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Preface

The idea of writing this book began at least five years ago when the first author taught a one
first-year graduate course, on communications/wireless communications. After this course,
some students pursued advanced topics such as convex optimization prior to their PhD
research. MS students wanted to know more about the field before they began to design
wireless systems. The first author taught such advanced courses regularly, and part of these
materials provided the starting point for this book. After this book project began, additional
authors were added so that we could meet with our deadlines and before the topics become
outdated. Another title of this book could be Advanced Wireless Communications.

The most difficult part was to decide what to exclude. The wireless industry is still
expanding rapidly after two decades of growth. The first author studied the second gener-
ation (2G) system—CDMA and GSM—during his university days. Now, 3G (WCDMA)
and 4G (LTE) systems are available. Each system has its central concept and demands
unique analytical skills. Generally professors find that their most significant responsibil-
ities are to teach students the most difficult mathematical tools required to analyze and
design fundamental system concepts. For example, in a GSM (TDMA) system, the equal-
izers are central to the system. For a CDMA system, a RAKE receiver is central (as is
power control). For an LTE system, a multiple-input, multiple-output (MIMO) system
combined with an orthogonal frequency division multiplexing (OFDM) is central.

This approach is adopted in our book. We cover the system concepts that are central
to the next generation cognitive radio network (CRN). We claim that the following three
analytical tools are central to the CRN: (1) large random matrices; (2) convex optimiza-
tion; (3) game theory. The unified view is the so-called “Big Data”—high-dimensional
data processing. Due to the unique nature of cognitive radio, we have an unparalleled
challenge—having too much data at our disposal. In today’s digital age, making sense
of the data in real-time is central not only to major players like Facebook, Google and
Amazon, but also to our telecommunication vendors. To successfully solve the Big Data
problem however, there are still many hurdles. For one thing, the current tools are inad-
equate. Scientist and engineers with the skills to analyze the data are scarce. Future ECE
students must learn the analytical skills obtained from studying Big Data. In addition to
traditional fields, this book contains results from multi disciplinary fields: machine learn-
ing, financial engineering, statistics, quantum computing, etc. Social networking and the
Smart Grid command more resources. Researchers must become more cost-conscious.
Investments in other fields mentioned above can reduce the costs of solving these prob-
lems. Abstract mathematical connections are the best starting point toward this goal.
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xvi Preface

This justifies our belief in teaching students the most difficult analytical skills that are
not readily obtained after leaving schools. By studying this book, practical engineers will
understand system concepts, and may make connections with other fields. Peer researchers
can use this book as a reference.

Compared with previous systems, the CRN contains radios that are highly pro-
grammable; their modulation waveforms are changing rapidly and their frequencies
are agile; their radio frequency (RF) front-ends are wideband (up to several GHz).
In addition to the highly programmable nature of their physical layer functions, a
CRN radio senses the spectrum at an unprecedentedly low signal-to-noise-ratio (SNR)
(e.g., −21 dB required by the FCC). To support this fundamental spectrum sensing
function, the system allocates computing resources with the ultimate goal of real-time
operations. From another viewpoint, this radio is a powerful sensor with almost unlimited
computing and networking capabilities. Through the combination of these two views,
communications and sensing are merged into one function that transmits, receives, and
processes programmable modulated waveforms. Real-time distributed computing is
embedded in these two functions.

It is believed that we lack a coherent network theory that is valid for numerous applica-
tions. Rather, the state-of-the-art network is designed for special needs; when a new need
arises, the network must be redesigned. Costs are wasteful due to the lack of a network
theory. The cognitive radio poses unique challenges in networking.

Wireless technology is proliferating rapidly; the vision of pervasive wireless computing,
communication, sensing and control offers the promise of many societal and individual
benefits. Cognitive radios, through dynamic spectrum access, offer the promise of being
a disruptive technology. Cognitive radios are fully programmable wireless devices that
can (1) sense their environment and (2) dynamically adapt their transmission waveform,
channel access method, spectrum use and networking protocols. It is anticipated that
cognitive radio technology will become a general-purpose programmable radio that will
serve as a universal platform for wireless system development, as microprocessors have
served a similar role for computation. There is, however, a big gap between having a
flexible cognitive radio, effectively a building block, and the large-scale deployment of
cognitive radio networks that dynamically optimize spectrum use. Testbeds are critical
but totally ignored since the materials become outdated when the book is published. We
want to focus on the materials that can last.

One goal is aimed toward a large-scale cognitive radio network; in particular, we need
to study novel cognitive algorithms using quantum information and machine learning
techniques, to integrate FPGA, CPU and graphics processing unit (GPU) technology into
state-of-the-art radio platforms, and to deploy these networks as testbeds in the real-world
university environment. Our applications range from communications to radar/sensing and
Smart Grid technologies. Cognitive radio networking/sensing for unmanned aerial vehicles
(UAVs) is also very interesting and challenging due to its high mobility. Synchronization
is critical. UAVs can be replaced with robots.

One task will pursue a new initiative of CRN as sensors and explore the vision of a
dual-use sensing/communication system based on CRN. The motivation is to push the
convergence of sensing and communication systems into a unified cognitive network-
ing system. CRN is a cyber-physical system with the integrated capabilities of control,
communications, and computing.
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Preface xvii

Due to the embedded function of cooperative spectrum sensing in CRN, rich information
about the radio environment may be obtained. This information unique to CRN can be
exploited to detect, indicate, recognize, or track the target or intruder in the covered area of
a CRN. The data for this kind of information system are intrinsically high-dimensional and
random. Hence, we can employ quantum detection, quantum state estimation, and quantum
information theory in our new initiative using CRN as sensors. In this way, the sensing
capability of CRN can be explored together with great improvement in performance.

Very often one views a cognitive radio as two fundamental functions: (1) spectrum
sensing; (2) spectrum-aware resources allocation. In this second function, convex opti-
mization plays a central role. Optimization stems from human instinct. We always like
to do something in the best way. Optimization theory gives us a way to realize this kind
of human instinct. With the enhancement of computing capability, optimization theory,
especially convex optimization, is a powerful signal processing tool to handle Big Data. If
the data mining problem can be formulated as a convex optimization problem, the global
optimum can be achieved. There is no doubt about the results or performances. However,
there is still a challenge to make optimization algorithms scalable on the data sets of mil-
lions or trillions of elements. Thus, more effort is needed to explore optimization theory
before we gain the benefit of it.

A collection of nodes are studied. These nodes, in analogy with human beings, can
both collaborate and compete. Game theory captures the fundamental role of competition
for resources. Of course, many algorithms in game theory can be formulated as convex
optimization problems. For the games in CRN, we have provided plenty of working
knowledge of generic games such that the readers can begin the research without reading
specific books on game theory. Several typical examples in CRN are given to illustrate
how to use game theory to analyze cognitive radio. Moreover, many unique concerns of
games in cognitive radio are explained in order to motivate new research directions.

We will explain the networking issues in CRN in a layer by layer manner. Only
challenges specific to CRN are explained in order to distinguish from traditional com-
munication networks. We hope that the corresponding chapter not only explains the
state-of-the-art of CRN, but also motivates new ideas in the design of CRN.

The overall picture of this book is presented in Figure P.1. Novel applications of the
CRN include:

1. The Smart Grid; Security is a challenge.
2. Wireless networking for for unmanned aerial vehicles. Synchronization is a challenge.
3. Cloud computing is integrated with the CRN.
4. The CRN is used as distributed sensing.

Chapter 1 overviews the book. Twelve chapters are included.
Chapter 2 presents basic techniques for spectrum sensing. These techniques can be

implemented in today’s systems. Energy detection is the basis. The second-order statistics
based detection is important. Features extracted using singular value decomposition (SVD)
are also used. Cyclostationary detection is treated for completeness.

Chapter 3 is the core of spectrum sensing. It is also a stepping-stone to understand the
algorithms of Chapter 4 that are believed to be new. The generalized likelihood ratio test
(GLRT) is the culmination of the development of the whole Chapter 3. We focus on three
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xviii Preface

1.
Introduction

Theory

Functions

Application

5. Large Random
Matrices

6.Convex
Optimization

 

7. Machine
Learning

10. Game Theory

11. Cognitive Radio
Network

12. Cognitive Radio
Network as Sensors

Spectrum Sensing

8. MIMO

9. OFDM

2. Basic Techniques

3. Classical
Detection

 

4. Hypothesis
Detection of

Noncommutative
Random Matrices

Figure P.1 Connections of different chapters in this book.

major analytical tools: (1) multivariate normal statistics; (2) sample covariance matrix
that is a random matrix; (3) the GLRT. This chapter also prepares us for Chapter 5 (large
random matrices).

Chapter 4 deals with noncommunicative random matrices and their detection. The
nature of this chapter is exploratory. It connects us with some latest literature in quantum
computing, applied linear algebra and machine learning. The basic mathematical objects
are random matrices—matrix-valued random variables that are elements in an algebraic
space such as C∗ algebra. This chapter is designed not only for practical significance, but
also for conceptual significance. These concepts are basic when we deal with Big Data in
machine learning. A great number of random matrices are processed. The new algorithms
achieve much better performance, compared with the classical algorithms that are treated
in Chapter 3.

Chapter 5 is a long chapter. It was, however, not even included in the initial writing.
In the last stage of the book project, we have reached the insight into its fundamental
significance under our unified view of Big Data. In Chapter 4, we already established that
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Preface xix

the basic mathematical objects are the covariance matrices and their associated sample
covariance matrices. We can asymptotically estimate the former from the data. Recently,
the trend is to use the nonasymptotic sample covariance matrices instead. The data is
huge but is not infinite. The central difficulty arises from the randomness of a sample
covariance matrix that uses finite data samples. When a large collection of those sample
covariance matrices are studied, the so-called random matrix theory is needed. Also, for
detection, quantum information is needed. Under this context, Chapter 4 is connected
when there quantum detection is used. Large random matrices were used to wireless
communication as early as 1999 by Tse and Verdu to study CDMA systems. Later, they
were used to study MIMO systems. They are especially critical to our vision of merging
communications with sensing. Large random matrices are ideal mathematical objects to
collect the intrinsic (quantum) information is a large network of cognitive nodes that are
able to sense, compute, and reason. To study this collection of large random matrices, the
so-called random matrix theory is needed. How to apply this theory in the large sensing
network is clear from this chapter (see also Chapter 12). How to apply this theory for
across-layer applications such as routing, physical layer optimization, etc. remains elusive
at the time of writing. Compressive sensing is another fundamental concept that is only
applied in this chapter. A comprehensive treatment is beyond our scope here. Its relevance
is pointed out for emphasis. Compressive sensing exploits the structure of sparsity of the
physical signals; large random matrices exploits the structure of random entries. Somehow
it is believed that two theories must be combined together. We have only touched the
surface of this issue and further research is still required.

Chapter 6 will give some background information about optimization theory. Optimiza-
tion stems from human instinct. We always like to do something in the best way. Relying
on mathematics, this human instinct can be written down. Convex optimization is a sub-
field of optimization theory. The strength of convex optimization is if a local minimum
exists, then it is a global minimum. Hence, if the practical problem can be formulated as
a convex optimization problem, then global optimum can be obtained. That is the reason
why convex optimization has recently become popular. Linear programming, quadratic
programming, geometric programming, Lagrange duality, optimization algorithm, robust
optimization, and multi objective optimization will be covered. Some examples will be
presented to show the beauty and benefit of optimization theory.

Chapter 7 will give some background information about machine learning. Machine
learning can make the system intelligent. In order to give readers the whole picture of
machine learning, almost all the topics related to machine learning will be covered, which
include unsupervised learning, supervised learning, semi supervised learning, transductive
inference, transfer learning, active learning, reinforcement learning, kernel-based learning,
dimensionality reduction, ensemble learning, meta learning, Kalman filtering, particle
filtering, collaborative filtering, Bayesian network, and so on. Machine learning will be
the basic engine for cognitive radio network.

Chapter 8 will present MIMO transmission technique. MIMO in wireless communi-
cation exploits multiple antennas at both the transmitter and the receiver to improve the
performance of wireless communication without additional radio bandwidth. Array gain,
diversity gain, and multiplexing gain can be achieved. Space time coding, multi-user
MIMO, MIMO network, and so on will be covered. MIMO can explore the spatial radio
resources to support spectrum access and spectrum sharing in cognitive radio network.
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xx Preface

Chapter 9 will present OFDM transmission technique. OFDM is a technique of digital
data transmission based on multi carrier modulation. The critical issues in OFDM sys-
tem including OFDM implementation, synchronization, channel estimation, peak power
problem, adaptive transmission, spectrum shaping, OFDMA, and so on will be discussed.
Spectrum access and spectrum sharing can also be well supported by OFDM in cognitive
radio network.

Chapter 10 is devoted to the application of game theory in cognitive radio. There exist
competition and collaboration in the spectrum, thus resulting in various games in cognitive
radio. In this book, we will provide a brief introduction to game theory and then apply it
to several typical types of games in cognitive radio.

Chapter 11 provides a systematic introduction to the design issues of networking with
cognitive radio. We will explain the algorithms and protocols in various layers of cogni-
tive radio networks. In particular, we will address the unique challenges brought by the
mechanism of cognitive radio. We will also discuss the complex network phenomenon in
cognitive radio networks.

Chapter 12 will describe a new initiative of cognitive radio network as sensors. This
vision tries to explore a dual use sensing/communication system based on cognitive radio
network. Cognitive radio network is a cyber-physical system with the integrated capa-
bilities of control, communication, and computing. Cognitive radio network can provide
an information superhighway and a strong backbone for the next generation intelligence,
surveillance, and reconnaissance. Open issues together with the potential applications in
cognitive radio network as sensors will be under investigation.

The author Qiu wants to thank his PhD graduates for their help in proof-reading:
Jason Bonier, Shujie Hou, Xia Li, Feng Lin, and Changchun Zhang at TTU, especially
Changchun Zhang for drawing numerous figures. Qiu and Hu want to thank their col-
leagues at TTU: Kenneth Currie, Nan Terry Guo, P. K. Rajan for many years’ help.
Qiu and Hu want to acknowledge their program director Dr. Santanu K. Das at Office
of Naval Research (ONR) who supported their research contained in this book. This
work is funded by National Science Foundation through two grants (ECCS-0901420 and
ECCS-0821658), and Office of Naval Research through two grants (N00010-10-1-0810
and N00014-11-1-0006). The authors want to thank our editor Mark Hammond for his
interest in this book and his encouragement during the whole process of the book devel-
opment. The authors have received daily help from other editors: initially Sophia Travis
and Sarah Tilley; later Susan Barclay.

For more information, please visit the companion website—www.wiley.com/go/qiu/
cogradio.
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1
Introduction

1.1 Vision: “Big Data”

“Big Data” [1] refers to datasets whose size is beyond the ability of typical database
software tools to capture, store, manage, and analyze.

There is a convergence of communications, sensing and computing towards the objec-
tive of achieving some control. In particular, cloud computing is promising. Sensors
become cheaper. A network becomes bigger. In particular, powered by Internet protocols,
the Smart Grid—a huge network, much bigger than the traditional networks—becomes
an “energy Internet.”

Communications are becoming more and more like “backbones” for a number of appli-
cations. Sensing is a seamless ingredient in the future Internet of Things. In particular, it
is the data acquisition mechanism to support the vision of “Big Data.” Computing will
become a commodity that is affordable by the common needs of everyday applications.

The economy is becoming a “digital economy,” meaning that the jobs are more and
more related to “soft power.” This does not necessarily imply software programming.
Rather, it implies that more and more job functions will be finished by a smart system
which is driven by sophisticated mathematics. While job functions become more and more
“soft,” the needs for analytical analysis become more demanding. As a result, analytical
skills, which are avoided by most of us at first sight, will be most useful in the lifelong
education of a typical graduate student. Most often, our students know how to do their
programing if they know the right mathematics. This is the central problem or dilemma.
Analytical machinery is like our games of sports. Unless we practice with dedication, we
will not become good players.

The book aims to focus on fundamentals, in particular, mathematical machinery. We
primarily cover topics that are critical to cognitive radio network but hard to master
without big efforts.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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2 Cognitive Radio Communications and Networking

1.2 Cognitive Radio: System Concepts

Radio spectrum is one of the most scarce and valuable resources, like real estate, in modern
society. Competition for these scare resources is the basic drive for the telecommunication
industry.

In the most general sense, cognitive radio takes advantage of Moore’s law to capi-
talize on the computational power of the semiconductor industry [2]. When information
is accessible in the digital domain, the force behind this novel radio is computationally
intelligent algorithms. Machine learning and artificial intelligence have become the new
frontier toward this vision—the analogy of robotics. Converting information from the
analog domain to the digital domain plays a central role in this vision: revolutionary
compressed sensing is, therefore, critical to expanding the territory of this new system
paradigm. The agile, software defined radios that can perform according to algorithms
are basic building blocks. When each node is computationally intelligent, wireless net-
working faces a novel revolution. At the system level, functions such as cognitive radio,
cognitive radar and anti-jamming (even electronic warfare) have no fundamental differ-
ence and are unified into a single framework that requires interdisciplinary knowledge.
Radar and communications should be unified since both require dynamic spectrum access
(DSA)—the bottleneck. Spectrum agile/cognitive radio is a new paradigm in wireless
communications—a special application of the above general radio.

Cognitive radio [3] takes advantage of the waveform programmable hardware platform,
that is, so-called software-defined radio. Signal processing and machine learning are the
core of the whole radio, called cognitive core (engine). In its fundamental nature, cog-
nitive radio is a “mathematically-intensive” radio. It is policy based. The policy can be
reasoned through the cognitive engine. In some sense, the whole book is focused on the
fundamentals that are responsible for the cognitive engine. Here, our radio stands for a
generalized sense. The radios can be used for communication networks, or sensor net-
works. So-called cognitive radar [4] is even included in this sense [2]. Our whole book
can be viewed as a detailed spelling-out of Haykin’s vision [3, 4]. Similar to Haykin, our
style is mathematical in its nature. At the time of writing, the IEEE 802.22 standard on
cognitive radio [5] was just released in July 2011. This book can be viewed as the mathe-
matical justification for some critical system concepts, such as spectrum sensing (random
matrices being the unifying theme), radio resource allocation (enabled by the convex
optimization engine), and game theory (understanding the competition and collaboration
of radio nodes in networking).

1.3 Spectrum Sensing Interface and Data Structures

Dynamic spectrum sharing in time and space is a fundamental system building block. An
intelligent wireless communication system will estimate or predict spectrum availability
and channel capacity, and adaptively reconfigure itself to maximum resource utilization
while addressing interference mitigation [6]. Cognitive radio [3] is an attempt in this
direction. It takes advantage of the waveform programmable hardware platform, that is,
so-called software-defined radio.

The interface and data structures are significant in the context of system concepts. For
example, we adopt the view of IEEE 1900.6 [6], as shown in Figure 1.1. Let us define
some basic terms:
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Introduction 3

CE/DA-S

S-S

Sensor

CE/CE-DA

Cognitive Engine (CE)

CE/CE-DA

Data Archive (DA)
Distributed Sensing

Wireless Access and Sensing Infrastructure

Sensing Control Information

Sensor Information and Sensing Information

Switch/Routing

Storage/Computing

Figure 1.1 Sample topology of an IEEE 1900.6 distributed RF sensing system [6].

1. Sensors . The sensors are sometimes standalone or can form a small network of
collaborating sensors that are inferring information about the available spectrum.

2. Data archive. The sensors talk to a data archive (DA), which can be considered a
database where sensed information about spectrum occupancy is stored and provided.

3. Cognitive engine. A cognitive engine (CE) is an entity utilizing cognitive capabilities,
including awareness, reasoning, solution making, and optimization for adaptive radio
control and implementation of spectrum access policy. This CE is analogous with the
human brain [3].

4. Interface. We need an interface that sensors utilize to talk to each other; so do CEs and
DAs. It is necessary to change information between sensors, DAs and CEs, in order
to disseminate spectrum availability and reduce interference to incumbent spectrum
users.

5. Distributed sensing . In distributed scenarios, CEs and DAs must interface with com-
munications devices; hence, generic but focused interface definitions are required.

6. IEEE 1900.6. The IEEE 1900.6 develops the interface and data structures that enable
information flow among the various entities.

7. Spectrum sensing. Spectrum sensing is a core technology for DSA networks; it
has recently been more and more intended not only as a stand-alone and real-time
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4 Cognitive Radio Communications and Networking

technology, but also a necessary tool to constantly update the geolocalized spectrum
map. Spectrum sensing is enabled by distributed mobile or fixed cognitive devices;
this architecture allows the devices to monitor the spectrum occupancy and the overall
level of interference with high precision and timeliness.

Spectrum sensing is fundamental to a cognitive radio. In some sense, a cognitive radio
includes two parts: (1) spectrum sensing; (2) the radio resources are “cognitively” allo-
cated using the available sensed spectrum information. In future evolved schemes, every
“object” connected to the Internet could provide sensing features. This approach is ori-
ented toward both the Internet of Things (IoT) and green radio communication paradigms
[6]. The approach is also to create dynamic wide-area maps of spectrum usage that are
being rapidly updated to optimize the overall electromagnetic emission and global inter-
ference. In this context, the jointly merging the notion of the cognitive radio network and
the Smart Grid is relevant. The latter is a huge network of power grids (many sensors,
mobile or fixed). The size of the network is many times bigger than the usual wireless
communications network. The idea of this merging was explored (for the first time in the
proposal of R. Qiu to the office of naval research (ONR)) [7].

Sensing related information basically consists of four categories:

1. Sensing information denotes any measurement information that can be obtained from
a spectrum sensor.

2. Sensing control denotes any information required to describe the status or configu-
ration, and to control or configure the data acquisition and RF sensing process of a
spectrum sensor.

3. Sensor information denotes the parameters used to describe the capabilities of a spec-
trum sensor.

4. Regulatory requirements are unique to the application area of DSA by CRs.

1.4 Mathematical Machinery

1.4.1 Convex Optimization

Optimization stems from human instinct. We always want to do things in the best way.
Relying on mathematics, this human instinct can be written down in terms of math-
ematical optimization. Practical problems can be formulated as optimization problems
with objective functions, constraint functions, and optimization variables. Mathematical
optimization attempts to minimize or maximize the objective function by systematically
selecting the values of optimization variables from a specific set defined by the constraint
functions.

Convex optimization is a subfield of mathematical optimization, which investigates the
problem of minimizing convex objective function based on a compact convex set. The
strength of convex optimization is if a local minimum exists, then it is a global minimum.
Hence, if a practical problem can be formulated as a convex optimization problem, then
global optimum can be obtained. That is one reason why convex optimization has recently
become popular.

The other reason for the popularity of convex optimization is that convex optimization
can be solved by the cutting plane method, ellipsoid method, subgradient method, or

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Introduction 5

interior point method. Thus the interior point method, which was originally developed
to solve linear programming problems, can also be used to solve convex optimization
problems [8]. By taking advantage of the interior point method, convex optimization
problems can be solved efficiently [8].

Convex optimization includes the well-known linear programming, second order cone
programming (SOCP), semidefinite programming (SDP), geometric programming, and so
on. Convex optimization is a powerful signal processing tool which can be exploited
anywhere, for example, system control, machine learning, operation research, logistics,
finance, management, telecommunication, and so on, due to the prevalence of convex
optimization problems in practice [8].

Besides convex optimization, mathematical optimization also includes integer pro-
gramming, combinatorial programming, nonlinear programming, fractional programming,
stochastic programming, robust programming, multi-objective optimization, and so on.

Unfortunately, there are still a large amount of nonconvex optimization problems in
the real-world. Relaxation is the common way to address the nonconvex optimization
issues. The nonconvex optimization problem is relaxed to the convex optimization prob-
lem. Based on the global optimum to the convex optimization problem, we can find
the sub-optimal solution to the original nonconvex optimization problem. The second
strategy to deal with the nonconvex optimization problems makes use of stochastic meth-
ods. Stochastic methods exploit random variables to get the solution to the optimization
problem. Stochastic methods do not need to explore the structures of objective functions
and constraints. Stochastic methods include simulated annealing, stochastic hill climbing,
genetic algorithm, ant colony optimization, particle swarm optimization, and so on.

When we enjoy the beauty and benefit of mathematical optimization, we cannot for-
get the contributors and the important researchers in mathematical optimization. Joseph
Louis Lagrange found a way to identify optima. Carl Friedrich Gauss and Isaac Newton
gave iterative methods to search for an optimum. In 1939, Leonid Kantorovich published
an article “Mathematical Methods of Organizing and Planning Production,” introducing
the concept and theory of linear programming. Then George Bernard Dantzig devel-
oped simplex method for linear programming in 1947 and John von Neumann invented
Duality Theorem for linear programming in the same year. Von Neumann’s algorithm
can be considered as the first interior-point method of linear programming. In 1984, a
new polynomial-time interior-point method for linear programming was introduced by
Narendra Karmarkar. Yurii Nesterov and Arkadi Nemirovski published a book Interior-
Point Polynomial Algorithms in Convex Programming in 1994. Generally, the interior-
point method is faster than the simplex method for the large-scale optimization problem.
Besides, David Luenberger, Stephen P. Boyd, Yinyu Ye, Lieven Vandenberghe, Dimitri
P. Bertsekas, and so on also made obvious contributions to mathematical optimization.

Mathematical optimization, especially convex optimization, has already greatly
improved the performance of the current telecommunication system. For the next gen-
eration wireless communication system, that is, cognitive radio network, mathematical
optimization will play a critical role. Cognitive radio network opens another stage for
the show of mathematical optimization. Optimization will be the core of the cognitive
engine. We can see the beauties of mathematical optimization in spectrum sensing,
spectrum sharing, coding and decoding, waveform diversity, beamforming, radio resource
management, cross-layer design, and security for cognitive radio network.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 Cognitive Radio Communications and Networking

1.4.2 Game Theory

Game theory is an important analysis tool in cognitive radio. Essentially, a game
involves multiple players, each of which makes individual decision and maximizes its
own reward. Since the reward of each players is dependent on the actions of other
players, the player must take the possible response of other players into account. All
players will be satisfied at the equilibrium point, at which any individual deviation from
the strategy only incurs reward loss. A natural question may arise, that is, why game
theory is needed in cognitive radio?

The essential reason for the necessity of game theory is the existence of conflict or
collaboration in cognitive radio. Some examples are given below:

• PUE attack: Primary user emulation (PUE) attack is a serious threat to the cognitive
radio network, in which the attacker pretends to be a primary user and sends interference
signals to scare secondary users away. Then, the secondary users need to evade the
PUE attack. If there are multiple channels to choose, the secondary users need to make
decisions on the channel use while the attacker needs to decide which channel to jam
(if it is unable to jam all channels), thus forming a game.

• Channel synchronization: The control channel is of key importance in cognitive radio.
Two secondary users need to convey control messages through the control channel. If
the control channel is also in the unlicensed band, it is subject to the interruption of
primary users. Hence, two secondary users need to collaborate to find a new control
channel if the current one is no longer available. Such a collaboration is also a game.

• Suspicious collaborator: Collaborative spectrum sensing can improve the performance
of spectrum sensing. However, the reports from a collaborator could be false if the
collaborator is actually a malicious one. Hence, the honest secondary user needs to
make a decision on whether trust the collaborator or not. Meanwhile, the attacker also
needs to decide what type of report to share with the honest secondary user such that
it can simultaneously spoof the honest user and disguise its goal.

The above examples concern zero-sum games, general sum games, Bayesian games
and stochastic games. In this book, we will explain how to analyze a game, particularly
the computation of Nash equilibrium, and apply the game theory to the above examples.

1.4.3 “Big Data” Modeled as Large Random Matrices

It turns out that random matrices are the unifying theme since “big data” can be modeled
as large random matrices. With data acquisition and storage now easy, today’s statisticians
often encounter datasets for which the sample size, n, and the number of variables, p, are
both large [9]: in the hundreds, thousands, millions and even billions in situations such
as web search problems. This phenomenon is so-called “big data.” The analysis of these
datasets using classical methods of multivariate statistical analysis requires some care. In
the context of wireless communications, networks become more and more dense. Spectrum
sensing in cognitive radio collects much bigger datasets than the traditional multiple
input multiple output (MIMO)-orthogonal frequency-division multiplexing (OFDM), and
code division multiple access (CDMA) systems. For example, for a duration of 4.85
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Introduction 7

Table 1.1 Analogy of sensors and particles

Particles Sensors Random Matrices

Total energy Information Degrees of freedom
Energy levels Eigenvalues

milliseconds, a data record (digital TV) consisting of more than 105 sample points is
available for data processing. We can divide this long data record into vectors consisting
of only p sample points. A number of sensors n can cooperate for spectrum sensing.
The analogy of sensors and particles is shown in Table 1.1. Alternatively, we can view
n · p = 105 as using only one sensor to record a long data record. Thus we have p = 100
and n = 1,000 for the current example. In this example, both n and p are large and in
the same order of magnitude.

Let Xij be i.i.d. standard normal variables of p × n matrix X

X =




X11 X12 · · · X1n

X21 X22 · · · X2n

...

Xp1

...

Xp2

...

· · ·
...

Xpn




p×n

. (1.1)

The sample covariance matrix is defined as

Sn =
(

1

n

n∑
k=1

XikXjk

)p

i,j=1

= 1

n
XXH , (1.2)

where n vector samples of a p-dimensional zero-mean random vector with the population
(or true covariance) matrix I and H stands for conjugate transpose (Hermitian) of a matrix.

The classical limit theorem is no longer suitable for dealing with large dimensional
data analysis. The classical methods make an implicit assumption that p is fixed and n

is growing infinitely large,

p fixed, n → ∞. (1.3)

This asymptotic assumption (1.3) was consistent with the practice of statistics when these
ideas were developed, since investigation of datasets with a large number of variables
was very difficult. A better theoretical framework—that is, large p—for modern datasets,
however, is the assumption of the so-called “large n, large p” asymptotics

p → ∞, n → ∞, but
p

n
→ c > 0, (1.4)

where c is a positive constant.
There is a large body of work concerned with the limiting behavior of the eigenvalues of

a sample covariance matrix Sn when p and n both go to ∞ (1.4). A fundamental result is
the Marchenko-Pastur equation, which relates the asymptotic behavior of the eigenvalues
of the sample covariance matrix to that of the population covariance in the “large n, large
p” asymptotic setting. We must change points of view: from vectors to measures .
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8 Cognitive Radio Communications and Networking

One of the first problems to tackle is to find a mathematically efficient way to express
the limit of a vector whose size grows to ∞. (Recall that there are p eigenvalues to
estimate in our problem and p goes to ∞.) A fairly natural way to do so is to associate to
any vector a probability measure. More explicitly, suppose we have a vector (y1, . . . , yp)

in R
p. We can associate to it the following measure:

dGp (x) = 1

p

p∑
i=1

δyi
(x),

where δx is the Dirac delta function at x. Gp is thus a measure with p point masses of
equal weight, one at each of the coordinates of the vector. The change of focus from vector
to measure implies a change of focus in the notion of convergence—weak convergence
of probability measure.

Following [10], we divide available techniques into three categories: (1) Moment
approach; (2) Stieltjes transform; (3) Free probability. Applications for these basic tech-
niques will be covered.

The Stieltjes transform is a convenient and very powerful tool in the study of the
convergence of spectral distribution of matrices (or operators), just as the characteristic
function of a probability distribution is a powerful tool for central limit theorems. More
important, there is a simple connection between the Stieltjes transform of the spectral
distribution of a matrix and its eigenvalues. By definition, the Stieltjes transform of a
measure G on R is defined as

mG(z) =
∫

1

x − z
dG(x) for z ∈ C

+,

where C
+ � C ∩ {z : Im(z) > 0} is the set of complex numbers with strictly positive

imaginary part. The Stieltjes transform is sometimes referred to as Cauchy or Abel-
Stieltjes transform. Good references on Stieltjes transforms include [11] and [12].

The remarkable phenomenon is that the spectral distribution of the sample covariance
matrix is asymptotically nonrandom. Furthermore, it is fully characterized by the true
population spectral distribution, through the Marchenko-Pastur equation. The knowledge
of the limiting distribution of the eigenvalues in the population, �, fully characterizes the
limiting behavior of the eigenvalues of the sample covariance matrix, S.

In the market for wireless communications, an excellent book by Couillet and Debbah
(2011) [12] has just appeared, in addition to Tulino and Verdu (2004) [13]. Our aim in
this book is to introduce the relevance of random matrix theory in the context of cognitive
radio, in particular spectrum sensing. Our treatment is more practical than in those two
books. Although some theorems are also compiled in our book, no proofs are given. We
emphasize how to apply the theory through a large number of examples. It is our belief
that future engineers must be familiar with random matrix methods since “big data” is
the dominant theme across layers of the wireless network.

“One of the useful features, especially of the large dimensional random matrix theory
approach, is its ability to predict the behavior of the empirical eigenvalue distribution of
products and sums of matrices. The results are striking in terms of accuracy compared to
simulations with reasonable matrix sizes.” [12]
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Introduction 9

“Indeed, engineering education programs of the twentieth century were mostly focused
on the Fourier transform theory due to the omnipresence of frequency spectrum. The
twenty-first century engineers know by now that space is the next frontier due to the
omnipresence of spatial modes, which refocuses the program towards a Stietjes transform
theory.” [12]

In the eyes of engineers, Bai and Silverstein (2010) [14], Hiai and Petz (2000) [11]
and Forrester (2010) [15] are most readable among the mathematical literature. Anderson
(2010) is also accessible [16] and Girko (1998) is comprehensive [17]. One excellent
survey [10] is a good starting point for the massive literature. It is still the best survey.
Two surveys [18] and [19] are very readable.

In the early 1980s, major contributions on the existence of the limiting spectral distri-
bution (LSD) were made. In recent years, research on random matrix theory has turned
toward second-order limiting theorems, such as the central limit theorem for linear spectral
statistics, the limiting distributions of spectral spacings, and extreme eigenvalues.

Many applied problems require an estimate of a covariance matrix and/or of its inverse,
where the matrix dimension is large compared to the sample size [20]. In such situations,
the usual estimator, the sample covariance matrix, is known to perform poorly. When
the matrix dimension p is larger than the number of observations available, the sample
covariance matrix is not even invertible. When the ratio p/n is less than one but not
negligible, the sample covariance matrix is invertible but numerically ill-conditioned,
which means that inverting it amplifies estimation error dramatically. For large p, it is
difficult to find enough observations to make p/n negligible, and therefore it is important
to develop a well-conditioned estimator for large-dimensional covariance matrices such
as in [20].

1.4.3.1 Why is Random Matrix Theory So Successful?

Random matrix theory is very successful in nuclear physics [21]. Here are several reasons:

1. Flexibility. It allows us to build in extra global symmetries, such as time reversal,
spin, chiral symmetry, etc., treating several matrices—while maintaining its exact
resolvability for all correlation functions of eigenvalues.

2. Universality. Random matrix theory can often be used as the simplest, solvable mode
that captures the essential degrees of freedom of the theory. The role of the normal dis-
tribution in the classical limit theorem is played by the distributions arising in random
matrix theory (Tracy-Widom distribution, sine distribution, . . . ) in noncommutative
settings that may or may not involve random matrices.

3. Predictivity. The scale or physical coupling can be extracted very efficiently by fitting
data to random matrix theory’s predictions.

4. Rich mathematical structure. This comes from the many facets of the large-n limit.
The multiple connections of random matrix theory to various areas of mathematics
make it an ideal bridge between otherwise almost unrelated fields (probability and
analysis, algebra, algebraic geometry, differential systems, combinatorics). More gen-
erally, these developed techniques are fluent enough to be applied to other branches
of sciences.
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10 Cognitive Radio Communications and Networking

1.5 Sample Covariance Matrix

The study of sample covariance matrix is fundamental in multivariate analysis. With
contemporary data, the matrix is often large, with number of variables comparable to
sample size (so-called “big data”) [22]. In this setting, relatively little is known about
the distribution of the largest eigenvalue, or principal component variance. A surprise
of the random matrix theory, the domain of mathematical physics and probability, is that
the results seem to give useful information about principal components for quite small
values of n and p.

Let X, defined in (1.1), be an p × n data matrix. Typically, one thinks of n observa-
tions or cases xi of a p-dimensional column vector which has covariance matrix �. For
definiteness, assume that rows xi are independent Gaussian N(0, �). In particular, the
mean has been subtracted out. If we also do not worry about dividing by n, we can call
XXH a sample covariance matrix defined in (1.2). Under Gaussian assumption, XXH is
said to have a Wishart distribution W(n, �). If � = I, the “null” case, we call it a white
Wishart, in analogy with time series setting where a white spectrum is one with the same
variance at all frequencies.

Large sample work in multivariate analysis has traditionally assumed that n/p, the
number of observations per variable, is large. Today, it is common for p to be large or
even huge, and so n/p may be moderate to small and in extreme cases less than one.

The eigenvalue and eigenvector decomposition of the sample covariance matrix

S = 1

n
XXH = ULUH =

∑
i

liuiu
H
i ,

with eigenvalues in the diagonal matrix L and orthogonal eigenvectors collected as
columns of U. There is a corresponding population (or true) covariance matrix

� = ϒ�ϒH ,

with eigenvalues λi and orthogonal eigenvectors collected as columns of ϒ.
A basic phenomenon is that the same eigenvalues li are more spread out than the

population λi . This effect is strongest in the null case when all population eigenvalues
are the same.

Data matrices with complex Gaussian entries are of interest in statistics, signal pro-
cessing and wireless communications. Suppose that X = (Xij )p×n with

ReXij , ImXij ∼ N(0,
1

2
),

all independently of one another. The matrix S = XXH has the complex Wishart distri-
bution, and its (real) eigenvalues are ordered l1 > · · · > lp.

Define µnp and σnp as

µnp = (√
n + √

p
)2

,

σnp = (√
n + √

p
) (

1√
n

+ 1√
p

)1/3

.

Assume that n = n(p) increases with p so that both µnp and σnp are increasing in p.
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Introduction 11

Theorem 1.1 (Johansson (2000) [23]) Under the forementioned conditions, if n/p →
c ≥ 1, then

l1 − µnp

σnp

D→ W2 ∼ F2,

where D stands for convergence in distribution.

The center and scale are essentially the same as the real case, but the limit distribution is

F2(s) = exp

(
−

∫ ∞

s

(x − s) q2(x)dx

)
,

where q is still the Painleve II function defined as

q ′′(x) = xq(x) + 2q3(x),

q(x) ∼ Ai(x) as x → +∞
and Ai(x) denotes the Airy function. This distribution was found by Tracy and Widom
[24, 25] as the limiting law of the largest eigenvalue of an p by n Gaussian symmetric
matrix (Wigner matrix).

Simulations show the approximation to be informative for n and p as small as 5.

1.6 Large Sample Covariance Matrices of Spiked
Population Models

A spiked population model, in which all the population eigenvalues are one except for
a few fixed eigenvalues, has been extensively studied [26, 27]. In many examples, a few
eigenvalues of the sample covariance matrix are separated from the rest of the eigenval-
ues, the latter being packed together as in the support of the Marchenko-Pastur density.
Examples are so common in speech recognition, mathematical finance, wireless commu-
nications, physics of mixture, and data analysis and statistical learning.

The simplest non-null case would be the population covariance � is a finite rank
perturbation of a multiple of the identity matrix I. In other words, we say

H0 : � = I,

H1 : � = � + I, � = finite rank

As mentioned in the above, Johnstone (2001) [22] derived the asymptotic distribution
for the largest sample eigenvalue under the setting of an identity matrix I under Gaus-
sianity. Soshnikov (2002) proved the distributional limits under weaker assumptions, in
addition to deriving distributional limits of the k-th largest eigenvalue, for fixed but
arbitrary k [28].

A few of the sample eigenvalues under H1 have limiting behavior that is different from
H0 when the covariance is identity matrix I.

A crucial aspect is the discovery of a phase transition phenomenon. Simply put, if the
non-unit eigenvalues are close to one, then their sample versions will behave in roughly the
same way as if the true covariance were the identity. However, when the true eigenvalues
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12 Cognitive Radio Communications and Networking

are larger than 1 + √
n/p, the sample eigenvalues have a different asymptotic property.

The eigenvectors also undergo a phase transition. By performing a natural decomposition
of the sample eigenvectors into “signal” and “noise” parts, it is shown that when li > 1 +√

n/p, the “signal” part of the eigenvectors is asymptotically normal [27].

1.7 Random Matrices and Noncommutative Random Variables

Random matrices are noncommutative random variables [11], with respect to the
expectation

τN(H) = 1
N

N∑
i=1

E
(
Hii

)
,

for an N × N random matrix H, where E represents the expectation of a classical random
variable. It is a form of the Wigner theorem that

τN

(
H2k (N)

) → 1

k + 1

(
2k

k

)
, N → ∞

if the N × N real symmetric random matrix H(N) has independent identical Gaussian
entries N(0, 1/N) so that

τN

(
H2 (N)

) = 1.

The semicircle law is the limiting eigenvalue distribution density of H(N). It is also
the limiting law of the free central limit. The reason why this is so was made clear by
Voiculescu. Let

X1 (N) , X2 (N) , . . . , XN (N) ,

be independent random matrices with the same distribution as X(N). It follows from the
properties of Gaussians that the distribution of the random matrix

X1 (N) + X2 (N) + . . . + XN (N)√
N

is the same as X(N). The convergence in moments to the semicircle law is understood
in the sense that

X1 (N) , X2 (N) , . . . , XN (N)

are in free relation. The conditions for the free relation include

τN

([
Xk

1 (N) − τ k
N

(
X1 (N)

)])
τN

([
Xl

2 (N) − τ l
N

(
X2 (N)

)]) = 0,

which is equivalently expressed as

τN

([
Xk

1 (N) Xl
2 (N)

]) = τN

(
Xk

1 (N)
)
τN

(
Xl

1 (N)
)
.

Independent symmetric Gaussian matrices and independent Haar distributed unitary
matrices are asymptotically free. The notion of asymptotic freeness may serve as a bridge
connecting random matrix theory with free probability theory.
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Introduction 13

1.8 Principal Component Analysis

Every 20–30 years, principal component analysis (PCA) is reinvented with slight revision.
It has many different names. We model the communication signal or noise as random field.
The Karhunen-Loeve decomposition (KLD) is also known as PCA, the Proper Orthogonal
Decomposition (POD), and Empirical Orthogonal Function (EOF). Its kernel version, that
is, Kernel PCA, is very popular. We apply PCA to spectrum sensing.

PCA is a standard tool for dimensionality reduction. PCA finds orthogonal directions
with maximal variance of the data and allows its low-dimensional representation by
linear projections onto these directions. This dimensionality reduction is a typical pre-
processing setup. A spiked covariance model [29–32] implies that the underlying data is
low-dimensional but each sample is corrupted by additive Gaussian noise.

1.9 Generalized Likelihood Ratio Test (GLRT)

The GLRT is the culmination of the theoretical development for spectrum sensing. Its
kernel version, Kernel GLRT, performs well, in contrast to Kernel PCA.

Both GLRT and PCA (its kernel version Kernel PCA) use sample covariance matrices
as their starting points. As a result, large-dimensional random matrices are natural objects
of mathematics to study.

1.10 Bregman Divergence for Matrix Nearness

When dealing with random matrices, we still need some measure of distance between
them. Matrix nearness problems ask for the distance from a given matrix to the nearest
matrix with a certain property. The use of a Bregman divergence in place of a matrix
norm is, for example, proposed by Dhillon and Tropp (2007) [33]. Bregman divergence is
equivalent to quantum information [34, p. 203]. Let C is a convex set in a Banach space.
For a smooth functional � : C → R,

D� (X, Y) � � (X) − � (Y) − lim
t→+0

t−1 (� (Y + t (X − Y)) − � (Y))

is called the Bregman divergence of X, Y ∈ C. Now let C be the set of density matrices
and let

� (ρ) = Tr ρ log ρ.

A density matrix is a positive definite matrix whose trace equals one. It can be shown
that the Bregman divergence is the quantum relative entropy which is the basis for mea-
suring quantum information. Problems of Bregman divergence can be formulated in terms
of convex optimization. The semicircle law, free (matrix-valued) random variables, and
quantum entropy are related [11], when we deal with “big data.”

Functions of matrices are often needed in studying many problems in this book, for
example, in spectrum sensing. The Matrix Function Toolbox contains MATLAB imple-
mentations to calculate functions of matrices [35]. It is available from http://www.maths.
manchester.ac.uk/∼higham/mftoolbox/
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2
Spectrum Sensing: Basic
Techniques

2.1 Challenges

Spectrum sensing in a cognitive radio is practically challenging, as shown in Table 2.2
[36, 37].

2.2 Energy Detection: No Prior Information about Deterministic
or Stochastic Signal

Energy detection is the simplest spectrum sensing technique. It is a blind technique in that
no prior information about the signal is required. It simply treats the primary signal as
noise and decides on the presence or absence of the primary signal based on the energy
of the observed signal. It does not involve complicated signal processing and has low
complexity. In practice, energy detection is especially suitable for wideband spectrum
sensing. The simultaneous sensing of multiple subbands can be realized by scanning the
received wideband signal.

Two stages of sensing are desirable. The first stage uses the simplest energy detection.
The second stage uses advanced techniques.

We follow [38] and [39–42] for the development below. Although the process is for
band-pass, in general, one can still deal with its low-pass equivalent form and eventually
translate it back to its band-pass type [43]. Besides, it has been verified [38] that both
low-pass and band-pass processes are equivalent from the decision statistics perspective
which is our main concern. Therefore, for convenience, we only address the problem for
a low-pass process, following [41, 42].

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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16 Cognitive Radio Communications and Networking

Table 2.1 Receiver parameters for 802.22 WRAN

Parameter Analog TV Digital TV Wireless microphone

Bandwidth 6 MHz 6 MHz 200 kHz
Probability of detection 0.9 0.9 0.9
Probability of false alarm 0.1 0.1 0.1
Channel detection time ≤ 2s ≤ 2s ≤ 2s
Incumbent detection threshold −94 dBm −116 dBm −106 dBm
SNRa 1 dB −21 dB −12 dB

aReceiver noise figure of 11 dB is assumed in IEEE 802.11 Working Group.

Table 2.2 Challenges for spectrum sensing

Practical challenges Consequences Comments

Very strict sensing
requirements

See Table 2.1 To avoid “hidden node”
problem

Unknown propagation channel
and nonsynchronization

Make coherent detection
unreliable

To relieve the primary user
from the burden

Noise/interference uncertainty Very difficult to estimate
their power

Change with time and location

2.2.1 Detection in White Noise: Lowpass Case

The detection is a test of the following hypotheses:

1. H0: The input is noise alone:
(a) y(t) = n(t)

(b) E[n(t)] = 0
(c) noise spectral density = N0 (two-sided)
(d) noise bandwidth = W Hz

2. H1: The input is signal plus noise
(a) y(t) = s(t) + n(t)

(b) E[s(t) + n(t)] = s(t)

The output of the integrator is denoted by Y . We concentrate on a particular interval,
say, (0, T ), and take the test statistic as Y or any quantity monotonic with Y . We shall
find it convenient to express the false alarm and detection probabilities using the related
quantity

Ỹ = 1

N0

∫ T

0
y2(t)dt. (2.1)

The choice of T as the sampling instant is a matter of convenience; any interval of
duration will serve.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Spectrum Sensing: Basic Techniques 17

It is known that a sample function, of duration T , of a process which has a bandwidth
W (negligible outside this band) is described approximately by a set of sample values
2T W in number. In the case of low-pass processes, the values are obtained by sampling
the processes at times 1/2W apart. In the case of relatively narrowband band-pass process,
the values are obtained from the in-phase and quadrature modulation components sampled
at times 1/W apart.

With an appropriate choice of time origin, we may express each sample of noise
as [44]

n(t) =
∞∑

i=−∞
nisinc(2Wt − i) (2.2)

where sinc(x) = sin πx/πx, and

ni = n

(
i

2W

)
. (2.3)

Clearly, each ni is a Gaussian random variable with zero mean and with the same
variance σ 2

i , which is the variance of n(t); that is,

σ 2
i = 2N0W, all i. (2.4)

Using the fact that

∞∫
−∞

sinc(2Wt − i)sinc(2Wt − k)dt = 1
2W

, i = k

= 0, i �= k,

(2.5)

we may write ∫ ∞

−∞
n2(t)dt = 1

2W

∞∑
i=−∞

n2
i . (2.6)

Over the interval (0, T ), n(t) may be approximated by a finite sum of 2T W terms, as
follows:

n(t) =
2T W∑
i=1

ni sinc(2Wt − i), 0 < t < T. (2.7)

Similarly, the energy in a sample of duration T is approximated by 2T W terms of the
right side of (2.6): ∫ T

0
n2(t)dt = 1

2W

2T W∑
i=1

n2
i . (2.8)

More rigor can be achieved by using the Karhunen-Loeve expansion (also called trans-
form). Equation (2.8) may be considered as an approximation, valid for large T , after
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18 Cognitive Radio Communications and Networking

substituting (2.7) into the left-hand side of (2.8), or by using (2.39) and the statement in
Section 2.2.5 to justify taking only 2T W terms of (2.6).

We can see that (2.8) is N0Ỹ , with Ỹ here being the test statistic under hypothesis H0.
Let us write

ni√
2WN0

= ξi, (2.9)

Ỹ =
2T W∑
i=1

ξ 2
i . (2.10)

Thus, Ỹ is the sum of the squares of 2T W Gaussian random variables, each with zero
mean and unit variance. Ỹ is said to have a chi-square distribution with 2T W degrees of
freedom, for which extensive tables exist [45–47].

Now consider the case H1 where the input y(t) has the signal s(t) present. The segment
of signal duration T may be represented by a finite sum of 2T W terms,

s(t) =
2T W∑
i=1

si sinc(2Wt − i), 0 < t < T, (2.11)

where

si = s(i/2W). (2.12)

By following the reasoning above, we can approximate the signal energy in the interval
(0, T ) by

∫ T

0
s2(t)dt = 1

2W

2T W∑
i=1

s2
i . (2.13)

Define the coefficients by

βi = si/
√

2WN0. (2.14)

Then

1

N0

∫ T

0
s2(t)dt =

2T W∑
i=1

β2
i . (2.15)

Using (2.11) and (2.2), the total input y(t) with the signal present can be expressed as:

y(t) =
2T W∑
i=1

(ξi + si)sinc(2Wt − i). (2.16)
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Spectrum Sensing: Basic Techniques 19

2.2.2 Time-Domain Representation of the Decision Statistic

The energy of y(t) in the interval (0, T ) is approximated by

∫ T

0
y2(t)dt = 1

2W

2T W∑
i=1

(ni + si)
2. (2.17)

Under H1, the test statistic Ỹ is

Ỹ = 1

N0

∫ T

0
y2(t)dt =

2T W∑
i=1

(ξi + βi)
2. (2.18)

The sum in (2.18) is said to have a noncentral chi-square distribution with 2T W degrees
of freedom and a noncentral parameter γ given by

γ =
2T W∑
i=1

β2
i = 1

N0

∫ T

0
s2(t)dt ≡ Es

N0
, (2.19)

where γ , the ratio of signal energy to noise spectral density, provides a convenient defi-
nition of signal-to-noise ratio (SNR).

2.2.3 Spectral Representation of the Decision Statistic

The spectrum component on each spectrum subband of interest is obtained from the fast
Fourier transform (FFT) of the sampled received signal. The test statistic of the energy
detection, within M consecutive segments, is obtained as the observed energy summation,

Y =




M∑
m=1

|W(m)|2, H0

M∑
m=1

|S(m) + W(m)|2, H1

(2.20)

where S(m) and W(m) denote the spectral components of the received primary signal and
the white noise on the subband of interest in the m-th segment, respectively. Interference
is ignored in (2.20), to simplify analysis. The decision of the energy detection regarding
the subband of interest is given by

θ̂ =
{ H0, Y > λ

H1 Y < λ
, (2.21)

where the threshold λ is chosen to satisfy a target false-alarm probability.
Without loss of generality, we assume the noise W(m) is white complex Gaussian with

zero mean and variance two. The SNR of the received primary signal, within M segments,
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20 Cognitive Radio Communications and Networking

is defined as

γ = 1

2M

M∑
m=1

|S(m)|2. (2.22)

The statistic of the energy detection Y follows a central chi-square distribution with
2M degrees of freedom under H0. Under H1, the Y follows a noncentral chi-square
distribution with 2M degrees of freedom and a noncentrality parameter

µ =
M∑

m=1

|S(m)|2 = 2Mγ. (2.23)

In other words,

fY (y) ∼
{

χ2
2M, H0

χ2
2M(µ), H1

(2.24)

where fY (Y ) denotes the probability density function (PDF) of Y , and χ2
2M and χ2

2M(µ)

denote a central and noncentral chi-square distribution, respectively.
The PDF of Y can then be written as

fY (y) =




1
2u	(u)

yu−1e− y
2 , H0

2
(

y

2γ

) u−1
2

e− 2γ+y
2 Iu−1

(√
2γy
)
, H1

(2.25)

where 	(·) is the gamma function and Iν(·) is the ν−order modified Bessel function of
the first kind [45, 48].

2.2.4 Detection and False Alarm Probabilities over AWGN Channels

The probability of detection and false-alarm can be defined as

PD = P(Y > λ|H1) (2.26)

PF = P(Y > λ|H0), (2.27)

where λ is the decision threshold. Using (2.25) to evaluate (2.27) yields the exact closed
form expression

PF = 	(M, λ
2 )

	(M)
, (2.28)

where 	(·, ·) is the upper incomplete gamma function [45, 48].
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Spectrum Sensing: Basic Techniques 21

Given the target false-alarm probability, the threshold λ can be uniquely determined,
using (2.28). Once λ is determined, the detection probability can be obtained by

PD =
∫ +∞

0
P(Y > λ|H1, µ)fµ(µ)dµ

=
∫ +∞

0
QM(

√
µ,

√
λ)fµ(µ)dµ,

(2.29)

where

QM(a, b) = e−(a2+b2)/2
∞∑

n=0

(a
b

)n
In(ab)

=
∫ ∞

b

x exp

[
−a2 + x2

b2

]
I0(x)dx

(2.30)

is the generalized Marcum Q-function and the PDF of µ. Making use of [43, Equation
(2.1–124)], the cumulative distribution function (CDF) of Y can be evaluated (for an
even number of degrees of freedom which is 2u in our case) in a closed form as

FY (y) = 1 − Qu(
√

2γ ,
√

y), (2.31)

where Qu(a, b) is the generalized Marcum Q-function [49]. Hence,

PD = Qu(
√

2γ ,
√

λ). (2.32)

2.2.5 Expansion of Random Process in Orthonormal Series with
Uncorrelated Coefficients: The Karhunen-Loeve Expansion

Representation of random process is the foundation for signal processing. Stationary and
nonstationary processes require different treatment, as shown in Table 2.3.

The Karhunen-Loeve expansion [50–55] is used to show that 2T W terms suffice to
approximate the energy in a finite duration sample of a band-limited process with a
flat power density spectrum. This demonstration is more rigorous than that using the
sampling theorem. This result is especially useful for ultra-wideband (UWB) systems. For

Table 2.3 Mathematical representation for random process

Random process Stationary process Nonstationary process

Continuous-time Fourier Transform Karhunen-Loeve Transform
Discrete-time Discrete Fourier Transform

(DFT)
Discrete Karhunen-Loeve

Transform (DKLT)
Fast algorithms Fast Fourier Transform (FFT) Singular Value Decomposition

(SVD)
Algorithms complexity O(N log2(N)) O(N3)a

aFast algorithms.
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22 Cognitive Radio Communications and Networking

a narrowband example, W = 1 kHz and T = 5 ms, thus 2T W = 10. For a UWB example,
W = 1 GHz and T = 5 ns, thus 2T W = 10. Rigorous treatment of signal detection is
given in [52, 53]. The 2T W theorem [56–66] is critical to estimation and detection,
optics, quantum mechanics, laser modes, etc.—to name a few [61]. For transient, UWB
signals, nonstationary random processes are met: Fourier analysis is insufficient. Van Tree
(1968) [54] gives a very readable treatment of this problem.

Consider a zero-mean, wide-sense stationary, Gaussian random process n(t) with a
flat power density spectrum extending over the frequency interval (−W, W). Let its
autocorrelation function R(τ) be given by

R(τ) = sinc(2Wτ), (2.33)

where sinc(x) = sin(πx)/πx. The process n(t) may be represented in the interval (0, T )

by the expansion of orthonormal functions φi(t):

n(t) =
∞∑
i=1

λiφi(t), (2.34)

where λi is given by

λi =
∫ T

0
n(t)φi(t)dt, (2.35)

and the φi(t) are the eigenfunctions of the integral equation

T∫
0

R(t − τ)φi(τ )dτ = κiφi(t), (2.36)

where κi are the eigenvalues of the equation. The expansion coefficients λi are uncor-
related: statistically independent Gaussian random variables. It is in this case that the
expansion finds its most important application [54]. The form of (2.36) is reminiscent of
the matrix equation

λϕ = Rnϕ, (2.37)

where Rn is a symmetric, nonnegative definite matrix. This is the case when the discrete-
time solution of (2.36) is attempted.

The number of terms in (2.34) which constitute a sufficiently good approximation
with a finite number of terms depends on how rapidly the eigenvalues decrease in value
after a certain index. The eigenvalues of (2.36) are the prolate spheroidal wave functions
considered in [61–64, 66]. The cited sources show that the eigenvalues drop off rapidly
after 2T W terms (except for T W = 1). Table 2.4 illustrates this rapid drop-off [54].
Therefore, we approximate (2.34) as

n(t) ≈
2T W∑
i=1

λiφi(t). (2.38)

The approximation (2.38) is more satisfactory than (2.7) based on sampling functions,
because the rapidity of drop-off of the terms can be judged by how rapidly the eigenvalues
λi drop off after 2T W terms.
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Spectrum Sensing: Basic Techniques 23

Table 2.4 Eigenvalues for a
bandlimited spectrum

2T W = 2.55 2T W = 5.10

λ1 = 0.996
P

2W
λ1 = 1.0

P

2W

λ2 = 0.912
P

2W
λ2 = 0.999

P

2W

λ3 = 0.519
P

2W
λ3 = 0.997

P

2W

λ4 = 0.110
P

2W
λ4 = 0.961

P

2W

λ5 = 0.009
P

2W
λ5 = 0.748

P

2W

λ6 = 0.0004
P

2W
λ6 = 0.321

P

2W

λ7 = 0.061
P

2W

λ8 = 0.006
P

2W

λ9 = 0.0004
P

2W

Since the φi(t) are orthonormal, the energy of n(t) in the interval (0, T ) is, using (2.38),

∫ T

0
n2(t)dt �

2T W∑
i=1

λ2
i . (2.39)

Since the process is Gaussian, then the λi are Gaussian. The variance of λi is κi and
these are nearly the same for i ≤ 2T W . Thus, the energy in the finite duration sample
of n(t) is the sum of 2T W squares of zero mean Gaussian variates all having the same
variance. With the appropriate normalization, we are led to the chi-square distribution.

Definition [54]. A Gaussian white noise is a Gaussian process whose covariance func-
tion is σ 2δ(t − u). It may be decomposed over the interval [0, T ] by using any set of
orthonormal functions φi(t). The coefficients along each coordinate function are statisti-
cally independent Gaussian variables with equal variance σ 2.

2.3 Spectrum Sensing Exploiting Second-Order Statistics

2.3.1 Signal Detection Formulation

There are two different frameworks regarding how to formulate spectrum sensing: (1)
Signal Detection; (2) Signal Classification.

The problem is to decide whether the primary signal—deterministic or random
process—is present or not from the observed signals. It can be formulated as the
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24 Cognitive Radio Communications and Networking

following two hypotheses:

y(t) =
{

i(t) + w(t), H0

x(t) + i(t) + w(t), H1
(2.40)

where y(t) is the received signal at the CR user, x(t) = s(t) ∗ h(t) with s(t) the primary
signal and h(t) the channel impulse response, i(t) is interference, and w(t) is the additive
Gaussian noise (AWGN). In (2.40), H0 and H1 denote the hypotheses corresponding to
the absence and presence of the primary signal, respectively. Thus from the observation
y(t), the CR needs to decide between H0 and H1. The assumption is that the signal x(t)

is independent of the noise n(t) and interference i(t).
When the signal waveform is deterministically known exactly, the sensing filter is

matched to the waveform of the signal. A more realistic picture is that the signal is a
stochastic signal with second order statistics that will be exploited for detection.

2.3.2 Wide-Sense Stationary Stochastic Process: Continuous-Time

Due to unknown propagation and nonsynchronization, coherent detection is infeasible. A
good model is that the received signal x(t) in (2.40) is a stochastic process—wide-sense
stationary (WSS) or not, but independent of the noise w(t) and the interference i(t). The
noise w(t) and the interference i(t) are also independent. As a result, it follows that

Ryy(τ ) =
{

Rii(τ ) + Rww(τ), H0

Rxx(τ ) + Rii(τ ) + Rww(τ), H1

(2.41)

The covariance function Rff (τ ) is defined as Rff (τ ) = ∫∞
−∞ f (t)f (t + τ)dt . To gain

insight, neglecting the interference leads to

Ryy(τ ) =
{

Rww(τ), H0

Rxx(τ ) + Rww(τ), H1
(2.42)

For the white Gaussian noise, Rww(τ) = N0
2 δ(τ ) where N0 is the two-sided power

spectrum density (in a unit of watts per Hz). Or,

Ryy(τ ) =
{

N0
2 δ(τ ), H0

Rxx(τ ) + N0
2 δ(τ ), H1.

. (2.43)

In the spectrum domain, it follows that

Syy(f ) =
{

N0
2 , H0

Sxx(f ) + N0
2 , H1

(2.44)

where Syy(f ) and Sxx(f ) are the Fourier transform of Ryy(τ ) and Rxx(τ ). Unfortunately,
for low SNR case, Sxx(f ) is much smaller than that of noise floor N0/2. Practically, we
cannot do spectrum sensing by visualizing the spectrum shape Sxx(f )—this is the most
powerful approach in most times.
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Spectrum Sensing: Basic Techniques 25

2.3.3 Nonstationary Stochastic Process: Continuous-Time

For the model of (2.40) y(t) = x(t) + n(t), 0 ≤ t ≤ T where n(t) is white Gaussian.
Here the x(t) can be a nonstationary stochastic process. Then it follows that [54, p. 201,
Equation (143)]

Cy(t, s) = N0

2
δ(t − s) + Cx(t, s). (2.45)

The Karhunen-Loeve expansion gives [54, p. 181, Equation (50)]

Cx(t, s) =
∞∑
i=1

λiφi(t)φi(s), 0 ≤ t, s ≤ 0. (2.46)

The Gaussian process implies that [54, p. 198, Equation (128)]

δ(t − s) =
∞∑
i=1

φi(t)φi(s), 0 ≤ t, s ≤ T . (2.47)

Combining (2.45), (2.46), and (2.47) yields

Cy(t, s) =
∞∑
i=1

(
N0

2
+ λi

)
φi(t)φi(s), 0 ≤ t, s ≤ T , (2.48)

where the white Gaussian noise uniformly disturbs the eigenvalues across all the degrees
of freedom. When x(t) has the bandlimited spectrum

Sx(ω) =
{

P
2W

, |f | ≤ W

0, |f |> W
, (2.49)

it follows [54, p. 192] that

Cx(t, s) = P
sin 2πW(t − s)

2πW(t − s)
. (2.50)

The covariance of the y(t) is

Cy(t, s) = N0
2 δ(t − s) + P sin 2πW(t−s)

2πW(t−s)

=
2T W+1∑

i=1

(
N0
2 + λi

)
φi(t)φi(s), 0 ≤ t, s ≤ T ,

(2.51)

where the eigenfunctions and the eigenvalues are given by [54, p. 192]

λφ(t) =
∫ T/2

−T/2
P

sin 2πW(t − s)

2πW(t − s)
φ(s)ds. (2.52)

When 2T W = 2.55 and 2T W = 5.1, Table 2.4 gives the eigenvalues.
Example 2T W = 2.55.
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26 Cognitive Radio Communications and Networking

Considering the first two eigenvalues: λ1 = 0.996 P
2W

and λ2 = 0.912 P
2W

. Equation
(2.51) becomes

Cy(t, s) =
(

N0

2
+ 0.996

P

2W

)
φ1(t)φ1(s) +

(
N0

2
+ 0.992

P

2W

)
φ2(t)φ2(s)

+
2T W+1∑

i=3

(
N0

2
+ λi

)
φi(t)φi(s). (2.53)

For the first term, the SNR defined as γ0 = P
WN0

, which is as low as −21 dB. The first

term in (2.53) becomes (1 + 0.996γ0)
N0
2 φ1(t)φ1(s) or, approximately, N0

2 φ1(t)φ1(s) since
γ0

∼= 0.01. Similarly, the second term in (2.53) becomes (1 + 0.992γ0)
N0
2 φ2(t)φ2(s) or

N0
2 φ2(t)φ2(s).

