Xy, (5.122)
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220 Cognitive Radio Communications and Networking

where pp is the limiting probability measure on the true covariance matrix R and pyy
is the Marchenko-Pastur density [251], which is defined in (5.3). As given in (5.7), the
limiting spectral measure of R is simply

pur = pox —p — 1)+ (1 — p)d(x — 1).

The free probability results are exact when N — oo, but the predictions are very accurate
for N ~ 8, for rank estimation [254].

Example 5.16 (Rank estimation)
Let HH” in (5.7) have np of its eigenvalues of magnitude p and n(1 — p) of its eigenval-
ues of manitude O where p < 1. This corresponds to H being an n x L matrix with L < n
with p = % so that L of its singular values are of magnitude ,/p while the eigenvectors
of H are unknown or random. Since free multiplicative convolution predicts the spectrum
of the sample covariance matrix R so accurately such that we can use free multiplicative
deconvolution, to infer the parameters of the underlying covariance matrix model from
just one realization of the sample covariance matrix!

The first three moments of R can be analytically parameterized in terms of the unknown
parameters 8, p and the known parameter ¢ = n/N as

9R) = 1+ pp,

fﬂ(ﬁZ) =14 pp*+c+ 1+ 2ppc+2pp+cp’p?,

eR) = 143c+c?+3p°p+3p°cp> +3pp + Ippc + 6p*pc
+3cp’p 4+ 3ppc? + 302 p* + 0’3t + pPp,

Given an n x N observation matrix Y
moments as

we can compute estimates of the first three

ne

A Dk 1 1 H !
R =-Tr| [ =Y,Y, Jk=1,2,3.
n N

Since we know ¢ = n/N, we can estimate p, p by simply solving the nonlinear system
of equations (minimizing the least squares)

(p, p) = argmin o(RY) — R |12
p>0,p>0

For the example of n = 200 and p = 0.5, the estimated rank is within 1 dimension of the
true rank of the system which is np = 100. (]

Example 5.17 (Spectrum sensing)
Consider the standard form of (5.10), which is repeated here for convenience,

Hy: R=YY" = WW#,

- 5.123
H,: R=YY" = XX + WW", ( )
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The true covariance matrices are

HO:R:UZI,

H, :R=HH" + 07, (>-124)

The conventional approach to find the power of the received signal plus noise is to
use (5.124). In practice, the usual approaches are to use large sample covariance matri-
ces through (5.123). Indeed, the sample covariance matrix is connected with the true
covariance matrix by the property of Wishart distribution through (5.12).

Using (5.122), we can convert the problem of calculating the sample covariance matrix
R into the problem of calculating the true covariance matrix R, with the help of the
Wishart matrix W(c)! Recall that W(c) = %ZZ is formed from an n x N Gaussian ran-
dom matrix. Once again, ¢ is defined as the limit n/N — ¢>0 as n, N — oco. Under
'H,, we have the form of (5.7). We can thus calculate the limiting probability measure 114
using (5.12). O

5.7.2 Vandermonde Matrices

For notation and some key theorems, we follow [365] closely. Vandermonde matrices
have a central role in signal processing such as the fast Fourier transform or Hadamard
transforms. A Vandermonde matrix with complex entries on the unit circle has the fol-

lowing form
1 ... 1

1 efjwl e efij
V= ] . ) , (5.125)
v N : . :
e~ IWN=Doy . ,—j(N-Dor,
where the factor —= and the assumption of e~/¢i are included to ensure that the analysis

will give limiting asymptotic behavior defined in the asymptotic regime of
L
Asymptotic regime: N — oo, L — oo, but v — C. (5.126)

We are interested in the case where w, ..., w; are independent and identically dis-
tributed (i.i.d.), taking values in [0, 2r]. The w; is called phase distributions. V will be
only to denote Vandermonde matrices in this section with a given phase distribution, and
the dimensions of the Vandermonde matrices will always be N x L.

[111] has some related results. The overwhelming majority of the known results are
concerned about Gaussian matrices or matrices with independent entries. Very few results
are available in the literature on matrices whose structure is strongly related to the Van-
dermonde case.

Often, we are interested in only the moments. It will be shown that asymptotically, the
moments of the Vandermonde matrices V depend only on the ratio ¢ and the phase distri-
butions, and have explicit expressions. Moments are useful for performing deconvolution.

The normalized trace is defined as

tr(A) = %Tr(A).
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222 Cognitive Radio Communications and Networking

The matrices D, (N), 1 <r < n will denote nonrandom diagonal L x L matrices, where
we implicitly assume that = — c.
We say the {D,(N)},.,, have the joint limit distribution as N — oo if the limit
D, ;= lim tr(D; (N)---D; (N))
n N—oo 1 n

Lyeees 1

exists for all choices of iy,...,i; € {1,...,n}.

The concepts from partition theory are needed. We denote by P(n) the set of all
partitions of {1,...,n}, and use p as notation for a partition in P(n). We write p =
{W,,..., W}, where W; will be used to denote the blocks of p. |p| =k denotes the

number of blocks in p and |W;| will represent the number of entries in a given block.
For p = {W,, ..., Wi}, with W; = {w;, ..., oy, }, we define

Dy =D,

i l“’il"""‘”i\Wi\

For p € P(n), define

ko ejN(wb(k—l)_wb(k))d J
p.w.N — Nn+1 1ol 1 1 — e/ @bk—1)—®nk)) 1 Ipl
i=
(, zn)\pl

where
Oy oo O (5.127)

are i.i.d. (indexed by the blocks of p), all with the same distribution as w, and where b(k)
is the block of p which contains k (notation is cyclic, that is, b(0) = b(n). If the limit

K :th

£ N—o00

exists, then we call it a Vandermonde mixed moment expansion coefficient.

Theorem 5.67 ([365]) Assume that the {D,(N)},.,., have a joint limit distribution as
N — oo. Assume also that all Vandermonde mixed moment expansion coefficients K , ,,
exist. Then, the limit

n

M, = lim E[tr(D,;(N)VAVD,(N)VAV x ... D, (N)VIV)]

also exists when —Zf, — ¢, and equals
E K, c”='D
o, o
pEP(n)

For the case of Vandermonde matrices with uniform phase distribution, the noncrossing
partitions play a central role. Let # denote the uniform distribution on [0, 27].
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Theorem 5.68 ([365]) Assume D;(N) =D,(N) =---=D,(N), set c = %, and define

mND = cE[rr(D,(N)VAV)"]
dVP = ctr((N))".

When w = u, we have that
miN,L) _ dl(N,L)

mM™ = (1= NHaM + @'ty

m{ =1 =3N 42N dN Y + 30 = NTHa" P + @My

20 19
mZN’L) = (1 -3 N'+ 12N — 3 N_3) diN’L) +@G—-12N"" + 8N_2)d§N’L)d1(N’L)
8 10
+ (5 — 6N+ Y N_z) (dz(N’L))2 +6(1 — N_l)dz(N’L)(a'{N’L))2 + (dl(N’L))4.

Let us consider generalized Vandermonde matrices defined as

e IINf@lor L JINF Ol
| o TINFG o TN G e
V=— : . : , (5.128)
. N—1 _
SR i,

where f is called the power distribution, and is a function from [0, 1] to [0, 1]. We also
consider the more general case when f is replaced with a random variable A,

e~ INMor L. pmiNALoL
1 e~ INhwr L miNMoL
V=— . . ) (5.129)
N
e ININor L. pTikLoL

with the A, i.i.d. and distributed as A, defined and taking values in [0, 1], and also inde-
pendent from the o;.
For (5.128) and (5.129), define

n

N-1
1 . 3
K, ., n= e / | | (2 pr(r)ejr(wb(k—l) wb(k)))dwl edoy,
r=0

(0,27)1P! k=1

1 - ! j [3) —w,
K,pin= e / 1_[ </0 Ned NH@pg—1y b(k))d)h>dw1 cdwy,,
1

(0,27)!P! k=
W, are defined as in (5.127). If the limits

.....

Kp,w.f = llm Kp,(u,f,N

N—oo

K = lim K
£,k N—>o00 p,0,A,N>

exist, then they are called Vandermonde mixed moment expansion coefficients.
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Theorem 5.69 ([365]) Theorem 5.67 holds also when Vandermonde matrices (5.125) are
replaced with generalized Vandermonde matrices on either form (5.128) or (5.129), and
with K, , replaced with either K, ,,  or K, , ;.

Theorem 5.70 ([365]) Assume that the {D,(N)},,., have a joint limit distribution as
N — oo. Assume also that V|, V,, ... are independent Vandermonde matrices with the
same phase distribution w;, and that the density of w is continuous. Then, the limit

Nligo E[D,(N)VIV,D,(N)VIV, x - xD,(N)V]V, ]
exists when % — c. The limit is 0 when n is odd, and equals

> K,."'D, (5.130)

p=<oeP(n)

where
o ={o,,0,} ={{1,3,5,....},{2,4,6,....}}
is the partition where two blocks are the even numbers, and the odd numbers.
Corollary 5.4 ([365]) The first three mixed moments
V2 = lim E(VI'V,VEV)']

of independent Vandermonde matrices V|, V, are given by

Vl(z) =1

V2 = g12 + 5L+

1
v = Sol2 40+ 9L + 615 + I,

2
I = Qo) ( / pw(x)"dx) .
0

In particular, when the phase distribution is uniform, the first three moments are
given by

where

11 411
= V=

(2) (2)
im=hnt=a =g

Theorem 5.71 ([365]) Assume that {Vi}i<i<s are independent Vandermonde matrices,
where V; has continuous phase distribution w;. Denoted by p,, , the density of w,. Then,
(5.130) still holds, with K , ,, replaced by

2r S
Kp’u(zn)lplflf npwi(x)\/)ildx’
i=l

0

where p; consists of all numbers k such that i, = i.
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Example 5.18 (Detection of the number of sources [365])

In this example, d is the distance between the antennas whereas X is the wavelength. The
ratio % is a figure of the resolution with which the system will be able to separate users
in space. Let us consider a central node equipped with N receiving antennas, and with L
mobiles (each with a single antenna). The received signal at the central node is given by

yi = VP'’x; +w,, (5.131)

where

y; is the N x 1 received vector,

x; is the L x 1 transmit vector by the L users; we assume E[x,x/] =1,
w; is N x 1 additive, white, Gaussian noise of variance ﬁ, and

all components in x; and w; are assumed independent.

In the case of line of sight between the users and the central node, for a uniform linear
array (ULA), the matrix V has the following form

1 1
| e—j2ﬂ;—i sing; e—j2n% sin@,
V= — . . . (5.132)
JN - g :
e—j(N—l)% sing, e—j(N—l)% sinf;

Here, 6; is the angle of the user and is supposed to be uniformly distributed over [—«, «].
P!/2 is an L x L diagonal power matrix due to the different distances from which the
users emit. The phase distribution has been assumed to have the form 27r% sinf with 6
uniformly distributed on [—a, «].

By taking inverse function, the density is, for 251

A

1

242
za/%_xz

<1,

Po(X) =

on [—2xsine 2mine] and O elsewhere.
By defining

Y = [y]v "'7yN]7X= [le "'aX[(]aW: [wla '-'7WN]7 (5133)
(5.131) is rewritten as
Y=1[y,.....y5¢] = VP2[x,, ....xx] +[W,,....,wy] = VPI/’X 4 W.

The sample covariance matrix can be written as

1 1
S=—YY" = —(VP'/?X + W)(VP'/>’X + W),
N N
If we have only the sample covariance matrix S, in order to get an estimate of P, we
have three independent parts to deal with: X, W, V. We can achieve this by combining
Gaussian decomposition [366] and Vandermonde deconvolution by the following steps:
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226 Cognitive Radio Communications and Networking

1. Estimate the moments of  VP'2XX#P'2V# using multiplicative free convolution
[262]. This is the denoising part.

2. Estimate the moments of PVV#, using multiplicative free convolution.

3. Estimate the moments of P using Vandermonde deconvolution in the paper
of [365]. O

Proposition 5.9 ([365]) Define

a=@mwlmmmwx
and denote the moments of P and S by
P, =tr(P"), S; = tr(S").
Then, the equations
S, =c¢,P, +0*
S, =, Py + (31, + ¢3¢3)(P)* +20%(c; + ¢) Py + o (1 + ¢))
Sy =3Py + (331, + ¢y¢3) Py Py + (63 1y + 3¢5, + ¢,¢3)(P))? + 302 (1 + ¢))e, Py
+ 307 ((1 + ¢))a L, + ¢5(c5 + 2¢,))(P)?* + 30 (c] + 3¢, + Dey Py
+0%ci 43¢, + 1)

provide an asymptotically unbiased estimator for the moments P; from the moments of S,
(or vice versa) when
L

lim — — ¢, im — — ¢, lim — — ¢;.
N—ooo K N—oo N N—oco K

Example 5.19 (Estimation of the number of paths [365])
Consider a multipath channel

L
h(t) =) x8(r — 7).
i=1

Here x; are i.d. Gaussian random variables with power P; and 7; are uniformly distributed
delay over [0, T']. The x; represent the attenuation factors due to different physical mech-
anisms such as reflections, refractions, or diffractions. L is the total number of paths. In
the frequency domain, the channel is

L
H(f) =) xG(fe >

i=1

O

A generalized multipath model that has taken into account the per-path pulse distortion
[367—-373] is relevant to the context. The so-called scatter centers that are used for the
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radar community are mathematically modeled by the multiple maths that are used in
wireless communications. As a result, this work bridges the gap between two communities.
Deeper research can be pursued using this mathematical analogy between two different
systems. Physically, the two systems are equivalent.

By sampling the continuous frequency signal at sampling rate f; =i % where B is the
bandwidth (in Hertz), we have (for a given channel realization)

H = VP'/’x (5.134)
where
1 e 1
1 e*jzﬂ%'[] . e*jZT[%‘L’L

V=N

—j2n(N-1)E 7 —j2n(N-1 B

e - e

We set here B = T = 1, which implies that the w; of (5.125) are uniformly distributed
over [0, 2r). When additive noise w is taken into account, our model again becomes that
of (5.131): The only difference is that the phase distribution of the Vandermonde matrix
now is uniform. L now is the number of paths, N the number of frequency samples, and
P is the unknown L x L diagonal power matrix. Taking K observations, we reach the
same form as in (5.133). We can do even better than Proposition 5.9. Our estimators for
the moments are unbiased for any number of observations K and frequency samples N.

Proposition 5.10 ([365]) Assume that V has uniform phase distribution, and let P; be the
moments of P, and S; = tr(S") the moments of the sample covariance matrix. Define also

N L L

Then,
E[S,] =c,P, + o

1
E[S,] = c, (1 — ﬁ) Py 4 cy(cy 4+ ¢3)(P)? +20%(cy + ¢3) Py + 0 (1 +¢))
1 3 2 1 ) 1
E[S;] = ¢, 1+F (1_N+W)P3+ I_N 3¢y 1+F +3c,c5 | PP,y
3 1 2 2 3 2 clc% 1
+la|l+ 2 +3c5e3 + 5 | (P)” + 307 | (14 ¢))ey + XL 1— I P,
2 Clcg 2 2 2 af 2 1
+ 30 E-ﬁ-c2+c3—i-3c2c3 (P)"+30" | i +3C1+1+ﬁ ¢, Py

405 (@43, 414 —
1 1 K2 .

Wavelength in (5.132) can be also estimated. See [365] for details.
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Example 5.20 (Signal reconstruction and estimation of the sampling distribu-
tion [365])
Consider the signal y(¢) as a superposition of its N frequency components

() = Zxke i (5.135)

We sample the continuous signal y(f) at time instants ¢ = [}, ..., f;] with #; € [1].
(5.135) can be written equivalently as

&’

y(w) = — NX‘ix e ory = VIx.
k=0
In the presence of noise, one has
y=Vx+w
with
y =), ..., y(@p)]

and x and w are defined in (5.131). V is defined as our standard model (5.125). [374] has
a similar analysis for such cases.
We define

Y:[lyl,...,yK]leT[x],...,xK]—i—[wl,...,wK]=VTX+W
S = EYYH = E(VTX—i—W)(VTX—i—W)H.

Consider the asymptotic regime

L
lim — — ¢, lim — — ¢,, hm — =3
N—ooo K N—oo N N—00 0

Proposition 5.11 ([365])
E[tr(S)] = c, P, + o?
E[tr(SH] = ¢, L + (1 + ¢3)(1 +0%)? (5.136)
E[tr(S)] = 1 4+ 3¢,(1 + ¢3) 1, + 3¢5 + 5 + 315 + 307 (1 + 3¢5 + 3 + ¢y (1 + ¢ )
+30%cy (3 + 3¢+ 1)+ 0% + 3¢, + 1),
where I, is defined in Proposition 5.19.

Consider a phase distribution w which is uniform on [0, o], and O elsewhere. The
density is thus %’T on [0, o], and O elsewhere. In this case we have

21 27\?
12 - —, 13 = - .
o o

The first of these equations, combined with (5.136), enable us to estimate o.
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Certain matrices similar to Vandermonde matrices have analytical expressions for the
moments. In [375], the matrices with entries of the form A; ;= Flw;,, o j) are considered.
This is relevant to the Vandermonde matrices since

sin (% (w; — 0)))

N sin ((0; — )

1 H
N(V V)i,j =

Example 5.21 (Vandermonde matrices with unit complex entries [376])

Consider the network with M mobile users talking to a base station with N antenna
elements, arranged in a uniform linear array. The antenna array response is a Vandermonde
matrix. We refer to [376] for this example. O

5.7.3 Convolution and Deconvolution with Vandermonde Matrices

In the large dimensional limit, certain random matrices a deterministic behavior of the
eigenvalue distribution [377]. In particular, one can obtain the eigenvalue distribution
of AB and A + B, based on only the individual eigenvalue distributions of A and B,
when the matrices are independent and large. This operation is called convolution, and
the inverse operation is called deconvolution.

Gaussian-like matrices fit into this setting, since the concept of freeness [11] can be
used. [364] used large Wishart matrices. Random matrix theory was used in [9]; other
deterministic equivalents [17,281,298,378] are used; Although used successfully [366],
all these techniques can only treat very simple models, that is, one of these considered
matrices are unitarily invariant.

The method of moments, which is the focus in this section, is very appealing and pow-
erful when freeness does not apply, for which we still do not have a general framework.
It requires the combinatorial skills and can be used for a large class of random matri-
ces. Compared with the Stieltjes transform, this approach has the main drawback that it
rarely provides the exact eigenvalue distribution. In many applications, however, we only
need a subset of the moments. We mainly follow Ryan and Debbah (2011) [377] for our
development.

A N x N Vandermonde matrix V is defined in (5.125). We repeat it here for conve-
nience:

1 .. 1
1 e~ o1 cee oL
V= — . . . (5.137)
VN : :
e IIN=Dor . p=i(N-Doy
The w,, ..., w,, also called phase distributions, will be assumed i.i.d., taking values in

[0, 27r]. Similarly, we consider the asymptotic regime defined in (5.126): N and L go to
infinity at the same rate, and write ¢ = Nlim %
— 00
In Section 5.7.2, the limit eigenvalue distributions of combinations of V#V and diagonal
matrices D(N) were shown to be dependent on the limit eigenvalue distributions of the

two matrices.
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Define
. H H
nglcl)otr(DI(N)Vilviz X xD,(N)Vy V. ), (5.138)
where V|, V,, ... are assumed independent, with phase distributions w,, ..., w;.

Consider the following four expressions:

1. ngnwD(N)VHV and  lim D(N) + V#vV
2. A}i_I)nDOD(N)VVH and  lim (D(N) 4+ VV#)
3. lim VIV, V#V, and Jiinm(V{fVl +ViV,)
4. lim V, VIV, V# and Jim (V, VI 4+ V, Vi),

Theorem 5.72 ([377]) Let V; be independent N; x L Vandermonde matrices with aspect

ratios ¢; = lim L and phase distributions w; with continuous densities in [0, 2],
N—o0

N;
The limit
lim E[r(D,(N)V'V,Dy(N)V/IV, x - x D, (N)V] _V, )] (5.139)
N—o00 3 n— n
always exists, when D;(N) have a joint limit distribution, whenever the matrix product is
well-defined and square. Moreever, (5.138) converges almost surely in distribution to the
limit in (5.139). When o > [0, 1], (that is, there are no terms in the form of VFVS with

V., and V, independent and with different phase distributions), (5.139) can be expressed
as a formula in the aspect ratio c;, o, and the individual moments

VO = lim E[zr(VAV)"]
N—oo
D, ;. =tr(D; (N)---D, (N)).

L]yeees 1

(5.140)

A special case of Theorem 5.72 is considered here. This theorem states in particular that
tr(V, + Vy+ - )V, +V, +-.)P

depends only on the moments. This expression characterizes the singular law of a sum
of independent Vandermonde matrices. Also, expressions 1 and 3 are found to only rely
on the spectra of the component matrices. For convolution expression 1, we have the
following corollary.

Corollary 5.5 ([377]) Assume that V has a phase distribution with continuous density,
and define

n
D, =c lim tr(D(N)")
N—o0 M
M,=c Nlim tr(D(N)VIV)"
—00
N, =c lim tr(D(N) 4+ VIV)"),
N—o0

V, = lim tr(VEIV)")
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where ¢ = lim % Whenever either {M,},.,< or {N,},<,< are known, and {V,},_, <

N—oo
(or {D,},<,<) are known, then {D,}, ., (or {V,},o, <) are uniquely determined.
For expression 3, we have the following corollary.

Corollary 5.6 ([377]) Assume that V| and V, are independent Vandermonde matrices
where the phase distributions have continuous densities, and set

v = lim or((VI'V))")
N—o00 "
v," = lim or((V§V,)")
N—o00 N
M, =c lim tr(VI'V, VEv,)"
— 00
N, =c lim r(VEV, + VEV)").
— 00

M, and N, are completely determined by Vz(i), V;i), ... and the aspect ratios

. . L
¢, =lim —, ¢, = lim —.
N—00 N1 N—00 N2
Also, whenever either {M,,}, -, <, or {N,}, -, are known, and {V,(")}lsnik are known, then

{Vz(")}linfk are uniquely determined.
For expression 4, we have the following corollary.

Corollary 5.7 ([377]) Assume that V| and V, are independent Vandermonde matrices
with the same continuous density, and set

v = lim r(VEV)"
M, = lim r(VEV,VEV )Y,

Then, {M,}, .,y are uniquely determined from {V, },_, n-

The spectral separability seems to be a phenomenon for large N-limit. We are only
aware of Gaussian and deterministic matrices where spectral separability occur in finite
case [379]. The moments of Hankel, Markov, and Toeplitz matrices [287] are relevant to
this context.

A practical example is studied in [377]:

1. From observations of the form D(N)V#V or D(N) + V7V, one can infer on either
the spectrum of D(N), or the spectrum or phase distribution of V, when exactly one
of these is unknown.

2. From observations of the form V¥V, V¥V, or VIV, + V¥V, one can infer on the
spectrum or phase distribution of one of the Vandermonde matrices, when one of the
Vandermonde matrices is known.

The example only makes an estimate of the first moments of the component matrix
D(N). These moments can give valuable information: in cases where it is known that
there are few distinct eigenvalues, and the multiplicities are known, only some lower
order moments are needed, in order to get an estimate of these eigenvalues.
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5.7.4 Finite Dimensional Statistical Inference

We follow [379] for the development here, converting to our notation. Given X and Y
are two N x N independent square Hermitian (or symmetric) random matrices:

1. Can one derive the eigenvalues distribution of X from the ones of X +Y and Y? If
feasible in the large N-limit, this operation is named additive free deconvolution.

2. Can one derive the eigenvalues distribution of X from the ones of XY and Y? If feasible
in the large N-limit, this operation is named multiplicative free deconvolution.

The method of moments [380] and the Stieltjes transform method [381] can be used.
The expression is simple, if some kind of asymptotic freeness [11] of the matrices is
assumed. Freeness, however, is not valid for finite matrices. Remarkably, the method
of moments can still be used for this purpose. The general finite-dimensional statistical
inference framework was proposed [379], and the codes for MATLAB implementation
are available [382]. The calculations are tedious. Only Gaussian matrices are addressed.
But other matrices such as Vandermonde matrices can also be implemented in the same
vein. The general case is more difficult.

Consider the doubly correlated Wishart matrix [383]. Let M, N be positive integers,
W be M x N standard, complex, Gaussian, and D (deterministic) M x M and E N x N.
Given any positive integer p,, the following moments

E [tr (i(DWEWH)”)]
N
E [tr (%((D +W)(E +W)”>”)}

exist and can be calculated [379].

The framework of [379] enables us to compute the moments of many types of combi-
nations of independent, Gaussian- and Wishart random matrices, without any assumptions
on the matrix dimensions. Since the method of moments only encode information about
the lower order moments, it lacks much information which is encoded naturally into the
Stieltjes transform; spectrum estimation based on the Stieltjes transform is more accurate
than the case when a few moments are used. One interesting question is to ask how many
moments are typically required, in order to reach the performance close to that of the
Stieltjes transform.

Example 5.22 (MIMO rate estimation [379])
One has K noisy symbol-observations of the channel

Y,=D+oW, i=12_.K,

where D is an M x N deterministic channel matrix, W, is an M x N standard, complex,
Gaussian representing the noise, and o is the noise variance. The channel D is assumed
to stay constant during K symbols measurements. The rate estimator is given by

M
1 0 1
C= Mlogzdet (IM + NDDH> = Mlogzdet (H (1I+ p)»,))

where p = (}2 is the SNR, and A; are the eigenvalues of %DDH .
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The problem falls within the framework suggested before. The extra parameter did not
appear in any of the main theorems of [379]. An unbiased estimator for the expression of

M

[Ta+em)

i=1

has been derived in [379]. O

Example 5.23 (Understanding network in a finite time [379])

In cognitive MIMO network, one must learn and control the “black box” (wireless chan-
nel) with vector inputs and vector outputs. Let y be the output vector, and x and w,
respectively, the input signal and the noise vector,

Yy=X+owW. (5.141)
By defining
Y=1[y, ... YL X=X, ....,Xx ], W=[w, ..., Wg],
we have
Y=X+oW.

In the Gaussian case, the rate is given by

det Ry
det Ry,

C = H(y) — H(y|x) = log,det (weRy) — log,det (weRy,) = log, ( ) , (5.142)

where Ry is the covariance of the output signal vector, and Ry, is the covariance of
the noise vector. According to (5.142), one can fully find the information transfer of the
system, by knowing only the eigenvalues of R, and Ry,. Unfortunately, the receiver has
only access to a limited number (samples) of N observations of the output vector Yy,
not the covariance matrix Ry. In other words, the system has access to only the sample
covariance matrix ﬁy, not the true covariance matrix Ry . Here, we define

K
. 1 1 1
R=—§ = —_YY! = — X+ W)X+ W),
Y Ki:lytyz K K( + )( + )

When x and w in (5.141) are both Gaussian vectors, we can write y as
y=R/z (5.143)

where z is an i.i.d. standard Gaussian vector. The problem falls, therefore, in the realm
of inference with a correlated Wishart model defined by

K L
- 1 1/2 1 1/2 1/29% 1/2
Ry =— > vy =Ry (Z Zz,.z{f> R)/> = R)/’R,R}”,
i=1 i=1
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where
| & 1
D _ H_ YoggH oz _
R, =~ Zz,zi = 22" L=z, .2,
i=1 ]

Example 5.24 (Power estimation [379])

Under the assumption of a large number of observations, the finite-dimensional inference
framework was not strictly required in the above two examples. The observations can,
instead, be stacked into a large matrix, where asymptotic results are more suitable. This
example illustrates a model, where it is unclear how to apply such a stacking strategy, thus,
making the finite-dimensional results more useful. In many multiuser MIMO applications,
one needs to determine the power of each user. Consider the system given by

y, =HP'’x, +ow,,i=1,2,..., K,

where H, P, s;, w; are, respectively, the N x M channel gain matrix, the M x M diagonal
power matrix due to the different distances from which the users transmit, the M x 1
vector of signals and the N x 1 vector representing the noise with variance o . In particular,
P,s;, w; are independent standard, complex, Gaussian matrices and vectors. We suppose
that we have K observations of the received signal vector y;, during which the channel

gain matrix H stays constant.
1 0
12 _
= (O 0.5 ) ’

Consider the 2 x 2 matrix

We can estimate the moments of the matrix P from the moments of the matrix YY#,
where Y = [y, ..., Ykl is the component observation matrix.

We assume that we have an increasing number of observations K of the matrix Y, and
perform an averaging over the estimated moments—we average across a number of block
fading channels. From the estimated moments of P, we can then estimate its eigenvalues.
When K increases, the prediction is close to the true eigenvalues of P. K = 1,200 was
considered in [379]. l
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6

Convex Optimization

Optimization refers to minimizing or maximizing the objective function by systematically
choosing the values of optimization variables from or within an allowed set defined by the
constraint functions. Many engineering problems can be effectively characterized in the
form of optimization. Thus, optimization theory is a powerful tool to solve engineering
problems. In order to map from engineering problem to optimization issue, objectives,
constraints, and variables should be extracted from the engineering problem and expressed
in a mathematical fashion. Objective can be the key performance metric we care about. In
wireless communication, objective can be capacity or throughput. For the radar system,
detection rate can be the design goal. For smart grid, the total cost for purchasing power
should be minimized. Constraints are the physical limits of the system or the performance
requirements. Variables can be the adjustable or controllable parameters in the system,
for example, weights, gains, power, and so on. Besides, optimality, feasibility, and sen-
sitivity should also be taken into account. Reasonable constraints should be set for the
optimization problem, and active constraints should be given more attention.
There are many categories of optimization formats:

Linear optimization and nonlinear optimization.

Discrete optimization and continuous optimization.
Deterministic optimization and stochastic programming.
Constrained optimization and unconstrained optimization.
Convex optimization and nonconvex optimization.

Convex optimization is a subfield of optimization theory, which studies the problem
of minimizing convex objective function based on a compact convex set. The strength
of convex optimization is if a local minimum exists, then it is a global minimum. Thus,
if the engineering problem can be formulated as convex optimization, then global opti-
mal solution can be obtained. That is one reason why convex optimization has recently
become popular.

The other reason for the popularity of convex optimization is that convex optimization
can be solved by cutting plane method, ellipsoid method, subgradient method, or interior

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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point method. Thereinto, interior point method is widely used. This method consists of
a self-concordant barrier function used to encode the convex set and reaches an optimal
solution by traversing the interior of the feasible region. The interior point method can
guarantee that the number of iterations is bounded by a polynomial in the dimension and
accuracy of the solution.

Convex optimization can be used in any engineering field. The popular topic in sensing
and image processing is compressive sensing (CS) which finds the sparse solution to the
underdetermined linear equations using the prior knowledge that the solution is sparse or
compressible. CS is formulated as minimizing the /; norm which is convex optimization.
Though the core of CS is optimization theory, CS can be still treated as a dedicated theory
because of its particularity and significance. Though the sparse signal reconstruction has
existed for at least four decades, this field has recently exploded, partially due to several
important results by David Donoho, Emmanuel Candes, Justin Romberg, and Terence
Tao. Besides, Lawrence Carin and his colleagues have built a new Bayesian framework
for solving the inverse problem of CS [384,385] and estimating a distribution for the
unknown parameters. CS has been used for radar imaging in [386]. In cognitive radar
network, though the data are huge, a sparse representation of data is still preferred. Thus,
we should explore the method to learn the optimal dictionary for data representation
[387]. Meanwhile, CS shows that physically sparse signal can be recovered from far
fewer samples than the signal dimension [387]. Hence we should also find the optimal
sensing matrix to project signals to the small amount of data with improving performance
of reconstruction accuracy. In this way, the amount of data or information needed for
radar signal processing can be greatly reduced. Furthermore, the overhead of cognitive
radar network can be reduced.

It is also worth noting that the contribution of convex optimization to machine learning
is significant. Learning the kernel matrix with SDP has been discussed in [388]. Learn-
ing multiresolution models with in-scale conditional covariance is formulated as convex
optimization in [389]. E. J. Candes and his colleagues discuss robust PCA and try to
decompose a data matrix into a low rank component and a sparse component by solving
a convex program called principal component pursuit (PCP). Thus, it is safely foreseeable
that convex optimization will play an important role in the function of cognition in the
near future.

The standard format of convex optimization problem is [8],

minimize

So(x)

subject to (6.1)
fm(-x) Scm,m: 1,2,...,M

where fy(x), fi(x), ..., fy(x) are all convex functions, which means,
Sn@x; + (1 —=0)xy) <0f,(x)+ A —=0)f,(x,),m=0,1,2,.... M (6.2)

for any 6 with 0 <6 < 1 and all x, as well as x, which lies in a convex set [8].

In the convex optimization problem (6.1), x is the optimization variable. x can be a
scaler, a vector or even a matrix. f;(x) is the objective function. f,,(x),m =1,2,..., M
are called constraint functions.
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In mathematics, a concave function is the negative of a convex function. A function
f(x) is concave over a convex set if and only if — f(x) is a convex function over the
same set. If we would like to maximize one concave function, we can minimize its
corresponding convex function.

The well-known convex functions or concave functions are listed as follows [8, 390].
The readers can refer to [8] for the definitions of notations.

f(x) = e is convex on R for any a € R.

f(x) =logx is concave on R, .

f(x)=x%isconvex on R, , ifa>1ora <0 and concave if 0 <a < 1.
Every norm on R" is convex.

f(x) =xlogx is convex on R .

f(x) = max{x,, x,, ..., xy} is convex on R".

f(x) =log(e™ +e*2 +---+ ™) is convex on RV,

. 1,
The geometric mean f(x) = (]_[,]:]:l x,) N is concave on Rﬁ .

2,
fx) = x7 is convex on R x R .

f(X) = logdetX is concave on S .

FX) = A, (X) is convex on X € SV where A
a matrix.

f(X) = trace (X™') is convex on X € S¥_.
£(X) = (detX)V is concave on SY..

If A is positive definite matrix A € CVN*V, £(X) = trace (XAX") is strictly convex.

max (X) means maximum eigenvalue of

6.1 Linear Programming

If the objective and constraint functions are all linear, the optimization problem is called
a linear programming. Linear programming is one kind of convex optimization problems.
A general linear programming has the form [8],

minimize

a’x+b

subject to (6.3)
Cx=d

Gx < h,

where x e RY, ae RY, Ce RM*V d e R, G € RV, and h € R,
A standard form linear programming is expressed as [8],

minimize

a’x+b

subject to (6.4)
Cx=d

x > 0,

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



238 Cognitive Radio Communications and Networking

where the only inequality constraints are component-wise nonnegativity constraints x > 0.
An inequality form linear programming is written as [8],
minimize
a’x+b
subject to
Gx < h,

(6.5)

where no equality constraints exist.

6.2 Quadratic Programming

If the linear objective function in linear programming are replaced by the convex quadratic
objective function, the corresponding optimization problem is called quadratic program-
ming which can be expressed as [8],

minimize

IXTPx+q'x+r

subject to (6.6)

Cx=d

Gx < h,

where P € S and q € R".

Furthermore, if the inequality constraints Gx < h in the quadratic programming (6.6) is
replaced by the convex quadratic constraints, the corresponding optimization problem is
called quadratically constrained quadratic programming (QCQP) which can be expressed
as [8],

minimize

IXTPox + qf x + 1

subject to (6.7)
Cx=d

%XTme—l—anX—i—rm <0m=1,2,.... M,

where P, € S¥ and q,, e RY,m =0,1,2,..., M.
The norm cone related to the norm || - || is the convex set which can be expressed
as [8],

C = {(x nllix|| < r} € RM. (6.8)

If [, norm is considered, the corresponding cone is called second-order cone, quadratic
cone, or ice-cream cone.
If the convex quadratic constraints in QCQP are replaced by the convex second-cone
constraints, the corresponding optimization problem is called SOCP [8] ,
minimize
alx
subject to (6.9)
Cx=d
IF,x+e,l, <qlx+r,, m=12 ... M,

where F,, € RN and e, e Rlm m = 1,2,..., M.
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6.3 Semidefinite Programming

If X € S¥, X is a positive-semidefinite matrix or nonnegative-definite matrix which means

u’Xu >0 (6.10)

for all u € RY. If X is a positive-semidefinite matrix, then all eigenvalues of X are
nonnegative and all diagonal entries in X are nonnegative.