We have three practical challenges: (1) SNR γ0 is as low as −21 dB; (2) the signal
power P is changing over time; (3) the noise power is σ 2

n . There is uncertain noise power,
implying that σ 2

n is a function of time.
As a result of the above reasons, the SNR γ = P

2Wσ2
n

is uncertain over time. So the SNR
is not the best performance criterion sometimes. Ideally, the criterion should be invariant
to the SNR terms in (2.53). The normalized correlation coefficient, fortunately, satisfies
this condition. The normalized correlation coefficient is defined as

ρ(f, g) =
∫∞

−∞ f (t)g(t)dt√∫∞
−∞ f 2(t)dt

√∫∞
−∞ g2(t)dt

, (2.54)

which is 0 ≤ |ρ| ≤ 1 and invariant to rotation and dilation of the functions f (t) and
g(t). For the case of low SNR in (2.51), by neglecting the signal eigenvalue term λi and
replacing N0/2 with the uncertain noise variance σ 2

n it follows that

Cy(t, s)
∼= σ 2

n

[
φ1(t)φ1(s) + φ2(t)φ2(s) +

2T W+1∑
i=3

φi(t)φi(s)

]

= σ 2
n

[
2T W+1∑

i=1
φi(t)φi(s)

]
∼= σ 2

n Cx(t, s), if λi
∼= 1 for 1 ≤ i ≤ 2T W + 1

(2.55)

where the third line of the equation is valid for some special cases. According to (2.55),
the Cx(t, s) can be used as a feature for similarity measurement (defined in (2.54)) that
is independent of the noise power term σ 2

n . This feature extraction has low computational
cost since no eigenfunction is explicitly required.

In sum, the sensing filter measures the similarity of the received random signal, relative
to the first eigenfunction (first feature) and the second eigenfunction (second feature) of
the covariance function Cx(t, s) defined in (2.40). Calculation of low-order eigenfunctions
may be more accurate numerically. We can first extract the eigenfunctions of the covari-
ance function Cy(t, s) as the features. Then the similarity function of (2.54) is used for
classification. When attempting recognition, the unclassified image (or waveform vector)
is compared in turn to all of the database images, returning a vector of matching scores
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Spectrum Sensing: Basic Techniques 27

(one per feature) computed through normalized cross-correlation defined as (2.54). The
unknown person is then classified as the one giving the highest cumulative score [67].

2.3.3.1 Flat Fading Signal

Let us consider the model of (2.40): y(t) = x(t) + n(t), where x(t) is a flat fading sig-
nal. According to (2.55), the Cx(t, s) can be used as the feature for spectrum sensing.
Fortunately, for a flat fading signal, or narrowband fading model [68], the Cx(t, s) can
be obtained in closed-form. We can gain insight into the problem by going through this
exercise.

Following [68], the transmitted signal is an unmodulated carrier

s(t) = Re{ej (2πfct+φ0)} = cos(2πfct + φ0), (2.56)

where fc is the central frequency of the carrier with random phase offset φ0.
For the narrowband flat fading channel, the received signal becomes

x(t) = Re

{[
N(t)∑
n=0

αn(t)e
−jφn(t)

]
ej2πfct

}

= xI (t) cos 2πfct − xQ(t) sin 2πfct, (2.57)

where the in-phase and quadrature components are given by

xI (t) =
N(t)∑
n=0

αn(t) cosφn(t),

xQ(t) =
N(t)∑
n=0

αn(t) sinφn(t),

(2.58)

where there are N(t) components, each of which includes the amplitude αn(t) and the
phase φn(t). They are random. If N(t) is large, the central limit theorem can be revoked to
argue that αn(t) and φn(t) are independent for different components in order to approxi-
mate xI (t) and xQ(t) as jointly Gaussian random processes. As a result, the autocorrelation
and cross-correlation of the in-phase and quadrature received signal components: xI (t)

and xQ(t) can be derived, following the Gaussian approximation.
The following properties can be derived [68]:

1. xI (t) and xQ(t), respectively, a zero-mean Gaussian process.
2. xI (t) and xQ(t) are, respectively, a WSS random process.
3. xI (t) and xQ(t) are uncorrelated, that is,

E [xI (t)xQ(t)] = 0. (2.59)

4. The received signal x(t) = xI (t) cos 2πfct − xQ(t) sin 2πfct is also WSS with auto-
correlation

Rx(τ) = E[x(t)x(t + τ)] = RxI
(τ ) cos(2πfcτ). (2.60)
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28 Cognitive Radio Communications and Networking

Here the autocorrelation functions of xI (t) and xQ(t) are equal:

RxI
(τ ) = RxQ

(τ) = PxJ0(2πfDτ), (2.61)

where Px is the power of the total received power, fD is the Doppler frequency, and

J0(x) = 1

π

∫ π

0
e−jx cos θdθ (2.62)

is the Bessel function of zeroth order.
5. The power spectral densities (PSDs) of xI (t) and xQ(t)—denoted by SxI

(f ) and
SxQ

(f ), respectively—are obtained by taking the Fourier transform of their respective
autocorrelation functions relative to the delay parameter τ :

SxI
(f ) = SxQ

(f ) =
{

2Px

πfD

1√
1−(f/fD)2

, |f | ≤ fD

0, else
. (2.63)

The PSD of the received flat fading signal x(t) is

Sx(f )=0.25[SxI
(f − fc) + SxI

(f + fc)] =
{

Px

2πfD

1√
1−(|f −fc |/fD)2

, |f − fc| ≤ fD

0, else
.

(2.64)

It follows from (2.64) that the flat fading signal can be modeled : to pass two indepen-
dent white Gaussian noise sources with PSD N0/2 through lowpass filter with a frequency
response H(f ) that satisfies

SxI
(f ) = SxQ

(f ) = N0

2
|H(f )|2. (2.65)

The filter outputs corresponds to the in-phase and quadrature components of the nar-
rowband fading process with PSDs SxI

(f ) and SxQ
(f ).

Let us go back to our problem of spectrum sensing using the second order statistics.
Since the fading signal is zero-mean WSS, only the second order statistics are sufficient
for its characterization. Since it is zero-mean, the covariance function is identical to the
autocorrelation function. It follows by inserting (2.61) into (2.60) that

Rx(τ) = E[x(t)x(t + τ)] = PxJ0(2πfDτ) cos(2πfcτ), (2.66)

which, from (2.55), leads to

Cy(τ) ∼= σ 2
n Cx(τ ) = σ 2

n PxJ0(2πfDτ) cos(2πfcτ), (2.67)

which requires a priori knowledge of fc and fD = v/λc where v is the velocity of the
mobile and λc is the wavelength of the carrier wave. If the similarity is used as the
classification criterion, the uncertain noise power σ 2

n and the (uncertain) total power of
the received flat fading signal Px are not required. In practice, the real challenge is to know
the mobile velocity v which can be searched from the window vmin ≤ v ≤ vmax . Algorithm
steps: (1) measure the autocorrelation function of the flat fading signal plus white Gaussian
noise Cy(τ); (2) measure the similarity between Cy(τ) and J0(2πfDτ) cos(2πfcτ); (3) If
the similarity is above some pre-set threshold ρ0, we assign hypothesis H1. Otherwise,
we assign H0. Note that the threshold ρ0 must be learned in advance.
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Spectrum Sensing: Basic Techniques 29

2.3.4 Spectrum Correlation-Based Spectrum Sensing for WSS Stochastic
Signal: Heuristic Approach

In general, there are three signal detection approaches for spectrum sensing: (1) energy
detection, (2) matched filter (coherent detection), (3) feature detection. If only the local
noise power is known, the energy detection is optimal [69]. If a deterministic pattern
(e.g., pilot, preamble, or training sequence) of the primary signal is known, then the
optimal detector usually applies a matched filtering structure to maximize the probability
of detection. Depending on the available a priori information about the primary signal, one
may choose different approaches. At very low SNR, the energy detection suffers from
noise uncertainty, while the matched filter faces the problem of lost synchronization.
Cyclostationary detection exploits the periodicity in the modulated schemes but requires
high computational complexity. Covariance matrix based spectrum sensing can be viewed
as the discrete-time formulation of second-order statistics in the time domain.

Results in Sections 2.3.2 and 2.3.3 give us insight into using second-order statistics,
although continuous time has been used there. These classical results are still the foun-
dation of our departure. Here, discrete-time second-order statistics are formulated in the
spectrum domain. The connection of this section with Sections 2.3.2 and 2.3.3 will be
pointed out later. In this section we follow [70] for the exposition of the theory. The
flavor is practical.

The basic strategy is (1) to correlate the periodgram of the received signal with the
selected spectrum features. For example, a particular TV transmission scheme can be
selected as a feature that is constant during the transmissions. Then, (2) the correlation is
examined for decision-making.

The discrete-time form of the problem (2.40) can be modeled as the l-th time instant

H0 : y(l) = n(l), l = 0, 1, 2, . . . ,

H1 : y(l) = x(l) + n(l), l = 0, 1, 2, . . . ,
(2.68)

where y(l) is the received signal by a second user, x(l) is the transmitted incumbent
signal, and n(l) is the complex, zero-mean additive white Gaussian noise (AWGN), that
is, n(l) ∼ CN(0, σ 2

n ). As in problem (2.40), the signal and the noise are assumed to be
independent. Accordingly, the PSD of the received signal SY (ω) can be written as

H0 : SY (ω) = σn,

H1 : SY (ω) = SX(ω) + σn, 0 ≤ ω ≤ 2π,
(2.69)

where SX(ω) is the PSD function of the transmitted primary signal. Our task is to dis-
tinguish between H0 and H1, by exploiting the unique spectral signature exhibited in
SX(ω).

For WSS, the autocorrelation function and its Fourier transform, that is, the PSD, are
good statistics to study. Due to the independence of the x(t) from the n(t), it follows that

H0 :
∫ 2π

0 SY (ω)SX(ω)dω = σn

∫ 2π

0 SX(ω)dω,

H1 :
∫ 2π

0 SY (ω)SX(ω)dω = ∫ 2π

0 SX(ω)SX(ω)dω + σn

∫ 2π

0 SX(ω)dω,
(2.70)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



30 Cognitive Radio Communications and Networking

It is natural to define the test TSC for the spectral correlation

TSC =
∫ 2π

0
SY (ω)SX(ω)dω, (2.71)

and compare TSC with the threshold

γ = σn

∫ 2π

0
SX(ω)dω,

where
∫ 2π

0 SX(ω)dω is the average power of discrete-time random variable X [71]. In
other words, we have

TSC =
∫ 2π

0
SY (ω)SX(ω)dω

H1≥
<
H0

σn

∫ 2π

0
SX(ω)dω = γ, (2.72)

where the threshold is a function of the noise PSD and the average power of the stochastic
signal.

In Sections 2.3.2 and 2.3.3, we argue that the autocorrelation function is a good feature
for classification. The results there are also valid for the cases when x(t) is both WSS
and nonstationary processes. The result in this section is valid for WSS only. But the
discrete-time is explicitly considered.

2.3.4.1 Estimating the Power Spectrum Density

Practically, an estimate of SX(ω) must be obtained. The original or “classical” methods
are based directly on the Fourier transform. This approach is preferred here for two good
reasons: (1) the fast algorithm (FFT computation engine) can be used; (2) the spectrum
estimator must be valid for the low SNR region (e.g., −20 dB). The so-called “modern”
methods for spectrum estimation [72]—with other terms model-based , parametric, data
adaptive and high resolution —seem be out of reach to our low SNR region. The most
recent “subspace methods” are connected intimately with the spectrum sensing approaches
that are discussed in this chapter. As a result, these methods are not treated as “spectral
estimators,” rather as the spectrum sensing methods. See standard texts [73, 74] for details.

The classical methods of spectral estimation are based on the Fourier transform of the
data sequence or its correlation. In spite of all the developments in newer, more “modern”
techniques, classical methods are often the favorite when the data sequence is long and
stationary. These methods are straightforward to apply and make no assumptions (other
than stationarity) about the observed data sequence (i.e., the methods are nonparametric)
[72]. The PSD is defined as the Fourier transform of the autocorrelation function. Since
there are simple methods for estimating the correlation function—see [72, Chapter 6], it
seems natural to estimate the PSD by using the estimated correlation function.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Spectrum Sensing: Basic Techniques 31

Suppose that the total number of data samples is N . The biased sample autocorrelation
function is defined by

R̂x[l] = 1

N

N−1−l∑
n=0

x[n + l]x∗[n]; 0 ≤ l ≤ N, (2.73)

where R̂x[l] = R̂∗
x [−l] for 0 ≤ l. This estimate is asymptotically unbiased and consistent

[72, p. 586]. The expected value of the estimate is given by

E{R̂x[l]} = N − |l|
N

Rx[l] (2.74)

and its variance decreases as 1/N , for small values of lag. Here Rx[l] is the discrete-time
autocorrelation function. It seems reasonable to define a spectral estimate as

Ŝx(e
jω) =

N−1∑
l=−N+1

R̂x[l]e−jωl ; L < N. (2.75)

This estimate for the PSD is known as the correlogram. It is typically used with large
N and relatively small values of L (say L ≤ 10%N).

Now assume that the maximum lag l is taken to be equal to N − 1. We have

Ŝx(e
jω) =

N−1∑
l=−N+1

R̂x[l]e−jωl = 1

N
|X(ejω)|2, (2.76)

where

X(ejω) =
N−1∑
n=0

x[n]e−jωn (2.77)

is the discrete-time Fourier transform of the data sequence. This estimate is called the
periodogram . The N-point DFT approximation of the spectrum is denoted by

S
(N)
X (k) = Ŝx(e

jω)|ω=2πk/N , k = 0, 1, . . . , N − 1. (2.78)

2.3.4.2 Spectral Correlation Using the Estimated Spectrum

As done in Sections 2.3.2 and 2.3.3 for continuous time, we assume that the (N-point
sampled) PSD of the signal, S

(N)
X (k) defined by (2.78) is known a priori at the receiver.

We perform the following test:

TN = 1

N

N−1∑
k=0

S
(N)
Y (k)S

(N)
X (k)

H1≥
<
H0

γ, (2.79)

where γ is the decision threshold.
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32 Cognitive Radio Communications and Networking

Under hypothesis H′, we have

E [TN,0] = 1

N
σ 2

n

N−1∑
k=0

S
(N)
X (k) = σ 2

n Px, (2.80)

where

Px = 1

N

N−1∑
k=0

S
(N)
X (k), (2.81)

is the average power transmitted across the whole bandwidth. Similarly, we have

E [TN,1] = 1
N

N−1∑
k=0

E [S(N)
Y (k)]S(N)

X (k)

≈ σ 2
n Px + 1

N

N−1∑
k=0

[S(N)
X (k)]

2
,

(2.82)

where we have used the fact that the periodogram is an asymptotically unbiased estimate
of the PSD [75, 76]. Here, we can use the difference between E[TN,1] and E[TN,0] to
determine the detection performance.

2.3.5 Likelihood Ratio Test of Discrete-Time WSS Stochastic Signal

Here we mainly follow [69, 70, 77]. Considering a sensing interval of N samples, we can
express the received signal and the transmitted signal in vector form

y = [y(0), y(1), . . . , y(n − 1)]T ,

x = [x(0), x(1), . . . , x(n − 1)]T .

Some wireless signals experience propagation along multiple paths; it may be reasonable
to approximately model them as being a second-order stationary zero-mean Gaussian
stochastic process, as derived in Section 2.3.3 for flat fading signal. Formally,

x ∼ CN(0, Rx) (2.83)

where Rx = E(xxT ) is the covariance matrix. Equivalently, Equation (2.69) can be
expressed as

H0 : CN(0, Rx)

H1 : CN(0, Rx + σ 2
n I), (2.84)

where I is the identity matrix.
The Neyman-Pearson theorem states that the binary hypothesis test uses the likelihood

ratio

L(y) = p(y|H1)

p(y|H0)

H1≥
<
H0

γ, (2.85)
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Spectrum Sensing: Basic Techniques 33

where y is the observation. This test maximizes the probability of detection for a given
probability of false alarm. For WSS Gaussian random processes, it follows that

L(y) = p(y|H1)

p(y|H0)
=

1
(2π)N/2det1/2(Rx+σ2

n I)
exp
[
− 1

2 yT (Rx + σ 2
n I)−1y

]
1

(2πσ2
n )

N/2 exp
[
− 1

2σ2
n

yT y
] H1≥

<
H0

γ. (2.86)

The logarithm of the likelihood ratio is given by [78]

log L(y) = 2N log σn − log det (Rx + σ 2
n I) − yT [(Rx + σ 2

n I)
−1 + σ−2

n I] y. (2.87)

The constant terms can be absorbed into the threshold TLRT. The optimal detection scheme
in the sense of the Neyman-Pearson criterion requires only the logarithm likelihood ratio
test (LRT) in the quadrature form

TLRT = yT [σ−2
n I − g(Rx + σ 2

n I)
−1

] y
H1≥
<
H0

γ ′. (2.88)

2.3.5.1 Estimator-Correlator Structure

Using the matrix inversion lemma

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1, (2.89)

we have upon using A = σ 2
n I, B = D = I, C = Rx

(Rx + σ 2
n I)−1 = 1

σ 2
n

I − 1

σ 4
n

(
1

σ 2
n

I + R−1
x

)−1

, (2.90)

so that

TLRT = yT 1

σ 2
n

(
1

σ 2
n

I + R−1
x

)−1

y = 1

σ 2
n

yT x̂, (2.91)

where

x̂ = 1

σ 2
n

(
1

σ 2
n

I + R−1
x

)−1

y.

which can be rewritten as

x̂ = 1
σ2
n

(
1

σ2
n

I + R−1
x

)−1
y = 1

σ2
n

(
1

σ2
n

(
Rx + σ 2

n I
)

R−1
x

)−1
y

= Rx(Rx + σ 2
n I)−1y,

(2.92)

and can be viewed as the minimum mean square error (MMSE) estimation of x.
Hence we decide H1 if

TLRT = σ 2
n yT x̂ > γ ′ (2.93)
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34 Cognitive Radio Communications and Networking

or

TLRT = σ 2
n

N−1∑
n=0

y(n)x̂(n). (2.94)

2.3.5.2 White Gaussian Signal Assumption

If we assume that x ∼ CN(0, EsI) or Rx = EsI in (2.84), and that {x[n]}n=0,1,...,N−1 is
an independent sequence, then the estimator-correlator structure (2.91) yields the test
statistic:

Es

Es + 2σ 2
n

N−1∑
n=0

‖x[n]‖2, (2.95)

which is the equivalent to the energy detector. Thus the optimal detector is to decide H1
when

TED =
N−1∑
n=0

‖x[n]‖2 > γ. (2.96)

2.3.5.3 Low Signal-to-Noise Ratio

It follows from the Taylor series expansion that

(Rx + σ 2
n I)−1 = (I + σ−2

n Rx)
−1σ−2

n

= (I − σ−2
n Rx + σ−4

n Rx
2 − · · ·) σ−2

n .
(2.97)

Here, we have used the infinite series [79, p. 705]

(I + A)−1 = I − A + A2 − A3 + A4 + · · · (2.98)

for all real or complex matrices A of n × n such that

sprad(A) < 1, (2.99)

where

sprad(A)
�= max {|λ| : λ ∈ spec(A)} ,

saying that the matrix eigenvalue λ belongs to the spectrum spec(A) of matrix A. The
convergence of the series (2.97) is assured if the maximum eigenvalues of σ−2

n Rx are less
than unity, as required by (2.99). This condition always holds in low SNR region where

det1/N(A) � σ 2
n , (2.100)

from which equation, by retaining the first two leading terms, (2.97) can be approxi-
mated as

(Rx + σ 2
n I)−1 ≈ (I − σ−2

n Rx) σ−2
n . (2.101)
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Spectrum Sensing: Basic Techniques 35

By using (2.101), (2.88) is put into a more convenient form

TT RT = yT [σ−2
n I − (Rx + σ 2

n I)
−1

]y ≈ σ−4
n yT Rxy

H1≥
<
H0

γ ′. (2.102)

Or, we have

TLRT,N ≈ 1

N
yT Rxy

H1≥
<
H0

γLRT (2.103)

and γLRT = σ 4
n γ ′/N , which depends on the noise power σ 4

n . This noise dependence is
challenging in practice.

2.3.6 Asymptotic Equivalence between Spectrum Correlation
and Likelihood Ratio Test

Let us show the asymptotic equivalence between spectrum correlation and likelihood ratio
detection at low SNR region. Consider a sequence of optimal LRT detectors as defined
in (2.104):

TLRT,N ≈ 1

N
yT Rxy

H1≥
<
H0

γLRT, N = 1, 2, . . . . (2.104)

Similarly, we define a sequence of spectral correlation detectors as

TN = 1

N

N−1∑
k=0

S
(N)
Y (k)S

(N)
X (k), N = 1, 2, . . . . (2.105)

Notice that the LRT detectors are working in the time domain while the spectrum
correlation detectors are in the frequency domain.

The sequence of sp ectrum correlation detector {TN } defined in (2.105) are, at very
low SNR, asymptotically equivalent to the sequence of optimal LRT detectors {TLRT,N }
defined as (2.104), that is,

lim
N→∞

|TLRT,N − TN | = 0. (2.106)

The proof of (2.107) is in order. From the definition of two test statistics, it follows
that

lim
N→∞

|TLRT,N − TN | = lim
N→∞

1

N
|y∗Rxy − y∗W ∗

N�WNy|, (2.107)

where

� =


 S

(N)
X (0) . . . 0

...
. . .

...

0 · · · S
(N)
X (N − 1)


 (2.108)
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36 Cognitive Radio Communications and Networking

is a diagonal matrix with the PSD of the incumbent signal in the diagonal, and WN is
the discrete-time Fourier transform (DFT) matrix defined as

WN =




1 1 1
1 wN w2

N

1 w2
N w4

N

. . .

1
wN−1

N

w
2(N−1)
N

...
. . .

...

1 wN−1
N w

2(N−1)
N

· · · w
(N−1)(N−1)
N


 , (2.109)

where wN = e−j2π/N being a primitive n-th root of unity. As a result,

lim
N→∞

|TLRT,N − TN | = lim
N→∞

1

N
|y∗(Rx − W∗

N�WN)y| = lim
N→∞

1

N
|y∗(Rx − CN)y|,

(2.110)

where CN

�= W∗
N�WN is the circular matrix. As shown in [80], the Toeplitz matrix Rx is

asymptotically equivalent to the circurlar matrix CN since the weak norm (Hilbert-Schmidt
norm) of Rx − CN goes to zero, that is,

lim
N→∞

‖Rx − CN‖ = 0. (2.111)

Thus, (2.106) follows from (2.107).

2.3.7 Likelihood Ratio Test of Continuous-Time Stochastic Signals
in Noise: Selin’s Approach

2.3.7.1 Derivation of the Likelihood Ratio

We present an approach that is originally due to Selin (1965) [81, Chapter 8].
The modulated signal with the center frequency fc is

s(t) = Re[S(t)ej2πfct ],

transmitted through the multipath fading channel. The received stochastic signal is

x(t) = Re[X(t)ej2πfct ],

and

E[X(t)X∗(u)] = 2RX(t, u).

The noise process is expressed as

n(t) = Re[N(t)ej2πfct ].

Following Selin [81], we consider the white Gaussian noise with flat one-sided PSD
2N0. The methods of this section apply to the case in which the PSD of the noise is
not flat.
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Spectrum Sensing: Basic Techniques 37

Defining Y (t) as the complex envelope representation of the received waveform y(t),
that is,

y(t) = Re[Y (t)ej2πfct ],

the test may be expressed as

H0 : Y (t) = N(t),

H1 : Y (t) = X(t) + N(t).

The present test can be thought as a test for the covariance function of Y (t):

H0 : E[Y (t)Y ∗(u)] = 2N0δ(t − u),

H1 : E[Y (t)Y ∗(u)] = 2RX(t, u) + 2N0δ(t − u).
(2.112)

If the Gaussian envelope of the signal process experiences some deterministic modu-
lation, the signal process is nonstationary.

The Karhunen-Loeve expansion is a good theoretical tool for the purpose of representing
the likelihood ratio. In practice, numerical calculation can be performed in MATLAB.

We seek to represent the stochastic signal

Y (t) =
∞∑

k=1

ykφk(t).

We hope the φk(t) satisfies the following: (1) deterministic functions of time; (2) the
φk(t) are orthonormal for convenience∫ T

0
φk(t)φ

∗
l (t)dt = δ kl ;

(3) The random coefficients should be normalized and uncorrelated, that is,

E[xkx
∗
l ] = δkl;

(4) If Y (t) is Gaussian, then the {yk} should also be Gaussian. Fortunately the Karhunen-
Loeve expansion provides these properties.

Taking the ratio and then letting K approach infinity, we have

L[Y (t)] = exp

[ ∞∑
k=1

λk|yk|2
4N0(λk + N0)

] ∞∏
k=1


 1

1 + λ
k

N0


1/2

. (2.113)

The product term converges provided that
∞∑

k=1

(λk/N0)

converges, in other words, provided that the signal-to-noise ratio is finite. The test statistic
is

U(Y ) =
∞∑

k=1

λ2
k

λk + N0
|yk|2. (2.114)
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38 Cognitive Radio Communications and Networking

2.3.7.2 Probabilities of Error

If H0 is true,

E0[U ] = E

[ ∞∑
k=1

λk

λk + N0
|nk|2
]

= 2N0

[ ∞∑
k=1

λk

λk + N0

]
(2.115)

Var0[U ] = E

[ ∞∑
k=1

λk

λk + N0
(|nk|2 − 2N0)

]

= 8(N0)
2

∞∑
k=1

(
λk

λk + N0

)2

(2.116)

= 2
∞∑

k=1

(
2N0λk

λk + N0

)2

.

If H1 is true,

E1[U ] = E

[ ∞∑
k=1

λk

λk + N0
|xk + nk|2

]

=
∞∑

k=1

λk

λk + N0
(2N0 + λk) (2.117)

=
∞∑

k=1

2λk

Var1[U ] = E

[ ∞∑
k=1

λk

λk + N0
[|nk + xk|2 − 2(N0 + λk)]

]2

= 2
∞∑

k=1

(2λk)
2. (2.118)

By the central limit theorem, if
∞∑

k=1

λ2
k/K � N0,

U is approximately normal.
For very weak signals in low SNR region,

∞∑
k=1

(
N0λk

λk + N0

)2
∼=

∞∑
k=1

λ2
k, (2.119)
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Spectrum Sensing: Basic Techniques 39

and Var0(U) ∼= Var1(U). The signal detection probability depends only on the signal-to-
noise (power) ratio d which is given by

d ∼= [E1(U)−E0(U)]2

Var(U)

=

[ ∞∑
k=1

2λk−
∞∑

k=1

2N0λk
λk+N0

]2

8
∞∑

k=1
λ2
k

=

[ ∞∑
k=1

λ2
k

λk+N0

]2

2
∞∑

k=1
λ2
k

∼= 1
2N2

0

∞∑
k=1

λ2
k.

(2.120)

This is approximately equal to

T
1

N2
0

∫ ∞

−∞
|Sx(f )|2df, (2.121)

where Sx(f ) is the PSD of the signal process if this process is stationary. (2.121) is
essentially identical to the spectrum correlation rule in Section 2.3.4: comparing with
(2.121) and (2.79). In deriving (2.121), we have used the following

∞∑
k=1

λ2
k = ∑

k

λk

∑
l

λl

∫ T

0 φk(t)φ
∗
l (t)dt

∫ T

0 φ∗
k (u)φl(u)du

= 2
∫ T

0 dt
∫ T

0 du|Rx(t − u)|2

= 2
∫ T

0 dt
∫ T +t

t
dτ |Rx(τ)|2

= 2
∫ T

0 dt
∫∞

−∞ |Sx(f )|2df, forlargeT,

= 2T
∫∞

−∞ |Sx(f )|2df

(2.122)

2.4 Statistical Pattern Recognition: Exploiting Prior Information
about Signal through Machine Learning

2.4.1 Karhunen-Loeve Decomposition for Continuous-Time
Stochastic Signal

We model the communication signal or noise as random field. KLD is also known as
PCA, POD, and EOF. We follow [82, 83] for an exposition of the underlying model for
turbulence in fluids—a subject of great scientific and technological importance, and yet
one of the least understood. Like turbulence, radio signals involve the interaction of many
degrees of freedom over broad ranges of spatial and temporal scales.

The POD is statistically based, and permits the extraction, from the electromagnetic
field, of spatial and temporal structures (coherent structures) judged essential. The POD is
a procedure for extracting a modal decomposition from an ensemble of signals. Its power
lies in the mathematical properties that suggest it is the preferred basis. The existence of
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40 Cognitive Radio Communications and Networking

coherent structures, which contain most of the energy, suggests the drastic reduction in
dimension. A suitable modal decomposition retains only these structures and appeals to
averaging or modeling to account for the incoherent fluctuations.

Suppose we have an ensemble {uk} of observations (experimental measurements or
numerical simulations) of a turbulent velocity field or an electromagnetic field. We assume
that each {uk} belongs to an inner product (Hilbert) space X. Our goal is to obtain
an orthogonal basis ϕj for X, so that almost every member of the ensemble can be
decomposed relative to the ϕj :

u =
∞∑

j=0

ajϕj , (2.123)

where the aj are suitable modal coefficients. There is no prior reason to distinguish
between space and time in the definition and derivation of the empirical basis functions,
but we ultimately want a dynamic model for the coherent structures. We seek the spatial
vector-valued functions ϕj , and subsequently determine the time-dependent scalar modal
coefficients:

u(x, t) =
∑

j

aj (t)ϕj (x). (2.124)

Central to the POD is the concept of averaging operation < ·>. The operation of
< · > may simply be thought as the average over a number of separate experiments, or,
if we assume ergodicity, as a time average over the ensemble of observations obtained at
different instants during a single experimental run. We restrict ourselves to the space of
functions X which are square integrable, or, in physical terms, fields with finite energy
on this interval. We need the inner product

(f, g) =
∫

X

f (x)g(x)dx,

and a norm

||f || = (f, f )1/2.

2.4.1.1 Derivation of Empirical Functions

We start with an ensemble of observation {u}, and ask which single (deterministic) element
is most similar to the members of {u} on average? Mathematically, the notion of “most
similar” corresponds to seeking an element ϕ such that

max
ϕ∈X

< |(u, ϕ)|2 > /(ϕ, ϕ), (2.125)

where | · | denotes the modulus. In other words, we find the member of the ϕ which
maximizes the (normalized) inner product with the field {u}, which is most nearly parallel
in function space. This is a classical problem in the calculus of variations. This can be
reformulated in terms of the calculus of variations, with a functional for the constrained
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Spectrum Sensing: Basic Techniques 41

variational problem

J [ϕ] =< |(u, ϕ)|2 > −λ(||ϕ||2 − 1), (2.126)

where ||ϕ||2 = (ϕ, ϕ) is the L2-norm. A necessary condition for extrema is the vanishing
of the functional derivative for all variations ϕ + εψ ∈ X:

d

dε
J [ϕ + εψ]|ε=0 = 0. (2.127)

Some algebra, together with the fact that ψ(x) is an arbitrary variation, shows that the
condition of (2.127) reduces to∫

�

< u(x, t)u∗(x′, t) >︸ ︷︷ ︸
R(x,x′)

ϕ(x′)dx′ = λϕ(x). (2.128)

Here x ∈ �, where � denotes the spatial domain of the experiment. This is a Fredholm
integral equation of the second kind whose kernel is the averaged autocorrelation tensor
R(x, x′) =< u(x, t)u∗(x′, t) >, which we may rewrite as the operator equation Rϕ = λϕ.
The optimal basis is called empirical eigenfunctions, since the basis is derived from the
ensemble of observations uk . The operator R is clearly self-adjoint, and also compact, so
that Hilbert-Schmidt theory assures us that there is a countable infinity of eigenvalues {λj }
and eigenfunctions {ϕj }. Without loss of generality, for the solutions of (2.128), we can
normalize so that ||ϕj || = 1 and re-order the eigenvalues so that λj ≥ λj+1. By the first
N eigenvalues (resp. eigenfunctions) we mean λ1,λ2, . . . , λN (resp. ϕ1,ϕ2, . . . , ϕN ). Note
that the positive semidefiniteness of R implies that λj ≥ 0. As a result, this representation
provides a diagonal decomposition of the autocorrelation function

R(x, x′) =
∞∑

j=1

λjϕj (x)ϕ∗
j (x

′). (2.129)

It is these empirical functions that we use in the model decomposition (2.124) above.
The diagonal representation (2.129) of the two-point correlation tensor ensures that the
modal amplitudes are uncorrelated:

< aia
∗
j > = δijλj . (2.130)

In practice, only the eigenfunctions with strictly positive values are of interest. Those
spatial structures have finite energy on average. Let us define the span S of these ϕj

S =
{∑

ajϕj |λj > 0,
∑

|aj |2 < ∞
}

. (2.131)

What is the nature of the span S? Which functions can be reproduced by convergent
linear combinations of these empirical eigenfunctions? It turns out that almost every
member of the original ensemble {uk} belongs to S! The span of the eigenfunctions is
exactly the span of all the realizations of u(x), with the exception of a set of measure zero.
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42 Cognitive Radio Communications and Networking

2.4.1.2 Optimality

Suppose we have an ensemble of members of u(x,t), decomposed in terms of an arbitrary
orthonormal basis ψj ,

u(x, t) =
∑

j

bj (t)ψj (x). (2.132)

Using the orthonormality of the ψj , the average energy is given by∫
�

< u(x, t)u∗(x, t) > dx =
∑

j

< bj (t)b
∗
j (t) > . (2.133)

For the particular case of the POD decomposition, the energy in the j-th mode is λj ,
as claimed by (2.130).

The optimality is stated as follows: For any N, the energy in the first N modes in a
proper orthogonal decomposition is at least as great as that in any other N-dimensional
projections:

‖uN‖2 =
∑

j

< aj (t)a
∗
j (t) > =

N∑
j=1

λj ≥
N∑

j=1

< bj(t)b
∗
j (t) > . (2.134)

This follows from the general linear self-adjoint operators: the sum of the first N eigen-
values of R is greater than or equal to the sum of the diagonal terms in any N-dimensional
projection of R. Equation (2.134) states that, among all linear decompositions, the POD
is the most efficient for modeling or reconstructing a signal u(x, t), in the sense of captur-
ing, on average, the most energy possible for a projection on a given number of modes.
This observation motivates the use of the POD for low-dimensional modeling of coherent
structures—dimensionality reduction. The rate of decay of the λj gives the indication
of how fast finite-dimensional representations converge on average, and hence how well
specific truncations might capture these structures.

2.5 Feature Template Matching

From pattern recognition, the eigenvectors are considered as features. We define the
leading eigenvector as signal feature because for nonwhite WSS signal it is most robust
against noise and stable over time [84]. The leading eigenvector is determined by the
direction with the largest signal energy [84].

Assume we have 2 × 1 random vectors xs+n = xs + xn, where xs is vectorized sine
sequence and xn is the vectorized WGN sequence. SNR is set to 0 dB. There are 1000
samples for each random vector in Figure 2.1. Now we use eigen-decomposition to set
the new X axes for each random vector samples such that λ1 is strongest along the
corresponding new X axes. It can be seen that new X axes for xs (SNR = ∞ dB) and
xs+n (SNR = 0 dB) are almost the same. X axes for xn (SNR = −∞), however, is rotated
with some random angle. This is because WGN has almost the same energy distributed in
every direction. New X axes for noise will be random and unpredictable but the direction
for the signal is very robust.
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Figure 2.1 The leading eigenvector is determined by the direction with largest signal energy [84].

Based on leading eigenvector, feature template matching is explored for spectrum sens-
ing. The secondary user receives the signal y(t). Based on the received signal, there are
two hypotheses: one is that the primary user is present H1, another one is the primary
user is absent H0. In practice, spectrum sensing involves detecting whether the primary
user is present or not from discrete samples of y(t).

y(n) =
{

w(n) H0
x(n) + w(n) H1,

(2.135)

in which x(n) are samples of the primary user’s signal and w(n) are samples of zero mean
white Gaussian noise. In general, the algorithms of spectrum sensing aim at maximizing
corresponding detection rate at a fixed false alarm rate with low computational complexity.
The detection rate Pd and false alarm rate Pf are defined as

Pd = prob(detect H1|y(n) = x(n) + w(n))

Pf = prob(detect H1|y(n) = w(n)),
(2.136)

in which prob represents probability.
The hypothesis detection is

H0 : y = w
H1 : y = x + w.

(2.137)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



44 Cognitive Radio Communications and Networking

Assume the primary user’s signal is perfectly known. Given d-dimensional vectors
x1, x2, · · · , xM of the training set constructed from the primary user’s signal, the sample
covariance matrix can be obtained by

Rx = 1

M

M∑
i=1

xix
T
i , (2.138)

which assumes that the sample mean is zero,

u = 1

M

M∑
i=1

xi = 0. (2.139)

The leading eigenvector of Rx can be extracted by eigen-decomposition of Rx ,

Rx = V�VT , (2.140)

where � = diag(λ1, λ2, . . . , λd) is a diagonal matrix. λi, i = 1, 2, · · · , d are eigenvalues
of Rx . V is an orthonormal matrix, the columns of which v1, v2, · · · , vd are the eigen-
vectors corresponding to the eigenvalues λi, i = 1, 2, · · · , d. For simplicity, take v1 as
the eigenvector corresponding to the largest eigenvalue. The leading eigenvector v1 is the
template of PCA.

For the measurement vectors yi , i = 1, 2, · · · , M , the leading eigenvector of the sample

covariance matrix Ry = 1
M

M∑
i=1

yiy
T
i is ṽ1. Hence, the presence of signal is determined by

[84, 85],

ρ = max
l=0,1,...,d

∣∣∣∣∣
d∑

k=1

v1[k]ṽ1[k + l]

∣∣∣∣∣> Tpca, (2.141)

where Tpca is the threshold value for PCA method, and ρ is the similarity between ṽ1 and
template v1 which is measured by cross-correlation. Tpca is assigned to arrive a desired
false alarm rate. The detection with leading eigenvector under the framework of PCA is
simply called PCA detection.

A nonlinear version of PCA—kernel PCA [86]—has been proposed based on the
classical PCA approach. Kernel function is employed by kernel PCA to implicitly map
the data into a higher dimensional feature space, in which PCA is assumed to work
better than in the original space. By introducing the kernel function, the mapping ϕ need
not be explicitly known which can obtain better performance without increasing much
computational complexity.

The training set xi , i = 1, 2, · · · , M and received set yi , i = 1, 2, · · · , M in kernel PCA
are obtained the same way as with the PCA framework.

The training set in the feature space are ϕ(x1), ϕ(x2), . . . , ϕ(xM) which are assumed to

have zero mean, for example, 1
M

M∑
i=1

ϕ(xi ) = 0. The sample covariance matrix of ϕ(xi ) is

Rϕ(x) = 1

M

M∑
i=1

ϕ(xi )ϕ(xi )
T . (2.142)
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Spectrum Sensing: Basic Techniques 45

Similarly, the sample covariance matrix of ϕ(yi ) is

Rϕ(y) = 1

M

M∑
i=1

ϕ(yi )ϕ(yi )
T . (2.143)

The detection algorithm with leading eigenvector under the framework of kernel PCA
is summarized here as follows [85]:

1. Choose a kernel function k. Given the training set of the primary user’s signal
x1, x2, · · · , xM , the kernel matrix is K = (k(xi , xj ))ij . K is positive semidefinite.
Eigen-decomposition of K to obtain the leading eigenvector β

1
.

2. The received vectors are y1, y2, · · · , yM . Based on the chosen kernel function, the
kernel matrix K̃ = (k(yi , yj ))ij is obtained. The leading eigenvector β̃1 is also obtained
by eigen-decomposition of K̃.

3. The leading eigenvectors for Rϕ(x) and Rϕ(y) can be expressed as

vf
1 = (ϕ(x1), ϕ(x2), . . . , ϕ(xM))β1,

ṽf

1 = (ϕ(y1), ϕ(y2), . . . , ϕ(yM))β̃1.
(2.144)

4. Normalize vf
1 and ṽf

1 to scale β1 and β̃1.
5. The similarity between vf

1 and ṽf

1 is

ρ = βT

1
Kt β̃1. (2.145)

6. Determine the presence or absence of primary signal by evaluating ρ > Tkpca or not.
ρ is derived as

ρ = < vf
1 , ṽf

1 > =<
M∑
i=1

βiϕ(xi ),
M∑

j=1
β̃iϕ(yi ) >

= {(ϕ(x1), ϕ(x2), ..., ϕ(xM))β1}T ·
{(ϕ(y1), ϕ(y2), ..., ϕ(yM))β̃1}

= βT

1




ϕ(x1)
T

ϕ(x2)
T

...

ϕ(xM)T


 (ϕ(y1), ϕ(y2), ..., ϕ(yM))β̃1

= βT

1




k(x1, y1), k(x1, y2), ..., k(x1, yM)

k(x2, y1), k(x2, y2), ..., k(x2, yM)

......

k(xM, y1), k(xM, y2), ..., k(xM, yM)


 β̃1

= βT

1
Kt β̃1.

(2.146)

Kt is the kernel matrix between ϕ(xi ) and ϕ(yj ). A measure of similarity between vf
1

and ṽf

1 has been obtained without giving vf
1 and ṽf

1 based on (2.146).
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46 Cognitive Radio Communications and Networking

Tkpca is the threshold value for kernel PCA algorithm. The detection with leading
eigenvector under the framework of kernel PCA is simply called kernel PCA detection.

DTV signal [87] captured in Washington D.C. will be employed to the experiment of
spectrum sensing in this section. The first segment of DTV signal with L = 500 is taken
as the samples of the primary user’s signal x(n).

First, the similarities of leading eigenvectors of the sample covariance matrix between
first segment and other segments of DTV signal will be tested under the frameworks
of PCA and kernel PCA. The DTV signal with length 105 is obtained and divided into
200 segments with the length of each segment 500. Similarities of leading eigenvectors
derived by PCA and kernel PCA between the first segment and the rest 199 segments are
shown in Figure 2.2. The result shows that the similarities are very high between leading
eigenvectors of different segments’ DTV signal (which are all above 0.94), on the other
hand, kernel PCA is more stable than PCA.

The detection rates varied by SNR for kernel PCA and PCA compared with estimation-
correlator (EC) and maximum minimum eigenvalue (MME) with Pf = 10% are shown
in Figure 2.3 for 1000 experiments.

Experimental results show that kernel methods are 4 dB better than the corresponding
linear methods. Kernel methods can compete with EC method.
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Figure 2.2 Similarities of leading eigenvectors derived by PCA and kernel PCA between the first
segment and other 199 segments [85].
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Figure 2.3 The detection rates for kernel PCA and PCA compared with EC and MME with
Pf = 10% for DTV signal [85].

2.6 Cyclostationary Detection

Generally, noise in the communication system can be treated as wide-sense stationary
process. Wide-sense stationary has time invariant autocorrelation function. Mathematically
speaking, if x(t) is a wide-sense stationary process, the autocorrelation function of x(t)

is

Rx(t, τ ) = E{x(t)x∗(t − τ)} (2.147)

and

Rx(t, τ ) = Rx(τ),∀t. (2.148)

Generally, manmade signals are not wide-sense stationary. Some of them are cyclosta-
tionary [88]. A cyclostationary process is a signal exhibiting statistical properties which
vary cyclically with time [89]. Hence, if x(t) is a cyclostationary process, then

Rx(t, τ ) = Rx(t + T0, τ ), (2.149)

where T0 is the period in t not in τ .
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48 Cognitive Radio Communications and Networking

Define cyclic autocorrelation function for x(t) as

Rα
x (τ ) = lim

T →∞
1

T

∫ T
2

− T
2

x
(
t + τ

2

)
x∗
(
t − τ

2

)
exp(−j2παt) dt, (2.150)

where α is cyclic frequency. If the fundamental cyclic frequency of x(t) is α0, Rα
x (τ )

is nonzero only for integer multiples of α0 and identically zero for all other values of α

[88, 90, 91]. And spectral correlation function of x(t) can be given as

Sα
x (f ) =

∫ ∞

−∞
Rα

x (τ ) exp(−j2πf τ) dτ, (2.151)

where PSD is a special case of spectral correlation function when α is zero.
In practice, Sα

x (f ) can also be calculated based on the two following steps [92]:

1.

XT (t, f ) =
∫ t+ T

2

t− T
2

x(v) exp(−j2πf v) dv. (2.152)

2.

Sα
x (f ) = lim

�→∞
lim

T →∞
1

�

1

T

∫ �
2

− �
2

XT

(
t, f + α

2

)
X∗

T

(
t, f − α

2

)
dt. (2.153)

Both cyclic autocorrelation function Rα
x (τ ) and spectral correlation function Sα

x (f ) can
be used as features to detect x(t) [88, 92]. Assume x(t) is the signal and w(t) is AWGN.
The observed signal y(t) is equal to x(t) + w(t). The optimal cyclostationary detector
based on spectral correlation function can be [92–94],

z =
∑

α

∫
Sα∗

x (f )Sα
y (f ) df. (2.154)

A novel approach to signal classification using spectral correlation and neural networks
has been presented in [95]. α-profile is used as the feature in neural network for signal
classification. The signal types under investigation include BPSK, QPSK, FSK, MSK,
and AM [95]. α-profile is defined as [95],

profile(α) = max
f

{Cα
x (f )}, (2.155)

where Cα
x (f ) is the spectral coherence function of x(t) [95],

Cα
x (f ) = Sα

x (f )(
S0

x

(
f + α

2

)
S0∗

x

(
f − α

2

)) 1
2

. (2.156)

Similarly, signal classification based on spectral correlation analysis and SVM in cog-
nitive radio has been presented in [96].

A low-complexity cyclostationary based spectrum sensing for UWB and WiMAX coex-
istence has been proposed in [97]. The cyclostationary property of WiMAX signals
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Spectrum Sensing: Basic Techniques 49

because of the cyclic prefix is used [97]. Cooperative cyclostationary spectrum sens-
ing in cognitive radios has been discussed in [94, 98]. Cooperative spectrum sensing can
improve the performance by the multiuser diversity [94]. The cyclostationary detector
requires long detection time to obtain the feature, which causes inefficient spectrum uti-
lization [99]. In order to address this issue, the sequential detection framework is applied
together with the cyclostationary detector [99].

In an OFDM based cognitive radio system, cyclostationary signatures, which may be
intentionally embedded in the communication signals, can be used to address a number
of issues related to synchronization, blind channel identification, spectrum sharing and
network coordination [100–102]. Hence, we can design cyclostationary signatures and
the corresponding spectral correlation estimators for various situations and applications.

Besides, the blind source separation problem with the assumption that the source signals
are cyclostationary has been studied in [103]. MMSE reconstruction for generalized under-
sampling of cyclostationary signals has been presented in [104]. Signal-selective direction
of arrival (DOA) tracking for wideband cyclostationary sources has been discussed in
[105]. Time difference of arrival (TDOA) and Doppler estimation for cyclostationary
signals based on multicycle frequencies has been considered in [106].
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3
Classical Detection

3.1 Formalism of Quantum Information

Fundamental Fact: The noise lies in a high-dimensional space; the signal, by contrast,
lies in a much lower-dimensional space.

If a random matrix A has i.i.d rows Ai , then A∗A = ∑
i AiAi

T where A∗ is the adjoint
matrix of A. We often study A through the n × n symmetric, positive semidefinite matrix,
the matrix A∗A. The eigenvalues of |A| = √

A∗A are therefore nonnegative real numbers.
An immediate application of random matrices is the fundamental problem of esti-

mating covariance matrices of high-dimensional distributions [107]. The analysis of the
row-independent models can be interpreted as a study of sample covariance matrices.
For a general distribution in R

n, its covariance can be estimated from a sample size of
N = O(n log n) drawn from the distribution. For sub-Gaussian distributions, we have an
even better bound N = O(n). For low-dimensional distributions, much fewer samples are
needed: if a distribution lies close to a subspace of dimension r in R

n, then a sample of
size N = O(r log n) is sufficient for covariance estimation.

There are deep results in random matrix theory. The main motivation of this subsection
is to exploit the existing results in this field to better guide the estimate of covariance
matrices, using nonasymptotic results [107].

3.2 Hypothesis Detection for Collaborative Sensing

The density operator (matrix) ρ is the basic building block. An operator ρ satisfies:
(1) (Trace condition) ρ has trace equal to one, that is, Trρ = 1; (2) (Positivity) ρ is a
positive operator, that is, ρ ≥ 0. Abusing terminology, we will use the term “positive” for
“positive semide finite (denoted A ≥ 0).” Covariance matrices satisfy the two necessary
conditions. We say A > 0 when A is a positive definite matrix; B > A means that B − A
is a positive definite matrix. Similarly, we say this for nonnegative definite matrix for
B − A ≥ 0. The hypothesis test problems can be written as

H0 : A = Rn

H1 : B = RS + Rn,
(3.1)

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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52 Cognitive Radio Communications and Networking

where Rn is the covariance matrix of the noise and RS that of the signal. The signal is
assumed to be uncorrelated with the noise. From (3.1), it follows that RS ≥ 0 and Rn > 0.
In our applications, this noise is modeled as additive so that if x(n) is the “signal” and
w(n) the “noise,” the recorded signal is

y(n) = x(n) + w(n).

Often, this additive noise is assumed to have zero mean and to be uncorrelated with
the signal. In this case, the covariance of the measured data, y(n), is the sum of the
covariance of x(n) and w(n). Specifically, note that since

ry(k, l) = E{y(k)y∗(l)} = E{[x(k) + w(k)][x(l) + w(l)]∗}
= E{x(k)x∗(l)} + E{w(k)w∗(l)} + E{x(k)w∗(l)} + E{w(k)x∗(l)},

if x(n) and w(n) are uncorrelated, then

E{x(k)w∗(l)} = E{w(k)x∗(l)} = 0

and it follows that

ry(k, l) = rx(k, l) + rw(k, l). (3.2)

Discrete-time random processes are often represented in matrix form. If

x = [x(0), x(1), . . . , x(p)]T

is a vector of p + 1 values of a process x(n), then the outer product

xxH =




x(0)x∗(0) x(0)x∗(1)

x(1)x∗(0) x(1)x∗(1)
. . .

x(0)x∗(p)

...
. . .

...

x(p)x∗(0) x(p)x∗(1) · · · x(p)x∗(p)




is a (p + 1) × (p + 1) matrix. If x(n) is wide-sense stationary, taking the expected value
and using the Hermitian symmetry of the covariance sequence, rx(k) = r∗

x (−k), leads to
the (p + 1) × (p + 1) matrix of covariance values

Rx = E{xxH } =




rx(0) r∗
x (1)

rx(1) rx(0)
. . .

r∗
x (p)

r∗
x (p − 1)

...
. . .

...

rx(p) rx(p − 1) · · · rx(0)


 (3.3)

referred to as the covariance matrix . The correlation matrix Rx has the following structure:

Rx = rx(0)I + R̄x, TrR̄x = 0, (3.4)

where I is identity matrix and TrA represents the trace of A. The covariance matrix has
the following basic structures:
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Classical Detection 53

1. The covariance matrix of a WSS random process is a Hermitian Toeplitz matrix,
Rx = Rx

∗.
2. The covariance matrix of a WSS random process is positive semidefinite, Rx ≥ 0.

In other words, the eigenvalues, λk , of this covariance matrix are real-valued and
nonnegative, that is, λk ≥ 0.

A complete list of properties is given in Table 3.1. When the mean values mx and
my are zero, the autocovariance and matrices are equal. We will always assume that all
random processes have zero mean. Therefore, we use the two definitions interchangeably.

Example 3.1 (Covariance matrices for sinusoids and complex exponentials)
An important random process in radar and communications is the harmonic process.
An example of a real-valued harmonic process is the random phase sinusoid, which is
defined by

x(n) = A sin
(
nω0 + φ

)
,

where A and ω0 are fixed constants and φ is a random variable that is uniformly distributed
over interval −π and π . The mean of this process can easily be shown to be zero. Thus,
x(n) is a zero mean process. The covariance of x(n) is

rx(k, l) = E{x(k)x∗(l)} = E{A sin
(
kω0 + φ

)
A sin

(
lω0 + φ

)}.
Using the trigonometric identity

2 sin A sin B = cos(A − B) − cos(A + B),

we have

rx(k, l) = 1

2
|A|2E{cos

[(
k − l)ω0

)]} − 1

2
|A|2E{cos

[(
k + l)ω0 + 2φ

)]}.
Note that the first term is the expected value of a constant and the second term is equal

to zero. Therefore,

rx(k, l) = 1

2
|A|2 cos

[(
k − l)ω0

)]
.

Table 3.1 Definition and properties for correlation and covariance matrices [108, p. 39]

Auto-correlation and covariance Rx = E{xx∗} Cx = E{(x − Ex)(x − Ex)∗}
Symmetry Rx = Rx

∗ Cx = Cx
∗

Positive semidefinite Rx ≥ 0 Cx ≥ 0
Interrelation Rx = Cx + mxmx

∗ mx = E{x},my = E{y}
Cross-correlation and cross-covariance Rxy = E{xy∗} Cxy = E{(x − mx)(y − my)

∗}
Relation to Ryx and Cyx Rxy = Ryx Cxy = Cyx

Interrelation Rxy = Cxy + mxmy
∗ mx = E{x},my = E{y}

Orthogonal and uncorrelated x, y orthogonal: Rxy = 0 x, y uncorrelated: Cxy = 0
Sum of Rx+y = Rx + Ry Cx+y = Cx + Cy

x and y if x, y orthogonal if x, y uncorrelated
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54 Cognitive Radio Communications and Networking

As another example, consider the complex harmonic process

x(n) = Aej(nω0+φ),

where, as with the random phase sinusoid, φ is a random variable that is uniformly
distributed between −π and π . The mean of this process is zero. The covariance is

rx(k, l) = E{x(k)x∗(l)} = E{Aej(kω0+φ)A∗e−j (lω0+φ)}
= |A|2E{ej (k−l)ω0} = |A|2ej (k−l)ω0

.

Consider a harmonic process consisting of L sinusoids

x(n) =
L∑

l=1

Al sin
(
nωl + φl

)
.

Assuming the random variables φl and Al are uncorrelated, the covariance sequence is

rx(k) =
L∑

l=1

1

2
E{A2

l } cos
(
kωl

)
.

The 2 × 2 covariance matrix for L = 1 sinusoid is

Rs = 1

2
|A|2

[
1 cos ω0

cos ω0 1

]
= 1

2
|A|2 (I + σ1 cos ω0

)
.

The 2 × 2 covariance matrix for L sinusoids is

Rx =
L∑

l=1

1

2
E{A2

l }




1
1

L∑
l=1

1
2E{A2

l }

L∑
l=1

1

2
E{A2

l } cos
(
ωl

)

1
L∑

l=1

1
2E{A2

l }

L∑
l=1

1

2
E{A2

l } cos
(
ωl

)
1




= a
(
I + bσ1

)
,

where

a =
L∑

l=1

1

2
E{A2

l },b = 1
L∑

l=1

1
2E{A2

l }

L∑
l=1

1

2
E{A2

l } cos
(
ωl

)
.

As another example, consider the complex-valued process consisting of a sum of two
complex exponentials

y(n) = Aej(nω1+φ1) + Aej(nω2+φ2).

The covariance sequence for two uncorrelated processes is

rx(k) = |A|2ejkω1 + |A|2ejkω2 .
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Classical Detection 55

The 2 × 2 covariance matrix for two complex exponentials is

Rx = |A|2
[

2 e−jω1 + e−jω2

e−jω1 + e−jω2 2

]
= 1

2
|A|2

[
I +

(
e−jω1 + e−jω2

2

)
σ1

]
. �

Example 3.2 (Covariance matrix for white noise)
The 2 × 2 covariance matrix for white additive noise is

Rw = σ 2
w

(
1 0
0 1

)
= σ 2

wI.

In practice, we must deal with this form

Rw = σ 2
wI + σ 2

w

(
x11 x12
x21 x22

)
= σ 2

wI + σ 2
wX,

where the elements of X are approximately zero-mean random variables whose variances
are 10 dB lower than the diagonal elements of Rw. At low SNR, such as −20 dB, these
random variables make Rw a random matrix. One realization example is

X =
(

0.043579 0.10556
0.10556 0.14712

)
. �

Let A be a Hermitian operator with qI ≤ A ≤ QI. The matrices QI − A and A − qI
are positive and commute with each other [109, p. 95]. Since Rw is positive (of course,
Hermitian), we have

qI ≤ Rw ≤ QI.

The random matrix X = 1
σ2
w

Rw − I is Hermitian, but not necessarily positive. X is
Hermitian, since its eigenvalues must be real. The Hoffman-Wielandt is relevant in this
context.

Lemma 3.1 (Hoffman-Wielandt) [16, p. 21] Let A and B be N × N Hermitian matrices,
with eigenvalues λA

1 ≤ λA
2 ≤ · · · ≤ λA

N and λB
1 ≤ λB

2 ≤ · · · ≤ λB
N . Then,

N∑
i=1

∣∣λA
i − λB

i

∣∣ ≤ Tr(A − B)2, (3.5)

where X and Y are random symmetric matrices.

(3.5) can be used to bound the difference of the eigenvalues between A and B.

3.3 Sample Covariance Matrix

In Section 3.2, the true covariance matrix is needed for hypothesis detection. In practice,
we only have access to the sample covariance matrix which is a random matrix. We first
present some basic definitions and properties related to a sample covariance matrix. The
determinant of a random matrix S, det S, also called generalized variance, is of special
interest. It is an important measure of spread in multidimensional statistical analysis.
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56 Cognitive Radio Communications and Networking

3.3.1 The Data Matrix

The general (n × N) data matrix will be denoted X or X(n × N). The element in row i

and column j is xij . We write the matrix X = (xij ). The rows of X will be written as

xT
1 , xT

2 , . . . , xT
n .

Or

X =




xT
1

xT
2
...

xT
n


 = [x(1), x(2), . . . , x(N)],

where

xi =




xi1
xi2
...

xiN


 (i = 1, 2, . . . , n), x(j) =




x1j

x2j

...

xNj


 (j = 1, 2, . . . , N).

Example 3.3 (Random matrices)
MATLAB Code: N=1000 ; X=randn(N,N); This code generates a random matrix of size
1000 × 1000.

r = randn(n) returns an n-by-n matrix containing pseudorandom values drawn from the
standard normal distribution. randn returns a scalar. randn(size(A)) returns an array the
same size as A.

(1) Generate values from a normal distribution with mean 1 and standard deviation 2.

r = 1 + 2.*randn(100,1);

(2) Generate values from a bivariate normal distribution with specified mean vec-
tor and covariance matrix. mu = [1,2]; Sigma = [1 .5; .5 2]; R = chol(Sigma); z =
repmat(mu,100,1) + randn(100,2)*R; �

3.3.1.1 The Mean Vector and Covariance Matrix

The sample mean of the ith variable is

x̄i = 1

n

n∑
l=1

xli, (3.6)

and the sample variance of the ith variable is

sii = 1

n

n∑
l=1

(xli − x̄i) = s2
i , i = 1, . . . , N. (3.7)

The sample covariance between the ith and j th variable is

sij = 1

n

n∑
l=1

(xli − x̄i)(xlj − x̄j ). (3.8)
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Classical Detection 57

The vector of means,

x̄ =




x̄1
x̄2
...

x̄N


 , (3.9)

is called the sample mean vector, or simply the “mean vector.” The N × N matrix

S = (sij )

is called the sample covariance matrix, or simply “covariance matrix.” It is more con-
venient to express the statistics in matrix notation. Corresponding to (3.6) and (3.9), we
have

x̄ = 1

n

n∑
l=1

xl =1

n
XT 1, (3.10)

where 1 is a column vector of n ones. On the other hand,

sij = 1

n

n∑
l=1

xlixlj−x̄i x̄j ,

so that

S = 1

n

n∑
l=1

(xl − x̄)(xl − x̄)T = 1

n

n∑
l=1

xlx
T
l − x̄x̄T . (3.11)

This may be expressed as

S = 1

n
XT X − x̄x̄T = 1

n
(XT X − 1

n
XT 11T X),

using (3.10). Writing

H = I − 1

n
11T ,

where H is called the centering matrix, we obtain the following standard form

S = 1

n
XT HX, (3.12)

which is a convenient matrix representation of the sample covariance matrix. We need a
total of nN points of samples to estimate the sample covariance matrix S. Turning the
table around, we can “summarize” information of nN points of samples into one single
matrix S. In spectrum sensing, we are given a long record of data about some random
variables, or a random vector of large data dimensionality.

Example 3.4 (Representation of sample covariance matrix)
Given a total of 105 points of samples, how many sample covariance matrices are needed?
Collect a data segment consisting of 1024 points to form N-dimensional vectors, where
N = 32. These N-dimensional data vectors are used to form a sample covariance matrix
S of N × N .
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58 Cognitive Radio Communications and Networking

By doing this, we have K = 105/1025 = 97 segments. From each segment, we estimate
a sample covariance matrix. Thus we have K = 97 sample covariance matrices; in other
words, a series of K matrices, S1, S2, · · ·,SK are obtained. �

Let us check the most important property of S: S is a positive semidefinite matrix.
Since H is a symmetric idempotent matrix: H = HT , H = H2, for any N-vector a,

aT Sa = 1

n
aT XT HT HXa = 1

n
yT y ≥ 0,

where y = HXa. Thus, the covariance matrix S is positive semidefinite, writing

S ≥ 0.

For continuous data, we expect S is not only positive semidefinite, but positive definite,
writing

S > 0,

if n ≥ N + 1.
It is often convenient to define the covariance matrix with a divisor of n − 1 instead

of n. Set

Su = 1

n − 1
XT HX = n

n − 1
S.

If the data forms a random vector sample from a multivariate distribution, with finite
second moments, then Su is an unbiased estimate of the true covariance matrix. See
Theorem 2.8.2 of [110, p. 50].

The sample correlation coefficient between the ith and the j variables is

ρij = sij

sisj

.

Unlike sij , the correlation coefficient is invariant under both changes of scale and
origin of the ith and the j th variables. This property is the foundation of detection of
correlated structures among random vectors. Clearly,

0 ≤ |ρij | ≤ 1,

where |a| is the absolute value of a. Define the sample correlation matrix as

� = (ρij )

with ρii = 1. It follows that

� ≥ 0.

If � = I, we say that the variables are uncorrelated. This is the case for white Gaussian
noise. If D = diag(si), then

� = D−1SD−1, S = D�D.
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Classical Detection 59

3.3.1.2 Measure of Multivariate Scatter

The matrix S is one possible multivariate generation of the univariate notion of variance,
measuring scatter above the mean. Physically, the variance is equivalent to the power of
the random vector. For example, for a white Gaussian random variable, the variance is
its power.

Sometimes, for example, for hypothesis testing problems, we would rather have a single
number to measure multivariate scatter. Of course, the matrix S contains many more
structures (“information”) than this single real number. Two common such measures are

1. the generalized variance det S, or |S|.
2. the total variance, TrS.

A motivation for these measures is in principle component analysis (PCA) that will be
treated later. For both measures, large values indicate a high degree of scatter about the
mean vector x̄—physically larger power. Low values represent concentration about
the mean vector x̄. Two different measures reflect different aspects of the variability
in the data. The generalized variance plays an important role in maximum likelihood
(ML) estimation while the total variance is a useful concept in principal component
analysis. In the context of low SNR detection, it seems that the total variance is a more
sensitive measure to decide on two alternative hypotheses.

The necessity for studying the (empirical) sample covariance matrix in statistics arose
during 1950s when practitioners were searching for a scalar measure of dispersion for the
multivariate data [111, Chapter 2]. This scalar measure of dispersion is relevant under the
context of hypothesis testing. We need a scalar measure to set the threshold for testing.

3.3.1.3 Linear Combinations

Linear transformations can simplify the structure of the covariance matrix, making inter-
pretation of the data more straightforward. Consider a linear combination

yl = a1xl1 + a2xl2 + · · · + aNxlN , l = 1, 2, . . . , n,

where a1, · · · , aN are given. From (3.10), the mean is

ȳ = 1

n

n∑
l=1

yl = 1

n
aT

n∑
l=1

xl = aT x̄,

and the variance is

s2
y = 1

n

n∑
l=1

(yl − ȳ)2 =1

n

n∑
l=1

aT (xl − x̄)(xl − x̄)T a =aT Sxa,

where (3.11) is used.
For a q-dimensional linear transformation, we have

yl = Axl + b, l = 1, 2, . . . , n,

which may be written as

Y = XAT + 1bT ,

where Y is a q × q matrix and b is a q-vector. Usually, q ≤ N .
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60 Cognitive Radio Communications and Networking

The mean vector and covariance matrix of the new objects yl are

ȳ = x̄ + b,

Sy = 1
n

n∑
l=1

(yl − ȳ)(yl − ȳ)T = ASxAT .

If A is nonsingular (so, in particular, q = N), then

Sx = A−1Sy(A
T )−1 = A−1SyA−T .

Here we give three most important examples: (1) the scaling transform; (2) Mahalanobis
transform; (3) principal component transformation (or analysis).

3.3.1.4 The Scaling Transform

The n vectors of dimension N are objects of interest. Define the scaling transform as

yl = D−1(xl − x̄), l = 1, 2, . . . , n

D = diag(si).

This transformation scales each variable to have unit variance and thus eliminates the
arbitrariness in the choice of scale. For example, if x(1) measures lengths, then y(1) will
be the same. We have

Sy = �.

3.3.1.5 Mahalanobis Transformation

If S > 0, then S−1 has a unique symmetric positive definite square root S−1/2. See A.6.15
of [110]. We define the Mahalanobis transformation as

zl = S−1/2
x (xl − x̄), l = 1, 2, . . . , n.

Then
Sz = I,

so that this transformation eliminates the correlation between the variables and standard-
izes the variance of each variable.

3.3.1.6 Principle Component Analysis

In the era of high-dimensionality data processing, PCA is extremely important to reduce
the dimension of the data. One is motivated to summarize the total variance using much
fewer dimensions. The notion of rank of the data matrix occurs naturally in this context.
For zero-mean random vector, it follows, from (3.12), that

S = 1

n
XT X.

This mathematical structure plays a critical role in its applications.
By spectrum decomposition theorem, the covariance matrix S may be written as

S = U�UT ,
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Classical Detection 61

where U is an orthogonal matrix and � is a diagonal matrix of the eigenvalues of S,

� = diag
[
λ1 λ2 · · · λN

]
.

The principal component transformation is defined by the unitary rotation

wl = UT (xl − x̄), l = 1, 2, . . . , N.

Since

Sw = UT SxU = �,

the columns of W, called principal components, represent uncorrelated linear combina-
tions of the variables. In practice, one hopes to summarize most of the variability in the
data using only the principal components with the highest variances, thus reducing the
dimensions. This approach is the standard benchmark for dimensionality reduction.

The principal components are uncorrelated with variances

λ1, λ2, · · · , λN .

It seems natural to define the “overall” spread of the data by some symmetric monotoni-
cally increasing function of λ1, λ2, · · · , λn, such as the geometric mean and the arithmetic
mean

N∏
i=1

λi or
N∑

i=1

λi

Using the properties of linear algebra, we have

det Sx = det � =
N∏

i=1
λi,

TrSx = Tr� =
N∑

i=1
λi.

We have used the facts for a N × N matrix

det A =
N∏

i=1

λi, TrA =
N∑

i=1

λi,

where λi is the eigenvalues of the matrix A. See [110, A.6] or [112], since the geometric
mean of the nonnegative sequence is always smaller than the arithmetic mean of the
nonnegative sequence, or [113]

(a1a2 · · · an)
1/n ≤ a1 + a2 + · · · + an

n
,

where ai are nonnegative real numbers. Besides, the special structure of S ≥ 0, implies
that all eigenvalues are nonnegative [114, p. 160]

λi(S) ≥ 0.
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62 Cognitive Radio Communications and Networking

The arithmetic mean-geometric mean inequality is thus valid for our case. Finally
we obtain

(det Sx)
1
N ≤ 1

N
TrSx. (3.13)

The rotation to principal components provides a motivation for the measures of multi-
variate scatter. Let us consider one application in spectrum sensing. The key idea behind
covariance-based primary user’s signal detection that the primary user signal received at
the CR user is usually correlated because of the dispersive channels, the utility of multiple
receiver antennas, or even oversampling. Such correlation can be used by the CR user to
differentiate the primary signal from white noise.

Since Sx is a random matrix, det Sx and TrSx are scalar random variables. Girko studied
random determinants [111]. (5.21) relates the determinant to the trace of the random matrix
Sx . In Chapter 4, the tracial functions of Sx are commonly encountered.

Example 3.5 (Covariance-based detection)
The received signal is

y(n) = θs(n) + w(n), 0 ≤ n ≤ N − 1

where θ = 1 and θ = 0 denote the presence and absence of the primary signal, respec-
tively. The sample covariance matrix of the received signal is estimated as

R̂y = 1

N

N∑
n=1

y[n]yH [n]

y[n] = [
y[n], y[n − 1], . . . , y[n − L + 1]

]T
.

(3.14)

When the number of samples N approaches infinity, R̂y converges in probability at

Ry = E
{
y[n]y[n]H

} = θRs + Rw,

where Rs and Rw are, respectively, the L × L covariance matrices of the primary signal
vector and the noise vector

s[n] = [s[n], s[n − 1], . . . , s[n − L + 1]]T ,

w[n] = [w[n], w[n − 1], . . . , w[n − L + 1]]T .

Our standard problem is

H0 : Rx = Rw

H1 : Rx = Rs + Rw,
(3.15)

where Rs and Rw are, respectively, covariance matrices of signal and noise.
Based on the sample covariance matrix R̂y , various test statistics can be used. Let µmin

and µmax denote the minimum and maximum eigenvalues of R̂y . Then

H0 : σ 2
n ≤ λi ≤ σ 2

n

H1 : αmin + σ 2
n ≤ λi ≤ αmax + σ 2

n ,
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Classical Detection 63

where αmax and αmin are the maximum and minimum eigenvalues of Rs and Rw = σ 2
n IL

is assumed, where σ 2
n is the noise power and IL is the L × L identity matrix. Because of

the correlation among the sampled signal, αmax > αmin. Thus, if there is no primary signal

µmax

µmin
= 1,

otherwise
µmax

µmin

> 1.

Based on the above heuristic, the max-min eigenvalue algorithm is formulated as fol-
lows:

1. Estimate the covariance matrix of the received signal according to (3.14).
2. Calculate the ratio of the the maximum and minimum eigenvalues.
3. If the ratio µmax

µmin
> 1, claim H1 otherwise claim H0. �

The max-min eigenvalue algorithm is simple and has a fairly good performance under
the context of low SNR. At extremely low SNR, say −25 dB, the calculated eigenvalues
of the sample covariances matrix are random and look identical. This algorithm breaks
down as a result of this phenomenon. Note that the eigenvalues are the variances of the
principal components. The problem is that this algorithm depends on the variance of one
dimension (associated with the minimum or the maximum eigenvalues).

The variances of different components are uncorrelated random variables. It is thus
more natural to use the total variance or total variation.

3.4 Random Matrices with Independent Rows

We focus on a general model of random matrices, where we only assume independence of
the rows rather than all entries. Such matrices are naturally generated by high-dimensional
distributions. Indeed, given an arbitrary probability distribution in R

n, one takes a sample
of N independent points and arranges them as the rows of an N × n matrix A. Recall
that n is the dimension of the probability space.

Let X be a random vector in R
n. For simplicity we assume that X is centered, or EX = 0.

Here EX denotes the expectation of X. The covariance matrix of X is the n × n matrix
� = EXXT . The simplest way to estimate � is to take some N independent samples
Xi from the distribution and form the sample covariance matrix �N = 1

N

∑N

i=1 XiXi
T .

By the law of large numbers, �N → � almost surely as N → ∞. So, taking sufficiently
many samples we are guaranteed to estimate the covariance matrix as well as we want.
This, however, does not address the quantitative aspect: what is the minimal sample size
N that guarantees approximation with a given accuracy?

The relation of this question to random matrix theory becomes clear when we arrange
the samples Xi =: Ai as rows of the N × n random matrix A. Then, the sample covariance
matrix is expressed as �N = 1

N
A∗A. Note that A is a matrix with independent rows but

usually not independent entries. The reference of [107] has worked out the analysis of
such matrices, separately for sub-Gaussian and general distributions.
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64 Cognitive Radio Communications and Networking

We often encounter covariance estimation for sub-Gaussian distribution due to the
presence of Gaussian noise. Consider a sub-Gaussian distribution in R

n with covariance
matrix �, and let ε ∈ (0, 1), t ≥ 1. Then with probability at least 1 − 2 exp(−t2n) one has

If N ≥ C(t/ε)2n, then ||�N − �|| ≤ ε. (3.16)

Here C depends only on the sub-Gaussian norm of a random vector taken from this
distribution; the spectral norm of A is denoted as ||A||, which is equal to the maximum
singular value of A, that is, smax = ||A||.

Covariance estimation for arbitrary distribution is also encountered when a general noise
interference model is used. Consider a sub-Gaussian distribution in R

n with covariance
matrix � and supported in some centered Euclidean ball whose radius we denote

√
m.

Let ε ∈ (0, 1) and t ≥ 1. Then, with probability at least 1 − n−t2
, one has

If N ≥ C(t/ε)2||�||−1m log n, then ||�N − �|| ≤ ε||�||. (3.17)

Here C is an absolute constant and log denotes the natural logarithm. In (3.17), typically
m = O(||�||n). The required sample size is N ≥ C(t/ε)2n log n.

Low rank estimation is used, since the distribution of a signal in R
n lies close to a low-

dimensional subspace. In this case, a much smaller sample size suffices for covariance
estimation. The intrinsic dimension of the distribution can be measured with the effective
rank of the matrix �, defined as

r(�) = Tr(�)

||�|| (3.18)

where Tr(�) denotes the trace of �. One always has r(�) ≤ rank(�) ≤ n, and this bound
is sharp. The effective rank r = r(�) always controls the typical norm of X, as E||X||22 =
Tr(�) = r�. Most of the distribution is supported in a ball of radius

√
m where m =

O(r||�||). The conclusion of (3.17) holds with sample size N ≥ C(t/ε)2r log n.
Summarizing the above discussion, (3.16) shows that the sample size N = O(n) suf-

fices to approximate the covariance matrix of a sub-Gaussian distribution in R
n by the

sample covariance matrix. While for arbitrary distribution, N = O(n log n) is sufficient.
For distributions that are approximately low-dimensional, such as that of a signal, a much
smaller sample size is sufficient. Namely, if the effective rank of � equals r , then a
sufficient size is N = O(r log n).

Each observation of the sample covariance matrix is a random matrix. We can study
the expectation of the observed random matrix. Since the expectation of a random matrix
can be viewed as a convex combination, and also the positive semidefinite cone is convex
[115, p. 459], expectation preserves the semidefinite order [116]:

B ≥ A ≥ 0 implies EB ≥ EA. (3.19)

Noncommunicativity of two sample covariance matrices: If positive matrices X and Y
commute, then the symmetrized product is: X ◦ Y = 1

2 (XY + YX) ≥ 0, which is not true,1

if we deal with two sample covariances. A simple MATLAB simulation using two random

1 This is true, if we know the true covariance matrices , rather than the sample covariance matrices.
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Classical Detection 65

matrices can verify this observation. It turns out that this observation is of an elemen-
tary nature: Quantum information is built upon this noncommunicativity of operators
(matrices). If the matrices A and B commute, the problem of (3.1) is equivalent to the
classical likelihood ratio test [117]. A unifying framework including classical and quantum
hypothesis testing (first suggested in [117]) is developed here.

When only N samples are available, the sample covariance matrices can be used to
approximate the actual ones. A random vector X ∈ R

n is used to model the noise or
interference. Similarly, a random vector S ∈ R

n models the signal. In other words, (3.1)
becomes

H0 : A = 1

N

N∑
i=1

XiXi
T = R̂n

H1 : B = 1

N

N∑
i=1

SiSi
T + 1

N

N∑
i=1

XiXi
T + 1

N

N∑
i=1

SiXi
T + 1

N

N∑
i=1

XiSi
T (3.20)

= R̂S + R̂n + R̂SX + R̂XS,

where R̂S ≥ 0; R̂n > 0; A > 0.

For any A ≥ 0, all the eigenvalues of A are nonnegative. Since some eigenvalues of
R̂SX and R̂XS are negative, they are indefinite matrices of small tracial values. Under
extremely low signal-to-noise ratios, the positive term (signal) Ŝ in (3.20) is extremely
small, compared with the other three terms. All these matrices are random matrices with
dimension n.

Our motivation is to use the fundamental relation of (3.19). Consider (sufficiently large)
K i.i.d. observations of random matrices A and B:

H0 : EA ≈ 1

K

∑
Ak;H1 : EB ≈ 1

K

∑
Bk. (3.21)

The problem at hand is how the fusion center combines the information from these K

observations. The justification for using the expectation is based on the basic observation
of (3.20): expectation increases the effective signal-to-noise ratio. For the K observations,
the signal term experiences coherent summation, while these other three random matrices
go through incoherent summation.

Simulations: In (3.20), TrR̂SX + TrR̂XS is no bigger than 0.5, so they do not have
significant influence on the gap between Tr(R̂S + R̂n) and TrR̂n. Figure 3.1 shows that
this gap is very stable. A narrowband signal is used. The covariance matrix R̂S is 4 × 4.
About 25 observations are sufficient to recover this matrix with acceptable accuracy. Two
independent experiments are performed to obtain R̂n and R̂n0

. In our algorithms, we need
to set the threshold first for the hypothesis test of H1; we rely on R̂n0

for H0. To obtain
every point in the plot, N = 600 is used in (3.20).

Denote the set of positive-definite matrices by F
n×n. The following theorem [115, p.

529] provides a framework: Let A, B ∈ F
n×n, assume that A and B are positive semidef-

inite, assume that A ≤ B, assume that f (0) = 0, f is continuous, and f is increasing.
Then,

Trf (A) ≤ Trf (B). (3.22)
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Figure 3.1 The traces of covariances at extremely low SNR as a function of K observations.
(a) SNR = −30 dB; (b) SNR = −34 dB.

A trivial case is: f (x) = x. If A and B are random matrices, combining (3.22) with
(3.19) leads to the final equation

Trf (EA) ≤ Trf (EB). (3.23)

Algorithm 3.1 (1) Claim hypothesis H1 if matrix inequality (3.22) is satisfied; (2) other-
wise, H0 is claimed.

Consider a general Gaussian detection problem: H0 : x = w, H1 : x = s + w where w ∼
N(0, Cw), x ∼ N(µs, Cs), and s and w are independent. The Neyman-Pearson detector
decides H1 if p(x;H1)

p(x;H1)
> γ . This LRT leads to a structure of a prewhitener followed by

an EC [118, p. 167]. In our simulation, we assume that we know perfectly the signal
and noise covariance matrices. This serves as the upper limit for the LRT detector. It is
amazing to discover that Algorithm 3.1 outperforms the LRT by several dBs!

Related Work : Several sample covariance matrix based algorithms have been proposed
in spectrum sensing. Maximum-minimum eigenvalue (MME)[119] and arithmetic-to-
geometric mean (AGM) [120] uses the eigenvalues information, while feature template
matching (FTM) [121] uses eigenvectors as prior knowledge. All these algorithms are
based on covariance matrices. All the thresholds are determined by probability of false
alarm.

Preliminary Results Using Algorithm 3.1 : Sinusoidal signals and DTV signals captured
in Washington D.C are used. For each simulation, zero-mean i.i.d. Gaussian noise is
added according to different SNR. 2,000 simulations are performed on each SNR level.
The threshold obtained by Monte Carlo simulations is in perfect agreement with that
of the derived expression. The number of total samples contained in the segment is
Ns = 100, 000 (corresponding to about 5 ms sampling time). The smoothing factor L

is chosen to be 32. Probability of false alarm is fixed with Pf a = 10%. For simulated
sinusoidal signal, the parameters are set the same.
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Figure 3.2 Probability of detection. (a) Simulated Narrowband Signal; (b) Measured DTV Data.

Hypothesis detection using a function of matrix detection (FMD) is based on (3.23).
For more details, we see [122]. It is compared with the benchmark EC, together with
AGM, FTM, MME, as shown in Figure 3.2. FMD is 3 dB better than EC. While using
simulated sinusoidal signal, the gain between FMD and EC is 5 dB. The longer the data,
the bigger this gain.

3.5 The Multivariate Normal Distribution

The multivariate normal (MVN) distribution is the most important distribution in science
and engineering [123, p. 55]. The reasons are manifold: Central limit theorems make it
the limiting distributions for some sums of random variables, its marginal distributions
are normal, linear transformations of multivariate normals are also multivariate normal,
and so on. Let

X =[X1 X2 · · · XN

]T
denote an N × 1 random vector. The mean of X is

m = EX = [
m1 m2 · · · mN

]T
.

mi = EXi.

The covariance matrix of X is

R = E(X − m)(X − m)T = {rij },
rij = E(Xi − mi)(Xj − mj).

The random vector X is called to be multivariate normal if its density function is

f (x) = 1

(2π)N/2(det R)1/2 exp

[
−1

2
(x − m)T R−1(x − m)

]
. (3.24)
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68 Cognitive Radio Communications and Networking

We assume that the nonnegetive definite matrix R is nonsingular. Since the integral of
the density function is unit, this leads to∫

exp

[
−1

2
(x − m)T R−1(x − m)

]
dx = (2π)N/2(det R)1/2.

The quadratic form

d2 = (x − m)T R−1(x − m)

is a weighted norm called Mahalanobis distance from x to m.

Characteristic Function

The characteristic function of X is the multidimensional Fourier transform of the density


(ω) = Ee−jωT X =
∫

dx
1

(2π)N/2(det R)1/2 exp

[
−jωT X−1

2
(x − m)T R−1(x − m)

]
.

By some manipulation [123], we have

ω = exp

{
−jωT m − 1

2
ωT Rω

}
. (3.25)

The characteristic function itself is a multivariate normal function of the frequency
variable ω.

Linear Transforms

Let Y be a linear transformation of a multivariate normal random variable:

Y = AT X
AT : m × N(m ≤ N).

The characteristic function of Y is


(ω) = Ee−jωT Y = Ee−jωT AT X = exp

{
−jωT AT m − 1

2
ωT AT RAω

}
.

Thus, Y is also a multivariate normal random variable with a new mean vector and
new variance matrix

Y = AT X : N[AT m, AT RA]

if the matrix AT RA is nonsingular.

Diagonalizing Transforms

The correlation matrix is symmetric and nonnegative definite. In other words, R ≥ 0.
Therefore, there exists an orthogonal matrix U such that

UT RU = diag [λ2
1 · · · λ2

N ].
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Classical Detection 69

The vector Y = UT X is distributed as

Y = UT X : N[UT m, diag[λ2
1 · · · λ2

N ]].

The random variables Y1, Y2, . . . , YN are uncorrelated since

E(Y − UT m)(Y − UT m)T = UT RU = diag
[
λ2

1 · · · λ2
N

]
.

In fact, Yn are independent normal random variables with mean UT m and variances λ2
n:

f (y) =
N∏

n=1

(2πλ2
n)

−1/2
exp

{
− 1

2λ2
n

[yn − (UT m)n]
2
}

.

This transformation Y = UT X is called a Karhunen-Loeve or Hotelling transform. It
simply diagonalizes the covariance matrix

R : UT RU = �2.

Such a transform can be implemented in MATLAB, using a function called eig or svd .

Quadratic Forms in MVN Random Variables

Linear functions of MVN random vectors remain MVN. In GLRT, quadratic forms of
MVNs are involved. The natural question is what about quadratic forms of MVNs? In
some important cases, the quadratic forms have a χ2 distributions. Let X denote an
N[m, R] random variable. The distribution

Q = (X − m)T R−1(X − m)

is χ2
N distributed. The characteristic function of Q is


(ω) = Ee−jωQ =
∫

dx exp [−jω(X − m)T R−1(X − m)]

× 1

(2π)N/2(det R)1/2 exp

[
−1

2
(x − m)T R−1(x − m)

]

=
∫

dx
1

(1 + 2jω)N/2

1

(2π)N/2(det R)1/2 (1 + 2jω)N/2

× exp

[
−1

2
(x − m)T R−1(I + 2jωI)(x − m)

]

= 1

(1 + 2jω)N/2 .

which is the characteristic function of a chi-squared distribution with N degrees of free-
dom, denoted χ2

N . The density function for Q is the inverse Fourier transform

f (q) = 1

�(N/2)2N/2
q(N/2)−1e−q/2; q ≥ 0.
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70 Cognitive Radio Communications and Networking

The mean and variance of Q are obtained from the characteristic function

EQ = N

VarQ = 2N.

Sometimes we encounter more general quadratic forms in the symmetric matrix P:

Q = (X − m)T P(X − m)

X : N[m, R].

The mean and variance of Q are

EQ = TrPR
Var = 2Tr(PR)2.

The characteristic function of Q is


(ω) =
∫

dx
1

(2π)N/2(det R)1/2 exp

[
−1

2
(x − m)T (I + 2jωPR)(x − m)

]

=
∫

dx
1

(2π)N/2

1

{det [R(I + 2jωPR)−1]}1/2

1

[det (I + 2jωPR)]1/2

× exp

[
−1

2
(x − m)T (I + 2jωPR)(x − m)

]

= 1

[det (I + 2jωPR)]1/2 .

If PR is symmetric: PR = RP, the characteristic function is


(ω) = 1
N∏

n=1
(1 + 2jωλn)

1/2

,

where λn are eigenvalues of PR. This is the characteristic function of a χ2
r random variable

iff

λn =
{

1, n = 1, 2, . . . , r

0, n = r + 1, . . . , N
.

If R = I, meaning X consists of indepedent components, then the quadratic form Q is
χ2

r iff P is idempotent:

P2 = P.

Such a matrix is called a projection matrix. We have the following result: if
X is N[0, I] and P is a rank r projection, the linear transformation Y = PX is
N[0, P], and the quadratic form YT Y = XT PX is χ2

r . More generally, if X is
N[0, R], R = U�2UT , �2 = diag

[
λ2

1 λ2
2 · · · λ2

N

]
and P is chosen to be U�−1

r UT

with �−2
r = diag

[
λ−2

1 λ−2
2 · · · λ−2

N

]
, then PRP = UIrUT and the quadratic form

YT Y is χ2
r .
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Classical Detection 71

Let Q = (X − m)T R−1(X − m) where X is N[0, R]. Equivalently,

Q =
N∑

n=1

(Xn − µ)2/σ 2

is a quadratic form in the i.i.d. N[µ, σ 2] random variables X1, X2, · · · , XN . We have
shown that Q is χ2

N . Form the random variable

V = Q − N√
2N

.

The new random variable V asymptotically has mean 0 and variance 1, that is, asymp-
totically N[0, 1].

The Matrix Normal Distribution

Let X(n × N) be a matrix whose rows xT
1 , · · · , xT

n , are independently distributed as
N(µ, R). Then X has the matrix normal distribution and represents a random matrix
observation from N(µ, R). Using (3.24), we find that the density function of X is [110]

f (X) = [det (2πR)]−n/2 exp

{
−1

2

n∑
i=1

(xi − µ)T R−1(xi − µ)

}

= [det (2πR)]−n/2 exp

{
−1

2
Tr[R−1(X − 1µT )

T
R−1(X − 1µT )]

}
,

where 1 is a column vector having the number 1 as its elements.

Transformation of Normal Data Matrices

We often encounter random vectors. Let

x1, . . . , xn

be a random sample from N(µ, �) [110]. We call

X =




x1
T

...

xn
T


 ,

a data matrix from N(µ, �) or simply a “normal data matrix.” This matrix is a basic
building block in spectrum sensing. We must understand it thoroughly. In practice, we
deal with data with high dimensionality. We use this notion as our basic information
elements in data processing.

Consider linear functions
Y = AXB,

where A(m × n) and B(p × q) are fixed matrices of real numbers. The most important
linear function is the sample mean

x̄ = 1

n

n∑
i=1

xi = n−11T X,

where A = n−11T and B = Ip.
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72 Cognitive Radio Communications and Networking

Theorem 3.1 (Sample mean is normal) If X(n × p) is a data matrix from Np(µ, �),
and if nx̄ = XT 1, then x̄ is Np(µ, n−1�) distribution.

Theorem 3.2 (Y = AXB is a normal data matrix) If X(n × p) is a normal data matrix
from Np(µ,�), and if Y = AXB, then Y is a normal data matrix if and only if

1. A1 = α1 for some scalar α, or BT µ = 0, and
2. AAT = β1 for some scalar β or BT �B = 0.

When both conditions are satisfied, then Y is a normal data matrix from
Nq(αBT µ, βBT �B).

Theorem 3.3 The elements of Y = AXB are independent of those of Z = CXD.
If X(n × p) is a normal data matrix from N(µ,�), and if Y = AXB and Z = CXD,

then the elements of Y are independent of Z if and only if

1. BT �D or
2. ACT = 0.

Under the conditions of Theorem 3.3, x̄ = n−1XT 1 is independent of HX, and thus is
independent of S = n−1XT HX.

The Wishart Distribution

We often encounter the form XT CX where C is a symmetric matrix. This is a matrix-
valued quadratic function. The most important special case is the sample covariance matrix
obtained by putting C = n−1H, where H is the centering matrix. These quadratic forms
often lead to the Wishart distribution, which is a matrix generalization of the univariate
chi-squared distribution, and has many similar properties.

If M(p × p) is

M = XT X,

where X(m × p) is a data matrix from N(0, �), then M is said to have a Wishart distri-
bution with scale matrix � and degrees of freedom parameter m. We write

M ∼ Wp(�, m).

When � = Ip, the distribution is said to be in standard form.
When p = 1, the W1(σ

2,m) distribution is given by xT x, where the elements of x(m ×
1) are i.i.d. N(0, σ 2) variables; that is the W1(σ

2, m) distribution is the same as the σ 2χ2
m

distribution.
The scale matrix � plays the same role in the Wishart distribution as σ 2 does in the

σ 2χ2
m distribution. We shall usually assume

� > 0.
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Classical Detection 73

Theorem 3.4 (The class of Wishart matrix is closed under linear transformation) If
M ∼ Wp(�, m) and B is a (p × q) matrix, then

BT MB ∼ Wp(BT �B,m).

The diagonal submatrices of M themselves have a Wishart distribution. Also,

�−1/2M�−1/2 ∼ Wp(I, m).

If M ∼ Wp(I, m) and B(p × q) satisfies BT B = Iq, then

BT MB ∼ Wq(I, m).

Theorem 3.5 (Ratio transform) If M ∼ Wp(�, m), and a is any fixed p-vector such that
aT �a �= 0, then

aT Ma
aT �a

∼ χ2
m.

Also, we have mii ∼ σ 2
i χ2

m.

Theorem 3.6 (The class of Wishart matrix is closed under addition) If M1 ∼
Wp(�, m1) and M2 ∼ Wq(�, m2), then

M1 + M2 ∼ Wp(�,m1 + m2).

Theorem 3.7 (Cochran, 1934) If X(n × p) is a data matrix from Np(0, �), and if C(n ×
n) is a symmetric matrix, then

1. XT CX has the same distribution as a weighted sum of independent Wp(�, 1) matrices,
where the weights are eigenvalues of C.

2. XT CX has a Wishart distribution if and only if C is idempotent, in which case

XT CX ∼ Wp(�, r),

where r is the rank r = TrC = rankC;
3. S = n−1XT HX is the sample covariance matrix, then

nS ∼ Wp(�, n − 1).

Theorem 3.8 (Craig, 1943; Lancaster, 1969, p. 23) If the rows of X(n × p) are i.i.d.
Np(µ, �), and if C1, . . . , Ck are symmetric matrices, then

XT C1X, . . . , XT CkX

are jointly independent if CrCs = 0 for all r �= s.
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74 Cognitive Radio Communications and Networking

The Hotelling T 2 Distribution

[110, p. 73] Let us study the functions such as dT M−1d, where d is normal, M is Wishart,
and d and M are independent. For example, d may be the sample mean, and d proportional
to the sample covariance matrix. Hotelling (1931) initiated the work to derive the general
distribution of quadratic forms.

If α is used to represent mdT M−1d where d and M are independently distributed as
Np(0, I) and Wp(I, m), respectively, then we say that α has the Hotelling T 2 distribution
with parameters p and m. We write α ∼ T 2(p, m).

Theorem 3.9 (T 2 distribution) If x and M are independently distributed as Np(µ, �)

and W(�,m), respectively, then

m(x − µ)T M−1 (x − µ) ∼ T 2(p, m).

If x̄ and S are the mean vector and covariance matrix of a sample of size n from
Np(µ, �) and Su = (n/(n − 1))S, then

(n − 1)(x̄ − µ)T S−1(x̄ − µ) = n(x̄ − µ)T S−1
u (x̄ − µ) ∼ T 2(p, n − 1).

The T 2 statistic is invariant under any nonsingular linear transformation x → Ax + b.
det M

det (M+ddT )
∼ B( 1

2 (m − p + 1), 1
2p) where B(·, ·) is a beta variable.

Theorem 3.10 (dT Md is independent of M + dT d) If d and M are independently
distributed as Np(0, I) and W(I, m), respectively. Then, dT Md is independent of
M + dT d.

Wilks’ Lambda Distribution

Theorem 3.11 (Wilks’ lambda distribution) If A ∼ W(�, m) and B ∼ W(�, n) are
independent and if m ≥ p and n ≥ p. Then,

φ = det
(
A−1B

) = det B
det A

,

is proporational to the product of p independent F variables, of which the i-th has degrees
of freedom n − i + 1 and m − i + 1.

If A ∼ W(�, m) and B ∼ W(�, n) are independent and if m ≥ p, we say that

� = det A
det (A + B)

= 1

det (I + A−1B)
∼ �(p, m, n),

has a Wilks’ lambda distribution with parameters p, m, n.

The � family of distributions occurs frequently in the context of likelihood ratio test.
The parameter p is dimension. The parameter m represents the “error” degrees of freedom
and n the “hypothesis” degrees of freedom. Thus m + n represents the “total” degrees of
freedom. Like the T 2 statistic, Wilks’ lambda distribution is invariant under changes of
the scale parameters of A and B.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Classical Detection 75

Theorem 3.12 (Independent variables Wilks’ lambda distribution)

�(p, m, n) ∼
n∏

i=1

ui,

where ui, . . . , un are independent variables and

ui ∼ B

(
1

2
(m + i − p),

1

2
p

)
, i = 1, . . . , n.

Theorem 3.13 (Total degrees of freedom) The �(p, m, n) and �(n, m + n − p, p)

distributions are the same.

If A ∼ W(�,m) is independent of B ∼ W(�, n) where m ≥ p. Then, the largest eigen-
value θ of (A + B)−1B is called the greatest root statistic and its distribution is denoted
θ(p, m, n).

If λ is an eigenvalue of A−1B, then λ
(1+λ)

is an eigenvalue of (A + B)−1B. Since this
is a monotone function of λ, θ is given by

θ = λ1

1 + λ1
,

where λ1 is the largest eigenvalue of A−1B. Since λ1 > 0, we see that 0 ≤ θ ≤ 1.
For multisample hypotheses, we see [110, p. 138].

Geometric Ideas

The multivariate normal distribution in N dimensions has constant density on ellipses or
ellipsoids of the form

(x − µ)T �−1(x − µ) = c2, (3.26)

where c is a constant. These ellipsoids are called the contour of the distribution or the
ellipsoids of equal concentration. For µ = 0, these contours are centered at x = 0, and
when � = I the contours are circles or in higher dimensions spheres or hyperspheres.

The principal component transformation facilitates interpretation of the ellipsoids of
equal concentration. Using the spectral decomposition

� = ���T ,

where � = diag(λ1, λ2, · · · , λN) is the matrix of eigenvalues of �, and � is an orthogonal
matrix whose columns are the corresponding eigenvectors. As in Section 3.3.1, define the
principal component transform by

y = �T (x − µ).

In terms of y, (3.26) becomes

N∑
i=1

y2
i

λi

= c2,

so that the components of y represents axes of the ellipsoid.
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76 Cognitive Radio Communications and Networking

In the GLRT, the following difference between two ellipsoids is encountered

(x − µ)T �−1
1 (x − µ) − (x − µ)T �−1

0 (x − µ) = (x − µ)T (�−1
1 − �−1

0 )(x − µ) = d2,

(3.27)

where d is a constant. When the actual covariance matrices �1 and �0 are perfectly
known, the problem is fine. Technical difficulty arises from the fact that sample covariance
matrices �̂0 and �̂1 are used in replacement of �0 and �1. The fundamental problem is
to guarantee that (3.27) has a geometric meaning; in other words, this implies

(x − µ)T (�−1
1 − �−1

0 )(x − µ) ≥ 0. (3.28)

As in Section A.3, the trace function, TrA = ∑
i aii , satisfies the following properties

[110] for matrices A, B, C, D, X and scalar α:

Trα = α, Tr(A ± B) = TrA ± TrB, TrαA = αTrA

TrCD = TrDC =
∑
i,j

cij dji .

Tr[(x − µ)T(�−1
1 − �−1

0 )(x − µ)] = Tr[(�−1
1 − �−1

0 )(x − µ)(x − µ)T] ≥ 0. (3.29)

Using the fact that for A, B ≥ 0, we have

(TrA)(TrB) ≥ Tr(AB) ≥ 0,

we have the necessary condition (for (3.28) to be valid)

Tr[(�−1
1 − �−1

0 )] ≥ 0, (3.30)

since

Tr[(x − µ)T(x − µ)] ≥ 0. (3.31)

The necessary condition (3.30) is easily satisfied when the actual covariance matrices
�1 and �0 are known. When, in practice, the sample covariance matrices �̂0 and �̂1 are
known, instead, the problem arises

Tr[(�̂
−1

1 − �̂
−1

0 )] ≥ 0. (3.32)

This leads to a natural problem of sample covariance matrix estimation and the related
GLRT. The fundamental problem is that the GLRT requires the exact probability distri-
bution functions for two alternative hypotheses. This condition is rarely met in practice.
Another problem is intuition that the random vectors fit the exact probability distribution
function. In fact, the empirical probability distribution function does not satisfy this con-
dition. This problem is more obvious when we deal with high data dimensionality such
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Classical Detection 77

as N = 105, 106 which are commonly feasible in real-world spectrum sensing problems.
For example, N = 100,000 corresponding to 4.65 milliseconds sampling time.

3.6 Sample Covariance Matrix Estimation and Matrix
Compressed Sensing

Fundamental Fact: The noise lies in a high-dimensional space; the signal, on the contrast,
lies in a much lower-dimensional space.

If a random matrix A has i.i.d column Ai , then

A∗A =
∑

i

AiAi
T ,

where A∗ is the adjoint matrix of A. We often study A through the n × n symmetric,
positive semidefinite matrix, the matrix A∗A; in other words

A∗A ≥ 0.

The absolute matrix is defined as

|A| =
√

A∗A.

A matrix C is positive semidefinite,

C ≥ 0,

if and only all its eigenvalues λi are nonnegative

λi ≥ 0.

The eigenvalues of |A| are therefore nonnegative real numbers or

D = |A| ≥ 0.

An immediate application of random matrices is the fundamental problem of estimating
covariance matrices of high-dimensional distributions [107]. The analysis of the row-
independent models can be interpreted as a study of sample covariance matrices.

There are deep results in random matrix theory. The main motivation of this subsection
is to exploit the existing results in this field to better guide the estimate of covariance
matrices, using nonasymptotic results [107].

We focus on a general model of random matrices, where we only assume indepen-
dence of the rows rather than all entries. Such matrices are naturally generated by
high-dimensional distributions. Indeed, given an arbitrary probability distribution in R

n,
one takes a sample of N independent points and arranges them as the rows of an N × n

matrix A. Recall that n is the dimension of the probability space.
Let X be a random vector in R

n. For simplicity we assume that X is centered, or
EX = 0. Here EX denotes the expectation of X. The covariance matrix of X is the n × n

matrix

� = EXXT .
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78 Cognitive Radio Communications and Networking

The simplest way to estimate � is to take some N independent samples Xi from the
distribution and form the sample covariance matrix

�N = 1

N

N∑
i=1

XiXi
T .

By the law of large numbers,

�N → �,

almost surely as N → ∞. So, taking sufficiently many samples we are guaranteed to
estimate the covariance matrix as well as we want. This, however, does not address the
quantitative aspect: what is the minimal sample size N that guarantees approximation
with a given accuracy?

The relation of this question to random matrix theory becomes clear when we arrange
the samples

Xi =: Ai , i = 1, 2, . . . , N,

as rows of the N × n random matrix A. Then, the sample covariance matrix is expressed
as

�N = 1

N
A∗A.

Note that A is a matrix with independent rows but usually not independent entries.
The reference of [107] has worked out the analysis of such matrices, separately for
sub-Gaussian and general distributions.

We often encounter covariance matrix estimation for sub-Gaussian distribution due to
the presence of Gaussian noise. Consider a sub-Gaussian distribution in R

n with covari-
ance matrix �, and let ε ∈ (0, 1), t ≥ 1. Then with probability of at least

1 − 2 exp(−t2n),

one has

If N ≥ C(t/ε)2n, then ||�N − �|| ≤ ε. (3.33)

Here C depends only on the sub-Gaussian norm of a random vector taken from this
distribution; the spectral norm of A is denoted as ||A||, which is equal to the maximum
singular value of A, that is,

smax = ||A||.
Covariance matrix estimation for arbitrary distribution is also encountered when a

general noise interference model is used. Consider a sub-Gaussian distribution in R
n with

covariance matrix � and supported in some centered Euclidean ball whose radius we
denote

√
m. Let ε ∈ (0, 1) and t ≥ 1. Then, with probability at least 1 − n−t2

, one has

If N ≥ C(t/ε)2||�||−1m log n, then ||�N − �|| ≤ ε||�||. (3.34)
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Classical Detection 79

Here C is an absolute constant and log denotes the natural logarithm. In (3.34), typically

m = O(||�||n).

Thus the required sample size is

N ≥ C(t/ε)2n log n.

Low rank estimation is often used, since the distribution of a signal in R
n lies close

to a low-dimensional subspace. In this case, a much smaller sample size suffices for
covariance estimation. The intrinsic dimension of the distribution can be measured with
the effective rank of the matrix �, defined as

r(�) = Tr(�)

||�|| , (3.35)

where Tr(�) denotes the trace of �. One always has

r(�) ≤ rank(�) ≤ n,

and this bound is sharp. The effective rank

r = r(�),

always controls the typical norm of X, as

E||X||22 = Tr(�) = r�.

Most of the distribution is supported in a ball of radius
√

m, where

m = O(r||�||).
The conclusion of (3.34) holds with sample size

N ≥ C(t/ε)2r log n.

Summarizing the above discussion, (3.34) shows that the sample size

N = O(n)

suffices to approximate the covariance matrix of a sub-Gaussian distribution in R
n by the

sample covariance matrix. While for arbitrary distribution,

N = O(n log n)

is sufficient. For distributions that are approximately low-dimensional, such as that of a
signal, a much smaller sample size is sufficient. Namely, if the effective rank of � equals
r , then a sufficient size is

N = O(r log n).
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80 Cognitive Radio Communications and Networking

As in Section 3.3.1, our standard problem (3.15) is

H0 : Rx = Rw,

H1 : Rx = Rs + Rw,

where Rs and Rw are, respectively, covariance matrices of signal and noise. When the
sample covariance matrices are used in replacement of actual covariance matrices, it
follows that

H0 : R̂x = R̂w,

H1 : R̂x = R̂s + R̂w.
(3.36)

We must exploit the fundamental fact that R̂s requires only O(r log n) samples, while
R̂w requires O(n). Here the effective rank r of Rs is small. For one real sinusoid signal,
the rank is only two, that is, r = 2. We can sum up the K sample covariance matrices
R̄x = ∑K

k=1 R̂x,k , for example, K = 200. Let us consider the three-step algorithm:

1. break the long record of data into a total of K segments. Each segment has a length
of p. In other words, a total of pK is available for signal processing.

H0 : R̂x,k = R̂w,k,

H1 : R̂x,k = R̂s,k + R̂w,k, k = 1, 2, . . . , K.
(3.37)

2. Choose the p such that p > O(r log n); so the sample covariance matrix R̂s,k accurately
approximates the actual covariance matrix:

H0 : R̂x,k = R̂w,k,

H1 : R̂x,k ≈ Rs,k + R̂w,k, k = 1, 2, . . . K.
(3.38)

3. We can sum up the K estimated sample covariance matrices R̂x,k:

H0 : R̄x = ∑K

k=1 R̂x,k = ∑K

k=1 R̂w,k,

H1 : R̄x = ∑K

k=1 R̂x,k ≈ KRs,1 +∑K

k=1 R̂w,k,
(3.39)

where, without loss of generality, we have assumed Rs,k = Rs,1.

In Step 3, the signal part coherently adds up and the noise part randomly adds up. This
step enhances SNR, which is especially relevant at low SNR signal detection. This basic
idea will be behind the chapter on quantum detection.

Another underlying idea is to develop a nonasymptotic theory for signal detection.
Given a finite number of (complex) data samples collected into a random vector x ∈ C

n,
the vector length n is very large, but not infinity, in other words, n < ∞. We cannot simply
resort to the central limit theorem to argue that the probability distribution function of
this vector x is Gaussian since this theorem requires n → ∞.

The recent work on compressed sensing is highly relevant to this problem. Given n,
we can develop a theory that is valid with an overwhelming probability. As a result, one
cornerstone of our development here is compressed sensing to recover the “information”
from n data points x. Another cornerstone is the concentration of measure to study sums
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Classical Detection 81

of random matrices. For example what are the statistics of the resultant random matrix
R̄x = ∑K

k=1 R̂x,k ?
This problem is closely related to classical multivariate analysis [110, p. 108]. Section

3.6.1 will show that the sum of the random matrices is the ML estimation of the actual
covariance matrix.

3.6.1 The Maximum Likelihood Estimation

The problem of Section 3.6.1 is closely related to classical multivariate analysis [110, p.
108]. Given k independent data matrices

X1, X2, · · · , Xk,

where the rows of Xi (n × p) are i.i.d.

Np(µi , �i ), i = 1, 2, . . . , k,

what is the ML estimation of the sample covariance matrix?
In practice, the most common constraints are

(a) :�1 = . . . = �k

or
(b) :�1 = . . . = �k and µ1 = . . . = µk.

If (b) holds, we can treat all the data matrices as constituting one matrix sample from a
single population (distribution).

Suppose that x1, . . . , xn is a random vector sample from a population (distribution)
with the pdf f (x, θ), where θ is a parameter vector. The likelihood function of the whole
sample is

L(X; θ) =
n∏

i=1

f (xi; θ).

l(X; θ)) = log L(X; θ)) =
n∑

i=1

logf (xi; θ)).

Given a matrix sample X, both l(X; θ)) and L(X; θ)) are considered as functions of the
vector parameter θ .

Suppose x1, . . . , xn is a random sample from Np(µ,�). We have

L(X;µ;�) = [det (2π�)]−n/2 exp

[
−1

2

n∑
i=1

(xi − µ)T �−1(xi − µ)

]
,

and

l(X; µ;�) = log L(X; µ;�) = −n

2
log det (2π�) − 1

2

n∑
i=1

(xi − µ)T �−1(xi − µ).

(3.40)
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82 Cognitive Radio Communications and Networking

Let us simplify these equations. When the identity

(xi − µ)T �−1(xi − µ) = (xi − x̄)T �−1(xi − x̄) + (x̄ − µ)T �−1(x̄ − µ)

+ 2(x̄ − µ)T �−1(xi − x̄),

is summed over the index i = 1, . . . , n, the final term on the right-hand side vanishes,
giving

n∑
i=1

(xi − µ)T �−1(xi − µ) =
n∑

i=1

(xi − x̄)T �−1(xi − x̄) + n(x̄ − µ)T �−1(x̄ − µ).

(3.41)

Since each term (xi − x̄)T �−1(xi − x̄) is a scalar, it equals the trace of itself. Thus
using

TrAB = TrBA,

we have

(xi − x̄)T �−1(xi − x̄) = Tr�−1(xi − x̄)(xi − x̄)T . (3.42)

Summing (3.42) over index i and substituting in (3.41) gives

n∑
i=1

(xi − µ)T �−1(xi − µ) = Tr�−1
n∑

i=1

(xi − x̄)(xi − x̄)T + n(x̄ − µ)T �−1(x̄ − µ)T .

(3.43)

Writing
n∑

i=1

(xi − x̄)(xi − x̄)T = nS

and using (3.40) in (3.43), we have

l(X; µ;�) = −n

2
log det (2π�) − n

2
Tr�−1S − n

2
(x̄ − µ)T �−1(x̄ − µ)T . (3.44)

For the special case � = I and µ = θ then (3.44) becomes

l(X; θ) = −np

2
log(2π) − n

2
TrS − n

2
(x̄ − θ)T �−1(x̄ − θ)T . (3.45)

To calculate the ML estimation if (a) holds, from (3.44), we have

l =
k∑

l=1

[ni log det (2π�) + niTr�−1(Si + did
T
i )], (3.46)

where Si is the covariance matrix of the i-th matrix sample, i = 1, .., k, and di = x̄i − µi .

Since there is no restriction on the population means, the ML estimation of µi is x̄i .
Setting

n =
k∑

i=1

nk,
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Classical Detection 83

(3.46) becomes

l = −1

2
n log det (2π�) − 1

2
Tr�−1W,

W =
k∑

i=1
niSi .

(3.47)

Differentiating (3.47) with respect to � and equating to zero yields

� = n−1W = n−1
k∑

i=1

niSi , (3.48)

which is the ML estimation of � under the conditions stated.

3.6.2 Likelihood Ratio Test (Wilks’ � Test) for Multisample
Hypotheses

Consider k independent normal matrix samples X1, . . . , Xk , whose likelihood is consid-
ered in Section 3.6.1.

H0 : X : Np(µ, �), µ1 = · · · = µk, given �1 = · · · = �k,

H1 : µ1 �= · · · �= µk, given �1 = · · · = �k,

In Section 3.6.1, the ML estimation under H1 is x̄ and S, since the observation can be
viewed under H1 as constituting a single random matrix sample. The ML estimation of
µi under the alternative hypothesis H0 is x̄i , the i-th sample mean, and the ML estimation
of the common sample covariance matrix is n−1W, where, following (3.47), we have

W =
k∑

i=1

niSi ,

is the “within-groups” sum of squares and products (SSP) matrix and n = ∑k

i=1 ni. Using
(3.46), the LRT is given by

λ =
{

det W
det (nS)

}n/2

= [det (T−1W)]n/2. (3.49)

Here
T = nS

is the “total” SSP matrix, derived by regarding all the data matrices as if they constituted
a single matrix sample. In contrast, the matrix W is the “within-group” SSP and

B = T − W =
k∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T

may be regarded as the “between-groups” SSP matrix. Thus, from (3.49), we have

λ2/n = det W
det (B + W)

= 1

det (I + W−1B)
.
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84 Cognitive Radio Communications and Networking

The matrix W−1B is an obvious generalization of the univariate variance ratio. It will
tend to zero if H0 is true.

If n ≥ p + k, under H0,

[det (I + W−1B)]−1 ∼ �(p, n − k, k − 1) (3.50)

where Wilks’ � statistics is described in Section 3.5.
Let us derive the statistics of (3.50). Write the k matrix samples as a single data matrix

X =




X1
...

Xk


 ,

where Xi (ni × p) is the i-th matrix sample, i = 1, . . . , k. Let 1i be the n-vector with 1 in
the places corresponding to the i-th sample and 0 elsewhere, and set Ii = diag(1i ). Then
I = ∑

Ii , and 1 = ∑
1i . Let

Hi = Ii − ni
−11i1i

T

be the centering matrix for the i-th matrix sample. The sample covariance matrix can be
expressed as

niSi = Xi
T HiX.

Set
C1 =

∑
Hi , C2 =

∑
ni

−11i1i
T − n−111T .

We can easily verify that

W = XT C1X, B = XT C2X.

Further, C1 and C2 are idempotent matrices of rank n − k and k − 1, respectively, and
C1C2 = 0.

Under H0, H is data matrix from N(µ, �). Thus by Theorem 3.7 and Theorem 3.8,
we have

W = XT C1X ∼ Wp(µ, n − k),

B = XT C2X ∼ Wp(µ, k − 1),

and, furthermore, W and B are independent. Therefore, (3.50) is derived.

3.7 Likelihood Ratio Test

3.7.1 General Gaussian Detection and Estimator-Correlator Structure

The most general signal assumption is to allow the signal to be composed of a determin-
istic component and a random component. The signal then can be modeled as a random
process with the deterministic part corresponding to a nonzero mean and the random part
corresponding to a zero mean random processes with a given signal covarance matrix. For
generality the noise covariance matrix can be assumed to be arbitrary. These assumptions
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Classical Detection 85

lead to the general Gaussian detection problem [118, 167], which mathematically is writ-
ten as

H0 : y[n] = w[n], n = 0, 1, . . . , N − 1
H1 : y[n] = x[n] + w[n], n = 0, 1, . . . , N − 1.

Define the column vector

y = [y[0]y[1] · · · y[N]]T , (3.51)

and similarly for x and w. In vector and matrix form

H0 : y = w; Cy = Cw = A
H1 : y = x + w; Cy = Cx + Cw = B,

where w ∼ N(0, Cw), and x ∼ N(µx, Cx), and x and w are independent. The LRT decides
H1 if

�(y) = p(y;H1)

p(y;H0)
> γ,

where

p(y;H1) = 1
(2π)N/2det1/2 (Cx+Cw)

exp
[− 1

2 (y − µx)
∗(Cx + Cw)−1(y − µx)

]
p(y;H0) = 1

(2π)N/2det1/2 (Cw)
exp

[− 1
2 y∗C−1

w y
] .

Taking the logarithm, retaining only the data-dependent terms, and scaling produces the
test statistic

T (y) = y∗C−1
w y − (y − µx)

∗(Cx + Cw)−1(y − µx)

= y∗C−1
w y − y∗(Cx + Cw)−1y + 2y∗(Cx + Cw)−1µx − µ∗

x(Cx + Cw)−1µx.

(3.52)

From the matrix inverse lemma [114, p. 43] [118, 167]

C−1
w − (Cx + Cw)−1 = C−1

w Cx(Cx + Cw)−1, (3.53)

for µx = 0, (3.52) is rewritten as

T (y) = 1

2
y∗[C−1

w − (Cx + Cw)−1]y = 1

2
y∗C−1

w Cx(Cx + Cw)−1y = 1

2
y∗C−1

w x̂,

where x̂ = Cx(Cx + Cw)−1y is the MMSE estimator of x. This is a prewhitener followed
by an estimator-correlator.

Using the properties of the trace operation (see Section A.3)

Trα = α, Tr(A ± B) = TrA ± TrB, TrαA = αTrA, TrAB = TrBA, (3.54)

where α is a constant, we have

T (y) = Tr[T (y)] = 1

2
Tr{y∗[C−1

w − (Cx + Cw)−1]y}

= 1

2
Tr{[C−1

w − (Cx + Cw)−1]yy∗}H1
> T0, (3.55)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



86 Cognitive Radio Communications and Networking

where the matrix yy∗ is of size N × N and of rank one. We can easily choose T0 > 0,
since T (y) > 0 that will be obvious later. Therefore, (3.55) can be rewritten as

2
√

Tr{[C−1
w − (Cx + Cw)−1]yy∗}> T1. (3.56)

Let A ≥ 0 and B ≥ 0 be of the same size. Then [112, 329] (see Section A.6.2)

0 ≤ TrAB ≤ (TrA)(TrB),

0 ≤ 2
√

TrAB ≤ TrA + TrB.
(3.57)

With the help of (3.57), on one hand, (3.56) becomes

Tr[C−1
w − (Cx + Cw)−1] + Tr(yy∗) ≥ 2

√
Tr{[C−1

w − (Cx + Cw)−1]yy∗} > T1.

Or,
Tr(yy∗) ≥ T1 − Tr[C−1

w − (Cx + Cw)−1], (3.58)

if

Tr[C−1
w − (Cx + Cw)−1] > 0. (3.59)

Using (3.57), on the other hand, (3.55) becomes

Tr[C−1
w − (Cx + Cw)−1]Tr(yy∗) ≥ Tr{[C−1

w − (Cx + Cw)−1]yy∗}
H1
>

<
H0

T1, (3.60)

Tr(yy∗)
H1
>

<
H0

T1

Tr[C−1
w − (Cx + Cw)−1]

= T1

Tr(A−1 − B−1)
, (3.61)

if

Tr[C−1
w − (Cx + Cw)−1] = Tr(A−1 − B−1)> 0, (3.62)

(which is identical to (3.59)) whose necessary condition to be valid is:

A ≤ B or Cw < Cx + Cw, (3.63)

due to the following fact: If A ≤ B for A ≥ 0 and B ≥ 0, then (see Section A.6.2)

A−1 ≥ B−1. (3.64)

Note that A−1 + B−1 �= (B + A)−1.

Starting from (3.53), we have

Tr[C−1
w − (Cx + Cw)−1] = Tr[C−1

w Cx(Cx + Cw)−1] = Tr[Cx(Cx + Cw)−1C−1
w ]

= Tr{[Cw(Cx + Cw)]−1Cx} = Tr(A−1B), (3.65)

with

A = Cw(Cx + Cw), B = Cx, A > 0, B > 0, (3.66)
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Classical Detection 87

where (3.54) is used in the second step and, in the third step, we use the following [114,
p. 43]

(AB)−1 = B−1A−1.

Let A > 0 and B > 0 be of the same size. Then [114, p. 181]

TrA−1B ≥ TrA
λmax(A)

≥ TrB
TrA

, TrA > 0, TrB > 0, (3.67)

where λmax(A) is the largest eigenvalue of A. Due to the facts A > 0 and B > 0 given in
(3.66), with the help of (3.65) and (3.67), (3.61) becomes

Tr(yy∗)
H1
>

<
H0

T1

Tr(A−1B)
≥ T1

TrA
TrB

= T1
Tr[Cw(Cx + Cw)]

TrCx

. (3.68)

Combining (3.65) and (3.67) yields

Tr[C−1
w − (Cx + Cw)−1] ≥ TrCx

Tr[Cw(Cx + Cw)]
> 0. (3.69)

Using (3.69), (3.58) turns out to be

|Tr(yy∗) − T1| > Tr[C−1
w − (Cx + Cw)−1] ≥ TrCx

Tr[Cw(Cx + Cw)]
,

since
Tr[C−1

w − (Cx + Cw)−1] > 0.

Here |a| is the absolutue value of a. The necessary condition of (3.63) is satisfied even if
the covariance matrix of the signal Cx is extremely small, compared with that of the noise
Cw. This is critical to the practical problem at hand: sensing of an extremely weak signal
in the spectrum of interest. At first sight, the necessary condition of (3.63) seems be trivial
to achieve; this intuition, however, is false. At extremely low SNR, this condition is too
strong to be satisfied. The lack of sufficient samples to estimate the covariance matrices
Cw and Cx is the root of the technical difficulty. Fortunately, the signal covariance matrix
Cx lies in the space of lower rank than that of the noise covariance matrix Cw. This
fundamental difference in their ranks is the departure point for most of developments in
Chapter 4.

(3.68) is expressed in a form that is convenient in practice. Only the traces of these
covariance matrices are needed! The traces are, of course, positive scalar real values,
which, in general, are random variables. The necessary condition for (3.68) to be valid is
(3.63) Cw < Cx + Cw.
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88 Cognitive Radio Communications and Networking

3.7.1.1 Divergence

Let y : N[0, Cy] denote an N × 1 normal random vector with mean zero and covariance
matric Cy . The problem considered here is the test:

H0 : Cy = C0

H1 : Cy = C1
.

In particular, we have C0 = Cw and C1 = Cw + Cx . Divergence [123] is a coarse measure
of how the log likelihood distinguishes between H0 and H1:

J = EH1
L(y) − EH0

L(y),

where
L(y) = y∗Qy, Q = C−1

0 − C−1
1 .

The matrix Q can be rewritten as

Q = C−T/2
0 (I − S)C−1/2

0

C0 = C1/2
0 CT/2

0 ; CT/2
0 = (C1/2

0 )T

S = C−1/2
0 C1C−T/2

0 ; C−T/2
0 = (C−1/2

0 )T

.

The log likelihood ratio can be rewritten as

L(y) = z∗(I − S−1)z
z = C−1/2

0 y.

The transformed vector z is distributed as N[0, Cz], with Cz = I for H0 and Cz = S
for H1. S is called the signal-to-noise-ratio matrix.

3.7.1.2 Orthogonal Decomposition

The matrix S has an orthogonal decomposition

S = C−1/2
0 C1C−T/2

0 = U�UT

SU = U�
,

where � is a diagonal matrix with diagonal elements λi and U satisfies UT U = I. This
implies that (C−T/2

0 U, �) solves the generalized eigenvalue problem

C1(C
−T/2
0 U) − C0(C

−T/2
0 U)� = 0.

With this representation for S, the log likelihood ratio may be expressed as

L(y) = z∗U(I − �−1)UT z,

where the random vector y has covariance matrix U�UT under H1 and I under H0:

EH1
zz∗ = S

EH0
zz∗ = I.
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Classical Detection 89

3.7.1.3 Rank Reduction

A reduced-rank version of the log likelihood ratio is

Lr(y) = z∗U(Ir − �−1
r )UT z,

where Ir and �−1
r are reduced-rank versions of I and �−1 that retain r nonzero terms and

N − r zero terms.
This rank reduction is fine, whenever the discarded eigenvalues λi are unity (noise

components). The problem is that nonunity eigenvalues are sometimes discarded with
much penalty. We introduce a new criterion, divergence, a coarse measure of how the log
likelihood distinguishes between H0 and H1

J = EH1
L(y) − EH0

L(y) = TrU(I − �−1)UT U�UT − TrU(I − �−1)UT UUT

= Tr(� + �−1 − 2I)

=
N∑

n=1
(�n + �−1

n − 2) = Tr(S + S−1 − 2I).

We emphasize that it is the sum of �n + �−1
n , not �n, that determines the contribution of

an eigenvalue. It will lead to penalty when we discard the small eigenvalues. At extremely
low SNR, the eigenvalues are almost uniformly distributed, it is difficult to do reduced-
rank processing. The trace sum of S and S−1 must be considered as a whole. Obviously,
we require that

1

2
(S + S−1) ≥ I,

since

A ≥ B ⇒ TrA ≥ TrB,

where A, B are Hermitian matrices. The matrix inequality condition 1
2 (S + S−1) ≥ I

implies

J = Tr(S + S−1 − 2I) ≥ 0,

or,

J = Tr[(C−1
0 − C−1

1 )C1] − Tr[(C−1
0 − C−1

1 )C0] = Tr[(C−1
0 − C−1

1 )(C0 − C1)] ≥ 0.

The rank r divergence is identical to the full-rank divergence when N − r of the
eigenvalues in the original diagonal matrix � are unity. To illustrate, consider the case

H0 : C0 = Q +
p∑

i=1
σ 2

i uiu
∗
i

H1 : C1 = Q +
p∑

i=1
σ 2

i viv
∗
i .

The difference between C1 and C0 is

C1 − C0 =
p∑

i=1
σ 2

i viv
∗
i −

p∑
i=1

σ 2
i uiu

∗
i = LDL∗

L = [vp+1, vp+2, · · · vp+q, u1, · · · , up]
D = diag[σ 2

p+1, σ
2
p+2, · · · , σ 2

p+q,−σ 2
1 ,−σ 2

2 · · · , σ 2
p].
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90 Cognitive Radio Communications and Networking

Assuming σ 2
i > 0, then rank(R1 − R0) = rank(L) and a rank(L) detector has the same

divergence as a full-rank detector.

Example 3.6 (An optimal rank-one detector)
Consider building a low-rank detector for H0 versus H1 when the observed data is dis-
tributed as N(0, R0) under H0 and N(0, R1) under H1:

H0 : C0 = σ 2I + β2ww∗

H1 : C1 = σ 2I + β2ww∗ + vv∗.

After some manipulation, we get the following signal-to-noise-ratio matrix:

S = I + U�v∗

� = diag
[
v∗C0v, 0, 0, · · · , 0

]
.

The eigenvalues of S are

λ1 = 1 + v∗C0v, λ2 = 1, λ3 = 1, · · · , λN = 1.

A rank-one detector is optimum for this problem. It is constructed using the eigenvector
corresponding to λ1. At extremely low SNR, the eigenvector is a more reliable feature
to detect than the eigenvalue. In N-dimension geometric terms, the eigenvector is the
direction of the data point, while the eigenvalue the length of this data point. �

Example 3.7 (Gaussian signal plus Gaussian noise)
We can extend the previous example to a general Gaussian signal problem

H0 : C0
H1 : C1 = C0 + CS,

yielding

S = I + C−1/2
0 CSC−T/2

0 .

Clearly, all eigenvalues are greater than one. This does not mean, however, that eigen-
values close to one cannot be discarded in order to approximate log likelihood with a
low-rank detector. At extremely low SNR, this approximation will most often not work
since maybe all eigenvalues are close to one. �

3.7.2 Tests with Repeated Observations

Consider a binary hypothesis problem [124] with a sequence of independent distributed
random vectors yk ∈ CN. If

�(y) = p(y;H1)

p(y;H0)

denotes the likelihood radio function of a single observation, an LRT for this problem
takes the form

K∏
k=1

�(yk)

H1
>

<
H0

τ(K), (3.70)
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Classical Detection 91

where τ(K) denotes a threshold that may depend on the number of observations, K .
Taking the logarithms on both sides of (3.70), and denoting Zk = ln(�(yk)), we find that

SK = 1

K

K−1∑
k=0

Zk

H1
>

<
H0

γ (K) = ln(τ (K))

K
.

When τ(K) tends to a constant as K → ∞, γ (K)
�= limK→∞γ (K) = 0.

Taking the logarithm, retaining only the data-dependent terms, and scaling produces
the test statistic (setting µx for brevity)

T (y) = 1

2

K−1∑
k=0

y∗
k[C−1

w − (Cx + Cw)−1]yk

H1
>

<
H0

T0. (3.71)

Using the following fact

Tr
K−1∑
k=0

x∗
kAxk = Tr(AX), whereX =

K−1∑
k=0

xkx∗
k, (3.72)

(3.71) becomes

Tr

{
[C−1

w − (Cx + Cw)−1]
1

K

K−1∑
k=0

y∗
kyk

} H1
>

<
H0

T1

K
. (3.73)

If the following sufficient condition for the LRT for repeated observations is satisfied

C−1
w − (Cx + Cw)−1 > 0, (3.74)

implying (see Section A.6.2)

Tr[C−1
w − (Cx + Cw)−1] > 0,

using (3.57), we have

Tr{[C−1
w − (Cx + Cw)−1]}Tr

(
1

K

K−1∑
k=0

y∗
kyk

)
H1
>

1

K
T0. (3.75)

Or,

Tr

(
1

K

K−1∑
k=0

y∗
kyk

)
H1
>

1

K

1

Tr[C−1
w − (Cx + Cw)−1]

T0. (3.76)

The covariance matrix of y is defined as

Cy = E(yy∗).