SDP is a subfield of convex optimization. SDP tries to optimize a linear objective
function over the intersection of the cone of positive semidefinite matrices with an affine
space. SDP based signal processing is becoming more and more popular recently. It can
be applied to control theory, machine learning, statistics, circuit design, graph theory,
quantum mechnics [164], and so on. The reasons for this are

More and more practical problems can be formulated as SDP.

Many combinatorial and nonconvex optimization problems can be relaxed to SDP.
Most of the interior-point methods for linear programming have been generalized to
SDP [391].

The computational capability is increased greatly and SDP can be solved efficiently.

Hence, SDP serves as a core convex optimization format.
SDP has the form [8],
minimize
alx
subject to (6.11)
Cx=d

(2111\]:1 ann> +E =<0,

where F|, F,, ... Fy,E € SX.
Similar to linear programming, a standard form SDP is expressed as [8],
minimize
trace (AX)
subject to (6.12)
trace (F,X) =¢,, m=1,2,.... M
X >0,

where A, F|,F,,...,F,, € S" and a matrix nonnegativity constraint is imposed on the
variable X € SV.

6.4 Geometric Programming

Geometric programming is a class of optimization problems. The standard form of geo-
metric programming itself is nonlinear and nonconvex. However, geometric programming
can be easily transformed to convex optimization problem [8,392]. In this way, a global
optimum can be obtained.
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If a function is defined as,

ay _ap ay
h(x) =cx;'x," - xy', (6.13)
where ¢, x1,x,,...,xy € R, and a,, a,, ..., ay € R, this function is called a monomial

function, or simply, a monomial [8].
A sum of monomials is a posynomial function, or simply, a posynomial [8],

K
F&) =) cpx g, (6.14)
k=1
where ¢, €e R, and a,ay,...,ay, € R k=1,2,..., K.

A standard form of geometric programming has the form [8],

minimize
fo(X)
subject to
foX) <1lm=12,....M (6.15)
hx)=1,1=1,2,...,L
x > 0,
where fy. fi, f>, ..., f); are posynomials and A, h,, ..., h; are monomials.
Define,
vy, =logx,,n=1,2,...,N (6.16)
then,
x,=e",n=12,...,N. (6.17)
A monomial can be transformed to [8]
h(x) = cx)' x5 -+ xy
— C(eyl)al (eYZ)a2 . (e.‘)N)aN
— pV1artyzayynay+b
— A VD, (6.18)

where b = log c. The change of variables turns a monomial function into the exponential
of an affine function [8].
Similarly, a posynomial can be transformed to [§]

K
OED IRt (6.19)
k=1
where a, = (a,;, ay, ...,ay)! and b, =logc,, k=1,2,..., K.
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The geometric programming (6.15) can be expressed in terms of y € RV as [8],

minimize

Zfzol eagky+b0k

subject to (6.20)
S K et thnk < 1 m=1,2,.... M

Y =11=1,2,...,L,

where a,, e RY,m =0,1,2,...,Mand g e RV, [ =1,2,..., L.

Finally, we perform logarithm operation to the objective function and constraint func-
tions in the geometric programming (6.20) to get the convex form of geometric program-
ming [8],

minimize

Jow) = tog (42, et )

subject to (6.21)
7.y = log< Kn eﬂf’kﬁbmk) <Om=1,2....M
h,(y)=gly+p =0,1=1,2,...,L.

If the objective function and constraint functions in the geometric programming (6.21) are
all monomials, then the geometric programming (6.21) reduces to a linear programming.
Hence, geometric programming can be treated as an extension of linear programming [8].

Extensions of geometric programming are documented in [392] together with appli-
cations in communication systems. These applications include channel capacity, coding,
network resource allocation, network congestion control, and so on [392].

6.5 Lagrange Duality

In optimization theory, the duality theory states that optimization problems may be viewed
from either of two perspectives, the primal problem or the dual problem. No matter
whether the primal problem is convex or not, the dual problem is certainly concave.
Thus, the dual problem is easy to solve. The solution of the dual problem provides a
lower bound to the solution of the primal problem.

Mathematically speaking, if the primal problem, which is not necessarily convex, is
expressed as

minimize

Jo(x)

subject to (6.22)
fuX) <0m=1,....M

hx)=0,l=1,...,L

and its optimal value is

p* = fo(x), (6.23)
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then the corresponding dual problem is

maximize

g, v)
subject to (6.24)

A>0,
where g(A,v) is Lagrange dual function defined as [8]
g(A,v) =inf L(x, A,v)

M L
= inf (fo(X) Y A ®+ Y Uzhz(x)> (6.25)
=1

m=1

and x satisfies constraints in the primal problem (6.22).
Denote the optimal value of the dual problem by d*. Weak duality always holds for
convex and nonconvex problems,

d* < p” (6.26)
and strong duality usually holds for convex problems,

d* = p*. 6.27)

6.6 Optimization Algorithm

Two categories of algorithms, that is, deterministic algorithms and stochastic algorithms,
are widely used to solve optimization problems. For deterministic algorithms, interior
point methods are very popular recently.

6.6.1 Interior Point Methods

Interior point methods are a class of algorithms to solve linear and nonlinear convex opti-
mization problems. Ideally, any convex optimization problems can be solved by interior
point methods. The key element of these methods is to use a self-concordant barrier func-
tion to encode the convex set [393]. A barrier function is a continuous function whose
value on a point increases to infinity as the point approaches the boundary of the feasi-
ble region. Thus, interior point methods reach an optimal solution by going through the
interior of the feasible region.
The ideal barrier function should be [8],

0, u<0
I(u) = { 0. u>0. (6.28)
In reality, logarithmic barrier is used as an approximation,
1
I(u) = —7 log(—u), (6.29)

where ¢ > 0 and approximation improves as ¢ goes to infinity [8]. Meanwhile, logarithmic
barrier function is convex and twice continuously differentiable.
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6.6.2 Stochastic Methods

Stochastic methods or random search methods generate and use random variables to get
the solution to the optimization problem. Stochastic methods do not need to explore the
structures of objective functions and constraints, that is, derivative or gradient informa-
tion. Stochastic methods will be suitable for the nonconvex optimization problems or the
relatively large-scale high-dimension optimization problems. Stochastic methods cannot
guarantee the global optimum, but there are often no other choices.

Stochastic methods can include but are not limited to

simulated annealing;

stochastic hill climbing;

genetic algorithm;

ant colony optimization;

particle swarm optimization (PSO).

Therein, genetic algorithm, which is one kind of evolutionary algorithm techniques, has
been widely used for multiobjective optimization or multiobjective decision making. Take
PSO as an example [394]. Power allocation problem for time reversal with array gain in
MIMO UWB system is formulated as a nonconvex optimization issue. Even though the
first and second derivatives of the objective functions and constraints can be easily derived
[394], because the objective function is a nonlinear and nonconvex function, it is hard
to use deterministic algorithm to solve this optimization problem. PSO is applied [394].
PSO is a swarm intelligence based algorithm to find a solution to an optimization problem
[395]. There are many particles with a position and a velocity in the swarm. Particles
in a swarm communicate good positions to each other and adjust their own position and
velocity based on these good positions.

Suppose there are N particles. After K iterations, the algorithm is stopped. When the
k-th iteration begins, the position of particle i is Lf-‘_'. The velocity of particle i is V;‘_'.
The local best position of particle i is

Li=arg max C(L), (6.30)
{kal Lk*l}

ibest’ i
where C (L) is the utility function. The global best position is

Lk

gbest —

arg max C(L). (6.31)

k -
(LK o =12, V)

Then the velocity of particle i in the k-th iteration is

Vi=wx Vi 4 ¢ xrand x (Ljje — Li7) + ¢, x rand x (L — L7 (6.32)
and the new position of particle i is L¥ = L¥~' + V¥, In Equation (6.32) rand means
random value drawn from a uniform distribution on the unit interval; w is the inertia
weight; ¢, and ¢, are two positive constants, called the cognitive and social parameter
respectively.
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6.7 Robust Optimization

The optimization issue with uncertainty is becoming hotter and hotter in many research
fields, such as operation research, finance, industrial management, transportation schedul-
ing, wireless communication, smart grid, and so on, because most of the optimization
issues are from the dynamic complex system, and most of the variables in the optimiza-
tion issue cannot be deterministic or known for sure. There are two approaches to deal
with the optimization issue with uncertainty. One is robust optimization, and the other is
stochastic optimization. In robust optimization, the uncertainty model is deterministic and
set based [396]. However, in stochastic optimization, the uncertainty model is assumed to
be random [396]. Robust optimization, which is a conservative approach [397], can guar-
antee the performance for all the cases within the set based uncertainty. In other words,
robustness means the performance is stable with the bounded errors. However, stochas-
tic optimization can only guarantee the performance on average for the uncertainty with
known or partially known probability distribution [397] information. Thus, there is a
tradeoff between robustness and performance. Robust optimization will materialize by
waveform diversity.

Waveform diversity is a key research issue in the current wireless communication
system, the radar system, and the sensing or image system. Waveform should be designed
or optimized according to the different requirements or objectives of system performance
and should be adapted or diversified dynamically to the operating environment in order to
achieve a performance gain [398]. For example, the waveform should be designed to carry
more information to the receiver in terms of capacity. If the energy detector is employed
at the receiver, the waveform should be optimized such that the energy of the signal in
the integration window at the receiver should be maximized [399-401]. For navigation
and geolocation, the ultra short waveform should be used to increase the resolution. For
multi-target identification, the waveform should be designed so that the returns of radar
signals can bring more information back. In clutter dominant environment, maximizing
the target energy and minimizing the clutter energy should be considered simultaneously.

Multiple input single output (MISO) system is one kind of multi-antenna systems in
which there are multiple antennas at the transmitter and one antenna at the receiver.
MISO system can explore the spatial diversity and execute the transmitter beamforming
to focus energy on the desired direction or point and avoid interference to other radio
systems. It is well known that waveform and spatially diverse capabilities are made
possible today due to the advent of lightweight digital programming waveform generator
[402] or AWG. Waveform diversity can also be applied to the wideband system. Waveform
design or optimization for wideband multi-antenna system is documented in [403]. From
a theoretical point of view, the contribution of [403] can be summarized as follows.
The equivalent baseband waveforms are designed for the passband system. Different
waveforms for different transmitter antennas are jointly optimized to obtain the global
optimality. At the receiver, the received signals from different transmitter antennas will
be combined together over the air such that the receiver antenna will see only one copy of
the signal from the transmitter. In order to achieve this kind of over the air coherency for
the passband signals, all the individual oscillators should be tied together at the transmitter
[402] to make the carrier phase consistent.

In the context of cognitive radio, waveform design gives us flexibility to design radio,
which can coexist with other cognitive radios and primary radios. From cognitive radio’s
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point of view, spectral mask constraint at the transmitter and the interference cancella-
tion at the receiver should be seriously considered for waveform design or optimization,
in addition to the traditional communication objectives and constraints. Spectral mask
constraint is imposed on the transmitted waveform such that cognitive radio has lim-
ited or no interference to primary radio. At the same time, the interference cancellation
scheme is implemented at the receiver to cancel the interference from primary radio to
cognitive radio.

Though the thought of waveform diversity for the radar system can be traced back
to World War II, due to the computational capability and hardware limitation, a lot of
waveform design algorithms cannot be implemented into the radar system [398] for many
years. Nowadays, these bottlenecks are broken, and waveform diversity becomes a hotspot
afresh in the radar society. Time reversal or phase conjugating waveform, colored wave-
form, sparse and regular nonuniform Doppler waveform, noncircular waveform, and so on
are dealt with based on advanced mathematics tools in [404]. New trends in coded wave-
form design for radar applications are presented in [405]. The modern SDP and the novel
algorithm on Hermitian matrix rank one decomposition are exploited to perform code
selection which can maximize the detection performance and control the Doppler esti-
mation accuracy and the similarity with a prefixed radar code [405]. Meanwhile, another
force to propel the research on waveform diversity is the introduction of cognition to the
radar system, that is, cognitive radar which means the radar can actively learn about the
environment, and the whole radar system forms a dynamic closed feedback loop includ-
ing the transmitter, environment, and receiver [406]. Waveform diversity will play an
important role in cognitive radar. The radar transmitter can adjust its illumination of the
environment in an intelligent, effective, adaptive, and robust manner, taking into account
the results of learning and perception [406]. Thus, the philosophy of sequential testing
[407] can be embraced under the umbrella of cognitive radar smoothly. Several rounds
of illuminations will be used until the belief that the decision is correct is made. The
waveform and the transceiver scheme for each round can be adjustable according to the
results of the previous illuminations. For example, adaptive CS [384] gives us the hint to
this research field. Though the thought of waveform diversity for the radar system can be
traced back to World War II, due to the computational capability and hardware limitation,
a lot of waveform design algorithms cannot be implemented into the radar system [398]
for many years. Nowadays, these bottlenecks are broken, and waveform diversity becomes
a hotspot afresh in the radar society. Time reversal or phase conjugating waveform, col-
ored waveform, sparse and regular nonuniform Doppler waveform, noncircular waveform,
and so on are dealt with based on advanced mathematics tools in [404]. New trends in
coded waveform design for radar applications are presented in [405]. The modern SDP
and the novel algorithm on Hermitian matrix rank one decomposition are exploited to
perform code selection which can maximize the detection performance and control the
Doppler estimation accuracy and the similarity with a prefixed radar code [405]. Mean-
while, another force to propel the research on waveform diversity is the introduction of
cognition to the radar system, that is, cognitive radar which means the radar can actively
learn about the environment, and the whole radar system forms a dynamic closed feedback
loop including the transmitter, environment, and receiver [406]. Waveform diversity will
play an important role in cognitive radar. The radar transmitter can adjust its illumination
of the environment in an intelligent, effective, adaptive, and robust manner, taking into
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account the results of learning and perception [406]. Thus, the philosophy of sequential
testing [407] can be embraced under the umbrella of cognitive radar smoothly. Several
rounds of illuminations will be used until the belief that the decision is correct is made.
The waveform and the transceiver scheme for each round can be adjustable according
to the results of the previous illuminations. For example, adaptive CS [384] gives us the
hint to this research field.

The previous theoretical researches on waveform diversity do not take the robustness
into account. There are several reasons for this:

e The theory of robust optimization was not that mature in the old days.
e Robustness makes waveform diversity complex.
e The research on waveform diversity was only limited to computer simulation.

Nowadays, as the theory of robust optimization becomes mature and bottlenecks of
computation and implementation are broken, robust optimization for waveform diversity,
that is, robust waveform diversity, will bring more attention. Meanwhile, robustness is
the bridge between the theoretical work and the practical situation.

Robust optimization is the key mathematical tool for robust waveform diversity, which
gives the optimal waveform with robustness. Robust optimization is systematically intro-
duced in [396]. The most frequently used optimization formats within robust optimization
are robust linear programming [396, 408, 409], robust least squares [8,410], robust mean
square error (MSE) [411-417], and robust SDP [418,409]. If the optimization issues can
be formulated as robust linear programming, robust least squares, or robust MSE with
some specific uncertainty models, these optimization issues will be solvable and tractable.
For example, if the uncertainty model is the ellipsoidal uncertainty set, robust linear pro-
gramming becomes an SOCP and a robust SOCP becomes an SDP [419], which can be
efficiently solved via interior point methods. However, a robust SDP with the ellipsoidal
uncertainty set is NP-hard to solve [419]. Because SDP is harder than SOCP, and SOCP
is harder than linear programming taking the complexity of solving method into account,
robustness increases the difficulty of the optimization issue [419]. Robust least squares
with the finite uncertainty set, norm bound error, uncertainty ellipsoids, and norm bounded
error with linear structure are discussed in [8]. Meanwhile, the solution of robust least
squares where the coefficient matrices are unknown but bounded is also given in [410].
The worst case residual is minimized, and the corresponding optimization problem can
be formulated as SOCP. The work on robust MSE is done by [411-417] from classical
estimation’s point of view. Robust MSE can also be called minimax MSE. The core idea
of the competitive minimax approach [412] is to seek the linear estimator that minimizes
the worst case regret with the assumption that the covariance of parameter vector is sub-
ject to uncertainties. The minimax MSE estimator, the linear estimator that minimizes the
worst case MSE among all parameter vectors with bounded norm [414], can be found by
solving an SDP. Similarly, robust MSE with noise covariance uncertainty is dealt with
in [415]. Robust MSE is extended to a multisignal estimation issue in [416] where both
model and noise uncertainties are considered.

Transmitter power control can be treated as one kind of waveform diversity schemes.
Traditionally, power control or power allocation was implemented above the physical
layer as one kind of radio resource management issues. Power control can be imple-
mented in the physical layer. In this way, the period of power control loop will be greatly
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reduced. Different power control patterns will synthesize different transmitted waveforms
to meet different requirements. Robust transmitter power control is documented in [397].
OFDM modulation scheme is adopted in the physical layer. Every cognitive radio should
dynamically control the transmission powers for its own subcarriers in order to maximize
the total benefits. Thus, the objective of this optimization issue is the maximization of
total capacities of all cognitive radios, and the constraints consist of the individual power
constraints and interference constraints. Because there is no central node in cognitive
radio network, the feasible algorithm to solve this optimization issue should be imple-
mented in a decentralized manner. For the nonrobust version of optimization issue, the
classical iterative waterfilling can be used, and the convergence of the solution can be
guaranteed. However, the cognitive radio network has a dynamic nature [397] due to the
random mobility of cognitive radios and primary radios. Thus the noise plus interference
term includes two components: a nominal term and a perturbation term to form the robust
version of optimization issue. The price of the robustness is that a convex optimization
problem becomes a nonconvex optimization problem. Most of the algorithms for convex
optimization cannot be used. A new numerical technique to solve the nonconvex robust
optimization issue is proposed in [420]. Neighborhood searches and robust local moves
are applied iteratively to achieve the robust solutions [397]. Similar to transmitter power
control, transmitter beamforming can be thought of as another kind of waveform diversity
schemes. Robust transmitter beamforming in multiuser MISO cognitive radio networks
is considered in [421]. Channel state information in [421] is assumed to be imperfectly
known, and the imperfectness of channel state information is modeled using an Euclidean
ball shaped uncertainty set [421]. Specifically speaking, the objective is to design the
optimal beamforming weights for different cognitive radios with the least total transmit-
ted power at the central node while simultaneously the least possible received signal to
interference plus noise ratio (SINR) for each cognitive radio should be equal to or greater
than a threshold defined by the quality of service (QoS) requirement. The interference
for each primary radio should be equal to or less than a threshold to make primary radio
work properly. Robust transmitter beamforming with partial channel state information for
cognitive radio can also be seen in [422]. Because of the limitation of sounding system
and feedback system, robustness to partial channel state information, channel state infor-
mation error, or the limited feedback is very important to dealing with transmitter power
control and beamforming. Meanwhile, due to the perturbation of the radio environment
and the fading of the radio channel, how to deal with outdated channel state information is
still worth studying. Sometimes, without channel state information, the directional beam
for far field can still be formed at the transmitter using array manifold, steering vector,
or spatial signature.

Robust waveform diversity is applied to MIMO radar system in [423]. The design
criteria are mutual information and MMSE estimation for target identification and clas-
sification. Target PSD is assumed to lie in an uncertainty class of spectra bounded by
known upper and lower bounds [423]. With this kind of prior information, the designed
waveform can well match the target and bring back more information. The minimax
robust waveforms can bound the worst case performance at an acceptable level [423].
Optimal and robust waveform design for MIMO radars with the consideration of the sig-
nal dependent noise, that is, clutter, is studied in [424]. Robust waveforms to minimize
the estimation error of the worst case target realization are obtained [424].
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It has been widely accepted that waveform diversity is implemented at the transmitter.
But waveform diversity should have broader meaning and significance. First of all, any
type of signal processing in the waveform level at the receiver should also be included into
the waveform diversity framework. The most common signal processing is the receiver
beamforming including the narrowband beamforming and wideband beamforming. Robust
receiver beamforming is dealt with in [425,426]. The uncertainty comes from the mis-
match of steering vector and the estimation error of the sampled covariance matrix for
interference plus noise. The worse case performance of the minimum variance beam-
former or Capon beamformer is taken care of. SDP or SOCP can be exploited to solve
the corresponding robust optimization issues. Robust minimum variance beamformer with
probabilistic constraint is mentioned in [427], and the relationship between probability
constrained and worst case optimization is discussed. Robust least squares are applied to
antenna design in [409]. The optimal solution obtained from the nominal least squares
is completely unstable w.r.t. small implementation errors [409]. However, robust least
squares will bring stable results to combat the uncertainty. Robust wideband beamform-
ing is addressed and presented by [428]. Similarly, error from steering vector brings
instability to the system and inevitably degrades the beamformer’s performance [428].
Hybrid steepest descent method is proposed to find the unique minimizer of the cost
function over the feasible convex set [428].

6.8 Multiobjective Optimization

Practical optimization problems, especially the engineering design optimization problems,
seem to have a multi-objective nature much more frequently than a single objective one
[429]. For example, to form wideband beampattern with arbitrary shape, we need to
consider at least four objectives: main beam, sidelobe, nulling, and frequency invariant
property.

In terms of solution, the difference between the multiobjective optimization and the
single-objective optimization is the former has a set of Pareto-optimal solutions while the
latter has a single global optimum if such a solution exists. The term ‘“Pareto-optimal
solution” refers to a solution around which there is no way of improving any objective
without worsening at least one other objective [429]. The set of Pareto-optimal solutions
can be characterized by Pareto front—a hypersurface in the objective function space in
which the Pareto-optimal points are located [429].

How to get the solution for the multiobjective optimization is based on how the indi-
vidual objective should be weighted in relation to all others. Thus, four kinds of methods
can be applied in terms of preference [429,430]:

e A Priori Preference. We can specify the preferences before running the optimiza-
tion algorithm. Most likely, a single utility function is developed to combine all the
objectives.

e Progressive Preference. We can interact with the optimization algorithm and change
the preferences during the optimization process.

e A Posteriori Preference. No preferences is given before or during the optimization
process. We can choose the solution from a set of candidates provided by the optimiza-
tion algorithm.
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e No Preference. No preferences are needed in the whole process of the multiobjective
optimization.

If preferences are given beforehand, the weighted sum method is the simplest approach
and probably the most widely used classical method. This method transforms the multi-
objective optimization problem into a single objective one by multiplying each objective
with a predetermined weight and adding all the weighted objectives together. The solu-
tion to the single objective problem is Pareto-optimal if the weights are positive for all
objectives. However, the weighted sum method cannot guarantee that any Pareto-optimal
solution can be obtained using a positive weight vector. Meanwhile, if preferences are not
given beforehand, we have to find a set of candidate solutions as completely as possible.

For deterministic strategy, e-constraint method, weighted metric methods, rotated
weighted metric method, value function method, and so on can be exploited. Besides,
stochastic algorithms, especially evolutionary algorithms, seem to be more popular than
deterministic algorithms to solve the multiobjective optimization problem [430-433].
Convergence and diversity are two important issues for multiobjective evolutionary
algorithms [434]. An efficient evolutionary method to approximate the Pareto optimal set
in multiobjective optimization has been proposed in [435]. A relevant example is to use
strength Pareto evolutionary algorithm 2 to design simultaneous multimission waveforms
[436]. A genetic algorithm is also applied in [437] to obtain OFDM radar waveform for
target detection with consideration of error bound and Mahalanobis-Distance. Similarly,
in order to make algorithms scalable, parallel genetic algorithms [438] are worth using.

The performance optimization of cognitive radio or cognitive radio network itself is a
multi-objective optimization problem. First of all, multiple objectives exist from physical
layer to application layer in cognitive radio network [439]. Different layers may have
different performance metrics. Different applications may have different QoS require-
ments. Different users may have different subjective performance needs. Hence, multiple
objectives should be taken into account simultaneously. Meanwhile, the external radio
environment and internal network state determine the validity, feasibility, and sensitiv-
ity of objectives. Specifically speaking, bit error rate (BER) minimization, out-of-band
interference minimization, power consumption minimization, and overall throughput max-
imization have been achieved using a multiobjective fitness function in the framework of
distributed optimization [440, 441]. Genetic algorithm and its variants are widely exploited
[441-449]. Besides, PSO can also be used for spectrum allocation in cognitive radio net-
work with consideration of sum bandwidth reward and access fairness of secondary users
[450]. From the perspective of artificial intelligence, a case-based reasoning method using
the divide-and-conquer concept has been explored to generate solutions for problems with
multiple objectives in cognitive radio [451].

6.9 Optimization for Radio Resource Management

Radio resource management is the system-level control for the wireless communication
system [452—-457]. Generally, radio resource management tries to optimize the utilization
of various radio resources such that the performance of radio system can be improved.
Mathematical optimization, especially convex optimization, is the main tool supporting
radio resource management [458]. Meanwhile, radio resource management will be the
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basic function in cognitive radio [459]. Spectrum related management for spectrum sens-
ing spectrum access, spectrum sharing, and so on, will be the feature for cognitive radio
[460,461].

Radio resource management includes but is not limited to

power control [462-467];
frequency band allocation;

time slot allocation;

adaptive modulation and coding [468—-470];
rate control [471];

antenna selection [472-475];
scheduling [471,476-479];
handover [480-482];

admission control [483—-489];
congestion control [484,490-494];
load control [495];

routing plan [496—-498];

base station deployment.

The work about radio resource management can also be found in [499-507]. Capacity,
communication rate, spectrum efficiency, or capacity region is used frequently as per-
formance metric for radio resource management. Besides, MIMO related radio resource
management and OFDM related radio resource management will also be mentioned in
the following chapters.

6.10 Examples and Applications

The examples and applications will show the beauty and benefit of mathematical opti-
mization.

6.10.1 Spectral Efficiency for Multiple Input Multiple Output
Ultra-Wideband Communication System

It is assumed that there are N, transmitter antennas and N, receiver antennas in the system.
The channel transfer function is H(f) with bandwidth W = f; — f, where f,(>0) is
the starting frequency and f;(> 0) is the end frequency

Hy, (f) Hp(f) - Hyy, (f)
Hy (f)  Hyp(f) - Hyy,(f)

H(f) = , (6.33)

Hy (f) Hyo(f) - Hy ()
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where H,,, (f) is channel transfer function from the transmitter antenna » to the receiver
antenna m. Its corresponding channel impulse response is

Hy(t) Hy(t) ... Hpy (1) ]
H(1) = HZT(I) Hz?(t) N H”f’(t) (6.34)
Hy () Hya(t) - Hy (1)
The spectrum shaping filter at the transmitter side is
X X)) .o Xy () ]
X(r) = Xzf(t) Xz?(t) N X”f“'(t) (6.35)
Xy (1) Xpot) -+ Xy, 0) |
and its corresponding transfer function is
X (f) Xp(f) - Xy (f)
Xn(f) Xn(f) -+ Xon (f)
X(f) = : . . : (6.36)

X1 (F) XnalF) - Xy (f)

The input of the spectrum shaping filter is the transmitted signal vector a(¢). The entries
of a(r) are a,(t), a,(1), ..., and ay (1),

a (1)

a, (1)
a(r) = : , (6.37)

ay, (1)

all of which are independent white Gaussian random processes with zero mean and unit
PSD.
The transmitted signal at the transmitter array is

S@) =X(@) ®a(), (6.38)

where “®” denotes convolution operation and each entry of S(¢) is

Ny

S, =Y (X;()®a;1). i=1,2,....N,. (6.39)

J=1

Hence, the PSD of the transmitted signal at the transmitter array is

Rs(f) = X(NHX"(f). (6.40)
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The received signal at the receiver array is
R(t) = H(t) ® S(r) + N(2) (6.41)

where N(z) is AWGN the entries of which are independent random processes with zero
mean and one-sided PSD N,,.
If a one-sided situation is considered, then the transmitted power is

f
P = / l trace [Rg(f)]1df. (6.42)
fo

The equivalent ratio of the transmitted signal power to the received noise power (TX
SNR) is defined as

= r (6.43)
P=NW '
The spectral efficiency is [508]
c 1A H(/)Rg(HH"(f)
— = — I I | df, 6.44
W W/fo og, Ly, (f) + N, f (6.44)

where | o | represents the determinant of the matrix.
The methods for the design of spectrum shaping filter are

water filling;

constant power water filling;
time reversal;

channel inverse;

constant power spectral density;
MMSE.

6.10.1.1 Water Filling

It is well known that the spectral efficiency of water filling is greater than that of any

other spectrum shaping scheme. Let A, (f), i = 1,2, ..., N, denote the set of eigenvalues
of NoH ' (£)[H ' (£)]”. So SVD of NgH '(f)[H'(f)]? can be written as
NH™ ()T (HIT = U(f)diagir, (HIUT (), (6.45)
where diag(a), if a is a vector with n components, returns an n-by-n diagl?nal matrix
having a as its main diagonal. Because of the property of unitary matrix, w can
0
be expressed as
HY (HH(f) N
—5— = UHdiaghi; " (MU (). (6.46)
0
Then, Rq(f) can be given by
Ry (f) = U(f)diag{A,(HIU"(f), (6.47)
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where A;(f) = (u —x,(f )T, i =1,2,..., N, and (x)* = max[0, x]. Here, the constant
w is the water level chosen to satisfy the power constraint with equality

Ni f1
Z/ A, (f)df = P. (6.48)
i=1Yfo

So, the spectral efficiency % in this case is [509]

Nt

1 fi m +
— 1 _ df. 6.49
WZ/ﬁ) <°g2<x,-<f)>> f 049

i=l

6.10.1.2 Constant Power Water Filling

Constant power water filling is well studied in [510]. For water filling, the power alloca-
tion scheme is A;(f) = (u — 2, (fN)', i =1,2,..., N,. While for constant power water
filling, the power allocation scheme is

_ | pos A () =2
Ai(f)—{o,o i (F) = A,

How to get the optimal p, and A, is the key point of constant power water filling.
Similarly, the frequency band sets 2;,, i = 1,2, ..., N, are defined as

Q ={f 1) =Xy fo=f=fi) (6.51)

The measure of 2, is 6,, and

(6.50)

0=> 0. (6.52)

A should be selected to meet the condition that min{A; (f), f € @;,i =1,2,...,N,} + g
is equal to

max {,(f), f € Q,i=1,2,...,N,}. (6.53)

Meanwhile, p, = g.

6.10.1.3 Time Reversal
For time reversal, it follows that

X(f) = o«H"(f), (6.54)
where the constant « is the scale factor chosen to satisfy the power constraint with

equality,

f
P :/ 1 trace [Rg(f)]1df
fi

0

f1
=/ trace [X(/)XZ(f)1df
fi

0
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N1
=a2f trace [H (f)H(f)]df

fo

fi Neo M
=’ | 2.0 H(HIFdf. (6.55)

0 =1 j=1

Hence
P
o= v (6.56)
S 2 H (OIS
=1 j=
and
P H

X(f) = H (1), (6.57)

f No Ny
S H (NS

i=1j=1

The spectral efficiency % in this case is [509]

/i H H
. o [1+ pWH(QHN, (DHOBI D) 658
f i 22 2 Hy (HPdf
=1j=

6.10.1.4 Channel Inverse

For channel inverse, it follows that

X(f) = aHY (HIHGOBEY (HT, (6.59)

where the constant « is the scale factor chosen to satisfy the power constraint with
equality,

fi
P = / trace [Rs(f)] df
Ji

0

il

_ / trace [X(A)X? ()1 df
fi

0

fi
= o’ / trace [[H(/)H? ()17 '1df. (6.60)
fi

0
Hence

P
o =
\/ff{)l trace [[H(/)H? ()]-11df

(6.61)

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



Convex Optimization 255

and

P

) \/f 1 trace [[H (/)H" (/)]-'1df HY(HHHHTAHI. (6.62)
fo

X

The spectral efficiency % in this case is [509]

Cc w
= =N, log, [ 1+ — P . (6.63)
W ;! race [[H(HBY (HI-'1df
6.10.1.5 Constant Power Spectral Density
If power is equally allocated to each transmitter antenna, then
Ry(f) = ——1(f) (6.64)
ST wN, T '
The spectral efficiency % in this case is [509]
c 1 (N H(f)H"
€L [T og, 14 PHORTD e (6.65)
W W/ N,
6.10.1.6 Minimum Mean Square Error
For MMSE, it follows that
N,
X(f) = «H (HHHB(f) + 711 ! (6.66)

where the constant « is the scale factor chosen to satisfy the power constraint with
equality,

/i
P = / ] trace [Rg(f)]1df
fo

N1
= / trace [X(f)XH (Hldf. (6.67)
i

0

So « is equal to

P
Il HA (OB (f) + Z21=2R( )] df

(6.68)

Similarly, the spectral efficiency in this case can be calculated by Equation (6.40) and
Equation (6.44).
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6.10.2 Wideband Waveform Design for Single Input Single Output
Communication System with Noncoherent Receiver

OOK modulation is considered and the transmitted signal is

sy =) dip(t = jT,). (6.69)

j=—00

where 7, is the bit duration; p(t) is the transmitted bit waveform defined over [0, Tp];
and d; € {0, 1} is j-th transmitted bit. Without loss of generality, assume the minimal
propagation delay is equal to zero. The energy of p(z) is

Tp
/ pr(t)di =E,. (6.70)
0
The received noisy signal at the output of the receiver front-end is

r(t) = h(t) ® s(t) + n(r)

= Y dix(t—jT,) +n@), 6.71)

j=—00

where h(t), t € [0, T;,] is the multipath impulse response that takes into account the effects
of channel impulse response and the RF front-ends of the transceivers including antennas.
h(t) is available at the transmitter [511,512]. n(¢) is a low-pass additive zero mean
Gaussian noise with one-sided bandwidth W and one-sided PSD N,,. x(¢) is the received
noiseless bit-“1” waveform defined as

x(t) = h(1) ® p(1). (6.72)

We further assume that 7, > T}, + T,, = T,, that is, no existence of intersymbol inter-
ference (ISI).

An energy detector performs nonlinear square operation to r(¢) without any explicit
analog filter at the receiver. Then the integrator does the integration over a given inte-
gration window 7,. Corresponding to the time index k, the k-th decision statistic at the
output of the integrator is given by

kTp+Tro+Ty
7 = / r2(t) dt
k

Tp+Tro

kTp+Tro+Ty
= / (dpx(t — kT,) + n(1))*dt, (6.73)
kTp+Tro
where T, is the starting time of integration for each bit, and 0 < T}y < T, + 7T, < T, <
Tb-
An approximately equivalent SNR for the energy detector receiver, which provides the
same detection performance when applied to a coherent receiver, is given as [400]

2( 10t (24 dt>2

Tro

SNR,, = (6.74)

TO23T,WNG 4 Ny [ X2y dr
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For the best performance, the equivalent SNR SNR,, should be maximized. Define

Tro+T1
E, = / x2(t) dt. (6.75)
T,

10

For given T;, N,, and W, SNR_, is an increasing function of E;. So the maximization
of SNR,, in Equation (6.74) is equivalent to the maximization of E; in Equation (6.75).
The optimization problem to get the optimal waveform is shown as

maximize

Tro+Tr 2
Tro x=(t)dt

subject to
Jy? pA(1ydt = E,.

(6.76)

In order to solve the optimization problem (6.76), numerical approach is employed. In
other words, p(t), h(t), and x(¢) are uniformly sampled, and the optimization problem
(6.76) will be converted to its corresponding discrete time form. Assume the sampling
period is ;. T,/T, = N,. T;,/T, = N,,. T, /T, = N,. So N, = N, + N,,.

p(t), h(t), and x(¢) are represented by p,;,,i =0,1,..., NP, h;,i=0,1,...,N,, and
x;,i=0,1,..., N, respectively [400].