The asymptotic case of K → ∞ is

TrCy

H1
>

1

K

1

Tr[C−1
w − (Cx + Cw)−1]

T0 → 0, (3.77)
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92 Cognitive Radio Communications and Networking

since the sample covariance matrix converges to the true covariance matrix, that is

Cy = lim
K→∞

1

K

K−1∑
k=0

y∗
kyk.

To guarantee (3.74), the following stronger condition is enough

Cw ≤ Cx + Cw, (3.78)

due to (3.64).

3.7.2.1 Case 1. Diagonal Covariance Matrix on H0: Equal Variances

When x[n] is a complex Gaussian random process with zero mean and covariance matrix
Cx and w[n] is complex white Gaussian noise (CWGN) with variance matrix σ 2

n . The
probability distribution functions (PDFs) are given by

p(y;H1) = 1
πN det (Cx+σ2

n I)
exp[−y∗(Cx + σ 2

n I)−1y]

p(y;H0) = 1
πN σ2N

n
exp[− 1

σ2
n

y∗y]
,

where I is the identity matrix of N × N , and TrI = N .
The log-likelihood ratio is

ln L(y) = −y∗[(Cx + σ 2
n I)

−1 − 1

σ 2
n

I]y − ln det (Cx + σ 2
n I) + ln det σ 2N

n .

Consider the following special case:

C−1
w = 1

σ 2
n

I; Cx = σ 2
s I; (Cx + Cw)−1 = (σ 2

s I + σ 2
n I)−1 = 1

σ 2
s + σ 2

n

I,

and

TrC−1
w TrCxTr(Cx + Cw)−1 = Nσ 2

s

σ 2
n (σ 2

s + σ 2
n )

.

The LRT of (3.79) becomes

Tr

(
1

K

K−1∑
k=0

y∗
kyk

)
H1
>

1

K

1

Tr{[C−1
w − (Cx + Cw)−1]}T0. (3.79)

Using the matrix inverse lemma

C−1
w − (Cx + Cw)−1 = C−1

w Cx(Cx + Cw)−1,

we have

Tr

(
1

K

K−1∑
k=0

y∗
kyk

)
H1
>

1

K

T0

TrC−1
w TrCxTr(Cx + Cw)−1

= 1

K
T0

σ 2
n (σ 2

s + σ 2
n )

Nσ 2
s

≈ T0
σ 4

n

KNσ 2
s

,

(3.80)
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Classical Detection 93

when the signal is very weak, or σ 2
s 
 σ 2

n . TrCy is the total power (variation) of the
received signal plus noise. Note yk are vectors of length N .

Consider the single observation case, K = 1, we have

Tr(yy∗) =
N−1∑
i=0

|y[i]|2,

which is the energy detector. Intuitively, if the signal is present, the energy of the received

data increases. In fact, the equivalent test statistic T = 1
N

N−1∑
i=0

|y[i]|2 can be regarded as

an estimator of the variance. Comparing this to a threshold recognizes that the variance
under H0 is σ 2

n but under H1 is σ 2
s + σ 2

n .

3.7.2.2 Case 2. Correlated Signal

Now assume N = 2 and

Cx = σ 2
s

(
1 ρ

ρ 1

)
,

where ρ is the correlation coefficient between x[0] and x[1].

C−1
w = 1

σ 2
n

I; (Cx + Cw)−1 =
(

σ 2
s + σ 2

n ρσ 2
s

ρσ 2
s σ 2

s + σ 2
n

)−1

= [(σ 2
s + σ 2

n )I + ρσ 2
s Q]−1,

where

Q =
(

0 1
1 0

)
,

A =
(

a b

b a

)
, A−1 = 1

a2 − b2

(
a −b

−b a

)
, TrA−1 = Tr(Cx + Cw)−1 = 2a

a2 − b2
,

where

A = Cx + Cw, a = σ 2
s + σ 2

n , b = ρσ 2
s .

If A > 0, then

(
n∑

i=1

aii

)−1

≤ TrA−1.

Obviously, Cw + Cx > 0. From (3.77), we have

Tr

(
1

K

K−1∑
k=0

y∗
kyk

)
H1
>

1

K

1

Tr[C−1
w − (Cx + Cw)−1]

T0. (3.81)
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94 Cognitive Radio Communications and Networking

3.7.3 Detection Using Sample Covariance Matrices

If we know the covariance matrices perfectly, we have

H0 : Ry = A, A ≥ 0
H1 : Ry = A + B, B > 0

.

In practice, estimated covariance matrices such as sample covariance matrices must be
used:

H0 : Ry = A0, A0 ≥ 0
H1 : Ry = A1 + B, A1, B > 0,

where A0 and A1 are sample covariance matrices for the noise while B is the sample
covariance matrix for the signal. The eigenvalues λi of

(A + B)−1A,

where A is positive semidefinite and B positive definite, satisfy

0 ≤ λi ≤ 1.

Let A be positive definite and B symmetric such that det (A + B) �= 0, then

(A + B)−1B(A + B)−1 ≤ A−1 − (A + B)−1.

The inequality, known as Olkin’s inequality, is strict if and only if B is nonsingular.
Wilks’ lambda test [110, p. 335]

� = det A
det (A + B)

=
p∏

j=1

(1 + λj )
−1,

where λj are the eigenvalues of A−1B.
The equicorrelation matrix is [112, p. 241]

E =




1 ρ · · · ρ

ρ 1 · · · ρ
...

ρ

...

ρ · · ·
...

1


 ,

or,

E = (1 − ρ)I + ρJ,

where ρ is any real number and J is a unit matrix Jp = 11T , 1 = (1, . . . , 1)T . Then
eii = 1, eij = ρ, for i �= j . For statistical purposes this matrix is most useful for −(p −
1)−1 < ρ < 1. Direct verification shows that, if ρ �= 1, −(p − 1)−1, then E−1 exists and
is given by

E−1 = (1 − ρ)−1{I − ρ[1 + (p − 1)ρ]−1J}.
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Classical Detection 95

Its determinant is given by

det E = (1 − ρ)p−1[1 + (p − 1)ρ].

Since J has rank 1 with eigenvalues p and corresponding eigenvector 1, we see that the
equicorrelation matrix E = (1 − ρ)I + ρJ has eigenvalues:

λ1 = 1 + (p − 1)ρ, λ2 = · · · = λp = 1 + (p − 1)ρ,

and the same eigenvectors as J. log det A is bounded:

det A
det (A + B)

≤ exp(Tr(A−1B)),

where A and A + B are positive definite, with equality if and only if B = 0. If A ≥ 0 and
B ≥ 0, then [112, 329]

0 ≤ TrAB ≤ (TrA)(TrB)√
TrAB ≤ (TrA + TrB)/2.

3.7.4 GLRT for Multiple Random Vectors

The data is modeled as a complex Gaussian random vector x : � → C
N with probability

density function

p(x) = 1

πNdet Rxx

exp[−(x − µx)
H R−1

xx (x − µx)],

mean µx , and covariance matrix Rxx . Consider M independent, identically distributed
(i.i.d.) random vectors

x = [x1, x2, · · · , xM ],

drawn from this distribution. The joint probability density function of these vectors is
written as

p(x) = 1
πMN (det Rxx )M

exp

[
−

M∑
m=1

(xm − µx)
H R−1

xx (xm − µx)

]
= π−MN(det Rxx)

−M exp[−MTr(R−1
xx Sxx)],

where Sxx is the sample covariance matrix

Sxx = 1

M

M∑
m=1

(xm − µx)(xm − µx)
H = 1

M
xxH − mx,

and mx is the sample mean vector

mx = 1

M

M∑
m=1

xm.
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96 Cognitive Radio Communications and Networking

Our task is to test whether Rxx has structure 0 or the alternative structure 1:

H0 : Rxx ∈ R0,

H1 : Rxx ∈ R1.

The GLRT statistic is

L =
max

Rxx∈R0
p(x)

max
Rxx∈R1

p(x)
.

The actual covariance matrices are not known, they are replaced with their ML estimates
computed using the M random vectors. If we denote by R̂0 the ML estimate of Rxx under
H0 and by R̂1 the ML estimate of Rxx under H1, we have

L = detM (R̂
−1
0 R̂1) exp[−MTr(R̂

−1
0 Sxx − R̂

−1
1 Sxx)].

If we assume further that R1 is the set of positive definite matrices (no special restrictions
are imposed), then R̂1 = Sxx, and

L = detM (R̂
−1
0 Sxx) exp[MN − Tr(R̂

−1
0 Sxx)].

The generalized likelihood ratio for testing whether Rxx has structure R0 is

l = L1/(MN) = g exp(1 − a),

where a and g are the arithmetic and geometric means of the eigenvalues of R̂
−1
0 Sxx :

a = 1
N

Tr(R̂
−1
0 Sxx),

g = [det (R̂
−1
0 Sxx)]

1/N .

Based on the desirable probability of false alarm or probability of detection, we can
choose a threshold l0. So if l > l0, we accept hypothesis H0, and if l < l0, we reject it.
Consider a special case

R0 = {Rxx = σ 2
x I},

where σ 2
x is the variance of each component of x. The ML estimate of Rxx under H0 is

R̂0 = σ̂ 2
x I, where the variance is estimated as σ̂ 2

x = 1
N

TrSxx . Therefore, the GLRT is

l = (det Sxx)
1/N

1
N

TrSxx

.

This test is invariant under scale and unitary transformation.
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Classical Detection 97

3.7.5 Linear Discrimination Functions

Two random vectors can be stochastically ordered by using their likelihood ratio. Here, we
take our liberty in freely borrowing materials from [123]. Linear discrimination may be
used to approximate a quadratic likelihood ratio when testing y : N(0, Ci ) under hypothe-
sis Hi . The Neyman-Pearson test of H0 versus H1 will have us compare the log likelihood
ratio to a threshold:

L(y) = ln
fθ1

(y)

fθ0
(y)

H1≥
<
H0

η.

We hope, on the average, L(y) will be larger than η under H1 and smaller than η

under H0. An incomplete measure of how the test of H0 versus H1 will perform is the
difference in terms of L(y) under two hypotheses:

J = Eθ1
L(y) − Eθ0

L(y) = Eθ1
ln

fθ1
(y)

fθ0
(y)

− Eθ0
ln

fθ1
(y)

fθ0
(y)

.

This function is the J -divergence between H0 versus H1 introduced previously in Section
3.7.1. It is related to information that a random sample can bring about the hypothesis
Hi . The J -divergence for the multivariate normal problem Hi : y : N(0, Ci) is computed
by carrying out the expectations:

J = Tr[(C−1
0 − C−1

1 )C1] − Tr[(C−1
0 − C−1

1 )C0]
= Tr[(C−1

0 − C−1
1 )(C0 − C1)]

= Tr(C1C−1
0 + C0C−1

1 − 2I ) ≥ 0.

This expression does not completely characterize the performance of a likelihood ratio
statistic, but it does bring useful information about the “distance” between H0 and H1.

3.7.5.1 Linear Discrimination

Assume that the data y is used to form the linear discriminant function (or statistic)

z = w∗y.

This statistic is distributed as N[0, w∗Riw] under Hi . If a log likelihood ratio is formed
using the new variable z, then the divergence between H0 versus H1 is

J = 1

2

(
w∗R1w
w∗R0w

+ w∗R0w
w∗R1w

− 2

)
.

Let us define the following ratio of quadratic forms

λ[Q] = w∗Qw
w∗R0w

.

Then we may rewrite the divergence as

J = 1

2

[
λ[R1] + 1

λ[R1]
− 2

]
.
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98 Cognitive Radio Communications and Networking

It is remarkable to note that the choice of the discriminant w that maximizes divergence
is also the choice of w that maximizes a function of a quadratic form. The maximization
of quadratic forms is formulated as a generalized eigenvalue problem [123, p. 163]. Let
us rewrite divergence as

J = 1

2

[
λ[R1] + 1

λ[R1]
− 2

]
= 1

2

[
λ1/2[R1] − 1

λ1/2[R1]

]2

.

The function of J is convex in λ. It achieves its maximum either at λmax or at λmin, where
λmax and λmin, respectively, are maximum and minimum values of

C1C−1
0 .

The divergence is maximized as follows:

w =
{

wmax, if λmax > 1
λmin

wmin, if λmax < 1
λmin

.

The linear discriminant function is either the maximum eigenvector of C1C−1
0 or the

minimum eigenvector of C1C−1
0 , depending on the nature of the maximum and minimum

values. It is not always the maximum eigenvector. The choice of w = wmax or w = wmin
is also called a principal component analysis (PCA). Without loss of generality, w may
be normalized as w∗w = 1. Then, if R0 = I, the linear discriminant function is distributed
as follows

z = w∗y :

{ N[0, 1] under H0
N[0, λmax] or N[0, λmin] under H1.

3.7.6 Detection of Correlated Structure for Complex Random Vectors

For the assessment of multivariate association between two complex random vectors x
and y, our treatment here draws materials from [125, 126]. Consider two real zero-mean
vectors x ∈ R

m and y ∈ R
n with two correlation matrices

Rxx = ExxT , Ryy = EyyT .

We assume both correlation matrices are invertible. The cross-correlation properties
between x and y are described by the cross-correlation matrix

Rxy = ExyT ,

but this matrix is generally difficult to explain. In order to illuminate the underlying
structure, many correlation analysis techniques transform x and y into p-dimensional
internal representation

ξ = Ax, ω = BY,

with p = min{m, n}. The full rank matrices A, B are chosen such that all partial sums
over the absolute values of the correlations

ki = Eξiωi,

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Classical Detection 99

are maximized

max
A,B

r∑
i=1

|ki |, r = 1, . . . , p . (3.82)

The solution to the maximization problem (3.82) leads to a diagonal cross-correlation
matrix between ξ and ω

K = EξωT = diag(k1, k2, · · · , kp), (3.83)

with

k1 ≥ k2 ≥ · · ·> kp ≥ 0.

In order to summarize the correlation between x and y, an overall correlation coefficient
ρ is defined as a function of the diagonal correlations {ki}. This correlation coefficient
shares the invariance of the {ki}. Because of the maximization (3.82), the assessment of
correlation is allowed in a lower-dimensional subspace of rank

r ≤ p = min(m, n).

There is a variety of possible correlation coefficients that can be defined based on the
first r canonical correlations {kC,i

r

i=1} for a given rank r .

ρC1
= 1

p

r∑
i=1

k2
C,i,

ρC2
= 1 −

r∏
i=1

(1 − k2
C,i),

ρC3
=

r∑
i=1

k2
C,i

1−k2
C,i

r∑
i=1

1
1−k2

C,i

+(p−r)

.

For r = p, these coefficients can be expressed in terms of the original correlation matrices

ρC1
= 1

p
Tr(R−1

xx RxyR−1
yy RT

xy) = 1
p

Tr(CCT ),

ρC2
= 1 − det (I − R−1

xx RxyR−1
yy RT

xy) = 1 − det (I − CCT ),

ρC3
= Tr[RxyR−1

yy RT
xy (Rxx−RxyR−1

yy RT
xy )

−1
]

Tr[Rxx (Rxx−RxyR−1
yy RT

xy )
−1

]
= Tr

[
CCT (I−CCT )

−1
]

Tr(I−CCT )
−1

where

C = R−1/2
xx RxyR−T/2

yy .

These coefficients share the invariance of the canonical correlations, that is, they are
invariant under a nonsingular linear transformation of x and y. For jointly Gaussian x and
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100 Cognitive Radio Communications and Networking

y, ρC2
determines the mutual information between x and y

I (x; y) = −1

2

r∑
i=1

log(1 − k2
C,i) = −1

2
log(1 − ρC2

).

The complex version of correlation analysis is discussed in [125, 126].
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4
Hypothesis Detection
of Noncommutative
Random Matrices

4.1 Why Noncommutative Random Matrices?

The most basic building block for quantum information is the covariance matrix. We are
dealing with the matrix space whose elements are covariance matrices. The sufficient and
necessary conditions for a matrix to be a covariance matrix are semidefinite positive. As
a result, the basic elements for us to manipulate are the SDP matrices. Naturally, convex
optimization (SDP matrices are of course convex) is the new calculus under this context.

For any two elements (matrices) A and B, we need to define the basic metric to order
them. If they are random matrices, we call this order the stochastic order, for example,

B
st

� A,

if B is stochastically greater than A.

More generally, A and B are two matrix-valued random variables, in contrast with the
scalar random variables. Recall that every entry of A and B is a scalar random variable.
The focus of the current engineering curriculum is on the scalar random variable. When
we deal with “Big Data” [1] in a high-dimensional vector space, the most natural objects
of mathematical operations are such (SDP) matrix-valued random variables.

The matrix operation is fundamentally different from its scalar counterpart in that the
matrix multiplication is not communicative. The quantum mechanics is built upon this
mathematical fact.

When we process the data, we argue in this chapter that the so-called quantum infor-
mation [127] must be preserved and extracted. Data mining is about quantum information
processing [128, 129]. For more details, we refer to the standard text [128].

Now, random matrices are our new objects of interest. We will dedicate an entire
chapter to study this connection. The fundamental reason for us to study random matrices

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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102 Cognitive Radio Communications and Networking

is that a sample covariance matrix (in practice, we do not know the exact covariance
matrix) is a large-dimensional random matrix. Random matrices are a special case of
noncommunicative (matrix-valued1) random variables.

See Appendix A.5 for details on noncommunicative matrix-valued random variables:
random matrices are their special cases.

4.2 Partial Orders of Covariance Matrices: A < B
Example 4.1 (Positivity of covariance matrices)
Consider the 2 × 2 covariance matrix of form

Rs =
(

1 ξ

ξ 1

)
.

What is the condition that guarantees the positivity of Rs? A Hermitian matrix A is
positive if and only if all eigenvalues of A are positive. The eigenvalues of Rs are

λ1 = 1 + ξ

λ2 = 1 − ξ.

The condition |ξ | ≤ 1 is sufficient to make two eigenvalues nonnegative, thus Rs positive.
The covariance matrices illustrated in Example 3.1 are special cases of this example. �

For a general 2 × 2 matrix, it is easy to check the positivity:

Rs =
(

a b

b̄ c

)
≥ 0 if a ≥ 0 and bb̄ ≤ ac

since
λ1 = a/2 + c/2 + 1

2 (a2 − 2ac + c2 + 4bb̄)1/2

λ2 = a/2 + c/2 − 1
2 (a2 − 2ac + c2 + 4bb̄)1/2.

If the entries are n × n matrices, then the condition for positivity is similar but it is more
complicated. Matrices with matrix entries are called block-matrices.

Theorem 4.1 (Positivity of block matrices) The self-adjoint block-matrix(
A B
B∗ C

)
is positive if and only if A, C ≥ 0 and there exists an operator X such that ‖X‖ ≤ 1 and
B = C

1
2 X

1
2 . When A is invertible, then this condition is equivalent to

BA−1B∗ ≤ C.

Theorem 4.2 (Schur) Let A and B be positive n × n matrices. Then

Cij = Aij Bij (1 ≤ i, j ≤ n)

determines a positive matrix.

1 After we get used to this notion, we can drop the words of “matrix-valued.”
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Hypothesis Detection of Noncommutative Random Matrices 103

The matrix C of the previous theorem is called the Hadamard (or Schur) product of
the matrices A and B. In notation, C = A ◦ B.

Let A and B be self-adjoint operators. A ≤ B if B − A is positive. The inequality
A ≤ B implies XAX∗ ≤ XBX∗ for every operator X. The partial order between A and
B can be defined. It is called Loewner’s order [109, 114, 130–133]. Generally, stochastic
order [132] can be defined for two random operators A and B.

Example 4.2 (Hypothesis testing in terms of covariance matrices)
From Example 3.2 in Chapter 3, we have

H0 : A = σ 2
wI + σ 2

wX
H1 : B = Rx + σ 2

wI + σ 2
wX,

(4.1)

where Rx is the covariance matrix of the signal. For the complex exponentials, Rx is
given in Example 3.1. Thus, we have

H0 : A = σ 2
wI + σ 2

wX
H1 : B = Rx + σ 2

wI + σ 2
wX = 1

2 |A|2 (
I + aσ1

) + σ 2
wI + σ 2

wX.

Without loss of generality, we set σ 2
w = 1. It follows that

H0 : A = I + X
H1 : B = SNR

(
I + aσ1

) + I + Y.
(4.2)

�

The hypothesis testing problem, see Example 4.2 for an illustraion, can be viewed
as a problem of partial ordering of two covariance matrices H0 : A and H1 : B for two
hypotheses. Matrix inequalities are the basis of the proposed formalism. Often, Hermitian
matrices (or finite-dimensional self-adjoint operators) are objects of study. The positivity
of these matrices is required for many recent results developed in quantum information
theory. The fundamental role of positivity of covariance matrices is emphasized here.

For positive operators A and B,

‖A − B‖2
1 + 4(Tr(A1/2B1/2))2 ≤ (Tr(A + B))2. (4.3)

Let A and B be positive operators, then for 0 ≤ s ≤ 1,

Tr(A1/2B1/2) ≥ Tr(A + B − |A − B|)/2 (4.4)

or

2Tr(A1/2B1/2) + Tr|A − B| = 2Tr(A1/2B1/2) + ||A − B||1 ≥ Tr(A + B). (4.5)

If f is convex then

f (x) − f (y) − (x − y)f ′(y) ≥ 0

and

Trf (B) ≥ Trf(A) + Tr(B − A)f′(B). (4.6)
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104 Cognitive Radio Communications and Networking

In particular, for f (t) = t log t , the relative entropy of two states is positive:

S(A||B) = TrA log A − TrB log B ≥ Tr(B − A). (4.7)

This is the original Klein inequality. A stronger estimate is obtained [34, p. 174]:

S(A||B) ≥ 1
2 Tr(B − A)2. (4.8)

From (4.3) to (4.8), the only requirement is that A and B are positive operators (matrices).
Of course, they are valid for A < B.

Let A, B ∈ Mn be positive semidefinite. Then for any complex number z, and any
unitarily invariant norm [133],

||A − |z|B|| ≤ ||A + zB|| ≤ ||A + |z|B||.

4.3 Partial Ordering of Completely Positive Mappings:
�(A) < �(B)

It has long been realized that trace-preserving, completely positive maps seem to be the
appropriate mathematical structure needed to model noise in quantum communication
channels and quantum computers [134].

We define a quantum operation � as a map from the set of density operators of the
input space Q1 to the set of density operators for the output space Q2, with the following
three axiomatic properties [128]:

• A1: First, Tr[�(ρ)] is the probability that the transformation ρ → �ρ takes place;
0 ≤ Tr[�(ρ)] ≤ 1 for any state ρ.

• A2: Second, � is a convex-linear map on the set of density operators, that is, for
probabilities {pi} of states ρi ,

�

(∑
i

piρi

)
=

∑
i

pi�(ρi). (4.9)

• A3: Third, � is a completely positive map. That is, if � maps density operators of sys-
tem Q1 to density operators of system Q2, then �(A) must be positive for any positive
operator A. Furthermore, if we introduce an extra system R of arbitrary dimensionality,
it must be true that (I ⊗ �)(A) is positive for any positive operator A on the combined
system RQ1, where I denotes the identity map on system R.

The following theorem is fundamental to the adopted formalism: The map � satisfies
axioms A1, A2, A3 if and only if

�(ρ) =
∑

i

EiρEi
∗, (4.10)

for some set of operators Ei which map the input Hilbert space to the output Hilbert
space, and

∑
i EiEi

∗ ≤ I where I is the identity operator and ∗ denotes the conjugate
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Hypothesis Detection of Noncommutative Random Matrices 105

and transpose. � is obviously linear. The map � sends a density matrix into another
one, thus �A and �B are density matrices that satisfy the conditions for (3.22).
The hypothesis test (3.22) is, thus, generalized by replacing the expectation with the
map �:

Tr�A ≤ Tr�B. (4.11)

Algorithm 4.1 (1) Claim hypothesis H1 if matrix inequality (4.11) is satisfied; (2) other-
wise, H0 is claimed.

The map � in (4.11) is very general. The whole body of knowledge of quantum infor-
mation theory [127] can be borrowed. Two maps are of the most important significance:
(1) positive linear maps; (2) completely positive maps. The mathematical foundation is
treated in textbooks [109, 130]. A positive linear map (also unital) � may be thought as
a noncommutative analogue of an expectation map.

Since positivity is a useful and interesting property, it is natural to ask what linear
transformations preserve it [109, Chapter 2]. It is instructive to think of positive maps as
noncommutative (matrix) averaging operations [109, 115, 130, 133].

In this section we use the symbol � for a linear map from Mn to Mk . When k = 1,
such a map is called a linear functional, and we use the lower-case symbol ϕ for it. A
linear map �: Mn → Mn is called positive if �(A) ≥ 0 where A ≥ 0 and Mn is the
space of n × n matrices. It is said to be unital if �(I ) = I . We say � is strictly positive
if �(A)> 0 where A> 0. It is easy to see that a positive linear map is strictly positive if
and only if �(I )> 0.

Any positive linear combination of positive maps is positive. Any convex combination
of positive, unital maps is positive and unital. There are ten basic examples in [109,
Chapter 2]. The combination of these basic maps allows us to form many combined maps
that are suitable for specific needs across the layers of the cognitive radio network. This
subtask needs further investigation.

From (4.11), it is required that: (1) the map � is positive: positive matrices are mapped
to positive matrices, that is, �A ≥ 0 for any A ≥ 0; (2) the map is trace-preserving ,
that is, Tr�A = TrA. This special class of positive maps, called completely positive,
trace-preserving (CPTP) linear maps [109, Chapter 3], is central to the proposed research.
The map in (4.10) is such a map. A CPTP linear operation takes statistical operators to
statistical operators. Such maps in (4.10) are also called quantum channels in quantum
information theory.

4.4 Partial Ordering of Matrices Using Majorization: A ≺ B

B > A is very strong condition at extremely low SNR such as −20 dB. The weak majoriza-
tion A ≺w B is equivalent to σk(A) ≤ σk(B) for all k. This is hardly satisfied at extremely
low SNR, due to the presence of two random matrices, for example, X and Y in (4.2).
The majorization A ≺ B holds if and only if

A + aI ≺ B + aI (4.12)
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106 Cognitive Radio Communications and Networking

for some a ∈ R. By shifting a self-adjoint matrix, we can make it to be positive always.
When discussing the properties of majorization, we can restrict ourselves to positive
(definite) matrices.

Theorem 4.3 (Majorization) Let ρ1 and ρ2 be states. The following statements are
equivalent.

1. ρ1 ≺ ρ2.
2. ρ1 is more mixed than ρ2.

3. ρ1 =
n∑

i=1
λiUiρ2U

∗
i for some convex combination λi and for some unitaries Ui .

4. Trf (ρ1) ≤ Trf (ρ2) for any convex function f : R → R.

Theorem 4.4 (Wehrl) Let ρ be a density matrix of finite quantum system B(H) and f :
R+ → R+ a convex function with f (0) = 0. The ρ is majorized by the density

ρf = f (ρ)

Trf (ρ)
. (4.13)

Theorem 4.5 (Majorization for nonnegative increasing convex function [135]) If f is
a nonnegative increasing convex function on [0, ∞] with f (0) = 0, then

λ(f (A) + f (B)) ≺w λ(f (A + B)) (4.14)

for all A, B ≥ 0, or equivalently

|||(f (A) + f (B)||| ≺w |||f (A + B)|||. (4.15)

Here, ||| · ||| stands for the symmetric, unitarily invariant norm. Given two covariances
Ā and B̄, these covariance matrices are affected by random signals experiencing fading
and network control. It is difficult to guarantee that the covariance matrix of the noise or
interference, B̄ = Rw, is known (due to noise power uncertainty). We can work on the
“blind” version of the algorithms. The covariance matrices can be normalized by their
traces. The impact of this normalization process is described by (4.13) in Wehrl’s theorem.

Example 4.3 (Positive operator valued hypothesis testing)
This example is continued from Examples 3.1 and 4.2. For sinusoidal signals, we have

H0 : A = σ 2
wI + σ 2

wX

H1 : B = 1

2
|A|2

[
1 cos ω0

cos ω0 1

]
+ σ 2

wI + σ 2
wY = 1

2
|A|2 (

I + R̄x

) + σ 2
wI + σ 2

wY,

where R̄x = σ1 cos ω0. Obviously, TrR̄x = 0 since Trσ1 = 0. If we set σ 2
w = 1, then we

can define SNR as SNR = |A|2
2σ2

w
. �

Using the structure of (3.4) and considering the unit power of additive noise (without
loss of generalization), σ 2

w = 1, we have

H0 : A = Rw = I + X, A > 0, TrX = 0
H1 : B = Rs + Rw = SNR (I + R̃x) + I + Y, B > 0, Tr R̃x = 0, TrY = 0

(4.16)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Hypothesis Detection of Noncommutative Random Matrices 107

B + A = (2 + SNR)I + X + Y
B − A = SNR I + SNR R̃x + Y − X, Tr(B − A) = SNR

(4.17)

With the aid of (4.17) and Tr(A + B) = TrA + TrB, one detection algorithm using the
preset threshold η0 can be stated as following:

Algorithm 4.2 (Threshold detection algorithm using the traces of two hypotheses)

1. Claim H1, if Tr(B)> Tr(A) + η0, with η0 = SNR.
2. Otherwise, claim H0.

The beauty of Algorithm 4.2 is that Tr(A) is independent of the measured signals. We
can use the statistics of the additive noise (interference), TrA, a random variable, to set
the threshold for the measured signals plus noise, TrB, also a random variable.

If we have the prior knowledge of Rs , we can consider

H0 : R∗
s Rw, Rs > 0, Rw > 0

H1 : R∗
s (Rs + Rw) = R∗

s Rs + R∗
s Rw = |Rs |2 + R∗

s Rw, Rs > 0, Rw > 0,
(4.18)

where R∗
s is used to match the signal covariance matrix Rs to get the absolute value |Rs |2.

Recall that |A| = (A∗A)
1
2 .

Consider K independent copies Ak, k = 1, 2, . . . , K

H0 : Ak = Rw,k, Ak > 0,

H1 : Bk = Rs,k + Rw,k, Bk > 0.
(4.19)

Let Ck ≥ 0 and Dk ≥ 0 be of the same size. Then [114, p. 166]

Ck + Dk ≥ Dk, k = 1, 2, . . . , K. (4.20)

For H1, with the aid of (4.20), both sides of these K inequalities in (4.19) are summed
up to yield

K∑
k=1

Bk = (Rs,1 + Rs,2 + · · · + Rs,K) + (Rw,1 + Rw,2 + · · · + Rw,K) ≥ Rw,1

+ Rw,2 + · · · + Rw,K. (4.21)

Algorithm 4.3 (Threshold detection algorithm using the traces of two hypotheses
(many copies))

1. Claim H1, if Tr(B1 + B2 + · · · + BK)> Tr(A1 + A2 + · + AK) + η, where
η = ∑K

k=1 Rs,k > 0.
2. Otherwise, claim H0.

Tr|B1 + B2 + · + BK|>Tr|A1 + A2 + · + AK| + η (4.22)

Tr|A1 + A2 + · · · + AK | ≤ Tr|A1| + Tr|A2| + · · · + Tr|AK |. (4.23)
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108 Cognitive Radio Communications and Networking

Two covariances Ā and B̄ are normalized first using (4.13) in Wehrl’s theorem:

H0 : A = Ā
TrĀ

= 1
N

I + X, TrA = 1, A > 0

H1 : B = B̄
TrB̄

= 1
N

I + R̃x + Y, TrB = 1, B > 0,
(4.24)

where X, Y and R̃x are self-adjoint random matrices with TrX = 0, TrY = 0 and TrR̃x =
0, and N = TrI is the dimensionality of identity matrix I. X and Y are two independent,
identical distributed copies whose rows are independent (see Section 3.4). It follows that

A + B = 2
N

I + R̃x + Y + X

B − A = R̃x + Y − X.
(4.25)

Note that Tr(B − A) = 0 which implies that TrU∗(B − A)U = 0, where U is an arbitrary
unitary matrix. Consider

|B − A| = |R̃x + Y − X|.

Using (A.6) [114, p. 239]: Tr|A + B| ≤ Tr|A| + Tr|B|, it follows that

Tr|B − A| =
∑

i

|λi(B) − λi(A)| ≤ Tr|R̃x | + Tr|Y − X|, (4.26)

where ||X − Y||1 = Tr|Y − X| is the distance between two random matrices, also called
trace norm. λi is the i−th eigenvalue. If Tr|R̃x | = 0 and Tr|Y − X|, then Tr|B − A| = 0,
which implies that A and B cannot be distinguished from each other.

In (4.25), generally we can not claim that B − A is positive, although B − A is still
Hermitian. Let A and B be positive operators, then for 0 ≤ s ≤ 1,

Tr(BsA1−s) ≥ Tr(A + B − |B − A|)/2. (4.27)

In general, if A, B ≥ 0, we have

TrAB ≥ 0. (4.28)

However, the product of AB is not a Hermitian matrix. Note that although AB + BA
is Hermitian, it is generally not positive semidefinite. In (4.27), we are interested in
the absolute value of B − A only, in terms of ||A − B||1 = Tr|B − A|. This trace norm
||A − B||1 is a natural distance between complex n × n matrices A and B, A, B ∈ Mn(C).
Similarly,

||A − B||2 =

∑

i,j

|Aij − Bij |2

1/2

is also a natural distance. We can define the p− norm as

||X||p = (Tr(X∗X)
2/p

)1/p, 1 ≤ p, X ∈ Mn(C).
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Hypothesis Detection of Noncommutative Random Matrices 109

It was Von Neumann who showed first that the Hoelder inequality remains true in the
matrix setting

||AB||1 ≤ ||A||p||B||q,
1

p
+ 1

q
= 1.

For A ∈ Mn(C), the absolute value |A| is defined as
√

A∗A and it is a positive matrix.
If A is a self-adjoint and written as

A =
∑

i

λieie
∗
i ,

where the vector ei forms an orthonormal basis, then it is defined as

{A ≥ 0} = A+ =
∑

i:λi≥0

λieie
∗
i ; {A < 0} = A− =

∑
i:λi<0

λieie
∗
i .

Then A = {A ≥ 0} + {A < 0} = A+ + A− and |A| = {A ≥ 0} − {A < 0} = A+ − A−.

The decomposition is called the Jordan decomposition of A.

4.5 Partial Ordering of Unitarily Invariant Norms: |||A||| < |||B|||
Theorem 4.6 (A matrix subadditivity inequality for a nonnegative function of matrix
[136]) Let A, B ≥ 0 and let f : [0,∞] → [0, ∞] be a convex function with f (0) = 0.
Then, for all symmetric (or unitarily invariant) norms

|||f (A + B)||| ≥ |||f (A) + f (B)|||. (4.29)

Let A, B ≥ 0 and let g : [0, ∞] → [0, ∞] be a concave function with g(0) = 0. Then, for
all symmetric norms

|||g(A + B)||| ≤ |||g(A) + g(B)|||. (4.30)

For the trace norm, Theorem 4.6 is a classical inequality. Recall that ||A||1 =
Tr(A∗A)

1
2 = ∑

i σi, where σi is the singular value. Special cases: (1) f (t) = tm, m =
1, 2, . . .; (2) g(t) = √

t .

4.6 Partial Ordering of Positive Definite Matrices of Many Copies:∑K
k=1 Ak ≤ ∑K

k=1 Bk

Theorem 4.7 (Unitarily invariant norms with nonnegative convex/concave function
[135]) Let A1, A2, . . . , AK ≥ 0. Then for every nonnegative convex function f on [0, ∞]
with f (0) = 0 and for every unitarily invariant norm ||| · |||

|||f (A1) + f (A2) + · · · f (AK)||| ≤ |||f (A1 + A2 + · · · AK)|||. (4.31)
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110 Cognitive Radio Communications and Networking

If g is a nonnegative concave function, the inequality of (4.31) is reversed:

|||g(A1) + g(A2) + · · · g(AK)||| ≥ |||g(A1 + A2 + · · · AK)|||. (4.32)

The function f : [0, ∞] → R, defined by f (x) = 1
2 ((x − 1) + |x − 1|) satifies the

inequality of (4.32). We interpret Theorem 4.7 as a norm-matrix generation of the
scalar inequality f (a) + f (b) ≤ f (a + b), where a, b ≥ 0 and f : [0,∞] → [0, ∞] is
a convex function with f (0) = 0.

4.7 Partial Ordering of Positive Operator Valued Random
Variables: Prob(A ≤ X ≤ B)

Consider K matrix-valued observations:

H0 : Ak = Rn,k = σ 2
n,k(I + Xk), TrXk = 0,

H1 : Bk = Rs,k + Rn,k = σ 2
s,k(I + Sk) + σ 2

n,k(I + Yk), TrSk = 0, TrYk = 0,
(4.33)

where Xk , Yk , and Sk are of zero trace and denote the nondiagonal elements of the
covariance matrices.

H0 :
K∑

k=1
Ak =

(
K∑

k=1
σ 2

n,k

)
I +

K∑
k=1

σ 2
n,kXk =

(
Tr

K∑
k=1

Ak

)
I +

K∑
k=1

σ 2
n,kXk

H1 :
K∑

k=1
Bk =

[
K∑

k=1
(σ 2

s,k + σ 2
n,k)

]
I +

K∑
k=1

σ 2
s,kSk +

K∑
k=1

σ 2
n,kYk

=
(

Tr
K∑

k=1
Bk

)
I +

K∑
k=1

σ 2
s,kSk +

K∑
k=1

σ 2
n,kYk,

(4.34)

where the diagonal terms are associated with I with

Tr
K∑

k=1

Ak =
K∑

k=1

TrAk =
K∑

k=1

σ 2
n,k, Tr

K∑
k=1

Bk =
K∑

k=1

TrBk =
K∑

k=1

(σ 2
s,k + σ 2

n,k).

Using the central limit theorem, the total trace (or total power) can be reduced to (scalar)
Gaussian random variables.

Algorithm 4.4 (Detection using traces of sums of covariance matrices)

1. Claim H1 if

Tr
K∑

k=1

Ak = ξ ≤ Tr
K∑

k=1

Bk,

2. Otherwise, claim H0.

Only diagonal elements are used in Algorithm 4.3; in (4.34), however, nondiagonal

elements
K∑

k=1
σ 2

s,kSk contain information of use to detection. The exponential of a matrix
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Hypothesis Detection of Noncommutative Random Matrices 111

provides one tool. See Example 4.4. In particular, we have

TreA+B ≤ TreAeB.

The following matrix inequality

TreA+B+C ≤ TreAeBeC

is known to be false.
Let A and B be two Hermitian matrices of the same size. If A − B is positive semidef-

inite, we write [114]

A ≥ B or B ≤ A. (4.35)

≥ is a partial ordering, referred to as Löwner partial ordering, on the set of Hermitian
matrices, that is,

1. A ≥ A for every Hermitian matrix A,
2. if A ≥ B and B ≥ A, then A = B, and
3. if A ≥ B and B ≥ C, then A ≥ C.

The statement A ≥ 0 ⇔ X∗AX ≥ 0 is generalized as follows:

A ≥ B ⇔ X∗AX ≥ X∗BX, (4.36)

for every complex matrix X.
A hypothesis detection problem can be viewed as a problem of partially ordering the

measured matrices for individual hypotheses. If many (K) copies of the measured matrices
Ak and Bk are at our disposal, it is nature to ask this fundamental question:

Is B1 + B2 + · · · + BK (statistically) larger than A1 + A2 + · · · + AK ?
To answer this question motivates this whole section. It turns out that a new theory is

needed. We freely use [137] that contains a relatively complete appendix for this topic.
The theory of real random variables provides the framework of much of modern proba-

bility theory, such as laws of large numbers, limit theorems, and probability estimates for
large deviations, when sums of independent random variables are involved. Researchers
develop analogous theories for the case that the algebraic structure of the reals is substi-
tuted by more general structures such as groups, vector spaces, etc.

At the hands of our current problem of hypothesis detection, we focus on a structure
that has vital interest in quantum probability theory and names the algebra of operators2

on a (complex) Hilbert space. In particular, the real vector space of self-adjoint operators
(Hermitian matrices) can be regarded as a partially ordered generalization of the reals, as
reals are embedded in the complex numbers.

A matrix-valued random variable X : 	 → As , where

As = {A ∈ A : A = A∗} (4.37)

is the self-adjoint part of the C∗− algebra A [138], which is a real vector space. For
more details, we refer to Appendix A.4. Let L(H) be the full operator algebra of the

2 The finite-dimensional operators and matrices are used interchangeably.
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112 Cognitive Radio Communications and Networking

complex Hilbert space H. We denote d = dim(H), which is assumed to be finite. Here
dim means the dimensionality of the vector space. In the general case, d = TrI, and A
can be embedded into L(Cd) as an algebra, preserving the trace.

The real cone
A+ = {A ∈ A : A = A∗ ≥ 0} (4.38)

induces a partial order ≤ in As . We can introduce some convenient notation: for A, B ∈ As

the closed interval [A, B] is defined as

[A, B] = {X ∈ As : A ≤ X ≤ B}. (4.39)

Similarly, open and half-open intervals (A, B), [A, B), etc.
For simplicity, the space 	 on which the random variable lives is discrete. Some

remarks on the operator order is as follows.

1. ≤ is not a total order unless A = C, in which case As = R. Thus in this case (classical
case), the theory developed below reduces to the study of the real random variables.

2. A ≥ 0 is equivalent to saying that all eigenvalues of A are nonnegative. These are d

nonlinear inequalities:

A ≥ 0 ⇔ ∀ρ density operator Tr(ρA) ≥ 0
⇔ ∀π one − dim.projector Tr(πA) ≥ 0.

(4.40)

3. The operator mapping A �→ As , for s ∈ [0, 1] and A �→ log A are defined on A+, and
both are operator monotone and operator concave. In contrast, A �→ As , for s > 2 and
A �→ exp A are neither operator monotone nor operator convex. Remarkably, A �→ As ,
for s ∈ [1, 2] is operator convex (though not operator monotone).

4. The mapping A �→ Tr exp A is monotone and convex.
5. Golden-Thompson-inequality: for A, B ∈ As

Tr exp(A + B) ≤ Tr((exp A)(exp B)). (4.41)

Note that a rarely few of mappings (functions) are operator convex (concave) or operator
monotone. Fortunately, we are interested in the trace functions that have much bigger
sets. Take a look at (4.42) for example. In (4.33), since H0 : A = I + X, and A ∈ As

(even stronger A ∈ A+), it follows from (4.42) that

H0 : Tr exp(A) = Tr exp(I + X) ≤ Tr((exp I)(exp X)). (4.42)

The use of (4.42) allows us to separately study the diagonal part and the nondiagonal
part of the covariance matrix of the noise, since all the diagonal elements are equal for a
WSS random process (see (3.4)). At low SNR, the goal is to find some ratio or threshold
that is statistically stable over a large number of Monte Carlo trials.

Algorithm 4.5 (Ratio detection algorithm using the trace exponentials)

1. Claim H1, if ξ = Tr exp A
Tr((exp I)(exp X))

≥ 1, where A is the measured covariance matrix with

or without signals and X = Rw

σ2
w

− I.
2. Otherwise, claim H0.
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Hypothesis Detection of Noncommutative Random Matrices 113

Example 4.4 (Exponential of the 2 × 2 matrix)
The 2 × 2 covariance matrix for L sinusoidal signals in Example 3.1 has symmetric
structure with identical diagonal elements

Rs = TrRs(I + bσ1),

where

σ1 =
(

0 1
1 0

)
and b is a positive number. Obviously, Trσ1 = 0. We can study the diagonal elements
and nondiagonal elements separately. The two eigenvalues of the 2 × 2 matrix [126]

A =
(

a b

c d

)
are

λ1,2 = 1
2 TrA ± 1

2

√
Tr2A − 4detA

and the corresponding eigenvectors are, respectively,

u1 = 1

||u1||
(

b

λ1 − a

)
; u2 = 1

||u2||
(

b

λ2 − a

)
.

To study how the zero-trace 2 × 2 matrix σ1 affects the exponential, consider

X =
(

0 b

a−1 0

)
.

The exponential of the matrix X, eX, has positive entries, and in fact [139]

eX =

 cosh

√
b
a

√
ab sinh

√
b
a

1√
ab

sinh
√

b
a

cosh
√

b
a


 .

�

Theorem 4.8 (Markov inequality) Let X a random variable with values in A+ and
expectation

M = EX =
∑

x

Pr{X = x}x, (4.43)

and A ≥ 0. Then

Pr{X � A} ≤ Tr(MA−1). (4.44)

Theorem 4.9 (Chebyshev inequality) Let X a random variable with values in As , expec-
tation M = EX, and variance

VarX = S2 = E((X − M)2) = E(X2) − M2. (4.45)

For � ≥ 0,

Pr{|X − M| � �} ≤ Tr(S2�−2). (4.46)
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114 Cognitive Radio Communications and Networking

Recall that

|X − M| ≤ � ⇐ (X − M)2 ≤ �2

since
√

(·) is operator monotone.
If X, Y are independent, then Var(X + Y) = VarX + VarY. This is the same as in the

classical case but one has to pay attention to the noncommunicativity that causes technical
difficulty.

Corollary 4.1 (Weak law of large numbers) Let X, X1, X2, . . . , Xn be identically, inde-
pendently, distributed (i.i.d.) random variables with values in As , expectation M = EX,

and variance VarX = S2. For � ≥ 0, then

Pr

{
1

n

n∑
n=1

Xi /∈ [M − �, M + �]

}
≤ 1

n
Tr

(
S2�−2

)
,

Pr

{
n∑

n=1

Xi /∈ [
nM − √

n�, nM − √
n�

]} ≤ 1

n
Tr

(
S2�−2

)
.

(4.47)

Lemma 4.1 (Large deviations and Bernstein trick) For a random variable Y, B ∈ As ,
and T ∈ A such that T∗T > 0

Pr
{
Y � B

} ≤ Tr
(
E exp

(
TYT∗ − TBT∗)) . (4.48)

Theorem 4.10 (i.i.d random variables) Let X, X1, . . . , Xn be i.i.d. random variables
with values in As , A ∈ As . Then for T ∈ A, T∗T > 0

Pr

{
n∑

n=1

Xi � nA

}
≤ d · ||Tr

(E exp(TXT∗ − TAT∗)
) ||n. (4.49)

Define the binary I-divergence as

D(u||v) = u(log u − log v) + (1 − u)(log(1 − u) − log(1 − v)). (4.50)

Theorem 4.11 (Chernoff) Let X, X1, . . . , Xn be i.i.d. random variables with values in
[0, I] ∈ As , EX ≤ mI, A ≥ aI, 1 ≥ a ≥ m ≥ 0. Then

Pr

{
n∑

n=1

Xi � nA

}
≤ d · exp (−nD (a||m)) , (4.51)

Similarly, EX ≥ mI, A ≤ aI, 0 ≤ a ≤ m ≤ 1. Then

Pr

{
n∑

n=1

Xi � nA

}
≤ d · exp (−nD (a||m)) , (4.52)

As a consequence, we get, for EX = M ≥ µI and 0 ≤ ε ≤ 1
2 , then

Pr

{
1

n

n∑
n=1

Xi /∈ [(1 − ε) M, (1 + ε) M]

}
≤ 2d · exp

(
−n · ε2µ

2 ln 2

)
. (4.53)
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Hypothesis Detection of Noncommutative Random Matrices 115

4.8 Partial Ordering Using Stochastic Order: A ≤st B

If x ≤st y, then Ex ≤ Ey.
Let x have a multivariate normal density with mean vector zero and variance matrix

�1. Let y have a multivariate normal density with mean vector zero and variance matrix
�1 + �2, where �2 is a nonnegative definite matrix. Then [132, p. 14]

||x||22 ≤st ||y||22, (4.54)

where || · || is the Euclidean norm defined as ||x||2 = (∑n

i=1 |x(i)|2) 1
2 = √

x∗x, for
x ∈ Rn.

4.9 Quantum Hypothesis Detection

We consider the two hypotheses H0 (null):ρ and H1 (alternative):σ. We identify a state
with a density operator, that is, a linear positive operator with trace one on finite-
dimensional Hilbert space H. Physically discriminating between the two hypotheses
corresponds to performing a generalized (POVM) measurement on the quantum system.
In analogy to the classical proceeding, one accepts H0 or H1 according to a decision
rule based on the outcome of the measurement. There is no loss of generality assuming
the POVM consists of only two elements, which denotes by {I − 
,
}, where 
 may
be any linear operator on H with 0 ≤ 
 ≤ I and I is identity operator. Neyman and
Pearson introduces the idea of similarly making a distinction between type I and type
II errors: (1) The type I error or false positive, denoted by α, is the error of accepting
the alternative hypothesis when in reality the null hypothesis holds; (2) The type II error
or false negative, denoted by β, is the error of accepting the null hypothesis when the
alternative hypothesis is the true state of nature. The type-I and type-II error probabilities
α and β are the probabilities of mistaking σ for ρ, and vice-versa, and are given by

α = Tr(
ρ)

β = Tr[(I − 
)σ ]
.

The average error probability Pe is given by

Pe = π0α + π1β = π0Tr(
ρ) + π1Tr[(I − 
)σ ] (4.55)

The Bayesian distinguishably problem consists of finding the 
 that minimizes Pe. A
special case is the symmetric one where the prior probabilities π0 and π1 are equal.

Let us first introduce some basic notations. Abusing terminology, we will use the term
‘positive’ for ‘positive semidefinite’(denoted A ≥ 0). We use the positive semidefinite
ordering on the linear operators on H throughout, that is, A ≥ B if and only if A − B ≥ 0.
For each linear operator A ∈ B(H) the absolute value |A| is defined as |A| = (A∗A)

1
2

where A∗ is the transpose and conjugate (Hermitian) of A. The Jordan decomposition of
a self-adjoint operator A is given by A = A+ − A−, where

A+ = (|A| + A)/2, A− = (|A| − A)/2 (4.56)

are the positive part and negative part of A, respectively. Both parts are positive by
definition, and A+A− = 0. There is a very useful variational characterization of the trace
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116 Cognitive Radio Communications and Networking

of the postitive part of a self-adjoint operator A:

Tr(A+) = max
X

{Tr(AX) : 0 ≤ X ≤ I}. (4.57)

In other words, the maximum is taken over all positive contractive operators. Since the
extremal values of the set of positive contractive operators are exactly the orthogonal
projector, we also have

Tr(A+) = max
P

{Tr(AP) : P ≥ 0, P = P 2}. (4.58)

The maximizer on the right-hand side is the orthogonal projector onto the range of A+.

Lemma 4.2 (Quantum Neyman-Pearson Lemma) Let ρ and σ be the density opera-
tors associated to hypotheses H0 and H1, respectively. Let c be a fixed positive number.
Consider the POVM with elements {I − 
∗, 
∗} where 
∗ is the projector onto the range
of (cσ − ρ)+, and let α∗ = Tr(
∗ρ) and β∗ = Tr(I − 
∗)σ be the associated errors. For
any other POVM {I − 
,
}, with associated errors α = Tr(
ρ) and β = Tr[(I − 
)σ ],
we have

α + cβ ≥ α∗ + cβ∗ = c − Tr[(cσ − ρ)+]. (4.59)

Thus if α ≤ α∗, then β ≥ β∗.

Proof 4.1 By formulae (4.57) and (4.58), for all 0 ≤ 
 ≤ I we have

Tr[
(cσ − ρ) ≤ Tr[
(cσ − ρ)+ = Tr[
∗ (cσ − ρ) . (4.60)

In terms of α, β, α∗, β∗, this reads

c(1 − β) − α ≤ c(1 − β∗) − α∗,

which is equivalent to the statement of the Lemma. ♦

The Lemmas say that the POVM {I − 
∗, 
∗} is the optimal one when the goal is
to minimize the quantity α + cβ. In symmetric hypothesis testing the positive number
c is taken to be the ratio π1/π0 of the prior probabilities. The goal of the Bayesian
distinguishability problem is to minimize the average error probabilities Pe defined in
(4.55) and can be rewritten as

Pe = π1 − Tr[
(π1σ − π0ρ)].

By the Neyman-Pearson Lemma, the optimal test is given by the projector 
∗ onto the
range of (π1σ − π0ρ)+, and the obtained minimal error probability is given by

P ∗
e = π1 − Tr[(π1σ − π0ρ)+] = π1 − Tr(π1σ − π0ρ) − Tr[|π1σ − π0ρ|/2]

= 1
2 (1 − ‖π1σ − π0ρ‖1),

(4.61)

where ||A||1 = Tr|A| is the trace norm. We call 
∗ the Holevo-Helstrom projector. Note
Trρ = Trσ = 1 since ρ and σ are arbitrary density operators. Our goal in this task is to
establish the connection of the heuristic hypothesis testing defined by (3.23) with quantum
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Hypothesis Detection of Noncommutative Random Matrices 117

hypothesis testing. Consider a quantum system H whose state is represented by the density
matrix ρ and σ ; more precisely, H0 : ρ and H1 : σ . This procedure may be expressed as
a Hermitian matrix.

Let us define the projection {X ≥ 0} with respect to a Hermitian matrix X with a
spectral decomposition X = ∑

i xiEX,i :

{X ≥ 0} =
∑
xi≥0

EX,i .

When the state is ρ, the probability of the set {xi ≥ 0} is
∑
xi≥0

TrρEX,i = Trρ{X ≥ 0}.
This notation generalizes the concept of the subset to the noncommunicative case. It
is known that two noncommunicative Hermitian matrices X and Y cannot be diagonal-
ized simultaneously by a common orthonormal basis. This fact causes many technical
difficulties.

The two-valued POVM {T, I − T} for a Hermitian matrix T satisfying I ≥ T ≥ 0 allows
us to perform the discrimination. Thus, T will be called a test . The following theorem
[140, 141] holds for an arbitrary real number c > 0: The average probability of error is

min
I≥T≥0

(Trρ(I − T) + cTrσT) = Trρ{ρ − cσ ≤ 0} + cTrσ {ρ − cσ > 0} (4.62)

The minimum value is achieved when T = {ρ − σ ≥ 0}. In particular, if c = 13, it
follows that

min
I≥T≥0

(Trρ(I − T) + cTrσT) = 1 − 1
2‖ρ − σ‖1. (4.63)

The optimal average probability of correct discrimination is

1
2 min

I≥T≥0
(Trρ (I − T) + cTrσT) = Trρ{ρ − σ ≤ 0} + Trσ {ρ − σ > 0} = 1

2 + 1
4‖ρ − σ‖1.

(4.64)

Therefore, the trace norm gives a measure for the discrimination of two states. Here
‖A‖1 = Tr|A| and the absolute value |A| is defined as |A| = √

AA∗. From (4.63), the
necessary condition for quantum detection is: ‖ρ − σ‖1 = Tr|ρ − σ |> 0. Since only the
absolute value is involved, the trace norm distance is symmetric. Without loss of gener-
ality, considering σ ≥ ρ ≥ 0 the necessary condition reduces to

Trσ ≥ Trρ or Trf (EA) ≥ Trf (EB), (4.65)

if ρ = f (EA) and σ = f (EB). Condition (4.65) is exactly identical to (3.22) used in
Algorithm 3.1. Therefore, it is shown that Algorithm 3.1 is equivalent to the Holevo-
Helstrom tests [142, 143], which are noncommunicative generalizations of the classical
LRT. The above “proof” paves the way for systematically exploiting the deep work done
for quantum hypothesis testing [142, 144–217]. This subtask may lead to algorithms for
spectrum sensing with unprecedented performance.

3 Two hypotheses have two equal prior probabilities in this Bayesian test.
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118 Cognitive Radio Communications and Networking

4.10 Quantum Hypothesis Testing for Many Copies

A single copy of the quantum system is not enough for a good decision. One should
make independent measurement on several identical copies, or joint measurements. The
basic problem is to identify how the error probability Pe behaves in the asymptotic limit,
that is, when one has to discriminate between the hypotheses H0 and H1 corresponding
to either n copies of ρ or n copies of σ . To do so, we need to study the quantity

P ∗
e,n = (1 − ‖π1σ

⊗n − π0ρ
⊗n‖1)/2. (4.66)

where ρ⊗n = ρ ⊗ ρ · · · ⊗ ρ︸ ︷︷ ︸
n

is the nth-tensor powers of ρ. Such states can be regarded

as the quantum version of independent, identical distributions (i.i.d). It turns out that P ∗
e,n

exponentially decreases in n: P ∗
e,n ∼ exp(−nξQCB). This exponential decrease is very

desirable for cooperative sensing of RF spectrum, where a large number n of copies are
feasible.

Theorem [34, 142, 143]: For any two states ρ and σ on a finite-dimensional Hilbert
space, occurring with prior probabilities π1 and π2, respectively, the rate limit of P ∗

e,n, as
defined by (4.66), exists and is equal to the quantum Chernoff distance ξQCB

lim
n→∞

(
−1

n
log P ∗

e,n

)
= ξQCB = − log

(
inf

0≤s≤1
Tr(ρ1−sσ s)

)
. (4.67)

This recent result provides a convenient tool for quantifying the asymptotic limit of the
cooperative sensing of RF spectrum. For a general test with n different states H0 : ρ̄ =
ρ1 ⊗ · · · ⊗ ρn and H1 : σ̄ = σ1 ⊗ · · · ⊗ σn, the necessary condition for (4.66) to be valid
takes a new look:

0 < ‖ρ1 ⊗ · · · ⊗ ρn − σ1 ⊗ · · · ⊗ σn‖1 ≤
n∑

i=1

‖ρi − σi‖1 =
n∑

i=1

Tr|ρi − σi |

which, if σi > ρi , reduces to

Tr
n∑

i=1

ρi < Tr
n∑

i=1

σior
n∑

i=1

Trρi <

n∑
i=1

Trσi.

This is equivalent to a special form of (3.23): by replacing the expectation with the
average of n copies and letting f (x) = x in (3.23).

This subtask can borrow from the use of many copies for coding, basic to quantum
information [34, 117, 127, 129, 140–143, 218–250].
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5
Large Random Matrices

5.1 Large Dimensional Random Matrices: Moment Approach,
Stieltjes Transform and Free Probability

The necessity of studying the spectra of large dimensional random matrices, in particular,
the Wigner matrices, arose in nuclear physics in the 1950s. In quantum mechanics, the
energy levels of quantum are not directly observable (very similar to many problems in
today’s wireless communications and the Smart Grid), but can be characterized by the
eigenvalues of a matrix of observations [10].

Let Xij be i.i.d. standard normal variables of n× p matrix X

X =




X11 X12 · · · X1n
X21 X22 · · · X2n
...

Xp1

...

Xp2

...

· · ·
...

Xpn



p×n

.

The sample covariance matrix is defined as

Sn =
(

1

n

n∑
k=1

XkiXkj

)p
i,j=1

,

where n vector samples of a p-dimensional zero-mean random vector with population
matrix I .

The classical limit theorem are no longer suitable for dealing with large dimensional data
analysis. In the early 1980s, major contributions on the existence of the limiting spectral
distribution (LSD) were made. In recent years, research on random matrix theory has
turned toward second-order limiting theorems, such as the central limit theorem for linear
spectral statistics, the limiting distributions of spectral spacings, and extreme eigenvalues.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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120 Cognitive Radio Communications and Networking

Many applied problems require an estimate of a covariance matrix and/or of its inverse,
where the matrix dimension is large compared to the sample size [20]. In such situations,
the usual estimator, the sample covariance matrix, is known to perform poorly. When
the matrix dimension p is larger than the number n of observations available, the sample
covariance matrix is not even invertible. When the ratio p/n is less than one but not
negligible, the sample covariance matrix is invertible but numerically ill-conditioned,
which means that inverting it amplifies estimation error dramatically. For a large value
of p, it is difficult to find enough observations to make p/n negligible, and therefore
it is important to develop a well-conditioned estimator for large-dimensional covariance
matrices such as in [20].

Suppose AN is an N ×N matrix with eigenvalues λ1(AN), . . . , λN(AN). If all these
eigenvalues are real (e.g., if AN is Hermitian), we can define a one-dimensional dis-
tribution function. The empirical cumulative distribution of the eigenvalues, also called
the empirical spectrum distribution (ESD), of an N ×N Hermitian matrix A is denoted
by FAN

FAN (x) = Number of eigenvalues of AN ≤ x

N
= 1

N

N∑
i=1

1{λi(AN) ≤ x}, (5.1)

where 1{} is the indicator function.
Following [10], we divide available techniques into three categories: (1) Moment

approach; (2) Stieltjes transform; (3) Free probability. Applications for these basic tech-
niques will be covered.

The significance of ESD is due to the fact that many important statistics in multivari-
ate analysis can be expressed as functionals of the ESD of some random matrices. For
example, the determinant and the rank functions are the most common examples. The
most significant theorem relevant to our applications is the convergence of the sample
covariance matrix: the Marchenko-Pastur law.

Theorem 5.1 (Marchenko-Pastur law [251]) Consider a p ×N matrix X, whose entries
are independent, zero-mean complex (or real) random variables, with variance σ2

N
and

fourth moments of order O
(

1
N2

)
. As

p,N → ∞ with
p

N
→ α, (5.2)

the empirical distribution of XXH converges almost surely to a nonrandom limiting dis-
tribution with density

f (x) = (1 − α−1)+δ(x)+
√
(x−a)+(b−x)+

2παx ,

a = σ 2(1 − √
α)2, b = σ 2(1 + √

α)2.
(5.3)

Example 5.1 (Determinant of a positive definite matrix)
Let AN be a positive definite matrix of N ×N . Then

det (AN) =
N∏
j=1

λj = exp

(
N

∫ ∞

0
log xFAN (dx)

)
.
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Large Random Matrices 121

When N → ∞, the determinant of AN , det (AN), is approaching a nonrandom
limit value. �

Example 5.2 (Hypothesis testing)
Let the covariance matrix of the received signal have the form [14, p. 5]

�N = �q + σ 2I,

where the dimension of �N is p and the rank of �q is q(< p). Note that N and p are
different. Suppose SN is the sample covariance matrix based on N i.i.d. vector samples
drawn from the signal. The eigenvalues of SN are

λ1 ≥ λ2 · · · ≥ λp.

The test statistic for the hypothesis problem

H0 : rank (�q) = q,

H1 : rank (�q)> q,
(5.4)

is given by

T = 1
p−q

p∑
j=q+1

λ2
j −

(
1

p−q
p∑

j=q+1
λj

)2

= 1
p−q

∫ λq
0 x2FSN (dx)−

[
1

p−q
∫ λq

0 xFSN (dx)
]2
.

(5.5)

where T is the variance of the sequence of eigenvalues. �

The ultimate goal of hypothesis testing is to search for some metrics that are “robust”
for decision making by setting a threshold. For example, the trace functions are commonly
used. To represent the trace functions, we suggest four methodologies: moment method,
Stieltjes transform, orthogonal polynomial decomposition and free probability. We only
give the basic definitions and their relevance to our problems of spectral sensing. We refer
to [14] for details.

The goal of random matrix theory is to present several aspects of the asymptotics of
random matrix “macroscopic” quantities [252] such as

LN = 1

n
Tr(An

i1
· · · An

ip
),

where ik ∈ {1, . . . , m}, 1 ≤ k ≤ p and (An
p)1≤p≤m are some n× n random matrices whose

size n goes to infinity. (An
p)1≤p≤m are most often Wigner matrices, that is Hermitian

matrices with independent entries, and Wishart matrices.

5.2 Spectrum Sensing Using Large Random Matrices

5.2.1 System Model

The most remarkable intuition of random matrices is that in many cases the eigenvalues
of matrices with random entries turn out to converge to some fixed distribution, when
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122 Cognitive Radio Communications and Networking

both the dimensions of the signal matrix tend to infinity with the same order [253]. For
Wishart matrices, the limiting joint distribution called Marchenko-Pastur Law has been
known since 1967 [251]. Then, most recently, the marginal distribution of single ordered
eigenvalues have been found. By exploiting these results, we are able to express the largest
and the smallest eigenvalues of sample covariance matrices using their asymptotic values
in closed form. The closed-form, exact expression for the standard condition number
(defined as the ratio of the largest to the smallest eigenvalue) is available.

We often treat the asymptotic limiting results for large matrices to the finite-size matri-
ces. The power of large random matrices is such that the approximate technique is often
stunningly precise. If the matrices under consideration are larger than 8 × 8, the asymptotic
results are accurate enough to approximate the simulated results.

The received signal contains L vectors yl , l = 1, . . . , L

H0 : yl[i] = wl[i], i = 1, . . . N

H1 : yl[i] = hl[i]sl[i] + wl[i], i = 1, . . . N
(5.6)

where hl[i] is the channel gain (often having a Rayleigh fading distribution) for the i-th
sample time of the l-th sensor. This is similar for signal vector sl and noise vector wl .
Let y be a n× 1 vector modeled as

y = Hs + w,

where H is an n× L matrix, s is an L× 1 “signal” vector and w is an n× 1 “noise”
vector. This model appears frequently in many signal processing and communications
applications. If s and w are modeled as independent Gaussian vectors with independent
elements with zero mean and unit variance matrix (identity covariance matrix), then y is
a multivariate Gaussian with zero mean and covariance matrix written as

� = R = E{yyH } = HHH + I. (5.7)

In most practical applications, the true covariance matrix is unknown. Instead, it is
estimated from N independent observations (“snapshots”) y1, y2, . . . , yN as:

SY = 1

N

N∑
i=1

yiy
H

i
= 1

N
YnYn

H ,

where Yn = [y1, y2, . . . , yN ] is referred to as the “data matrix” and SY is the sample
covariance matrix.

When n is fixed and N → ∞, it is well-known that the sample covariance matrix
converges to the true covariance matrix. However, when both n,N → ∞ with

n/N = α > 0,

this is no longer true. Such a scenario is very relevant in practice where stationarity
constraints limit the amount of data (N) that can be used to form the sample covari-
ance matrix. Free probability is an invaluable tool in such situations when attempting to
understand the structure of the resulting sample covariance matrices [254].
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Large Random Matrices 123

In matrix form, we have the following L×N matrix:

Y =



y1[1] y1[2] · · · y1[N]
y2[1] y2[2] · · · y2[N]
...

... · · · ...

yL[1] yL[2] · · · yL[N]



L×N

. (5.8)

Similarly, we do this for H,S,W. (5.8) can be rewritten in matrix form as

Y = HS + W = X + W. (5.9)

where X = HS. Using (5.9), (5.6) becomes our standard form:

H0 : YYH = WWH ,

H1 : YYH = XXH + WWH ,
(5.10)

where we have made the assumption that

(X + W)(X + W)H = XXH + WWH . (5.11)

(5.11) can be justified rigorously using random matrix theory.
In general, knowing the eigenvalues of two matrices, say A,B, is not enough to find

the eigenvalues of the sum or product of the two matrices, unless they commute. Free
probability gives us a certain sufficient condition, called asymptotic freeness, under which
the asymptotic spectrum of the sum A + B or product AB can be obtained from the
individual asymptotic spectra, without involving the structure of the eigenvectors of the
matrices [255]. [13, p. 9] [256]

Theorem 5.2 (Wishart matrices) If W has a Wishart distribution with m degrees of
freedom and true covariance matrix �, write Wp(�, m), and C is a q × p matrix of rank
q, then

CWCH ∼ Wq(CWCH ,m).

The sample covariance matrix SY based on Y, which contains N samples and L column
vectors, is

SY = 1

N
YYH .

The sample covariance matrix SY is related to the true covariance matrix �Y by the
property of Wishart distribution (see Theorem 5.2)

SY = �Y
1/2ZZH�Y

1/2, (5.12)

where Z is a L×N i.i.d. Gaussian zero mean matrix. In fact,

W(α) = 1

N
ZZH (5.13)

is the Wishart matrix.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



124 Cognitive Radio Communications and Networking

For a standard signal plus noise model, the true covariance matrix �Y has the form

�Y = �X + �W . (5.14)

where �X and �W are, respectively, the true covariance matrix of the signal and the
noise; also �W = σ 2I if the white noise is assumed.

Comparing the true covariance matrix (5.14) with its sample counterpart (5.11) reveals
the fundamental role of a rigorous random matrix theory. We really cannot say much about
the relation between the two versions of equations, generally for small sample size N .
Luckily, when the sample size N is very large, the two versions can be proven equivalent
(which will be justified later). This is the reason why random matrix theory is so relevant
to wireless communications since a majority of wireless systems can be expressed in the
form of (5.9). For example, CDMA, MIMO and OFDM systems can be expressed in such
a form.

5.2.2 Marchenko-Pastur Law

The Marchenko Pastur law stated in Theorem 5.1 serves as a theoretical prediction
under the assumption that the matrix is “all noise” [255]. Deviations from this theo-
retical limit in the eigenvalue distribution should indicate nonnoisy components, in other
words, they should suggest information about the matrix.

Example 5.3 (Spectrum sensing using the ratio λmax/λmin [119, 255, 257, 258])
We mainly follow [255] in this example. (5.8) is repeated here for convenience. In matrix
form, the received signal model is expressed as the following L×N matrix

Y =



y1[1] y1[2] · · · y1[N]

y2[1] y2[2] · · · y2[N]
...

... · · · ...

yL[1] yL[2] · · · yL[N]



L×N

, (5.15)

where N samples are recorded at L sensors.
For a fixed L and N → ∞, the sample covariance matrix 1

N
YYH converges to σ 2I.

This is the consequence of using the Central Limit Theorem. However, in practice, N
can be of the same order of magnitude as L; this scenario is what the random matrix
theory offers.

In the case where the entries of Y are independent (irrespective of the specific proba-
bility distribution, which corresponds to the case where no signal is present–H0), results
from asymptotic random matrix theory can be used. Theorem 5.1 proposed by Marchenko
and Pastur (1967) is valid for this case as L,N → ∞ with L

N
→ α.

Interestingly, the support of the eigenvalues is finite, even if there is no signal. The
theoretical prediction offered by the Marchenko-Pastur law can be used to set the threshold
for detection.
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Large Random Matrices 125

To illustrate, let us consider the case when only one signal is present for H1:

Y =


 h1

...

hL

σ 0
. . .

0 σ






s[1]
z1[1]

· · ·
· · ·

s[N]
z1[N]

...
. . .

...

zL[1] · · · zL[N]


 ,

where s[i] and z[i] = σnl[i] are, respectively, the independent signal and noise with unit
variance at instant i and sensor l. Let us denote by T the matrix:

T =


 h1

...

hL

σ 0
. . .

0 σ


 .

Clearly, TTH has only one “significant” eigenvalue

λ1 =
L∑
j=1

|hj |2 + σ 2, λi = σ 2, i = 1, 2, . . . ,min(L,K).

The behavior of 1
N

TTH is related to the study of the eigenvalues of large sample
covariance matrices of spiked population models [26]. Let us define the signal to noise
ratio γ as

γ =

L∑
j=1

|hj |2

σ 2
.

Baik and colleagues [26, 259] show recently that, when

L

N
< 1 and γ >

√
L

N
,

the maximum eigenvalue of 1
N

TTH converges almost surely to

H1 : b1 =
(

L∑
j=1

|hj |2 + σ 2

)(
1 + α

γ

)
,

H0 : b = σ 2(1 + √
α)2,

where b1 is superior to b0 that is also defined in Theorem 5.1. The difference between b1
and b0 can be used to sense the spectrum. Whenever the distribution of the eigenvalues
of the sample covariance matrix 1

N
YYH —all entries are observable and the size of the

matrix is finite—departs from the predicted distribution obtained using the Marchenko-
Pastur law, the detector knows that the signal is present. This approach of sensing non-null
hypothesis is standard. But the metric and the mathematical tools are novel. �
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126 Cognitive Radio Communications and Networking

5.2.2.1 Noise Distribution Unknown, Variance Known

The criteria is

decison =
{ H0 : λi ∈ [a, b],

H1 : otherwise,

where a and b are defined in Theorem 5.1. The results are based on the asymptotic
eigenvalue distribution.

5.2.2.2 Both Noise Distribution and Variance are Unknown

The ratio of the maximum and the minimum eigenvalues in the H0 case does not depend
on the variance of the noise. This allows us to circumvent the need for the knowledge of
the noise:

decision =
{
H0 : λmax

λmin
≤ (1+√

α)
2

(1−√
α)

2 ,

H1 : otherwise.

The test H1 provides a good estimator of the SNR γ . The ratio of the largest eigenvalue
b1 and the smallest a of 1

N
YYH is related solely to γ and α

b1

a
=
(1 + γ )

(
1 + α

γ

)
(1 − √

α)
2 .

For extremely low SNR such as γ = 0.01, that is, −20 dB, the above relation becomes

b1

a
=
(1 + γ )

(
1 + α

γ

)
(1 − √

α)
2

∼= (1 + 100α)

(1 − √
α)

2 .

Typically, we have α = 1/2 and α = 1/10.

Example 5.4 (Spectrum sensing using the ratio λmax/λmin [260])
The example is continued from Example 5.3. We define the normalized covariance
matrix as

R̃ = 1

σ 2
YYH ,

whose largest eigenvalue and smallest one are, respectively, lmax and lmin. In contrast,
λmax and λmin are the corresponding ones of the sample covariance matrix 1

N
YYH . Under

H0, R̃ turns out to be complex white Wishart matrix and by the Machenko-Pastur law, the
eigenvalue support is finite [10]. Under H1, the covariance matrix belongs to the class of
“spiked population models” and its largest eigenvalue increases outside the Marchenko-
Pastur support [26]. This property suggests using

T = lmax

lmin
= λmax

λmin
,
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Large Random Matrices 127

as test statistic for signal detection. Denoting T0 the decision threshold, the detector claims
H1 if T >T0; otherwise, it claims H0.

Example 5.4 uses the asymptotic properties of Wishart matrices. The smallest and
largest eigenvalues of R̃ under H0 almost surely to

lmax → amax = (
√
N + √

L)2,

lmin → amin = (
√
N − √

L)2,
(5.16)

in the limit
N,L → ∞ with

L

N
→ α (5.17)

where α ∈ (0, 1) is a constant.
A semi-asymptotic approach [257] can be used. It is shown in [22] that under the same

assumption of (5.17), the random variable

Lmax = lmax − amax

ν
,

with

ν = (
√
N +

√
L)

(
1√
N

+ 1√
L

)1/3

,

converges in distribution to the Trace-Widow law of order 2 defined in (5.50). The decision
threshold [257] can be linked to the probability of false alarm defined as

Pfa = P(T >T0|H0),

by using the asymptotic limit for the smallest eigenvalue (5.16) and the Tracy-Widom
culmination distribution function for the largest one. The threshold can be expressed as

T0 = amax

amin
·
(

1 + (
√
N + √

L)
−2/3

(NL)1/6
F−1
TW2(1 − Pfa)

)

where F−1
TW2 is the inverse Tracy-Widom culmination distribution function of order 2.

Recently, it is established [261] that the smallest eigenvalue also converges to the
Tracy-Widom culmination distribution as K,L → ∞, up to a proper rescaling factor. In
particular, the random variable

Lmin = lmin − amin

µ
,

with

µ = (
√
L−

√
N)

(
1√
L

− 1√
N

)1/3

,

converges to the Tracy-Widom culmination distribution function of order 2.
As a consequence of (5.17), µ is always negative in the considered range of α. The

test statistic may be expressed as

T = lmax

lmin
= νLmax + amax

µLmin + amin
.
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128 Cognitive Radio Communications and Networking

The test statistic can be linked to the probability of false alarm. For details, we refer
to [260]. �

5.2.2.3 On the Empirical Distribution of Eigenvalues of Large Dimensional
Information-Plus-Noise Type Matrices

Sample covariance matrices for systems with noise are the starting point in many prob-
lems, for example, spectrum sensing. Multiplicative free deconvolution has been shown in
[262] to be a method. This method can assist in expressing limit eigenvalues distributions
for sample covariance matrices, and to simplify estimators for eigenvalue distributions of
covariance matrices.

We adopt a problem formulation from [263]. Let Xn be n×N containing i.i.d. complex
entries and unit variance (sum of variances of real and imaginary parts equals 1), σ > 0
constant, and Rn an n×N random matrix independent of Xn. Assume, almost surely,
as n → ∞, the empirical distribution function (e.d.f.) of the eigenvalues of 1

N
RnR

H
n

converges in distribution to a nonrandom probability distribution function (p.d.f.), and the
ratio n

N
tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the

eigenvalues of

CN = 1

N
(Rn + σXn)(Rn + σXn)

H (5.18)

converges in distribution. The limit is nonrandom and is characterized in terms of its
Stieltjes transform, which satisfies a certain equation. n and N both converge to infinity
but their ratio n

N
converges to a positive quantity c. The aim of [263] is to show that,

almost surely, FCN converges in distribution to a nonrandom p.d.f. F . (5.18) can be
thought of as the sample covariance matrices of random vectors rn + σxn, where rn can
be a vector containing the system information and xn is additive noise, with σ a measure
of the strength of the noise.

The matrix CN can be viewed as the sample correlation matrix of the columns of
Rn + σXn, which models situations where relevant information is contained in the R.i

′s
and can be extracted from 1

N
RnR

H
n . Since R.i is corrupted by X.i , the creation of this

matrix CN is hindered. If the number of samples N is sufficiently large and if the noise
is centered, then CN would be a reasonable estimate of 1

N
RnR

H
n + σ 2I (I denoting the

n× n identity matrix), which could also yield significant (if not all) information. Under
the assumption

n

N
→ c > 0, (5.19)

CN models situations where, due to the size of n, the number of samples N needed
to adequately approximate 1

N
RnRn

H + σ 2I is unattainable, but is of the same order of
magnitude as n. (5.19) is typical of many situations arising in signal processing where one
can gather only a limited number of observations during which the characteristics of the
signal do not change. This is the case for spectrum sensing when fading changes rapidly.

One application of the matrix CN defined in (5.18) is the problem of spectrum sensing,
for example, in Example 5.3. The beauty of the above model is that σ is arbitrary. Of
course, this model applies to the low SNR detection problem for spectrum sensing.

Assume that N observations for n sensors. These sensors form a random vector rn +
σxn, and the observed values form a realization of the sample covariance matrix Cn.
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Large Random Matrices 129

Based on the fact that Cn is known, one is interested in inferring as much as possible
about the random vector rn, and hence on the system (5.18). Within this setting, one
would like to connect the following quantities:

1. the eigenvalue distribution of Cn;
2. the eigenvalue distribution of 1

N
RnR

H
n .

5.2.2.4 Statistical Eigen-Inference from Large Wishart Matrices

The measurements are of the form

xi = Asi + zi , i = 1, . . . , n,

where zi ∼ Np(0,�z) denotes a p-dimensional (real or complex) Gaussian noise vector
with covariance matrix �z, si ∼ Nk(0,�s) denotes a k-dimensional zero-mean (real or
complex) Gaussian signal vector with covariance matrix �s , and A is a p × k unknown
nonrandom matrix.

5.3 Moment Approach

Most of the material in this section can be found in [10]. Throughout this section, only
Hermitian matrices are considered. Real symmetric matrices are treated as special cases.

Let A be an n× n Hermitian matrix, and its eigenvalues be denoted by

λ1 ≥ λ2 · · · ≥ λn.

Then, from the Definition 5.1, the k-th moment of FA can be expressed as

βn.k(A) =
∫ ∞

−∞
xkFA(dx) = 1

n
Tr(Ak). (5.20)

(5.20) plays a fundamental role in random matrix theory. Most results in finding limiting
spectral distribution were obtained by estimating the mean, variance or higher moments
of 1

n
Tr(Ak).

To motivate our development, let us see an example first.

Example 5.5 (Moments-based hypothesis testing)
Continued from Example 5.5.

The hypothesis problem (5.4) is reformulated as

H0 : Tr(�q) = q‖�q‖,
H1 : Tr(�q)> q‖�q‖,

by using the effective rank r

r = Tr(A)
‖A‖ ,
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130 Cognitive Radio Communications and Networking

where ‖A‖ is the maximum singular value of A, and the matrix inequality (this bound is
sharp) [107]

r(A) ≤ rank(A) ≤ n.

Claim H1, if the test statistic (5.5) is replaced with the new statistic k-th moment

T = 1

n

M∑
k=1

Tr(Ak)> T0.

For the case of the moment M = 1, it has been found that the algorithm performs
very well. �

When sample covariance matrices S that are random matrices are used instead of 	,
the moments of S are scalar random variables. Girko studied the random determinants
det S for decades [111]. Repeat (5.21) here for convenience:

(det S)
1
N ≤ 1

N
TrS. (5.21)

5.3.1 Limiting Spectral Distribution

To show that FA converges to a limit, say F , we often employ the Moment Conver-
gence Theorem,

βk(A) → βk =
∫
xkF (dx),

in some sense, for example, almost surely (a.s.) or in probability and the Carleman’s
condition ∞∑

k=1

β
−1/(2k)
k ≤ ∞.

Thus the Moment Convergence Theorem can be used to show the existence of the limiting
spectral distribution.

5.3.1.1 Wigner Matrix

The celebrated semicircle law (distribution) is related to a Wigner matrix. A Wigner matrix
W of order n is defined as an n× n Hermitian matrix whose entries above the diagonal are
i.i.d. complex random variables with variance σ 2, and whose diagonal elements are i.i.d.
real random variables (without any moment requirement). We have the following theorem.

Theorem 5.3 (Semicircle law) under the conditions described above, as n → ∞, with
probability 1, the empirical spectral distribution tends to the semicircle law with scale
parameter σ , whose density is given by

pσ (x) =
{

1
2πσ2

√
4σ 2 − x2, if |x| ≤ 2σ,
0, otherwise.

(5.22)
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Large Random Matrices 131

For each n, the entries above the diagonal of W are independent complex random variables
with mean zero and variance σ 2, but they may not be identically distributed and depend
on n. We have the following theorem.

Theorem 5.4 If E(w
(n)
jk ) = 0,E|w(n)

jk |2 = σ 2, and for any δ > 0

lim
n→∞

1

δ2n2

∑
jk

E|w(n)
jk |2I

(|w(n)
jk

|>δ√n) = 0, (5.23)

where I (·) is the indication function, then the conclusion of Theorem 5.3 holds.

In Girko’s book (1990) [111], (5.23) is stated as a necessary and sufficient condition
for the conclusion of Theorem 5.4.

5.3.1.2 Sample Covariance Matrix

Suppose that xjn, j, n = 1, 2, . . . is a double array of i.i.d. complex random variables with
mean zero and variance σ 2. Write

xn = [x1n, . . . , xpn]
T ,X = [x1, . . . , xN ].

The sample covariance matrix is defined as

S 
= 1

N

N∑
n=1

xnx
H
n = 1

N
XXH .

Marchenko and Pasture (1967) [251] had the first success in finding the limit spectral
distribution of S. The work also provided the tool of Stieltjes transform. Afterwards, Bai
and Yin (1988) [264], Grenander and Silverstein (1977) [265], Jonsson (1982) [266],
Wachter (1978) [267] and Yin (1986) [268] did further research on the sample covari-
ance matrix.

Theorem 5.5 ([268]) Suppose that p

N
→ c ∈ (0,∞). Under the assumptions stated at the

beginning of this subsection, the empirical spectral distribution of S tends to a limiting
distribution with density

f (x) =
{ 1

2πcσ2x

√
(b − x)(x − a), if a ≤ x ≤ b

0, otherwise

and a point mass 1 − c−1 at the origin if c > 1, where

a = σ 2(1 − √
c)2, b = σ 2(1 + √

c)2.

The limit distribution of Theorem 5.5 is called the Marchenko-Pastur law (distribu-
tion) with ratio index c and scale index σ 2. The existence of the second moment of the
entries is necessary and sufficient for the Marchenko-Pastur law since the limit spectral
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132 Cognitive Radio Communications and Networking

distribution involves the parameter σ 2. The condition of zero mean can be relaxed to have
a common mean.

Sometimes, in practice, the entries of X depend on N and for each N , they are inde-
pendent but not identically distributed. We have the following theorem.

Theorem 5.6 Suppose that for each N , the entries of XN are independent complex vari-
ables, with a common mean and variance σ 2. Assume that p

N
→ c ∈ (0,∞), and that for

any δ > 0,

1

δ2Np

∑
jk

E|x(N)jk |2I
(|x(N)

jk
|>δ√N) → 0. (5.24)

Then, FS tends almost surely to the Marchenko-Pastur distribution with ratio index c and
scale index σ 2.

Now consider the case p → ∞, but p

N
→ 0. Almost all eigenvalues tend to 1 and thus

the empirical spectrum distribution of S tend to a degenerate one. For convenience, we
consider instead the matrix

W =
√
p

N
(S − σ 2I) = 1√

pN
(XXH −Nσ 2I).

When X is real, under the existence of the fourth moment, Bai and Yin (1988) [264]
showed that its empirical spectrum distribution tends to the semicircle law almost surely
as p → ∞. Bai (1988) [10] gives a generalization of this result.

Theorem 5.7 ([10]) Suppose that, for eachN , the entries of the matrix XN are independent
complex random variables with a common mean and variance σ 2. Assume that, for any
constant δ > 0, as p → ∞ with p/N → 0,

1

pδ2
√
Np

∑
jk

E|x(N)jk |2I
(|x(N)

jk
|>δ 4√Np) = o(1), (5.25)

and

1

Np2

∑
jk

E|x(N)jk |4I
(|x(N)

jk
|>δ 4√Np) = o(1). (5.26)

Then, with probability 1, the empirical spectral distribution of W tends to the semicircular
law with scale index σ 2.

Conditions (5.25) and (5.26) hold if the entries of X have bounded fourth moments.

Theorem 5.8 (Theorem 4.10 of [14]) Let F = SN1S−1
N2, where SN1 and SN2 are sample

covariance matrices with dimension p and sample size N1 and N2 with an underlying
distribution of mean 0 and variance 1. If SN1 and SN2 are independent,

p/N1 → y1 ∈ (0,∞), p/N2 → y2 ∈ (0, 1).
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Large Random Matrices 133

Then, the limit spectral density Fy1,y2
of F exists and has a density

F ′
y1,y2

(x) =
{

(1−y2)
√
(b−x)(x−a)

2πx(y1+xy2)
, a < x < b,

0, otherwise,

Further, if y1 > 0, then Fst has a point mass 1 − 1/y1 at the origin.

Example 5.6
Consider an example to apply Theorem 5.8. Consider

H0 : SN = WN

H1 : SN = BN + WN,

where WN is an underlying distribution of mean 0 and variance 1 and

H0 : SN1S−1
N2 : WN

H1 : SN1S−1
N2 : BN + WN.

Under H0, we can apply Theorem 5.8 to get the density function. Under H1, the density
is different from that of H0. �

5.3.1.3 Product of Two Random Matrices

The motivation of studying products of two random matrices arises from the fact that the
true covariance matrix � is not a multiple of an identity matrix I, and that of multivariate
F = S1S2

−1. When S1 and S2 are independent Wishart, the limit spectral distribution of
F follows from Wachter (1980) [267].

Theorem 5.9 ([10]) Suppose that the entries of X are independent complex random
variables satisfying (5.24), and assume that T(= TN) is a sequence of p × p Hermi-
tian matrices independent of X, such that its empirical spectral distribution tends to a
nonrandom and nondegenerate distribution H in probability (or almost surely). Further,
assume that

p

N
→ c ∈ (0,∞).

Then, the empirical spectral distribution of the matrix product ST tends to a nonrandom
limit in probability (or almost surely).

5.3.2 Limits of Extreme Eigenvalues

5.3.2.1 Limits of Extreme Eigenvalues of the Wigner Matrix

The real case of the following theorem is obtained in [269] and the complex case is
in [10].

Theorem 5.10 ([10, 269]) Suppose that the diagonal entries of the Wigner matrix W are
i.i.d. real random variables, the entries above the diagonal are i.i.d. complex random
variables, and all these variables are independent. Then, the largest eigenvalue λ1 of
N− 1

2 W tends to 2σ > 0 with probability 1 if and only if the following four conditions
are true:
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134 Cognitive Radio Communications and Networking

1. E((w+
11)

2
) < ∞;

2. E(w12) is real and ≤ 0;
3. E

(|w12 − E(w12)|2
) = σ 2;

4. E(|w4
12|) < ∞;

where x+ = max(x, 0).

For the Wigner matrix, symmetry between the largest and smallest eigenvalues exists.
Thus, Theorem 5.10 actually proves the following: the necessary and sufficient conditions
(for both the largest and the smallest eigenvalues) to have finite limits almost surely are
(1) the diagonal entries have finite second moments; (2) the off-diagonal entries have zero
mean and finite fourth moments.

5.3.2.2 Limits of Extreme Eigenvalues of Sample Covariance Matrix

Geman (1980) [270] proved that, as p

N
→ c, the largest eigenvalue of a sample covariance

matrix tends to b(c) almost surely, assuming a certain growth condition on the moments
of the underlying distribution, where b(c) = σ 2(1 + √

c)2 defined in Theorem 5.5. The
real case of the following theorem is in [271], and their result is extended to the complex
case in [10].

Theorem 5.11 ([10, 271]) In addition to the assumptions of Theorem 5.5, we assume that
the entries of X have finite fourth moment. Then,

−2cσ 2 ≤ lim
N→∞

inf λmin(S − σ 2(1 + c)I) ≤ lim
N→∞

inf λmax(S − σ 2(1 + c)I) ≤ 2cσ 2, a.s.

If we define the smallest eigenvalue as the (p −N + 1)-st smallest eigenvalue of S when
p>N , then from Theorem 5.11, we immediately reach the following conclusion:

Theorem 5.12 ([10]) Under the assumptions of Theorem 5.11, we have

lim
N→∞

λmin(S) = σ 2(1 − √
c)2, a.s.

lim
N→∞

λmax(S) = σ 2(1 + √
c)2, a.s.

The first work to exploit Theorem 5.12 for spectrum sensing is [258] with their conference
version published in 2007. Denote the eigenvalues of SN by λ1 ≤ λ2 ≤ · · · ≤ λN . Write
λmax = λN and

λmin =
{

λ1, p ≤ N,

λp−N+1, p >N.

Using the convention above, Theorem 5.12 is true [14] for all c ∈ (0,∞).

Theorem 5.13 (Theorem 5.9 of [14]) Suppose that the entries of the matrix XN =
{xjkN , j ≤ p, k ≤ N} are independent (not necessarily identically distributed) and satisfy
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Large Random Matrices 135

1. E(xjkN) = 0;
2. |xjkN | ≤ √

NδN ;
3. maxj,k|E|xjkN |2 − σ 2| → 0, as N → ∞; and
4. E|xjkN |l ≤ b(

√
NδN)

l−3 for all l ≥ 3;

where δN → 0 and b> 0. Let SN = 1
N

XNXH
N . Then, for any x > ε> 0 and integers j, k ≥

2, we have

P [λmax(SN) ≥ σ 2(1 + √
c)

2 + x] ≤ CN−k[σ 2(1 + √
c)

2 + x − ε]−k

for some constant C > 0.

5.3.2.3 Limiting Behavior of Eigenvectors

Relatively less work has been done on the limiting behavior of eigenvectors than eigen-
values. See [272] for the latest additions to the literature.

There is a good deal of evidence that the behavior of large random matrices is asymptot-
ically distribution-free. In other words, it is asymptotically equivalent to the case where the
basic entries are i.i.d. mean 0 normal, provided that some moment requirements are met.

5.3.2.4 Miscellanea

The norm (N−1/2X)k is sometimes important.

Theorem 5.14 ([269]) If E(|w4
11|) < ∞, then

lim
N→∞

sup ‖(N−1/2X)
k‖ ≤ (1 + k)σ k, a.s., for all k.

The following theorem is proven independently by [273] and [269].

Theorem 5.15 ([269, 273]) If E(|w4
11|) < ∞, then

lim
N→∞

sup max |λj (N−1/2X)|
j≤N

≤ σ, a.s.

5.3.2.5 Circular Law–Non-Hermitian Matrices

We consider the non-Hermitian matrix. Let

Q = 1√
N
(xjn)

be an N ×N complex matrix with i.i.d. entries xjn of mean zero and variance 1. The
eigenvalues of Q are complex and thus the empirical spectral distribution of Q, denoted
by FN(x, y), is defined in the complex plane. Since the 1950s, it has been conjectured
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136 Cognitive Radio Communications and Networking

that FN(x, y) tends to the uniform distribution over the unit disc in the complex plane,
called the circular law. The problem was open until Bai (1997) [274].

Theorem 5.16 (Circular Law [274]) Suppose that the entries have finite (4 + ε)-th
moments, and that the joint distribution of the real and imaginary parts of the entries,
or the conditional distribution of the real part given the imaginary part, has a uniformly
bounded density. Then, the circular law holds.

5.3.3 Convergence Rates of Spectral Distributions

5.3.3.1 Wigner Matrix

Consider the model of Theorem 5.4, and assume that the entries of W above or on the
diagonal are independent and satisfy

E(wjk) = 0, for all 1 ≤ k ≤ j ≤ N;
E(|w2

jk|) = 1, for all 1 ≤ k ≤ j ≤ N;
E(|w2

jj |) = 1, for all 1 ≤ j ≤ N;
sup
N

max
1≤k≤j≤N

E(|w4
jk|) ≤ M < ∞.

(5.27)

Theorem 5.17 ([275]) Under the conditions in (5.27), we have

‖EF(N−1/2W) − F‖ = O(N−1/4),

where F is the semicircular law with scalar parameter 1.

Theorem 5.18 ([276]) Under the four conditions in (5.27), we have

‖F(N−1/2W) − F‖ = Op(N
−1/4),

where “p” stands for probability.

5.3.3.2 Sample Covariance Matrix

Assume the following conditions are true.

E(xjk) = 0,E(|x2
jk|) = 1, for all j, k, n

sup
N

sup
j,k

E(|x4
jk|)I(|xjk |≥M) → 0, as M → ∞. (5.28)

Theorem 5.19 ([275]) Under the assumptions in (5.28), for 0 < θ < 
 < 1 or 1 < θ <


 < ∞,
sup

cp∈(θ,
)
‖EFS − Fcp‖ = O(N−1/4),
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Large Random Matrices 137

where cp = p/N and Fc is the Marchenko-Pastur distribution with dimension-ratio c and
parameter σ 2 = 1.

Theorem 5.20 ([275]) Under the assumptions in (5.28), for any 0 < ε < 1,

sup
cp∈(1−ε,1+ε)

‖EFS − Fcp‖ = O(N−5/48).

Theorem 5.21 ([275]) Under the assumptions in (5.28), the conclusions in Theorems 5.19
and 5.20 can be improved to

sup
cp∈(θ,
)

‖FS − Fcp‖ = Op(N
−1/4),

and
sup

cp∈(1−ε,1+ε)
‖FS − Fcp‖ = Op(N

−5/48).

Consider SN = 1
N

T1/2
N XNXH

NT1/2
N , where XN = (xij ) is a p × p matrix consisting of

independent complex entries with mean zero and variance one, TN is a p × p nonrandom
positive definite Hermitian matrix with spectral norm uniformly bounded in p. If

sup
N

sup
i,j

E|xij |8 < ∞,

and cN = p/N < 1 uniformly as N → ∞, we obtain [277] that the rate of the expected
empirical spectral distribution of SN converging to its limit spectral distribution is
O(N− 1

2 ). Under the same assumption, it can be proved that for any η> 0, the rates of
the convergence of the empirical spectral distribution of SN in probability and the almost
sure convergence are O(N− 2

5 ) and O(N− 2
5 +η).

5.3.4 Standard Vector-In, Vector-Out Model

Random vectors are our basic building blocks in our signal processing. We define the
standard vector-in, vector-out model (VIVO)1 as

yn = Hxn + wn, n = 1, . . . , N

where yn is an M × 1 complex vector of observations collected from M sensors, xn is
K × 1 complex vector of transmitted waveform, H is an M ×K matrix, and wn is an
M × 1 complex vector of additive Gaussian noise with mean zero and variance σ 2

w.
Defining

Y = [y1, . . . , yN ],X = [x1, . . . , xN ],W = [w1, . . . ,wN ],

1 Multiple-input, multiple-output (MIMO) has a special meaning in wireless communications.
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138 Cognitive Radio Communications and Networking

we have
Y = HX + W.

The sample covariance matrix is defined as

S = 1

N
YYH = 1

N
(HX + W)(HX + W)H .

For the noise-free case, that is, σ 2
w = 0, we have

S = 1

N
(HX)(HX)H = 1

N
HXXHHH .

We can formulate the problem as a hypothesis testing problem

H0 : S = 1

N
WWH ,

H1 : S = 1

N
(HX + W)(HX + W)H .

5.3.5 Generalized Densities

In the generalized densities, the moments of the matrix play a critical role. Assume that
the matrix A has a density

pN(A) = H(λ1, . . . , λn).

The joint density function of its eigenvalues is of the form

pN(λ1, . . . , λn) = cJ (λ1, . . . , λn)H(λ1, . . . , λn),

H(λ1, . . . , λn) =
n∏
k=1

g(λk),

J = ∏
i<j

(λi − λj )
β

n∏
k=1

hn(λk).

For example for a real Gaussian matrix, β = 1 and hn = 1, for a complex Gaussian matrix,
β = 2 and hn = 1, for a quaternion Gaussian matrix, β = 4 and hn = 1, and for a real
Wishart matrix with n ≥ p, β = 1 and hn = xn−p. The following examples illustrate this.

1. Real Gaussian matrix, that is, symmetric, AT = A:

pN(A) = c exp

(
− 1

4σ 2
Tr(A2)

)
.

The diagonal entries of A are i.i.d. real N(0, 2σ 2) and entries above diagonal are i.i.d.
real N(0, σ 2).

2. Complex Gaussian matrix, that is, Hermitian, A∗ = A:

pN(A) = c exp

(
− 1

2σ 2
Tr(A2)

)
.

The diagonal entries of A are i.i.d. real N(0, σ 2) and entries above diagonal are i.i.d.
complex N(0, σ 2) (whose real and imaginary parts are i.i.d. N(0, σ 2/2)).
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Large Random Matrices 139

3. Real Wishart matrix, of order p × n:

pN(A) = c exp

(
− 1

2σ 2
Tr(A∗A)

)
.

The entries of A are i.i.d. real N(0, σ 2).
4. Complex Wishart matrix, of order p × n:

pN(A) = c exp

(
− 1

σ 2
Tr(A∗A)

)
.

The entries of A are i.i.d. complex N(0, σ 2).

For generalized densities, we have

1. Symmetric matrix:

pN(A) = c exp(−TrG(A)),

where G(t2) is a polynomial of even orders with a positive leading coefficient, such
as G(t2) = 4t4 + 2t2 + 3.

2. Hermitian matrix:

pN(A) = c exp(−TrG(A)),

where G(t2) is a polynomial of even orders with a positive leading coefficient.
3. Real covariance matrix, of dimension p and degrees of freedom n:

pN(A) = c exp(−TrG(AT A)),

where G(t) is a polynomial with a positive leading coefficient, such as G(t) = 4t3 +
2t2 + 3t + 5.

4. Complex covariance matrix, of dimension p and degrees of freedom n:

pN(A) = c exp(−TrG(A∗A)),

where G(t) is a polynomial with a positive leading coefficient.

The book of [14] mainly concentrates on results without assuming density conditions.

5.4 Stieltjes Transform

We follow [10] closely for the definition of the Stieltjes transform. Let G be a function
of bounded variation defined on the real line. Then, its Stieltjes transform is defined by

m(z)
∧=
∫ ∞

−∞

1

x − z
G(dx), (5.29)
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140 Cognitive Radio Communications and Networking

where z = u+ iv with v > 0. The integrand in (5.29) is bounded by 1/v, the integral
always exists, and

1

π
Im(m(z)) =

∫ ∞

−∞

v

π[(x − u)2 + v2]
G(dx).

This is the convolution of G with a Cauchy density with a scale parameter v. If G is
a distribution function, then its Stieltjes transform always has a positive imaginary part.
Thus, we can easily verify that, for any continuity points x1 < x2 of G,

lim
v→0

∫ x2

x1

1

π
Im(m(z))du = G(x2)−G(x1). (5.30)

(5.30) provides a continuity theorem between the family of distribution functions and the
family of their Stietjes transforms.

Also, if Im(m(z)) is continuous at x0 + i0, then G(x) is differentiable at x = x0 and
its derivative equals 1

π
Im(m(x0 + i0)). (5.30) gives an easy way to find the density of a

distribution if its Stieltjes transform is known.
Let G be the empirical spectral distribution of a Hermitian matrix AN of N ×N . It is

seen that

mG(z) = 1

N
Tr(A − zI)−1 = 1

N

N∑
i=1

1

Aii − z− αHi (Ai − zIN−1)
−1αi

(5.31)

where αi is the i-th column vector of A with the i-th entry removed and Ai is the matrix
obtained from A with the i-th row and column deleted. (5.31) is a powerful tool in
analyzing the spectrum of large random matrix. As mentioned above, the mapping from
distribution functions to their Stieltjes transforms is continuous.

Example 5.7 (Limiting spectral distributions of the wigner matrix)
As an illustration of how to use (5.31), let us consider the Wigner matrix to find its
limiting spectral distribution.

Let mN(z) be the Stieltjes transform of the empirical spectral distribution of N−1/2W.
By (5.31), and noticing wii = 0, we have

mN(z) = 1

N

N∑
i=1

1

−z− 1
N

αHi (N
−1/2Wi − zIN−1)

−1
αi

= 1

N

N∑
i=1

1

−z− σ 2mN(z)+ εi
= − 1

−z+ σ 2mN(z)
+ δN,

where

εi = σ 2mN(z)− 1
N

αHi (N
−1/2Wi − zIN−1)

−1αi ,

δN = 1

N

N∑
i=1

−εi
(−z− σ 2mN(z)+ εi)(−z− σ 2mN(z))

.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Large Random Matrices 141

For any fixed v0 > 0 and B > 0, with z = u+ iv, we have (omitting the proof)

sup
|u|≤B,v0≤v≤B

|δN(z)| = o(1), a.s. (5.32)

Omitting the middle steps, we have

mN(z) = − 1

2σ 2

[
z+ δNσ

2 −
√
(z− δNσ

2)
2 − 4σ 2

]
. (5.33)

From (5.33) and (5.32), it follows that, with probability 1, for every fixed z with v > 0,

mN(z) → m(z) = − 1

2σ 2

[
z−

√
z2 − 4σ 2

]
.

Letting v → 0, we find the density of the semicircle law as given in (5.22). �

Let AN be an N ×N Hermitian matrix and FAN be its empirical spectral distribution.
If the measure µ admits a density f (x) with support �:

dµ(x) = f (x) dx on �,

Then, the Stieltjest transform of FAN is given for complex arguments by

SAN (z) = �µ(z) = ∫
1
x−z dFAN (x) = 1

N
Tr(AN − zI)−1

= −
∞∑
k=0

z−(k+1)(
∫
�
xkf (x) dx) = −

∞∑
k=0

z−(k+1)Mk,
(5.34)

where Mk = ∫
�
xkf (x) dx is the k-th moment of F . This provides a link between the

Stieltjes transform and the moments of AN . The moments of random Hermitian matrices
become practical if direct use of the Stieltjes transform is too difficult.

Let A ∈ C
N×M,B ∈ C

M×N , such that AB is Hermitian. Then, for z ∈ C\R, we have
[12, p. 37]

M

N
mFBA

(z) = mFAB
(z)+ N −M

N

1

z
.

In particular, we can apply AB = XXH .
Let X ∈ C

N×N be Hermitian and a be a nonzero real. Then, for z ∈ C\R

mFaX
(z) = 1

a
mFX

(z).

There are only a few kinds of random matrices for which the corresponding asymptotic
eigenvalue distributions are known explicitly [278]. For a wider class of random matrices,
however, explicit calculation of the moments turns out to be unfeasible. The task of
finding an unknown probability distribution given its moments is known as the problem
of moments. It was addressed by Stieltjes in 1894 using the integral transform defined in
(5.34). A simple Taylor series expansion of the kernel of the Stieltjes transform

− lim
s→∞

dm

dxm

G(s−1)

s
= m!

∫
xmdF(x)
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142 Cognitive Radio Communications and Networking

shows how the moments can be found given the Stieltjes transform, without the need for
integration. The probability density function can be obtained from the Stieltjes transform,
simply taking the limit

p(x) = lim
y→0+

1

π
ImG(x + jy),

which is called the Stieltjes inverse formula [11].
We follow [279] for the following properties:

1. Identical sign for imaginary part

Im�µ(z) = Im(z)
∫
�

f (λ)

(λ− x)2
dλ,

where � is the imaginary part of z ∈ C.
2. Monotonicity. If z = x ∈ R\�, then �µ(z) is well defined and

� ′
µ(z) =

∫
�

f (λ)

(λ− x)2
dλ> 0 ⇒ � ′

µ(z) ↗ on \�.

3. Inverse formula

f (x) = 1

π
lim
y→0+

Im�(x + jy). (5.35)

Note that if x ∈ R\�, then �µ(x) ∈ R ⇒ f (x) = 0.
4. Dirac measure. Let δx be the Dirac measure at x

δx(A) =
{

1 if x ∈ A,
0 else.

Then,

�δx
(z) = 1

x − z
;�δ0

(z) = −1

z
.

An important example is

LM = 1

M

M∑
k=1

δλk ⇒ �LM
(z) = 1

M

M∑
k=1

1

λk − z
.

5. Link with the resolvent. Let X be a M ×M Hermitian matrix

X = U


 λ1 0

. . .

0 λM


UH

and consider its resolvent Q(z) and spectral measure LM

Q(z) = (X − zI)−1, LM = 1

M

M∑
k=1

δλk .
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Large Random Matrices 143

The Stieltjes transform of the spectral measure is the normalized trace of the resolvent

�LM
(z) = 1

M
TrQ(z) = 1

M
Tr(X − zI)−1.

Gaussian tools [280] are useful. Let the Z′
is be independent complex Gaussian random

variables denoted by z = (Z1, · · · , Zn).

1. Integration by part formula

E(Zk�(z, z̄)) = E|Zk|2E
(
∂�

∂Z̄k

)
.

2. Poincaré-Nash inequality

var(�(z, z̄)) ≤
n∑
k=1

|Zk|2
(∣∣∣∣ ∂�∂Zk

∣∣∣∣2 +
∣∣∣∣ ∂�∂Z̄k

∣∣∣∣2
)
.

5.4.1 Basic Theorems

Theorem 5.22 ([281]) Let mF(z) be the Stieltjes transform of a distribution function
F , then

1. mF is analytic over C
+;

2. if z ∈ C
+, then mF(z) ∈ C

+;
3. if z ∈ C

+, |mF(z)| ≤ 1
Im(z) and Im( 1

mF (z)
) ≤ −Im(z);

4. if F(0−) = 0, then mF is analytic over C\R+. Moreover, z ∈ C
+ implies zmF(z) ∈ C

+

and we have the inequalities

|mF(z)| ≤




1
|Im(z)| , z ∈ C\R

1
|z| , z < 0

1
dist(z,R+) , z ∈ C\R+

with dist being the Euclidean distance.
Conversely, if mF(z) is a function analytical on C

+ such that mF(z) ∈ C
+ if z ∈ C

+

and

lim
y→∞

−iymF (iy) = 1,

then mF(z) is the Stieltjes transform of a distribution function F given by

F(b)− F(a) = lim
y→0

1

π

∫ b

a

Im (mF (x + jy))dx.

If, moreover, zmF (z) ∈ C
+ for z ∈ C

+, then F(0−) = 0, in which case mF(z) has an
analytic continuation on C\R+.

Our version of the above theorem is close to [12] with slightly different notation.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



144 Cognitive Radio Communications and Networking

Let t > 0 and mF(z) be the Stieltjes transform of a distribution function F . Then, for
z ∈ C

+ we have [12] ∣∣∣∣ 1

1 + tmF (z)

∣∣∣∣ ≤ |z|
Im(z)

.

Let x ∈ C
N, t > 0 and A ∈ C

N×N be Hermitian, nonnegative definite. Then, for z ∈ C
+

we have [12] ∣∣∣∣ 1

1 + txH (A − zI)−1x

∣∣∣∣ ≤ |z|
Im(z)

.

The fundamental result in the following theorem [282] states the equivalence between
pointwise convergence of Stieltjes transform and weak onvergence of probability
measures.

Theorem 5.23 (Equivalence) Let (µn) be probability measures on R and (�µn
), �µn

the
associated Stieltjes transform. Then the following two statements are equivalent:

1. �µn
(z) →

n→∞
�µ(z) for all z ∈ C

+;
2. µn

w→
n→∞

µ.

Let the random matrix W be square N ×N with i.i.d. entries with zero mean and variance
1
N

. Let � be the set containing eigenvalues of W. The empirical distribution of the
eigenvalues

PH(z)

= 1

N
|{λ ∈ � : Reλ < Rez and Im λ < Im z}|

converges a nonrandom distribution functions as N → ∞. Table 5.2 lists commonly used
random marices and their density functions.

Table 5.1 compiles some moments for commonly encountered matrices from [278].
Calculating eigenvalues λk of a matrix X is not a linear operation. Calculation of the
moments of the eigenvalue distribution is, however, conveniently done using a normalized
trace since

1

N

N∑
k=1

λmk = 1

N
Tr(Xm).

Thus, in the large matrix limit, we define tr(X) as

tr(X) � lim
N→∞

1

N
Tr(X).

Table 5.2 is made self-contained and only some remarks are made here. For Haar
distribution, all eigenvalues lie on the complex unit circle since the matrix T is unitary.
The essential nature is that the eigenvalues are uniformly distributed. Haar distribution
demands for Gaussian distributed entries in the random matrix W. This condition does
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Large Random Matrices 145

Table 5.1 Common random matrices and their moments (The entries of W are i.i.d. with zero
mean and variance 1

N
; W is square N ×N , unless otherwise specified. tr(H) � lim

N→∞
1
N

Tr(H))

Convergence Laws Definitions Moments

Full-Circle Law W square N ×N

Semicircle Law K = W+WH√
2

tr(K2m) = 1
m+1

(
2m
m

)
Quarter Circle Law Q = √

WWH tr (Qm) = 22m

πm
1(

m
2 + 1

)
(
m− 1
m−1

2

)
∀ m odd

Q2

Deformed Quarter Circle Law R = √
WHW,

W ∈ C
N×βN

R2 tr(R2m) = 1
m

m∑
i=1

(
m

i

)(
m

i − 1

)
βi

Haar Distribution T = W
(
WHW

)− 1
2

Inverse Semicircle Law Y = T + TH

Table 5.2 Definition of commonly encountered random matrices for convergence laws (the
entries of W are i.i.d. with zero mean and variance 1

N
; W is square N ×N , unless otherwise

specified)

Convergence Laws Definitions Density Functions

Full-Circle Law W square N ×N pW (z) =
{

1
π

|z| < 1
0 elsewhere

Semicircle Law K = W+WH√
2

pK (z) =
{

1
2π

√
4 − x2 |x| < 2
0 elsewhere

Quarter Circle Law Q = √
WWH pQ (z) =




1
π

√
4 − x2 0 ≤ x ≤ 2

2
0 elsewhere

Q2 pQ2 (z) =
{

1
2π

√
4−x
x

0 ≤ x ≤ 4

0 elsewhere

Deformed Quarter Circle Law R = √
WHW,

W ∈ C
N×βN

pR (z) =




√
4β−(x2−1−β)2

πx
a ≤ x ≤ b(

1 − √
β
)+
δ(x) elsewhere

a = ∣∣1 − √
β
∣∣ , b = 1 + √

β

R2 pR2 (z) =



√
4β−(x−1−β)2

2πx a2 ≤ x ≤ b2(
1 − √

β
)+
δ(x) elsewhere

Haar Distribution T = W
(
WHW

)− 1
2 pT (z) = 1

2π δ (|z| − 1)

Inverse Semicircle Law Y = T + TH pY (z) =
{

1
π

1√
4−x2

|x| < 2

0 elsewhere
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146 Cognitive Radio Communications and Networking

Table 5.3 Table of Stieltjes, R- and S-transforms

Stieltjes Transform R-Transform S-Transform

G(z)

= ∫

1
x−z dP (x),

Im z> 0, Im G(z) ≥ 0
R (z)


= G−1 (−z)− z−1 S(z)

= 1+z

z
ϒ−1(z),

ϒ(z)

= −z−1G−1

(
z−1

) − 1

GαI(z) = 1
α−z RαI (z) = α SαI (z) = 1

α
,

GK(z) =
z
2

√
1 − 4

z2 − z
2

RK (z) = z SK (z) = undefined

GQ(z) =√
1 − 4

z2

(
z
2 − arcsin 2

z

) − z
2 − 1

2π

RQ2(z) = 1
1−z SQ2(z) = 1

1+z

GQ2(z) = 1
2

√
1 − 4

z
− 1

2 RR2(z) = β

1−z SR2(z) = 1
β+z

GR2(z) =√
(1−β)2

4z2 − 1+β
2z + 1

4 − 1
2 − (1−β)

2z

RY(z) = −1+
√

1+4z2

z
SY(z) = undefined

GY(z) = −sign(Rez)√
z2−4

RαX (z) = αRX (αz) SAB(z) = SA(z)SB(z)

Gλ2 (z) = Gλ(
√
z)−Gλ(−

√
z)

2
√
z

lim
z→∞

R (z) = ∫
xdP (x)

GXXH (z) = βGXHX (z)+ β−1
z

,
X ∈ C

N×βN
RA+B (z) = RA (z) RB (z)

G
A+B

(
RA+B (−z)− z−1

) = z

GX+WYWH (z) =
GX

(
z− β

∫
ydPY(x)

1+yGX+WYWH (z)

)
Im z> 0,X,Y,W jointly independent.

GWWH (z) = ∫ 1
0 u(x, z)dx,

u(x, z) =[
−z+ ∫ β

0
w(x,y)dy

1+∫ 1
0 u(x′,z)w(x′,y)dx′

]−1

,

x ∈ [0, 1]

not seem to be necessary, but allowing for any complex distribution with zero mean and
finite variance is not sufficient.

Table 5.32 lists some transforms (Stieltjes, R-, S- transforms) and their properties. The
Stieltjes transform is more fundamental since both R-transform and S-transform can be
expressed in terms of the Stieltjes transform.

2 This table is primarily compiled from [278].
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Large Random Matrices 147

5.4.1.1 Products of Random Matrices

Almost surely, the eigenvalue distribution of the matrix product

P = WHWX

converges in distribution, as K,N → ∞ but β = K/N .

5.4.1.2 Sums of Random Matrices

Consider the limiting distribution of random Hermitian matrices of the form [251, 283]

A + WDWH ,

where W(N ×K), D(K ×K), A(N ×N) are independent, with W containing i.i.d.
entries having second moments, D is diagonal with real entries, and A is Hermitian.
The asymptotic regime is

K/N → α as N → ∞.

The behavior is expressed using the limiting distribution function FA+WDWH (x). The
remarkable result is that the convergence of

FA+WDWH (x)

to a nonrandom F .

Theorem 5.24 ([251, 283]) Let A be an N ×N Hermitian matrix, nonrandom, for which
FA(x) converge weakly as N → ∞ to a distribution function A. Let FD(x) converges
weakly as N → ∞ to a distribution function denoted D. Suppose the entries of

√
NW

i.i.d. for fixed N with unit variance (sum of the variances of the real and imaginary parts
in the complex case). Then, the eigenvalue distribution of A + WDWH converges weakly
to a deterministic F . Its Stieltjes transform G(z) satisfies the equation:

G(z) = GA

(
z− α

∫
τ

1 + τG(z)
dT(τ )

)
.

Theorem 5.25 ([284]) Assume

1. Xn = 1√
n
(X(n)

ij
), where 1 ≤ i ≤ n, 1 ≤ j ≤ p, and Xi,j,N are independent real random

variables with a common mean and variance σ 2, satisfying

1

n2ε2
n

∑
i,j

X2
ij I (|Xij | ≥ εn

√
n) →

n→∞ 0,

where I (x) is an indication function and ε2
n is a positive sequence tending to zero;

2. p

n
→ y > 0 as n → ∞;

3. Tn is an p × p random symmetric matrix with FTn converging almost surely to a dis-
tribution H(t) as n → ∞;
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148 Cognitive Radio Communications and Networking

4. Bn = An + XnTnX
H
n , where An is a random p × p symmetric matrix with FAn almost

surely to FA, a (possibly defective) nonrandom distribution;
5. XN,TN,AN are independent.

Then, as n → ∞, FBn converges almost surely to a nonrandom distribution F , whose
Stieltjes transform m(z) satisfies

m(z) = mA(z)

(
z− y

∫
x

1 + xm(z)
dH(x)

)
.

Theorem 5.26 ([285]) Let Sn denote the sample covariance matrix of n pure noise vectors
distributed N(0, σ 2Ip). Let l1 be the largest eigenvalue of Sn. In the joint limit p, n → ∞,
with p/n → c ≥ 0, the distribution of the largest eigenvalues of Sn converges to a Tracy-
Widom distribution

Pr

{
l1/σ

2 − µn,p

ξn,p

}
→ Fβ(s),

with β = 1 for real valued noise and β = 2 for complex valued noise. The centering and
scaling parameters, µn,p and ξn,p are functions of n and p only.

Theorem 5.27 ([285]) Let l1 be the largest eigenvalue as in Theorem 5.26. Then,

Pr

{
l1/σ

2 >

(
1 +

√
p

n

)2

+ ε

}
≤ exp(−nJLAG(ε))

where

JLAG(ε) = ∫ x
1 (x − y)

(1+c)y+2
√
c

(y+B)2
dy√
y2−1

,

c = p/n, x = 1 + ε

2
√
c
, B = 1+c

2
√
c
.

Consider the standard model for signals with p sensors. Let {xi = x(ti)}ni=1 denote p-
dimensional i.i.d. observations of the form

x(t) = As(t)+ σn(t), (5.36)

sampled at n distinct times ti , where A = [a1, . . . , aK ]T is the p ×K matrix of K lin-
early independent p-dimensional vectors. The K × 1 vector s(t) = [s1(t), . . . , sK(t)]

T

represents the random signals, assumed zero-mean and stationary with full rank covari-
ance matrix. σ is the unknown noise level, and bf n(t) is a p × 1 additive Gaussian noise
vector, distributed N(0, Ip) and independent of s(t).

Theorem 5.28 ([285]) Let Sn denote the sample covariance matrix of n observations
from (5.36) with a single signal of strength λ. Then, in the joint limit p, n → ∞, with
p/n → c ≥ 0, the largest eigenvalue of Sn converges almost surely to

λmax(Sn)
a.s.→


 σ 2(1 + √

p/n)
2

λ ≤ σ 2√p/n
(λ+ σ 2)(1 + p

n
σ2

λ
) λ>σ 2√p/n

.
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Large Random Matrices 149

Theorem 5.29 ([286]) Let C ∈ p×p be positive semidefinite. Fix an integer l ≤ p and
assume the tail

{λi(C)}i > l
of the spectrum of C decays sufficiently fast that∑

i > l

λi(C) = O(λ1(C)).

Let {xi}ni=1 ∈ R
p be i.i.d. samples drawn from a N(0,C) distribution. Define the sample

covariance matrix

Ĉ = 1

n

n∑
i=1

xix
H
i .

Let κl be the condition number associated with a dominant l-dimensional invariance sub-
space of C,

κl = λ1(C)
λl(C)

.

If

n = �(ε−2κ2
l l logp),

then with high probability

|λk(Ĉn)− λk(Cn)| ≤ ελk(Cn), fork = 1, . . . , l.

Theorem 5.29 says, assuming sufficiently fast decay of the residual eigenvalues, n =
�(ε−2κ2

l l logp) samples ensure that the top l eigenvalues are captured with relative
precision.

5.4.2 Large Random Hankel, Markov and Toepltiz Matrices

Two most significant matrices, whose limiting spectral distributions have been extensively
studied, are the Wigner and the sample covariance matrices. Here, we study other struc-
tured matrices. The important papers include Bryc, Dembo, and Jiang [287], Bose et al.
[288–294], and Miller et al. [295, 296]. We mainly follow Bryc, Dembo, and Jiang (2006)
[287] for this development. For a symmetric n× n matrix A, let λj (A), 1 ≤ j ≤ n, denote
the eigenvalues of the matrix A, written in a nonincreasing order. The spectral measure of
A, denoted µ̂(A), is the empirical spectral distribution (ESD) of its eigenvalues, namely

µ̂(A) = 1

n

n∑
j=1

δλj (A),

where δx is the Dirac delta measure at x. So when A is a random matrix, µ̂(A) is a
random measure on (R,B).
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150 Cognitive Radio Communications and Networking

The ensembles of random matrices are studied here. Let Xk : k = 0, 1, 2, . . . be a
sequence of i.i.d. real-valued random variables. We can visualize the Wigner matrix as

Wn =



X11 X12 X13 · · · X1(n−1) X1n
X21 X22 X23 · · · X2(n−1) X2n

...

Xp1 Xp2 Xp3 · · · Xp(n−1) Xpn


 .

It is well known that almost surely, the limiting spectral distribution of n−1/2(Wp) is
the semicircle law.

The sample covariance matrix S is defined as

Sp = 1

n
WpWT

p ,

where Wp = ((Xij ))1≤i≤p,1≤j≤n.

1. If p → ∞ and p/n → 0, then almost surely, the limiting spectral distribution of√
n
p
(Sp − Ip) is the semicircle law.

2. If p → ∞ and p/n → c ∈ (0,∞), then almost surely, Sp is the Marchenko-Pastur law.

In view of the above discussion, it is thus natural to study the limiting spectral distribution
of matrices of the form Sp = 1

n
XpXT

p where Xp is a p × n suitably patterned (asymmetric)
random matrix. Asymmetry is used very loosely. It just means that Xn is not necessarily
symmetric. One may ask the following questions [290]:

1. Suppose that p/n → c, 0 < c < ∞. When does the limiting spectral distribution of
Sp = 1

n
XpXT

p exist?
2. Suppose that p/n → 0. When does the imiting spectral distribution of√

n
p

(
1
n
XpXT

p − Ip
)

exist?

For n ∈ N, define a random n× n Hankel matrix Hn = [Xi+j−1]1≤i,j≤n,

Hn =




X1 X2 · · · · · · Xn−1 Xn

X2 X3 . .
.

. .
.

Xn Xn+1
...

... . .
.

. .
.
Xn+1 Xn+2

Xn−2 Xn−1 . .
.

. .
. ...

...

Xn−1 Xn
. .

.
X2n−3 X2n−2

Xn Xn+1 · · · · · · X2n−2 X2n−1




and a random n× n Toeplitz matrix Tn = [X|i−j |]1≤i,j≤n,

Tn =




X0 X1 X2 · · · Xn−2 Xn−1

X1 X0 X1
. . .

. . . Xn−2

X2 X1 X0
. . .

. . .
...

...
. . .

. . .
. . .

. . . X2

Xn−2
. . .

. . .
. . . X0 X1

Xn−1 Xn−2 · · · X2 X1 X0



.
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Large Random Matrices 151

Theorem 5.30 (Toeplitz matrices by Bryc, Dembo, and Jiang (2006) [287]) Let
Xk : k = 0, 1, 2, . . . be a sequence of i.i.d. real-valued random variables with variance
one Var(X1) = 1. Then, with probability 1, the empirical spectral distribution of 1√

n
Tn,

or µ̂(Tn/
√
n), converges weakly, as n → ∞, to a nonrandom symmetric probability

measure, γT , which does not depend on the distribution of the entries of X1 and has
unbounded support.

Theorem 5.31 (Hankel matrices by Bryc, Dembo, and Jiang (2006) [287]) Let
Xk : k = 0, 1, 2, . . . be a sequence of i.i.d. real-valued random variables with variance
one Var(X1) = 1. Then, with probability 1, the empirical spectral distribution of 1√

n
Hn,

or µ̂(Hn/
√
n), converges weakly, as n → ∞, to a nonrandom symmetric probability

measure, γH , which does not depend on the distribution of the entries of X1 and has
unbounded support and is not unimodal.

A symmetric distribution ν is said to be unimodal, if the function x �→ ν((−∞, x]) is
convex for x < 0.

To state the theorem on the Markov matrices, define the free convolution of two prob-
ability measures µ and ν as the probability measure whose nth cumulant is the sum of
the nth cumulants of µ and ν.

Let us define the Markov matrices Mn. Let Xij : j ≥ i ≥ 1 be an infinite upper tri-
angular array of i.i.d. random variables and define Xij = Xjiforj ≥ i ≥ 1. Let Mn be a
random n× n symmetric matrix given by

Mn = Xn − Dn,

where Xn = [Xij ]1≤i,j≤n and Dn = diag

(
n∑
j=1

Xij

)
1≤i≤n

is a diagonal matrix, so each of

the rows of Mn has a zero sum. The values of Xij are irrelevant for Mn.
Wigner’s classical result says that µ̂(Xn/

√
n) converges weakly as n → ∞ to the

(standard) semicircle law with the density
√

4 − x2/(2π) on (−2, 2). For normal Xn

and normal i.i.d. diagonal D̃n independent of Xn, the weak limit of µ̂(Xn − D̃n/
√
n) is

the free convolution of the semicircle and standard normal measures; see [297] and the
references therein. The predicted result holds for the Markov matrix Mn, but the problem
is nontrivial since Dn strongly depends on Xn.

Mn =




−
n∑
j=2

X1j X12 X13 · · · X1n

X21 −
n∑
j �=2

X2j X23 · · · X2n

...
. . .

. . .
...

Xk1 Xk2 · · · −
n∑
j �=k

Xkj · · · Xkn

...
...

. . .
...

Xn1 Xn2 · · · −
n−1∑
j=1

Xnj




.
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152 Cognitive Radio Communications and Networking

Theorem 5.32 (Markov matrices by Bryc, Dembo, and Jiang (2006) [287]) Let the
entries of a Markov matrix Mn be i.i.d. real-valued random variables with mean zero
and variance one. Then, with probability one, the empirical spectral distribution of 1√

n
Mn

converges weakly, as n → ∞, to the free convolution of the semicircle and standard nor-
mal measures. This measure is a nonrandom symmetric probability measure with smooth
bounded density, which does not depend on the distribution of the entries of the underlying
random variables and has unbounded support.

5.4.3 Information Plus Noise Model of Random Matrices

We follow [282] for this subsection. We consider M,N ∈ N such that N = M(N), M <

N and cN = M/N → c ∈ (0, 1) as N → ∞. A Gaussian information plus noise model
matrix is a M ×N random matrix defined by

�N = BN + WN, (5.37)

where matrix BN is deterministic such that

sup ‖BN‖ ≤ Bmax < ∞,

and the entries Wi,j,N of WN are i.i.d. and satisfy

Wi,j,N ∼ EN(0, σ 2).

Most results can be also extended to the non-Gaussian case.
The convergence of the empirical spectral measure of �N�N

H defined by

µ̂N � 1

M

M∑
i=1

δλ̂i,N ,

with δx is the Dirac measure at point x.
We define the resolvent of matrix �N�N

H by

QN(z) = (�N�N
H − zIM)

−1,

z ∈ C\R+. Its normalized trace 1
M

TrQN(z) can be written as the Stieltjes transform of
m̂N(z)N(z) defined as

µ̂N(z) = 1

M
TrQN(z) =

∫
R+

1

λ− z
dµ̂N(λ).