Define

p=1Ipop - py,1 (6.77)
and
x=[xox; -+ xy 1" (6.78)
Construct channel matrix Hy 1) v, +1)

h,_,0<i—j<N,
= i=j
(H),,, { 0, clse , (6.79)

where (e); j denotes the entry in the i-th row and j-th column of the matrix or vector.
Meanwhile, for vector, taking p as an example, (p), ; is equivalent to p, ;.
The matrix expression of Equation (6.72) is

x = Hp (6.80)
and the constraint in the optimization problem (6.76) can be expressed as
IPIRT, = E,,, (6.81)

where “|| e ||,” denotes the Euclidean norm of the vector. In order to make the whole
document consistent, we further assume

Ipli3 = 1. (6.82)
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Let T;/T, = N; and T;,/ T, = Ny,. The entries in x within integration window consti-
tute X, as,

X; = [Xn; Xnjor1 o xN,0+N,]T (6.83)
and E; in Equation (6.75) can be equivalently shown as
E, = |x,13T,. (6.84)

Simply dropping 7, in E; will not affect the optimization objective, so E; is redefined
as

E; = Ix,1l3. (6.85)
Similar to Equation (6.80), x, can be obtained by
x, = H,p. (6.86)

where (H,), ; = (H)Nmﬂj, andi=1,2,...,N,+laswellas j=1,2,...,N,+ L.
The optimization problem (6.76) can be represented by its discrete time form as,

maximize
E,;

subject to
Ipl3 = 1.

(6.87)

The optimal solution p* for the optimization problem (6.87) is the dominant eigenvector
in the following eigendecomposition [400]

H/H,p = Ap. (6.88)

Furthermore, E} will be obtained by Equation (6.85) and Equation (6.86).

6.10.2.1 Tradeoff between Energies Within and Outside Integration Window

In order to reduce ISI, the energies within and outside of integration window should be
considered simultaneously, which means there is a tradeoff between energies within and
outside integration window [401].

The entries in x outside of integration window constitute X; as

Xj =[x~ Xy, XnjgenNg41 7 xNx]T (6.89)
and the energy outside of integration window Ej can be expressed as
E; = [Ix;5- (6.90)
Similar to Equation (6.86), X; can be obtained by
x; = H;p, (6.91)

where (Hy), ; = (H), ; wheni =1, ..., Njg and (Hj);_(y,41); = (H); ; wheni = N, +
N, +2,...,N, laswellasj:l,Z,...,Np+l.
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In order to balance energies within and outside of integration window, the tradeoff
factor « is introduced. The range of « is from O to 1. How to choose o depends on the
performance requirement. Given «, the optimization problems is formulated as

maximize
aE, — (1 —a)E}
subject to
Ipll3 = 1.

(6.92)

The optimal solution p* for the optimization problem (6.92) is the dominant eigenvector
in the following eigendecomposition [401]

[«H]H, — (1 — «)H] H;j]p = Ap. (6.93)

6.10.2.2 Binary Waveform

If the transmitted waveform is constrained to the binary waveform because of the hardware

limitation or implementation simplicity, which means p;,i =0,1,..., Np is equal to
— \/IL—NP or \/ILNP , then the optimization problem is
maximize
E, 4
subject to (6.94)

1 .
[(P)m]z = m,l =0,1, ...,Np.

One suboptimal solution pj, to the optimization problem (6.94) is derived from the optimal
solution p* of the optimization problem (6.87). When p* is obtained, then

1
, (P =0
X _ V1N, "
Po)ii =13y _Y 1 ()i, < 0. (6.95)

J1+N,’

This simple method can lead to the optimal solution to the optimization problem (6.94)
when 7; — 0, which can be proved by Cauchy Schwarz inequality, but if 7, is greater
than zero, there is still an improvement potential to this suboptimal solution obtained from
Equation (6.95).

Define

P= ppT (6.96)

P should be a symmetric positive semidefinite matrix, that is, P >= 0, and rank of P
should be equal to 1. Reformulate E; as

E; =p"H/H,p
= trace (H] H,pp")
= trace (H/ H,P). (6.97)
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Rank constraint is nonconvex constraint, so after dropping it, the optimization problem
(6.94) is relaxed to

maximize

trace (H,TH P)
subject to 698)
P = ﬁ,i =0,1,...,N

P>=0.

p

The optimal solution P* of the optimization problem (6.98) can be obtained by using
CVX tool [513], and the value of the objective function in the optimization problem (6.98)
gives the upper bound of the optimal value in the optimization problem (6.94). Projecting

: : . 1 1 :
the dominant eigenvector of P* on T and T based on Equation (6.95), the

suboptimal solution pj, is achieved [514].
Finally, the designed binary waveform is [401]

p; =arg max p H H,p. (6.99)
PE(P};-P},)

6.10.2.3 Ternary Waveform

If the transmitted waveform is constrained to the ternary waveform, which means p;,i =
0,1,...,N » is equal to three levels, that is, —c, O or ¢, then the optimization problem is
expressed as

maximize
E;
subject to (6.100)
[(p)i,l]2 =c?or0,i =0,1,..., N,
Ipl3 = 1.
The optimization problem (6.100) is still NP-hard and can be approximately reformulated
as
maximize
E;
subject to
Cardinality(p) < k
1<k<N T 1
Ipllz =1

(6.101)

where Cardinality(p) denotes the number of nonzero entries of p, and cardinality constraint
is also a nonconvex constraint.

Because k is the integer number between 1 and N, + 1, the optimization problem
(6.101) can be decomposed into N, + 1 independent, and parallel subproblems and each
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subproblem is shown as

maximize

E,;

subject to (6.102)
Cardinality(p) < k

Ipliz =1

where k is equal to 1, 2, -+, or N, + 1.

Problem (6.102) can be solved in parallel, and then the solutions are combined to get
the solution of the original optimization problem (6.100). The definition in Equation (6.96)
is reused, and problem (6.102) can be converted to the following SDP by semidefinite
relaxation combined with [, heuristic [514].

maximize
trace (H} H,P)
subject to
trace (P) =1
a’|Pla<k
P>=0,

(6.103)

where a is the column vector with all ones and

Ipllz =p"p
= trace (pp”)
= trace (P). (6.104)
The CVX tool [513] is also operated to get the optimal solution P} of SDP (6.103).

From the dominant eigenvector p; of P; and the threshold py,. the solution for the
subproblem (6.102) can be achieved as

> (PRi1 > Penk
(p:kk)m = 0, |(pz),1| = Pk » (6.105)
—Cs (PO < Punk

where
Piny = arg ?;i§(Pfk)TH;H1PTk
]
subject to (6.106)
Cardinality(p,) < k
and
1
c = — . (6.107)
/Cardinality (pj,)
Finally, the designed ternary waveform is [401]
p; = arg max p"H'H,p. (6.108)

pe(p k=1,2,...Np+1}
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6.10.3 Wideband Waveform Design for Multiple Input Single Output
Cognitive Radio

MISO system is one kind of multiantenna systems in which there are multiple antennas
at the transmitter and one antenna at the receiver. MISO system can explore the spatial
diversity and execute the beamforming to focus energy on the desired direction or point
and avoid interference to other radio systems. It is well known that waveform and spatially
diverse capabilities are made possible today due to the advent of lightweight digital
programming waveform generator [402] or AWG.

6.10.3.1 Cauchy—Schwarz Inequality-Based Iterative Algorithm

There are N antennas at the transmitter, and one antenna at the receiver. OOK modulation
is used for transmission. The transmitted signal at the transmitter antenna 7 is

s, =Y d;p,(t = jT,). (6.109)

j=—00

where 7}, is the bit duration; p, (7) is the transmitted bit waveform defined over [0, 7] at
the transmitter antenna n; and d ;€ {0, 1} is j-th transmitted bit. The energy of transmitted
waveforms is

N T,
Zf prdf =E,. (6.110)
n=1 0

The received noisy signal at the output of LNA is

N
r6) =Y h,(t) ®s,(t) +n(t)

n=1

00 N
= > d;> x,(t = jT,) +n), (6.111)

j=—00 n=I1
where h, (1), t € [0, T,,] is the multipath impulse response. A, (¢) is available at the trans-
mitter [511,512]. fOT” h%(t)dt = E,,. n(t) is AWGN. x,(t) is the received noiseless
bit-“1” waveform defined as
x, ) =h,(1) ® p,). (6.112)

We further assume that 7), > 7}, + Tp = T, that is, no existence of ISI.
If the waveforms at different transmitter antennas are assumed to be synchronized, the
k-th decision statistic is

o0 N
rkTy, +10) = Y d; Y x,(kT, + 1ty — jT,) + n(t)

j=—00 n=I1

N
=dy Y x,(ty) +n(). (6.113)

n=1
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N
In order to maximize the system performance, ) x,(#,) should be maximized. The

n=1
optimization problem can be formulated as follows to get the optimal waveforms p, (¢).

maximize

N

Z Xn (tO)
n=1

subject to (6.114)
N

; fy7 pindt < E,
0<t,<T,.

An iterative method is proposed here to give the optimal solution to the optimization
problem (6.114). This method is a computationally efficient algorithm. For simplicity in
the following presentation, f, is assumed to be zero, which will not degrade the optimum
of the solution if such solution exists.

N
x(0) =) x, ). (6.115)
n=1

From inverse Fourier transform,

X (F) = hye ()P () (6.116)
and
N

X () =D by (NP (), (6.117)

n=1

where x,;(f), h,;(f), and p,,(f) are the frequency domain representations of x,(7),
h, (1), and p, (1), respectively. x(f) is frequency domain representation of x (7). Thus,

N
x(0) = > x,(0) and x,(0) = ffoooxnf(f)df.

n=1

If there is no spectral mask constraint, then according to the Cauchy—Schwarz
inequality,

N 0
=Y f oy PPy () df
n=1 Y~

N 1) o)
< lh, (O df |Pays (O df
;\//—oo / »[—oo /

N 1) N o)
= |2 mgnrdr [ [ igoeds
\n:l —o0 n=1Y "X
N
= |E,Y E, (6.118)
\ n=1
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264 Cognitive Radio Communications and Networking

where when p,(f) = ah, (f) for all f and n, two equalities are obtained. Hence,

E
o= P (6.119)

< .
; Jo I (OIS

In this case, p,(t) = ah,(—t), which means the optimal waveform p, () is the corre-
sponding time reversed multipath impulse response 4, (¢).

If there is spectral mask constraint, then the following optimization problem will become
complicated:

maximize
x(0)
subject to

N T

> fo" pa)dt <E,
n=1

|pnf(f)|2 S Cnf(f)s

where ¢, (f) represents the arbitrary spectral mask constraint at the transmitter antenna n.
Because p,(f) is the complex value, the phase and the modulus of p, .(f) should be
determined.
Meanwhile

(6.120)

x(0) :/ xp(f)df (6.121)

and .
X () = D (Pl pyp ()72l (D Faretons (1) (6.122)
n=I1

where the angular component of the complex value is arg(e).
For the real value signal x(7), x ,(f) is equal to the conjugate of x ,(— f). Hence,

N
xp(—f) = Z |1, (f)||pnf(f)|e—ﬂﬂ(arg(hnf(f))+arg(pnf<f))) (6.123)

n=1

and x((f) + x,(—f) is equal to

N
D N (O1ps ()] cos@r (arg(h, () + arg(p, () (6.124)

n=1

If h,;(f) and |p,;(f)| are given for all f and n, maximization of x(0) is equivalent
to

arg(h,;(f)) +arg(p,;(f)) =0, (6.125)

which means the angular component of p,,(f) is the negative angular component of
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Convex Optimization 265
The optimization problem (6.120) can be simplified as
maximize
N oo
3 IR
n=1Y ">
subject to (6.126)
N [o.¢]
Z[ Py (N)Pdf <E,
n=1"Y "%
1Py ()P < €, ().
[y (] = 1Ry (= (6.127)
|Pus (O = 1Ppp (= 1) (6.128)
|y (] = e (=) (6.129)

for all f and n. Thus uniformly discrete frequency points f, ..., f,, are considered in
the optimization problem (6.126). Meanwhile, f;, corresponds to the DC component, and

fis -+ f correspond to the positive frequency components.
Define column vectors hf, h, o th

hf = [h{f hgf e hIY;/f]T
(h, ). = 1y (fioDl i =1
nf/i \/§|h’lf(f‘l—l)|7l:27,M+1
Define column vectors pg, Py, - - Pyy
P, =1IPis P2 - Pasl
(P,); = { |pur(fiz)l i =1
v \/z|pnf(fi71)|vl.=2,...,M-|—1.

Define column vectors Cry Cpyvvns Cyf
T T T 1T
¢y =leiy e - eyl

(€,p)i = e, (fizDli=1
T 2le (fiDli =2, M+ 1

The discrete version of the optimization problem (6.126) is shown as

maximize

T
hjp,
subject to
Ilpsl; < E,
0= Py =c¢y.

(6.130)

(6.131)

(6.132)

(6.133)

(6.134)

(6.135)

(6.136)
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266 Cognitive Radio Communications and Networking

An iterative algorithm is shown as follows to give the optimal solution p’ to the
optimization problem (6.136) [2],

1. Initialization: P = E, and p7 is set to be the column vector with all zeros.
2. Solve the following optimization problem to get the optimal g’ using Cauchy-Schwarz
inequality:
maximize
h’q
SASf
subject to (6.137)
lasl; < P.

3. Find i, such that (q’})i is the maximal value in the set {(q?)j |(q?)j >(cp) ;) I {i} =0
then the method is terminated and p} := p} + q. Otherwise go to step 4.

4. Set (p}); = (¢p);-

5. P:=P— (cf)i2 and set (h,); to zero. If ||hf||§ is equal to zero, then the algorithm is
terminated; otherwise go to step 2.

When p’} is obtained for the optimization problem (6.136), from Equation (6.125),
Equation (6.132), and Equation (6.133), the optimal p,,(f) and the corresponding p, (1)
can be smoothly achieved.

6.10.3.2 SDP-Based Iterative Algorithm

The p,(t) and the h,(t) are uniformly sampled at Nyquist rate. Assume the sampling
period is 7. T,/T, = N, and N, is assumed to be even, 7,/T; = N). p,(¢) and h, (1)
are represented by p,;,i =0,1,..., Np and h,;,i =0,1,..., N, respectively.

Define

ni’

P, = [pnO Pn1 " pan]T (6138)

and

h, = [h,y, hyw,—1) - hol”- (6.139)

If N, = N,, then Z x,(t,) can be equivalent to Z hlp,. Define

n=1 n=1
p=Ip{ p; - pyl" (6.140)
and
=[h! hl ... ni1". (6.141)
Thus,
Zh p,=h"p. (6.142)
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Convex Optimization 267

Maximization of h” p is the same as maximization of (h”p)? as long as h”p is equal
to or greater than zero.

(h"p)*> = m"p)" (h'p)
=p'hh'p
= trace (hh pp?)
= trace (HP), (6.143)

where H = hh” and P = pp”. P should be rank one positive semidefinite matrix. How-
ever, rank constraint is nonconvex constraint, which will be omitted in the following
optimization problems. The optimization objective in the optimization problem (6.120)
can be reformulated as

maximize trace (HP). (6.144)
Meanwhile
Ipl; =p"p
= trace (pp’)
= trace (P). (6.145)

The energy constraint in the optimization problem (6.120) can be reformulated as
trace (P) < E,,. (6.146)

For cognitive radio, there is a spectral mask constraint for the transmitted waveform.
Based on the previous discussion, p,, is assumed to be the transmitted waveform, and F
is the discrete time Fourier transform operator. The frequency domain representation of

P, is
P, =Fp,. (6.147)

where p, is a complex value vector. If the i-th row of F is f;, then each complex value
in pg, can be represented by

N

@i =fp,.i=12,..., 7”+ 1. (6.148)
Define
H . Np
Fi:fifi,z=1,2,...,7+1. (6.149)

Given the spectral mask constraint in terms of power spectral density c¢, =

T
I:Cn]CnZ'”Cn%H] ’
2 2
[Pr)inl™ = If;p,|

:erL-Flpn
N
Scm-,i=1,2,...,7"+1. (6.150)
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268 Cognitive Radio Communications and Networking

Define selection matrix S, € RWp+D>xWNp+DN

[l =i+ N, + D -1
(Sn)i,j - { 0’ e[ise (6151)
p,=S,p (6.152)

and
|(pfn)i,1 |2 = pr{FiPn
=p'S,FS,p
= trace (S!'F,S,pp”)
= trace (S'F,S,P). (6.153)

The optimization problem (6.120) can be reformulated as SDP [515]:

maximize

trace (HP)

subject to

trace (P) < E, (6.154)
trace (S/ F;S,P) < c,;

i=12,.., %"

n=1,2,...N.

If the optimal solution P* to the optimization problem (6.154) is the rank one matrix,
then the optimal waveforms can be obtained from the dominant eigenvector of P*. Oth-
erwise, E,, in the optimization problem (6.154) should be decreased to get the rank one
optimal solution P* to satisfy all the other constraints.

An SDP based iterative algorithm is presented to get the rank one optimal solution P*
[515]:

1. Initialization of E .

2. Solve the optimization problem (6.154) and get the optimal solution P*.

3. If the ratio of dominant eigenvalue of P* to trace (P*) is less than 0.99, then set E,
to be trace (P*) and go to step 2; otherwise, the algorithm is terminated.

The optimal waveforms can be obtained from the dominant eigenvector of P* and
Equation (6.140).

6.10.4 Wideband Beamforming Design

Wideband beamforming is a hot research topic in both communication and radar society,
partly due to the advent of powerful real-time FPGA processing. The array working
with wide frequency band can operate in both spatial domain and frequency domain
simultaneously.

The architecture of wideband beamforming consists of LUT, high performance com-
puting engine, and a two-dimensional filter bank. Look-up table (LUT) is explored to
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Convex Optimization 269

remove the presteering delay component in the traditional wideband beamforming archi-
tecture. This component is hard to implement and manipulate either in the analog domain
or in the digital domain. If the presteering delay component is designed in the analog
domain, the unfixed delay line with the delay from subnanosecond to nanosecond should
be implemented. If the presteering delay component is designed in the digital domain,
fractional delay filter bank should be implemented [516]. In this novel architecture, the
data sampled by ADC from the impulse response of each RF chain with the consideration
of assumed angle of arrival will be stored in LUT. The impact of channel imbalances and
fractional delay will be taken care of in the general optimization issue. The coefficients
of the filter bank will be calculated in the high performance computing engine. Thus, this
architecture reduces the implementation burden at the cost of computational complexity.
However, the computational capability has grown much faster over the last few years and
the price of computation is lower than the implementation cost.

There are M antennas in the linear array. The distance between antennas is d. The
mutual coupling among antennas is not considered here. The system works with the central
frequency of f, and the bandwidth of B. The equivalent baseband complex response of RF
chain related to each antenna is given by h,,(¢),t € [0, T],m =0, 1,..., M — 1. Because
of the limitation of ADC, it is hard for us to obtain continuous time #4,,(¢). If the sampling
rate of ADCis 1/7; and 1/T, > 2B, the discrete time counterpart of 4, () is h,,[k] which
is measured for each RF chain

h, [kl =h, (kT,). (6.155)

In the calibration phase, LUT should be set up. First the interpolation is performed on
h,,[k] to get high sampling rate data to emulate %,,(t). Assume §(¢) is the signal in the
far field of the system and impinges on it from the angle #. The equivalent baseband
complex response of each RF chain after ADC is defined as h,, ,[k].

If the signal from far field reaches the first antenna at time 7, = M zl)d, then £, ()
will be extended to

md cos 6
hy () =0,1€|0, Ty + —— (6.156)
' C
md cos 6 md cos 6
h, o) =a,gh,t),t e |Ty+ —— T+ Ty + ——— (6.157)
C
md cos 6
h, o) =0,1€|T+T)+ T +27, |, (6.158)

where ¢ is the speed of light and a,, 4 is the response of antenna m to the angle 0.
Without loss of generality, Ao 1s assumed to be 1 here. Hence,

Ry oK) = h,, o (KT,) exp {—\/—_Iancw} ) (6.159)

Finally, h,, »[k] are saved in LUT for the following wideband beamforming.

If angles of arrival of interest are in the set Q, = {6,,6,,...,6,,,}, the output of
LUT will be h,, 4[k], 0 € ©,. The vector representation of h,, ,[k] is h, ,. F is the
discrete Fourier transform operator. Thus, the baseband response of each RF chain
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after ADC in the frequency domain is h;fqvﬁ =Fh,, ,. If the frequency points of interest

Q,=1{f1, f2 .-+, [y} correspond to the entries from index to index + J in h/

0o Where
index can be any reasonable integer value such that f; , — f; =~ B,

~f
(hm,9)111+1,1 = (hr];,e)index:indeerJ,l (6.160)

where (o), ., means the entries in the matrix from the a-th row to the b-th row and
from the c-th column to the d-th column.

After a two-dimensional filter bank, the array response is defined as B(f;, 6,), which
can be expressed as

M—-1N-1
~f
B(f;.0) =YY w,,(h,,); exp{—/—1n2nf,T,}, (6.161)
m=0 n=

where w,, , is the coefficient at the (n + 1)-th tap of the (m + 1)-th filter.

m,n
The array response can be reformulated as the vector representation as

B(f;,6) =s(f;,0)w, (6.162)
where w is the coefficient vector defined as
w=[wl wi .. wh 17 (6.163)
and
W, = (W0 Wy = Wy v 1" (6.164)

s(f~, 6,) is the M x N steering vector. Define 1 <i <M x N

_ =t (6.165)
m=| N ] .
and
n=i—-mxN—1. (6.166)
Each entry in s(f;, 6,) is
(5(f;. 6001 = (i, ) ;4 exp{—v/—1n2f, T,). (6.167)

The core task of wideband beamforming is to design coefficients w of a two-dimensional
filter bank such that the array response B(f;, 6,) aims at:

desired main lobe shape with consideration of magnitude and phase;
overall constrained side lobes;

nulling at given angles and frequency points;

frequency invariant property for the given angle rang and frequency range.
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The aforementioned approaches are only suitable for the simple shapes of wideband
beam patterns with the small number of optimization objectives and constraints. If the
shape of wideband beam pattern is complex or the size of optimization issue for wideband
beamforming is large, we need to resort to advanced signal processing scheme to perform
the general tasks of wideband beamforming. SDP based approach can be competent
for these general tasks. SDP is widely used in narrowband beamforming not only for
the radar system [517,518] but also for the communication system [421,519]. Several
papers [520,521] formulates the design of the two-dimensional filter bank for wideband
beamforming as SDP or second order cone programming (SOCP), which can be efficiently
solved by SeDuMi [522] or CVX [8,513].

Based on the architecture, we will present the general formulation of optimization issue
for wideband beamforming with the consideration of 4 mentioned tasks [523].

If the look direction is at the angle 6, , the desired main beam pattern at this angle
is P(f;,6,,), the optimization objective is to minimize the Euclidean distance between
P(f;, 910) and B(f;, 910) [523]

minimize Y [P(f;.6,) — B(f;.0,)I". (6.168)
1j€r

For each frequency point, we would like to constrain the total energy of array response
except the energy for the look direction [523]

> B, 6)P < e(f)
€29 -0, (6.169)

fj EQf,

where £(f;) is the energy threshold for each frequency point.
If there are nullings at frequency points in the set €2 Frulling and angles in the set €2,
then [523]

'nulling ’
IB(f;. 6D < €nutting(f- 0)

f.i € anulling
0, € @,

'nulling ’

(6.170)

where &,,jino (f;, 6)) is the nulling threshold for the frequency f; and the angle 6.
Assume the frequency invariant property is imposed on the frequency range Q2 , = and

the angle range €2, .. Similar to the concept of spatial variation [524], f,. € Q2 1s

chosen as the reference frequency point and the spatial variation should be bounded [523]

> IB(f5.0) = B(f. ) < &, 6.171)

Tj € fpp — fre 01€Q20pp

where ¢, is the threshold for spatial variation to keep the frequency invariant property.
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The general optimization issue for wideband beamforming by combining (6.168)
(6.169) (6.170) (6.171) can be presented as [523]

minimize

> 1P(f;.6,) — B(f;. 6,1
fi€Sy
subject to

> IB(f;,0)P < e(f))

016290y,

fieQy (6.172)
|B(f7, 0D < €nutting (£} 6)

f i€ anulling

0, € Qf’nulling

Z Z |B(f"91)_B(frevel)|2Sgsv-

T €2 fg — fre 01€Q0g1p
The optimization problem can be efficiently solved by CVX [8,513]. Because CVX
can only give the real value solution, in order to use CVX, B(f;, 6,) in Equation (6.161)
should be reformulated as

im(w)

B(f,.0) = [s(f,.6) ~=1s(f;, 0] [ re(w) ] : (6.173)

where re(e) gets the real part of complex value and im(e) gets the image part of complex
value. CVX will return the optimization solution as

[ re(w") } , (6.174)

im(w*)

if such a solution exists. Then the optimal coefficients for the two-dimensional filter bank
is

w* = re(w") + v—lim(w"). (6.175)

6.10.5 Layering as Optimization Decomposition for
Cognitive Radio Network

6.10.5.1 Background

We would like to design and assess innovative solutions to create cognitive cross-layer
wireless networking architectures and protocols to achieve automatic network resiliency
in contested RF spectrum.

Although, the highly advanced technologies, for example, MIMO, multiuser detection,
interference cancellation, noncontinuous OFDM (NC-OFDM), low-density parity-check
(LDPC) code, together with sophisticated radio resource management methods are
exploited in the modern wireless communication systems, for example, LTE, WiMAX,
and so on, to push the data rate to beat the fundamental limits, spectrum is still a scarce
radio resource. There are at least two reasons for this conclusion. One is most of the
spectra that can be reasonably used for wireless communication are rigidly allocated
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and licensed [525]. However, these licensed spectra are underutilized to make spectral
efficiency and utilization very low. The other reason is the spectrum is becoming
increasingly crowded by the ever-increasing number of users with their competing and
conflicting data rate requirements in some military and commercial wireless applications,
for example, Electronic Warfare, Central Business District in a big city, and so on.
Hence, the concept of cognitive radio was proposed and widely studied to address the
radio resource shortage issue. Basically, cognitive radio can be treated as one approach
of implementing DSA on software defined radio (SDR) platforms [525]. However,
cognitive radio is more than DSA. Traditionally, a cognitive radio user is the unlicensed
user or the secondary user without licensed spectrum. Cognitive radio users can only
access the spectrum when primary users do not use it. That means cognitive radio users
cannot interfere with primary users. Meanwhile, primary users have no obligation to
cooperate with cognitive radio users. All the burden is imposed on cognitive radio users.
Thus, cognitive radio should have the capability of self-awareness, observation, learning,
decision making, as well as DSA.

Cognitive radio only solves the point to point wireless communication issues to improve
spectrum efficiency and utilization. From an application’s point of view, cognitive radio
network from physical layer to application layer should be set up to perform different
application tasks. This is the complex and dynamic system. How to make this kind of
system work involves a lot of challenging issues. Because of the introduction of cognition
to wireless network, the design of architectures and protocols confronts unprecedented
difficulties. Cognition can undoubtedly bring benefits to the system. For example, overall
spectrum efficiency and utilization can be increased. However, cognition is a two-edged
sword. First, more functions are needed to support cognition. In the current stage, spec-
trum sensing, spectrum decision, spectrum sharing, and spectrum mobility [525] are at
least required. More functions will make the system more complex. Second, cognition
can lead to uncertainty. No matter how sophisticated cognition is, the capability of cog-
nition is finite. The output of cognition depends on several factors, for example, the
scheme of decision making, the method of machine learning, the input data as well as
their modeling. Any deviation of these factors or incomplete information will cause the
wrong decision which will make the performance of the system even worse than with-
out cognition capability. Thus, cognition should be carefully exploited. Third, cognition
demands more information to support the stable network operation, which means the
overhead of system will be inevitably increased. It can be foreseen that the protocols for
cognitive wireless network will be more substantial than those in any traditional wireless
network. Meanwhile, the acquisition and delivery of such information may lead to sig-
nificant and uncontrollable delay, which will be very harmful for network operations and
some real-time applications.

The basic network model is the OSI model [526] shown in Figure 6.1. The OSI model
divides a communication system into smaller parts called layers. Each layer performs a
different set of similar functions to provide services to the upper layer and receive services
from the lower layer. The basic functions of each layer are also shown in Figure 6.1.
The idea of the OSI model is simple but it works very well. The design of each layer
can be independent from all the others, which breaks the complex problem into small
manageable pieces. Meanwhile, the functions in each layer can be modified and upgraded
in a decoupled fashion as long as the service interface is maintained. Thus, information

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



274 Cognitive Radio Communications and Networking
7. Application Applications for different services
6. Presentation Data representation, encryption, decryption
Host
Layers
5. Session Interhost communication

End-to-end connection, flow control,

4. Transport congestion control, TCP/UDP protocol

3. Network Routing, IP protocol

Media 2. Data Link

Layers (LLC/MAC) Power control, scheduling, addressing

Coding, modulation, array signal processing,

1. Physical binary transmission

Figure 6.1 OSI model [526].

hiding, decoupling change, implementation and specification separation can be achieved
in the OSI model.

The virtually strict boundaries between layers in an OSI model make the design of net-
works not globally optimal. Toward the goal of global optimum in the context of network
design, cross-layer optimization was proposed and has recently become one of the pop-
ular approaches to design and optimize the network architecture [527]. Based on an OSI
model, cross-layer optimization treats the system as a whole and designs the functions
in different layers jointly. More information will be exchanged between layers, and more
dependencies among layers will be taken into account. In order to implement cross-layer
optimization, a cross-layer optimization engine should be added into the OSI model to
perform design and optimization centrally. The inputs of the cross-layer optimization can
be internal or external parameters of the network, for example, channel state information,
traffic information, internal buffer information, and so on. The engine is responsible for
determining a set of internal operating parameters and functionalities for different layers
based on the inputs and design objectives. The overall objectives of cross-layer optimiza-
tion are to improve application performance, to increase user satisfaction, and to enhance
efficiency of network utilization. Some simple cross-layer optimization techniques have
already been deployed in the current advanced wireless networking system. Take the 3G
network as an example. Power control is used to increase the throughput and minimize the
interference. Hybrid automatic repeat request (HARQ) is exploited to make link condition
stable. Orthogonal frequency-division multiple access (OFDMA) is a promising multiple
access technique to allocate different subcarriers to different users.

Cross-layer optimization opens a wide space for the network design and optimization,
but the full cross-layer optimization from physical layer through application layer is still
unfeasible for implementation at the current stage. It is impossible to build a network
with fully central control and design for global optimality. Thus, there is a contradiction
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between network design and network implementation. How can this dilemma be bypassed?
Some research pioneers Mung Chiang, Steven H. Low, A. Robert Calderbank, and John
C. Doyle gave a mathematical theory of network architectures, that is, layering as opti-
mization decomposition [528]. This theoretical framework will be the analytic foundation
of the work for the design of architectures and protocols for cognitive cross-layer wire-
less networking system. Network Utility Maximization (NUM) is exploited as the design
objective in a globally optimal fashion. While for network implementation, layering as
optimization decomposition is explored to decompose the master problem into several
subproblems. Different subproblems correspond to different layers. Different decomposi-
tion schemes determine different layering architectures. The basic difference between the
traditional OSI model and layering as optimization decomposition is that the separation of
the whole network system in the OSI model is based on experiences and human intuition
while the decomposition for the latter has the solid background of mathematical theory.
Meanwhile, optimization decomposition will also lead to the distributed and modularized
algorithm which can be implemented in disparate network nodes. The distributed algo-
rithms rely on the local information to perform the tasks. In this way, the overhead of
system can be greatly reduced.

6.10.5.2 Design Philosophy

Currently, there is no general approach to cross-layer design for wireless network. From
a theoretical point of view, layering as optimization decomposition [528] is one of the
general and analytic methodologies for network design. It uses common mathematical
language for thinking, deriving, and comparing. Two key concepts behind it are network
as an optimizer and layering as decomposition [528]. In this mathematical framework,
network architecture relates to the decomposition scheme of the global optimization
problem and answers the questions of how to or how not to determine different layers
[528]. There are two main decompositions, that is, vertical decomposition and horizontal
decomposition [528].

Vertical decomposition maps an optimization problem into several subproblems which
correspond to different layers. Different functionalities are allocated to different layers to
solve these subproblems. Functions of primal or dual variables coordinating subproblems
will be treated as the interfaces among layers [528]. For example, cross-layer congestion
control, routing, and scheduling design in ad hoc wireless networks have been studied
in [529]. Jointly optimal congestion control and power control are explored to balance
transport layer and physical layer in wireless multihop networks [491].

Horizontal decomposition is executed within one functionality and decomposes central
computation into distributed computation over geographically different network nodes
[528]. For example, congestion control protocols can be modeled as distributed algorithms
for NUM [490, 530, 531]. The contention resolution algorithm in backoff based random
access wireless media access control (MAC) protocols is implicitly participating in a
noncooperative game [532], which is a distributed and selfish action.

Vertical decomposition across the layers and horizontal decomposition across the net-
work nodes can be conducted together to decompose the optimization problem system-
atically [528]. Meanwhile, decomposition structures are not limited to aforementioned
vertical decomposition and horizontal decomposition. Partial decomposition, multilevel
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Master Problem Master Problem

Resources Prices

Subproblem 1 Subproblem N Subproblem 1 Subproblem N

Primal Decomposition Dual Decomposition

Master Problem

Subproblem 1 Subproblem N

Subproblem 11 Subproblem 1N

Multilevel Decomposition

Figure 6.2 Basic decomposition schemes [533].

decomposition, and their versatile combinations can lead to many alternative decomposi-
tions [533]. These alternative decompositions can be exploited as a way to obtain different
novel network architectures [533]. Figure 6.2 shows the basic decomposition schemes
[533]. The original master problem is decomposed into several solvable subproblems
which are coordinated through some kind of signaling [533]. For primal decomposi-
tion, the master problem properly allocates the available resources to each subproblem.
Resource is the signaling between master problem and subproblems [533]. In dual decom-
position, the master problem uses the price set for resource as the control signaling and
subproblems should determine the amount of resources they would like to use based on
price [533]. In multilevel decomposition, primal decomposition or dual decomposition will
be used repeatedly to divide the master problem into smaller and smaller subproblems.
These subproblems can be solved in different layers or in different network nodes.

6.10.5.3 Cognitive Capability

Cognition is the key capability and foundation of cognitive cross-layer wireless network-
ing system, which differentiates cognitive network from the traditional wireless networks.
According to the Oxford English Dictionary, cognition is knowing, perceiving, or conceiv-
ing as an act [406]. Cognitive network is far more than cognitive radio which only covers
layer one and layer two. In a cognitive network, all layers in all network nodes should
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Knowledge
Representation and
Reasoning

Cognitive Network
Monitoring

Figure 6.3 Abstract architecture of cognitive capability.

have the capability of cognition. However, different layers or different nodes may have
different levels of cognition. The upper layer should be more intelligent than the lower
layer. Take spectrum usage as an example: spectrum sensing, spectrum decision, spec-
trum mobility, and spectrum sharing are the basic functions corresponding to cognition.
Spectrum sensing is implemented in physical layer. Spectrum sensing obtains information
of radio environment and provides it to the upper layer. The upper layer will make the
decision which spectrum can be used for transmission. Spectrum mobility means cognitive
radio users can move away from the licensed spectrum once the primary user occupies
this spectrum again. If multiple cognitive radio users compete for the limited available
spectrum, a spectrum sharing scheme should be set up to coordinate different users and
different requirements.