The weak convergence of µ̂N(z) can be studied by characterizing the convergence
of 1

M
TrQN(z) as N → ∞, with the aid of (5.4.3). The main result is summarized in

this theorem.

Theorem 5.33 There exists a deterministic probability measureµN , satisfying supp(µN) ∈
R

+, and such that µ̂N − µN → 0 as N → ∞ with probability one. Equivalently, the
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Large Random Matrices 153

Stieltjes transform mN(z) of µN satisfies m̂N(z)−mN(z) → 0 almost surely ∀z ∈ C\R+.
Moreover, ∀z ∈ C\R+, mN(z) is the unique solution of the equation

mN(z) = 1

M
TrTN(z)

= 1

M
Tr

(
−z(1 + σ 2cNmN(z))IM + σ 2(1 − cN)IM + BNBH

N

1 + σ 2cNmN(z)

)−1

(5.38)

satisfying Im(mN(z))> 0 for z ∈ C
+.

This result was first proven by Girko [298] and later Dozier-Silverstein [263]. This
result is also valid for the non-Gaussian case.

If the spectral distribution

FN(x) � 1

M
card{k : λk,N ≤ x}

of matrix BNBH
N converges to the distribution F(x) as N → ∞, then

µN
w→µ

with µ probability measure, whose Stieltjes transform

m(z) �
∫

R

1

λ− z
dµ(λ)

satisfies

m(z) =
∫

R

1
λ

1+σ2cm(z)
− z(1 + cσ 2m(z))+ σ 2(1 − c)

dF (λ).

The convergence of m̂N(z) can be guaranteed by the following theorem.

Theorem 5.34 (The convergence of m̂N (z )) For all z ∈ C\R,

|(m̂N(z))−mN(z)| ≤ 1

N2
P1(|z|)P2

(
1

|Im(z)|
)
,

for all large N , with P1, P2 two polynomials with positive coefficients independent of N, z.

According to Theorem 5.33, 1
M

TrQN(z) is a good approximation of 1
M

TrTN(z). The
following theorem shows that the entries of QN(z) also approximate the entries of TN(z).

Theorem 5.35 (The entries of QN (z ) approximate the entries of TN (z )) Let TN(z) be
defined in (5.38). Let (d1,N ) and (d2,N ) be two sequences of deterministic vectors such that

sup
N

‖d1,N‖, sup
N

‖d2,N‖ < ∞.

Then,

dH1,N (QN(z)− TN(z))d
H
2,N →

N→∞
0
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154 Cognitive Radio Communications and Networking

almost surely for all z ∈ C\R. Moreover,

∣∣[dH1,N (QN(z)− TN(z))d
H
2,N

]∣∣ ≤ 1

N3/2
P1(|z|)P2

(
1

|Im(z)|
)
,

for all large N , with P1, P2 two polynomials with positive coefficients independent of N, z.

Theorem 5.35 is valid for the non-Gaussian case that is proven in [299].

Definition 5.1 (Assumption 5.1) Matrix BN has rank K = K(N) < M , and the eigen-
values of BNBN

H has multiplicity one for all N .

Definition 5.2 (Assumption 5.2) The rank K > 0 of BNBN
H does not depend on N and

for all k = 1, . . . , K , the positive sequence {λM−K+k,N } is expressed as

λM−K+k,N = γk + εk,N ,

with

lim
N→∞

εk,N = 0

and increasing values

γ1 < . . . < γK.

The support of µN is studied in [300]. Under further assumption such as Assump-
tion 5.1, this is studied in [299]. Assumption 5.2 is stronger than Assumption 5.1.
Assumption 5.2 says the rank of BNBN

H is independent of N .

Theorem 5.36 (Exact separation of the eigenvalues for the spiked model [299]) Under
Assumption 5.2, define

Ks � 1

M
card{k : λk >σ

2√c}

and assume that

σ 2√c /∈ {γ1, . . . , γK},
that is,

γ1 < . . . < γK−Ks < σ 2√c < γK−Ks+1 < · · · < γK.

Thus, for N large enough, the support �N has Q = Ks + 1 clusters, that is,

�N = ∪Ks+1
q=1 [x−

q,N , x
+
q,N ].

The first cluster is associated with λ1,N , . . . , λM−Ks,N and is given by

x−
1,N = σ 2(1 − √

cN)
2 + O+

(
1

N

)
and x+

1,N = σ 2(1 + √
cN)

2 + O+
(

1

N

)
.
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Large Random Matrices 155

For q = 2, 3, . . . , Ks + 1 and k = q − 1, the cluster [x−
q,N , x

+
q,N ] is associated with

λM−K+k,N and

x−
q,N = g(λM−K+k,N , cN)− O+

(
1√
N

)
,

x+
q,N = g(λM−K+k,N , cN)+ O+

(
1√
N

)
,

g(λ, c) = (λ+σ2c)(λ+c)
λ

,

and O+
(

1√
N

)
is a positive O

(
1√
N

)
term.

Under the spiked model assumption, measure µN is intuitively expected to be very
close to the Marchenko-Pastur distribution µ, and particularly �N should be close to

supp(µ) = [σ 2(1 − √
cN)

2
, σ 2(1 + √

cN)
2].

Theorem 5.36 shows that the first cluster [x−
1,N , x

+
1,N ] is very close to the support of

the Marchenko-Pastur distribution; we have the presence of additional clusters, if the
eigenvalues of BNBN

H are large enough. Indeed, if Ks eigenvalues of BNBN
H converge

to different limits, above the threshold σ 2√c, then there will be Ks additional clusters in
the support of �N for all large N .

Theorem 5.36 also states that the smallest M −Ks eigenvalues of BNBN
H are associ-

ated with the first cluster, or equivalently that

µN [x−
1,N , x

+
1,N ] = M −Ks

M
,

and that

µN [x−
k,N , x

+
k,N ] = 1

M
, k = 2, . . . , Ks.

The conditions for the support �N to split into several clusters depend in a nontriv-
ial way on σ , the eigenvalues of BNBN

H , the distance between them. However, under
stronger Assumption 5.2 (K independent of N and convergence of the eigenvalues to
different limits), explicit conditions for the separation of the eigenvalues are obtained:
an eigenvalue of BNBN

H is separated from the others if its limit is greater than σ 2√c.
The nonseparated eigenvalues are those associated with µN [x−

1,N , x
+
1,N ]. Therefore, in the

spiked model case, the behaviors of the clusters of �N are completely characterized.
The spectral decomposition of BNBH

N and �N�H
N are expressed as

BNBH
N = UN�UH

N and �N�H
N = ŨN �̃ŨH

N

with UN, ŨN unitary matrices and � = diag(λ1,N , . . . , λM,N), �̃ = diag(λ̃1,N , . . . , λ̃M,N).
The eigenvalues of BNBH

N and �N�H
N are decreasingly ordered such that 0 ≤ λ1,N ≤

. . . ≤ λM,N and 0 ≤ λ̃1,N ≤ . . . ≤ λ̃M,N , respectively.

Theorem 5.37 Under Assumption 5.2,

λ̃M−Ks+k,N
a.s.→

N→∞

{
σ 2(1 + √

c), k = 0

g(γk, c) k = 1, . . . , K.
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156 Cognitive Radio Communications and Networking

Let us consider the eigenvectors of BNBH
N and �N�H

N . Let us first start with a problem
of DOA estimation, and then convert the problem into the standard information plus noise
model defined in (5.37).

The observed M-dimensional time series yn for the n-vector sample are expressed as

yn =
K∑
k=1

aksk,n + vn = Asn + vn, n = 1, . . . , N

with
sn = (s1,n, . . . , sK,n)

T ,A = (a1, . . . , aK),

where sn collects K < M nonobservable “source signals,” the matrix A of M ×K is
deterministic with an unknown rank K < M , and (vn)n∈Z is additive white Gaussian
noise such that E(vnv

H
n ) = σ 2IM . Here Z denotes the set of all integers.

In matrix form, we have YN = (y1, . . . , yN), observation matrix of M ×N . Similarly,
we do this for SN and VN . Then,

YN = ASN + VN.

Using the normalized matrices

�N = 1√
N

YN,BN = 1√
N

ASN,WN = 1√
N

VN,

we obtain the standard model
�N = BN + WN. (5.39)

which is identical to (5.37). Recall that

• BN is a rank K deterministic matrix;
• WN is a complex Gaussian matrix with i.i.d. entries having zero mean and variance
σ 2/N .

The “noise subspace” is defined as

{u1,N , . . . ,uM−K,N },
that is, the eigenstate associated with 0 of BNBH

N , and the “signal space” the orthogonal
complement, that is, the eigenspace associated with the non-null eigenvalues of BNBH

N .
The goal of subspace estimation is to find the projection matrix onto the noise subspace,
that is,

�N =
M−K∑
k=1

u1,NuHk,N .

The subspace estimation problem we consider here is to find a consistent estimation of

ηN = dN�dHN , when N → ∞,

where (dN) is a sequence of deterministic vectors such that supN ||dN || < ∞.
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Large Random Matrices 157

Traditionally, ηN is estimated by

ηN = dN�̃NdHN =
M−K∑
k=1

dN ũHk,N ũk,NdHN ,

in other words, by replacing the eigenvectors of true signal covariance BNBH
N (informa-

tion only) with those of their empirical estimates �N�H
N (information plus noise). This

estimator only makes sense in the regime where M does not depend on N (thus cN → 0),
because from the classical law of large numbers, we have

‖�N�H
N − (BNBH

N + σ 2IM)‖
a.s.→

N→∞
0.

whose convergence is not true in general, if cN → c > 0. It can be shown that ηN − η̃N
does not converge to zero.

Fortunately, we can derive a consistent estimate of ηN by using the results concerning
the convergence of bilinear forms of the resolvent of �N�H

N .

Theorem 5.38 (Consistent estimate for the spiked model [282]) Let

η̃spike,N = dHN �̃NdN +
M∑

k=M−K+1

dHN ũk,N ũHk,NdN

(
1 − �′(λ̃K,N)

�(λ̃K,N)m(λ̃K,N)

)
,

where �(x) = xm(x)m̃(x), and m(x) is the Stieltjes transform of the Marchenko-Pastur
law, expressed as

m(z) = 1

−z(1 + cσ 2m(z)+ σ 2(1 − c))
,

and
m̃(x) = cm(x)− 1 − c

x
.

Then, under Assumption 5.2, if

lim
N→∞

λM−K+1,N = γ1 >σ
2√c,

it holds that
η̃spike,N − ηN

a.s.→
N→∞

0.

This theorem is derived using a different method [301].

5.4.4 Generalized Likelihood Ratio Test Using Large Random Matrices

The material in this subsection can be found in [302]. Denote by N the number of
observed samples

H0 : y[n] = w[n], n = 0, 1, . . . , N − 1 ,
H1 : y[n] = hs[n] + w[n], n = 0, 1, . . . , N − 1 ,
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158 Cognitive Radio Communications and Networking

where

• (w[n]), n = 0, . . . , N − 1 represents an indepdent and identically distributed (i.i.d.)
process of K × 1 vectors with circular complex Gaussian entries with mean zero and
covariance matrix σ 2IK ;

• vector h ∈ C
k×1 is deterministic, signal s[n], n = 0, . . . , N − 1 denotes a scalar i.i.d.

circular complex Gaussian process with zero mean and unit variance;
• (w[n]), n = 0, . . . , N − 1 and s[n], n = 0, . . . , N − 1 are assumed to be independent

processes.

We stack the observed data into a K ×N matrix

Y = [y[0], y[1], y[N − 1]].

Denote by R̂ the sample covariance matrix defined as

R̂ = 1

N
YYH . (5.40)

We denote by p0(Y; σ 2) and p1(Y; σ 2) the likelihood functions of the observation
matrix Y indexed by the unknown parameters h and σ 2 under hypotheses H0 and H1.

As Y is a K ×N matrix whose columns are i.i.d Gaussian vectors with covariance
matrix �

H0 : � = σ 2IK,
H1 : � = hhH + σ 2IK.

When parameters h and σ 2 are known, the Neyman-Pearson procedure gives a uni-
formly most power test, defined by the likelihood function

L = p1(Y; σ 2)

p0(Y; σ 2)
.

In practice, this is not the case: parameters h and σ 2 are not known. We will deal with
this case in the following. No simple procedure guarantees a uniformly most powerful
test, and a classical approach called GLRT considers

LN = suph,σ2p1(Y; σ 2)

suph,σ2p0(Y; σ 2)
.

The GLRT rejects hypothesis H0 when LN is above some threshold ξN

LN

H1≥
<
H0

ξN, (5.41)

where ξN is selected in order that the probability of false alarm P0(LN > ξN) does not
exceed a given level α.
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Large Random Matrices 159

With the aid of [303, 304], the closed form expression of the GLRT LN is derived in
[302]. Denote by

λ1 >λ2 > · · ·>λK ≥ 0

the ordered eigenvalues of R̂ (all distinct with probability one).

Proposition 5.1 Let TN be defined by

TN = λ1
1
K

TrR̂
. (5.42)

Then, the GLRT writes

LN = C

(TN)
N(1 − 1

K
TN)

(K−1)N = φN,K(TN), (5.43)

where

C =
(

1 − 1

K

)(1−K)N
.

Since TN ∈ (1,K) and φ(·) is an increasing function in this interval, (5.43) is equiva-
lent to

TN = φ−1
N,K(LN). (5.44)

Using (5.44), (5.41) is rewritten as

TN

H1≥
<
H0

γN, (5.45)

with

γN = φ−1
N,K(ξN).

The GLRT (5.45) requires setting the threshold γN which is a function of N . Let pN(t)
be the complementary c.d.f. of the statistics TN under the null hypothesis H0

pN(t) = P0(TN > t).

The threshold γN is thus defined as

γN = φ−1
N,K(α),

which guarantees that the probability of false alarm P0(TN > t) is kept under a desired
level α ∈ (0, 1).

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



160 Cognitive Radio Communications and Networking

Since pN(t) is continuous and decreasing from 1 to 0 in the interval t ∈ [0,∞), the
threshold p−1

N (α) is well defined. It is more convenient to rewrite the GLRT (5.45) as the
final form

pN(TN)

H1≥
<
H0

α. (5.46)

The exact expression required in (5.46) has been derived in [302]. The fundamental
point is that TN is only a function of the eigenvalues of λ1, . . . , λK of the sample covari-
ance matrix R̂ defined in (5.40). The adopted approach is to study the asymptotic behavior
of the complex c.d.f. pN as the number of observations N goes to infinity. The asymptotic
regime is defined as the joint limit where both the number K of sensors and the number
N of snapshots go to infinity at the same speed

Asymptoticregime : N → ∞, K → ∞, cN � K

N
→ c, with 0 < c < 1. (5.47)

This asymptotic regime (5.47) is relevant in cases where the sensing system must be
able to perform source detection in a moderate amount of time, that is, both the number
K of sensors and the number N of snapshots are of the same order. Very often, the
number of sensors is lower than the number of snapshots; hence, the ratio c is lower
than 1.

(5.47) is particularly the case for “cognitive radio network as sensors” presented in
Chapter 12. The basic idea behind this concept is that spectrum sensing is required in
the cognitive radio systems. The availability of so much information that is used for
spectrum sensing can also be exploited for sensing the radio environment (as “sensors”);
in this manner, a cognitive radio network is used as sensors. Note that the cognitive radio
network has much more information at its disposal than the traditional sensors such as
ZigBee and Wi-Fi. The programmability of software defined radios must be exploited.
Waveforms are programmable in these systems. Waveform diversity for remote sensing
is thus enabled.

Under hypothesis H0, � = IK . Sample covariance matrix R̂ is a complex Wishart
matrix. Its mathematical properties are well studied.

Under hypothesis H1, � = IK + hhH . Sample covariance matrix R̂ follows a single
spiked model, in which all the population eigenvalues are one except for a few fixed
eigenvalues [26].

The sample covariance matrix is not only central to the GLRT, but also to multivariate
statistics. In many examples, indeed, a few eigenvalues of the sample covariance matrix
are separated from the rest of the eigenvalues. Many practical examples show that the
samples have non-null covariance. It is natural to ask whether it is possible to deter-
mine which non-null population model can possibly lead to the few sample eigenvalues
separated from the Marchenko-Pastur density.

The simplest non-null case would be when the population covariance is finite rank
perturbation of a multiple of the identity matrix. In other words, all but finitely many
eigenvalues of the population covariance matrix are the same, say equal to 1. Such a
population model has been called “spiked population model”: a null or purely noise
model “spiked” with a few significant eigenvalues. The spiked population model was first
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Large Random Matrices 161

proposed by [22]. The question is how the eigenvalues of the sample covariance matrix
would depend on the nonunit population eigenvalues as N,K → ∞, as for example, a
few large population eigenvalues would possibly pull up a few sample eigenvalues.

Since the behavior of TN is not affected if the entries of Y are multiplied by a given
constant, we find it convenient to consider the model

� = IK + hhH .

Define the signal-to-noise ratio (SNR) as

ρK = ‖h‖2

σ 2
.

The matrix

� = UDUH ,

where U is a unitary matrix and

D = diag (ρK, 1, . . . , 1).

The limiting behavior of the largest eigenvalue λ1 can change, if the signal-to-noise ratio
ρK is large enough, above a threshold.

The support of the Marchenko-Pastur distribution is defined as [λ−, λ+], with λ− the
left edge and λ+ the right edge, where

λ− = (1 − √
c)2,

λ+ = (1 + √
c)2.

(5.48)

A further result due to Johnstone [22] and Nadler [305] gives its speed of convergence
O(N−2/3). Let �1 be defined as

�1 = N2/3

(
TN − (1 + √

cN)
2

bN

)
,

with bN = (1 + √
cN)

(
1√
cN

+ 1

)1/3

,

(5.49)

then �1 converges in distribution toward a standard Tracy-Widom random variable with
c.d.f. FTW defined in (5.50). The Tracy-Widom distribution was first introduced in [24, 25],
as the asymptotic distribution of the centered and rescaled large eigenvalue of a matrix
from the Gaussian Unitary Ensemble.

Definition 5.3 (Trace-Widom Law [24])

FTW2(s) = exp

(
−
∫ +∞

s

(x − s)q2(x) dx

)
,∀x ∈ R, (5.50)

where q(s) is the solution of the Painleve II differential equation

d2q(s)

ds2
= sq(s)+ 2q3(s),

satisfying the condition q(s) ∼ −Ai(s) (the Airy function) as s → +∞.
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162 Cognitive Radio Communications and Networking

Tables of the Tracy-Widom law are available, for example, in [306], and a practical
algorithm [307] is used to efficiently evaluate (5.50). Refer to [19] for an excellent survey.

Definition 5.4 (Assumption 5.1) The following constant ρ ∈ R exists

ρ = lim
K→∞

‖h‖2

σ 2
(= lim ρK

K→∞
).

We call ρ the limiting SNR. We also define

λ∞
spk = (1 + ρ)

(
1 + c

ρ

)
.

Under hypothesis H1, the largest eigenvalue has the following asymptotic behavior [26]
as N,K → ∞

λ1
a.s.→
H1

{
λ∞

spk, ρ >
√
c

λ+,

where λ∞
spk is strictly larger than the right edge λ+. In other words, if the perturbation is

large enough, the largest eigenvalue converges outside the support of Marchenko-Pastur
distribution [λ−, λ+]. The condition for the detectability of the rank one perturbation is

ρ >
√
c. (5.51)

Proposition 5.2 (Limiting behavior of T N under H0 and H1) Let Assumption 5.1 hold
true and further assume (5.51) is true, that is, ρ >

√
c. Then,

TN
a.s.→
H0
(1 + √

c)2, and

TN
a.s.→
H1
(1 + ρ)

(
1 + c

ρ

)
, as N,K → ∞.

In Theorem 5.39, we take advantage of the fundamental fact: the largest eigenval-
ues of the sample covariance matrix R̂, defined in (5.40), converge in the asymptotic
regime, defined in (5.47). The threshold and the p-value of interest can be expressed
in terms of Tracy-Widom quantiles. Related work includes [24, 25, 308–311], Johnstone
[9, 19, 22, 312–318], and Nadler [305].

Theorem 5.39 (Limiting behavior of GLRT [319]) Consider a fixed level α ∈ (0, 1) and
let γN be the threshold for which the power of (5.45) is maximum, that is,

TN

H1≥
<
H0

γN, (5.52)

with

γN = φ−1
N,K(ξN).
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Large Random Matrices 163

Then,

1. The following convergence is true

ζN � N2/3

bN
(γN − (1 − √

cN)
2
) →
N→∞,K→∞

F−1
TW (α).

2. The probability of false alarm of the following test

TN

H1≥
<
H0

(1 + √
cN)

2 + N2/3

bN
F−1
TW (α)

converges to α.
3. The p-value pN(TN) associated with the GLRT can be approximated by

p̃N(TN) = F̄−1
TW

(
N2/3(TN − (1 + √

cN)
2)

bN

)

in the sense that

pN(TN)− p̃N(TN) → 0.

Definition 5.5 (Hypothesis test of the condition number) Define the random variable
of the condition number χN as

χN � λ1

λK
,

where λ1 and λK are the largest and the lowest eigenvalue of the sample covariance matrix
R̂ defined as (5.40).

A related test [257] uses the ratio of the maximum to the minimum of the eigenvalues
of the sample covariance matrix. As for TN , χN is independent of the unknown noise
power σ 2. This test χN is based on an observation based on (5.48).

Under hypothesis H0, the spectral measure of R̂ weakly converges to the Marchenko-
Pastur distribution with support (λ−, λ+) with λ− and λ+ defined in (5.48). The largest
eigenvalue of R̂, λ1, converges toward λ+ under H0, and λ∞

spk under H1.

The lowest eigenvalue of R̂, λK , converges to [26, 271, 320]

λK
a.s.→ λ− = σ 2(1 − √

c)2,

under both H0 and H1. Therefore, the statistic χN admits the following limit

χ = λ1

λK

a.s.→
H0

λ+

λ− = (1 + √
c)

2

(1 − √
c)

2 ,

χ = λ1

λK

a.s.→
H1

λ∞
spk

λ− =
(1 + ρ)(1 + c

ρ
)

(1 − √
c)

2 , for ρ >
√
c

with λ∞
spk = (1 + ρ)

(
1 + c

ρ

)
.
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164 Cognitive Radio Communications and Networking

The test is based on the observation that the limit of χN under the alternative H1 is
strictly larger than the ratio λ+

λ− , at least when the SNR ρ is large enough.
The threshold must be determined before using the condition number test. It is proven

in [302] that TN outperforms χN . �1 is defined in (5.49) (repeated below) and �K is
defined as

�1 = N2/3

(
TN − (1 + √

cN)
2

bN

)
,

�K = N2/3


 λK − (1 + √

cN)
2

(
√
cN − 1)

(
1√
cN

− 1
)1/3


 .

Then, both �1 and �K converge toward Tracy-Widom random variables

(�1,�K) →
N→∞,K→∞

(X, Y ),

where X and Y are independent random variables, both distributed according to FTW(x).
A direct use of the Delta method [321, Chapter 3] gives the following convergence in
distribution

N2/3

(
λ1

λK
− (1 + √

cN)
2

(1 − √
cN)

2

)
→ (aX + bY )

where

a = (1 + √
c)

2

(1 − √
c)

2

(
1√
c

+ 1

)1/3

,

b = (1 + √
c)

2

(
√
c − 1)2

(
1√
c

− 1

)1/3

.

The optimal threshold is found to be

ξN � N2/3

(
γN − (1 + √

cN)
2

(1 − √
cN)

2

)
→

N→∞,K→∞
F̄−1
aX+bY (α).

with α = P0(χN >γN), α ∈ (0, 1).

In particular, ξN is bounded as N,K → ∞.

5.4.5 Detection of High-Dimensional Signals in White Noise

We mainly follow [322] for this development. We observe M samples (“snapshots”) of
possibly signal bearing N-dimensional snapshot vectors x1, . . . , xM . For each i,

xi ∼ NN(0, σ
2I),

where xi are mutually independent. The snapshot vectors are modelled as

H0 : xi = zi ,No signal
H1 : xi = Hsi + zi ,Signal present, i = 1, . . . ,M,
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Large Random Matrices 165

where

• zi ∼ NN(0, σ
2I), denotes an N-dimensional (real or circularly symmetric complex)

Gaussian noise vector whose σ 2 is assumed to be unknown;
• si ∼ NK(0,Rs) denotes a K-dimensional (real or circularly symmetric complex) Gaus-

sian signal vector with Rs ;
• and H is a N ×K unknown nonrandom matrix.
• H encodes the parameter vector associated with the j -th signal whose magnitude is

described by the j -th element of si .

Since the signal and noise vectors are independent of each other, the covariance matrix
of xi can be decomposed as

R = R̃s + σ 2I

where

R̃s = HRsH
H .

The sample covariance matrix is defined as

R̂ = 1

M

M∑
i=1

xix
H
i = 1

M
XXH ,

where

X = [x1| . . . |xM ]

is the matrix of observations (samples).
It is assumed that the rank of R̃s is K . Equivalently, the N −K smallest eigenvalues

of R̃s are equal to zero. Denote the eigenvalues of R by

λ1 ≥ λ2 ≥ · · · ≥ λN,

then the smallest N −K eigenvalues of R are all equal to σ 2 so that

λK+1 = λK+2 = · · · = λN = λ = σ 2.

In practice, we have to estimate the value of K , so called rank estimation.
We assume M>N and xi ∈ C

N . Similarly to the case of the true covariance matrix,
the eigenvalues of R̂ are ordered

l1 ≥ l2 ≥ · · · ≥ lN .

Our estimator developed here is robust to high-dimensionality and sample size
constraints.

A central object in the study of large random matrices is the empirical distribution
function (e.d.f.) of the eigenvalues. Under H0, the e.d.f. of R̂ converges to the Marchenko-
Pastur density FW(x). The almost sure convergence of the e.d.f. of the signal-free sample
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166 Cognitive Radio Communications and Networking

covariance matrix (SCM) implies that the moments of the eigenvalues converge almost
surely, so that

1

N

N∑
i=1

lki
a.s.→

∫
xkdFW(x) = MW

k ,

where [266]

MW
k = λk

k−1∑
j=0

cj
1

j + 1

(
k

j

)(
k − 1
j

)
.

For finite N and M , the sample moments, that is, 1
N

N∑
i=1
lki , will fluctuate about these

limiting values.

Proposition 5.3 (Convergence of moments in distribution [322]) Let R̂ denote a signal-
free sample covariance matrix found from a N ×M matrix of observations with i.i.d.
Gaussian samples of mean zero and variance λ = σ 2. For the asymptotic regime

N,M → ∞, and cM = N

M
→ c ∈ (0,∞),

we have

N






1
N

N∑
i=1
li

1
N

N∑
i=1
l2i


 −

[
λ

λ2(1 + c)

]

D→N



[

0
( 2
β

− 1)λ2c

]
︸ ︷︷ ︸

µQ

− 2

β

[
λ2c 2λ3c(1 + c)

2λ3c(c + 1) 2λ4c(2c2 + 5c + 2)

]
︸ ︷︷ ︸

Q


 ,

where the convergence is in distribution.

Proposition 5.4 (Convergence of the statistic qN ) Assume R̂ satisfies the hypothesis of
Proposition 5.3 for some λ. Consider the statistic

qN =
1
N

N∑
i=1
l2i(

1
N

N∑
i=1
li

)2 .

Then, as

N,M → ∞, and cM = N

M
→ c ∈ (0,∞),
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Large Random Matrices 167

we have

N[qN − (1 + c)]
D→N

((
2

β
− 1

)
c,

4

β
c2

)
,

where the convergence is in distribution.

The two Propositions 5.3 and 5.4 deal with H0. Now we introduce the two propositions
in the signal-bearing case H1. In the signal-bearing case, a so-called phase transition
phenomenon is observed, in that the largest eigenvalue will converge to a limit different
from that in the signal-free case only if the “signal” eigenvalues are above a certain
threshold.

Proposition 5.5 (Convergence of the eigenvalues of R̂) Let R̂ denote a sample covari-
ance matrix formed from aN ×M matrix of observations with i.i.d. Gaussian observations
whose columns are independent of each other and identically distributed with mean zero
and variance R. Denote the eigenvalues of R by

λ1 ≥ λ2 ≥ · · · ≥ λK >λK+1 = · · · λN = λ.

Let lj be the j -th largest eigenvalue of R̂. Then,

N,M → ∞,with cM = N

M
→ c ∈ (0,∞),

we have

lj =
{
λj (1 + λc

λj−λ ) if λj >λ(1 + √
c)

2

λ(1 + √
c)

2
if λj ≤ λ(1 + √

c)
2 for j = 1, . . . , K,

where convergence is almost certain.
This result appears in [26] for a very general setting. A matrix theoretic proof for the

real-valued SCM case may be found in [27] while a determinental proof for the complex
case may be found in [259]. A heuristic derivation appears in [323].

The “signal” eigenvalues strictly below the threshold described in Proposition 5.5
exhibit, on rescaling, fluctuations described by the Tracy-Widom distribution [24, 25].
An excellent survey is given in [19].

Proposition 5.6 (Convergence of the eigenvalues of R̂) Assume R and R̂ satis-
fies the hypotheses of Proposition 5.5. If λj >λ(1 + √

c) has multiplicity 1 and if√
M|c −N/M| → 0, then

√
N

[
lj − λj

(
1 + λc

λj − λ

)]
D→
a.s.

N
(

0,
2

β
λ2
j

(
1 − c

(λj − λ)2

))

where the convergence in distribution is almost sure.

A matrix theoretic proof for the real-valued SCM case may be found in [27] while a
determinental proof for the complex case may be found in [259]. The result has been
strengthened for non-Gaussian situations by Baik and Silverstein for general c ∈ (0,∞).
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168 Cognitive Radio Communications and Networking

Theorem 5.40 (The eigenvalues of R and R̂ converge to the same limit) Let R and R̂
be two N ×N sized covariance matrices whose eigenvalues are related as

� = diag (λ1, . . . , λp, λp+1, . . . ., λK, λ, . . . , λ)

�̃ = diag (λ1, . . . , λp, λ, . . . , λ),

where for some c ∈ (0,∞), and

λ < λi ≤ λ(1 + √
c), all i = p + 1, . . . , K.

Let R and R̂ be the associated sample covariance matrices formed from M snapshots.
Then, for

every N,M(N) → ∞, and cM = N

M
→ c ∈ (0,∞)

Prob (K̂ = j |R) → Prob (K̂ = j |R̃) for j = 1, . . . , p

and

Prob (K̂ >p|R) → Prob (K̂ >p|R̃) for j = 1, . . . , p,

where the convergence is almost surely and K̂ is the estimate of the number of signals
obtained using the algorithm in [322].

By Proposition 5.3, we heuristically define the effective number of (identifiable) signals as

Keff (R) = Number of eigenvalues of R>σ 2

(
1 +

√
N

M

)
.

Consider an example of

R = σ 2
S1v1vH1 + σ 2

S2v2vH2 + σ 2I,

which has the N − 2 smallest eigenvalues λ3 = · · · = λN = σ 2 and the two largest
eigenvalues

λ1 = σ 2 + (σ 2
S1‖v1‖2 + σ 2

S2‖v2‖2)

2
+

√
(σ 2

S1‖v1‖2 − σ 2
S2‖v2‖2)+ 4σ 2

S1σ
2
S2|〈v1, v2〉|2

2

λ2 = σ 2 + (σ 2
S1‖v1‖2 + σ 2

S2‖v2‖2)

2
−

√
(σ 2

S1‖v1‖2 − σ 2
S2‖v2‖2)+ 4σ 2

S1σ
2
S2|〈v1, v2〉|2

2

,

respectively. Applying the result in Proposition 5.3, we can express the effective number
of signals as

Keff =




2, if σ 2

(
1 +

√
N
M

)
< λ2

1, if λ2 ≤ σ 2

(
1 +

√
N
M

)
< λ1

0, if λ1 ≤ σ 2

(
1 +

√
N
M

)
.
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Large Random Matrices 169

In the special situation when

‖v1‖ = ‖v2‖ = ‖v‖ and σ 2
S1 = σ 2

S2 = σ 2
S ,

we can (in an asymptotic sense) reliably detect the presence of both signals from the
sample eigenvalues alone, whenever we have the following condition

Asymptotic identifiability condition: σ 2
S ‖v‖2

(
1 −

∣∣〈v1, v2〉
∣∣

‖v‖

)
>σ 2

√
N

M
.

We define ZSep
j as

ZSep
j =

λj

(
1 + σ2N

M(λj−σ2)

)
− σ 2

(
1 +

√
N
M

)2

√
2
βN
λ2
j

(
1 − N

M(λj−σ2)

) ,

which measures the (theoretical) separation of the j -th “signal” eigenvalue from the largest
“noise” eigenvalue in standard deviations of the j -th signal eigenvalue’s fluctuations.
Simulations suggest that reliable detection (with the empirical probability greater than
90% ) of the effective number of signals is possible if ZSep

j lies between 5 and 15.

5.4.6 Eigenvalues of (A + B)−1B and Applications

Roy’s largest root test [324] is relevant under this context. We follow [325] for this devel-
opment. Let X be an m× p normal data matrix: each row is an independent observation
from Np(0,�). A p × p matrix A = XHX is then said to have a Wishart distribution

A ∼ Wp(�, m).

Let

B ∼ Wp(�, n).

Assume that m ≥ p; then A−1 exists and the nonzero eigenvalues of A−1B generalize
the univariate F ratio. The scale matrix � has no effect on the distribution of these
eigenvalues; without loss of generality we assume that � = I. We follow the definition
of [110, p. 84] for the greatest root statistic.

Definition 5.6 (Greatest root statistic) Let A ∼ Wp(�,m) is independent of
B ∼ Wp(�, n), where m ≥ p. Then the largest eigenvalue θ of (A + B)−1B is called the
greatest root statistic and a random variate having this distribution is denoted λ1(p,m, n)

or λ1,p for short.

Since A is positive definite, 0 < λi < 1, for the i-th eigenvalue. Equivalently,
λ1(p,m, n) is the largest root of the determinantal equation

det [B − λ(A + B)] = 0.
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170 Cognitive Radio Communications and Networking

The parameter p stands for dimension, m the “error” degrees of freedom and n the
“hypothesis” degrees of freedom. Thus m+ n represents the “total” degrees of freedom.

The greatest root distribution has the property

λ1(p,m, n) = λ1(n,m+ n− p, p), (5.53)

useful in the case when n < p. [110, p. 84]
Assume p is even and that p,m = m(p), n = n(p) all go to infinity together such that

lim
p→∞

min(p, n)

m+ n
> 0, lim

p→∞
p

m
< 1. (5.54)

Define the logit transform Wp as

Wp = logitλ1,p = log

(
λ1,p

1 − λ1,p

)
.

Johnstone (2008) [325] shows Wp, is, with appropriate centering and scaling, approxi-
mately Tracy-Widom distributed:

Wp − µp

σp

D⇒Z1 ∼ F1.

The distribution function F1 was found by Tracy and Widom to be the limiting law of
the largest eigenvalue of a p × p Gaussian symmetric matrix [25].

The centering and scaling parameters are

µp = 2 log tan

(
ϕ + γ

2

)
, σ 3

p = 16

(m+ n− 1)2
1

sin2 (ϕ + γ ) sinϕ sin γ
, (5.55)

where the angle parameters γ, ϕ are defined by

sin2
(γ

2

)
= min(p, n)− 1/2

m+ n− 1
, sin2

(ϕ
2

)
= max(p, n)− 1/2

m+ n− 1
. (5.56)

Theorem 5.41 (Johnstone (2008) [325]) Assume that m(p), n(p) → ∞ as p → ∞
through even values of p according to (5.54). For each t0 ∈ R, there exists C > 0 such
that for t > t0,

|P {Wp ≤ µp + σpt} − F1(t)| ≤ Cp−2/3e−t/2.

Here C depends on (γ, ϕ) and also on t0 if t0 < 0.

Data matrices X based on complex-valued data rises frequently in signal processing
and communications. If the rows of X are drawn independently from a complex normal
distribution CN(µ,�), then we say

A = XHX ∼ CWp(�, n).
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Large Random Matrices 171

In parallel with the real case definition, if

A ∼ CWp(I, m) and B ∼ CWp(I, n)

are independent, then the joint density of the eigenvalues

1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

of (A + B)−1B, or equivalently

det [B − λ(A + B)] = 0,

is given by [326]

f (λ) = c

p∏
i=1

(1 − λi)
m−pλn−pi

∏
i<j

(λi − λj ).

The largest eigenvalue λC(p,m, n) of (A + B)−1B is called the greatest root statistic,
with distribution λC(p,m, n). The property (5.53) carries over to the complex case.

Again, we define

WC
p = logitλC1,p = log

(
λC1,p

1 − λC1,p

)
.

Theorem 5.42 (Johnstone (2008) [325]) Assume that m(p), n(p) → ∞ as p → ∞
according to (5.54). For each t0 ∈ R, there exists C > 0 such that for t > t0,

|P {WC
p ≤ µCp + σCp t} − F2(t)| ≤ Cp−2/3e−t/2.

Here C depends on (γ, ϕ) and also on t0 if t0 < 0.

The centering µCp and scaling σCp are given in [325]. Software implementation is also
available. See [325] for details.

We are now in a position to consider several settings in multivariate statistics using
double Wishart models.

5.4.7 Canonical Correlation Analysis

Suppose that there are N observations on each of L+M variables. For definiteness,
assume that L ≤ M . The first L variables are grouped into an N × L data matrix

X = [x1x2 · · · xL]

and the last M into N × L data matrix

Y = [y1y2 · · · yM ].

Write

SXX = XT X, SXY = XT Y, SYY = YT Y,

for cross-product matrices. Canonical correlation analysis (CCA), or more precisely, the
zero-mean version of CCA, seeks the linear combinations aT x and bT y that are most
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172 Cognitive Radio Communications and Networking

highly correlated, that is, to maximize

ρ = Corr(aT x, bT y) = aT SXYb√
aT SXXa

√
bT SYYb

. (5.57)

This leads to a maximal correlation ρ1 and associated canonical vectors a1 and b1,
usually each taken to have unit length. The procedure may be iterated. We restrict the
search to vectors that are orthogonal to those already found:

ρk = max

{
aT SXYb : aT SXXa = bT SYYb = 1, and
aT SXXaj = bT SYYbj = 1, for 1 ≤ j ≤ k

}
.

The successive canonical correlations ρ1 ≥ ρ2 ≥ · · · ≥ ρL ≥ 0 may be found as the roots
of the determinantal equation

det (SXYS−1
YYSYX − ρ2SXX) = 0. (5.58)

See, for example, [110, p. 284]. A typical question in applications is how many of the
ρk are significantly different from zero.

After some manipulations, (5.58) becomes

det (B − ρ2(A + B)) = 0. (5.59)

Now assume that Z = [XY] is an N × (L+M) Gaussian data matrix with mean zero.
The covariance matrix is partitioned into

� =
(

�XX �XY

�YX �YY

)
.

Under these Gaussian assumptions, X and Y variable sets will be independent if and
only if

�XY = 0.

This is equivalent to asserting that

H0 : ρ1 = ρ2 = · · · = ρL = 0.

The canonical correlations (ρ1, . . . , ρL) are invariant under block diagonal transforma-
tions

(xi , yi ) → (Bxi ,Cyi )

of the data (for B and C nonsingular L× L and M ×M matrices, respectively). It follows
that under hypothesis

H0 : �XY = 0,

the distribution of the canonical correlations can be found (without loss of generality) by
assuming that

H0 : �XX = IL,�YY = IM.

In this case, the matrices A and B of (5.59) are

A ∼ CWL(I,M),B ∼ CWL(I, N −M).
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Large Random Matrices 173

From the definition, the largest squared canonical correlation λ1 = ρ2
1 has the �(L,N −

M,M) distribution under the null hypothesis �XY = 0.
In practice, it is more common to allow each variable to have a separate, unknown

mean. One can correct the mean using the approach, for example, in [325].

5.4.8 Angles and Distances between Subspaces

The cosine of the angle between two vectors u, v ∈ R
N is given by

cosϑ = σ(u, v) = |uT v|
‖u‖2‖v‖2

.

(5.57) becomes
ρ = σ(Xa,Yb).

5.4.9 Multivariate Linear Model

In the multivariate model,

Y = HX + W

where

1. Y of N ×M is an observed matrix of M response variables on each of N individuals
(sensors);

2. H of N ×K is a known design matrix (channel response);
3. X of K ×M is a matrix of unknown regression parameters;
4. W of N ×M is a matrix of unobserved random distributions (additive white Gaussian

noise). It is assumed that W is a normal matrix of N vector samples from NM(0,�),
so that the rows are independent Gaussian, each with mean 0 and common covariance
matrix �.

The model matrix H remains the same for each response; however, there are separate
vectors of unknown coefficients and errors for each response; these are organized into X
of regression coefficients and N ×M matrix E of errors [327]. Assuming for now that
the model matrix H has full rank, the least squares estimator is

X̂ = (HT H)−1HT Y.

Consider the linear hypothesis

H0 : C1X = 0,

where C1 is a r ×K matrix of rank r . For more details about C1, we refer to [327].
The hypothesis sums and errors sums of squares and product matrices become

E = YT PX = YT (I − H(HT H)
−1

HT )Y,
D = YT P2Y = (C1X̂)T (C1(H

T H)
−1

CT
1 )C1X̂.
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174 Cognitive Radio Communications and Networking

It follows [327] that

E ∼ WM(I, N −K),

and under hypothesis H0,

D ∼ WM(I, r);
in addition, D and E are independent. Generalization of the F-test is obtained from the
eigenvalues of the matrix E−1D, or equivalently, the eigenvalues of (D + E)−1D.

Thus, under the null hypothesis C1X = 0, Roy’s maximum root statistic λ1 has null dis-
tribution

λ1 ∼ �(M,N −K, r) where

M = dimension, r = rank(C1),K = rank(H), N = samples.

5.4.10 Equality of Covariance Matrices

Suppose that independent samples from two normal distributions NM(µ1,�1) and
NM(µ2,�2) lead to covariance estimates S1 and S2 which are independent and Wishart
distributed on N1 and N2 degrees of freedom:

Ai = NiSi ∼ WM(�i , Ni), i = 1, 2.

Then the largest root test of the null hypothesis

H0 : �1 = �2

is based on the largest eigenvalue λ of (A1 + A2)
−1A2, which under H0 has the

�(M,N1, N2) distribution [328].

5.4.11 Multiple Discriminant Analysis

Suppose that there are K populations, the i-th population being assumed to follow an
M-variate normal distribution NM(µi ,�i ), with the covariance matrix assumed to be
unknown, but common to all populations. A sample of size Ni (vector) observations is
available from the i-th population, leading to a total of N = ∑

Ni observations. Multiple
discriminant analysis uses the “within groups” and “between groups” sums of squares and
products matrices W and B to construct linear discriminant functions based on eigenvec-
tors of W−1B. A test of the null hypothesis that discrimination is not worthwhile

µ1 = · · · = µK

can be based, for example, on the largest root of W−1B, which leads to use of the
�(M,N −K,K − 1) distribution [110, pages 318 and 138].
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Large Random Matrices 175

5.5 Case Studies and Applications

5.5.1 Fundamental Example of Using Large Random Matrix

We follow [279] for this development. Define an M ×N complex matrix as

X =




X11 X12 · · · X1N
X21 X22 · · · X2N
...

XM1

...

XM2

...

· · ·
...

XMN




where (Xij )1≤i≤M,1≤j≤N are (a number of MN) i.i.d. complex Gaussian variables
CN(0, σ 2). x1, x2, . . . , xN are columns of X. The covariance matrix R is

R = ExxH = σ 2IM.

The empirical covariance matrix is defined as

R̂ = 1

N

N∑
n=1

xnx
H
n .

In practice, we are interested in the behavior of the empirical distribution of the eigen-
values of R̂ for large M and N . For example, how do the histograms of the eigenvalues
(λi)i=1,...,M of R̂ behave when M and N increase? It is well known that when M is fixed,
but N increases, that is, M

N
is small, the large law of large numbers requires

lim
N→∞
fixed M

1

N

N∑
n=1

xnx
H
n ≈ ExxH = σ 2IM.

In other words, if N � M , the eigenvalues of 1
N

XXH are concentrated around σ 2.
On the other hand, let us consider the practical case when M and N are of the same

order of magnitude. As

M,N → +∞ such that
M

N
= c ∈ [a, b], a > 0, b < +∞, (5.60)

it follows that

R̂ij = σ 2δi−j

but

‖R̂ij − σ 2IM‖
does not converge toward zero. Here || · || denotes the norm of a matrix. It is remark-
able to find (by Marchenko and Pastur [251]) that the histograms of the eigenvalues
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176 Cognitive Radio Communications and Networking

of R̂ tend to concentrate around the probability density of the so-called Marchenko-
Pastur distribution

pc(x) =
{

1
2πcx

√
(a − x)(x − b), x ∈ [a, b]

0, otherwise
(5.61)

with

a = σ 2(1 − √
c)2, b = σ 2(1 + √

c)2.

(5.61) is still true in the non Gaussian case. One application of (5.61) is to evaluate the
asymptotic behavior of linear statistics

1

M

M∑
k=1

f (λk) = 1

M
Tr(f (R̂)) ≈

∫
f (x)pc(x) dx, (5.62)

where f (x) is an arbitrary continuous function. The use of (5.61) allows many problems
to be treated in closed forms. To illustrate, let us consider several examples:

1. f (x) = 1
ρ2+x . Using (5.62), it follows that

1

M
Tr(R̂ + σ 2IM)

−1 ≈
∫

1

ρ2 + x
pc(x) dx = mN(−ρ2),

where mN(−ρ2) is a unique positive solution of the equation

mN(−ρ2) = 1

ρ2 + σ2

1+cσ2mN(−ρ2)

.

2. f (x) = log(1 + x

ρ2 ). Using (5.62), it is found that the expression

1

M
log det

(
IM + 1

ρ2
R̂
)

is nearly equal to

1
c

log(1 + cσ 2mN(−ρ2))+ log
(

1 + cσ 2mN(−ρ2)+ (1 − c) σ
2

ρ2

)
−ρ2σ 2mN(−ρ2)

(
cmN(−ρ2)+ 1−c

ρ2

)
.

(5.63)

The fluctuations of the linear statistics (5.62) can be cast into closed forms. The bias
of the linear estimator is

E

[
1

M
Tr(f (R̂))

]
=
∫
f (x)pc(x) dx + O

(
1

M2

)
.

The variance of the linear estimator is

M

[
1

M
Tr(f (R̂))−

∫
f (x)pc(x) dx

]
→ N(0,
2),

where 
2 is the variance and N denotes the normal Gaussian distribution. In other words,

1

M
Tr(f (R̂))−

∫
f (x)pc(x) dx ≈ N

(
0,

2

M2

)
.
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Large Random Matrices 177

5.5.2 Stieltjes Transform

We here follow [329]. Let us consider

WWH + σ 2I,

where
√
NW is an N ×K matrix with i.i.d. entries with zero mean and variance one, for

K/N → α as N → ∞.

Denote A = σ 2I and D = IK,K . For this case, we have

dA(x) = δ(x − σ 2)

dD(x) = δ(x − 1).

Applying Theorem 5.25, it follows that

G(z) = Gσ2I

(
z− α

∫
τδ(τ−1)
1+τG(z)dτ

)
= Gσ2I(z− α

1+G(z) )

= ∫
δ(σ2−x)

x−z+ α
1+G(z)

dx

= 1
σ2−z+ α

1+G(z)
.

(5.64)

Gσ2I(z) is the Cauchy transform of the eigenvalue distribution of matrix σ 2I. The
solution of (5.64) gives

G(z) = 1 − α

2(σ 2 − z)
− 1

2
± 1

2(σ 2 − z)

√
(σ 2 − z+ α − 1)2 + 4(σ 2 − z).

The asymptotic eigenvalue distribution is given by

f (x) =



(1 − α)+δ(x) if σ 2 + (

√
α − 1)2

+ α

π(x−σ2)

√
x − σ 2 − 1

4 (x − σ 2 + 1 − α) ≤ x ≤ σ 2 + (
√
α + 1)2

0 otherwise

where δ(x) is a unit mass at 0 and [z]+ = max(0, z).
Another example is the standard vector-input, vector-output (VIVO) model3

y = Hx + n, (5.65)

where x and y are, respectively, input and output vectors, and H and n are channel transfer
function and additive white Gaussian noise with zero mean and variance σ 2. Here H is
a random matrix. (5.65) covers a number of systems including CDMA, OFDM, MIMO,
cooperative spectrum sensing and sensor network. The mutual information between the

3 MIMO has a special meaning in the context of wireless communications. This informal name VIVO captures
our perception of the problem. Vector nature is fundamental. Vector space is the fundamental mathematical space
for us to optimize the system.
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178 Cognitive Radio Communications and Networking

input vector x and the output vector y is a standard result in information theory

C = 1
N
I (x; y) = 1

N
log det (I + HHH )

= 1
N

N∑
i=1

log
(

1 + 1
σ2 λi(HHH )

)
= ∫

log
(

1 + 1
σ2 λ

)
1
N

N∑
i=1
δ(λ− λi(HHH ))dλ

= ∫
log

(
1 + 1

σ2 λ
)
FHHH (λ) dλ.

Differentiating C with respect to σ 2 yields

1
N

∂C

∂σ2 = ∫
log

(
− 1
σ4 λ

1+ 1
σ2 λ

)
FHHH (λ) dλ

= − 1
σ2

∫
log

(
1+ 1

σ2 λ−1

1+ 1
σ2 λ

)
FHHH (λ) dλ

= − 1
σ2 + ∫

log
(

1 + 1
σ2 λ

)
FHHH (λ) dλ

= − 1
σ2 +mHHH (−σ 2).

It is interesting to note that we get the closed form in terms of the Stieltjes transform.

5.5.3 Free Deconvolution

We follow the definitions and notations of the example shown in Section 5.5.1. For more
details, we see [12, 329, 330]. For a number of N vector observations of xi , i = 1, . . . , N ,
the sample covariance matrix is defined as

R̂ = 1
N

N∑
n=1

xnx
H
n

= R1/2WWHR1/2.

(5.66)

Here, W is anM ×N matrix consisting of i.i.d. zero-mean, Gaussian vectors of variance
1/N . The main advantage of free deconvolution techniques is that asymptotic “kick-in”
at a much earlier stage than other techniques available up to now [329]. Often, we know
the values of R which are the theoretical values. We would like to find R̂. If we know the
behavior of the matrix WWH , with the aid of (5.66), R̂ can be obtained. Thus, our problem
of finding R̂ is reduced to understand WWH . Fortunately, the limiting distribution of the
eigenvalues of WWH is well-known to be the Marchenko-Pastur law.

Due to our invariance assumption on one of the matrices (here WWH ), the eigenvector
structure does not matter. The result enables us to compute the eigenvalues of R, by
knowing only the eigenvalues of R̂. The invariance assumption “frees,” in some sense,
one matrix from the other by “disconnecting” their eigenspaces.

5.5.4 Optimal Precoding of MIMO Systems

Given M receive antennas and N transmit antennas, the standard vector channel model is

y = Hx + n, (5.67)
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Large Random Matrices 179

where the complex entries of H of M ×N are the MIMO channel gains and H is a
nonobservable Gaussian random matrix with known (or well estimated) second order
statistics. Here, x is the transmitted signal vector and n is the additive Gaussian noise
vector at the receiver with EnnH = ρ2IM .

The optimum precoding problem is to find the covariance matrix Q of x in order to
maximize some figure of merit of the system. For example, the optimization problem can
be expressed as

Maximize I (Q) = E
[
log det

(
IM + 1

ρ2 HQHH
)]

Subject to Q ≥ 0; 1
M

Tr(Q) ≤ 1.

A possible alternative is to maximize a large system approximation of I (Q). Closed-form
expressions (5.63) can be used [331]. For more details, see [279].

5.5.5 Marchenko and Pastur’s Probability Distribution

We follow [279] for this development. The Stieltjes transform is one of the numerous
transforms associated with a measure. It is well suited to study large random matrices
and was first introduced in this context by Marchenko and Pastur [251]. The Stieltjes
transform is defined in (5.34).

Consider

WN = 1

N
VN (5.68)

where VN is a M ×N matrix with i.i.d. complex Gaussian random variables CN(0, σ2).
Our aim is the limiting spectral distribution of X = WNWN

H . Consider the associated
resolvent and its Stieltjes transform

Q(z) = (X − zI)−1, m̂N(z) = 1

M
TrQ(z) = 1

M
Tr(X − zI)−1. (5.69)

The main assumption is: The ratio cN = M
N

is bounded away from zero and upper bounded,
as M,N → ∞.

The approach is sketched here. First one derives the equation that is satisfied by the
Stieltjes transform of the limiting spectral distribution m̂N(z) defined in (5.69). Afterwards,
one relies on the inverse formula (see (5.35)) of Stieltjes transform, to obtain the so-called
Marchenko-Pastur distribution.

There are three main steps:

1. To prove that var(m̂N(z)) = O(N−2). This enables us to replace m̂N(z) by its expec-
tation Em̂N(z) in the derivation.

2. To establish the limiting equation satisfied by Em̂N(z).
3. To recover the probability distribution, with the help of the inverse formula of Stieltjes

transform (5.35).

The Stieltjes transform in this work of large random matrices plays a role analogous
to the Fourier transform in a linear, time-invariant (LTI) system.
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180 Cognitive Radio Communications and Networking

5.5.6 Convergence and Fluctuations Extreme Eigenvalues

We here follow [279] for presentation. Consider the WWH defined in (5.68). Denote by

λ̂1,N ≥ λ̂2,N ≥ · · · ≥ λ̂N,N

the ordered eigenvalues of WWH . The support of Marchenko-Pastur distribution is

(σ 2(1 − √
cN)

2
, σ 2(1 + √

cN)
2
).

One theorem is: If cN → c∗, we have

λ̂1,N
a.s.→

N,M→∞
σ 2(1 + √

cN)
2,

λ̂N,N
a.s.→

N,M→∞
σ 2(1 − √

cN)
2,

where “a.s.” denotes “almost surely.” The ratio of two limit expressions is used for
spectrum sensing in Example 5.4.

A central limit theorem holds for the largest eigenvalue of matrix WWH , as M,N →
∞. The limiting distribution is known as Tracy-Widom Law’s distribution (see (5.50))
for fluctuations of λ̂1,N .

The function FTW2(s) stands for Tracy-Widom culmination distribution function. MAT-
LAB codes are available to compute [332].

Let us cN → c∗. When corrected centered and rescaled, λ̂1,N converges to a Tracy-
Widom distribution:

N2/3

σ 2
× λ̂1,N − σ 2(1 + √

cN)
2

(1 + √
cN)

(
1√
cN

+ 1
)1/3

L→
N,M→∞

FTW2.

5.5.7 Information plus Noise Model and Spiked Models

We refer to [263, 279, 299, 300, 302, 333–335] for more details. The observed
M-dimensional time series yn for the n-vector sample are expressed as

yn =
K∑
k=1

aksk,n + vn = Asn + vn, n = 1, . . . , N

with

sn = (s1,n, . . . , sK,n)
T ,A = (a1, . . . , aN),

where sn collects K < M nonobservable “source signals,” the matrix A is deterministic
with an unknown rank K < M , and (vn)n∈Z is additive white Gaussian noise such that
E(vnv

H
n ) = σ 2IM . Here Z denotes the set of all integers.

In matrix form, we have YN = (y1, . . . , yN)
T , observation matrix of M ×N . We do

this for SN and VN . Then,

YN = ASN + VN.
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Large Random Matrices 181

Using the normalized matrices

�N = 1√
N

YN,BN = 1√
N

ASN,WN = 1√
N

VN,

we obtain

�N = BN + WN. (5.70)

Detection of the presence of signal(s) from matrix �N is to tell whether K = 1 versus
K = 0 (noise only) to simplify. Since K does not scale with M , that is, K � M , a spiked
model is reached.

We assume that the number of sources K is K � N . (5.39) is a model of

�N = Matrix with Gaussian iid elements + fixed rank perturbation.

The asymptotic regime is defined as

N → ∞,M/N → c∗, and Kis fixed.

Let us further assume that SN is a random matrix with independent CN(0, 1) elements
(Gaussian iid source signals), and AN is deterministic. It follows that

�N = (ANAH
N + σ 2IM)

1/2XN

where BN is M ×N with independent CN(0, 1) elements.
Consider a spectral factorization of ANAH

N

ANAH
N = UN



λ1 0

. . .

λK
0 0


UH

N .

Let PN be the M ×M matrix

PN = diag

(√
λ1 + σ 2

σ 2
,

√
λ2 + σ 2

σ 2
, · · · ,

√
λK + σ 2

σ 2
, 1, · · · , 1

)
.

Then

UH
N�N = σPNUH

NXN

D= PNWN

where WN is M ×N with independent CN(0, 1) elements and D denotes weak con-
vergence. Since PN is a fixed rank perturbation of identity, we reach the so-called
multiplicative spike model

eigenvalues of �N�N
H ≡ eigenvalues of PNWNWH

NPHN .

Similarly, we can define the additive spike model. Let us assume that SN is a deter-
ministic matrix and

BN = N−1/2ANSN
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182 Cognitive Radio Communications and Networking

is such that

rank (BN) = K (fixed) .

The additive spike model is defined as

�N = BN + WN.

A natural question arises: What is the impact of B̃N on the spectrum of �N�N
H in the

asymptotic regime?
Let F̃N and FN be the distribution functions of the spectral measures of �N�N

H and
WNWH

N , respectively. Then

sup
x

|F̃N − FN | ≤ 1

M
rank (�N�N

H − WNWH
N ) →

N→∞
0.

Thus �N�N
H and WNWH

N have identical (Marchenko-Pastur) limit spectral measure,
either for the multiplicative or the additive spike model.

We use our measured data to verify the Marchenko-Pastur law. There are five USRP
platforms serving as sensor nodes. The data acquired from one USRP platform are seg-
mented into twenty data blocks. All these data blocks are used to build large random
matrices. In this way, we emulate the network with 100 sensor nodes. If there is no sig-
nal, the spectral distribution of noise sample covariance matrix is shown in Figure 5.1(a)
which follows the Marchenko-Pastur law in (5.3). When signal exists, the spectral dis-
tribution of sample covariance matrix of signal plus noise is show in Figure 5.1(b). The
experimental results well agree with the theory. The support of the eigenvalues is finite.
The theoretical prediction offered by the Marchenko-Pastur law can be used to set the
threshold for detection.

Main results on the eigenvalues can be summarized into the theorem [279].
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Figure 5.1 Spectral distribution. (a) Spectral distribution of noise sample covariance matrix; (b)
Spectral distribution of sample covariance matrix of signal plus noise.
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Large Random Matrices 183

Theorem 5.43 (Main result on the eigenvalues) The additive spike model is

�N = BN + WN,

where BN is a deterministic rank-K matrix such that

λk,N → ρk

for k = 1, . . . , K , and WN is a M ×N random matrix with independent CN(0, σ 2/N)

elements. Let i ≤ K be the maximum index for which ρi >σ
2√c∗. Then, for k = 1, . . . , i,

λk,N
a.s.→

N→∞
γk = (σ2c∗+ρk)(σ2+ρk)

ρk
> σ 2(1 + √

c∗)
2,H1

λi+1,N
a.s.→

N→∞
σ 2(1 + √

c∗)
2,H0.

where H1 denotes the presence of signal(s) while H0 the absence of signal(s).

5.5.8 Hypothesis Testing and Spectrum Sensing

This example is continued from the example shown in Section 5.5.7. For more details,
we see [263, 279, 299, 300, 302, 333–335]. One motivation is to exploit the asymptotic
limiting distribution for spectrum sensing.

The hypothesis test is formulated as

H1 : �N = BN + WN (noise)
H0 : �N = WN (Information + noise).

Assume further K = 1 source for convenience.

BN = N−1/2a1,N s1,N ,

is a rank one matrix such that

‖BN‖2 →
N→∞

ρ > 0.

The GLRT is

TN = λ1,N

M−1Tr(�N�N
H )
. (5.71)

The natural question is: what is the asymptotic performance of TN under the assumption
of large random matrices?

Under H0 and H1, we have

M−1�N�N
H a.s.→
N→∞

σ 2.

As a consequence of Theorem 5.43, under H1, if ρ >σ 2√c∗, then

λ1,N
a.s.→

N→∞
γ1 = (σ2c∗+ρ)(σ2+ρ)

ρ
> σ 2(1 + √

c∗)
2,

λ2,N
a.s.→

N→∞
σ 2(1 + √

c∗)
2.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



184 Cognitive Radio Communications and Networking

If ρ ≤ σ 2√c∗, then

λ1,N
a.s.→

N→∞
σ 2(1 + √

c∗)
2.

Using the above result in (5.71), under H0, we have

a.s.

TN →
N→∞

(1 + √
c∗)

2.

Under H1, if ρ >σ 2√c∗, we have

a.s.

TN →
N→∞

(σ 2c∗ + ρ)(σ 2 + ρ)

σ 2ρ
> (1 + √

c∗)
2,

If ρ ≤ σ 2√c∗, we have

a.s.

TN →
N→∞

(1 + √
c∗)

2.

Recall that

cN = M

N
→ c∗.

The limit of detectability by the GLRT is given by

ρ >σ 2√c∗.
Defining SNR = ρ

σ2 , we have

SNR>
√
c∗.

For extremely low SNR, it follows that c∗ must be very small, implying

N � M.

With the help of the Tracy-Widom law, false alarm probability can be evaluated and
linked with the decision threshold TN .

For finite, low rank perturbation of large random matrices, the eigenvalues and eigen-
vectors are studied in [335].

Example 5.8 (Dozier and Silverstein [263, 279, 300])
According to Dozeir and Silverstein [263, 279, 300] it exists a deterministic probability
measure µN by R

+ such that

1

M

M∑
k=1

δ(λ− λk,N)− µN → 0 weakly almost surely.

Consider the additive spike model (5.70) repeated here for convenience

�N = BN + WN. (5.72)
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Large Random Matrices 185

The approach to characterize µN is sketched here: The Stieltjes transform of µN is
defined on C − R

+ as

mN(z) =
∫
+

1

λ− z
µN(dλ),

mN(z) = 1

M
TrTN(z)

with

TN(z) =
(

BNBH
N

1 + σ 2cNmN(z)
− z(1 + σ 2cNmN(z))IM + σ 2(1 − cN)IM

)−1

. �

5.5.9 Energy Estimation in a Wireless Network

Consider a wireless (primary) network [330] in which K entities are transmitted data
simultaneously on the same frequency resource. Transmitter k ∈ (1, . . . , K) has transmit-
ted power Pk and is equipped with nk antennas. We denote

n =
K∑
k=1

nk

the total number of transmit antennas of the primary network.
Consider a secondary network composed of a total of N , N ≥ n, sensing devices: they

may be N single antennas devices or multiple devices embedded with multiple antennas
whose sum is equal to N . The N sensors are collectively called the receiver. To ensure
that every sensor in the second network roughly captures the same amount of energy from
a given transmitter, it is assumed that the respective transmitter-sensor distances are alike.
This is realistic assumption for anb in-house femtocell network.

Denote Hk ∈ C
N×nk the multiple antenna channel matrix between transmitter k and the

receiver. We assume that the entries of
√
NHk are independent and identically distributed

(i.i.d.), with zero mean, unit variance, and finite fourth-order moment.
At time instant m, transmitter k emits the multi-antenna signal vector x(m)k ∈ C

nk , whose
entries are assumed to be i.i.d., with zero mean, unit variance, and finite fourth-order
moment.

Further, we assume that at time instant m, the received signal vector is impaired by
an additive white Gaussian noise (AWGN) vector, denoted σw(m) ∈ C

N , whose entries
are assumed to be i.i.d., with zero mean, variance σ2, and finite fourth-order moment on
every sensor. The entries of σw(m)

k have unit variance.
At time m, the receiver senses the signal y(m) ∈ C

N defined as

y(m) =
K∑
k=1

√
PkHkx

(m)
k + σw(m)

k .