Cognitive cross-layer wireless networking system is a highly dynamic system. Network
topology, user behavior, and radio environment are rapidly changing. Cognition is an
imperative capability for the networking system to work adaptively and intelligently. For
example, if link stability is not maintained in harsh and dynamic RF environments or links
are determined unsuitable for the following communication requirement, routing selection
should be performed with consideration of spectrum occupancy, network topology, and
user demand.

The abstract architecture of cognitive capability of a cognitive cross-layer wireless net-
working system is shown in Figure 6.3. There are three main modules to support cognition:
cognitive network management, cognitive network monitoring, as well as knowledge
representation and reasoning. Cognitive network management is the brain of cognitive
cross-layer wireless networking system to determine network behavior intelligently. Net-
work management refers to the activities, methods, procedures, and tools that relate to
the operation, administration, maintenance, and provisioning of networking systems. Thus,
the basic functions of cognitive network management are shown in Figure 6.4.

Cognitive network monitoring is to monitor the internal and external network data
under the control of cognitive network management. These data can be spectrum sensing
results, traffic information, buffer state information, channel state information, quality
of connectivity, and so on. Recently, network tomography [534,535] has been proposed
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Figure 6.4 The basic functions of cognitive network management.

to extract a network’s internal characteristics using information derived from end point
data. Originally, tomography is imaging by sections or sectioning, through the use of
waves of energy, which is widely used in medical imaging, for example, Computerized
Tomography. Network monitoring and inference have a strong resemblance to tomography
[535] because the internal characteristics of an objective cannot be observed directly
but can be inferred from external observations. In the current literature, two issues of
network tomography have been addressed. One is link level parameter estimation from
end-to-end path level traffic measurements [535]. The other is path level traffic intensity
estimation based on link level traffic measurements [535]. The measurements of network
tomography may be passive or active. Passive measurement will monitor the existing
traffic flows. However, the temporal and spatial structure of the traffic process may make
the measurement sample biased [535]. Active measurement will generate probe traffic into
the network. If so, the probe traffic should not distort the network state for the existing
traffic [535].
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Knowledge representation and reasoning is to represent knowledge in a manner that
facilitates inferencing from knowledge. Cognitive network can be treated as a wireless
communication network augmented by this kind of knowledge plane that can span verti-
cally over layers and horizontally across nodes [536]. There are at least two categories of
functionalities in knowledge representation and reasoning. One is a representation of rel-
evant knowledge. The other is a cognition loop using artificial intelligence, for example,
machine learning technique. Besides, prediction is also the main function. Prediction
results are very important information for cognitive network management to make the
decision beforehand and to tackle the possible situations in the future. In this way, the
operation of the networking system will be smooth and stable.

6.10.5.4 Potential Architectures

The key design of layering as optimization decomposition is that versatile network archi-
tectures can be rigorously obtained from the decomposition of an underlying cross-layer
optimization problem [533].

Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc net-
works have been studied in [537]. The main contribution in [537] is that a distributed
and localized algorithm was derived for joint dynamic routing and spectrum allocation
called ROSA for multihop cognitive radio networks. The cross-layer ROSA algorithm
aims to maximize throughput through opportunistic routing, dynamic spectrum alloca-
tion, scheduling, and power control in a distributed fashion from transport layer to MAC
layer. It is a good example to explore optimization decomposition for the network design.

Based on design philosophy and cognitive requirement, several network architectures
will be presented using multilevel decomposition. As mentioned before, NUM is widely
used as a design objective. QoS will be measured as NUM which implicitly covers many
network performance metrics, for example, capacity, latency, security, stability, and so
on. The cross-layer optimization issue is to maximize the sum of QoSs for different appli-
cations in the cognitive wireless networking system. Different applications or different
services may have different weights in the design objective. This is the case in the con-
text of multiobjective optimization. In the cognitive wireless networking system, there are
many restrictions and limitations for the network operation, which will be formulated as
the constraints in the optimization issue. These constraints at least include:

network carrying capacity;

limited power and limited computing capability in each network node;
different spectral availabilities in different locations and at different times;
interference tolerance;

no interference to primary user;

queue and buffer limitation.

Cognitive capability, for example, monitoring and inference, will be integrated into
the cross-layer optimization issue. Because of the uncertainty introduced by cognition,
the idea from robust optimization should be explored. Meanwhile, the overhead used
for cognition will be formulated as the constraints for the cross-layer optimization issue.
There are several potential architectures:
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e Layered and distributed architecture. Vertical decomposition is performed to the
cross-layer optimization issue first. Different functionalities are allocated to differ-
ent layers to solve the optimization issue jointly. In transport layer, traffic control
including congestion control and flow control are executed. Multipath routing and
dynamic routing selection are exploited in network layer. Here, multipath routing can
improve the robustness of data delivery in the dense deployment of network nodes
[538]. Sophisticated scheduling, power control, and DSA are implemented in MAC
layer for heterogeneous traffic. After vertical decomposition, horizontal decomposition
will be carried out for each layer, respectively. Then, the same functionality will be
distributed to the different network nodes.

e Distributed and layered architecture. The cross-layer optimization issue is divided
into several subproblems by horizontal decomposition. Different subproblems will be
solved by different network nodes. And then the task for each network node can be
partitioned by vertical decomposition. There is an essential difference between the first
architecture and the second architecture, because the first level decomposition plays a
more important role for network architecture than the second level decomposition.

e Hybrid architecture. The cross-layer optimization issue will be decomposed com-
pletely by multilevel decomposition. Several different indecomposable subproblems
will be assigned to one network node. The rule of assignment is that different nodes
can share less information and use less coordination to solve these subproblems. This
architecture breaks the standard layered architecture. Each node should have the capa-
bility of recomposing its functionalities flexibly and dynamically. Hybrid architecture
is fully adaptive in the function level. Thus, in some situations, some nodes may have
the light burden, and others may have heavy duty. Meanwhile, some nodes can even
hibernate without any tasks for power saving. For dynamic routing selection in wire-
less sensor network, battery is the key issue for the sensor’s life time. The sensor with
less energy cannot be chosen as the next hop in the routing path even if the radio
environment around this sensor is very suitable for wireless communication.

e Cluster based architecture. The cross-layer optimization issue is divided into several
subproblems by horizontal decomposition. Different subproblems will be solved by
different clusters in the wireless networking system. The cluster consists of a cluster
head and several nodes around the cluster head. The cluster head is more powerful
than any other node in the cluster. The cluster head is responsible for exchanging
control information among different clusters and supervising other nodes in the cluster.
Thus, the first level subproblem obtained by horizontal decomposition can be further
partitioned. More functionalities will be allocated to the cluster head. The rest will be
distributed to other nodes based on node capability and radio environment. The cluster
based architecture is a good scheme to balance the central control and the distributed
implementation.

e Mobility based architecture. The key point of this architecture is that the node, for
example, unmanned aerial vehicle (UAV), has the mobile capability. The node can at
least search for the available spectrum in different locations intelligently. The move-
ment of nodes can change the existing network topology. However, this change is
still under some level of control. Mobility based architecture can undoubtedly achieve
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autonomous network resiliency in the contested RF spectra. If the relay node is out of
the communication range or there is no available spectrum for the relay node to use,
this node can intelligently change its location to maintain the connectivity of wireless
communication.

6.10.5.5 Physical Layer Consideration

In order to support the potential cognitive cross-layer wireless networking architectures
and protocols, NC-OFDM will be exploited as the basic physical layer transmission tech-
nique. NC-OFDM is a noncontiguous version of OFDM with some unused subcarriers.
OFDM is a highly recognized signal waveform for the current advanced wireless com-
munication system, for example, 3G network, WiFi, WiMAX, and so on. DSA as well as
OFDMA can be implemented based on NC-OFDM. Cognitive radio users can easily turn
off some subcarriers which a primary user occupies and use other available subcarriers
to transmit data.

How to efficiently implement NC-OFDM transceiver will be studied. At the transmitter,
an FFT pruning algorithm and spectral shaping technique should be used to generate arbi-
trary NC-OFDM signaling. Because channel state information, primary user occupancy,
and throughput requirement for cognitive radio users vary over time, an FFT pruning
algorithm should be able to design an efficient FFT implementation every time condi-
tions change [539]. Besides, PAPR issue should be taken into account in synthesizing
NC-OFDM signaling from implementation consideration.

The other challenge for NC-OFDM transceiver is the synchronization at the receiver,
especially for blind synchronization [540]. It is hard for cognitive radio to set up a dedi-
cated control channel between the transmitter and the receiver. If the transmitter changes
subcarriers to be used for data transmission, the receiver should have a way to detect
or track this change, and jump to the correct subcarriers for receiving data without any
control information aided from the transmitter. Meanwhile, due to the presence of the
primary user, time domain correlation fails [540], even if the predetermined preamble is
used. Thus, for blind synchronization, spectrum detection should be performed to find
a new transmission first [540]. And then, the preamble is learned from those subcarri-
ers for the new transmission. The regenerated preamble will be exploited to correlate
with the following incoming signal [540]. Cognitive radio has no licensed spectrum. The
reliable transmission between transceiver should be built as quickly as possible if some
parts of spectra are available. Thus, it is worthwhile to implement a fast and effective
synchronization scheme even at the cost of computational and implementation complexity.

MIMO will be also exploited in physical layer. MIMO technique or array signal
processing can bring array gain, spatial diversity gain, and spatial multiplexing gain.
Interference alignment [541] has been performed based on MIMO to explore degree of
freedom in the spatial domain. Meanwhile, widely studied beamforming technique can be
used together with routing selection and scheduling to improve spatial reuse [542]. Direc-
tional beam patterns can increase the communication range and reduce the interference to
other directions.
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6.11 Summary

In this chapter, optimization theory, especially convex optimization has been presented.
Convex optimization is a powerful signal processing tool which can be exploited any-
where, for example, system control, machine learning, operation research, management,
and so on. Linear programming, quadratic programming, geometric programming,
Lagrange duality, optimization algorithm, robust optimization, and multiobjective
optimization have been covered. This chapter can give readers the whole picture of
optimization theory. Some examples have been shown in this chapter to help readers to
understand how to use convex optimization to solve engineering problems or improve the
system performances. If the engineering problems can be formulated as convex optimiza-
tion problems, these problems will be solved without doubt. In cognitive radio network,
optimization theory can be widely used for spectrum sensing [543, 544], cross-layer
design, resource allocation, sensing disruption from adversary [545], and so on.
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Machine Learning

Artificial intelligence [546—554] aims at making intelligent machines where an intelligent
machine or agent is a system that perceives its environment and takes actions to maximize
its own utility. The central problems in artificial intelligence include deduction, reasoning
[555], problem solving, knowledge representation, learning, and so on.

In order to understand how the brain learns and how the computer or system achieves
intelligent behavior, the interdisciplinary study of neuroscience, computer science, cog-
nitive psychology, mathematics, and statistics gives a new research direction of artificial
intelligence, called computational neuroscience research. Computational neuroscience tries
to build artificial systems and mathematical models to explore the computational prin-
ciples for perception, cognition, memory, and motion. More related information can be
found in Computational Neuroscience Research at Carnegie Mellon University. Leonid
Perlovsky, who won the John McLucas Award in 2007, the highest US Air Force Award
for science, uses knowledge instinct and dynamic logic to express and model the brain
mechanisms of perception and cognition [556]. Especially, dynamic logic is a mathemat-
ical description of the knowledge instinct which describes mathematically a fundamental
mind mechanism of interactions between bottom-up signals and top-down signals as a
process of adaptation from vague to crisp concepts [557]. Besides, bionics also motivates
the study of artificial intelligence and extend its capability. Bionics tries to build artificial
systems based on the biological methods and systems found in nature.

Machine learning [547,558-563] is the main branch of artificial intelligence which
deals with the design and development of algorithms that allow the machine or computer
to evolve behaviors based on example data or past experience. Machine learning algo-
rithms can be organized into different categories: unsupervised learning, semi-supervised
learning, supervised learning, transductive inference, active learning, transfer learning,
reinforcement learning, and so on.

There are two basic models for machine learning. One is generative model [564] and
the other is discriminative model [565]. A generative model can generate observable data
given some hidden parameters. Examples of generative models include Gaussian mixture
model, hidden Markov model, naive Bayes, Bayesian networks, Markov random fields,
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and so on. Hence, a generative model is a full probabilistic model of all variables and
models the underlying process of how the data is generated [566]. A discriminative model
only provides the dependence of the target variables on the observed variables which can
be done directly by posterior probabilities or conditional probabilities. Hence, discrimina-
tive model can focus computational resources on given task and give better performance.
However, a discriminative model looks like a black box and lacks explanatory power
of the generative model. Examples of discriminative models include logistic regression,
linear discriminant analysis, support vector machine, boosting, conditional random fields,
linear regression, neural networks, and so on.

Artificial intelligence as well as machine learning can be generally applied to many
different areas, for example, cognitive radio, cognitive radar, smart grid, computational
transportation, data mining, robotics, web search engine, human computer interaction,
manufacturing, bioengineering, and so on.

e Cognitive Radio and Network. Cognitive radio is a brand new concept for the wireless
communication system. The idea of cognitive radio was first presented by Joseph Mitola
IIT in a seminar at KTH, The Royal Institute of Technology, in 1998, and published
later in an article [567] by Mitola and Gerald Q. Maguire, Jr in 1999. Software radio
provides an ideal platform for the realization of cognitive radio [567], and cognitive
radio makes software radio smart. Later Simon Haykin gave a review of cognitive
radio and treated it as brain-empowered wireless communications [568]. The goal is
to improve the utilization of a precious natural resource: the radio electromagnetic
spectrum [568].

Cognitive radio can be treated as one approach of implementing DSA on SDR
platforms [525]. However cognitive radio is more than DSA. Cognition differentiates
cognitive radio from any other radio system. Most of the research about cognitive radio
focuses on the behaviors of one pair of cognitive radios. If multiple cognitive radios
are taken into account or the network behaviors of cognitive radios are of interest,
cognitive radio network will be the main research object. In cognitive radio network,
cognition should cover from the physical layer through the application layer to reliably
meet the requirements of the information system.

Cognitive radio architecture and applications of machine learning to cognitive radio
network have been presented in [569]. In cognitive radio engine, knowledge base, rea-
soning engine, and learning engine are three main components. Capacity maximization
and DSA are used as examples to describe how cognitive radio works. Reasoning,
learning, knowledge representation, and reconfiguration of cognitive radio have also
been discussed in [570]. Learning is the basic function in cognitive radio network. The
materialization of learning in cognitive radio network can be found in [571-578].

e Cognitive Radar and Network. A lot of algorithms which were infeasible decades
ago are now coming possible. Such examples are common in machine learning and
artificial intelligence. These algorithms revolutionize areas like robotics [579]. Radar
is experiencing a similar revolution in the general direction of cognitive radar [580].

The radar system evolves from the current adaptive radar and the radar with a
function of waveform design to cognitive radar. The adaptive radar focuses more on
the adaptivity at the receiver. The radar waveform design deals with the probing signal
according to some optimization criterion. The dominant feature of cognitive radar is
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cognition, which means the radar can actively learn about the environment, and the
whole radar system forms a dynamic closed feedback loop including the transmitter,
environment, and receiver [580].

Cognitive radar only considers one pair of radar transceivers, and the cognition only
focuses on the physical layer. In order to further enhance the capability of radar system,
cognitive radar network is proposed. Cognitive radar network is not simply summation
of multiple cognitive radars. Cognitive radar network itself at least integrates cognitive
radio network, cognitive radar, MIMO radar, layered sensing, and so on. Cognition will
run through physical layer to network layer and application layer.

With the support of cognition, radar network resource management will take care
of operation, resource allocation, and maintenance of the networking system. Radar
network resource management includes: (1) radio resource management; (2) network
resource management; (3) radar task scheduling and prioritization.

Radio resource management is well studied in wireless communication. Similarly,
DSA, spectrum management, power allocation, and so on are still very important for
cognitive radar network. Network resource management focuses on the control strategy
for the network behavior. Dynamic network configuration, adaptive routing, coordina-
tion, and competition should be taken into account.

Radar task scheduling and prioritization are application driven. Radar task schedul-
ing and prioritization set the orders and priorities to all accepted radar tasks based
on: (1) radio resource; (2) network resource; (3) the significance of radar task; (4) the
urgency of radar task; (5) the condition of cognitive radar network. Radar task with
higher priority will be scheduled first, and multiple radar tasks can be performed simul-
taneously. Thus radar task scheduling and prioritization should be executed dynamically
and intelligently. Meanwhile, radar task admission control and radar task waiting
list maintenance will also be taken into account under the framework of radar task
scheduling and prioritization. If the capacity of cognitive radar network approaches
its limitation or the heavy duties make the system unstable, the newest radar tasks
cannot be admitted immediately. These tasks can be put in the waiting list for future
service. The waiting list maintenance takes care of the order of radar tasks in the wait-
ing list. Knowledge based resource management for multifunction radar takes a look
at scheduling and task prioritization for adaptive radar in [581]. The analysis in [581]
indicates that priorization is a key component to determining overall performance of
radar system.

A partially observable Markov decision process (POMDP) is a well studied model
and tool to solve decision making problem. POMDP is a generalization of a Markov
decision process (MDP). A POMDP models a decision process in which it is assumed
that the system dynamics are determined by an MDP, but the underlying state can-
not be directly observed. Instead, it must maintain a probability distribution over the
set of possible states based on observations and observation probabilities. Multivariate
POMDPs are used for radar resource management in [582]. The problems of multitar-
get radar scheduling are formulated as multivariate POMDPs, the aim of which is to
compute the scheduling policy to determine which target to choose and how long to
continue with this choice so as to minimize a cost function [582]. Sensor scheduling
for multiple target tracking and detection is discussed in [583]. The algorithm is also
based on POMDP.
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e Smart Grid. Smart grid explores and exploits two-way communication technology,
advanced sensing, metering and measurement technology, modern control theory, net-
work grid technology, and machine learning in the power and electricity system to
make the power and electricity network stable, secure, efficient, flexible, economical
and environmentally friendly.

Novel control technology, information technology, and management technology
should be effectively integrated to realize the smart information exchange within the
power system from power generation, power transmission, power transformation,
power distribution, power scheduling to power utilization. The goal of smart grid is to
systematically optimize the cycle of power generation and utilization.

Based on open system architecture and shared information mode, power flow,
information flow and transaction flow can be syncretized. In this way, the operation
performance of electric power enterprises can be increased. From electric power
customer’s perspective, demand response should be implemented. Customers would
like to participate more activities in the power system and power market to reduce
their electric power bill.

Distributed energy resources, for example solar energy, wind energy, and so on,
should also play an important role in smart grid. Versatile distributed energy resources
can perform the peak power shaving and increase the stability of power system. How-
ever, distributed energy generation imposes a new challenge on the power system,
especially on the distribution network. Power system planning, power quality, and so
on should be reconsidered.

To support smart grid, the infrastructure for the two-way communication should be
set up dedicatedly for the power system only. In this way, secure, reliable, efficient
communication and information exchange can be guaranteed. Meanwhile, the device,
equipment, and facility of the current power system should also be updated and reno-
vated. Novel technology for power electronics should be used to build advanced power
devices, for example, transformer, relay, switch, storage, and so on.

Machine learning for the New York City power grid has been presented in [584].
A general process for transforming historical electrical grid data into models that aim
to predict the risk of failures for components and systems in the power grid is given
[584]. These models can be used directly by power companies for the scheduling of
maintenance work [584].

e Computational Transportation. Computational transportation [585, 586] or intelligent
transportation [587-592] studies how to improve the safety, mobility, efficiency,
and sustainability of transportation system by taking advantage of computer science,
communication technology, information technology, sensing technology, computing
technology, and control theory. Modeling, planning, and economic aspects of
transportation are taken into account. The research topics and enabling solutions
to transportation problems range from ride-sharing [593], routing, scheduling, and
navigation, to autonomous/assisted driving, travel pattern analysis, and so on.
More related information can be found in Computational Transportation Science at
University of Illinois at Chicago.

e Data Mining. Data mining [561, 594—598] tries to discover new patterns and extract
knowledge or intelligence from large scale data using methods at the intersection
of artificial intelligence, statistics, and database system. Data mining can be widely
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used for science and engineering. Bioinformatics exploits data mining to generate new
knowledge of biology and medicine, and discover new models of biological compu-
tation, for example, DNA computing, neural computing, evolutionary computing, and
so on. Data mining is also useful for business applications. Take Internet advertising
as an example, by data mining, more relevant advertisements can be sent to the right
Internet audience at the right time.

Computer Vision. Computer vision tries to obtain, process, analyze, and understand the
real-world images or videos [599]. Information and intelligence can be extracted from
the large scale data by computer vision. Machine learning is widely used in computer
vision for detection, classification, recognition, tracking, and so on [600].

Robotics. Robot is a virtual intelligent agent which can perform a variety of duties
automatically or under guidance [601]. These duties can be part handling, assembly,
painting, transport, surveillance, security, home help, and so on. The intelligence of
robot is realized in software. Artificial intelligence gives robot the functions of percep-
tion, localization, modeling, reasoning, interaction, learning, planning, and so on. UAV
can be treated as one kind of mobile robots.

Web Search Engine. A web search engine [602] is mainly used to search for infor-
mation on the website. Google, Yahoo, Bing, and so on are widely used web search
engines. Machine learning is the powerful tool for web search engine. Commercial web
search engines began to use machine learned ranking systems since the past decade. A
ranking model is automatically constructed from training data by supervised learning
or semisupervised learning. This ranking model for web search engine can reflect the
importance of a particular web page.

Human Computer Interaction. Human computer interaction [603] tries to design the
interaction between people and computers. The researches about human computer inter-
action include cognitive models, speech recognition, natural language understanding,
gesture recognition, data visualization, and so on. iPhone 4S can be treated as one kind
of human computer interaction devices. iPhone 4s includes a new automated voice
control system called Siri. Siri can allow the user to give the iPhone commands.
Social Network. Social network is a network of social structure, social interdependency,
or social relationships of human beings. Friendship, common interest, common belief,
financial exchange, and so on are considered in the social network. Data related to social
network have exploded recently due to the fast development of information technology.
Thus, machine learning is a powerful tool to analyze social network for learning and
inference [604—-607].

Manufacturing. Machine learning can be used in manufacturing to perform automatic
and intelligent operations. In this way, the efficiency of manufacturing can be improved,
especially for the dark factory with no involvement of human labor. The novel develop-
ments in machine learning and substantial applications of machine learning in modern
industrial engineering and mass production have been presented in [608]. The analysis
of data from simulations and experiments in the development phase and measure-
ments during mass production plays a crucial role in modern manufacturing [608]. For
example, various machine learning algorithms are applied to detection and recogni-
tion of spatial defect patterns in semiconductor fabrication processes [609—-612]. These
spatial defect patterns generated during integrated circuit (IC) manufacturing processes
contain information about potential problems in the processes [612].
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e Bioengineering. Bioengineering [613] tries to exploit both concepts of biology and
engineering’s analytical methodologies to deal with problems in life science. With the
developments of mathematics and computer science, machine learning can be used in
bioinformatics, medical innovations, biomedical image analysis, and so on.

7.1 Unsupervised Learning

Unsupervised learning [614-616] tries to find hidden or underlying structure from the
unlabeled data. The key feature of unsupervised learning is that the data or examples
given to the learner are unlabeled.

Clustering and blind signal separation are two categories of unsupervised learning
algorithms [616]. Clustering assigns a set of objects into different groups or clusters such
that the objects in the same group are similar [617]. The clustering algorithms include:

k-means or centroid-based clustering [618—621];
k-nearest neighbors [622, 623];

hierarchical clustering or connectivity-based clustering;
distribution-based clustering;

density-based clustering.

Blind signal separation or blind source separation tries to separate a set of signals from
a set of mixed signals without the information about the source signals or the mixing
process [624]. The approaches for blind signal separation include:

e principal component analysis [625, 626];
e singular value decomposition [627];

e independent component analysis (ICA) [628—-630];
e nonnegative matrix factorization [631-633].

Robust signal classification using unsupervised learning has been discussed in [634]. k-
means clustering and the self-organizing map (SOM) are used as unsupervised classifiers.
Meanwhile, the countermeasures to the class manipulation attacks are developed [634].

7.1.1 Centroid-Based Clustering

In centroid-based clustering [635], the whole data set is partitioned into different clusters.
Each cluster is represented by a central vector. This central vector is not necessarily a
member of the data set. Meanwhile, each member in the cluster has the smallest distance
from the corresponding mean. If the number of the clusters is k, k-means clustering gives
a corresponding optimization problem for centroid-based clustering.

Given a set of data X = {x,,X,, ..., X,}, k-means clustering attempts to partition the
data set X into k(k < n) sets S;, S,, ..., S such that the sum of squared distances within
the cluster is minimized [618—-621]

k
minimize Z Z Ix; — yi||2, (7.1)
i=1 x;€8;

where y; is the mean of the cluster related to data set S;.
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7.1.2  k-Nearest Neighbors

The k-nearest neighbor (k-NN) algorithm assigns a class to an object by a majority vote
of its k-nearest neighbors. Genetic programming with k-NN has been used in [636] to
perform automatic digital modulation classification.

7.1.3  Principal Component Analysis

PCA is also called Karhunen-Loeve transform, Hotelling transform, or proper orthogonal
decomposition [637]. PCA uses an orthogonal transformation to transform a set of corre-
lated variables into a set of uncorrelated variables [637]. These uncorrelated variables are
linear combinations of the original variables. They are called principal components. The
number of principal components is less than or equal to the number of original variables.
Thus, PCA is a widely used linear transformation for dimensionality reduction.

The goal of PCA is to ensure that the first principal component bears the largest
variance and the second principal component has the second largest variance. Meanwhile,
the directions of different principal components are orthogonal. Generally, PCA can be
executed by eigenvalue decomposition of covariance matrix.

Given a set of high-dimensional real data x,, X,, ..., X,, where x,, € RY, PCA can be
performed as:

- 1 M
1. x= M Zm:l X-
2. X, =X, — X
LM oo
3. C= 5 > e XXy
4. Compute the eigenvalues A, A,,...,Ay of C and the corresponding eigenvectors
u;,u,,...,uy where A; > A, > --- > Ay

5. Obtain the linear transformation matrix,
U=[u u, - ugl], (7.2)

where K < N.
6. Perform dimensionality reduction,

y=U’x (7.3)
and PCA approximation X = Uy.

In sum, PCA projects the data from the original directions or bases to the new directions
or bases. Meanwhile, the data varies the most along the new directions. These directions
can be determined by the eigenvectors of the covariance matrix corresponding to the
largest eigenvalues. The eigenvalues relate to the variances of the data along the new
directions. PCA gives a way to construct the linear subspace spanned by the new bases
from the data.

x = Uy is extended to X = UY. If Y contains as many zeros as possible, this problem
is called sparse component analysis [638].

PCA can also be extended to its robust version. The background of robust PCA
[639,640] is to decompose a given large data matrix M as a low rank matrix L plus
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a sparse matrix S, that is,
M=L+S. (7.4)

Specifically speaking, PCA finds a rank-r approximation of the given data matrix M
in an /% sense by solving the following optimization problem,
minimize
IM— L]
subject to
rank(L) < r.

(7.5)

This problem can be easily solved by SVD. An intrinsic drawback of PCA is that it can
work efficiently only when the low rank matrix is corrupted with small and i.i.d. Gaussian
noise. That is PCA is suitable for the model of M = LL 4+ N where N is the i.i.d. Gaussian
noise matrix. PCA will fail when some of the entries in L are strongly corrupted as shown
in Equation (7.4) in which the matrix S is a sparse matrix with arbitrarily large magnitude.

In order to find L and S from M, robust PCA tries to solve the following optimiza-
tion problem,

minimize
rank(L) + A||S||,
subject to
M=L+S.

(7.6)

From the convex optimization point of view, the rank function is a nonconvex function.
Solving the optimization problem with a rank objective or rank constraint is NP-hard.
However, it is known that the convex envelope of rank(L) on the set {L : ||L| < 1} is
the nuclear norm |[L||, [641]. Hence, the rank minimization can be relaxed to a nuclear
norm minimization problem which is a convex objective function. In this regard, there
are a series of papers that have studied the conditions required for successfully applying
the nuclear norm heuristic to rank minimization from different perspectives [641—-643].
Hence, the optimization problem (7.6) can be relaxed to

minimize
LI + AlISI

subject to
M=L+S.

(7.7)

In this way, L and S can be recovered.
Robust PCA is widely used in video surveillance, image processing, face recognition,
latent semantic indexing, ranking, and collaborative filtering [639].

7.1.4 Independent Component Analysis

ICA tries to separate a mixed multivariate signal and identify the underlying non-Gaussian
source signals or components that are statistically independent or as independent as
possible [562,629,644]. Even though the source signals are independent, the observed
signals are not independent due to the mixture operation. Meanwhile, the observed signals
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look like normal distributions [562]. A simple application of ICA is the “cocktail party
problem.” Assume in the cocktail party, there are two speakers denoted by s, (¢) and s, (¢)
and there are two microphones recording time signals denoted by x,(¢) and x,(¢). Thus,

X, () = ays,(t) + a8, (t)

7.8
Xy (1) = ayy85,(t) + ayys, (1), 78

where a,,, a;,, a,,, and a,, are some unknown parameters that depend on the distances
between the microphones and the speakers [629]. We would like to estimate two source
signals s, (¢) and s,(¢) using only the recorded signals x,(#) and x,(%).

Using the matrix notation, the linear noiseless ICA can be written as

X = AS, (7.9)

where the rows of S should be statistically independent. Due to the unknown A and S,
the variances and the order of the independent components cannot be determined [629].
In order to solve ICA problems, minimization of mutual information and maximization
of non-Gaussianity are often used to achieve the independence of the latent sources.

The applications of ICA include separation of artifacts in magnetoencephalography
(MEG) data, finding hidden factors in financial data, reducing noise in natural images,
blind source separation for telecommunication [629]. ICA can also be used for chem-
ical and biological sensing to extract the intrinsic surface-enhanced Raman scattering
spectrum [645].

7.1.5 Nonnegative Matrix Factorization

Matrix decomposition has long been studied. A matrix decomposition is a factorization of
a matrix into some canonical form. There are many different matrix decompositions, for
example, LU factorization, LDU decomposition, Cholesky decomposition, rank factor-
ization, QR decomposition, rank-revealing QR factorization, SVD, eigen-decomposition,
Jordan decomposition, Schur decomposition, and so on.

Nonnegative matrix factorization [633,646] is one kind of matrix decomposition with
the nonnegative constraint on the factors. Mathematically speaking, a matrix X is factor-
ized into two matrices or factors W and H such that

X =WH+E (7.10)

and all entries in W and H must be equal to or greater than zero where E represents
approximation error.
There are many useful variants based on nonnegative matrix factorization [633]:

e Symmetric nonnegative matrix factorization,
X=WW’" +E. (7.11)
e Semi-orthogonal nonnegative matrix factorization,
X=WH+E (7.12)
and W'W =T and HH? = 1.
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e Three-factor nonnegative matrix factorization,
X = WSH + E. (7.13)
e Affine nonnegative matrix factorization,

X = WH + al” +E. (7.14)

Multilayer nonnegative matrix factorization,

X=WW,.---WH+E. (7.15)
e Simultaneous nonnegative matrix factorization,
X, =WH+E,
X, =W,H+E,. (7.16)

Nonnegative matrix factorization with sparseness constraints on the each column of W
and H [647].

Two-dimensional nonnegative matrix factorization can be extended to n-dimensional
nonnegative tensor factorization [633,648,649]. Various algorithms for nonnegative
matrix and tensor factorization are mentioned in [633]. In [650], Bregman divergences
are used for generalized nonnegative matrix approximation.

Similar to robust PCA, the robust version of nonnegative matrix factorization is
expressed as

X=WH+S+E, (7.17)

where S is the sparse matrix. The optimization problem for robust nonnegative matrix
factorization can be represented as

minimize |X — WH — S|2 + A[S|], (7.18)

such that W and H are both the nonnegative matrices. The optimization problem (7.18)
is not convex in W, H, and S jointly. Thus, we need to solve them separately [651]:

1. Solve the nonnegative matrix factorization problem for fixed S.
2. Optimize S for fixed W and H.

This procedure will be repeated until the algorithm converges.

Nonnegative matrix factorization is a special case of general matrix factorization.
Probabilistic algorithms for constructing approximate matrix factorization have been com-
prehensively discussed in [652]. The core idea is to find structure with randomness [652].
Compared with standard deterministic algorithms for matrix factorization, the randomized
methods are often faster and more robust [652].

7.1.6  Self-Organizing Map

An SOM is one kind of ANN within the category of unsupervised learning. SOM
attempts to create spatially organized low-dimensional or internal representation (usually
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two-dimensional grid) of input signals and their abstractions which is called map
[653-655]. SOM is different from other ANNs because a neighborhood function is
used to preserve the topology of the input space. Thus, the nearby locations in the map
represent the inputs with similar properties.

The training algorithms of SOM are based on the principle of competitive learning
[653,656] which is also used for the well-known vector quantization [657—-659].

7.2 Supervised Learning

Supervised learning learns a function from supervised labeled training data [660]. In super-
vised learning, the training data consist of a set of training examples. Each training
example includes an input object together with a desired output value. If the output value
is discrete, the learned function is called a classifier. If the output value is continuous, the
learned function is called a regression function. Algorithms for supervised learning gen-
eralize from the training data to the unseen data. The popular algorithms for supervised
learning are:

linear regression [661—-664];
logistic regression [665, 666];
artificial neural network [667, 668];
decision tree learning [669];
random forests [670];

naive Bayes classifier [671];
support vector machines [672—-674].

7.2.1 Linear Regression

Linear regression tries to model the relationship between a scalar dependent variable y
and one or more explanatory (independent) variables x. Mathematically speaking,

y=xTa+e, (7.19)

where
X =[x, x, - xp]"; (7.20)

a is called the parameter vector or regression coefficients
a=l[a, a - apl’; (7.21)

and ¢ is the noise or error.
If there are N dependent variables, Equation (7.19) can be extended to

y=X"a+e¢, (7.22)
where
Y=y ool (7.23)
X=[x;x, -+ Xy] (7.24)
e=le & - eyl (7.25)
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7.2.2  Logistic Regression
Logistic regression [675] is a nonlinear regression which can predict the probability of
an event occurrence using a logistic function. A simple logistic function is defined as

f) = (7.26)

1 +exp(—t)’

which always takes on values between zero and one. Thus, logistic regression can be
expressed as

1
1 +exp(—(ag +ayx; + - +apxp))’
where a, is called intercept and a;,a,,...,ap are called regression coefficients of
X1y Xy ooy Xp.
Logistic regression is a popular way to model and analyze binary phenomena, which
means the dependent variable or the response variable is a two-valued variable [676].

V== (7.27)

7.2.3 Artificial Neural Network

The idea of artificial neural network [677] is borrowed from biological neural network to
mimic the real life behavior of neurons. Artificial neural network is an adaptive system
used to model relationship between inputs and outputs. The mathematical expression of
the simplest artificial neural network is

N
o=f (Z wnxn) , (7.28)
n=1

where x|, x,,...,x, are inputs; w,, w,,...,wy are the corresponding weights; o is
output; and f is an activation (transfer) function.

Perceptron, one type of artificial neural network, is a binary classifier which maps
its inputs to an output with binary values. Given threshold 6, if Z;V:l w,x, > 6, then
o = 1; otherwise 0 = 0. This single-layer perceptron has no hidden layer. The single-
layer perceptron can be extended to the multilayer perceptron which consists of multiple
layers of nodes in a directed graph. The multilayer perceptron can use backpropagation

algorithm to learn the network.

7.2.4  Decision Tree Learning

A decision tree [678] is a tree-like graph or model for decision, prediction, classification,
and so on. In a decision tree, each internal node tests an attribute. Each branch corre-
sponds to one possible value of attribute. Each leaf node assigns a classification for the
observation. Decision tree learning tries to learn a function which can be represented as
a decision tree [679]. A number of decision trees can be used together to form a ran-
dom forest classifier which is an ensemble classifier [680]. In random forest, each tree is
grown at least partially at random. Bootstrap aggregation is used for parallel combination
of learners which is independently trained on distinct bootstrap samples. Final result is
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the mean prediction or class with maximum votes. Random forest can increase accuracy
by reducing prediction variance.

7.2.5 Naive Bayes Classifier

A naive Bayes classifier [681] is a probabilistic classifier based on Bayes’ theorem with
independence assumptions.
Based on Bayes’ theorem, the naive Bayes probabilistic model can be expressed as,

N
pC| X, Xy, ..., Xy) x P(C)HP(Xn | O), (7.29)

n=1
where C is a dependent class variable and X, X,, ..., X are the feature variables. p(C |

X, X,, ..., Xy) is the posterior probability. p(C) is the prior probability. p(X, | C) is
the likelihood probability.

According to the maximum a posteriori (MAP) decision rule, A naive Bayes classifier
can be written as [671]

N
c= f(x;,xy,...,xy) =argmaxp(C =) l_[p(Xn =x,| C=o0). (7.30)

n=1

7.2.6  Support Vector Machines

SVM [682] is a set of the supervised learning algorithms used for classification and regres-
sion. SVM includes linear SVM, kernel SVM [683, 684], multiclass SVM [685-692],
support vector regression [693—697]. Design of learning engine based on SVM in cogni-
tive radio has been mentioned in [698]. Both classification and regression results of SVM
for eight kinds of modulation modes are demonstrated. The experimental data come from
802.11a protocol platform. SVM is used for MAC protocol classification in a cognitive
radio network [699]. The received power mean and variance are chosen as two features for
SVM. Two MAC protocols, time division multiple access and slotted Aloha, are classified.

Let’s study SVM from the linear two-class SVM [674]. Given the training data set
having M pairs of inputs and outputs,

x;,0,),i=1,2,....M (7.31)
and
[ e {-1,1}. (7.32)
SVM attempts to find the separating hyperplane
w-x—b=0 (7.33)
with the largest margin satisfying the following constraints:

w-x,—b>1, for ;=1

(7.34)
w-x; —b<—1for [, =—-1
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in which w is the normal vector of the hyperplane and - stands for inner product. The
constraint (7.34) can be combined into:

LL(w-x;, —b) > 1. (7.35)
The distance between two hyperplanes w-x;, —b =1 and w-x;, —b = —1is ﬁ In

order to obtain the largest margin, the following optimization is used [674]
minimize
slwl?
subject to
Lw-x;,—b)>1,i=1,2,....,.M

(7.36)

The dual form of the optimization problem (7.36) by introducing Lagrange multipliers
o >0,i=1,2,..., M is [674]

maximize
Za - 2Za,ajllljx, X;
sub]ect to (7.37)
ol =0
i
a;>0,,i=1,2,....M
The solution to w can be expressed in terms of a linear combination of the training
vectors as

M
w=> olx. (7.38)

Those x;,i =1,2,..., Mgy with «; >0 are called support vectors which lie on the
margin and satisfy /;(w - x; —b) = 1. Thus, b can be obtained as

Mgy

Msv ;(w X, —1,). (7.39)

Thus, a classifier based on SVM can be written as [674]

f(x) = sign <Z o;lx; - X — b) . (7.40)

i=1

When the number of classes for outputs is more than two, multiclass SVM can be
used to perform multiclass classification. The common approach for multiclass SVM is
to decompose the single multiclass classification problem into multiple two-class clas-
sification problems. Each two-class classification problem can be addressed by the well
known two-class SVM. Within this framework, one-against-all and one-against-one are
widely used [692]. Besides, a pairwise coupling strategy can be exploited to combine
the probabilistic outcomes of all the one-against-one two-class classifiers to obtain the
estimates of the posterior probabilities for the test input [692, 700].

Based on the idea of SVM, the multiclass classification problem can also be handled
by solving one single optimization problem [685, 688, 701].
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The linear two-class SVM can be modified to tolerate some misclassification inputs,
which is called soft margin SVM [674]. Soft margin SVM can be done by introducing a
nonnegative slack variable &;,,i = 1,2, ..., M which measures the degree of misclassifi-
cation for the input x;. Hence, the constraint (7.34) should be modified as

w-x;,—b>+41—-§ for ], =1

7.41
w-X, —b<—-1+4§& for [, =—1, (7.4D)
which can be combined into
L(w-x, —b) = 1§ (7.42)
and &, >0,i=1,2,..., M.
The optimization problem for soft margin SVM is expressed as [674]
minimize
Liwl2 M
3 ||V_V|| +CYisi & (7.43)
subject to

L(w-X,—b)>1—§.6>0,i=12,.... M,

where C is a trade-off parameter to compromise the slack variable penalty and the size
of margin. The dual form of the optimization problem (7.43) is [674]

maximize

;- : Yool - X;

silbject to v (7.44)
al, =0

0O<a,<C,,i=1,2 ... M.

If the value of output /; is continuous, the learned function is called a regression func-
tion. SVM can be extended to supoort vector regression. Analogously to the soft margin
SVM, the optimization problem for support vector regression can be written as [697]

minimize
Hwl?+C X2 E +&0)
subject to
L~ (WX —b)<e+&i=12. ..M (7.43)
w-x,—b)—l<e+&,i=12,....M
EY >0, >0,i=1,2,..., M.
where ¢ is a parameter to determine the region bounded by /; £ ¢,i = 1,2, ..., M which

is call /; & e-insensitive tube. The dual form of the optimization problem (7.45) is [697]

maximize
YL —a) —e DL @ + o) =5 X, (@ —a) (@) —a))x; - X
subject to

SV (@ —a)=0,i=1,2,....,.M
0<of<C,i=1
0<a; <C,i=1,

(7.46)
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Thus,
M
w= Y@ —ax .47
i=1
and
M
f(x) = sign (Z(a;r — )X, X+ b) . (7.48)
i=1

7.3 Semisupervised Learning

Supervised learning exploits the labeled data for training to learn the function. However,
the labeled data, sometimes, are hard or expensive to obtain and generate. While the
unlabeled data are more plentiful than the labeled data [702]. In order to make use of
both labeled data and unlabeled data for training, semisupervised [703] learning can be
explored. Semisupervised learning falls between unsupervised learning and supervised
learning. The underlying phenomenon behind semisupervised learning is that a large
amount of unlabeled data used together with a small amount of labeled data for training
can improve machine learning accuracy [704, 705].

7.3.1 Constrained Clustering

Constrained clustering [706—708] can be treated as clustering with side information or
additional constraints. These constraints include pairwise must-link constraints and cannot-
link constraints. The must-link constraints mean two members or data points must be in the
same cluster while the cannot-link constraints mean two data points cannot be in the same
cluster. Take the k-means clustering as an example. The penalty cost function related to
the must-link constraints and the cannot-link constraints can be added to the optimization
problem (7.1) to form the optimization problem for the constrained k-means clustering.
Besides, if the partial label information is given, a small amount of labeled data can aid
the clustering of unlabeled data [709]. In [709], the seed clustering is used to initialize
the k-means algorithm.

7.3.2 Co-Training

Co-training is also a semisupervised learning technique [702,710]. In co-training, the
features of each input are divided into two different feature sets. These two feature sets
should be conditionally independent given the class of the input. Meanwhile, the class
of the input can be accurately predicted from each feature set alone. In other words,
each feature set contains sufficient information to determine the class of the input [702].
Co-training first learns two different classifiers based on two different feature sets using
the labeled training data. Then, each classifier will label several unlabeled data with more
confidence. These data will be used to construct the additional labeled training data. This
procedure will be repeated until convergence.
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7.3.3 Graph-Based Methods

Recently, graph-based methods for semisupervised learning have become popular [711].
Graph-based methods for semisupervised learning are nonparametric, discriminative, and
transductive in nature [711]. The first step of graph-based methods is to create the graph
based on both labeled data and unlabeled data. The data correspond to the nodes on the
graph. The edge together with the weight between two nodes is determined by the inputs
of the corresponding data. The weight of the edge reflects the similarity of two data
inputs. The second step of graph-based methods is to estimate a smooth function on the
graph. This function can predict the classes for all the nodes on the graph. Meanwhile,
the predicted classes of the labeled nodes should be close to the given classes. Thus, how
to estimate this function can be expressed as the optimization problem with two terms
[711]. The first term is a loss function and the second term is a regularizer [711].

7.4 Transductive Inference

Transductive inference [712—714] is similar to semisupervised learning. Transductive
inference tries to predict outputs for the test inputs based on the training data and test
inputs. Transduction is different from the well-known induction. In induction, general
rules are first obtained from the observed cases; then these general rules are applied to
the test cases. Thus, the performances transductive inference are inconsistent on different
test cases.

7.5 Transfer Learning

Transfer learning or inductive transfer [715,716] focuses on gaining knowledge from
solving one problem or previous experience and applying it to a different but related
problem. Markov logic networks [717] and Bayesian networks [718] have already been
exploited for transfer learning.

Multitask learning or learning to learn is one kind of transfer learning [719]. Multitask
learning tries to learn a problem together with other related problems simultaneously,
with consideration of the commonality among the problems.

7.6 Active Learning

Active learning is also called optimal experimental design [720, 721]. Active learning is
a form of supervised learning in which the learner can interactively ask for information.
Specifically speaking, the learner actively queries the user, teacher, or expert to label the
unlabeled data. And then, supervised learning is exploited. Since the learner can select the
training examples, the number of examples to learn a function can often be smaller than
the number needed in common supervised learning. However, there is a risk for active
learning. Unimportant or even invalid examples may be chosed. The basic experimental
design types for active learning include A-optimal design which minimizes the trace of
the matrix, D-optimal design which minimizes the log-determinant of the matrix, and
E-optimal design which minimizes the maximum eigenvalue of the matrix. All these
design problems can be solved by convex optimization. Active learning based on locally
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linear reconstruction is presented in [722] where local structure of the data space is taken
into account.

7.7 Reinforcement Learning

Reinforcement learning [723-725] is a very useful and fruitful area of machine learning.
Reinforcement learning tries to learn how to act in response to an observation of the
world in order to maximize some kind of cumulative reward. Every action taken has
some influence on the environment. The environment will give its feedback through
rewards to the learner. This feedback can guide the learner to make the decision for
the next action. Reinforcement learning is widely studied in control theory, operation
research, information theory, economics, and so on. Many algorithms for reinforcement
learning are highly related to dynamic programming [726,727]. Reinforcement learning
is a dynamic and life-long learning with focus on the online performance. Thus, there is a
trade-off between exploration and exploitation in reinforcement learning [728,729]. The
basic components in reinforcement learning should include environment states, possible
actions, possible observations, transitions between states, and rewards.

Reinforcement learning is widely used in cognitive radio network for exploration and
exploitation [730—746]. Three learning strategies will be presented in detail:

e Q-learning;
e Markov decision process;
e partially observable Markov decision process.

7.7.1 Q-Learning

Q-learning is a simple but useful reinforcement learning technique [747, 748]. Q-learning
learns a utility function of a given action in a given state. Q-learning follows a fixed state
transition and does not require the environment information.

Given the current state s, and the action a,, the utility function Q(s,, a,) is learned or
updated as

00510 = Qs ) + 5 ) (16 0) + X Q051010 = Q501 ).
(7.49)

where o, (s,, a,) € (0, 1] is the learning rate; r(s,, a,) is the immediate reward; y € [0, 1)
is the discount factor; s, is the next state due to the state transition from the current state
s, by the action q,. If «, is equal to 1 for all the states and all the actions, Equation (7.49)
can be reduced to

Qs @) = r(s;, @) +y Max Q5,4 @y)- (7.50)
ar4

Finally, the utility function can be learned through iteration. For each state, the selected
action should be
m(s) = argmax Q(s, a). (7.51)

Q-learning and its variants are widely used in cognitive radio network [734, 749-762].
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7.7.2 Markov Decision Process

MDP [763] is a mathematical framework for studying the decision-making problem. MDP
can be treated as an extension of Markov chain. Mathematically speaking, a Markov chain
is a sequence of random variables X, X,, X5, ..., X,, ... with the Markov property, that
is, the memoryless property of a stochastic process,

Pr(X,,,=x|X,=x,X,_1=x_1,.... X, =x,, Xy = xy)

(7.52)
=Pr(X,,, =x|X, =x),

which means the following states and the previous states are independent given the cur-
rent state.
An MDP consists of [723]:

a set of states S;

a set of actions A;

a reward function R(s, a);

a state transition function T'(s, a,s’) = Pr(s, ., =" | 5, = 5,0, = a).

The goal of MDP is to find a policy a = 7 (s) for the decision maker. When the police
is fixed, MDP behaves like a Markov chain. Typically, the optimization problem of MDP
can be formulated as

maximize Z Y'R(s,, 7(s,)). (7.53)
=0

There are three basic methods to solve MDP:
e value Iteration;
e policy Iteration;

e linear programming [764—-767].

For value iteration and policy iteration, the optimal value function is defined as [723],

V*(s) = max (R(s, a)+y Z T(s,a, s')V*(s’)) ,Vs e S (7.54)
¢ s'es
and given the optimal value function, the optimal policy can be obtained as [723],
7(s) = arg max (R(s, a)+y Yy T(s.a, s/)V*(s’)) . (7.55)
s'es

Value iteration tries to find the optimal value function and then obtain the optimal
policy. The core part of value iteration is [723]:

1. Initialize V (s) arbitrarily.
2. Let V'(s) be equal to V(s).
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3. For Vs € S, calculate

U(s,a) = R(s,a)—l—yZT(s,a,s/)V/(s’) (7.56)
s'eS
and
V(s) = max U(s. a). (1.57)

4. If max |V'(s) — V(s)| is less than the pre-defined threshold, the optimal value function
V (s) is obtained; otherwise go to step 2.

Policy iteration updates the policy directly. The core part of policy iteration is [723]:

1. Initialize 7 (s) arbitrarily.
2. Let 7/(s) be equal to 7 (s).
3. Solve the linear equations,

V(s)=R(s,7'(s)) +y Z T(s,7'(s),sHV(s) (7.58)

s'eS

and improve the policy,

7(s) = arg max (R(s, a)+y Y T(s.a, s’)V(s’)> . (7.59)

s'eS

4. If 7w/ (s) is the same as 7 (s), then the optimal policy is obtained; otherwise go to step 2.

MDP and its variants can be exploited in cognitive radio network [736,737, 740, 768—-782].

7.7.3  Partially Observable MDPs

POMDRP is an extension of MDP. The system dynamics are modeled by MDP. However,
the underlying state cannot be fully observed. POMDP models the interaction procedure
of an agent with the outside world [783]. An agent first observes the outside world, then
it tries to estimate the belief state using the current observation. The solution of POMDP
is the optimal policy for choosing actions.

An POMDP consists of

a set of states S;

a set of actions A;

a set of observations O;

a reward function R(s, a);

a state transition function 7' (s, a,s’) =Pr(s, ., = 5" | s, =5, a, = a);
an observation function Q(o, s’,a) =Pr(o,,; =0 | s, =s',a, = a).

85UBO| 7 SUOWIIOD BAReR1D) 8|cedldde auy Aq peueob 818 S3joe YO 188N JO SN 104 ARRIqIT UIIUO AB]IA UO (SUORIPUOD-PUR-SLURY/LIOD A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/62] Uo Areigiauliuo AB|im ‘unssuibus jo Asieaun exeya Aq /10p/woo A3 Im Ariq1jeuluo//sdny woy papeo umoa



Machine Learning 303

Define a belief state over the states as

b,(s))
b, =| bi(s2) |, (7.60)

where b,(s) > 0,Vs € S and )
belief states.

Given b, and q,, if 0 € O is observed with probability (o, s, a), b, +1 can be obtained
as [784]

ses b(s) = 1. There are uncountably infinite number of

Qo,s",a) ) s T(s,a,s)b,(s)

b i(s) = Prio | a.b) : (7.61)
where
Pr(o|a,b) =Y _ Q(o.s',a) Y T(s,a,s)bs). (7.62)
s'eS ses
Define the belief state transition function as [784]
(b, a,b’) =Pr(b’ | b, a) (7.63)

and 7(b,a,b’) =Pr(o|a,b) if b, b, a, and o follows Equation (7.61); otherwise
7(b, a,b’) is equal to zero. Thus, POMDP can be treated as infinite state MDP with
[784,785]

a set of belief states B;

a set of actions A;

a belief state transition function shown in Equation (7.63);
a reward function p(b,a) = > _b(s)R(s, a).

ses

Solving a POMDP is not easy. The first detailed algorithms for finding exact solutions
of POMDP were introduced in [786]. There exist some software tools for solving POMDP,
such as pomdp-solve [787], MADP [788], ZMDP [789], APPL [790], and Perseus [791].
Among them, APPL is the fastest one in most cases [790].

POMDP and its variants are widely used in cognitive radio network [792-818].

7.8 Kernel-Based Learning

Kernel-based learning [819] is the great extension of machine learning by different kernel
functions. Kernel SVM [683, 684], kernel PCA [820—-823], and kernel Fisher discriminant
analysis [824, 825] are widely used. Kernel functions can implicitly map the data from
original low-dimensional linear space x to high-dimensional feature nonlinear space ®(x).

Kernel function K (x,y) is defined as the inner product of ®(x) and ®(y). If we know
the analytic expression of kernel function and we only care about the inner product of
@ (x) and ®(y), then we do not need to know the mapping nonlinear function ® explicitly.
This is called the kernel trick. The commonly used kernel functions are:
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e Gaussian kernels: K (x,y) = exp (—”"2;—2”);

homogeneous polynomial kernels: K (x,y) = (x - y)%;
inhomogeneous polynomial kernels: K (x,y) = (x -y + 1);
sigmoid kernels: K (x,y) = tanh(ax -y + D).

Gaussian kernels, polynomial kernels, and sigmoid kernels are all data independent.
Given kernel functions and training data, we can get kernel matrix. However, kernel
matrix can also be learned and optimized from data [388, 826—828]. In [829], Bregman
matrix divergences are used to learn the low-rank kernel matrix.

The brilliance of the optimization problem (7.37) and Equation (7.40) is that the inner
product between inputs is used. By applying the kernel trick, linear two-class SVM can
be easily extended to the nonlinear kernel SVM. In the feature space [683, 684],

M
W= i ®(x) (7.64)
i=1
and

M M
W DX) =Y ol (D(x), (X)) = Y eyl K (X, X). (7.65)
i=1

i=1

Thus, a classifier based on kernel SVM can be written as

M
f(x) = sign (Z ol K (x;,X) — b) . (7.66)

i=1

Besides, kernel principal angles are explored for machine learning related tasks [830, 831].
The principal angles, also called canonical angles, give information about the relative
position of two subspaces of a Euclidean space [832-835].

7.9 Dimensionality Reduction

In large scale cognitive radio networks, there is a significant amount of data. However, in
practice, the data is highly correlated. This redundancy in the data increases the overhead
of cognitive radio networks for data transmission and data processing. In addition, the
number of degrees of freedom (DoF) in large scale cognitive radio networks is limited. The
DoF of a K user M x N MIMO interference channel has been discussed in [836]. The total
number of DoF is equal to min(M, N) % K if K < R, and min(M, N) % 2~ % K if K > R,

R+1
where R = % This is achieved based on interference alignment [541, 837, 838].

Theoretical analysis about DoF in cognitive radio has been presented in [839, 840]. The
DoF corresponds to the key variables or key features in the network. Processing the
high-dimensional data instead of the key variables will not enhance the performance of
the network. In some cases, this could even degrade the performance. Hence, compact
representations of the data using dimensionality reduction is critical in cognitive radio
networks.
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Due to the curse of dimensionality and the inherent correlation of data, dimensionality
reduction [841] is very important for machine learning. Meanwhile, machine learning
provides the powerful tools for dimensionality reduction. Dimensionality reduction tries
to reduce the number of random variables or equivalently the dimension of the data
under consideration. Dimensionality reduction can be divided into feature selection and
feature extraction [842]. Feature selection tries to find a subset of the original variables
or features. Feature extraction transforms the data from the high-dimensional space to
low-dimensional space. PCA is a widely used linear transformation for feature extraction.
However, there are also many powerful nonlinear dimensionality reduction techniques.

Many nonlinear dimensionality reduction methods are related to manifold learning
algorithms [843—-846]. The data set most likely lies along a low-dimensional manifold
embedded in a high-dimensional space [847]. Manifold learning attempts to uncover the
underlying manifold structure in a data set. These methods include:

kernel principal component analysis [8§20—823];

multidimensional scaling [848—850];

isomap [843,851-853];

locally-linear embedding [854—856];

Laplacian eigenmaps [857, 858];

diffusion maps [859, 860];

maximum variance unfolding or semidefinite embedding [861—864].

7.9.1 Kernel Principal Component Analysis

Kernel PCA is a kernel-based machine learning algorithm. It uses the kernel function to
implicitly map the original data to a feature space, where PCA can be applied. Assuming
the original dimensionality data are a set of M samples x; € RN, i=1,2,..., M, the
reduced dimensionality samples of x; are y;, € RX, i =1,2,..., M, where K < N. x; ;
and y;; are componentwise elements in x; and y;, respectively.

Kernel PCA uses the kernel function

K(x;, x;) = ¢(x;) - 9(x;) (1.67)

to implicitly map the original data into a feature space F, where ¢ is the mapping from
original space to feature space and - represents inner product. In F, PCA algorithm can
work well.
A function is a valid kernel if there exists a mapping ¢ satisfying Equation (7.67). Mer-
cer’s condition [683] gives us the condition about what kind of functions are valid kernels.
If K(-,-) is a valid kernel function, the matrix

K, x) K&p,xy) -+ K(xp,Xy)
K%y, %)) K(X5,%y) -+ K(Xp,%Xy)

(7.68)
KXy, x) KXy, Xy) - KXy, Xy)

must be positive semidefinite [865]. The matrix K is the so-called kernel matrix.
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Assuming the mean of feature space data ¢(x;),i = 1,2, ..., M is zero, that is,
1 M
i > ex) =0. (7.69)
i=1

The covariance matrix in F is

Cr= p(x)ex)". (7.70)

N
Ma

i=I

In order to apply PCA in F, the eigenvectors v/ of C are needed. As we know that the
mapping ¢ is not explicitly known, thus the eigenvectors of C, can not be as easily derived
as PCA. However, the eigenvectors v/ of C, must lie in the span [86] of p(x;),j =
1,2,..., M, that is,

F
i

o (X)) (7.71)

I
Ma

1

~.
Il

It has been proved that er;,i = 1,2, ..., M are eigenvectors of kernel matrix K [86].
In which e;; are component-wise elements of a;.
Then the procedure of kernel PCA can be summarized in the following six steps:

Choose a kernel function K (-, -).

. Compute kernel matrix K based on Equation (7.67).

3. Obtain the eigenvalues AK > X > ... >)K and the corresponding eigenvectors
o, o, ..., 0, by diagonalizing K.

4. Normalize VJF by [86]

N —

o
o = — . (7.72)

K
)‘j

5. Constitute the basis of a subspace in F from the normalized eigenvectors vf ,J =
1,2,...,K

6. Compute the projection of a training point X; on vf, j=12,...,K by
M
vy =00 00) =), K(%,,%) (7.73)
n=1

in which the reduced dimensionality data in feature space corresponding to x; is y; =
Yits Yizs -+ Vi)

So far the mean of ¢(x;),i =1,2,..., M has been assumed to be zero. In fact, the
zero mean data in the feature space are

1 M
i) =+ ;q)(x». (7.74)

The kernel matrix for this centering or zero mean data can be derived by [86]

K = HKH (7.75)
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in which H=1— %117 is the so-called centering matrix, I is an identity matrix, 1 is
all-one vector.

Kernel PCA can be used for noise reduction which is a nontrivial task. S. Mika and
co-workers have proposed an iterative scheme on noise reduction for Gaussian kernels
[821]. This method needs to rely on the nonlinear optimization. However, a distance-
constraint based method has been proposed by J. Kwok and I. Tsang which just relies on
linear algebra [823]. In order to apply kernel PCA for noise reduction, the pre-image X; (in
original space) of y; (in feature space) is needed. The distance-constraint based method for
noise reduction makes use of the distance relationship [866] found by Williams between
original space and feature space for some specific kernels. It tries to find the distance
between X; and x ; once the distance between y; and ¢(x;) is known. d(x;, X;) is used to
represent distance between two vectors X; and X;.

It has been proved that the squared distance between y; and ¢(x;) can be derived
by [823]

d*(y;, p(x;))

= (k, + LK1 - 2kxj)THTMH(kxi — LK1 (7.76)

1 qT 24T
+L1'K1+ K, — 21"k

Xj’

K ~
where k,, = (K (x;, X), K(X;, X,), ..., K(X;, N andM = Y i&k&f in which A, and
k=1

a, are the k-th largest eigenvalues and corresponding column eigenvectors of K.
By making use of the distance relationship [866] between original space and feature
space, if the kernel is the radial basis kernel, then

(&, x;) = —110g(0.5(K,; + K ; — d>(y,, p(x)))). (1.77)

Once the above distances are derived, X; can be reconstructed [823].

7.9.2  Multidimensional Scaling

Multidimensional scaling (MDS) is a set of data analysis techniques used to explore the
structure of similarities or dissimilarities in data [867]. The high-dimensional data can be
displayed in 2-D or 3-D visualization.

Given a set of the high-dimensional data {x,,X,,...,X,,}, the distance between x;
and x; is d;;. Arbitrary distance function can be used to define the similarity between
x; and x;. Take Euclidean distance as an example, the goal of MDS is to find a set of the
low-dimensional data {y,, y,, ..., Yy} such that

ly; —y;ll =6 (7.78)

for all i=1,2,...,M and j=1,2,..., M. The low dimensional embedding can
preserve pairwise distances. Thus, MDS can be expressed as an optimization problem
[848-850]

minimize Y (ly; — y,Il — 8;,)%. (7.79)

i<j
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where the sum of the squared differences between ideal distances in the original space
and actual distances in the low-dimensional space is used as the cost function. Stress
majorization can be used as a solver. It is well known that classical MDS is equivalent to
PCA when Euclidean distance is used for some particularly selected cost functions [843]
which simplifies the algorithm for MDS.

Local MDS is a technique for the nonlinear dimensionality reduction [850, 868]. MDS
is executed locally instead of globally. Mathematically speaking, the optimization problem
of local MDS can be expressed as

minimize
i pealy, —y;l = 8;)% + i ee Wy, —y;ll — 8:0)%,

where 2 is a symmetric set of nearby pairs (i, j) which describes the local fabric of a
high-dimensional manifold [868]; 8., is a very large value of dissimilarity and w is a
small weight. If 5, goes to infinity and w = ﬁ, the optimization problem (7.80) can be
reduced to [868]

(7.80)

minimize
2
Y peallyi =¥l =87 =136 hea llyi — ¥;1,

where the first term forces [ly; —y; || to approach §;; locally and the second term pushes
nonlocal data far away from each other [868].

(7.81)

7.9.3 Isomap

Isomap is classical MDS where small pairwise distances between neighboring data are
preserved while large pairwise distances between faraway data are replaced by geodesic
distances which can be estimated by computing the shortest path distances along the
neighborhood graph [843, 868, 869]. There are three steps to perform Isomap [843]. The
first step is to construct neighborhood graph. The neighborhood graph can be determined
by e-neighborhoods or k-nearest neighbors. The second step is to compute shortest paths
to estimate geodesic distances. Floyd-Warshall algorithm can be applied. The third step is
to apply classical MDS to the matrix of graph distances and obtain the low-dimensional
embedding.

7.9.4  Locally-Linear Embedding

Locally linear embedding (LLE) tries to discover low-dimensional, neighborhood preserv-
ing embedding of the high-dimensional data by using a locally linear approximation of the
data manifold. Hence, data can be represented as the linear combinations of their neigh-
bors. The first step for LLE is to calculate the weight matrix W based on the following
optimization problem [854],

minimize

D% — Zj(w)i,jxj)z

subject to (7.82)
Z_,'(W)i,j =1
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where X; can only be reconstructed from its neighbors [854]. Hence, (W)i‘j will be equal
to zero if x; and x; are not neighbors.

The second step of LLE is to perform dimensionality reduction by solving the opti-
mization problem shown below [854]:

minimize
Zi (y; — Zj (W)i,jy]‘)z’

where W is the solution to the optimization problem (7.82). Meanwhile, the local affine
structure is preserved.

(7.83)

7.9.5 Laplacian Eigenmaps

Laplacian eigenmaps use the notion of the Laplacian of the graph to compute a low-
dimensional representation of the high-dimensional data that can optimally preserve local
neighborhood information [857]. Similar to LLE, the first step of Laplacian eigenmaps
is to construct the neighborhood graph. The second step is to get weight matrix based
on the neighborhood graph. If x; and x; are neighbors, then (W), ; =1 and (W);, = 1;
otherwise (W), ; = 0. Thus, W is the symmetric matrix. The third step is to perform
dimensionality reduction by computing eigenvalues and eigenvectors for the generalized

eigen-decomposition problem [857],
Lu = ADu, (7.84)

where D is a diagonal matrix and (D), ; = >~ ;(D); ;L =D — W is the Laplacian matrix
which is a positive semidefinite matrix. The embedding of the low-dimensional data is
given by the eigenvectors corresponding to the smallest nonzero eigenvalues.

7.9.6 Semidefinite Embedding

Within the framework of manifold learning, the current trend is to learn the kernel using
SDP [8,388] instead of defining a fixed kernel. The most prominent example of such
a technique is semidefinite embedding (SDE) or maximum variance unfolding (MVU)
[861]. MVU can learn the inner product matrix of y; automatically by maximizing their
variance, subject to the constraints that y; are centered, and local distances of y; are equal
to the local distances of x;. Here, the local distances represent the distances between Yy,
(x;) and its k-nearest neighbors, in which & is a parameter.

The intuitive explanation of this approach is that when an object such as string is
unfolded optimally, the Euclidean distances between its two ends must be maximized.
Thus, the optimization objective function can be written as [861—-864]

.. 2
maximize E . ly, —y;I° (7.85)
subject to the constraints,

2 ¥i =0
Pt 7.86
1% — ;17 = 1% = %, 1> when 7, = 1 (7:50)

in which n;; = 1 means x; and x; are k-nearest neighbors otherwise n,; = 0.
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Apply inner product matrix
I=(y -y, (7.87)

of y; to the above optimization can make the model simpler. The procedure of MVU can
be summarized as follows:

1. Optimization step: because I is an inner product matrix, it must be positive semidefinite.
Thus the above optimization can be reformulated into the following form [861]

maximize

trace(I)

subject to

I-0

Zij Iij =0

L, -2L;+1,=D

(7.88)

,-j,when nij = 1
where D;; = [x; — X; [?, and I > O represents I is positive semidefinite.

2. The eigenvalues A} > A3 > --- > A}, and the corresponding eigenvectors v}, v3, ...,
v}, are obtained by diagonalizing L.

3. Dimensionality reduction by

in which v}; are componentwise elements of v} .

tj

Landmark-MVU (LMVU) [870] is a modified version of MVU which aims at solving
larger-scale problems than MVU. It works by using the inner product matrix A of ran-
domly chosen landmarks from x; to approximate the full matrix I, in which the size of
A is much smaller than I.

Assuming the number of landmarks is m which are a,, a,, ..., a,, respectively. Let
Q [870] denote a linear transformation between landmarks and original dimensional data
x; € RV, i=1,2,..., M, accordingly,

S| a;

X a
. ~Q- . (7.90)

XM am

in which
X, ~ ) Qa;. (7.91)
J

Assuming the reduced dimensionality landmarks of a;, a,,...,a, are ¥,,¥5, ..., ¥,
and the reduced dimensionality samples of X, X,,...,X,, are y;,¥,, ..., ¥y then the
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linear transformation between y,,y,,...,¥, and ¥,.¥,,...,¥, is Q as well [870],
consequently,
Y1 ):’1
Y2 Y2
. ~Q- . (7.92)
yM ym
Matrix A is the inner-product matrix of a;, a,, ..., a,,
A= Y= (7.93)

Hence the relationship between I and A is
I~ QAQ”. (7.94)
The optimization problem (7.88) can be reformulated into the following form:

maximize

trace (QAQT)

subject to

A>=0

Zij (QAQT)ij =0

Diyj < D;;, whenn;; =1,

ij>

(7.95)

where
D, = |x; — x;|? (7.96)
DY, = (QAQ"); — 2(QAQ");; + (QAQ") (7.97)

and A > O represents A is positive semidefinite. The optimization problem (7.95) differs
from the optimization problem (7.88) in that equality constraints for nearby distances
are relaxed to inequality constraints in order to guarantee the feasibility of the simplified
optimization model.

LMVU can increase the speed of programming but at the cost of accuracy.

7.10 Ensemble Learning

Ensemble learning tries to use multiple models to obtain better predictive performance
which means a target function is learned by training a finite set of individual learners
and combining their predictions [871]. Ideally, if there are M models with uncorrelated
errors, simply by averaging them the average error of a model can be reduced by a factor
of M [872]. The common combination schemes include [873]:

e voting;
e sum, mean, median;
e generalized ensemble;
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adaptive weighting;

stacking;

borda count;

logistic regression;

class set reduction;
Dempster-Shafer;

fuzzy integrals;

mixture of local experts;
hierarchical mixture of local experts;
associative switch;

bagging;

boosting;

random subspace;

neural tree;

error-correcting output codes [874].

Sometimes, the more general concept than ensemble learning is meta learning. Meta
learning [875] tries to learn the interaction between the mechanism of learning and the
concrete contexts in which that mechanism is applicable based on meta data [876].

7.11 Markov Chain Monte Carlo

MCMC methods [877—-879] are a class of sampling algorithms. A Markov chain is con-
structed such that the equilibrium distribution of Markov chain is the same as the desired
density of the sampled probability distribution.

The key point of Monte Carlo principle is to draw a set of ii.d. samples x,,n =
1,2,..., N from the PDF p(x) defined on a high-dimensional space [878]. These N
samples can be exploited to approximate the PDF p(x) as [878]

1 N
Px) =5 ) 8 —x,). (7.98)
n=1

Based on Equation (7.98), Monte Carlo integration tries to compute integral using large
randomly-generated numbers,

1 N
N =5 2 f ). (7.99)
n=1
As N — oo, then,
1(f) =/f(x)p(x)dx. (7.100)

Suppose we want to calculate the integral [ f (x)g(x)dx. However, the samples from

the PDF ¢(x) are hard to generate. But % is easy to evaluate. Thus,

1 - q(x,)
/ f0g(dx ~ = ;f(xn) (p (xn)) , (7.101)

where x, is drawn from the PDF p(x). This method is called importance sampling.
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The Metropolis-Hastings algorithm is one of the most popular MCMC methods [878]. In
order to get samples from the PDF p(x), the Metropolis-Hastings algorithm is performed
as [878]:

Start with any initial sample x,, such that p(x,) > 0.
Sample u from the uniform distribution between 0 and 1.
Sample x* from the proposal distribution ¢ (x, | x,,).
Calculate

Eal e

P(x)g(x, | x*) } . (7.102)

o = min {1,
p(x,)q(x* | x,)

5. Accept x* as x,,; = x* if u < «; otherwise, reject x* as x,,; = x,,.
6. Go to step 2.

The Metropolis-Hastings algorithm can be reduced to the Metropolis algorithm if the
proposal distribution is symmetric, that is,

g(x* | x,)=qx, | x),n=12,... (7.103)
and the calculation of « in Equation (7.102) can be simplified as

P(X*)}
"px) )

« = min {l (7.104)
MCMC can work for various algorithms and applications within the framework of machine
learning [878,880-898]. MCMC can be explored for various optimization problems,
especially for large-scale or stochastic optimization [899-907].