It is assumed that at least M consecutive sampling periods, the channel fading coeffi-
cients are constant. We concatenate M successive signal realizations into

Y = [y(1), . . . , y(M)] ∈ C
N×M,
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186 Cognitive Radio Communications and Networking

we have

with Xk = [x(1), . . . , x(M)] ∈ C
nk×M,Wk = [w(1), . . . ,w(M)] ∈ C

N×M,

for every k. This can be further recast into the final form

Y = HP
1
2 X + σW (5.73)

where P ∈ R
n×n is diagonal with first n1 entries P1, subsequent n2 entries P2, . . ., last nK

entries PK ,

H = [H1, . . . ,HK ], and X = [XT
1 , . . . ,XT

K ] ∈ C
n×M.

By convention, it is assumed that

P1 ≤ · · · ≤ PK.

H,W and X have independent entries of finite fourth-order moment. The entries of
X need not be identically distributed, but may originate from a maximum of K distinct
distributions.

Our objective is to infer the values of P1, · · · , PK from the realization of the random
matrix Y. The problem at hand is to exploit the eigenvalue distribution of 1

M
YYH as N, n

and M grow large at the same rate.

Theorem 5.44 (Stieltjes transform of 1
M YYH ) Let

BN = 1

M
YYH ,

where Y is defined in (5.73). Then, for M,N, n growing large with limit ratios

M,N, n → ∞,
M

N
→ c,

N

nk
→ ck, 0 < c, c1, . . . , cK < ∞,

the eigenvalue distribution function FBN of BN , referred to as the empirical spectral func-
tion (e.s.d.) of BN , converges almost surely to the deterministic distribution function F ,
referred to as the limit spectral function (l.s.d.) of BN , whose Stieltjes transform mF(z)

satisfies, for z ∈ C
+

mF(z) = cmF−
(z)+ (c − 1)

1

z

where mF−
(z) is the unique solution with positive imaginary part of the implicit equation

in mF−
1

mF−

= −σ 2 + 1

f
−

K∑
k=1

1

ck

Pk

1 + PKf

in which we denote f the value

f = (1 − c)mF−
− czm2

F−
.

For Assumption 5.3 and Assumption 5.4—too long to be covered in this context—that
are used in the following theorem, we refer to [330].
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Large Random Matrices 187

5.5.10 Multisource Power Inference

Let BN ∈ C
N×N be defined as in Theorem 5.45, and

λ = (λ1, . . . , λN), λ1 ≤ · · · ≤ λN,

be the vector of the ordered eigenvalues of BN . Further assume that the limiting ratios
c, c1, . . . , cK and P are such that Assumptions 5.3 and 5.4 are fulfilled for some k ∈
{1, . . . , K}. Then, as N, n,M grow large, we have P̂k − Pk

a.s.→ 0 where the estimates P̂k
is given by

• if M �= N ,

P̂k = NM

nk(M −N)

∑
i∈Nk

(ηi − µi)

• if M = N ,

P̂k = N

nk(M −N)

N∑
i∈Nk


∑
j=1

ηi

(λj − ηi)
2


−1

in which

Nk =
{
k−1∑
i=1

ni + 1, . . . ,
k∑
i=1

ni

}
,

(η1, . . . , ηN) are ordered eigenvalues of the matrix diag(λ)− 1
N

√
λ
√

λ and
(µ1, . . . , µN) are the ordered eigenvalues of the matrix diag(λ)− 1

M

√
λ
√

λ.

A blind multisource power estimation has been derived in [330]. Under the assumptions
that the ratio between the number of sensors and the number of signals are not too small,
and the source transmit powers are sufficiently distinct from one another, they derive a
method to infer the individual source powers if the number of sources are known. This
novel method outperforms the alternative estimation techniques in the medium to high
SNR regime. This method is robust to small system dimensions. As such, it is particularly
suited to the blind detection of primary mobile users in future cognitive radio networks.

5.5.11 Target Detection, Localization, and Reconstruction

We follow [336] for this development. A point reflector can model a small dielectric
anomaly in electromagnetism; a small density anomaly in acoustics, or more generally,
a local variation of the index of refraction in the scalar wave equation. The contrast of
the anomaly can be of order one but its volume is small compared to the wavelength.
In such a situation, it is possible to expand the solution of the wave equation around the
background solution.

Consider the scalar wave equation in a d-dimensional homogeneous medium with the
index of refraction n0. The reference speed of propagation is denoted by c. It is assumed
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188 Cognitive Radio Communications and Networking

that the target is a small reflector of inclusion D with the index of refraction nref �= n0.
The support of the inclusion is of the form D = xref + B, where B is a domain with
small volume. Thus the scalar wave equation with the source S(t, x) takes the form

n2(x)
c2

∂2
t E −
xE = S(t, x),

where the index of refraction is given by

n(x) = n0 + (nref − n0)1D(x).

For any yn, zm far from xref the field Re[(yn, zm)e
−jωt ], observed at yn, when a point

source emits a time-harmonic signal with frequency ω at zm, can be expanded as powers
of the volume as

Ê(yn, zm) = Ĝ(yn, zm)+ k2
0ρref Ĝ(yn, xref )Ĝ(xref , yn)+ O

(
|B|

d+1
d

)
,

where k0 = n0ω/c is the homogeneous wavenumber, ρref is the scattering amplitude

ρref =
(
n2
ref

n2
0

− 1

)
|B|,

and Ĝ(y, z) is the Green’s function or fundamental solution of the Helmhotz equation
with a point source at z:


xĜ(x, z)+ k2
0Ĝ(x, z) = −δ(x − z).

More explicitly, we have

Ĝ(x, z) =
{

i
4H

(1)
0 (k0|x − z|) d = 2,

ejk0|x−z|
4π |x−z| d = 3,

where H(1)
0 is the Hankel function of the first kind of order zero.

When there are M sources (zm)m=1,...,M and N receivers (yn)n=1,...,N , the response
matrix is the N ×M matrix

H0 = (H0nm)n=1,...,N,m=1,...,M

defined by

H0nm = Ê(yn, zm)− Ĝ(yn, zm).

This matrix has rank one:

H0 = σrefuref vHref .

The nonzero singular value is

σref = k2
0ρref

(
N∑
l=1

|Ĝ(yl , x)|2
)1/2( N∑

l=1

|Ĝ(zl , x)|2
)1/2

. (5.74)
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Large Random Matrices 189

The associated left and right singular vectors uref and vref are given by

uref = u(xref ), uref = v(xref ),

where the normalized vectors of Green’s functions are defined as

u(x) =


 Ĝ(yn, x)(

N∑
l=1

|Ĝ(yl , x)|2
)1/2



n=1,...,N

, v(x) =


 Ĝ∗(zm, x)(

M∑
l=1

|Ĝ(zl , x)|2
)1/2



m=1,...,M

,

where ∗ denotes the conjugation of the function.
The matrix H0 is the complete data set that can be collected. In practice, the measured

matrix is corrupted by electronic or measurement noise that has the form of an additive
noise. The standard acquisition gives

H = H0 + W

where the entries of W are independent complex Gaussian random variables with zero
mean and variance σ 2

n /M . We assume that N ≥ M .
The detection of a target can be formulated as a standard hypothesis testing problem

H0 : H = W
H1 : H = H0 + W.

Without target H0, the behavior of W is has been extensively studied. With target H1,
the singular values of the perturbed random response matrix are of interest. This model is
also called the information plus noise model or the spiked population model. The critical
regime of practical interest is that the singular values of an unperturbed matrix are of
the same order, as the singular values of the noise, that is, σref is of the same order
of magnitude as σ . Related work is in [24, 25, 308–311], Johnstone [9, 19, 22, 312–318],
and Nadler [305].

Proposition 5.7 (The singular values of the perturbed random response matrix
[336]) In the regime M → ∞,

1. The normalized l2-norm of the singular values satisfies

M


 1

M

M∑
j=1

(σ
(M)
j )

2 − γ σ 2


M→∞→

D
σ 2
ref +

√
2σ 2Z0,

where Z0 follows a Gaussian distribution with zero mean and variance one and “D”
denotes convergence in distribution.

2. If σref < γ 1/4σ , then the maximum singular value satisfies

σ
(M)

1
∼= σ

[
γ 1/2 + 1 + 1

2M2/3
(1 + γ −1/2)

1/3
Z2 + o

(
1

M2/3

)]
in distribution,

where Z2 follows a type-2 Tracy-Widom distribution.
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190 Cognitive Radio Communications and Networking

3. If σref = γ 1/4σ , σref < γ 1/4σ , then the maximum singular value satisfies

σ
(M)

1
∼= σ

[
γ 1/2 + 1 + 1

2M2/3
(1 + γ −1/2)

1/3
Z3 + o

(
1

M2/3

)]
in distribution,

where Z2 follows a type-3 Tracy-Widom distribution.
4. If σref > γ

1/4σ , then the maximal singular value has Gaussian distribution with the
mean and variance given by

E [σ (M)

1 ] = σref

[
1 + (1 + γ )

σ 2

σ 2
ref

+ γ
σ 4

σ 4
ref

+ o

(
1

M1/2

)]
,

Var [σ (M)

1 ] = σ 2

2M


 1 − γ

σ4

σ4
ref

1 + (1 + γ )
σ2

σ2
ref

+ γ
σ4

σ4
ref

+ o(1)


 .

The type-3 Tracy-Widom distribution has the cdf �TW3(z) given by

�TW3(z) = exp

(
−
∫ ∞

z

[ϕ(x)+ (x − z)ϕ2(x)]dx

)
.

The expectation of Z3 is E[Z3] = −0.49 and its variance is Var[Z3] = 1.22.
The singular eigenvectors of the perturbed response matrix are described in the follow-

ing proposition. Define the scalar product as

〈u, v〉 = uHv.

Proposition 5.8 (The singular vectors of the perturbed random response matrix
[336]) In the regime M → ∞,

1. If σref < γ 1/4σ , then the angles satisfy

|〈uref ,u(M)

1 〉|2 = 0 + o(1) in probability,

|〈vref , v(M)

1 〉|2 = 0 + o(1) in probability.

2. If σref > γ
1/4σ , then the angles satisfy

|〈uref , u(M)

1 〉|2 =
1 − γ

σ4

σ4
ref

1 + γ
σ4

σ4
ref

+ o(1) in probability,

|〈vref , v(M)

1 〉|2 =
1 − γ

σ4

σ4
ref

1 + γ
σ4

σ4
ref

+ o(1) in probability.
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Large Random Matrices 191

A standard imaging function for target localiztion is the MUSIC function defined by

IMUSIC(x) =
∥∥∥u(x)− ((u(M)

1 )
H

u(x))u(M)

1

∥∥∥−1/2
=
(

1 − |uH (x)u(M)

1 |2
)−1/2

,

where u(x) is the normalized vector of Green’s function. It is a nonlinear function of a
weighted subspace migration functional

ISM(x) = 1 − IMUSIC(x)
−2|uH (x)u(M)

1 |2.
The reconstruction can be formulated in this context. Using Proposition 5.7, we can

see that the quantity

σ̂ref = σ̂√
2



(
σ
(M)

1

σ̂

)2

− 1 − γ +




(σ (M)

1

σ̂

)2

− 1 − γ


2

− 4γ




1/2


1/2

(5.75)

is an estimator of σref , provided that σref > γ
1/4σ̂ . From (5.74), we can estimate the

scattering amplitude ρref of the inclusion by

ρ̂ref = c2
0

ω2

(
N∑
n=1

|Ĝ(ω, X̂ref , yn)|
2

)−1/2( M∑
m=1

|Ĝ(ω, X̂ref , zm)|
2

)−1/2

σ̂ref ,

with σ̂ref the estimator of (5.75) of σref and x̂ref is an estimator of the position of the
inclusion. This estimator is not biased asymptotically since it compensates for the level
repulsion of the first singular value due to the noise.

5.5.12 State Estimation and Malignant Attacker in the Smart Grid

A natural situation to use the large random matrices is in the Smart Grid where the big
network is met. We use one example to illustrate this potential. We follow the model of
[337] for our setting. State estimation and a malignant attack on it are considered in the
context of large random matrices.

Power network state estimators are broadly used to obtain an optimal estimate from
redundant noisy measurements, and to estimate the state of a network branch which, for
economical or computational reasons, is not directly monitored.

The state of a power network at a certain instant of time is composed of the voltage
angles and magnitudes at all the system buses. Explicitly, let x ∈ R

n and z ∈ R
p be,

respectively, the state and measurements vector. Then, we have

z = h(x)+ η, (5.76)

where h(x) is a nonlinear measurement function, and η is a zero mean random vector sat-
isfying

E[ηηT ] = �η = �η
T > 0.
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192 Cognitive Radio Communications and Networking

The network state could be obtained by measuring directly the voltage phasors by means
of phasor measurement devices. We adopt the approximated estimation model that follows
from the linearization around the origin of (5.76)

z = Hx + v,

where

H ∈ R
p×n,E[v] = 0,E[vvT ] = � = �T > 0.

Because of the interconnection structure of the power network, the measurement matrix
H is sparse.

We assume that zi is available from i = 1 to i = N . We denote by ZN the p ×N

observation matrix. (5.76) can be rewritten as

ZN = HXN + VN (5.77)

where

ZN = [z1, . . . , zN ],XN = [x1, . . . , xN ],VN = [v1, . . . , vN ].

From this matrix ZN , we can define the sample covariance matrix of the observation as

R̂N = 1

N
ZNZH

N ,

while the empirical spatial correlation matrix associated with the noiseless observation
will take the form

1

N
HXNXH

NHH .

To simplify the notation in the future, we define the matrices

�N = ZN√
N
,BN = HXN√

N
,WN = VN√

N
,

so that (5.77) can be equivalently formulated as

�N = BN + WN, (5.78)

where �N is the (normalized) matrix of observations, BN is a deterministic matrix con-
taining the signals contribution, and WN is a complex Gaussian white noise matrix with
i.i.d. entries that have zero mean and variance σ 2/N .

If N → ∞ while M is fixed, the sample covariance matrix of the observations

R̂N = �N�N
H

of ZN converges toward the matrix

RN = BNBH
N + σ 2Ip,

in the sense that

‖RN − BNBH
N − σ 2Ip‖ → 0 almost surely (a.s.). (5.79)
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Large Random Matrices 193

However, in the joint limits

asymptotic region N → ∞, p → ∞, but
p

N
→ c,

which is the practical case, (5.79) is no longer true. The random matrix theory must be
used to derive the consequences. (5.78) is a standard form in [282, 333, 338, 339].

Given the distributed nature of a power system and the increasing reliance on local area
networks to transmit data to a control center, it is possible for an attacker to attack the
network functionality by corrupting the measurements vector z. When a malignant agent
corrupts some of the measurements, the new state to measurements relation becomes

H0 : z = Hx + v,
H1 : z = Hx + v + a, (5.80)

where a ∈ R
p is chosen by the attacker, and thus, it is unknown and unmeasurable by

any of the monitoring stations.
(5.80) is a standard hypothesis testing problem. The GLRT can thus be used, together

with the random matrix theory. Following the same standard procedure as above, we have

H0 : ZN = HXN + VN,

H1 : ZN = HXN + VN + AN,

where
AN = [a1, . . . , aN ].

By studying the sample covariance matrix

R̂N = 1

N
ZNZH

N ,

we are able to infer different behavior under hypothesis H0 or H1. It seems that this result
for this example is reported for the first time.

5.5.13 Covariance Matrix Estimation

We see [340] for more details. Consider a discrete-time complex-valued K-user N-
dimensional vector channel with M channel uses. We define α � M

N
and β � M

N
. We

assume the system load β < 1(K < N); otherwise the signal subspace is simply the entire
N-vector space. In the m-th channel use, the signal at the receiver can be represented by
an N-vector defined by

y(m) =
K∑
k=1

hkmxk + w(m) (5.81)

where hkm is the channel symbol of user k, having unit power, xk is the signature waveform
of user k (note that sk is independent of the sample index m), and w(m) is additive noise.
By defining

XN×K = [x1, . . . , xK ], hK×1(m) = [h∗
1m, . . . , h

∗
Km]H ,

(5.81) is rewritten as
y(m) = Xh(m)+ w(m). (5.82)
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194 Cognitive Radio Communications and Networking

We do not assume specific distribution laws of the entries in H, x,w, thereby making the
channel model more general [340]:

• The entries of X are mutually independent random variables, each having zero expec-
tation and variance 1√

N
. Therefore, ∀k, ‖xk‖ → 1 almost surely, as N → ∞.

• The entries of h(m) are mutually independent random variables. The random vectors
{h(m)}m=1,...,M are mutually independent for different values of m and satisfying

E{h(m)hH (m)} = IK×K,E{h(m)hT (m)} = 0K×K.

• The entries of w(m) are mutually independent random variables. The random vectors
w(m)m=1,...,M are mutually independent for different values of m and satisfy

E{w(m)wH (m)} = σ 2
wIN×N,E{x(m)xT (m)} = 0N×N.

• X, h(m),w(m) are jointly independent.

Such a model is useful for CDMA and MIMO systems.
The covariance matrix of the received signal (5.81) is given by

R � E{y(m)yH (m)} = XXH + σ 2
wIN×N. (5.83)

Based on (5.82) and

E{w(m)wH (m)} = σ 2
wIN×N,

the unbiased sample covariance matrix estimate is defined as

R̂ = 1

M

M∑
m=1

y(m)yH (m) = 1

M
(XH + W)(XH + W)H , (5.84)

where
H � [h1, . . . ,hM ],W = [w1, . . . ,wM ].

By applying the theory of noncrossing partitions, one can obtain explicit expressions
for the asymptotic eigenvalue moments of the covariance matrix estimate [340]. Here we
only give some key results.

5.5.13.1 Noise-Free Case

When σ 2
w = 0, the sample covariance matrix is given by

R̂ = 1

M
(XH)(XH)H = 1

M
XHHHX.

The generic eigenvalue of R̂ is denoted by λ̂ and one defines the eigenvalue moments as

λ̂p = lim
K,N,M→∞

E{λp}.

The explicit expressions are derived in [340].
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Large Random Matrices 195

Corollary 5.1 ([340]) The eigenvalue moments of the matrix 1
M

ZXXHZH , where Z is an
M ×N matrix with mutually independent entries having unit variance, are the same as
those of the matrix 1

M
HXXHHH .

The Stieltjes transform of λ̂ is denoted by mλ̂(z).

Corollary 5.2 ([340]) When σ 2
w, the Stieltjes transform of λ̂ satisfies

z2m3

λ̂
(z)+ (2 − α − β)zm2

λ̂
(z)− (αz− (1 − β)(1 − α))m

λ̂
(z)− α = 0. (5.85)

(5.85) can be used to derive the cumulation distribution function (CDF) and the probability
distribution function (PDF) of λ̂, through the inverse formula for the Stieltjes transform.

Lemma 5.1 ([340]) There exist a constant C > 0 and p0 ∈ N such that

λ̂p < Cp, ∀p>p0.

Theorem 5.45 ([340]) The distribution of λ̂ converges weakly to a unique distribution
determined by the eigenvalue moments as K,N,M → ∞.

Theorem 5.46 ([340]) When σ 2
w, ∀x > 0, the PDF f̂ (x) of the random variable λ̂ is

given by

f̂ (x) = 1

π
Im (mλ̂(x)).

The closed-form PDF of λ̂ within its support has been derived in [340] and is too long
to be included here.

Theorem 5.47 ([340]) The PDF f̂ (x) has the following properties:

1. the support of f̂ (x) is given by (λ̂max, λ̂min), where

λ̂min � inf
λ̂ > 0

(λ̂), λ̂max � sup
λ̂ > 0

(λ̂).

2. λmax ≤ λ̂max ≤ λmax

(
1 + min

(√
β

α
,
√

α
β

))2

;

3. for sufficiently large α, (λmin, λmax) ⊂ (λ̂min, λ̂max); and
4. for sufficiently small α < β, λ̂min ≤ λmax.

5.5.13.2 Noisy Case

We extend the anaysis to the general case of σ 2
w ≥ 0. When σ 2

w > 0, the exact covariance
matrix is of full rank and there is a mass point at λ = σ 2

w with probability 1 − β.

Theorem 5.48 ([340]) The distribution of eigenvalues of the matrix 1
M
(XH + W)(XH +

W)H is the same as that of the matrix 1
M

Z(XXH + σ 2
wIN×N)Z

H , as K,M,N → ∞, where
Z is an M ×N matrix, whose entries are mutually independent random variables with
unit variance.
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196 Cognitive Radio Communications and Networking

Similar to the noise-free case, the eigenvalue moments of XXH + σ 2
wIN×N are derived

in a closed form in [340]. Let us give the first four moments

E{λ̂} = σ 2
w + β

E{λ̂2} =
(

1

α
+ 1

)
(σ 2

w + β)2 + β

E{λ̂3} =
(

1

α2
+ 3

α
+ 1

)
(σ 2

w + β)3 + 3

(
1

α
+ 1

)
β(σ 2

w + β)+ β

E{λ̂4} =
(

1

α3
+ 6

α2
+ 6

α
+ 1

)
(σ 2

w + β)4 +
(

6

α2
+ 16

α
+ 6

)
β(σ 2

w + β)2

+ 1

α
(4βσ 2

w + 6β2)+ 6β2 + 4βσ 2
w + β.

The asymptotic eigenvalue moments of the estimated covariance matrix are larger than
those of the exact covariance matrix (except for the expectation). This is true for both
noisy and noise-free cases.

The Stieltjes transform of the eigenvalue λ̂, denoted by m
λ̂
, is given by

σ 2
wz

2m4

λ̂
(z)+ (αz2 + 2(1 − α)σ 2

wz)m
3

λ̂
(z)+ ((1 − α)2σ 2

w + α(2 − α − β − σ 2
w)z)m

2

λ̂
(z)

− α(αz− (1 − α)(1 − β − σ 2
w))m

λ̂
(z)− α2 = 0.

We define

λ̂min � inf
f (λ̂)> 0,λ̂ > 0

(λ̂), λ̂max � sup
f (λ̂)> 0,λ̂ > σ2

w

(λ̂).

Their counterparts for the exact covariance matrix, denoted by λmin, λmax , and λ′
min, are

given by (1 + √
β)2 + σ 2

w, σ
2
w, and (1 − √

β)2 + σ 2
w, respectively.

Theorem 5.49 ([340]) There is no mass point for any positive eigenvalue λ̂. The support
of f̂ satisfies the following properties:

1. for sufficiently large α, the support of λ̂ is not continuous interval when σ 2
w > 0;

2. λmax ≤ λ̂max ≤ λmax

(
1 + min

(√
1
α
,
√
α

))2

;

3. for sufficiently large α, (λmin, λmax) ⊂ (λ̂min, λ̂max); and
4. for sufficiently small α < β, λ̂min ≤ λmax.

The properties 3 and 4 in Theorem 5.47 are the same as in Theorem 5.49. Property 1 is
completely different. The essential reason is the existence of a mass point at σ 2

w. When
σ 2
w = 0, the mass point at 0 always exists with probability 1 − β and the support on pos-

itive eigenvalues is continuous. When σ 2
w > 0, and 1 < α < ∞, the estimated covariance

matrix is of full rank and there is no mass point. When α → ∞, the support of positive
eigenvalues has to be separated into at least two disjoint intervals such that the support
around σ 2

w shrinks to a point.
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Large Random Matrices 197

5.5.14 Deterministic Equivalents

Deterministic equivalents for certain functions of large random matrices are of interest.
The most important references are [281, 341–344]. Let us follow [281] for this presenta-
tion. Consider an N × n random matrix Yn = (Y nij ), where the entries are given by

Y nij = σij (n)√
n
Xn
ij ,

n. Here (σij (n), 1 ≤ i ≤ N, 1 ≤ j ≤ n) is a bounded sequence of real numbers called
a variance profile; the Xn

ij are centered with unit variance, independent and identically
distributed (i.i.d.) with finite 4 + ε moment. Consider now a deterministic N × n matrix
An whose columns and rows are uniformly bounded in the Euclidean norm.

Let

	n = Yn + An.

This model has two interesting features: the random variables are independent but not
i.i.d. since the variance may vary and An, the centering perturbation of Yn, can have a
very general form. The purpose of our problem is to study the behavior of

1

N
Tr(	n	

T
n − zIN)

−1, z ∈ C − R,

that is, the Stieltjes transform of the empirical eigenvalue distribution of 	n	
T
n when

n → ∞, and N → ∞ in such a way that N
n

→ c, 0 < c < ∞.
There exists a deterministic N ×N matrix-valued function Tn(z) analytic in C − R

such that, almost surely,

lim
n→+∞,N/c→c

(
1

N
Tr(	n	

T
n − zIN)

−1 − 1

N
TrTn(z)

)
= 0.

In other words, there exists a deterministic equivalent to the empirical Stieltjes transform
of the distribution of the eigenvalues of 	n	

T
n . It is also proved that 1

N
TrTn(z) is the

Stieltjes transform of a probability measure πn(dλ), and that for every bounded continuous
function f , the following convergence holds almost surely

1

N

N∑
k=1

f (λk)−
∫ ∞

0
f (λ)πn(dλ) →

n→∞
0,

where the (λk)1≤k≤N are the eigenvalues of 	n	
T
n . The advantage of considering

1
N

TrTn(z) as a deterministic approximation instead of E
1
N

Tr(	n	
T
n − zIN)

−1 (which
is deterministic as well) lies in the fact that Tn(z) is in general far easier to compute
than E

1
N

Tr(	n	
T
n − zIN)

−1 whose computation relies on Monte Carlo simulations.
These Monte Carlo simulations become increasingly heavy as the size of the matrix
	n increases.

This work is motivated by the MIMO wireless channels. The performance
of these systems depends on the so-called channel matrix Hn whose entries
(Hn

ij , 1 ≤ i ≤ N, 1 ≤ j ≤ n) represent the gains between transmit antenna j and receive
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198 Cognitive Radio Communications and Networking

antenna i. Matrix Hn is often modeled as a realization of a random matrix. In certain
context, the Gram matrix HnH

∗
n is unitarily equivalent to a matrix (Yn + An)(Yn + An)

∗

where An is a possibly full rank deterministic matrix. As an application, we derive a
deterministic equivalent to the mutual information:

Cn(σ
2) = 1

N
E log det

(
IN + 	n	

T
n

σ 2

)
,

where σ 2 is a known parameter.
Let us consider the extension of the above work. Consider

Y nij = σij (n)√
n
Xn
ij ,

where (σij (n), 1 ≤ i ≤ N, 1 ≤ j ≤ n) is uniformly bounded sequence of real numbers,
and the random variables Xn

ij are complex, centered, i.i.d. with unit variance and finite
8th moment.

We are interested in the fluctuations of the random variable

In(ρ) = 1

N
log det (YnY

∗
n + ρIN)

where Yn
∗ is the Hermitian adjoint of Yn and ρ > 0 is an additional parameter. It is proved

[342] that when centered and properly scaled, this random variable satisfies a Center Limit
Theorem (CLT) and has a Gaussian limit whose parameters are identified. Understanding
its fluctuations and in particular being able to approximate its standard deviation is of
major interest for various applications such as for instance the computation of the so-called
outage probability.

Consider the following linear statistics of the eigenvalues

In(ρ) = 1

N
log det (YnY

∗
n + ρIN) = 1

N

N∑
i=1

log(λi + ρ),

where λi is the eigenvalue of matrix YnY
∗
n. This functional is of course the mutual

information for the MIMO channel. The purpose of [342] is to establish a CLT for In(ρ)
whenever n → ∞, N

n
→ c, 0 < c < ∞.

There exists a sequence of deterministic probability measure πn such that the mathe-
matical expectation EIn satisfies

EIn(ρ)−
∫

log(λ+ ρ)πn(dλ) →
n→∞

0.

We study the fluctuations of

1

N
log det (YnY

∗
n + ρIN)−

∫
log(t + ρ)πn(dt),

and prove that this quantity properly rescaled converges toward a Gaussian random vari-
able. In order to prove the CLT, we study the quantity

N(In(ρ)− EIn(ρ)).
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Large Random Matrices 199

from which the fluctuations arise and the quantity

N(EIn(ρ)−
∫

log(λ+ ρ)πn(dλ)),

which yields a bias.
The variance of 
2 of N(In(ρ)− EIn(ρ)) takes a remarkably simple closed-form

expression. In fact, there exists a n× n deterministic matrix An whose entries depend
on the variance profile σij such that the variance takes the form:


2
n = log det (In − An)+ κTrAn,

where κ = E|X11|4 − 2 in the fourth cumulant of the complex variable X11 and the CLT
is expressed as:

N


2
n

(In(ρ)− EIn(ρ))
L→

n→∞
N(0, 1).

The bias can be also modeled. There exists a deterministic quantity Bn such that:

N

(
EIn(ρ)−

∫
log(λ+ ρ)πn(dλ)

)
− Bn(ρ) →

n→∞
0.

In [343], they study the fluctuations of the random variable:

In(ρ) = 1

N
log det (	n	

T
n + ρIN) = 1

N

N∑
i=1

log(λi + ρ), ρ > 0,

where

	n = n−1/2D1/2
n XnD̃

1/2
n + An,

as the dimensions of the matrices go to infinity at the same pace. Matrices Xn and
An are respectively random and deterministic N × n matrices; matrices Dn and D̃n are
deterministic and diagonal. Matrix Xn has centered, i.i.d., entries with unit variance, either
real and complex. They study the fluctuations associated to noncentered large random
matrices. Their contribution is to establish the CLT regardless of specific assumptions
on the real or complex nature of the underlying random variables. It is in particular
not assumed that the random variables are Gaussian, neither that whenever the random
variables Xij are complex, their second moment EX2

ij is zero nor is it assumed that the
random variables are circular.

The mutual information In has a strong relationship with the Stieltjes transform

fn(z) = 1

N
Tr(	n	

T
n − zIN)

−1

of the spectral measure of 	n	
T
n :

In(ρ) = log ρ +
∫ ∞

ρ

(
1

w
− fn(−w)dw

)
.
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200 Cognitive Radio Communications and Networking

Accordingly, the study of the fluctuations of In is also an important step toward the study
of general linear statistics of the eigenvalues of 	n	

T
n which can be expressed via the

Stieltjes transform:

1

N
Trh(	n	

T
n ) = 1

N

N∑
i=1

h(λi) = − 1

2iπ

∮
C

h(z)fn(z)dz.

5.5.15 Local Failure Detection and Diagnosis

The joint fluctuations of the extreme eigenvalues and eigenvectors are studied for a large
dimensional sample covariance matrix [345], when the associated population covariance
matrix is a finite-rank perturbation of the identity matrix, corresponding to the so-called
spiked model in random matrix theory. The asymptotic fluctuations, as the matrix size
grows large, are shown to be intimately linked with matrices from the Gaussian uni-
tary ensemble (GUE). When the spiked population eigenvalues have unit multiplicity,
the fluctuations follow a central limit theorem. This result is used to develop an origi-
nal framework for the detection and diagnosis of local failure in large sensor networks,
from known or unknown failure magnitude. This approach is relevant to the Cognitive
Radio Network and the Smart Grid. This approach is to perform fast and computationally
reasonable detection and localization of multiple failure in large sensor networks through
this general hypothesis testing framework. Practical simulations suggest that the proposed
algorithms allow for high failure detection and localization performance even for networks
of small sizes, although for those much more observations than theoretically predicted
are in general demanded.

5.6 Regularized Estimation of Large Covariance Matrices

Estimation of population covariance matrices from samples of multivariate data has always
been important for a number of reasons [344, 346, 347]. Principals among these are:

1. estimation of principal components and eigenvalues in order to get an interpretable
low-dimensional data representation (principal component analysis, or PCA);

2. construction of linear discriminant functions for classification of Gaussian data (linear
discriminant analysis, or LDA);

3. establishing independence and conditional independence relations between components
using exploratory data analysis and testing;

4. setting confidence intervals on linear functions of the means of the components.

(1) requires estimation of the eigenstructure of the covariance matrix while (2) and (3)
require estimation of the inverse. In signal processing and wireless communication, the
covariance matrix is always the starting point.

Exact expressions were cumbersome, and multivariate data were rarely Gaussian. The
remedy was asymptotic theory for large sample and fixed relatively small dimensions.
Recently, due to the rising vision of “big data” [1], datasets that do not fit into this
framework have been very common—the data are very high-dimensional and sample
sizes can be very small relative to dimension.
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Large Random Matrices 201

It is well known by now that the empirical covariance matrix for samples of size n from
a p-variate Gaussian distribution, C(µ,�p), is not a good estimator of the population
covariance if p is large. Johnstone and his students [9, 19, 22, 312–318, 325, 327] are
relevant here.

The empirical covariance matrix for samples of size n from a p-variate Gaussian
distribution has unexpected features if both p and n are large. If p/n → c ∈ (0, 1), and the
covariance matrix �p = I (the identity), then the empirical distribution of the eigenvalues
of the sample covariance matrix �p follows the Marchenko-Pastur law [348], which is
supported on

[(1 − √
c)

2
, (1 + √

c)
2
].

Thus, the larger p/n (thus c), the more spread out the eigenvalues.
Two broad classes of covariance estimators [347] have emerged: (1) those that rely on

a natural ordering among variables, and assume that variables far apart in the ordering are
only weakly correlated, and (2) those invariant to variable permutations. However, there
are many applications for which there is no notion of distance between variables at all.

Implicitly, some approaches, for example, [312], postulate different notions of sparsity.
Thresholding of the sample covariance matrix has been proposed in [347] as a simple and
permutation-invariant method of covariance regulation. A class of regularized estimators
of (large) empirical covariance matrices corresponding to stationary (but not necessarily
Gaussian) sequences is obtained by banding [344].

We follow [346] for notation, motivation, and background.
We observe X1, . . . ,Xn, i.i.d. p-variate random variables with mean 0 and covariance

matrix �̂p, and write
Xi = (Xi1, . . . , Xip)

T .

For now, we assume that Xi are multivariate normal. We want to study the behavior of
estimates of �p as both p and n → ∞. It is well known that the ML estimation of �p,
the sample covariance matrix,

�̂p = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

behaves optimally if p is fixed, converging to �p at rate n−1/2. If p → ∞, �̂p can behave
very badly, unless it is “regularized” in some fashion.

5.6.1 Regularized Covariance Estimates

5.6.1.1 Banding the Sample Covariance Matrix

For any matrix A = [aij ]p×p, and any 0 ≤ k ≤ p, define

Bk(A) = [
aij1(|i − j | ≤ k)

]
and estimate the covariance �̂k,p ≡ �̂k = B(�̂p). This kind of regularization is ideal in
the situation where the indexes have been arranged in a such a way that in �p = [σij ]
we have

|i − j |>k ⇒ σij = 0.
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202 Cognitive Radio Communications and Networking

This assumption holds, for example, if �p is the covariance matrix of Y1, . . . ,Yp,
where Y1, . . . ,Yp is a finite inhomogeneous moving average (MA) process,

Yt =
k∑

j=1

αt,t−1xj ,

and xj are i.i.d. mean 0. Banding an arbitrary covariance matrix does not guarantee
positive definitiveness.

All our sets will be the subsets of the so-called well-conditioned covariance matrices ,
�p, such that, for all p,

0 < ε ≤ λmin(	) ≤ λmax(	) ≤ 1/ε < ∞.

Here, λmax(�) and λmin(�) are the maximum and minimum eigenvalue of �p, and ε is
independent of p.

Examples of such matrices [349] include

Yi = Xi +Wi, i = 1, 2, . . .

where Xi is a stationary ergodic process, and Wi is a noise process independent of {Xi}.
This model also includes the “spiked model” of Paul [27], since a matrix of bounded rank
is Hilbert-Schmidt. We discuss this model in detail elsewhere.

We define the first class of positive definite symmetric well conditioned matrices � =
[σij ] as follows:

U(ε0, α, C) =
{

� : max
j

∑
i

{|σij | : |i − j |>k} ≤ Ck−α for all k > 0,

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ 1/ε0 < ∞

}
. (5.86)

The class U in (5.86) contains the Toeplitz class T defined by

T(ε0, m,C) =
{

� : σij = σ(i − j)(Toeplitz) with spectral density f	
and 0 < ε0 ≤ ‖f	‖∞ ≤ ε−1

0 < ∞, ‖f(m)	 ‖∞ ≤ C

}
,

where f(m)	 denotes the mth derivative of f . By [350], � is symmetric, Toeplitz, � =
[σ(i − j)], with σ(−k) = σ(k), and � has an absolutely continuous spectral distribution
with Radon-Nikodym derivative f	(t), which is continuous on (−1, 1), then

‖�‖ = sup
t

|f	(t)|, ‖�−1‖ = [inf
t

|f	(t)|]−1.

A second uniformity class of nonstationary covariance matrices is defined by

K(m,C) = {� : σii ≤ Ci−m, all i}.

The bound independent of dimension identifies any limit as being of “trace class” as
operator for m> 1.

The main work is summarized in the following theorem.
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Large Random Matrices 203

Theorem 5.50 (Bickel and Levina (2008) [346]) Suppose that X is Gaussian
and U(ε0, α, C) is the class of covariance matrices defined in (5.86). Then, if
kn � (n−1 logp)−1/(2(α+1)),

‖�kn,p
− �p‖ = OP

(
logp

n

)α/(2(α+1))

= ‖�−1
kn,p

− �−1
p ‖ (5.87)

uniformly on � ∈ U.

5.6.2 Banding the Inverse

Suppose we have

X = (X1, . . . , Xp)
T

defined on a probability space, with probability measure P, which is Np(0,�p), �p =
[σij ]. Let

X̂j =
j−1∑
t=1

ajtXt = ZT
j aj (5.88)

be the L2(P) projection of X̂j on the linear span of X1, . . . Xj−1, with Zj =
(X1, . . . , Xj−1)

T the vector of coordinates up to j − 1, and aj = (aj1, . . . , aj,j−1)
T the

vector of coefficients. If j = 1, let X̂1 = 0. Each vector aj can be computed as

aj = (var(Zj ))
−1Cov(Xj ,Zj ). (5.89)

Let the lower triangular matrix A with zeros on the diagonal contain the coefficients aj
arranged in rows. Let εj = Xj − X̂j , d

2
j = Var(εj ) and let D = diag(d2

1 , . . . , d
2
p) be a diag-

onal matrix. The geometry of L2(P) or standard regression theory implies independence
of the residuals. After applying the covariance operator to the identity

ε = (I − A)X,

we obtain the modified Cholesky decomposition of �p and �−1
p :

�p = (I − A)−1D[(I − A)−1]T ,
�−1
p = (I − A)T D−1(I − A).

(5.90)

Suppose now that k < p. It is natural to define an approximation to �p by restricting
the variables in regression (5.88) to

Z(k)
j = (Xmax{j−k,1}, . . . , Xj−1)

T .

In other words, in (5.88), we regress each Xj on its closest k predecessors only . Let
Ak be the k-banded lower triangular matrix containing the new vectors of coefficients
a(k)j , and let Dk = diag(d2

j,k) be the diagonal matrix containing the corresponding residual
variance. Population k-banded approximations �k,p and �−1

k,p are obtained by plugging in
Ak and Dk in (5.90) for A and D.
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204 Cognitive Radio Communications and Networking

If

�−1 = TT (�)D−1(�)T(�)

with T(�) lower triangular, T(�) ≡ [tij (�)], let

U−1(ε0, α, C) =

 	 : max

i

∑
j<i−k

|tij (�)| ≤ Ck−α for all k ≤ p − 1,

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ ε−1
0 < ∞


 . (5.91)

Theorem 5.51 (Bickel and Levina (2008) [346]) Uniformly for � ∈ U−1(ε0, α, C), if
kn � (n−1 logp)−1/(2(α+1)), and n−1 logp = O(1),

‖�̃−1
kn,p

− �−1
p ‖ = OP

(
logp

n

)α/(2(α+1))

= ‖�̃kn,p
− �p‖. (5.92)

Corollary 5.3 (Bickel and Levina (2008) [346]) For m ≥ 2, uniformly on T(ε0,m,C),
if kn � (n−1 logp)−1/2m,

‖�̃−1
kn,p

− �−1
p ‖ = OP

(
logp

n

) (m−1)
2m

= ‖�̃kn,p
− �p‖. (5.93)

5.6.3 Covariance Regularization by Thresholding

Bickel and Levina (2008) [347] considers regularizing a covariance matrix of p variables
estimated from n (vector) observations, by hard thresholding. They show that the thresh-
olded estimate is consistent in the operator norm as long as the true covariance matrix is
sparse in a suitable sense, the variables are Gaussian or sub-Gaussian, and (logp)/n → 0,
and obtain explicit rates.

The approach of thresholding of the sample covariance matrix is a simple and
permutation-invariant method of covariance regularization. We define the thresholding
operator by

Ts(A) = [
aij1(|aij | ≥ s)

]
,

which we refer to as A thresholded at s. Ts preserves symmetry and is invariant under
permutations of variables labels, but does not necessarily preserve positive definiteness.
However, if

‖Ts − T0‖ ≤ ε and λmin(A)> ε,

then Ts(A) is necessarily positive definite, since for all vectors v with ||v||2 = 1, we have

vT TsAv ≥ vT Av − ε ≥ λmin(A)− ε > 0.

Here, λmin(A) stands for the minimum eigenvalue of A.
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Large Random Matrices 205

U(ε0, α, C) in (5.86) defines the uniformity class of “approximately bandable” covari-
ance matrices. Here, we define the uniformity class of covariance matrices invariant under
permutations by

Uτ (q, c0(p),A) =

� : σii ≤ A,

p∑
j=1

|σij |q ≤ c0(p), for all i, 0 ≤ q < 1


 .

If q = 0, we have

Uτ (0, c0(p),A) =

� : σii ≤ A,

p∑
j=1

1(σij �= 0) ≤ c0(p)


 ,

is a class of sparse matrices. Naturally, there is a class of covariance matrices V(ε0, α, C)

that satisfy both banding and thresholding conditions. Define a subset of U(ε0, α, C) by

V(ε0, α, C) =
{

� : |σii | ≤ C|i − j |−(α+1), for all i, j : |i − j | ≥ 1,

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ 1/ε0

}
,

for α > 0.
We consider n i.i.d. p-dimensional observations X1, . . . ,Xn distributed according to a

distribution F, with EX = 0 (without loss of generality), and E(XXT ) = �. We define
the empirical (sample) covariance matrix by

�̂ = 1

n

n∑
k=1

(Xk − X̂)(Xk − X̂)T ,

where X̂ = n−1
n∑
k=1

Xk, and write �̂ = [σ̂ij ].

Theorem 5.52 (Bickel and Levina (2008) [347]) Suppose F is Gaussian. Then, uniformly
on Uτ (0, c0(p),A), for sufficiently large M ′, if

tn = M ′
√

logp

n

and logp
n

= o(1), then

‖Ttn
(�̂)− �‖ = OP

(
c0(p)

(
logp

n

)(1−q)/2)

and uniformly on Uτ (q, c0(p),A),

∥∥∥(Ttn
(�̂))

−1 − �−1
∥∥∥ = OP

(
c0(p)

(
logp

n

)(1−q)/2)
.

This theorem is in parallel with the banding result of Theorem 5.50.
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206 Cognitive Radio Communications and Networking

5.6.4 Regularized Sample Covariance Matrices

Let us follow [344] to state a certain central limit theorem for regularized sample covari-
ance matrices. We just treated how to band the covariance matrix �; here we consider how
to band the sample covariance matrix �̂ = XT X. We consider regularization by banding,
that is, by replacing those entries of XT X that are, at distance, exceeding b = b(p) away
from the diagonal by 0. Let Y = Y(p) denote the thus regularized empirical matrix.

Let X1, . . . , Xk be real random variables on a common probability space with moments
of all orders, in which the characteristic function

E exp

(
k∑
i=1

j tiXi

)

is an infinitely differentiable function of the real variables t1, . . . , tk . One defines the joint
cumulant C(X1, . . . , Xk) by the formula

C(X1, . . . , Xk) = C{Xi}ki=1 = j−k ∂k

∂t1 · · · ∂tk
log E exp

(
k∑
i=1

j tiXi

)∣∣∣∣∣ t1 = · · · tk = 0
.

(5.94)

(The middle expression is a convenient abbreviated notation.) The quantity
C(X1, . . . , Xk) depends symmetrically and R-multilinearly on X1, . . . , Xk . Moreover,
dependence is continuous with respect to the Lk-norm. One has in particular

C(X) = EX,C(X,X) = varX,C(X, Y ) = cov(X, Y ).

Lemma 5.2 If there exists 0 < l < k such that the σ -fields σ {Xi}li=1 and σ {Xi}li=l+1 are
independent, then C(X1, . . . , Xk) = 0.

Lemma 5.3 The random vector X1, . . . , Xk has a Gaussian joint distribution if and only
if C(Xi1

, . . . , Xir
) = 0 for every integer r ≥ 3 and sequence i1, . . . , ir ∈ 1, . . . , k.

Let
{Zi}∞

i=−∞

be a stationary sequence of real random variables, satisfying the following conditions:

1. Assumption 5.5. As p → ∞, we have b → ∞, n → ∞ and b/n → 0, with b ≤ p.
2. Assumption 5.6.

E(|Z0|k) < ∞ for all k ≥ 1 (5.95)

EZ0 = 0, (5.96)∑
i1

· · ·
∑
ir

|C(Z0, Zi1, . . . , Zir )| for all r ≥ 1 (5.97)

Let us turn to random matrices. Let

{{Z(i)
j }∞

j=−∞}∞
i=1
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Large Random Matrices 207

be an i.i.d. family of copies of {Zj }∞
j=−∞. Let X = X(p) be the n× p random matrices

with entries

X(i, j) = Xij = 1√
n
Z
(i)
j .

Let B = B(p) be the p × p deterministic matrix with entries

B(i, j) = Bij =
{

1, if |i − j | ≤ b,

0, if |i − j |>b.
Let Y = Y(p) be the p × p random symmetric matrix with entries

Y(i, j) = Yij = Bij (X
T X)ij (5.98)

and eigenvalues {λ(p)i }pi=1.
For integers j , let

R(j) = Cov(Z0, Zj ) = C(Z0, Zj ).

For integers m> 0 and all integers i and j , we write

Qij =
∑
l∈Z

C(Zi, Z0, Zj+l , Zl),

R
(m)
i = R ! R ! · · · ! R(i)︸ ︷︷ ︸

m

,R
(0)
i = δi0.

(5.99)

Here, the convolution ! is defined for any two summable functions F,G : Z → R:

(F ! G)(j) =
∑
k∈Z

F(j − k)G(k).

Now we are in a position to state a central limit theorem.

Theorem 5.53 (Anderson and Zeitouni (2008) [344]) Let Assumption 5.5 and Assump-
tion 5.6 hold. Let Y = Y(p) be as in (5.98). Let Qij and R(m)

i be as in (5.99). Then the
process {√

n

p
(TrYk − ETrYk)

}∞

k=1

converge in distribution, as p → ∞, to a zero mean Gaussian process {Gk}∞
k=1, with

covariance specified by

1

kl
EGkGl = 2R(k+l)

0 +
∑
i,j∈Z

R
(k−1)
i QijR

(l−1)
j .

Example 5.9 (Some stationary sequences satisfying Assumption 5.6 [344])
Fix a summable function h : Z → R and an i.i.d. sequence {Wl}∞

l=−∞ of mean zero random
variables with moments of all orders. Now convolve: put

Zj =
∑
l

h(j + l)Wl, for every j.
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208 Cognitive Radio Communications and Networking

It is obvious that (5.95) and (5.96) hold. To see the summability condition (5.97) on joint
cumulants, assume at first that h has finite support. Then, by standard properties of joint
cumulants (Lemma 5.2), we get the formula

C(Zj0, . . . , Zjr ) =
∑
l

h(j0 + l) · · ·h(jr + l)C (W0, . . . ,W0)︸ ︷︷ ︸
r+1

.

By a straightforward calculation, this leads the analogous formula without the assumption
of finite support of h, whence in turn verification of (5.97). �

5.6.5 Optimal Rates of Convergence for Covariance Matrix Estimation

Despite recent progress on covariance matrix estimation, there has been remarkably lit-
tle fundamental theoretical study on optimal estimation. Cai, Zhang and Zhou (2010)
[351] establish the optimal rates for estimating the covariance matrix under both the
operator norm and Frobenius norm. Optimal procedures under two norms are different,
and consequently matrix estimation under the operator norm is fundamentally different
from vector estimation. The minimax upper bound is reached by constructing a special
class of tapering estimators and by studying their risk properties. The banding estimator
treated previously in Section 5.6.1 is suboptimal and the performance can be significantly
improved using the technique to be covered now.

We write an � bn if there are positive constants c and C independent of n such that
c ≤ an/bn ≤ C. For matrix A, its operator norm is defined as ||A|| = sup||x||2=1‖Ax‖2.
We assume that p ≤ exp(γ n) for some constant γ > 0.

Fα = Fα(M0,M) =
{

� : max
j

∑
i

{|σij | : |i − j |>k} ≤ Mk−α for all k,

and λmax(�) ≤ M0

}
. (5.100)

where λmax(�) is the maximum eigenvalue of the matrix �, and α > 0, M> 0 and M0 > 0.

Theorem 5.54 (Minimax risk by Cai, Zhang and Zhou (2010) [351]) The minimax risk
of estimating the covariance matrix � over the class Pα satisfies

inf
�̂

sup
Pα

E‖�̂ − �‖2 � min

{
n−2α/(2α+1) + logp

n
,
p

n

}
. (5.101)

The proposed procedure does not attempt each row/column optimally as a vector. This
procedure does not optimally trade bias and variance for each row/column. This pro-
posed estimator has good numerical performance; it nearly uniformly outperforms the
banding estimator.

Example 5.10 (Tapering estimator [351])
For a given even integer with 1 ≤ k ≤ p, we define a tapering estimator

�̂ = �̂k = (wijσ
∗
ij )p×p, (5.102)
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Large Random Matrices 209

where σ ∗
ij are the entries in the ML estimator �̂

∗
and the weights

wij = k−1
h

{
(k − |i − j |)+ − (kh − |i − j |)+

}
,

where kh = k/2. Without loss of generality, we assume that k is even. The weights wij

can be rewritten as

wij =



1, when |i − j | ≤ kh,

2 − |i−j |
kh
, when kh < |i − j | ≤ k,

0, otherwise.
(5.103)

The tapering estimators are different from the banding estimators used in [346]. See also
Section 5.6.1. �

Lemma 5.4 The tapering estimator �̂ given in (5.102) can be expressed as

�̂ = k−1
h (S∗(k) − S∗(kh)). (5.104)

Assume that the distribution of the X1’s are sub-Gaussian in the sense that there is
ρ > 0 such that

P
{|vT (X1 − EX)v|> t} ≤ e−t2ρ/2 for all t > 0 and ‖v‖2 = 1. (5.105)

Let Pα = Pα(M0,M, ρ) denote the set of distributions of X1 that satisfy (5.100)
and (5.105).

Theorem 5.55 (Upper bound by Cai, Zhang and Zhou (2010) [351]) The tapering
estimator �̂, defined in (5.104), of the covariance matrix �p×p with p>n1/(2α+1) satisfies

sup
Pα

E‖�̂ − �‖2 ≤ C
k + logp

n
+ Ck−2α (5.106)

for k = o(n), logp = o(n) and some constant C > 0. In particular, the estimator �̂ − �̂k

with k = n1/(2α+1) satisfies

sup
Pα

E‖�̂ − �‖2 ≤ Cn−2α/(2α+1) + C
logp

n
. (5.107)

From (5.106), it is clear that the optimal choice of k is of order n−2α/(2α+1). The upper
bound given in (5.107) is thus rated optimal, among the class of the tapering estimators
defined in (5.104). The minimax lower bound derived in Theorem 5.56 shows that the
estimator �̂k with k = n−2α/(2α+1) is in fact rated optimal among all estimators.

Theorem 5.56 (Lower bound by Cai, Zhang and Zhou (2010) [351]) Suppose p ≤
exp(γ n) for some constant γ > 0. The minimax risk for estimating the covariance matrix
� over Pα under the operator norm satisfies

inf
	̂

sup
Pα

E‖�̂ − �‖2 ≥ cn−2α/(2α+1) + c
logp

n
.
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210 Cognitive Radio Communications and Networking

Theorem 5.55 and Theorem 5.56 together show that the minimax risk for estimating
the covariance matrices over the distribution space Pα satisfies, for p>n1/(2α+1),

inf
	̂

sup
Pα

E‖�̂ − �‖2 � n−2α/(2α+1) + logp

n
. (5.108)

The results also show that the tapering estimator �̂k with tapering parameter k =
n1/(2α+1) attains the optimal rate of convergence n−2α/(2α+1) + logp

n
.

It is interesting to compare the tapering estimator with the banding estimator of [346].

A banding estimator with bandwidth k =
(

logp
n

)1/(2α+1)
was proposed and the rate of

convergence of
(

logp
n

)α/(α+1)
was proven.

Both the tapering estimator and the banding estimator are not necessarily positive
semidefinite. A practical proposal to avoid this would projecting the estimator �̂ to the
space of positive semidefinite matrices under the operator norm. One may first diagonalize
�̂ and then replace negative eigenvalues by zeros. The resulting estimator will be then
positive semidefinite.

In addition to the operator norm, the Frobenius norm is another commonly used matrix
norm. The Frobenius norm of a matrix A is defined as the l2 vector norm of all entries
in the matrix

‖A‖F =
√∑

i,j

a2
ij .

This is equivalent to treating the matrix A as a vector of length p2. It is easy to see that
the operator norm is bounded by the Frobenius norm, that is, ‖A‖ ≤ ‖A‖F .

Consider estimating the covariance matrix � from the sample {X1, . . . ,Xn}. We have
considered the parameter space Fα defined in (5.100). Other similar parameter spaces
can be also considered. For example, in time series analysis it is often assumed the
covariance |σij | decays at the rate |i − j |−(α−1) for some α > 0. Consider the collection
of positive-definite symmetric matrices satisfying the following conditions

Gα = Gα(M0,M) = {
� : |σij | ≤ M1|i − j |−(α+1) for i �= j and λmax(�) ≤ M0

}
,

(5.109)

where λmax(�) is the maximum eigenvalue of the matrix �. Gα is a subset of Fα(M0,M)

as long as M1 ≤ αM .
Let P′

α = P′
α(M0,M) denote the set of distribution of X1 that satisfies (5.105) and

(5.109).

Theorem 5.57 (Minimax risk under Frobenius norm by Cai, Zhang and Zhou (2010)
[351]) The minimax risk under Frobenius norm satisfies

inf
	̂

sup
Pα

E
1

p
‖�̂ − �‖2

F � inf
	̂

sup
P′
α

E
1

p
‖�̂ − �‖2

F � min{n−(2α+1)/(2(α+1)),
p

n
}. (5.110)
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Large Random Matrices 211

The inverse of the covariance matrix � is of significant interest. For this purpose, we
require the minimum eigenvalue of � to be bounded away from zero. For δ > 0, we define

Lδ = {� : λmin(�) ≥ δ}. (5.111)

Let P̃α = P̃α(M0,M, ρ, δ) denote the set of distributions of X1 that satisfy (5.100),
(5.105), and (5.111), and similarly, distribution in P̃′

α = P̃′
α(M0,M, ρ, δ) that satisfy

(5.105), (5.109), and (5.111).

Theorem 5.58 (Minimax risk of estimating the inverse covariance matrix by Cai,
Zhang and Zhou (2010) [351]) The minimax risk under Frobenius norm satisfies

inf
	̂

sup
P̃

E‖�̂−1 − �−1‖2 � min{n−2α/(2(α+1)) + logp

n
,
p

n
}, (5.112)

where P̃ denotes either P̃α or P̃′
α .

5.6.6 Banding Sample Autocovariance Matrices of Stationary Processes

Nonstationary covariance estimators by banding a sample covariance matrix or its
Cholesky factor were considered in [352] and [346] in the context of longitudinal and
multivariate data. Estimation of covariance matrices of stationary processes was consid-
ered in [353]. Under a short-range dependent condition for a wide class of nonlinear
processes, it is shown that the banded covariance matrix estimates converge, in operator
norm, to the true covariance matrix with explicit rates of convergence. Their consistency
was established under some regularity conditions when

n, p → ∞ and n−1 logp → 0,

where n and p are the number of subjects and variables, respectively. Many good refer-
ences are included in [353].

Given a realization of X1, . . . , Xn of a mean-zero stationary process {Xt}, its autoco-
variance function σk = cov(X0, Xk) can be estimated by

σ̂k = 1

n

n−|k|∑
i=1

XiXi+k, k = 0,±1, . . . ,±(n− 1). (5.113)

It is known that for fixed k ∈ Z, under ergodicity condition, σ̂k → σk in probability.
Entry-wise convergence, however, does not automatically imply that �̂n = (σ̂i−j )1≤i,j≤n
is a good estimator of �n = (σi−j )1≤i,j≤n. Indeed, although positive definite, �̂n is not
uniformly close to the population (true) covariance matrix �n, in the sense that the largest
eigenvalue or the operator norm of �̂n − �n does not converge to zero. Such uniform
convergence is important when studying the rate of convergence of the finite predictor
coefficients and performance of various classification methods in time series.

Not necessarily positive definite, the covariance matrix estimator is of the form

�̂n = (σi−j1|i−j |≤l )1≤i,j≤n, (5.114)
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212 Cognitive Radio Communications and Networking

where l ≥ 0 is an integer. It is a truncated version of �̂n preserving the diagonal and the
2l main subdiagonals; if l ≥ n− 1, then �̂n,l = �̂n. By following [346], �̂n,l is called
the banded covariance matrix estimate and l its band parameter.

Hannan and Deistler (1988) [354] have considered certain linear ARMA processes and
obtained the uniform bound

‖�̂n,l − �̂n‖∞ = O(
√

log log n/
√
n), l ≤ (log n)α, α < ∞.

Here, we consider the comparable results for nonlinear processes, mainly following the
notation and results of [353].

Let εi, i ∈ Z, be independent and identically distributed (i.i.d.) random variables.
Assume that {Xi} is a causal process of the form

Xi = g(· · · , εi−1, εi), (5.115)

where g is a measurable function such that Xi is well-defined and E(X2
i ) < ∞. Many

stationary processes fall within the framework of (5.115).
To introduce the dependent structure, let (ε′

i )i∈Z be an independent copy of (εi)i∈Z and
ξi = (· · · , εi−1, εi). Following [355], for i ≥ 0, let

ξ ′
i = (· · · , ε−1, ε

′
0, ε1, . . . , εi−1, εi), X

′
i = g(ξ ′

i ).

For α > 0, define the physical dependence of measure

δα(i) = ‖Xi −X′
i‖α. (5.116)

Here, for a random variable Z, we write Z ∈ Lα , if

‖Z‖α ≡ [
E(|Z|α)]1/α

< ∞,

and write || · || = || · ||2. Observe that X′
i = g(ξ ′

i ) is a coupled version of Xi = g(ξi) with
ε0 in the latter replaced by an i.i.d. copy ε′

0. The quantity δp(i) measures the dependence
of Xi on ε0. We say that {Xi} is short-range dependent with moment α if


α ≡
∞∑
i=0

δα(i) < ∞. (5.117)

That is, the cumulative impact of ε0 on future values of the process or {Xi}i≥0 is finite,
thus implying a short-range dependence.

Example 5.11 ([353])
Let

Xj = g

( ∞∑
i=0

aiεj−i

)
,

where ai are real coefficients with
∞∑
i=0

|ai | < ∞, εi are i.i.d. with εi ∈ Lα, α > 1, and g is

a Lipschitz continuous function. Then,
∞∑
i=0
aiεj−i is a well-defined random variable and

δα(i) = O(|ai |). Hence we have (5.117). �
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Large Random Matrices 213

Example 5.12 ([353])
Let εi be i.i.d. random variables and set

Xi = g(Xi−1, εi),

where g is a bivariate function. Many nonlinear time series models follow this
framework. �

Let ρ2(A) is the largest eigenvalue of AT A. The n× n matrix A has the operator norm
ρ(A).

We define the project operator Pk as

Pk· = E(·|ξk)− E(·|ξk−1), k ∈ Z.

Theorem 5.59 (No convergence in probability [353]) Assume that the process Xi in
(5.115) satisfies

∞∑
i=0

‖PkXi‖ < ∞.

If
∞∑
i=0

‖PkXi‖> 0, then, ρ(�̂n − �n) does not converge to zero in probability.

Theorem 5.60 (Convergence in probability [353]) Let 2 < α ≤ 4 and q = α/2. Assume
(5.117) and 0 ≤ l < n− 1. Then,

‖ρ(�̂n,l −	n)‖q ≤ cα(l + 1)n1/q−1‖X1‖α
α + 2

n

l∑
j=1

j |σj | + 2
n∑

j=l+1

|σj |, (5.118)

where cα > 0 is a constant depending only on α.

5.7 Free Probability

In quantum detection, tensor products are needed. For a large number of random matri-
ces, tensor products are too computationally expensive for our problem at hand. Free
probability is a highly noncommunicative probability theory with independence based on
free products instead of tensor products [356]. Basic examples include the asymptotic
behavior of large Gaussian random matrices. The freeness (its beauty and fruitfulness) is
the central concept [357].

Independent symmetric Gaussian matrices which are random matrices (also noncom-
munitative matrix-valued random variables) are asymptotic free. See Appendix A.5 for
details on noncommunicative matrix-valued random variables: random matrices are their
special cases.

In this subsection, we take the liberty of drawing material from [12, 13]. Here we
are motivated for spectrum sensing and (possible) other applications in cognitive radio
network. Free probability is a mathematical theory that studies noncommunitative random
variables. The “freeness” is the analogue of the classical notation of independence, and
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214 Cognitive Radio Communications and Networking

it is connected with free products. This theory was initiated by Dan Voiculescu around
1986, who made the statement [16]:

free probability theory = noncommunitative probability theory + free independence.

His first motivation was to study the von Neumann algebras of free groups. One of
Voiculescu’s central observations was that such groups can be equipped with tracial states
(also called states), which resemble expectations in classical probability.

What is the spectrum of the sum A + B [358]? For deterministic matrices A and B one
cannot in general determine the eigenvalues of A + B from those of A and B alone, as
they depend on the eigenvectors of A and B as well. However, it turns out that for large
random matrices A and B satisfying a property called freeness , the limiting spectrum of
the sum A + B can indeed be determined from the individual spectra of A and B. This
is a central result in free probability theory .

Define the functional ϕ as

ϕ(Ak
n) = 1

n
Tr(EAk

n).

φ stands for the normalized expected trace of a random matrix.
The matrices A1, . . . ,Am are called free if

ϕ
(
[p1(Ai1

) · · ·pk(Aik
)]
) = 0

whenever

• p1, . . . , pk are polynomials in one variable;
• i1 �= i2 �= i3 · · · �= ik (only neighboring elements are required to be distinct);
• ϕ(pj (Aij

)) = 0 for all j = 1, . . . , k.

For independent random variables, the joint distribution can be specified completely by
the marginal distributions [359]. For free random variables, the same result can be proven,
directly from definition. In particular, if X and Y are free, then the moments ϕ[(X + Y)n]
of X and Y can be completely specified by the moments of X and the moments of Y.
The distribution is naturally called free convolution of the two marginal distributions.
Classical convolution can be computed via transforms: the log moment generating func-
tion of the distribution of X + Y is the sum of the log moment generating function of
the individual distributions of X and Y. In contrast, for free convolution, the appropri-
ate transform is called the R-transform. This is defined via the Steltjes transform given
by (5.34).

Asymptotic Freeness

To apply the theory of free probability to random matrix theory, we need to extend the
definition of free to asymptotic freeness, by replacing the state functional ϕ by φ

φ(A) = lim
n→∞

1

n
ETr(An).
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Large Random Matrices 215

The expected asymptotic pth moment is φ(Ap) and φ(I) = 1. The definition of asymptotic
freeness is analogous to the concept of independent random variables. However, statistical
independence does not imply asymptotic freeness.