Gibbs sampling is a special case of the Metropolis-Hastings algorithm. Gibbs sampling
gets samples from the simple conditional distributions instead of the complex joint distri-

butions. If the joint distribution of {X, X,, ..., Xy} is p(x}, X,, ..., xy), the k-th sample
{x{k), xék), R x,(\f)} can be obtained sequentially as follows [908]:
1. Initialize {X,, X,, ..., Xy} as {xl(o), xéo), R x](\?)}.
2. Sample x,(zk) from the conditional distribution
k
)~
(k) (k) (k—1) (k—1)
Pr(X, =x, | X;=x ..., X, 1 =%, , X, 1 =X, ..., Xy =Xy ).

(7.105)

MCMC has also been applied to cognitive radio network [909-912].

7.12 Filtering Technique

Filtering is the common approach in signal processing. For communication or radar, fil-
tering can be used to perform frequency band selection, interference suppression, noise
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reduction, and so on. In machine learning, the meaning of filtering is greatly extended.
Kalman filtering and particle filtering are explored to deal with the sequential data, for
example, time series data. Collaborative filtering are exploited to perform recommenda-
tions or predictions.

7.12.1 Kalman Filtering

Kalman filtering is a set of mathematical equations that provides an efficient computational
and recursive strategy to estimate the state of a process such that the mean of squared error
can be minimized [913,914]. Kalman filtering is very popular in the areas of autonomous
or assisted navigation and moving target tracking.

Let’s start from the simple linear discrete Kalman filtering to understand how Kalman
filtering works. There are two basic equations in Kalman filtering. One is the state equation
to represent the state transition. The other is the measurement equation to obtain the
observation. The linear state equation can be expressed as

X, =A,x,_,+B,u, +w, (7.106)

n—n

where

X,, is the current of a process or a dynamic system and x,_, is the previous state;

A, represents the current state transition model;

u, is the current system input;

B, is the current control model;

w, is the current state noise which follows a zero mean multivariate normal distribution

with covariance W,,.

The linear measurement equation is represented as

z, =Hx, +v, (7.107)

n-—n

where

e z, is the measurement of the current state x,,;

e H, is the current observation model;

e v, is the current measurement noise which follows a zero mean multivariate normal
distribution with covariance V,,.

The goal of Kalman filtering is to estimate X,, n = 1, 2, ... given x,. Meanwhile, A,,
B,,H,, W,, and V, are all known. State noises and measurement noises are all mutually
independent.

There are two main steps in Kalman filtering [913]. One is the predict step and the
other is update step. These two steps are performed iteratively.

The procedure of the predict step is [913]:

1. Predict a priori current state X,,

Ryt = A1t + B, (7.108)

n—1ln—
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2. Predict a priori current error covariance of state estimation

P,, , =A,P

njn—1 —

nfllnflAr]l" +Wn (7109)

The procedure of the update step is [913]

1. Obtain the current measurement residual r,

r, =z, —HX,, . (7.110)
2. Obtain the current residual covariance R,
R,=H/P,, _H +V,. (7.111)
3. Get the current gain of Kalman filtering G,
G,=P,, HR" (7.112)
4. Update a posteriori current state X,, which can be treated as X,
X0 = X1 + G, 1, (7.113)
5. Update a posteriori current error covariance of state estimation P, ,
P,,=1d-GH)P,, ;. (7.114)

Linear Kalman filtering can be extended to the extended Kalman filtering and
the unscented Kalman filtering to deal with the general nonlinear dynamic system. In the
nonlinear Kalman filtering, the state transition function and state measurement function
can be the nonlinear functions shown as

X, = f(X,_1,u,) +W, (7.115)
and
z, =h(x,)+v,. (7.116)

If the nonlinear functions are differentiable, the extended Kalman filtering computes
the Jacobian matrix to linearize the nonlinear functions [913]. The state transition model
A, can be represented as

af
A" = & |in—l\n—]~,“n (7117)
and the state observation model H, can be represented as
oh
= |;(n"ﬁ1 . (7.118)

If the functions f and g are highly nonlinear and the state noise and measurement
noise are involved in the nonlinear functions, the performance of the extended Kalman
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filtering is poor. We need to resort to the unscented Kalman filtering to handle this tough
situation [915,916].

The unscented transformation is the basis of the unscented Kalman filtering. The
unscented transformation can calculate the statistics of a random variable which goes
through a nonlinear function [915]. Given an L-dimensional random variable x with
mean X and covariance C,, we would like to calculate the statistics of y which satis-
fies y = f(x). Based on the unscented transformation, 2L 4 1 sigma vectors are sampled
according to the following rule,

Xg =

£+ (/L+nNCY, 1=1,2,...,L (7.119)
x,=%— (/L +M0C), ;. l=L+1,L+2, ... 2L,

where A is a scaling parameter and (,/(L + 1)C,), is the /-th column of the matrix square
root [916]. These sigma vectors go through the nonlinear function to get the samples of y,

X

Y, = f(x),0=0,1,2,...,2L. (7.120)

Thus, the mean and covariance of y can be approximated by the weighted sample mean
and the weighted sample covariance [916],

2L
gy w™y, (7.121)
1=0
and
2L
C~Y w'y-Ny -9 (7.122)
1=0
where w™ and w,* are given deterministically [916].

The state transition function and the state measurement function for the unscented
Kalman filtering can be written as [916]

X, = f(Xn—l’ w,_i wn—l) (7123)
and
z, = h(x,,V,). (7.124)

The state vector for the unscented Kalman filtering is redefined as the concatenation of
X,, W,, and v, [916],

Xn
K= | w, (7.125)
Vit1
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There are three steps in the unscented Kalman filtering. The first step is to calculate
sigma vectors. The second step is the predict step and the third is the update step. These
three steps are performed iteratively. The whole procedure of the unscented Kalman

filtering is [916],

1. Calculate sigma vectors

UKF __ gUKF
XO,n—l - anl\nfl

xR = R+ (,/(L + A)PEKF) A=1,2,...,L

l

XPRE =L — (,/(L +A)P}j§f) JA=L+1,L+2,...,2L,

I—L

where PVXT is equal to

UKF n—1ln—1 0 0
Pnfl = 0 Wn—l 0
0 0V

2. The predict step

X _ X w _
Xl,nln—l - f(xl,n—l’ u,_, Xl,n—1)7l - 07 1’ 2’ AR 2L

2L
bt _ E (m) ,x
ann—l - w; X],n\n—l
=0

— § (€) (X 3 X L T
Pn|n—1 - w, (Xl.nln—] - ann—l)(xl,n\n—l - Xn\n—l) :
=0

3. The update step

_ b v
2 pin—1 = R 15 X pjn—1)

2L

= _ (m)

Zyn-1 —E Wy "2y pip—1
=0

r,=1z,— Zn\n—l
2L
77 _ (c) = ~ T
Pnln—l - § :wl (zl,n\n—l - znln—l)(zlﬁn\n—l - znln—])
=0
2L
X Z _ (©) X ol [~ T
nin—1 = E :wz X7 1 = X1 2 =1 — Zyp—1)
=0

G, =P, (P;Zﬂf:fl)fl

(7.126)

(7.127)

(7.128)

(7.129)

(7.130)

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

(7.136)
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in\n = inln—l + Gnrn (7137)
P, =P,  —GP/ G (7.138)

Kalman filtering and its variants have been used in cognitive radio network [917-927].

7.12.2  Particle Filtering

Particle filtering is also called sequential Monte Carlo method [878,928,929]. Particle
filtering is the sophisticated model estimation technique based on simulation [928]. Particle
filtering can perform the on-line approximation of probability distribution using a set of
randomly chosen weighted samples or particles [878]. Similar to PSO, multiple particles
are generated in particle filtering and these particles can evolve.

Similar to Kalman filtering, particle filtering also has an initial distribution, a
dynamic state transition model, and the state measurement model [878]. Assume
X, X;, X, ..., X,, ... are the underlying or latent states and y,,y,,...,Yy,,... are the

» Apo

corresponding measurements.

e The initial distribution of x is p(X).
e The dynamic state transition model is p(X,, | Xg,—1> Yim—1), B =1,2,....
e The state measurement model is p(y, | Xp.1» Yim_1), B =1,2,....

Xon = {X0: X, ..., X,} and y.., ={y;, ¥2, ..., ¥,}. Markov conditional independence
can be used to simplify the models as p(Xx, | Xg.,—1> Yin_1) = P(X, | X,_;) and p(y, |

Xg.0» Yin-1) = P, | X,) [878].
The basic goal of particle filtering is to approximate the posterior p(Xo., | ¥,.,) as

L
p(XO:n | yl:n) ~ Z wl,nS(XO:n - XI,O:n)7 (7139)
=1

where L is the number of particles used in particle filtering; x, ., is the [-th particle
maintaining the whole trajectory; w, , is the corresponding weight which should be nor-
malized,

L
dow,=ln=12... (7.140)
=1

Based on the concept of importance sampling, sequential importance sampling is used to
generate the particle and the associated weight [930]. The importance function is chosen
such that [930]

qXoop | Yi:n) = 4y | Xo0015 Y109 Koy | Yicn—1)- (7.141)

Givenx; g, ,/=1,2,...,Land w;, |,/ =1,2,..., L, particle filtering updates the
particle and the weight as follows [878,930]:
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1. Sample x, as,
X~ g, | X001 Y1) L = 1,2, ..., L. (7.142)

2. Augment the old particle x, ,,,_; to the new particle x, ,,, with x; .
3. Update the weight as,

p(yn | Xl,n)p(xl.n | X],n—l)
4%, 1 X1 0015 Yi:n)

(7.143)

Wy = Wi p—g
4. Normalize the weight as shown in Equation (7.140).

If the importance function is simply given by p(x, | x;,_;), then the weight can be
updated as [928,930],

Wy, = Wy, DY, | X)- (7.144)

However, after a few iterations for sequential importance sampling, most of the parti-
cles have a very small weight. The particles fail to represent the probability distribution
accurately [928]. In order to avoid this degeneracy problem, sequential importance resam-
pling is exploited. Resampling is a method that gets rid of particles with small weights
and replicates particles with large weights [930]. Meanwhile, the equal weight is assigned
to each particle.

Particle filtering and its variants have been used in cognitive radio network [931-933].

7.12.3 Collaborative Filtering

Collaborative filtering [934] is the filtering process of information or pattern. Collabo-
rative filtering deals with large scale data involving collaboration among multiple data
sources. Collaborative filtering is a method to build the recommender system, which
exploits the known preferences of some users to make recommendation or prediction of
the unknown preferences for other users [935]. Item-to-item collaborative filtering is used
by Amazon.com to match each of the user’s purchased and rated items to the similar items
which are combined into a recommendation list [936]. Netflix, an American provider of
on-demand Internet streaming media, held an open competition for the best collaborative
filtering algorithm. A large scale industrial dataset with 480,000 users and 17,770 movies
was used for the competition [935].
The challenges of collaborative filtering are [935]:

data sparsity;

scalability;

synonymy;

gray sheep and black sheep;
shilling attacks;

personal privacy.
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Matrix completion [643,937] can be used to address the issue of data sparsity in
collaborative filtering. The data matrix for collaborative filtering can be recovered even if
this matrix is extremely sparse as long as the matrix is well approximated by a low-rank
matrix [937,938].

There are three categories for collaborative filtering algorithms [935]:

e memory-based collaborative filtering, for example, neighborhood-based collaborative
filtering, top-N recommendation, and so on;

e model-based collaborative filtering, for example, Bayesian network collaborative fil-
tering, clustering collaborative filtering, regression-based collaborative filtering, MDP-
based collaborative filtering, latent semantic collaborative filtering, and so on;

e hybrid collaborative filtering.

Collaborative filtering can be explored for cognitive radio network [939-942].

7.13 Bayesian Network

Bayesian network [943,944] is also called belief network or directed acyclic graphical
model. Bayesian network explicitly uncovers the probabilistic structure of dependency in
a set of random variables. It uses a directed acyclic graph to represent the dependency
structure, in which each node denotes a random variable and each edge denotes the relation
of dependency. Bayesian network can be extended to dynamic Bayesian network to model
the sequential data or the dynamic system. The sequential data can be anywhere. Speech
recognition, visual tracking, motion tracking, financial forecasting and prediction, and so
on are the temporal sequential data [945].

The well-known hidden Markov model (HMM) can be treated as one simple dynamic
Bayesian network. Meanwhile, the variants of HMM can be modeled as dynamic Bayesian
networks. These variants include [945]:

auto-regressive HMM;

HMM with mixture-of-Gaussians output;
input-output HMM;

factorial HMM;

coupled HMM,;

hierarchical HMM;

mixtures of HMM;

semi-Markov HMM;

segment HMM.

State space model and its variants can also be modeled as dynamic Bayesian networks
[945]. The basic state space model is also known as dynamic linear model or Kalman
filter model [945].

Bayesian network is a powerful tool for learning and inference in cognitive radio
network. Various applications of Bayesian network in cognitive radio network can be
found in [536,946-949].
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7.14 Summary

In this chapter, machine learning has been presented. Machine learning can be applied
everywhere to make the system intelligent. In order to give readers the whole picture of
machine learning, almost all the topics related to machine learning have been covered
in this chapter which include unsupervised learning, supervised learning, semi-supervised
learning, transductive inference, transfer learning, active learning, reinforcement learn-
ing, kernel-based learning, dimensionality reduction, ensemble learning, meta learning,
MCMC, Kalman filtering, particle filtering, collaborative filtering, Bayesian network,
HMM, and so on. Meanwhile, the references about applications of machine learning
in cognitive radio network have been given. Machine learning will be the basic tool to
make cognitive radio network practical.
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Agile Transmission Techniques (I):
Multiple Input Multiple Output

MIMO [68, 950-954] in wireless communication tries to exploit multiple antennas at both
the transmitter and the receiver to improve the performances of wireless communication
without additional radio bandwidth. These performances can be spectral efficiency, data
throughput, link range, link reliability, QoS of multiuser situation, and so on. MIMO
is the core technology of modern wireless communication. MIMO is widely adopted as
radio communication standards by IEEE 802.11, IEEE 802.16, and 3GPP LTE.

8.1 Benefits of MIMO

The benefits of MIMO can be generally summarized as three different gains:

e array gain;
e diversity gain;
e multiplexing gain.

8.1.1 Array Gain

Array gain means the average SNR increase at the receiver due to the signal coherent
combination by using multiple-antennas at transmitter and/or receiver [953,955]. Array
gain can also be called power gain which can increase energy efficiency. In order to
exploit array gain, channel knowledge or channel state information is required at both
transmitter and receiver. Beamforming is the signal processing technique which brings
array gain.

8.1.2 Diversity Gain

Diversity is used to combat fading in wireless communication [953,956]. Fading will
cause the signal power to drop significantly and degrade the communication perfor-

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

85UBD17 SUOWILLIOD) AA[IRID 3|qedi|dde ayy Aq peusenob afe sapie YO ‘8sn JO Sa|nJ 10} Akelq1auljuQ AB|IAA UO (SUO N PUOD-PUR-SWLLBIWOY A3 | 1M AReiq U1 [uo//SAdny) SUORIPUOD pue sWwB | 3Y) 39S *[£202/c0/62] uo AriqiauliuQ A|Im ‘utsaulbug jo AiseAaiun exeyq Ag /1op/wod Aa|im Azeiqujuo//sdny woly papeojumoq



324 Cognitive Radio Communications and Networking

mance [953]. Thus, multiple copies of the same signal can be transmitted through two
or more different communication channels. Diversity gain can also increase SNR. The
commonly used diversity schemes include:

e time diversity;
e frequency diversity;

e space diversity;

e polarization diversity;

e multi-user diversity.

In order to combine the signals from multiple communication channels at the receiver,
diversity combining techniques are needed which include:

e selection combining;
e switched combining;

e equal-gain combining;

e maximal-ratio combining.

If there are multiple antennas at the transmitter, transmit diversity is applied. Transmit
diversity can be extracted with or without channel knowledge at the transmitter [953].

We can also simply understand and differentiate array gain and diversity gain from the
perspective of random process. For the superposition of several random processes, array
gain can increase the mean and diversity gain can reduce the variance compared with the
single random process.

8.1.3 Multiplexing Gain

Multiplexing gain refers to the increase in capacity due to the simultaneous transmission of
different data streams on multiple spatial dimensions without additional power and radio
bandwidth [957]. Multiplexing gain can be achieved with or without channel knowledge
at the transmitter.

There is a fundamental tradeoff between diversity gain and multiplexing gain when
MIMO is explored [958, 959].

8.2 Space Time Coding

Space time coding tries to improve the reliability or link quality of data transmission by
using multiple antennas at the transmitter [960]. The two main types of space time coding
are [960]:

e space time block coding (STBC);
e space time trellis coding (STTC).

The coding is performed jointly in both time and space domains. The transmitted signals
in different time slots and from different antennas have some levels of correlation, which
leads to information redundancy. However, in order to provide multiplexing gain, layered
space time coding is explored. All these three space time codes require the receiver to
have channel state information.
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8.2.1 Space Time Block Coding

Space time block coding [961] is based on a linear code which is an error-correcting
code. A space time block code can be represented as

X1 X o Xy
Xo1 Xpp Koy

, (8.1)
Xry X2 o Xy

where x,,, is the modulated symbol which will be transmitted in the #-th time slot from
the m-th antenna. M is the number of antennas at the transmitter and 7 is the number of
total time slots. If K symbols are encoded within 7' time slots by space time block code,
then the code rate of space time block code is

r= T (8.2)

Alamouti code is the simplest and the most well-known space time block code [962].

Alamouti code was originally designed for the system with two antennas at the transmitter
and the coding matrix is expressed as [962]

o= " " (8.3)
2 _— _xg XIIJ . .

Alamouti code does not require channel knowledge at the transmitter and obtains the
gain of transmit diversity. Alamouti code can achieve full code rate of one. Alamouti
code is also an orthogonal space time block code [963,964], which means for Alamouti
code, the product of its coding matrix with its Hermitian transpose is equal to the 2 x 2
identity matrix,

(8.4)

cop=[Hlet 0]

2 2
0 |21 7 + [x,]

Generally, the orthogonal space time block coding is performed such that any pair
of columns from the coding matrix is orthogonal. In other words, the data vectors for
different antennas are mutually orthogonal. This orthogonality will make the decoding at
the receiver simple, linear, and optimal.

If there are three antennas at the transmitter, the coding matrix with the code rate of %
is [964]

X X A3
_XZ )Cl _.X4

C,i = (8.5)
3.1 H H H .
2 X1 Xy X3
—xi X =Xl
—x3H xf x{
H H H
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and the coding matrix with the code rate of % is [964]

— x3 -
X% *
H H X3
A 7z
C&% = ﬁ ﬁ —Xx1 —x]H-&-xz—x{[ . (8.6)
V2o V2 2
xéq xg" x| 7x1H+x2+x§'1
L V2 V2 2 _

If there are four antennas at the transmitter, the coding matrix with the code rate of %
is [964]

xl .XZ .)C3 )C4

—X, X, Xy X3
—X3 Xg X =X
Coy=| W W (8.7)
°2 )Cl x2 X3 )C4
—xytxft —xg X!
B A

H H L H H
—x, =x5 X)X

and the coding matrix with the code rate of % is [964]

r x x X3 X3 ]
1 2 V2 V2
H H X3 X3
—x x 23 _5
2 1 V2 V2
= H H H H H H . .
C4’% X3 ) S i s W Bt M (8.8)
N 2
ﬁ _ﬁ xl—le+x2+x2H —xl—xll"—x2+x2H
L V2 V2 2 2 i

8.2.2 Space Time Trellis Coding

Space time block code can only provide diversity gain. In order to exploit both diversity
gain and coding gain, we need to explore space time trellis coding [965, 966]. Space time
trellis coding combines transmit diversity and trellis coded modulation to improve the BER
performance. The encoding and decoding of space time trellis code are more complex than
the counterparts of space time block code due to the utilization of convolutional coding.

8.2.3 Layered Space Time Coding

Layered space time coding can provide multiplexing gain [967]. Meanwhile, diversity gain
and coding gain can still be achieved dependent on code structure. Based on layered space
time coding, Bell laboratories layered space time (BLAST) is the well known transceiver
architecture for achieving spatial multiplexing over MIMO wireless communication
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system [952,968-970]. BLAST is an extraordinarily bandwidth-efficient approach to
wireless communication which takes advantage of the spatial dimension by transmitting
and detecting a number of independent co-channel data streams using multiple, essentially
co-located, antennas. At the transmitter, several independent data streams are sent from
multiple antennas on the same bandwidth. The encoding formats of BLAST include:

e Diagonal BLAST (D-BLAST);
e Horizontal BLAST (H-BLAST);
e Vertical BLAST (V-BLAST);

e Turbo BLAST [971].

At the receiver, each receive antenna sees all of the transmitted data streams superim-
posed. There are three main decoding strategies:

e ML decoding;
e linear decoding includes zero-forcing criterion and MMSE criterion;
e nonlinear decoding called successive interference cancellation [972].

In successive interference cancellation, ordering plays an important role [967, 973, 974].
The received symbol with the highest SINR among all the undetected symbols should
be detected first. Then, this symbol will be canceled as the interference for the follow-
ing procedure.

8.3 Multi-User MIMO

Multiuser MIMO [975] can be treated as advanced MIMO which extends MIMO tech-
niques from a single wireless communication link to multiple users.

8.3.1 Space-Division Multiple Access

In wireless communication, there are four main multiple access methods which allow
multiple users to share the same transmission channel using different radio resources:

e Frequency-division multiple access (FDMA). FDMA is based on the frequency-
division multiplexing scheme. Different nonoverlapping frequency bands are allocated
to different users or different data streams. An example of an FDMA system is the
first-generation cellular network. In order to increase spectral efficiency of FDMA,
OFDMA is used based on the well-known OFDM scheme.

e Time-division multiple access (TDMA). TDMA is based on the time-division multi-
plexing scheme. Different time slots are allocated to different users or different data
streams. An example of TDMA system is the second-generation cellular network.

e Code-division multiple access (CDMA). CDMA is based on the code-division multi-
plexing scheme. CDMA is also called spread spectrum multiple access. Different codes
are allocated to different users or different data streams. An example of CDMA system
is the third-generation cellular network.
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e Space-division multiple access (SDMA). In SDMA, different spatial subchannels or
spatial pipes are allocated to different users through spatial multiplexing or spatial
diversity. The cellular network deployed with multiple antennas can explore SDMA to
support multiuser wireless communication.

In order to implement SDMA, smart antenna, beamforming or phase array technique can
be used for directional signal transmission or reception. In this way, power is saved and
interference is avoided. The researches related to SDMA, smart antenna, beamforming,
and phase array technique can be found in [976-988].

8.3.2 MIMO Broadcast Channel

MIMO broadcast channel [68,953, 989, 990] is the multiuser downlink channel. In MIMO
broadcast channel, the joint signal processing is allowed at the transmitter.

In MIMO broadcast channel, there is one transmitter with M > 1 antennas and there
are K users to receive the signals. There are N, > 1 antennas at the k-th user. Assume
x € CM*! ig the transmitted signal which contains the independent information for each
of the users [989]. The covariance matrix of x is C,. The average transmitted power
should be bounded which means trace(C,) < P [989].

H, € C"*M s the channel state matrix from the transmitter to the k-th user. n, € C*!
represents the circularly symmetric complex Gaussian noise at the k-th user which follows
normal distribution with zero mean and unit variance on each vector component [989].
Let y, € CMe*! be the received signal at the k-th user which can be expressed as

Ve =Hx+n,k=12,...,K. (8.9)

Let

y= . (8.10)

H=| . (8.11)

and

n=| . (8.12)
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then the mathematical model for MIMO broadcast channel is
y =Hx+n. (8.13)

Different from single user wireless communication system, for multiuser MIMO, the
sum-rate capacity and the achievable rate region are used to evaluate the performance
of potential algorithms or schemes. In MIMO broadcast channel, dirty paper coding
[991-993], a precoding technique, is exploited to achieve the sum-rate capacity. The
idea of dirty paper coding is if the interference is known, the interference can be pre-
subtracted at the transmitter. In this way, the performance remains the same even with
the interference. The sum-rate capacity of MIMO broadcast channel can be achieved by
solving the following optimization problem [989,992-995]:

maximize

K I4+H; (2 o CHHY |
Zbk.=1 log IHHE (Y CBL| 8.14)
subject to .
& trace(Cy) < P
C,>0,k=1,2,...,K,

where the maximization is over the M x M positive semidefinite covariance matrices
C,,C,, ..., Cg. The optimization problem (8.14) is not a concave optimization problem
which is hard to solve. Meanwhile, both all the channel state information and the additive
interference information should be known. Ordering of users for precoding is also very
important. Because by using dirty paper coding, the interference from the unintended
signal can be reduced or completely eliminated [989].

Due to the duality of MIMO broadcast channel and MIMO multiple access channel,
the sum-rate capacity of MIMO broadcast channel is equal to the sum-rate capacity of the
dual MIMO multiple access channel which gives a beautiful solution to the optimization
problem (8.14) [989, 993].

Although the sum-rate capacity of MIMO broadcast channel can be achieved by dirty
paper coding, it is hard to implement dirty paper coding with high computational complex-
ity in practice [996]. Hence, the pre-equalizer can be explored. Zero-forcing precoding is
a transmission method in MIMO broadcast channel [997,998]. Zero-forcing beamform-
ing has been presented in [996] together with the user selection scheme and scheduling
scheme. Low-complexity linear zero-forcing has been proposed for MIMO broadcast
channel in [999]. Random matrix theory has been used to analyze the zero-forcing
precoding in MISO broadcast channel with limited feedback [1000]. Zero-forcing pre-
coding is also used together with nonlinear Tomlinson-Harashima precoding to improve
the performance of MIMO broadcast system [1001]. Zero-forcing dirty paper coding is
proposed in [992]. Besides zero-forcing equalizer, the other well-known linear equalizer
is MMSE equalizer. Error performance has been analyzed for linear zero-forcing and
MMSE precoders in MIMO broadcast channel [1002]. If imperfect channel knowledge
is assumed at the transmitter, robust MMSE precoding is presented in [1003]. Precod-
ing for point-to-multipoint transmission over MIMO ISI channels has been presented in
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[1004]. Both intersymbol interference and multiuser interference are taken into account.
The nonlinear spatial/temporal Tomlinson-Harashima precoding is explored [1004, 1005].

Block diagonalization is a popular linear precoding for MIMO broadcast channel
[1006—1008]. The signal of each user is multiplied by the precoding matrix before the
signal is transmitted. In order to eliminate the mutual interference, the precoding matrix
for each user should be designed to lie in the null space of channel matrix of all the
other users. Hence, the number of users supported by block diagonalization is dependent
on transmitter antennas, receiver antennas of each user, and channel state information.
Block diagonalization can be treated as the generalized zero-forcing or channel inversion
to deal with MIMO broadcast channel when users have more than one antenna [1009].
MMSE based block diagonalization can also be applied [1010]. The achievable through-
put for the optimal strategy of dirty paper coding has been compared to that achieved
with suboptimal and lower complexity linear precoding, for example, zero-forcing and
block diagonalization, in high SNR for MIMO broadcast channel [1011]. Both strategies
exploit all available spatial dimensions and therefore have the same multiplexing gain,
but an absolute difference in terms of throughput does exist [1011].

Most of the precoding schemes require channel state information at the transmitter.
However, it is difficult for the transmitter to have perfect channel knowledge. Meanwhile,
in order to reduce the overhead of the system, finite rate feedback is practical. MIMO
broadcast channels with imperfect channel state information, partial side information,
limited feedback, or finite rate feedback have been considered in [1003, 1008, 1012—-1017].

Multiuser diversity is one form of selection diversity among users when the number of
users is large [996]. Multi-user diversity can be achieved by user selection and scheduling.
In MIMO broadcast system with large number of users, the transmitter cannot serve all the
users simultaneously. Multiuser selection and scheduling should be used to choose a group
of users to be served. The selection criteria can be the channel conditions of users, fairness,
sum-rate capacity of the system, and so on. Multiuser selection and scheduling in MIMO
broadcast channel can be found in [996, 1006, 1014—-1016, 1014—-1016, 1018—-1020].

The work about MIMO broadcast channel or MIMO downlink system in cognitive
radio network can be found in [1021-1025].

8.3.3 MIMO Multiple Access Channel

MIMO multiple access channel [990, 993, 1026] is the multiuser uplink channel. In MIMO
multiple access channel, the joint signal processing is allowed at the receiver.

In MIMO multiple access channel, there is one receiver with M > 1 antennas and there
are K users to transmit the signals. There are N, > 1 antennas at the k-th user. Assume
x, € CNex1 is the transmitted signal from k-th user. The covariance matrix of x; is Q.
If there is a sum-power constraint, then Z,le trace(Q,) < P.

H! € CM*Nk is the channel state matrix from the k-th user to the receiver. n € C**!
represents the noise at the receiver. Hence, the mathematical model of MIMO multiple
access channel can be expressed as

K
Yuac = »_H{'x +n. (8.15)
k=1
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The sum-rate capacity of MIMO multiple access channel can be achieved by solving
the following optimization problem [989, 990]:

maximize

log |1+ 3, HY QH, |

subject to (8.16)
Zle trace(Q,) < P

Q. >0,k=1,2,...,K,

where the maximization is over the N, x N, positive semidefinite covariance matrices
Q. k=1,2,..., K. The objective function in the optimization problem (8.16) is a con-
cave function of the covariance matrices. The efficient numerical algorithms exist to solve
the optimization problem (8.16), for example, iterative water filling algorithm [990, 1027].
Meanwhile, it is well known that the dirty paper rate region for MIMO broadcast channel
is equal to the capacity region of the dual MIMO multiple access channel with sum-
power constraint P [993,989,990]. Meanwhile, there is a deterministic transformation
which maps from uplink covariance matrices Q;, Q,, ..., Qx to downlink covariance
matrices C,, C,, ..., Cg that achieve the same rate and use the same power [990].

8.3.4 MIMO Interference Channel

MIMO interference channel [836, 1028, 1029] includes more than one transmitter and
more than one receiver. In MIMO interference channel, neither transmitters nor receivers
directly involve joint signal processing.

Assume there are K transmitter-receiver communication links in MIMO interference
channel [1029]. There are M, antennas at the k-th transmitter and there are N, antennas
at the corresponding receiver. x, € CM*! is the transmitted signal vector for the k-th
user. H,; € CVeMi represents the channel state matrix from the /-th transmitter to the
k-th receiver. Hence, the received signal vector y, € C Nix1 for the k-th receiver is [1029]

K

Yo = Hyx; + Z H;;x; +ny, (8.17)
I=1.1#k

where n, is the AWGN vector at the k-th receiver with zero mean and covariance matrix
Co,- 2_i—14 HyX; is the interference to the k-th receiver.

The straightforward way to handle MIMO interference channel is to exploit precoding
matrix V € C¥* and filtering matrix U € C%*Nk to suppress the inference which can
be expressed as [1029]

K
rk = UkakaSk + Z UkaIVlsl + Uknk, (818)
1=1,1%k

where d is the number of independent data streams s, for the k-th user. U, performs the
linear dimensionality reduction from y, € C¥>*! to r, € C%*! [1029]. r, can be further
processed to extract the transmitted signals.

It is well known that the capacity in AWGN channel is proportional to log(SNR) at high
SNR. Hence, we can use the simple concept of spatial degrees of freedom to quantify the
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maximum multiplexing gain of the MIMO system [1028]. The spatial degrees of freedom
can be defined as [1028]

. Cx(p)
n = lim ,
s log(p)

where p represents SNR and Cy,(p) is the corresponding sum capacity.

For a single user MIMO system with M transmitters and N receivers, n = min{M, N}
[1028]. For MIMO broadcast channel with two users, n = min{M, N, + N,} where M is
the number of antennas at the transmitter and N,, k = 1,2 is the number of antennas at
the k-th receiver [1028]. Similar result is obtained for MIMO multiple access channel.
For two-user MIMO Gaussian interference channel with full rank channel state matrices,
if perfect channel knowledge is known at all transmitters and receivers,

(8.19)

n = min{M, + M,, N, + N,, max{M,, N,}, max{M,, N,}}, (8.20)

where M,k = 1,2 is the number of antennas at the k-th transmitter and Ny, k = 1,2
is the number of antennas at the k-th corresponding receiver [1028]. The zero-forcing
scheme is sufficient to obtain all the available degrees of freedom [1028].

Furthermore, degrees of freedom of MIMO Gaussian interference channel with K users
have been discussed in [836]. Assume there are M antennas for each transmitter and there
are N antennas for each receiver. For the outer bound of degrees of freedom [836],

n < Kmin{M, N},if K <R (8.21)
and max{M, N} .
n<K—— if K> R, (8.22)
R+1
where
max{M, N}J (8.23)
min{M, N}~ )

The achievable inner bound of degrees of freedom is obtained under the assumption
that the channel coefficients are time-varying and drawn from a continuous distribution
[836]. For the inner bound of degrees of freedom [836],

n > Kmin{M, N},if K <R (8.24)
and

R
n > el min{M, N},if K > R. (8.25)

When R defined in Equation (8.23) is equal to an integer, then the bound is tight which
means [836]

n = K min{M, N}, if K < R (8.26)
and R
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where the results of the achievable degrees of freedom is based on interference align-
ment [836]. If channel coefficients of MIMO interference channel are constant, using
interference alignment together with zero-forcing can achieve more degrees of freedom
than using only zero-forcing for some situations [836]. For example, if MIMO Gaus-
sian interference channel with constant channel coefficients has R + 2 users where each
transmitter has M > 1 antennas and each receiver has RM, R = 2, 3, ... antennas, then

RM + LWJ degrees of freedom can be obtained [836]. RM degrees of freedom
can be achieved using zero-forcing [836]. Hence, if M > R + 2, then | -+>-— ] >0 and

more than RM degrees of freedom can be achieved [836].
There are three general approaches to deal with interference management:

R2+2R 1

e decode interference;

e treat interference as noise;

e orthogonalize interference and signal in time, frequency, code, and space, for example,
interference alignment.

Interference alignment is the core technique used in MIMO interference channel. Inter-
ference alignment refers to a construction of signals such that they cast maximized
overlapping shadows at the receivers where they constitute interference while they retain
distinguishable at the receivers where they are desired [541]. Hence, we need to restrict
interference into some subspaces and remain other subspaces for interference free commu-
nication. The challenge of interference alignment is that the global channel knowledge is
required. Distributed interference alignment has been presented using only local channel
knowledge instead of global channel knowledge [1030].

The benefits of user cooperation and cognitive message sharing for degrees of free-
dom of a two-user MIMO interference channel have been explored in [839]. The term
“cognitive message sharing” refers to the genie-aided type of message sharing among
cognitive radios [839]. Cognitive message sharing can increase the sum degrees of free-
dom [839]. Meanwhile, a cognitive transmitter may be more beneficial than a cognitive
receiver [839]. Constrained interference alignment and the spatial degrees of freedom of
MIMO cognitive networks have been studied explicitly in [1031]. Cognitive radios can
align their transmitted signals to produce a number of interference-free channels at each
secondary receiver without causing any interference to the primary user [1031].

Opportunistic interference alignment in MIMO cognitive networks has been presented
in [1032]. Power limitations lead the primary user to leave some of its spatial directions
unused [1032]. The opportunistic link of cognitive radio can be used to transmit data if
it is possible to align the interference produced on the primary link into unused spatial
directions [1032]. Similarly, opportunistic spatial orthogonalization has been proposed to
allow the existence of secondary users even if the primary user occupies all the frequency
bands all the time [1033]. Opportunistic spatial orthogonalization can be interpreted as
an opportunistic interference alignment scheme where the interference from multiple sec-
ondary users is opportunistically aligned at the direction that is orthogonal to the primary
user’s signal space [1033].
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8.4 MIMO Network

Traditionally, MIMO is a physical-layer technique. However, we cannot ignore the great
impact of MIMO on the performance of the whole network. Hence, cross-layer MIMO,
cooperative MIMO, MIMO routing, and so on have attracted much attention recently
[954,975].

Cross-layer MIMO explores cross-layer optimization for the networking system using
MIMO technique and configuration. Cross-layer optimization breaks virtually strict bound-
aries between layers and jointly designs and optimizes the whole communication archi-
tecture from physical layer to application layer [1034]. Cross-layer optimization for
MIMO-based wireless ad hoc network has been studied in [1035]. Multihop/multipath
routing optimization, power allocation, and bandwidth allocation are considered jointly.
Cross-layer optimization for MIMO-based mesh network with Gaussian vector broadcast
channel has been presented in [1036]. Jointly optimizing power allocation for dirty paper
coding and multihop/multipath routing in MIMO-based mesh network is considered. Dis-
tributed link scheduling, power control, and routing for multihop wireless MIMO network
have been developed in [1037].

A cross-layer optimization framework for effective interference management has been
developed to understand fundamental tradeoffs among possible MIMO gains in multi-
hop networks [1038]. Network utility maximization is also used for cross-layer design of
MIMO-enabled wireless local area network(WLAN) [1039]. A cross-layer framework
to determine the user selection, rate selection, power selection as well as diversity/
multiplexing selection has been studied for multiuser MIMO system [1040]. A cross-layer
transmission control protocol (TCP) modeling framework for MIMO wireless system has
been presented and the TCP performances of two representative MIMO systems, namely,
the BLAST system and the orthogonal STBC system, have been analyzed [1041]. For
service-differentiated multiuser MIMO systems, joint feedback and scheduling scheme is
used to meet both average and instantaneous delay constraints of delay sensitive applica-
tions [1042]. A cross-layer design approach to multicast service in wireless network with
MIMO links has been shown in [1043].

Cooperative MIMO explores the distributed MIMO techniques in the coordinated fash-
ion [1044]. In cooperative MIMO, antennas belong to different users, terminals, or base
stations with different geo-locations. Diversity gain, especially cooperative diversity, and
multiplexing gain can still be achieved in cooperative MIMO. Simulation results shown in
[1044] indicate that distributed MIMO systems can provide large spatial diversity, and the
data rate in cooperative networks can be significantly increased. Relay is one realization
of cooperative MIMO. The basic relay strategies are:

e amplify-and-forward relay;
e decode-and-forward relay;
e compress-and-forward relay.

Infrastructure relay transmission with cooperative MIMO has been studied in [1045].
A signal is transmitted from a base station to a randomly located mobile station using
fixed-location relay stations [1045]. Compress-and-forward cooperative MIMO relaying
with full channel knowledge has been studied in [1046]. An achievable rate on the
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Gaussian MIMO relay channel is derived by using distributed vector compression tech-
niques [1046]. Throughput maximization of ad-hoc wireless networks using adaptive
cooperative diversity and truncated ARQ has been presented in [1047]. The relay nodes
are not fixed and are selected according to the channel conditions [1047]. Transmitter
antenna selection strategies of cooperative MIMO amplify-and-forward relay network
have been analyzed in [1048]. One optimal strategy and two suboptimal strategies are
considered. Optimized distributed MIMO for cooperative relay network has been intro-
duced in [1049]. An optimization criterion has been derived for the decision of signature
vector used in the optimized distributed MIMO. Discrete stochastic algorithms have been
exploited for joint transmit diversity optimization and relay selection for multirelay coop-
erative MIMO system [1050]. The performance is shown to converge to the optimum
exhaustive solution [1050].

Joint source and relay optimization for two-way MIMO multirelay networks has been
investigated in [1051]. An iterative algorithm is developed to jointly optimize the source,
relay, and receive matrices such that the two-way sum MSE of the signal waveform
estimation is minimized [1051]. Cooperative power scheduling for a network of MIMO
links has been presented in [1052]. Price-based iterative water filling algorithm is a dis-
tributed algorithm by which each link computes its power scheduling through an iterative
and cooperative process [1052]. Cooperative and constrained MIMO communications in
wireless ad hoc/sensor networks have been investigated in [1053]. Given constraints of
energy, delay, and data rate, a source node dynamically selects its cooperating nodes from
its neighbors to form a virtual MIMO system with communication to the destination node
[1053]. Similarly in a wireless sensor network, it is possible to group several sensors to
form a virtual MIMO link [1054]. A distributed MIMO-adaptive energy-efficient cluster-
ing/routing scheme has been proposed in [1054], which tries to reduce energy consumption
in a multihop wireless sensor network.

Multicell MIMO cooperative networks have been analyzed in [1055]. Multicell cooper-
ation can dramatically improve the system performance by exploiting intercell interference
[1055]. A linear precoding technique called soft interference nulling has been explored in
cooperative MIMO celluar networks for low-complexity implementation [1056]. Coopera-
tion among base stations allows the joint encoding of user signals, which can successfully
handle the interference [1056]. The idea of cooperation is also used in LTE-Advanced
called coordinated multipoint transmission/reception [1057-1059]. Cooperative cellular
networks using multiuser MIMO have been considered in [1060]. The impacts of the
scheduling criterion, cell density, and coordination on the average and cell edge user rates
across different designs have been analyzed [1060]. QoS-aware base station selections for
distributed MIMO links in broadband wireless networks have been presented in [1061].
The BS usages can be minimized and the interfering range can be reduced [1061]. Capac-
ity of a multicell multi-antenna cooperative cellular network with co-channel interference
has been analyzed in [1062]. Simulation results shown in [1062] indicate that cooperative
transmission can improve the capacity performance of multicell multi-antenna cooperative
cellular networks. Capacity of MIMO cellular systems with base station cooperation has
been comprehensively studied in [1063]. Several bounds are derived for the minimized
transmitted power of the rate-constrained MIMO cellular systems with various base station
cooperation strategies [1063].
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Wideband waveform design for relay cognitive network has been presented in
[1064]. Among the basic relay strategies, amplify-and-forward is the simplest scheme.
The received signal at the relay node is multiplied by the complex value and then
retransmitted to the destination. Extending from narrowband relay network to wideband
relay network, amplify-and-forward can be replaced by its wideband counterpart, called
filter-and-forward [1065]. FIR filter is implemented at the relay node. The received
signal is filtered and then re-transmitted to the receiver. Besides, in order to improve the
performance, the approach based on multiple relay nodes is also proposed in [1065] to
perform distributed cooperative beamforming. In relay cognitive networks [1064], there
is one transmitter, several relay nodes and one or several receivers. Assume there is
no direct communication link between the transmitter and the receiver. All the channel
knowledge is perfectly known. The transmitted waveform and the FIR filters at the relay
nodes are jointly designed such that the received SNR can beat the threshold derived
from QoS. However, the general formulation of this problem is not convex. It is hard to
find the global optimal solutions for the transmitted waveform plus the relay FIR filters.
Thus a new iterative method is proposed in [1064] to obtain the suboptimal solution and
the received SNR can still be guaranteed. With any initial transmitted waveform, the
relay FIR filters are jointly optimized similar to distributed cooperative beamforming.
Then the transmitted waveform is optimized with fixed relay FIR filters. Afterward, the
relay FIR filters are redesigned based on the previous optimized transmitted waveform.
This process continues until the transmitted waveform converges to a stable waveform.
Because cognitive network is taken into account, there are spectral mask constraints
imposed on the transmitted waveform and the forwarded signal from each relay node,
which will make the optimization issue more complex [1064].

8.5 MIMO Cognitive Radio Network

MIMO can be fully explored in cognitive radio network. Spatial diversity, spatial mul-
tiplexing, beamforming, smart antenna, and so on can help cognitive radio network to
access the valuable spectrum and increase the link quality as well as spectrum efficiency.
Optimal spectrum sharing in MIMO cognitive radio networks via SDP has been pre-
sented in [815]. A unified homogeneous QCQP formulation is applied to three scenarios
in which the cognitive radio has complete, partial, or no knowledge about the channels to
the primary users [815]. The homogeneous QCQP formulation, though nonconvex can be
relaxed to SDP [815]. Similarly, dynamic spectrum management for multi-antenna cogni-
tive radio system with imperfect channel state information has been studied in [1066]. A
linear matrix inequality (LMI) transformation is used to facilitate the proper treatment of
channel uncertainty at the transmitter of cognitive radio [1066]. Opportunistic spectrum
sharing has also been exploited for multi-antenna cognitive radio network [1067]. The
channel capacity of cognitive radio is characterized under both its own transmitted power
constraint and interference power constraints imposed by primary users [1067]. Similarly,
interference minimization approach in MIMO-based cognitive radio networks has been
studied in [1068]. The proposed precoder tries to maximize the sum capacity through the
minimization of interference power [1068].

Antenna selection in MIMO cognitive radios has been addressed in [1069]. Two solu-
tions are given to the problem of joint transmit-receive antenna selection which aims at
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maximizing cognitive radio data rates and satisfying interference constraints at the pri-
mary users [1069]. Cross-layer antenna selection and learning-based channel allocation
for MIMO cognitive radios have been proposed in [1070]. The spectrum efficiency and
fairness issue are considered [1070]. Optimal resource allocation for MIMO ad hoc
cognitive radio networks has been discussed in [1071]. A semidistributed algorithm is
introduced for the maximization of the weighted sum-rate of secondary users [1071]. The
throughput of MIMO-empowered multihop cognitive radio networks has been investi-
gated in [1072]. The goal is to achieve the ultimate flexibility and efficiency in DSA and
spectrum utilization [1072]. A tractable mathematical model is developed to capture the
essence of channel assignment of cognitive radio and degree-of-freedom allocation for
MIMO within a channel [1072].

Game theory is widely used in MIMO cognitive radio network. A competitive optimality
principle based on game theory is explored in cognitive MIMO radio [1073]. Similarly,
a novel game theoretical formulation is proposed to solve one of the challenging and
unsolved resource allocation problems in MIMO cognitive radio network: how to allow the
concurrent communication over MIMO channels among cognitive radios in a decentralized
way, under different interference constraints [1074]. Robust MIMO cognitive radio via
game theory has been presented in [1075]. Cognitive radios compete with each other over
the resources made available by primary users, by maximizing their own information rates
subject to the transmitted power and robust interference constraints [1075].

The work related to applications of beamforming in cognitive radio network can be
found in [575,1076-1094]. Some of the efforts are put into the robust beamforming
design for reliable communication in cognitive radio network. Beamforming can also be
used for routing due to its directional transmission. Directional transmission can reduce the
interference area and directional reception can avoid interference from other radios. Hence,
beamforming can increase the efficiency of spectrum sharing. Beamforming supported
routing has been exploited in ad hoc network and wireless mesh network which can be
straightforwardly extended to cognitive radio network [542, 1095, 1096].

8.6 Summary

MIMO transmission techniques have been presented in this chapter. MIMO can bring array
gain, diversity gain, and multiplexing gain by taking advantage of multiple antennas at the
transceivers. The basic topics about MIMO have been covered which include space time
coding, multiuser MIMO, MIMO network, and so on. The references about applications
of MIMO in cognitive radio network are also given. MIMO explores the spatial radio
resources to support spectrum access and spectrum sharing in cognitive radio network.
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9

Agile Transmission Techniques (II):
Orthogonal Frequency Division
Multiplexing

OFDM is a technique of digital data transmission based on multicarrier modulation
[68,1097—1099]. The history of OFDM can be traced back to the middle 1960s
[1097,1100—-1103]. OFDM is the extension of the frequency division multiplexing
scheme. In frequency domain, though the signals of subchannels or subcarriers are
overlapped, they are orthogonal after demodulation. Hence, OFDM improves efficiency
of spectrum utilization compared to the frequency division scheme which assigns
nonoverlapping frequency bands to different signals [68].

OFDM is an effective tool to handle ISI without using equalization at the receiver. The
high-data-rate data stream is divided into many low-data-rate substreams and these sub-
streams are sent over many different subchannels [68]. The bandwidth of each subchannel
is much smaller than the total system bandwidth [68]. Meanwhile, the bandwidth of each
subchannel is less than the coherent bandwidth of the radio channel. Hence, the effect of
ISI on each sub-channel is small and flat fading can be assumed for each subchannel [68].

OFDM is the core technology in the current wireless and wired communications. OFDM
is widely used by 3GPP LTE, WLAN, WiMAX, digital TV [1104], power line commu-
nication, ADSL, VDSL, and HDSL [1105].

9.1 OFDM Implementation
OFDM can use DFT or FFT for efficient implementation. If N subcarriers are used in
OFDM, the continuous-time baseband OFDM signal can be expressed as

N—1
x(t) =Y X[klexp(j2mkt/T),0 <t < T, ©.1)
k=0

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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where 7 is the time duration of one OFDM symbol and X[k] is the complex data symbol
assigned to the (k + 1)-th subcarrier with the central frequency of % The frequency space
of the adjacent subcarriers is % N subcarriers are mutually orthogonal over T'.

x(r) is sampled with sampling interval of L. If x[n] =x(%),n=1,2,...,N —1,
then the discrete-time OFDM signal is

N—1 .
j2mkn
x[n] = X[k]ex ( ),Ofan—l, 9.2)

where Equation (9.2) can be implemented by IDFT/IFFT which means IDFT gener-
ates the time-domain OFDM symbol consisting of the sequence x, x[1],...,x[n — 1]
from a complex data symbol stream X, X[1], ..., X[n — 1] which can be treated as the
frequency-domain data. The following discussion about OFDM implementation will be
based on the discrete-time model. DFT and IDFT operations are represented simply as

X[n] = DFT{x[n]} 9.3)
and
x[n] = IDFT{X|[n]}. 9.4)

One property of DFT used in OFDM implementation is circular convolution in time
domain leads to multiplication in frequency domain [68]. The N-point circular convolution
of x[n] and h[n] is defined as [68]

y[nl = x[n] ® hln]

= " hlklx[n — kly. (9.5)
k

where [n — k], denotes n — k modulo N. x[n — k], is a periodic version of x[n — k]
with period of N [68]. Thus,
Y[n] = DFT{y[n]}
= DFT{x[n] ® h[n]}
= DFT{x[n]}DFT{h[n]}
= X[n]H[n]l,n=0,1,2,...,N — 1. (9.6)

If A[n], 0 < n < L represents a discrete time channel impulse response, y[n],0 <n <
N can be expressed as [68]

yIN — 1] h h[1] --- h[L] 0 0
V[N = 2] 0O h --- h[L—-1] K[L] 0
)'1 () 0 h[b] h[L'— 1] h['L]
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M x[N — 1] 7
xX[N —12]
: n[N — 1]
X n[N — 2]
X x[=1] , 9.7)
x[—2] n
L x[-L]

where n, n[l1],...,n[N — 1] are AWGNSs.

In order to eliminate ISI from the previous symbol and explore the property of circular
convolution mentioned in Equation (9.6), a guard interval with cyclic prefix is exploited
[68]. Cyclic prefix adds prefix of a symbol using a repetition of the end. Thus, x[—1] =
x[N — 1], x[-2] = x[N —2],...,x[—L] = x[N — L]. In this way, OFDM implemented
by IDFT and DFT can decompose ISI channel into N orthogonal subchannels [68].

9.2 Synchronization

One of the challenging problems in OFDM is synchronization [1106]. OFDM system is
very sensitive to synchronization errors, especially carrier frequency offsets [1107, 1108].
In OFDM system, there are four synchronizations involved:

carrier frequency synchronization;

sampling timing synchronization;

sampling frequency synchronization;

symbol synchronization or frame synchronization.

Carrier frequency offset can destroy the orthogonality among subcarriers and cause
intercarrier interference (ICI) which will greatly degrade the system performance. Thus,
carrier frequency synchronization tries to remove carrier frequency offset and the cor-
responding phase offset. Carrier frequency synchronization is usually performed in two
steps. The first step is coarse synchronization which usually reduces carrier frequency
offset to within one-half of the subcarrier spacing [1109, 1110]. Then, the second step is
the fine carrier synchronization which further estimates and reduces the residual carrier
frequency offset [1109, 1110]. Carrier frequency synchronization algorithms can be:

time domain correlation algorithm based on training symbol;
frequency domain correlation algorithm based on training symbol;
ML estimator based on training symbol [1111];

ML estimator based on cyclic prefix [1112,1113];

blind synchronization [1114,1115].

For OFDM blind carrier offset estimation, the method called ESPRIT does not need
training symbols, pilot tones, or excess cyclic prefix [1114]. The inherent structure of
OFDM signals can be used to provide an accurate carrier frequency offset estimate [1114].
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Oversampling is exploited for blind estimation of OFDM carrier frequency offset [1115].
The intrinsic phase shift of neighboring sample points caused by carrier frequency offset
should be common among all subcarriers [1115]. Only a single OFDM symbol is required
to achieve reliable estimation which makes the blind method data efficient [1115]. The
second-order cyclostationarity of OFDM signals has been exploited for blind estimation of
symbol timing and carrier frequency offset [101]. A cyclic prefix is not needed necessarily
[101]. The similar idea has also been explored in [1116]. The blind estimator exploits
the second-order cyclostationarity of received signals and then uses the symbol-timing
and carrier frequency offset information appearing in the cyclic correlation [1116]. No
channel state information is required [1116].

A blind synchronizer based on SINR maximization for OFDM systems has been
developed in [1117]. Besides, the synchronization algorithms taking advantage of the
redundancy introduced by cyclic prefix are still treated as the blind algorithms. The joint
ML symbol timing and carrier frequency offset estimator has originally presented in
[1112]. Redundancy information included in cyclic prefix is utilized without additional
training symbols or pilot tones [1112]. Furthermore, a new class of blind cyclic-based
estimators for carrier frequency offset and symbol timing estimation have been devel-
oped in [1113]. A new likelihood function is derived for joint estimation [1113]. The
resulting probabilistic measure is used to develop three unbiased estimators, that is, ML
estimator, minimum variance unbiased estimator, and moment estimator [1113]. Virtual
carriers are used as intrinsic structure information of OFDM signals for blind estimation
of OFDM carrier frequency offset [1118—1120]. MUSIC-like estimation algorithm and
ML estimation are explored.

Sampling frequency offset can also cause ICI due to the loss of orthogonality between
the subcarriers. Pilot symbol, training symbol, or reference symbol can be used for
sampling timing synchronization and sampling frequency synchronization [1121, 1122].
Besides, a novel blind estimation algorithm for sampling clock offset based on second
order statistics of the received OFDM samples is devised in [1123], which can be used
successfully for noncooperative communications.

Joint synchronization can also be applied to OFDM systems [101,1112,1113,1116,
1117,1124—-1126]. In this way, we do not need to do different synchronizations
separately. The different synchronizations are considered simultaneously.

Robust frequency synchronization for OFDM-based cognitive radio systems has been
discussed in [1127]. Carrier frequency offset is estimated in the presence of narrow-band
interference [1127]. The carrier frequency offset and interference power on each subcarrier
are jointly estimated through ML method [1127].

Carrier frequency synchronization and sampling frequency synchronization can reduce
ICI. Sphere decoding together with a new search strategy is developed to reduce ICI for
OFDM systems [1128]. The suppression of ICI in OFDM systems has also been mentioned
in [1129]. The time variations of the channel during one OFDM frame destroy the orthog-
onality of different subcarriers and result in power leakage among the subcarriers [1129].
A simple and efficient polynomial surface channel estimation technique is proposed to
obtain the necessary channel state information first [1129]. Based on the estimated channel
state information, a MMSE based OFDM detection technique is used to reduce the per-
formance degradation caused by ICI distortion [1129]. Iterative methods for cancellation
of ICI in OFDM Systems have been suggested in [1130]. Operator-perturbation technique
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is used for the inversion of a linear system of equations [1130]. Furthermore, serial and
parallel interference cancellations are proposed to drastically reduce the error floor caused
by ICI [1130]. Similarly, an iterative method for frequency domain estimation and com-
pensation of ICI in OFDM systems has been presented in [1131]. There are two steps in
the proposed iterative method. Firstly, correlation between received signal and estimated
transmitted signal is used to estimate the channel matrix, and the second step estimates the
actual transmitted data by means of MMSE equalization [1131]. An iterative algorithm for
estimating multipath complex gains with ICI mitigation has also been proposed in [1132].
The ICI self-cancellation schemes have been analyzed in [1133—1139] which include:

e time domain windowing techniques;
e precoding techniques.

Similarly, two-path parallel cancellation schemes can also be used for ICI cancella-
tion [1140-1143]. Reducing ICI in OFDM systems by partial transmit sequence and
selected mapping has been proposed in [1144, 1145]. In partial transmit sequence, each
block of subcarriers is multiplied by a constant phase factor and these phase factors are
optimized to minimize the peak interference to carrier ratio [1144]. In selected mapping,
several independent OFDM symbols representing the same information are generated and
the OFDM symbol with lowest peak interference to carrier ratio is chosen for transmis-
sion [1144]. A novel ICI mitigation method for OFDM by taking advantage of a planar
extended Kalman filter has been developed in [1146]. Kalman filter algorithm can esti-
mate and track the frequency offset caused by Doppler in high mobility [1146, 1147]. The
Doppler frequency drift information can be updated at each step to get a more accurate
result [1146]. Estimation and suppression of ICI due to phase noise in OFDM systems
have been discussed in [1148—-1151].

9.3 Channel Estimation

Channel estimation in wireless communication system tries to find the time domain char-
acteristics and the frequency domain characteristics of radio channel. For OFDM system,
channel estimation identifies the channel gains for different subchannels at different time
slots which can be viewed as a two-dimensional lattice in a time-frequency plane [1152].
The two main challenges for channel estimation are:

e how to design pilot symbol pattern;
e how to design an estimator with both low complexity and good channel tracking ability.

Pilot information is the transmitted data or signals known at the receiver. Pilot infor-
mation can be used as a reference for channel estimation. Locations, powers, and phases
of pilot symbols play important roles in the channel estimation [1153]. The basic pilot
patterns are [1152]:

e block-type pilot symbol pattern;
e comb-type pilot symbol pattern [1154, 1155].
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Block-type pilot symbol patterns are used in slow fading wireless channel. The pilot
symbols are inserted into all subcarriers of one OFDM symbol within a specific period.
There is no need for interpolation in frequency domain. The estimated channel state
will be used to decode the received data inside the block until the next OFDM symbol
with pilot information arrives [1152]. Comb-type pilot symbol pattern are mostly used in
fast fading wireless channel. Pilot symbols are inserted into certain subcarriers of every
OFDM symbol. The interpolation is needed in frequency domain. The one-dimensional
interpolation methods can be [1152]:

linear interpolation;
second-order interpolation;
low-pass interpolation;
spline cubic interpolation.

The basic estimators for channel estimation include [1152,1156-1158]:

least square estimator;

MMSE estimator;

ML estimator;

parametric channel modeling estimator;
filter-based estimator.

Two-dimensional interpolation can also be performed. The optimal solution in terms of
MMSE is two-dimensional Wiener filter interpolation [1152]. However, two-dimensional
interpolation requires a huge computational complexity. Hence, two-dimensional interpo-
lation can be simplified to two concatenated one-dimensional interpolations in frequency
domain and time domain sequentially [1152]. In this way, the system complexity is
reduced.

In OFDM-based cognitive radio, due to the noncontiguous positions of the available
subcarriers for the secondary users, the conventional pilot design methods are no longer
effective [1159]. To obtain satisfactory channel estimation performance, a shift pilot
scheme is proposed in [1160—1162]. After deactivating some of pilot tones according
to the spectrum sensing result, the shift pilot scheme chooses some nearest activated data
subcarriers as the new pilot tones. However, the positions of pilot tones are not opti-
mized [1159]. An efficient pilot design method for OFDM-based cognitive radio systems
has been proposed in [1159]. The pilot design including placement is formulated as a
optimization problem. Besides, OFDM pilot design for channel estimation with null edge
subcarriers has been presented in [1163]. Null subcarriers on band edges can reduce adja-
cent channel interference [1163]. An arbitrary-order polynomial parameterization of the
pilot subcarrier indices is exploited [1163].

Blind channel estimation [1164—1166] and semiblind channel estimation [1167—1169]
are also used in the OFDM system. Joint channel estimation and synchronization in OFDM
systems can be found in [1170-1175].
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9.4 Peak Power Problem

One OFDM symbol is the superposition of many independent modulated subcarriers. If
this addition is executed coherently, the instantaneous power of OFDM signal will be
big, which leads to high PAPR. High PAPR will reduce the efficiency of linear power
amplifier at the transmitter. If the power is beyond the linear region of power amplifier,
the OFDM signal will be distorted. Meanwhile, high PAPR require thigh resolution ADC
with high dynamic range at the receiver [68]. Hence, we need to reduce PAPR for OFDM
communication system. The PAPR of a continuous-time signal is [68]
max({|x (1) [’}

PAPR= —— 9.8
E{lx(®)} O

and the counterpart of a discrete-time signal is

max({|x[n]]*}
E{|x[n]]?}

There are many ways to reduce PAPR of OFDM signals [68, 1176—1178]:

PAPR = 9.9)

clipping and windowing [1179, 1180];
adaptive symbol selection scheme [1179];
selective mapping [1181-1183];

partial transmission sequence [1183—1187];
phase optimization [1188];

nonlinear companding transformation [1189];
special coding techniques [1190];
constellation shaping [1191, 1192];

pulse shaping [1193].

9.5 Adaptive Transmission

Adaptive transmission can adapt the coding and modulation scheme and other signal
and protocol parameters, for example, transmitted power, signaling bandwidth based on
prevailing channel conditions in order to increase spectrum efficiency. Adaptive transmis-
sion requires some channel state information at the transmitter. There are various metrics
which can be used as channel state information, for example, SNR, SINR, BER, and
packet error rate [1194]. Adaptive transmission can be exploited over a fading channel
to improve the energy efficiency and increase the data rate [1195]. Meanwhile, adaptive
transmission can modify transmission scheme according to the radio interference.
Adaptive transmission can be applied to MIMO system where there are multiple spatial
subchannels with different channel gains. We can dynamically determine the coding and
modulation scheme as well as transmitted power for each subchannel. Adaptive mod-
ulation and coding in MIMO WiMAX with limited feedback has been experimentally
evaluated in [1196]. The condition number of the spatial correlation matrix is used as an
indicator of the spatial selectivity of the MIMO channel for adaptive MIMO transmission
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[1197]. The adaptive algorithm selects the MIMO transmission method, among spatial
multiplexing, double space-time transmit diversity, and beamforming, to enhance the
spectral efficiency for a target error rate performance and transmitted power [1197].

Adaptive transmission can be exploited in OFDM system where there are multiple par-
allel subchannels in frequency domain. The independent coding and modulation scheme
will be selected for each subchannel [1194]. High-level modulation and high-rate coding
will be used on subchannel with good channel condition [1194]. In order to support adap-
tive transmission, adaptation threshold and adaptation rate should be determined [1194].
Meanwhile, feedback overhead and computation load should also be taken into account
when adaptive transmission is explored. For example, adaptive transmission based on
sub-band instead of subcarrier for OFDM system can reduce the demanding overhead
[1194]. Adaptive transmission for OFDM system can be found in [1198-1201].

Take adaptive modulation as an example to show how adaptive transmission works
in OFDM system. Assume there are N subchannels without consideration of ISI and
ICI. The power allocated to the n-th subchannel is P,,. The number of bits transmitted
over the n-th subchannel is b, which corresponds to the modulation scheme. Based on
the transmitted power, the gain of subchannel, and the modulation scheme, BER can be
obtained. BER for the n-th sub-channel is P,,. If we would like to minimize the total
transmitted power given the constraints of data rate and BER, the optimization problem
of adaptive modulation with bit loading can be expressed as

minimize
N
anl Ptn
subject to (9.10)
22\771 bn = btargel
P, < Pggers n =1, 2,...,N,

where b is the minimum number of bits transmitted over one OFDM symbol and
P, arger 18 the maximum tolerable BER. If we would like to maximize the data rate given
the constraints of transmitted power and BER, the corresponding optimization problem

is,

maximize
N

Zn:l bn

subject to 9.11)
N

Zn:l Prn = Pttarget

P, < Pugesn=1,2,..., N

where Py, 1s the maximum total transmitted power for one OFDM symbol.

There are three basic algorithms to solve the optimization problem for adaptive
modulation:

e Hughes-Hartogs algorithm [1202, 1203];
e Chow algorithm;
e Fischer algorithm [1204, 1205].

The Hughes-Hartogs algorithm is a greedy algorithm based on gradient allocation. Every
incremental power to transmit one additional bit over each subchannels is compared.
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One bit will be added to the subchannel with the least incremental power. The whole
procedure is repeated until by, is achieved. The Chow algorithm loads the bit based on
the capacity of subchannel while the Fischer algorithm allocates bit from the minimization
of BER.

Generally, adaptive transmission also includes dynamic radio resource allocation for
various OFDM systems [506, 1206, 1207].

9.6 Spectrum Shaping

Due to the easy power control, adaptive transmission, and pulse shaping of each subcarrier

in OFDM signal, spectrum shaping can be performed for OFDM-based broadband wireless
communication. Spectrum shaping plays an important role for interference management,
DSA, and so on. Thus, OFDM is the key technology used in cognitive radio network for
spectrum access and spectrum sharing.

Spectrum shaping of OFDM-based cognitive radio signals has been presented in [1208].
Modulated OFDM sub-carriers suffer from high side-lobes which result in adjacent chan-
nel interference [1208]. Hence, active cancellation carrier and raised cosine windowing
are used to reduce adjacent channel interference [1208]. Sidelobe suppression in OFDM-
based spectrum sharing systems using adaptive symbol transition has been proposed in
[1209]. An extension is added to OFDM symbol that is calculated using the optimiza-
tion method to minimize adjacent channel interference [1209]. Similarly, reduction of
out-of-band radiation in OFDM systems by insertion of cancellation carriers has been
investigated in [1210]. Spectral sculpting for OFDM-based spectrum access has been
studied in [1211]. The idea is also to add a cancellation signal to the OFDM signal to
cancel interference in the target spectrum band caused by data tones, so that interference
received by primary user can be limited [1211]. The researches about active interference
cancellation can also be found in [1212—-1214]. Dynamic spectral shaping has been used
in cognitive radio to avoid spectral bands used by licensed users and maintain specified
target SINR at the receiver of cognitive radio [1215].

NC-OFDM can be used for spectrum shaping in cognitive radio by deactivating subcar-
riers located in the spectrum band occupied by primary user. An efficient implementation
of NC-OFDM transceivers for cognitive radio has been presented in [539]. The main idea
is to prune the FFT efficiently and quickly [539]. Similarly, low-power FFT design for
NC-OFDM in cognitive radio systems has been introduced in [1216]. The resource alloca-
tion in NC-OFDM based cognitive radios can be found in [1217]. Portfolio optimization
is used to achieve QoS maintenance [1217].

9.7 Orthogonal Frequency Division Multiple Access

OFDMA is the multiple access technique based on the popular OFDM digital modulation
scheme [1218]. Different subcarriers or different subsets/groups of subcarriers are chosen
to different users. Multiple users can be served simultaneously. OFDMA is a promis-
ing technique to improve the transmission reliability and efficiency of multiuser wireless
communications [1219]. The fundamental relationship between multiplexing and diversity
in OFDMA systems has been investigation in [1219]. The proposed H-matching method
achieves the optimal outage performance at a given target multiplexing gain, which shows
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that the optimal diversity multiplexing tradeoff can be achieved by only allocating subcar-
riers [1219]. For green communication, energy efficiency and spectrum efficiency tradeoff
in downlink OFDMA networks has been discussed in [1220]. Under the general trade-
off framework between energy efficiency and spectrum efficiency, energy efficiency is
strictly quasiconcave in spectrum efficiency [1220]. Uplink synchronization in OFDMA
spectrum-sharing systems has been considered in [1221]. The frequency and timing errors
of multiple unsynchronized users are estimated [1221].

Optimal radio resource allocation can improve the performances of OFDMA downlink
systems [1222]. Weighted sum rate maximization and weighted sum power minimization
problems are considered with the assumption that each tone is taken by at most one user
[1222]. Lagrange dual decomposition method is exploited due to the non-convex property
of the original resource allocation problems [1222]. Resource allocation for OFDMA-
based cognitive radio network with application to H.264 scalable video transmission has
been presented in [1223]. Minimum and maximum rate constraints are considered for the
transmission of scalable video sequences [1223]. Integer programming is used to deter-
mine how to allocate radio resources to different cognitive radio users with consideration
of interference tolerances of primary users [1223]. Radio resource allocation in OFDMA
cognitive radio systems has also been considered in [1224]. A novel three-step cross-layer
optimization of OFDMA radio resource allocation has been developed to keep fairness
among users and maximize total capacity [1224]. For multicast service in cognitive radio
network, taking the maximization of the expected sum rate of cognitive multicast groups as
the design objective, an efficient joint subcarrier and power allocation scheme is proposed
in [1225].

Joint cross-layer scheduling and spectrum sensing have been explored in the downlink
transmission of an OFDMA-based cognitive radio system [1226]. The power allocation
and the subcarrier assignment across the secondary users are adjusted to optimize a sys-
tem utility [1226]. Meanwhile, distributed implementation for the cross-layer sensing and
scheduling design is given using the primal-dual decomposition approach [1226]. Dis-
tributed resource allocation for OFDMA-based relay networks has been investigated in
[1227]. The data rate and user fairness can be improved by cognitive radio techniques
used at the relay nodes [1227]. Iterative waterfilling and its variants are exploited for
resource allocation [1227]. A novel subchannel and power allocation scheme for multi-
cell OFDMA networks with cognitive radio functionality has been proposed in [1228].
Intercell interference together with the interference to the primary user is considered
[1228]. Dual decomposition method is exploited to derive a distributed algorithm [1228].
Similarly, coexistence and optimization of a multicell OFDMA-based cognitive radio
network which is overlaid with a multicell primary radio network have been studied in
[1229]. A Lagrange duality based technique is used to optimize the weighted sum rate of
secondary users over multiple cells [1229]. Interference-aware radio resource allocation
in OFDMA-based cognitive radio networks has been presented in [1230]. Out-of-band
emissions from cognitive radio and the interference that arises as a result of imperfect
spectrum sensing are explicitly considered [1230]. The resource allocation problem is for-
mulated as a mixed-integer nonlinear programming problem [1230]. In order to combat a
passive multi-antenna eavesdropper and the effects of imperfect channel state information
at the transmitter, secure resource allocation and scheduling for OFDMA decode-and-
forward relay networks have been explored [1231]. The packet data rate, secrecy data
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rate, power, and subcarrier allocation policies are optimized to maximize the average
secrecy outage capacity [1231]. Distributed energy efficient spectrum access in cogni-
tive radio ad hoc networks has been considered in [1232]. A fully distributed subcarrier
selection and power allocation algorithm is proposed by combining an unconstrained opti-
mization method with a constrained partitioning procedure [1232]. Distributed resource
allocation for cognitive radio ad hoc networks with spectrum-sharing constraints has also
been discussed in [1233]. A dual decomposition framework is explored for the realization
of distributed solutions [1233].

A novel spectrum trading model for OFDMA-based cognitive radio systems has been
introduced in [1234]. Primary users can trade their spare subcarriers with secondary users
for better utilities [1234]. Pricing policies and market equilibrium are also considered
[1234]. Similarly, joint pricing and resource allocation for OFDMA-based cognitive radio
systems has been presented in [1235]. The secondary users try to maximize their capacity
under three different constraints: total transmitted power, a given budget for sharing
subchannels, and tolerable interference to the primary users [1235]. Nash bargaining is
explored for efficient resource allocation with flexible channel cooperation in OFDMA
cognitive radio networks [1236]. In cooperative cognitive radio networks, secondary users
cooperatively relay data for primary users in order to access the spectrum [1236]. A novel
design of flexible channel cooperation is proposed, which allows secondary users to freely
optimize the utilization of channels for transmitting data of primary users along with their
own data [1236].

9.8 MIMO OFDM

MIMO and OFDM can be exploited together for high-capacity, high-reliability wireless
connectivity [1237-1241].

The researches about synchronization for MIMO OFDM system can be found in
[1242—-1244]. Channel estimation for MIMO OFDM system has been discussed in
[1245-1252]. Adaptive transmission can also be extended to MIMO OFDM system
[1253-1255]. Various radio resource allocation and management strategies for MIMO
OFDMA systems have also been developed [1256—1262] to optimize the performance
of the multiuser system.

9.9 OFDM Cognitive Radio Network

The underlying sensing and spectrum shaping capabilities of OFDM, together with its
flexibility and adaptivity, probably make it the best transmission technology for cognitive
radio network to perform DSA and spectrum sharing [1263, 1264].

Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio
systems have been presented in [1265]. Furthermore, adaptive power loading with statis-
tical interference constraint is developed in [1266]. Cognitive radio transmitter does not
require the instantaneous channel quality feedback from the receivers of primary users
[1266]. An efficient power loading scheme is also studied in [1267]. Cognitive radios may
use both active and nonactive bands of primary users as long as the generated interfer-
ence is within the interference temperature limits of primary users [1267]. A risk-return
model is explored to perform energy-efficient power allocation in OFDM-based cognitive
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radio systems [1268]. Based on a risk-return model, a convex optimization problem is
formulated [1268]. A fast power allocation algorithm is mentioned in [1269]. Resource
allocation in an OFDM-based cognitive radio system has been formulated as a multidi-
mensional knapsack problem with consideration of sub-carrier, bit, and power [1270]. A
low-complexity, greedy, max-min algorithm is proposed to give the near-optimal solution
[1270]. Cross-layer resource allocation is also explored for multiuser OFDM-based cog-
nitive radio systems with consideration of both real-time and non-real-time applications
[1271]. Due to the dynamic nature of the available spectrum, two challenges, that is,
problem feasibility and false urgency, are explicitly addressed [1271].

A distributed resource allocation algorithm is proposed for OFDM cognitive radio
systems to provide good fairness among users [1272]. Queue-aware subchannel and power
allocation for downlink OFDM-based cognitive radio networks has been investigated
in [1273]. Secondary users with small queue backlogs are only given sufficient rates
to support their demands and the remaining radio resources are shared among highly
backlogged users [1273]. The work in [1273] is extended to downlink OFDMA cognitive
radio networks in [1274]. The achievable rate of an OFDM-based cognitive radio system
sharing the spectrum with an OFMDA-based primary system has been studied in [1275].
Rate loss constraint is used for primary transmission protection [1275]. Relay and power
allocation schemes for OFDM-based cognitive radio systems have been developed in
[1276]. The capacity of cognitive radio using relay is optimized while total transmitted
power is bounded and the interference introduced to the primary user is kept within a
prescribed threshold [1276]. The corresponding optimization problem is a mixed-integer
problem, which is NP-hard [1276].

Robust transmit power control for cognitive radio network based on OFDM technology
has been discussed in [397]. Robust optimization problem for multiuser dynamic power
control is given [397]. Robust optimization can guarantee the acceptable performance
under the worst case conditions. Robust optimization is a conservative approach, but
it can provide seamless communication [397]. Due to the dynamic nature of cognitive
radio network and the delay introduced by the feedback channel, it is hard to obtain
the accurate and real-time information for interference [397]. Hence, robust optimization
gives us a way to address this issue by taking into account the worst case uncertainty in
the interference and noise [397]. Multiuser radio resource allocation is a game problem.
Robust iterative water filling algorithm is exploited to solve the robust game [397].

OFDM can be exploited together with MIMO to support wireless transmission in cogni-
tive radio network. The researches about MIMO-OFDM based cognitive radio network can
be found in [1277-1283]. Most of these efforts are related to radio resource management.

9.10 Summary

OFDM transmission techniques have been presented in this chapter. The critical issues
in OFDM systems including OFDM implementation, synchronization, ICI, channel esti-
mation, peak power problem, adaptive transmission, spectrum shaping, OFDMA, and so
on have been discussed. OFDM is the basic transmission technique used in cognitive
radio network. DSA and spectrum sharing can be well supported by OFDM.
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10

Game Theory

10.1 Basic Concepts of Games

In cognitive radio networks, there are many secondary users, as well as possible attackers;
each has its own action and payoff and can be considered as a rational agent, as long
as secondary users are usually equipped with powerful computing devices. Hence, it is
natural to introduce game theory, which traces back to early 1900s [1284] and analyzes
the possible conflict or collaboration and the corresponding strategies of rational players,
to study the interactions among the agents in the cognitive radio network. In this section,
we introduce the basic concepts in game theory. There are many types of games, such as
the strategic-form games, repeated games, stochastic games, and differential games, etc.
A comprehensive introduction of game theory can be found in [1285]. A more modern
introduction to game theory, from the computer science perspective, can be found in
[1286]. Games in dynamical systems, such as Markov processes or continuous time sys-
tems, are discussed in [1287] and [1288]. As a preliminary introduction to game theory,
we focus on the simplest strategic-form game in this book, which provides a starting point
for studying more complicated games, and then provide a brief introduction to Bayesian
games and stochastic games which are carried out in multiple stages.

10.1.1 Elements of Games

For simplicity, we assume that there are two players in the game. It is not difficult to
extend the two-player game to the general case with multiple players. Before we step
into the formal formulation of a game, we first explain a famous example of game, the
prisoner’s dilemma, which will be used as the example throughout the introduction. In
this game, there are two prisoners being accused for a crime which can be convicted only
when one or more confesses. If one prisoner confesses while the other does not, the latter
one will be sentenced to 6 years while the former can go free. If both confess, both will
be sentenced to 5 years. If both do not confess, they are both sentenced to 1 year. As will
be seen, this game will yield a very surprising result.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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In a two-player strategic-form game, we assume that each player has the following
elements:

e Action: Each player can take a finite number of actions. We denote by A;
={a;, ..., q;,}, where g;; stands for an action and n; is the total number of actions,
the set of actions for player i. Take the prisoner’s dilemma as an example, we have
a,, = a,, = confess and a,, = a,, =not confess. Obviously n;, =n, = 1.

e Strategy: Each player can choose the action in a random manner. We denote by 7;;
the probability that player i chooses action j. The probabilities of action are called
strategies, denoted by m; for player ;. When there exists a j such that 7;; = 1, we call
it pure strategy, that is, player i only chooses action j; otherwise, we call it mixed
strategy since the player has more than one options. In the example of prisoner’s
dilemma, a strategy of prisoner 1 is to confessor with probability 0.6 and not to confess
with probability 0.4. The prisoner can flip a asymmetric coin to make the decision.

e Payoff: After the players choose their actions, they will receive payoffs which are
functions of the actions. We denote by r;(a,,,, a,,) the payoff of player i if the actions
are a,,, and a,,. For example, the prisoner receives payoff —6 if he chooses not to
confessor but the other prisoner chooses to confess. The payoffs can be represented by

the following table:
(=1, =1) (-6,0)
( 0, —6) (—5,—5>>’ (16.1)

where the rows and columns represent the actions of players 1 and 2, respectively. One
special type of the payoff is r,(a,,,, a,,) = —r,(a,,,, a,,), that is, the sum of the payoffs
of the two players is 0. We call it zero-sum game. Usually, we use it to model the game
between two players with completely conflicting interest. In zero-sum games, we need
to specify only the payoff of one player. The payoff of the other player is obtained
correspondingly. Obviously, the game of the two prisoners is not a zero-sum one.

10.1.2 Nash Equilibrium: Definition and Existence

Now we discuss the Nash equilibrium of the game, which is the key concept in game
theory and a corner stone of modern economics. It was named after the legendary math-
ematician John. F. Nash, Jr [1289]. First, the expected payoff the each player is given by

ni ny
Ry my) =Y > mymyray.ay),  i=12. (10.2)
j=1 k=1

We assume that both players are rational. Hence, they want to choose strategies to
maximize their own expected payoffs. However, when player 1 fixes a strategy, player 2
may change its strategy such that the expected payoff of player 1 is reduced. Hence,
each player must consider the possible strategy of each other and make corresponding
decisions. So how can they decide their strategy in such a bilateral decision scenario? As
we will see, the players can only choose strategies at Nash equilibrium if they are rational.
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We call a pair of strategy, denoted by #7 and w3 a Nash equilibrium if

{@1(”?7”3)2@](”17”3)7\#]{1 (103)

Ry(my, m3) = Ry(my, m3), Vo,

An intuitive explanation of (10.3) is that, at the Nash equilibrium, if one players changes
its own strategy unilaterally, it will receive less expected payoff. Hence, at the Nash
equilibrium, both players do not want to change their strategies; thus the game reaches
an equilibrium.

We can examine this concept using the example of prisoner’s dilemma. We examine
only the pure strategies now and will check mixed strategies in another example.
Obviously, the pure strategies of (confess, confess) is not a Nash equilibrium since, if
player 1 changes his action to not confess, he can improve his payoff from —1 to 0,
which contradicts the definition of Nash equilibrium. Similarly, the pure strategies of
(confess, not confess) is also not a Nash equilibrium since the prisoner who takes the
action of not confess can switch his action to confess such that his payoff is improve
from —6 to —5. Finally, the pure strategy (confess, confess) is a Nash equilibrium since,
if a prisoner changes to not confess, his payoff will be decreased from —5 to —6. The
analysis shows that both prisoners will choose not to confess and then be sentenced to
5 years, which is a much worse result than the situation in which both do not confess
(both sentenced to 1 year).

We have seen that, in the example of prisoner’s dilemma, there is a pure strategy Nash
equilibrium. However, not every game has a pure strategy Nash equilibrium. Consider
the following zero-sum game with two actions for each player and the following payoff

table:
(2,-2) (1,-1)
( (1,—-1) (3,-3) ) ) (10.4)

We can verify that all four possible combinations of pure strategies are not Nash
equilibrium. For example, when the pure strategies are (a,,, a,,), the payoffs are 2 and
—2. Then, player 2 desires to switch to action a,, such that his payoff will be increased
from —2 to —1. Then, does this mean that this game has no Nash equilibrium? No. We
have not checked the mixed strategies yet. Actually, it is easy to verify that the following
mixed strategy:

(10.5)

__ 2 _
{ﬂll—gv T, =
_ 2
Ty =3

[SSIE

The verification is left as an exercise (Problem 1).

Now, we have examined the Nash equilibria of two games. A question arises naturally:
does every strategy-form game have Nash equilibrium? The answer is yes: each finite'
strategic game has at least one Nash equilibrium. A rigorous proof can be found in
Section 3.12 of [1285]. We omit it here due to the limited length.

' Here finite means that the set of actions is finite.
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Figure 10.1 Procedure of computing Nash equilibrium.

10.1.3 Nash Equilibrium: Computation

Once we solved the problem of the existence of Nash equilibrium, the next question is
how to find the Nash equilibrium. A detailed rigorous discussion about the computational
complexity of finding Nash equilibrium can be found in Chapter 2 of [1286]. In this
book, we provide some working techniques for computing Nash equilibrium, which is
illustrated in Figure 10.1. We first consider the general case of payoffs. We denote by S,
the set of actions that player i will take with nonzero probabilities. Then, if there exists a
Nash equilibrium (7 |, ,) over the action sets S; and S,, that is, at the Nash equilibrium
both players will confine their actions within these two sets, there must exist numbers w,
and w, such that the following conditions are satisfied:

ZyeSijZyrl(xvy)pr x €S
erS| Ty (X, ) = wy, yes,
m; =0, i=1,2,j¢85,
Zjesinijzlv i=1,2

(10.6)

It is quite easy to understand the last two equations since they are simply the definition
of S; and the normalization condition of probability. The first two equations are more
essential to the Nash equilibrium. An intuitive explanation for the first equation is that, at
the Nash equilibrium, the expected payoff of taking an action x, namely Zy es, Ty 1 (X, y),
is the same as that of taking any other action in S,. Otherwise, say player 1 receives more
expected payoff when taking action 1, it will put more probability to action 1, thus
breaking the Nash equilibrium. So is the explanation for the second equation. By solving
the above linear equations, we can obtain the strategies at the Nash equilibrium, which is
quite straightforward. The real challenges is how to choose sets S| and S,. Unfortunately,
there is no systematic approach to find S, and S,. One approach is to exhaustively search
all possible combinations of S, and S,. In some cases, we can also incorporate some a
priori information about the Nash equilibrium.

We use the game with payoffs defined in (10.3) to illustrate the computation of Nash
equilibrium. First, we assume S, = {a,;, a5} and S, = {a,,, a,,}, that is, both players will
take each action with nonzero probability. Then, we have

(10.7)

21y + (1 —my) = 1y +3(1 — 71yy)
—2m, - —-my)=—m —3(1—myy) °
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according to the first two equations in (10.6). Note that the last condition in (10.6) has
been implicitly incorporated since we assume 7, = | — m;; and m,, = 1 — m,,. Solving
the equations results in 7r;; = 1/3 and m,, = 1/3.

We can also take the Prisoner’s dilemma as another example. First, we assume S; =
{a;;,a,} and S, = {a,,, ay}. Then, according to the conditions in (10.6), we have

{ =7y — 6(1 —75y) = =5(1 — 75)

_7T11 — 6(] — 7'[11) = —5(1 — 7-[11) . (108)

Obviously, there is no solution to these equations. Hence, the assumption that S, =
{a;;,a,,} and S, = {a,,, a,,} is incorrect. Hence, we should check other possible com-
binations of S, and S,. Finally, we will find that (confess, confess) is the only Nash
equilibrium.

10.1.4 Nash Equilibrium: Zero-Sum Games

In the previous discussions on the Nash equilibrium, the payoffs are of general form. As
we have introduced, zero-sum game is an important type of games. The Nash equilibrium
of zero-sum game has a special structure which is worthy of special introduction. It
has been shown that the Nash Equilibrium of a zero-sum game, denoted by (x7, 7}), is
given by

{ 7} = max, min,, R (7, 7;) (10.9)

* __ : .
75 = min, max, R,(w, ;)

The above equations are very intuitive. At the Nash equilibrium, player 1 wants to
maximize the expected payoff minimized by player 2, while player 2 wants to minimize the
expected payoff maximized by player 1. Such a maxmin and minimax structure embodies
the conflicting nature of zero-sum game. We call the maxmin value the value of the
Zero-sum game.

10.1.5 Nash Equilibrium: Bayesian Case

In the previous discussions, we assume that the players know the payoffs of each other
perfectly. However, in many cases, this assumption may not be true. As will be discussed,
in the collaborative spectrum sensing, a secondary user may not be sure about the trust-
worthiness of a collaborator: it could be an honest collaborator, or a malicious attacker.
For the two different possibilities, the other player may have different payoffs. When the
collaborator is an attacker (honest secondary user), it received positive (negative) payoff
when the spectrum sensing fails. In this case, we say the game has incomplete information.

To better describe the game, we define the type of each player, denoted by ¢; for
player i, and denote by 7; the set of possible types. For example, the collaborator in
the collaborative spectrum sensing may have two types: honest or malicious. Each type
means a set of payoffs. The payoff of player i is not only determined by the actions of
both players but also its type. Hence, the payoff of player is given by r;(¢;, a;, a,).

The players have conjectures on the type of each other. We denote by p;(r_;|t;) the
player i’s conjecture on the probability that the other player (here —i means the player
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other than player i) has type ¢_;, when player i’s own type is ¢,. We assume that the
probabilities {p;(r_;|7;)};, , , are perfectly known to both players. The strategy of each
player is also dependent on its own type. Take the collaborative spectrum sensing as an
example, a malicious collaborator will be more likely to send out a false report while an
honest collaborator always sends its own observation. Hence, the strategy can be written
as 1r; (-|t;). We denote by &, = {m;(:|t,)}, r,- Then, when player i has type j, its expected
payoff will be

ny  np
Ry molt) = Y ptlt) Y Y (@, )T (a7 @y, @), (10.10)
t_jeT_; j=1 k=1

In contrast to the strategic form game with perfect information, the players with imper-
fect information must consider the different possible types of the other player, as the type
of the opponent can affects its payoff.

For the Bayesian game, we can define a Bayesian equilibrium, in which for every player
i and every type ¢, of itself, the following equation is satisfied:

{ET(.M):argmaxn f?l(ﬂ,néhl) (10.11)

75 (-|ty) = argmax, R,(w}, mw|ty)

Similarly to the Nash equilibrium, at the Bayesian equilibrium, unilaterally changing the
strategy does not increase the expected payoff according to the belief on the opponent’s
type. Obviously the computation of Bayesian equilibrium is more complicated.

10.1.6 Nash Equilibrium: Stochastic Games

In strategic-form games and Bayesian games, the game lasts for only one snapshot. How-
ever, in many problems, the game may last for many stages. Moreover, there may exists a
system state evolving with time (usually impacted by the actions of both players) and the
payoffs are dependent on the system state. For example, in cognitive radio networks, the
queue lengths can be considered as system state. The payoff of each secondary user may
be dependent on the system state. For example, it may be more important for a secondary
user with more packets in its queue to access the spectrum than for a secondary user
with less packets. The evolution of queue lengths is also dependent on the actions taken
by the secondary users, namely the channels to access. We can such multistage and state
dependent games sfochastic games. Note that a stochastic game can be considered as an
extension of one-stage games to multiple-stage ones. Meanwhile, we can also consider
it as an extension from the one-decider optimization problems discussed in Chapter 8 to
the case of multiple rational deciders.

To describe stochastic games, in addition to the elements defined for strategic-form
games, we have the following elements:

e System State: For simplicity, we assume that there are finitely many system states,
denoted by s, ..., s,. The set of possible states is denoted by S.

e State Transitions: We assume that the state transitions are Markovian; that is, the state
transition is dependent on only the current system state and the players’ actions. We
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denote by Q(s,,|s,, a;, a,) the probability that the system state transits from s, to s,
when the players’ actions are a, and a,, respectively.

e Payoff: In each stage, each player receives some payoff which is determined by the
actions and current system state. We denote by r;(a,, a,, s,,) the payoff of player i
when the actions are a, and a,, and the system state is s,,. Then, the total payoff is
accumulated through the stages. There are two possible definitions for the total payoff.
One is the discounted sum of rewards, which is given by

o0
R, =Y B'ri(a,(t).a ). s,®), (10.12)
=0
where 0 < 8 < 1 is a discounting factor. The other definition of total payoff is the
average one, which is given by

T

1
R, =TILH;O?Zozri(al(t),az(t),sm(t)). (10.13)

For simplicity, we consider only the discounted sum in (10.12) due to the simplicity
of analysis. The analysis for the average payoff is much more complicated, which can
be found in [1288].

e State Dependent Strategy: Now the strategy of each player should be dependent on the
current system state since it needs to consider the payoff subject to the current state as
well as the future system state evolution. We denote by 7, (+|s) the strategy of player i
when the current system state is s and by mr; the set {m;(:|s)},.

For the stochastic game, we define the Nash equilibrium as the strategy pair 7} and
73 such that

{ E[R (|, n}) < E[R|(n], 7}) (10.14)

E[R,](m}, my) < E[R,|(n}, 3)

Again, at the Nash equilibrium, unilaterally changing the strategy does not increase the
expected payoff. The only difference from the one-stage game is that the stochastic game
needs to consider the rewards along infinitely many stages.

Next we will study the Nash equilibrium of stochastic games. For simplicity of analysis,
we assume that the game is a zero-rum one, namely r, = —r,. The discussion of general-
sum games can be found in [1288]. First, we define matrices R(s), Vs € S. For a given
system state s, R(s) contains the payoffs of player 1 with respect to different action pairs,
namely

R($)) i = 11(5, 1,0 a3,)- (10.15)

Since we consider only zero-sum games, the payoff information for each state can
be summarized in a matrix. Then, we define a value vector v, each element of which
corresponds to the expected payoff of a state. For example, v, is the expected future
payoff of player 1 when the current state is s,;. Based on the definitions of R(s) and v,
we define another matrix ﬁ(s, V) as

(R(s, V) = 1 (8, @y, ary) + B Z p(s'ls, ay,,, ay,)v(s"), (10.16)

s'eS
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where v(s’) is the element of v corresponding to state s’. Readers who have read Chapter 8
carefully can feel familiar with (10.16). Yes, it is very similar to the Bellman’s equation
for dynamic programming. We can take a closer look at the two terms on the right hand
side of (10.16): the first term is the instantaneous payoff of player 1 when the actions are
a,, and a,,; the second term is the expected payoff in the future since all possible state
transitions are considered and v(s’) means the future payoff when the next system state
is s’. Obviously, the left hand side of (10.16) is the expected payoff when the actions are
a,,, and a,,, and the current system state is s.

Obviously, R is known since the instantaneous payoffs are assumed to be known. If
v is known, it is also easy to obtain R. However, v is still unknown. Without v, we are
unable to evaluate the future rewards when certain actions are taken. Fortunately, Shapley
showed that the value vector v can be determined by R via the following equation [1290]:

v(s) = val [R(s, V)], (10.17)

where val means the value of the zero-sum game determined by matrix R(s, v).

Equation (10.17) looks surprisingly elegant; actually it is very intuitive. We can under-
stand (10.17) in the following way. First, we assume that v has been given by a genie.
Hence, when the players take certain actions, the instantaneous payoff and the expected
future payoff can be determined from R and R, respectively. Then, given the current
system state, we can simplify the multiple-stage game into a single-stage one by incor-
porating the expected future payoff into the instantaneous one, thus obtaining a zero-sum
game with the payoff matrix R. Note that we have multiple one-stage zero-sum games
since each system state corresponds to a game. Finally, when the players take actions,
they will choose Nash equilibrium ones corresponding to the equivalent zero-sum game.
The value of the zero-sum game is then equal to the corresponding element in the value
vector v. Once v is determined, the strategies at the Nash equilibrium, given the system
state, can also be obtained from analyzing the zero-sum game with R.

Although we have found the equation describing the value vector v, it is still unclear
how to compute v since we do not have an explicit expression for the functional val.
Fortunately, we have some efficient algorithms for computing the Nash equilibrium of
some special stochastic games, which will be explained below.

First, we consider the special case in which the system state is controlled by only
one player. Without loss of generality, we assume that this controlling player is player
1. Then, the value vector and the strategy m, can be obtained by solving the following
linear programming problem:

min Z v(s)

seS
st v(s) = Y RO, o To@ls) + By p(s'ls,a)v(s), s €S8 Va,
ap s'eS
Y mals) =1, VseS
a
7y (ayls) > 0, s €S, Va,. (10.18)

There are many efficient algorithms to solve the above linear programming problem,
for example, the simplex method or the interior-point method. The rigorous proof of
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the conclusion that the above linear programming results in the Nash equilibrium of the
single-controller stochastic game is omitted due to the limited space. Here we can provide
some intuitions for the linear programming problem. The second and the third constraints
are obvious since they are simply the requirements of normalization and nonnegativity of
probabilities. The first constraint means that, given the action of player 1, the strategy of
player 2 can always try to reduce the payoff of player 1; hence, the right hand side of the
constraint is always less than or equal to the actual value. In the objective function, the
average value is minimized, which represents the impact of player 2’s action. Note that
the dual form of the linear programming can also be used to compute the value vector
and the strategy of player 1 at the Nash equilibrium can be obtained correspondingly. The
details can be found in [1288, pp. 94-95].

We notice that the assumption of single state controller is implicitly embedded in
the first constraint in (10.18), where the state transition is independent of the strategy of
player 2 since the state is dependent on only player 1. When the system state is dependent
on the actions of both players, the optimization problem can be rewritten as

min 2 V)

seS
st v(s) > ZR(s)al’a2n2(a2|s) +8 Z Z p(s'ls, ay, a))v(s")m,(a,ls), s €8, Va,
a a s'eS
Y mals) =1,  VseS
ay
T(ayls) =0,  s€S8 Ya,, (10.19)

where we added the impact of the strategy of player 2 to the first constraint. The involve-
ment of the strategy of player 2 also makes the optimization problem nonlinear since
there exist products of value v(s) and probability m,(a,|s). Hence, we are no longer
able to solve the optimization problem using linear programming approaches. Many other
approaches like Newton’s method can be used to solve the optimization problem. More
details can be found in Section 3.7 of [1288].

In the remainder of this chapter, we will use three typical games in cognitive radio,
namely the primary user emulation attack, channel synchronization and collaborative
spectrum sensing, to illustrate the above explanations of game theory. The types of the
three games are summarized in Table 10.1.

Table 10.1 Optimal Strategies for Cases 1 and 2

Game Type PUE Attack Chan. Synch. Spectrum Sensing
Strategic-form game X — —
Bayesian game — X
Stochastic game X — —
Zero-sum game X — X

=
|

Collaboration game —
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PUE Attacker Attack strategy: choosing one
channel for PUE attack by
Aosdon  intercepting the defenders’

b \ actions and rewards

it

| Chan 1 | Chan 2 | Chan 3 | Chan 4 | Chan 5 |

‘\

Defending strategy: choose a
channel randomly avoiding
PUE attack

Secondary
User

Figure 10.2 Illustration of the dogfight in spectrum.

10.2 Primary User Emulation Attack Games

In this section, we consider another type of game in cognitive radio network, namely the
primary user emulation (PUE) attack game. PUE attack is a serious threat to cognitive
radio networks; hence, it is important to analyze the game between secondary users and
PUE attackers. Meanwhile, it is also a good example to illustrate how to analyze stochastic
games.

10.2.1 PUE Attack

The dynamical spectrum access in cognitive radio, particularly the spectrum sensing mech-
anism, also incurs vulnerabilities for the communication system. One is the false report
attack in collaborative spectrum sensing, which has been discussed in the previous section.
Another serious threat is the primary user emulation (PUE) attack, originally proposed in
[1291]. As illustrated in Figure 10.2, in PUE attacks, the attacker sends out signal emu-
lating that of primary users during the spectrum sensing period, such that the secondary
users will be “scared” away even if the spectrum is actually idle, based on the assumption
that it is difficult for secondary users to distinguish the signals of primary user and the
attacker. This assumption is usually true, especially when energy detection is used in
spectrum sensing. Such a PUE attack is very efficient for the attacker since only very
weak power is consumed due to the high requirement on the spectrum sensing sensitivity
of secondary users; hence, it is much more power efficient (for the attacker side) than
traditional jamming attackers which use high power to suppress the legitimate signals.
There are usually two approaches to combat the PUE attack:

e Proactive Approach [1292,1293]: In this approach, the secondary users detect
the attacker in a proactive manner. Although the secondary users cannot distinguish
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the signal structures of primary users and attackers, they can collaboratively estimate
the transmit power of the radio emitter. It is assumed that the attacker has much
less transmit power than the primary user, which is reasonable if the primary user is
TV station. Then, the radio emitter with low transmit power will be considered as
an attacker. Such an approach is very effective for cognitive radio in the TV band.
However, if primary users can also have low transmit power, it is impossible to
distinguish the attacker from primary user by merely considering the signal power.

e Passive Approach [1294, 1295]: If the proactive approach does not work, we can only
carry out passive approach. We assume that there are multiple channels in the licensed
spectrum, which is true for practical systems. Furthermore, we assume that the attacker
cannot cover all channels since it requires expensive equipments for a wideband trans-
mission. Hence, the secondary users can sense/access channels in a random manner
such that the attacker is unable to always block the transmission (of course the proba-
bility that a secondary user happens to sense the channel that the attacker is attacking
is nonzero). This is similar to the frequency hopping in jamming and anti-jamming;
hence it is called dogfight in spectrum in [1294].

In this section, we adopt the passive approach and model it as a game between the
cognitive radio network and the PUE attacker.

10.2.2  Two-Player Case: A Strategic-Form Game

We first consider the simplest case, in which there is one attacker and one cognitive
radio transmitter. We consider a cognitive radio system having N licensed channels. We
denote by p,; the idle probability of channel n. Without loss of generality, we assume that
Pi; < Pa; < ... < py;. For simplicity of analysis, we assume that the attacker (secondary
user) can attack (sense) one channel at a time. If they happen to choose the same channel,
the secondary user will be unable to use this channel; otherwise, whether the secondary
user can use this channel depends on only the activity of primary user. We consider only
one stage and will extend it to multiple stages later.

Then, we can model the dogfight as a strategic-form game. Below are the elements of
the game:

e Player: We assume that there are two players: player 1 is the secondary user (the
transmitter) and player 2 is the PUE attacker.

e Action and Strategy: In such a dogfight game, the action space of the secondary user
(attacker) contains the choice of channel to sense (to jam). The strategies of the sec-
ondary user and attacker are the probabilities to sense and jam different channels,

__________ N> Tespectively.

e Reward: For player 1 (the secondary user), we assume that it receives a reward p;; when
it chooses channel i to sense and the channel is not attacked by the PUE attacker. Note
that this reward is the idle probability of channel i. Hence, it is actually the expectation
of the actual reward if we define the actual reward as 1 when the secondary user finds
an idle channel to transmit. The definition of the reward simplifies the analysis since
it does not involve the actual state of primary user. When channel i is being attacked
by player 2, player 1 receives reward 0. We assume that this is a zero-sum game since
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the two players have completely conflicting interests. Then, the reward of player 2 is
also determined.

The Nash equilibrium of the dogfight game is disclosed in the following theorem [1294].
An interesting observation is that some channels exist with bad qualities (that is, small
idle probabilities) that both players will not access. The probabilities of the corresponding
actions are then equal to zero.

Theorem 10.1 Define K as

k—1

PN—k+1,1

j=N—k+1 m

K =max ik

Then, there is a unique Nash equilibrium point in the game of spectrum dogfight, which is
given by

1

Pk i=N-K+1,...,N,
=1 Thn-xn m : (10.21)
0, i=1,...,.N—K
and
K-1
l—— 2 i =N-K+1,....N
v, = T vk 7 . (10.22)

0, i=1,...,N=-K

The above Nash equilibrium is illustrated using real measurement data using the system
shown in Figure 10.3. An E4407B-COM ESA-E spectrum analyzer is used to collect the
spectrum activity. The range of 2.4 GHz to 2.5 GHz is divided into 20 channels, each
spanning 5 MHz. The measurement is carried out for both inside and outside the Ferris
Hall of the University of Tennessee. The busy probabilities of the 20 channels are shown
in Figure 10.4.

For both the indoor and outdoor measurements, we show the sensing/jamming probabil-
ities at the Nash equilibrium in Figure 10.5. We observe that, for the indoor case, K = 19,
that is, only one channel will not get involved in the game; while K = 18 for the outdoor
environment. Note that this conclusion is valid for only the set of measurements used in
the simulation. It may not be true for other spectrum environments.

10.2.3  Game in Queuing Dynamics: A Stochastic Game

In the previous discussion, we consider only two players. However, in practice, there
could be multiple PUE attackers while the defender could be the whole cognitive radio
network. Moreover, the goal of the strategic game in the previous discussion is essentially
increasing/decreasing the throughput of the secondary user transmitter. However, this goal
may not be reasonable in a network with delay-tolerable traffics. For example, if the goal
of the secondary user is to deliver all packets to the destination regardless of the delay, the
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Figure 10.3 A picture of the spectrum measurement system.
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Figure 10.4 The probabilities of different channels of both indoor (upper figure) and outdoor
(lower figure) environments.

attacker has no reward if all packets are eventually delivered. Hence, here we extend the
strategic game of the PUE attack to the more interesting scenario of network-wide game
for the queuing dynamics in the cognitive radio network. Since the reward is dependent
on the system state, namely the queue lengths of each node, the game is a stochastic
one over multiple stages. Briefly speaking, the goals of the players are to stabilize (the
cognitive radio network side) or destabilize (the attacker side) the queuing dynamics in
the cognitive radio network.

Note that the queuing dynamics have been widely studied in wireless communication
system. In their seminal work [1296], Tassiulas and Ephremides proposed a scheduling
algorithm for wireless communication networks that achieves the maximal throughput
region. In the context of cognitive radio network, the scheduling algorithm is extended
[1297], which will be explained in details in Chapter 10. In [1298], a “drift-plus-penalty”
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Figure 10.5 Optimal sensing/jamming probabilities for the indoor and outdoor environments.

cost function is proposed to achieve the tradeoff between the queuing stability and other
factors like delay. The centralized scheduling algorithm in [1296] has been extended
to decentralized cases at the cost of reasonable performance loss [1299]. Although the
scheduling algorithm and the corresponding queuing stability have been widely studied,
they are almost all on the single side optimization of the scheduling policy without the
consideration of attacks.

For formulating the game, we consider a cognitive radio network with N secondary
users, whose topology can be represented by a graph. We assume that there are totally
M licensed channels that may be used by K primary users. We denote by N, the set of
secondary users that may be affected by primary user k and denote by M, the set of
channels that primary user k occupies when it is active. For simplicity, we assume that the
activities in different time slots of each primary user are mutually independent, and the
probability of being active is denoted by p, for primary user k. At time slot ¢, the status
of channel m is denoted by s,,; that is, s5,, = 0 when the channel is not being used by
primary users and s,, = 1 otherwise. Due to the limited capability of spectrum sensing,
we assume that each secondary user can sense only one channel during the spectrum
sensing period.

We assume that there are totally F data flows in the cognitive radio network. We denote
by S; and D, the source and destination nodes of flow f, respectively. We assume that
the packet arrival at the source node of data flow f is Poisson with expectation a . The
routing paths of the F' data flows can be represented by an F x N matrix R, in which
R, =1 if data flow f passes through secondary user n and R;, =0 otherwise. We
denote by Z, the set of data flows passing through secondary user n.

For each flow, the data are packetized using the same packet length. Each secondary user
has one buffer for each data flow passing through it. In each time slot, the secondary users
will choose one packet from its buffer(s), if there is any, for the opportunistic spectrum
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access. Suppose that one channel can support only one data flow in one time slot. We
assume that there are sufficiently many channels such that any set of interfering sec-
ondary users can be assigned to different channels. Thus, all secondary users can transmit
simultaneously (if there is no primary user) by appropriately allocating the channels.

When secondary user n decides to transmit to a neighbor j, and an idle channel, say
channel m, is assigned to secondary user 7, the packet can be delivered successfully with
probability p,;,, which is determined by the channel quality. Hence, the probability that
a packet can be delivered is given by

ojm =Pujm - || (= Pp) (10.23)
kineNy,meMy,

We assume that there are totally L PUE attackers. In each time slot, each attacker chooses
Q0 (Q < M) channels to attack. We denote by V) the set of potential secondary user victims
that are jammed by attacker /. We assume that the attackers have perfect knowledge
about the current state of the cognitive radio network. Such an assumption can make the
game theoretic analysis easier. It provides a starting point for more complicated cases in
which the attackers have only partial observations on the network state. Moreover, this
assumption is reasonable if any node in the cognitive radio network is compromised, or
the attackers have acquired the secrecy key and can decode/decypher the messages like
current queue lengths.

Then, we formulate the game between the cognitive radio network and the attackers in
the following way:

e Players: We consider only two players, namely the cognitive radio network and the
attackers. This implicitly assumes that there are two centralized controllers making
decisions for the network and the attackers, respectively.

e System State: We denote by s the system state, which is composed by all queue lengths
(denoted by {q,} r—1 a1, . n)- The state space is denoted by S.

e Actions: The set of actions of the attackers and secondary users are denoted by A,
and A, respectively. The actions of the attackers, denoted by a,, include the channels
to jam of each attack, which are denoted by {c/'},_; ; (¢; is a vector containing the
Q channels to jam). The actions of the secondary users, denoted by a;, have more
elements. It consists of the channel assignment, as well as the flow schedule (which
flow to choose the packet if there are multiple flows?). We denote by c,(t) and f,(¢)
the assigned channel and scheduled flow at secondary user n at time slot 7.

e Reward: This is the key element in this PUE game for queuing dynamics. Recall that the
goals of the players are to stabilize and destabilize the queuing dynamics, respectively.
Hence, we need a quantity to charac