The Hermitian random matrices A and B are asymptotic free if for all l and for all
polynomials pi(·) and qi(·) with 1 ≤ i ≤ l such that

φ(pi(A)) = φ(qi(B)) = 0,
φ(p1(A)q1(A) · · ·pl(A)ql(A)) = 0.

We state the following useful relationships for asymptotically free A and B

φ(AkBl) = φ(Ak)φ(Bl),

φ(ABAB) = φ2(B)φ(A2)+ φ2(A)φ(B2)− φ2(A)φ2(B).

One approach to characterize the asymptotic spectrum of a random matrix is to obtain its
moments of all orders. The moments of a noncommunicative polynomial p(A,B) of two
asymptotically free random matrices can be computed from the individual moments of
A and B. Thus, if p(A,B), A and B are Hermitian, the asymptotic spectrum of p(A,B)
depends on only those of A and B, even if they do not have the same eigenvectors!

Example 5.13 (Moments of polynomial matrix function p(A,B)= A + B)
Let us consider the important special case of p(A,B) = A + B. Under H1, the sample
covariance matrix has the form

φ(A + B) = φ(A)+ φ(B),

φ[(A + B)2] = φ(A2)+ φ(B2)+ 2φ(A)φ(B),

φ[(A + B)3] = φ3(A)+ φ(B3)+ 3φ(A)φ(B2)+ 3φ(B)φ(A2),

φ[(A + B)4] = φ4(A)+ φ(B4)+ 4φ(A)φ(B3)

+ 4φ(B)φ(A3)+ 2φ2(B)φ(A2)

+ 2φ2(A)φ(B2)+ 2φ(B2)φ(A2).

All higher moments can be computed analogously. �

[13] compiles a list of some of the most useful instances of asympotic freeness that
have been shown so far. Let us list some here:

1. Any random matrix and the identity are asymptotically free.
2. Independent Gaussian standard Wigner matrices are asymptotically free.
3. Let X and Y be independent standard Gaussian matrices. Then {X,XH } and {Y,YH }

are asymptotically free.
4. Independent standard Wigner matrices are asymptotically free.

Sum of Asymptotic Free Random Matrices

Free probability is useful mainly due to the following theorem.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



216 Cognitive Radio Communications and Networking

Theorem 5.61 (Sum of two asymptotic free random matrices) If A and B are asymp-
totically free random matrices, then the R-transform of their sum satisfies

RA+B(z) = RA(z)+ RB(z).

In particular, the following translation property is valid

RA+γ I(z) = RA(z)+ Rγ I(z) = RA(z)+ γ.

Theorem 5.62 (Free probability central limit theorem) If A1,A2, . . . are a sequence
of N ×N asymptotically free random matrices. Assume that φ(Ai ) = 0 and φ(Ai

2) = 1.
Further assume that supi |φ(Ak

i )| < ∞ for all k. Then, as m,N → ∞, the asymptotic
spectrum of

1√
m
(A1 + A2 + · · · Am)

converges in distribution to the semicircle law, that is, for every k,

φ

(
1√
m
(A1 + A2 + · · · Am)

k

)
→




0, k odd

1
1+ k

2

(
k
k
2

)
, k even.

Let us revisit the problem of sum of K random matrices in Section 3.6. The K sample
covariance matrices are asymptotic free.

Example 5.14 (HHH [13])
Let H be an N ×m random matrix whose entries are zero-mean i.i.d. Gaussian random
variables with variance 1√

mN
and denote

1

N

√
m = ς.

We can represent

HHH = 1√
m

m∑
i=1

sis
H
i (5.119)

with si an N-dimensional vector whose entries are zero-mean i.i.d. with variance 1√
N

, it

can be shown that as N,m → ∞ with N
m

→ 0, the asymptotic spectrum of the matrix

HHH − ς
√
NI

is the semicircle law. �

Example 5.15 (Sum of K (random) sample covariance matrices in Section 3.6)
The sample covariance matrices have the form

Sk = 1

N
YkY

H
k , k = 1, 2, . . . , K,
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Large Random Matrices 217

where Yk have m row vectors and N column vectors. A long data record is divided into
K segments; each segment can be used to estimate the sample covariance matrix. The
sum of K sample covariance matrices is

SY =
K∑
k=1

Sk = 1

N

K∑
k=1

YkY
H
k .

Under H0: only Gaussian noise is present, each Sk is of the form of (5.119). Thus the
sum has the form

SY = 1√
mK

mK∑
i=1

sis
H
i .

The sum of K sample covariance matrices will make the asymptotic spectrum more like
the semicircle law since in practice N

mK
→ ∞ with faster rate. �

Products of Asymptotic Free Random Matrices

The S-transform plays an analogous role to the R-transform for products (instead of sum)
of asymptotically free matrices.

Theorem 5.63 Let A and B be nonnegative asymptotically free random matrices. The
S-transform of their products satisfies

	A+B(x) = 	A(x)	B(x).

The S-transform is the free analog of the Mellin transform in classical probability
theory, whereas the R-transform is the free analog of the log-moment generating function
in classical probability theory.

There are useful theorems [11] to calculate φ[(A + B)n] and φ[(AB)n].

Moments of the Sums and Products

Theorem 5.64 ([13]) Consider matrices A1, . . . ,Al whose size is such that the prod-
uct A1, . . . ,Al is defined. Some of these matrices are allowed to be identical. Omitting
repetitions, assume that the matrices are asymptotically free. Let ρ be the partition of
{1, . . . , l} determined by the equivalence relation j ≡ k if ij = ik . For each partition #
of {1, . . . , l}, let

φ# =
∏

{j1,...,jr }∈#
j1<···<jr

φ(Aj1
· · · Ajr

).

There exist universal coefficients c(#, ρ) such that

φ(A1 · · · Al) =
∑
#≤ρ

c(#, ρ)φ#

where # ≤ ρ indicates that # is finer than ρ.
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218 Cognitive Radio Communications and Networking

Finding an explicit formula for the coefficients c(#, ρ) is a nontrivial combinatorial
problem that has been solved by Speicher [360]. From Theorem 5.64, φ(A1 · · · Al) is
completely determined by the moments of the individual matrices.

Theorem 5.65 ([11]) Let A and B be nonnegative asymptotically free random matrices.
Then, the moments of their sum A + B are expressed by the free cumulants of A and B as

φ[(A + B)n] =
∑
#

∏
V∈#

(c|V |(A)+ c|V |(B))

where the summation is over all noncrossing partitions of 1, . . . , n, cl(A) denotes the lth
free cumulant of A, and |V | denotes the cardinality of V.

Theorem 5.65 is based on the fact that, if A and B be nonnegative asymptotically free
random matrices, the free cumulants of the sum satisfy

cl(A + B) = cl(A)+ cl(B).

Theorem 5.66 ([11]) Let A and B be nonnegative asymptotically free random matrices.
Then, the moments of their sum A + B are expressed as

φ[(AB)n] =
∑
#1,#2

∏
V1∈#1

c|V1|(A)
∏
V2∈#2

c|V2|(B)

where the summation is over all noncrossing partitions of 1, . . . , n.

5.7.1 Large Random Matrices and Free Convolution

5.7.1.1 Random Matrices and Free Random Variables

In free probability, large random matrices is an example of “free” random variables.
Let AN be an N ×N symmetric (or Hermitian) random matrix with real eigenvalues.
So the two-dimensional complex problem is converted into a one-dimensional real-value
problem. The probability measure on the set of its eigenvalues

λ1, λ2, . . . , λN

(counted with multiplicities) is given by

µAN = 1

N

N∑
i=1

δλi .

We are interested in the limiting spectral measure µA as N → ∞. This limiting spectral
measure is uniquely characterized by its moments, when compactly supported. We refer
to A as an element of the “algebra” with probability measure µA and moments above.

For two random matrices AN and BN with limiting probability distribution µA and µB,
we would like to compute the limiting probability distribution for AN + BN and ANBN

in terms of the moments of µA and µB. As treated above, the appropriate structure of
“freeness,” analogous to independence for “classical” random variables, is what we need
to impose on AN and BN , in order to compute these distributions. Since A and B do
not commute we are dealing with noncommutative algebra. Since all possible products
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Large Random Matrices 219

of A and B are allowed, we have the “free” products, that is, all words in A and B are
allowed. We have already dealt with how to compute the moments of these products.
The connection with random matrices comes in, because a pair of random matrices AN

and BN are asymptotically free, that is, in the limit of N → ∞, so long as at least one
of AN or BN has what amounts to eigenvectors that are uniformly distributed with Haar
measure. This result is stated precisely in [356].

Table 5.3 lists definitions of R-transform and S-transform and their properties.

5.7.1.2 Free Additive Convolution

When AN and BN are asymptotically free, the (limiting) spectral measure µAB for random
matrices of the form

AN + BN

is given by the free additive convolution of the probability measures µA and µB and
written as [356]

µA+B = µA � µB, (5.120)

An algorithm in terms of the so-called R-transform exists for computing µA+B from
µA and µB. See [356] for details and [361] for computational issues.

5.7.1.3 Free Multiplicative Convolution

When AN and BN are asymptotically free, the (limiting) spectral measure µAB for random
matrices of the form

ANBN

is given by the free multiplicative convolution of the probability measures µA and µB and
written as [356]

µAB = µA � µB, (5.121)

The algorithm for computing µAB is given in [254, 361–364].
The convolution operators on the noncommunicative algebra of large random matrices

exist, and can be computed efficiently (e.g., in MATLAB codes). Symbolic computational
tools are now available to perform these nontrial computations efficiently [361, 362].
These tools enable us to analyze the structure of sample covariance matrices and design
algorithms that take advantage of this structure [254].

5.7.1.4 Applications to Rank Estimation and Spectrum Sensing

Since the Wishart matrix so formed in (5.13) has eigenvectors that are uniformly dis-
tributed with Haar measure, the matrices R and W(α) are asymptotically free! Thus the
limiting probability measure µR̂ can be obtained using free multiplication convolution as

µR̂ = µR � µW, (5.122)
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220 Cognitive Radio Communications and Networking

where µR̂ is the limiting probability measure on the true covariance matrix R and µW
is the Marchenko-Pastur density [251], which is defined in (5.3). As given in (5.7), the
limiting spectral measure of R is simply

µR = pδ(x − ρ − 1)+ (1 − p)δ(x − 1).

The free probability results are exact when N → ∞, but the predictions are very accurate
for N ≈ 8, for rank estimation [254].

Example 5.16 (Rank estimation)
Let HHH in (5.7) have np of its eigenvalues of magnitude ρ and n(1 − p) of its eigenval-
ues of manitude 0 where p < 1. This corresponds to H being an n× L matrix with L < n

with p = L
n

so that L of its singular values are of magnitude
√
ρ while the eigenvectors

of H are unknown or random. Since free multiplicative convolution predicts the spectrum
of the sample covariance matrix R̂ so accurately such that we can use free multiplicative
deconvolution, to infer the parameters of the underlying covariance matrix model from
just one realization of the sample covariance matrix!

The first three moments of R̂ can be analytically parameterized in terms of the unknown
parameters β, ρ and the known parameter c = n/N as

ϕ(R̂) = 1 + pρ,

ϕ(R̂2) = 1 + pρ2 + c + 1 + 2pρc + 2pρ + cp2ρ2,

ϕ(R̂3) = 1 + 3c + c2 + 3ρ2p + 3ρ3cp2 + 3pρ + 9pρc + 6p2ρ2c

+ 3cρ2p + 3ρpc2 + 3ρ2c2p2 + ρ3p3c2 + ρ3p,

Given an n×N observation matrix Yn, we can compute estimates of the first three
moments as

ϕ̂(R̂k) = 1

n
Tr

[(
1

N
YnY

H
n

)k]
, k = 1, 2, 3.

Since we know c = n/N , we can estimate ρ, p by simply solving the nonlinear system
of equations (minimizing the least squares)

(ρ̂, p̂) = arg min
ρ > 0,p > 0

‖ϕ(R̂k)− ϕ̂(R̂k)‖2.

For the example of n = 200 and p = 0.5, the estimated rank is within 1 dimension of the
true rank of the system which is np = 100. �

Example 5.17 (Spectrum sensing)
Consider the standard form of (5.10), which is repeated here for convenience,

H0 : R̂ = YYH = WWH ,

H1 : R̂ = YYH = XXH + WWH ,
(5.123)
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Large Random Matrices 221

The true covariance matrices are

H0 : R = σ 2I,
H1 : R = HHH + σ 2I,

(5.124)

The conventional approach to find the power of the received signal plus noise is to
use (5.124). In practice, the usual approaches are to use large sample covariance matri-
ces through (5.123). Indeed, the sample covariance matrix is connected with the true
covariance matrix by the property of Wishart distribution through (5.12).

Using (5.122), we can convert the problem of calculating the sample covariance matrix
R̂ into the problem of calculating the true covariance matrix R, with the help of the
Wishart matrix W(c)! Recall that W(c) = 1

N
ZZ is formed from an n×N Gaussian ran-

dom matrix. Once again, c is defined as the limit n/N → c > 0 as n,N → ∞. Under
H1, we have the form of (5.7). We can thus calculate the limiting probability measure µR̂
using (5.12). �

5.7.2 Vandermonde Matrices

For notation and some key theorems, we follow [365] closely. Vandermonde matrices
have a central role in signal processing such as the fast Fourier transform or Hadamard
transforms. A Vandermonde matrix with complex entries on the unit circle has the fol-
lowing form

V = 1√
N




1 · · · 1
e−jω1 · · · e−jωL
...

. . .
...

e−j (N−1)ω1 · · · e−j (N−1)ωL


 , (5.125)

where the factor 1√
N

and the assumption of e−jωi are included to ensure that the analysis
will give limiting asymptotic behavior defined in the asymptotic regime of

Asymptotic regime: N → ∞, L → ∞, but
L

N
→ c. (5.126)

We are interested in the case where ω1, . . . , ωL are independent and identically dis-
tributed (i.i.d.), taking values in [0, 2π]. The ωi is called phase distributions. V will be
only to denote Vandermonde matrices in this section with a given phase distribution, and
the dimensions of the Vandermonde matrices will always be N × L.

[111] has some related results. The overwhelming majority of the known results are
concerned about Gaussian matrices or matrices with independent entries. Very few results
are available in the literature on matrices whose structure is strongly related to the Van-
dermonde case.

Often, we are interested in only the moments. It will be shown that asymptotically, the
moments of the Vandermonde matrices V depend only on the ratio c and the phase distri-
butions, and have explicit expressions. Moments are useful for performing deconvolution.

The normalized trace is defined as

tr(A) = 1

L
Tr(A).
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222 Cognitive Radio Communications and Networking

The matrices Dr (N), 1 ≤ r ≤ n will denote nonrandom diagonal L× L matrices, where
we implicitly assume that L

N
→ c.

We say the {Dr (N)}1≤r≤n have the joint limit distribution as N → ∞ if the limit

Di1,...,in
= lim

N→∞
tr(Di1

(N) · · · Din
(N))

exists for all choices of i1, . . . , is ∈ {1, . . . , n}.
The concepts from partition theory are needed. We denote by P(n) the set of all

partitions of {1, . . . , n}, and use ρ as notation for a partition in P(n). We write ρ =
{W1, . . . ,Wk}, where Wj will be used to denote the blocks of ρ. |ρ| = k denotes the
number of blocks in ρ and |Wj | will represent the number of entries in a given block.

For ρ = {W1, . . . ,Wk}, with Wi = {ωi1, . . . , ωi|Wi |}, we define

DWi
= Diωi1 ,...,iωi|Wi |

Dρ =
k∏
i=1

DWi
.

For ρ ∈ P(n), define

Kρ,ω,N = 1

Nn+1−|ρ|

∫
(0,2π)|ρ|

k∏
i=1

1 − ejN(ωb(k−1)−ωb(k))

1 − ej (ωb(k−1)−ωb(k)) dω1 · · · dω|ρ|

where
ωW1

, . . . , ωW|ρ| (5.127)

are i.i.d. (indexed by the blocks of ρ), all with the same distribution as ω, and where b(k)
is the block of ρ which contains k (notation is cyclic, that is, b(0) = b(n). If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N

exists, then we call it a Vandermonde mixed moment expansion coefficient.

Theorem 5.67 ([365]) Assume that the {Dr (N)}1≤r≤n have a joint limit distribution as
N → ∞. Assume also that all Vandermonde mixed moment expansion coefficients Kρ,ω

exist. Then, the limit

Mn = lim
N→∞

E[tr(D1(N)V
HVD2(N)V

HV × · · · Dn(N)V
HV)]

also exists when L
N

→ c, and equals

∑
ρ∈P(n)

Kρ,ωc
|ρ|−1Dρ.

For the case of Vandermonde matrices with uniform phase distribution, the noncrossing
partitions play a central role. Let u denote the uniform distribution on [0, 2π].
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Large Random Matrices 223

Theorem 5.68 ([365]) Assume D1(N) = D2(N) = · · · = Dn(N), set c = L
N

, and define

m(N,L)
n = cE[tr(D2(N)V

HV)
n
]

d(N,L)n = ctr(D(N))n.

When ω = µ, we have that

m
(N,L)

1 = d
(N,L)

1

m
(N,L)

2 = (1 −N−1)d
(N,L)

2 + (d
(N,L)

1 )2

m
(N,L)

3 = (1 − 3N−1 + 2N−2)d
(N,L)

3 + 3(1 −N−1)d
(N,L)

1 d
(N,L)

2 + (d
(N,L)

1 )3

m
(N,L)

4 =
(

1 − 20

3
N−1 + 12N−2 − 19

3
N−3

)
d
(N,L)

4 + (4 − 12N−1 + 8N−2)d
(N,L)

3 d
(N,L)

1

+
(

8

3
− 6N−1 + 10

3
N−2

)
(d

(N,L)

2 )
2 + 6(1 −N−1)d

(N,L)

2 (d
(N,L)

1 )
2 + (d

(N,L)

1 )
4
.

Let us consider generalized Vandermonde matrices defined as

V = 1√
N




e−j [Nf (0)]ω1 · · · e−j [Nf (0)]ωL

e
−j [Nf (

1
N
)]ω1 · · · e

−j [Nf (
1
N
)]ωL

...
. . .

...

e
−j

[
Nf

(
N−1
N

)]
ω1 · · · e−j [Nf (

N−1
N
)]ωL


 , (5.128)

where f is called the power distribution, and is a function from [0, 1] to [0, 1]. We also
consider the more general case when f is replaced with a random variable λ,

V = 1√
N



e−jNλ1ω1 · · · e−jNλLωL
e−jNλ2ω1 · · · e−jNλ2ωL

...
. . .

...

e−jNλNω1 · · · e−jλLωL


 , (5.129)

with the λi i.i.d. and distributed as λ, defined and taking values in [0, 1], and also inde-
pendent from the ωj .

For (5.128) and (5.129), define

Kρ,ω,f,N = 1

Nn+1−|ρ|

∫
(0,2π)|ρ|

n∏
k=1

(
N−1∑
r=0

pfN (r)e
jr(ωb(k−1)−ωb(k))

)
dω1 · · · dω|ρ|

Kρ,ω,λ,N = 1

Nn+1−|ρ|

∫
(0,2π)|ρ|

n∏
k=1

(∫ 1

0
NejNλ(ωb(k−1)−ωb(k))dλ

)
dω1 · · · dω|ρ|,

where ωW1,...,W|ρ| are defined as in (5.127). If the limits

Kρ,ω,f = lim
N→∞

Kρ,ω,f,N

Kρ,ω,λ = lim
N→∞

Kρ,ω,λ,N ,

exist, then they are called Vandermonde mixed moment expansion coefficients.
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224 Cognitive Radio Communications and Networking

Theorem 5.69 ([365]) Theorem 5.67 holds also when Vandermonde matrices (5.125) are
replaced with generalized Vandermonde matrices on either form (5.128) or (5.129), and
with Kρ,ω replaced with either Kρ,ω,f or Kρ,ω,λ.

Theorem 5.70 ([365]) Assume that the {Dr (N)}1≤r≤n have a joint limit distribution as
N → ∞. Assume also that V1,V2, . . . are independent Vandermonde matrices with the
same phase distribution ωi , and that the density of ω is continuous. Then, the limit

lim
N→∞

E[D1(N)V
H
i1

Vi2
D2(N)V

H
i2

Vi3
× · · · × Dn(N)V

H
in

Vi1
]

exists when L
N

→ c. The limit is 0 when n is odd, and equals∑
ρ≤σ∈P(n)

Kρ,ωc
|ρ|−1Dρ (5.130)

where

σ = {σ1, σ2} = {{1, 3, 5, . . . ,}, {2, 4, 6, . . . ,}}
is the partition where two blocks are the even numbers, and the odd numbers.

Corollary 5.4 ([365]) The first three mixed moments

V (2)
n = lim

N→∞
E[(VH

1 V2VH
2 V1)

n
]

of independent Vandermonde matrices V1,V2 are given by

V
(2)

1 = I2

V
(2)

2 = 2

3
I2 + I3 + I4

V
(2)

3 = 11

20
I2 + 4I3 + 9I4 + 6I5 + I6,

where

Ik = (2π)k−1

(∫ 2π

0
pω(x)

kdx

)
.

In particular, when the phase distribution is uniform, the first three moments are
given by

V
(2)

1 = 1, V (2)
2 = 11

3
, V

(2)
3 = 411

20
.

Theorem 5.71 ([365]) Assume that {Vi}1≤i≤s are independent Vandermonde matrices,
where Vi has continuous phase distribution ωi . Denoted by pωi , the density of ωi . Then,
(5.130) still holds, with Kρ,ω replaced by

Kρ,u(2π)
|ρ|−1

∫ 2π

0

s∏
i=1

pωi (x)
|ρi |dx,

where ρi consists of all numbers k such that ik = i.
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Large Random Matrices 225

Example 5.18 (Detection of the number of sources [365])
In this example, d is the distance between the antennas whereas λ is the wavelength. The
ratio d

λ
is a figure of the resolution with which the system will be able to separate users

in space. Let us consider a central node equipped with N receiving antennas, and with L
mobiles (each with a single antenna). The received signal at the central node is given by

yi = VP1/2xi + wi , (5.131)

where

• yi is the N × 1 received vector,
• xi is the L× 1 transmit vector by the L users; we assume E[xix

H
i ] = IL,

• wi is N × 1 additive, white, Gaussian noise of variance σ√
N

, and
• all components in xi and wi are assumed independent.

In the case of line of sight between the users and the central node, for a uniform linear
array (ULA), the matrix V has the following form

V = 1√
N




1 · · · 1

e
−j2π

d
λ

sin θ1 · · · e
−j2π

d
λ

sin θL
...

. . .
...

e
−j (N−1)

d
λ

sin θ1 · · · e−j (N−1)
d
λ

sin θL


 . (5.132)

Here, θi is the angle of the user and is supposed to be uniformly distributed over [−α, α].
P1/2 is an L× L diagonal power matrix due to the different distances from which the
users emit. The phase distribution has been assumed to have the form 2π d

λ
sin θ with θ

uniformly distributed on [−α, α].
By taking inverse function, the density is, for 2π sinα

λ
< 1,

pω(x) = 1

2α
√

4π2d2

λ2 − x2

on [− 2π sinα
λ

, 2π sinα
λ

], and 0 elsewhere.
By defining

Y = [y1, . . . , yN ],X = [x1, . . . , xK ],W = [w1, . . . ,wN ], (5.133)

(5.131) is rewritten as

Y = [y1, . . . , yN ] = VP1/2[x1, . . . , xK ] + [w1, . . . ,wN ] = VP1/2X + W.

The sample covariance matrix can be written as

S = 1

N
YYH = 1

N
(VP1/2X + W)(VP1/2X + W)H .

If we have only the sample covariance matrix S, in order to get an estimate of P, we
have three independent parts to deal with: X,W,V. We can achieve this by combining
Gaussian decomposition [366] and Vandermonde deconvolution by the following steps:
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226 Cognitive Radio Communications and Networking

1. Estimate the moments of 1
N

VP1/2XXHP1/2VH using multiplicative free convolution
[262]. This is the denoising part.

2. Estimate the moments of PVVH , using multiplicative free convolution.
3. Estimate the moments of P using Vandermonde deconvolution in the paper

of [365]. �

Proposition 5.9 ([365]) Define

In = (2π)n−1
∫ 2π

0
pω(x)

ndx

and denote the moments of P and S by

Pi = tr(Pi ), Si = tr(Si ).

Then, the equations

S1 = c2P1 + σ 2

S2 = c2P2 + (c2
2I2 + c2c3)(P1)

2 + 2σ 2(c2 + c3)P1 + σ 4(1 + c1)

S3 = c3P3 + (3c2
2I2 + c2c3)P1P2 + (c3

2I3 + 3c2
2c3I2 + c2c

2
3)(P1)

3 + 3σ 2(1 + c1)c2P2

+ 3σ 2((1 + c1)c
2
2I2 + c3(c3 + 2c2))(P1)

2 + 3σ 4(c2
1 + 3c1 + 1)c2P1

+ σ 6(c2
1 + 3c1 + 1)

provide an asymptotically unbiased estimator for the moments Pi from the moments of Si
(or vice versa) when

lim
N→∞

N

K
→ c1, lim

N→∞
L

N
→ c2, lim

N→∞
L

K
→ c3.

Example 5.19 (Estimation of the number of paths [365])
Consider a multipath channel

h(τ) =
L∑
i=1

xiδ(τ − τi).

Here xi are i.d. Gaussian random variables with power Pi and τi are uniformly distributed
delay over [0, T ]. The xi represent the attenuation factors due to different physical mech-
anisms such as reflections, refractions, or diffractions. L is the total number of paths. In
the frequency domain, the channel is

H(f ) =
L∑
i=1

xiG(f )e
−j2πf τi .

�

A generalized multipath model that has taken into account the per-path pulse distortion
[367–373] is relevant to the context. The so-called scatter centers that are used for the
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Large Random Matrices 227

radar community are mathematically modeled by the multiple maths that are used in
wireless communications. As a result, this work bridges the gap between two communities.
Deeper research can be pursued using this mathematical analogy between two different
systems. Physically, the two systems are equivalent.

By sampling the continuous frequency signal at sampling rate fi = i B
N

where B is the
bandwidth (in Hertz), we have (for a given channel realization)

H = VP1/2x (5.134)

where

V = 1√
N




1 · · · 1

e−j2π B
N
τ1 · · · e−j2π B

N
τL

...
. . .

...

e−j2π(N−1) B
N
τ1 · · · e−j2π(N−1) B

N
τL


 .

We set here B = T = 1, which implies that the ωi of (5.125) are uniformly distributed
over [0, 2π). When additive noise w is taken into account, our model again becomes that
of (5.131): The only difference is that the phase distribution of the Vandermonde matrix
now is uniform. L now is the number of paths, N the number of frequency samples, and
P is the unknown L× L diagonal power matrix. Taking K observations, we reach the
same form as in (5.133). We can do even better than Proposition 5.9. Our estimators for
the moments are unbiased for any number of observations K and frequency samples N .

Proposition 5.10 ([365]) Assume that V has uniform phase distribution, and let Pi be the
moments of P, and Si = tr(Si ) the moments of the sample covariance matrix. Define also

N

K
= c1,

L

N
= c2,

L

K
= c3.

Then,

E[S1] = c2P1 + σ 2

E[S2] = c2

(
1 − 1

N

)
P2 + c2(c2 + c3)(P1)

2 + 2σ 2(c2 + c3)P1 + σ 4(1 + c1)

E[S3] = c2

(
1 + 1

K2

)
(1 − 3

N
+ 2

N2
)P3 +

(
1 − 1

N

)(
3c2

2

(
1 + 1

K2

)
+ 3c2c3

)
P1P2

+
(
c3

2

(
1 + 1

K2

)
+ 3c2

2c3 + c2c
2
3

)
(P1)

3 + 3σ 2

(
(1 + c1)c2 + c1c

2
2

KL

)(
1 − 1

N

)
P2

+ 3σ 2

(
c1c

3
2

KL
+ c2

2 + c2
3 + 3c2c3

)
(P1)

2 + 3σ 4

(
c2

1 + 3c1 + 1 + 1

K2

)
c2P1

+ σ 6

(
c2

1 + 3c1 + 1 + 1

K2

)
.

Wavelength in (5.132) can be also estimated. See [365] for details.
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228 Cognitive Radio Communications and Networking

Example 5.20 (Signal reconstruction and estimation of the sampling distribu-
tion [365])
Consider the signal y(t) as a superposition of its N frequency components

y(t) = 1√
N

N−1∑
k=0

xke
−j 2π

N
kt . (5.135)

We sample the continuous signal y(t) at time instants t = [t1, . . . , tL] with ti ∈ [1].
(5.135) can be written equivalently as

y(ω) = 1√
N

N−1∑
k=0

xke
−jkωory = VT x.

In the presence of noise, one has

y = VT x + w

with

y = [y(ω1), . . . , y(ωL)],

and x and w are defined in (5.131). V is defined as our standard model (5.125). [374] has
a similar analysis for such cases.

We define

Y = [y1, . . . , yK ] = VT [x1, . . . , xK ] + [w1, . . . ,wK ] = VT X + W

S = 1

K
YYH = 1

K
(VT X + W)(VT X + W)H .

Consider the asymptotic regime

lim
N→∞

N

K
→ c1, lim

N→∞
L

N
→ c2, lim

N→∞
L

K
→ c3.

�

Proposition 5.11 ([365])

E[tr(S)] = c2P1 + σ 2

E[tr(S2)] = c2I2 + (1 + c3)(1 + σ 2)2 (5.136)

E[tr(S3)] = 1 + 3c2(1 + c3)I2 + 3c3 + c2
3 + c3

2I3 + 3σ 2(1 + 3c3 + c2
3 + c2(1 + c3)I2)

+ 3σ 4c2(c
2
3 + 3c3 + 1)+ σ 6(c2

1 + 3c1 + 1),

where In is defined in Proposition 5.19.

Consider a phase distribution ω which is uniform on [0, α], and 0 elsewhere. The
density is thus 2π

α
on [0, α], and 0 elsewhere. In this case we have

I2 = 2π

α
, I3 =

(
2π

α

)2

.

The first of these equations, combined with (5.136), enable us to estimate α.
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Large Random Matrices 229

Certain matrices similar to Vandermonde matrices have analytical expressions for the
moments. In [375], the matrices with entries of the form Ai,j = F(ωi, ωj ) are considered.
This is relevant to the Vandermonde matrices since

1

N
(VHV)i,j = sin

(
N
2 (ωi − ωj)

)
N sin

(
1
2 (ωi − ωj)

) .

Example 5.21 (Vandermonde matrices with unit complex entries [376])
Consider the network with M mobile users talking to a base station with N antenna
elements, arranged in a uniform linear array. The antenna array response is a Vandermonde
matrix. We refer to [376] for this example. �

5.7.3 Convolution and Deconvolution with Vandermonde Matrices

In the large dimensional limit, certain random matrices a deterministic behavior of the
eigenvalue distribution [377]. In particular, one can obtain the eigenvalue distribution
of AB and A + B, based on only the individual eigenvalue distributions of A and B,
when the matrices are independent and large. This operation is called convolution, and
the inverse operation is called deconvolution.

Gaussian-like matrices fit into this setting, since the concept of freeness [11] can be
used. [364] used large Wishart matrices. Random matrix theory was used in [9]; other
deterministic equivalents [17, 281, 298, 378] are used; Although used successfully [366],
all these techniques can only treat very simple models, that is, one of these considered
matrices are unitarily invariant.

The method of moments, which is the focus in this section, is very appealing and pow-
erful when freeness does not apply, for which we still do not have a general framework.
It requires the combinatorial skills and can be used for a large class of random matri-
ces. Compared with the Stieltjes transform, this approach has the main drawback that it
rarely provides the exact eigenvalue distribution. In many applications, however, we only
need a subset of the moments. We mainly follow Ryan and Debbah (2011) [377] for our
development.

A N ×N Vandermonde matrix V is defined in (5.125). We repeat it here for conve-
nience:

V = 1√
N




1 · · · 1
e−jω1 · · · e−jωL
...

. . .
...

e−j (N−1)ω1 · · · e−j (N−1)ωL


 . (5.137)

The ω1, . . . , ωL, also called phase distributions, will be assumed i.i.d., taking values in
[0, 2π]. Similarly, we consider the asymptotic regime defined in (5.126): N and L go to
infinity at the same rate, and write c = lim

N→∞
L
N

.

In Section 5.7.2, the limit eigenvalue distributions of combinations of VHV and diagonal
matrices D(N) were shown to be dependent on the limit eigenvalue distributions of the
two matrices.
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230 Cognitive Radio Communications and Networking

Define

lim
N→∞

tr(D1(N)V
H
i1

Vi2
× · · · × Dn(N)V

H
i2n−1

Vi2n
), (5.138)

where V1,V2, . . . are assumed independent, with phase distributions ω1, . . . , ωL.
Consider the following four expressions:

1. lim
N→∞

D(N)VHV and lim
N→∞

D(N)+ VHV

2. lim
N→∞

D(N)VVH and lim
N→∞

(D(N)+ VVH )

3. lim
N→∞

VH
1 V1VH

2 V2 and lim
N→∞

(VH
1 V1 + VH

2 V2)

4. lim
N→∞

V1VH
1 V2VH

2 and lim
N→∞

(V1VH
1 + V2VH

2 ).

Theorem 5.72 ([377]) Let Vi be independent Ni × L Vandermonde matrices with aspect
ratios ci = lim

N→∞
L
Ni

and phase distributions ωi with continuous densities in [0, 2π].

The limit

lim
N→∞

E[tr(D1(N)V
H
i1

Vi2
D2(N)V

H
i2

Vi3
× · · · × Dn(N)V

H
i2n−1

Vi2n
)] (5.139)

always exists, when Di (N) have a joint limit distribution, whenever the matrix product is
well-defined and square. Moreever, (5.138) converges almost surely in distribution to the
limit in (5.139). When σ ≥ [0, 1]n (that is, there are no terms in the form of VH

r Vs with
Vr and Vs independent and with different phase distributions), (5.139) can be expressed
as a formula in the aspect ratio ci, σ , and the individual moments

V(r)
n = lim

N→∞
E[tr(VH

r Vs)
n
]

Di1,...,is
= tr(Di1

(N) · · · Dis
(N)).

(5.140)

A special case of Theorem 5.72 is considered here. This theorem states in particular that

tr((V1 + V2 + · · ·)H (V1 + V2 + · · ·))p

depends only on the moments. This expression characterizes the singular law of a sum
of independent Vandermonde matrices. Also, expressions 1 and 3 are found to only rely
on the spectra of the component matrices. For convolution expression 1, we have the
following corollary.

Corollary 5.5 ([377]) Assume that V has a phase distribution with continuous density,
and define

Vn = lim
N→∞

tr((VHV)
n
)

Dn = c lim
N→∞

tr(D(N)n)

Mn = c lim
N→∞

tr((D(N)VHV)
n
)

Nn = c lim
N→∞

tr((D(N)+ VHV)
n
),
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Large Random Matrices 231

where c = lim
N→∞

L
N

. Whenever either {Mn}1≤n≤k or {Nn}1≤n≤k are known, and {Vn}1≤n≤k
(or {Dn}1≤n≤k) are known, then {Dn}1≤n≤k (or {Vn}1≤n≤k) are uniquely determined.

For expression 3, we have the following corollary.

Corollary 5.6 ([377]) Assume that V1 and V2 are independent Vandermonde matrices
where the phase distributions have continuous densities, and set

V
(n)

1 = lim
N→∞

tr((VH
1 V1)

n
)

V
(n)

2 = lim
N→∞

tr((VH
2 V2)

n
)

Mn = c lim
N→∞

tr((VH
1 V1VH

2 V2)
n
)

Nn = c lim
N→∞

tr((VH
1 V1 + VH

2 V2)
n
).

Mn and Nn are completely determined by V (i)

2 , V (i)

3 , . . . and the aspect ratios

c1 = lim
N→∞

L

N1
, c2 = lim

N→∞
L

N2
.

Also, whenever either {Mn}1≤n≤k or {Nn}1≤n≤k are known, and {V (n)

1 }1≤n≤k are known, then
{V (n)

2 }1≤n≤k are uniquely determined.

For expression 4, we have the following corollary.

Corollary 5.7 ([377]) Assume that V1 and V2 are independent Vandermonde matrices
with the same continuous density, and set

V (i)
n = lim

N→∞
tr((VH

i Vi )
n
)

Mn = lim
N→∞

tr((VH
1 V2VH

2 V1)
n
).

Then, {Mn}1≤n≤N are uniquely determined from {Vn}1≤n≤2N .

The spectral separability seems to be a phenomenon for large N-limit. We are only
aware of Gaussian and deterministic matrices where spectral separability occur in finite
case [379]. The moments of Hankel, Markov, and Toeplitz matrices [287] are relevant to
this context.

A practical example is studied in [377]:

1. From observations of the form D(N)VHV or D(N)+ VHV, one can infer on either
the spectrum of D(N), or the spectrum or phase distribution of V, when exactly one
of these is unknown.

2. From observations of the form VH
1 V2VH

2 V1 or VH
1 V1 + VH

2 V2, one can infer on the
spectrum or phase distribution of one of the Vandermonde matrices, when one of the
Vandermonde matrices is known.

The example only makes an estimate of the first moments of the component matrix
D(N). These moments can give valuable information: in cases where it is known that
there are few distinct eigenvalues, and the multiplicities are known, only some lower
order moments are needed, in order to get an estimate of these eigenvalues.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



232 Cognitive Radio Communications and Networking

5.7.4 Finite Dimensional Statistical Inference

We follow [379] for the development here, converting to our notation. Given X and Y
are two N ×N independent square Hermitian (or symmetric) random matrices:

1. Can one derive the eigenvalues distribution of X from the ones of X + Y and Y? If
feasible in the large N-limit, this operation is named additive free deconvolution.

2. Can one derive the eigenvalues distribution of X from the ones of XY and Y? If feasible
in the large N-limit, this operation is named multiplicative free deconvolution.

The method of moments [380] and the Stieltjes transform method [381] can be used.
The expression is simple, if some kind of asymptotic freeness [11] of the matrices is
assumed. Freeness, however, is not valid for finite matrices. Remarkably, the method
of moments can still be used for this purpose. The general finite-dimensional statistical
inference framework was proposed [379], and the codes for MATLAB implementation
are available [382]. The calculations are tedious. Only Gaussian matrices are addressed.
But other matrices such as Vandermonde matrices can also be implemented in the same
vein. The general case is more difficult.

Consider the doubly correlated Wishart matrix [383]. Let M,N be positive integers,
W be M ×N standard, complex, Gaussian, and D (deterministic) M ×M and E N ×N .
Given any positive integer p,, the following moments

E

[
tr

(
1

N
(DWEWH )

p

)]

E

[
tr

(
1

N
((D + W)(E + W)H )

p

)]
exist and can be calculated [379].

The framework of [379] enables us to compute the moments of many types of combi-
nations of independent, Gaussian- and Wishart random matrices, without any assumptions
on the matrix dimensions. Since the method of moments only encode information about
the lower order moments, it lacks much information which is encoded naturally into the
Stieltjes transform; spectrum estimation based on the Stieltjes transform is more accurate
than the case when a few moments are used. One interesting question is to ask how many
moments are typically required, in order to reach the performance close to that of the
Stieltjes transform.

Example 5.22 (MIMO rate estimation [379])
One has K noisy symbol-observations of the channel

Yi = D + σWi , i = 1, 2, . . . , K,

where D is an M ×N deterministic channel matrix, Wi is an M ×N standard, complex,
Gaussian representing the noise, and σ is the noise variance. The channel D is assumed
to stay constant during K symbols measurements. The rate estimator is given by

C = 1

M
log2det

(
IM + ρ

N
DDH

)
= 1

M
log2det

(
M∏
i=1

(1 + ρλi)

)

where ρ = 1
σ2 is the SNR, and λi are the eigenvalues of 1

N
DDH .
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Large Random Matrices 233

The problem falls within the framework suggested before. The extra parameter did not
appear in any of the main theorems of [379]. An unbiased estimator for the expression of

M∏
i=1

(1 + ρλi)

has been derived in [379]. �

Example 5.23 (Understanding network in a finite time [379])
In cognitive MIMO network, one must learn and control the “black box” (wireless chan-
nel) with vector inputs and vector outputs. Let y be the output vector, and x and w,
respectively, the input signal and the noise vector,

y = x + σw. (5.141)

By defining

Y = [y1, . . . , yK ],X = [x1, . . . , xK ],W = [w1, . . . ,wK ],

we have

Y = X + σW.

In the Gaussian case, the rate is given by

C = H(y)−H(y|x) = log2det (πeRY )− log2det (πeRW) = log2

(
det RY

det RW

)
, (5.142)

where RY is the covariance of the output signal vector, and RW is the covariance of
the noise vector. According to (5.142), one can fully find the information transfer of the
system, by knowing only the eigenvalues of RY and RW . Unfortunately, the receiver has
only access to a limited number (samples) of N observations of the output vector y,
not the covariance matrix RY . In other words, the system has access to only the sample
covariance matrix R̂Y , not the true covariance matrix RY . Here, we define

R̂Y = 1

K

K∑
i=1

yiy
H
i = 1

K
YYH = 1

K
(X + W)(X + W)H .

When x and w in (5.141) are both Gaussian vectors, we can write y as

y = R1/2
Y z (5.143)

where z is an i.i.d. standard Gaussian vector. The problem falls, therefore, in the realm
of inference with a correlated Wishart model defined by

R̂Y = 1

K

K∑
i=1

yiy
H
i = R1/2

Y

(
1

L

L∑
i=1

ziz
H
i

)
R1/2
Y = R1/2

Y R̂ZR1/2
Y ,
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234 Cognitive Radio Communications and Networking

where

R̂Z = 1

L

L∑
i=1

ziz
H
i = 1

L
ZZH ,Z = [z1, . . . , zL],

�

Example 5.24 (Power estimation [379])
Under the assumption of a large number of observations, the finite-dimensional inference
framework was not strictly required in the above two examples. The observations can,
instead, be stacked into a large matrix, where asymptotic results are more suitable. This
example illustrates a model, where it is unclear how to apply such a stacking strategy, thus,
making the finite-dimensional results more useful. In many multiuser MIMO applications,
one needs to determine the power of each user. Consider the system given by

yi = HP1/2xi + σwi , i = 1, 2, . . . , K,

where H,P, si ,wi are, respectively, the N ×M channel gain matrix, the M ×M diagonal
power matrix due to the different distances from which the users transmit, the M × 1
vector of signals and theN × 1 vector representing the noise with variance σ . In particular,
P, si ,wi are independent standard, complex, Gaussian matrices and vectors. We suppose
that we have K observations of the received signal vector yi , during which the channel
gain matrix H stays constant.

Consider the 2 × 2 matrix

P1/2 =
(

1 0
0 0.5

)
.

We can estimate the moments of the matrix P from the moments of the matrix YYH ,
where Y = [y1, . . . , yK ] is the component observation matrix.

We assume that we have an increasing number of observations K of the matrix Y, and
perform an averaging over the estimated moments—we average across a number of block
fading channels. From the estimated moments of P, we can then estimate its eigenvalues.
When K increases, the prediction is close to the true eigenvalues of P. K = 1,200 was
considered in [379]. �
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6
Convex Optimization

Optimization refers to minimizing or maximizing the objective function by systematically
choosing the values of optimization variables from or within an allowed set defined by the
constraint functions. Many engineering problems can be effectively characterized in the
form of optimization. Thus, optimization theory is a powerful tool to solve engineering
problems. In order to map from engineering problem to optimization issue, objectives,
constraints, and variables should be extracted from the engineering problem and expressed
in a mathematical fashion. Objective can be the key performance metric we care about. In
wireless communication, objective can be capacity or throughput. For the radar system,
detection rate can be the design goal. For smart grid, the total cost for purchasing power
should be minimized. Constraints are the physical limits of the system or the performance
requirements. Variables can be the adjustable or controllable parameters in the system,
for example, weights, gains, power, and so on. Besides, optimality, feasibility, and sen-
sitivity should also be taken into account. Reasonable constraints should be set for the
optimization problem, and active constraints should be given more attention.

There are many categories of optimization formats:

• Linear optimization and nonlinear optimization.
• Discrete optimization and continuous optimization.
• Deterministic optimization and stochastic programming.
• Constrained optimization and unconstrained optimization.
• Convex optimization and nonconvex optimization.

Convex optimization is a subfield of optimization theory, which studies the problem
of minimizing convex objective function based on a compact convex set. The strength
of convex optimization is if a local minimum exists, then it is a global minimum. Thus,
if the engineering problem can be formulated as convex optimization, then global opti-
mal solution can be obtained. That is one reason why convex optimization has recently
become popular.

The other reason for the popularity of convex optimization is that convex optimization
can be solved by cutting plane method, ellipsoid method, subgradient method, or interior

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



236 Cognitive Radio Communications and Networking

point method. Thereinto, interior point method is widely used. This method consists of
a self-concordant barrier function used to encode the convex set and reaches an optimal
solution by traversing the interior of the feasible region. The interior point method can
guarantee that the number of iterations is bounded by a polynomial in the dimension and
accuracy of the solution.

Convex optimization can be used in any engineering field. The popular topic in sensing
and image processing is compressive sensing (CS) which finds the sparse solution to the
underdetermined linear equations using the prior knowledge that the solution is sparse or
compressible. CS is formulated as minimizing the l1 norm which is convex optimization.
Though the core of CS is optimization theory, CS can be still treated as a dedicated theory
because of its particularity and significance. Though the sparse signal reconstruction has
existed for at least four decades, this field has recently exploded, partially due to several
important results by David Donoho, Emmanuel Candes, Justin Romberg, and Terence
Tao. Besides, Lawrence Carin and his colleagues have built a new Bayesian framework
for solving the inverse problem of CS [384, 385] and estimating a distribution for the
unknown parameters. CS has been used for radar imaging in [386]. In cognitive radar
network, though the data are huge, a sparse representation of data is still preferred. Thus,
we should explore the method to learn the optimal dictionary for data representation
[387]. Meanwhile, CS shows that physically sparse signal can be recovered from far
fewer samples than the signal dimension [387]. Hence we should also find the optimal
sensing matrix to project signals to the small amount of data with improving performance
of reconstruction accuracy. In this way, the amount of data or information needed for
radar signal processing can be greatly reduced. Furthermore, the overhead of cognitive
radar network can be reduced.

It is also worth noting that the contribution of convex optimization to machine learning
is significant. Learning the kernel matrix with SDP has been discussed in [388]. Learn-
ing multiresolution models with in-scale conditional covariance is formulated as convex
optimization in [389]. E. J. Candes and his colleagues discuss robust PCA and try to
decompose a data matrix into a low rank component and a sparse component by solving
a convex program called principal component pursuit (PCP). Thus, it is safely foreseeable
that convex optimization will play an important role in the function of cognition in the
near future.

The standard format of convex optimization problem is [8],

minimize
f0(x)

subject to
fm(x) ≤ cm, m = 1, 2, . . . , M

(6.1)

where f0(x), f1(x), . . . , fM(x) are all convex functions, which means,

fm(θx1 + (1 − θ)x2) ≤ θfm(x1) + (1 − θ)fm(x2), m = 0, 1, 2, . . . , M (6.2)

for any θ with 0 ≤ θ ≤ 1 and all x1 as well as x2 which lies in a convex set [8].
In the convex optimization problem (6.1), x is the optimization variable. x can be a

scaler, a vector or even a matrix. f0(x) is the objective function. fm(x), m = 1, 2, . . . , M

are called constraint functions.
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Convex Optimization 237

In mathematics, a concave function is the negative of a convex function. A function
f (x) is concave over a convex set if and only if −f (x) is a convex function over the
same set. If we would like to maximize one concave function, we can minimize its
corresponding convex function.

The well-known convex functions or concave functions are listed as follows [8, 390].
The readers can refer to [8] for the definitions of notations.

• f (x) = eax is convex on R for any a ∈ R.
• f (x) = log x is concave on R++.
• f (x) = xa is convex on R++ if a ≥ 1 or a ≤ 0 and concave if 0 ≤ a ≤ 1.
• Every norm on RN is convex.
• f (x) = x log x is convex on R++.
• f (x) = max{x1, x2, . . . , xN } is convex on RN .
• f (x) = log(ex1 + ex2 + · · · + exN ) is convex on RN .

• The geometric mean f (x) = (
∏N

n=1 xn)
1
N is concave on RN

++.

• f (x) = x2

y
is convex on R × R++.

• f (X) = log det X is concave on SN
++.

• f (X) = λmax(X) is convex on X ∈ SN where λmax(X) means maximum eigenvalue of
a matrix.

• f (X) = trace (X−1) is convex on X ∈ SN
++.

• f (X) = (det X)
1
N is concave on SN

++.
• If A is positive definite matrix A ∈ CN×N , f (X) = trace (XAXH ) is strictly convex.

6.1 Linear Programming

If the objective and constraint functions are all linear, the optimization problem is called
a linear programming. Linear programming is one kind of convex optimization problems.
A general linear programming has the form [8],

minimize

aT x + b

subject to

Cx = d
Gx � h,

(6.3)

where x ∈ RN , a ∈ RN , C ∈ RM×N , d ∈ RM , G ∈ RL×N , and h ∈ RL.
A standard form linear programming is expressed as [8],

minimize

aT x + b

subject to

Cx = d
x � 0,

(6.4)
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238 Cognitive Radio Communications and Networking

where the only inequality constraints are component-wise nonnegativity constraints x � 0.
An inequality form linear programming is written as [8],

minimize
aT x + b

subject to
Gx � h,

(6.5)

where no equality constraints exist.

6.2 Quadratic Programming

If the linear objective function in linear programming are replaced by the convex quadratic
objective function, the corresponding optimization problem is called quadratic program-
ming which can be expressed as [8],

minimize
1
2 xT Px + qT x + r

subject to
Cx = d
Gx � h,

(6.6)

where P ∈ SN
+ and q ∈ RN .

Furthermore, if the inequality constraints Gx � h in the quadratic programming (6.6) is
replaced by the convex quadratic constraints, the corresponding optimization problem is
called quadratically constrained quadratic programming (QCQP) which can be expressed
as [8],

minimize
1
2 xT P0x + qT

0 x + r0
subject to
Cx = d
1
2 xT Pmx + qT

mx + rm ≤ 0, m = 1, 2, . . . , M,

(6.7)

where Pm ∈ SN
+ and qm ∈ RN,m = 0, 1, 2, . . . , M .

The norm cone related to the norm ‖ · ‖ is the convex set which can be expressed
as [8],

C = {(x, t)|‖x‖ ≤ t} ⊆ RN+1. (6.8)

If l2 norm is considered, the corresponding cone is called second-order cone, quadratic
cone, or ice-cream cone.

If the convex quadratic constraints in QCQP are replaced by the convex second-cone
constraints, the corresponding optimization problem is called SOCP [8] ,

minimize
aT x
subject to
Cx = d
‖Fmx + em‖2 ≤ qT

mx + rm, m = 1, 2, . . . , M,

(6.9)

where Fm ∈ RLm×N and em ∈ RLm, m = 1, 2, . . . , M .
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Convex Optimization 239

6.3 Semidefinite Programming

If X ∈ SN
+ , X is a positive-semidefinite matrix or nonnegative-definite matrix which means

uT Xu ≥ 0 (6.10)

for all u ∈ RN . If X is a positive-semidefinite matrix, then all eigenvalues of X are
nonnegative and all diagonal entries in X are nonnegative.

SDP is a subfield of convex optimization. SDP tries to optimize a linear objective
function over the intersection of the cone of positive semidefinite matrices with an affine
space. SDP based signal processing is becoming more and more popular recently. It can
be applied to control theory, machine learning, statistics, circuit design, graph theory,
quantum mechnics [164], and so on. The reasons for this are

• More and more practical problems can be formulated as SDP.
• Many combinatorial and nonconvex optimization problems can be relaxed to SDP.
• Most of the interior-point methods for linear programming have been generalized to

SDP [391].
• The computational capability is increased greatly and SDP can be solved efficiently.

Hence, SDP serves as a core convex optimization format.
SDP has the form [8],

minimize
aT x
subject to
Cx = d(∑N

n=1 xnFn

)
+ E � 0,

(6.11)

where F1, F2, . . . FN, E ∈ SK .
Similar to linear programming, a standard form SDP is expressed as [8],

minimize
trace (AX)

subject to
trace (FmX) = em, m = 1, 2, . . . , M

X � 0,

(6.12)

where A, F1, F2, . . . , FM ∈ SN and a matrix nonnegativity constraint is imposed on the
variable X ∈ SN .

6.4 Geometric Programming

Geometric programming is a class of optimization problems. The standard form of geo-
metric programming itself is nonlinear and nonconvex. However, geometric programming
can be easily transformed to convex optimization problem [8, 392]. In this way, a global
optimum can be obtained.
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240 Cognitive Radio Communications and Networking

If a function is defined as,

h(x) = cx
a1
1 x

a2
2 · · · xaN

N , (6.13)

where c, x1, x2, . . . , xN ∈ R++ and a1, a2, . . . , aN ∈ R, this function is called a monomial
function, or simply, a monomial [8].

A sum of monomials is a posynomial function, or simply, a posynomial [8],

f (x) =
K∑

k=1

ckx
a1k
1 x

a2k
2 · · · xaNk

N , (6.14)

where ck ∈ R++ and a1k, a2k, . . . , aNk ∈ R, k = 1, 2, . . . , K .
A standard form of geometric programming has the form [8],

minimize
f0(x)

subject to
fm(x) ≤ 1, m = 1, 2, . . . , M

hl(x) = 1, l = 1, 2, . . . , L

x � 0,

(6.15)

where f0, f1, f2, . . . , fM are posynomials and h1, h2, . . . , hL are monomials.
Define,

yn = log xn, n = 1, 2, . . . , N (6.16)

then,

xn = eyn, n = 1, 2, . . . , N. (6.17)

A monomial can be transformed to [8]

h(x) = cx
a1
1 x

a2
2 · · · xaN

N

= c(ey1)a1(ey2)a2 · · · (eyN )aN

= ey1a1+y2a2···yN aN +b

= eaT y+b, (6.18)

where b = log c. The change of variables turns a monomial function into the exponential
of an affine function [8].

Similarly, a posynomial can be transformed to [8]

f (x) =
K∑

k=1

eaT
k

y+bk , (6.19)

where ak = (a1k, a2k, . . . , aNk)
T and bk = log ck, k = 1, 2, . . . , K .
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Convex Optimization 241

The geometric programming (6.15) can be expressed in terms of y ∈ RN as [8],

minimize∑K0
k=1 eaT

0k
y+b0k

subject to∑Km
k=1 eaT

mk
y+bmk ≤ 1, m = 1, 2, . . . , M

egT
l

y+pl = 1, l = 1, 2, . . . , L,

(6.20)

where amk ∈ RN,m = 0, 1, 2, . . . , M and gl ∈ RN, l = 1, 2, . . . , L.
Finally, we perform logarithm operation to the objective function and constraint func-

tions in the geometric programming (6.20) to get the convex form of geometric program-
ming [8],

minimize

f̃0(y) = log
(∑K0

k=1 eaT
0k

y+b0k

)
subject to

f̃m(y) = log
(∑Km

k=1 eaT
mk

y+bmk

)
≤ 0, m = 1, 2, . . . , M

h̃m(y) = gT
l y + pl = 0, l = 1, 2, . . . , L.

(6.21)

If the objective function and constraint functions in the geometric programming (6.21) are
all monomials, then the geometric programming (6.21) reduces to a linear programming.
Hence, geometric programming can be treated as an extension of linear programming [8].

Extensions of geometric programming are documented in [392] together with appli-
cations in communication systems. These applications include channel capacity, coding,
network resource allocation, network congestion control, and so on [392].

6.5 Lagrange Duality

In optimization theory, the duality theory states that optimization problems may be viewed
from either of two perspectives, the primal problem or the dual problem. No matter
whether the primal problem is convex or not, the dual problem is certainly concave.
Thus, the dual problem is easy to solve. The solution of the dual problem provides a
lower bound to the solution of the primal problem.

Mathematically speaking, if the primal problem, which is not necessarily convex, is
expressed as

minimize
f0(x)

subject to
fm(x) ≤ 0, m = 1, . . . , M

hl(x) = 0, l = 1, . . . , L

(6.22)

and its optimal value is

p∗ = f0(x
∗), (6.23)
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242 Cognitive Radio Communications and Networking

then the corresponding dual problem is

maximize
g(λ,υ)

subject to
λ ≥ 0,

(6.24)

where g(λ,υ) is Lagrange dual function defined as [8]

g(λ,υ) = inf L(x, λ,υ)

= inf

(
f0(x) +

M∑
m=1

λmfm(x) +
L∑

l=1

υlhl(x)

)
(6.25)

and x satisfies constraints in the primal problem (6.22).
Denote the optimal value of the dual problem by d∗. Weak duality always holds for

convex and nonconvex problems,

d∗ ≤ p∗ (6.26)

and strong duality usually holds for convex problems,

d∗ = p∗. (6.27)

6.6 Optimization Algorithm

Two categories of algorithms, that is, deterministic algorithms and stochastic algorithms,
are widely used to solve optimization problems. For deterministic algorithms, interior
point methods are very popular recently.

6.6.1 Interior Point Methods

Interior point methods are a class of algorithms to solve linear and nonlinear convex opti-
mization problems. Ideally, any convex optimization problems can be solved by interior
point methods. The key element of these methods is to use a self-concordant barrier func-
tion to encode the convex set [393]. A barrier function is a continuous function whose
value on a point increases to infinity as the point approaches the boundary of the feasi-
ble region. Thus, interior point methods reach an optimal solution by going through the
interior of the feasible region.

The ideal barrier function should be [8],

I (u) =
{

0, u ≤ 0
∞, u> 0.

(6.28)

In reality, logarithmic barrier is used as an approximation,

I (u) = −1

t
log(−u), (6.29)

where t > 0 and approximation improves as t goes to infinity [8]. Meanwhile, logarithmic
barrier function is convex and twice continuously differentiable.
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Convex Optimization 243

6.6.2 Stochastic Methods

Stochastic methods or random search methods generate and use random variables to get
the solution to the optimization problem. Stochastic methods do not need to explore the
structures of objective functions and constraints, that is, derivative or gradient informa-
tion. Stochastic methods will be suitable for the nonconvex optimization problems or the
relatively large-scale high-dimension optimization problems. Stochastic methods cannot
guarantee the global optimum, but there are often no other choices.

Stochastic methods can include but are not limited to

• simulated annealing;
• stochastic hill climbing;
• genetic algorithm;
• ant colony optimization;
• particle swarm optimization (PSO).

Therein, genetic algorithm, which is one kind of evolutionary algorithm techniques, has
been widely used for multiobjective optimization or multiobjective decision making. Take
PSO as an example [394]. Power allocation problem for time reversal with array gain in
MIMO UWB system is formulated as a nonconvex optimization issue. Even though the
first and second derivatives of the objective functions and constraints can be easily derived
[394], because the objective function is a nonlinear and nonconvex function, it is hard
to use deterministic algorithm to solve this optimization problem. PSO is applied [394].
PSO is a swarm intelligence based algorithm to find a solution to an optimization problem
[395]. There are many particles with a position and a velocity in the swarm. Particles
in a swarm communicate good positions to each other and adjust their own position and
velocity based on these good positions.

Suppose there are N particles. After K iterations, the algorithm is stopped. When the
k-th iteration begins, the position of particle i is Lk−1

i . The velocity of particle i is Vk−1
i .

The local best position of particle i is

Lk
ibest = arg max

{Lk−1
ibest,L

k−1
i

}
C(L), (6.30)

where C(L) is the utility function. The global best position is

Lk
gbest = arg max

{Lk
ibest, i=1,2,...,N}

C(L). (6.31)

Then the velocity of particle i in the k-th iteration is

Vk
i = w × Vk−1

i + c1 × rand × (Lk
ibest − Lk−1

i ) + c2 × rand × (Lk
gbest − Lk−1

i ) (6.32)

and the new position of particle i is Lk
i = Lk−1

i + Vk
i . In Equation (6.32) rand means

random value drawn from a uniform distribution on the unit interval; w is the inertia
weight; c1 and c2 are two positive constants, called the cognitive and social parameter
respectively.
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244 Cognitive Radio Communications and Networking

6.7 Robust Optimization

The optimization issue with uncertainty is becoming hotter and hotter in many research
fields, such as operation research, finance, industrial management, transportation schedul-
ing, wireless communication, smart grid, and so on, because most of the optimization
issues are from the dynamic complex system, and most of the variables in the optimiza-
tion issue cannot be deterministic or known for sure. There are two approaches to deal
with the optimization issue with uncertainty. One is robust optimization, and the other is
stochastic optimization. In robust optimization, the uncertainty model is deterministic and
set based [396]. However, in stochastic optimization, the uncertainty model is assumed to
be random [396]. Robust optimization, which is a conservative approach [397], can guar-
antee the performance for all the cases within the set based uncertainty. In other words,
robustness means the performance is stable with the bounded errors. However, stochas-
tic optimization can only guarantee the performance on average for the uncertainty with
known or partially known probability distribution [397] information. Thus, there is a
tradeoff between robustness and performance. Robust optimization will materialize by
waveform diversity.

Waveform diversity is a key research issue in the current wireless communication
system, the radar system, and the sensing or image system. Waveform should be designed
or optimized according to the different requirements or objectives of system performance
and should be adapted or diversified dynamically to the operating environment in order to
achieve a performance gain [398]. For example, the waveform should be designed to carry
more information to the receiver in terms of capacity. If the energy detector is employed
at the receiver, the waveform should be optimized such that the energy of the signal in
the integration window at the receiver should be maximized [399–401]. For navigation
and geolocation, the ultra short waveform should be used to increase the resolution. For
multi-target identification, the waveform should be designed so that the returns of radar
signals can bring more information back. In clutter dominant environment, maximizing
the target energy and minimizing the clutter energy should be considered simultaneously.

Multiple input single output (MISO) system is one kind of multi-antenna systems in
which there are multiple antennas at the transmitter and one antenna at the receiver.
MISO system can explore the spatial diversity and execute the transmitter beamforming
to focus energy on the desired direction or point and avoid interference to other radio
systems. It is well known that waveform and spatially diverse capabilities are made
possible today due to the advent of lightweight digital programming waveform generator
[402] or AWG. Waveform diversity can also be applied to the wideband system. Waveform
design or optimization for wideband multi-antenna system is documented in [403]. From
a theoretical point of view, the contribution of [403] can be summarized as follows.
The equivalent baseband waveforms are designed for the passband system. Different
waveforms for different transmitter antennas are jointly optimized to obtain the global
optimality. At the receiver, the received signals from different transmitter antennas will
be combined together over the air such that the receiver antenna will see only one copy of
the signal from the transmitter. In order to achieve this kind of over the air coherency for
the passband signals, all the individual oscillators should be tied together at the transmitter
[402] to make the carrier phase consistent.

In the context of cognitive radio, waveform design gives us flexibility to design radio,
which can coexist with other cognitive radios and primary radios. From cognitive radio’s
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point of view, spectral mask constraint at the transmitter and the interference cancella-
tion at the receiver should be seriously considered for waveform design or optimization,
in addition to the traditional communication objectives and constraints. Spectral mask
constraint is imposed on the transmitted waveform such that cognitive radio has lim-
ited or no interference to primary radio. At the same time, the interference cancellation
scheme is implemented at the receiver to cancel the interference from primary radio to
cognitive radio.

Though the thought of waveform diversity for the radar system can be traced back
to World War II, due to the computational capability and hardware limitation, a lot of
waveform design algorithms cannot be implemented into the radar system [398] for many
years. Nowadays, these bottlenecks are broken, and waveform diversity becomes a hotspot
afresh in the radar society. Time reversal or phase conjugating waveform, colored wave-
form, sparse and regular nonuniform Doppler waveform, noncircular waveform, and so on
are dealt with based on advanced mathematics tools in [404]. New trends in coded wave-
form design for radar applications are presented in [405]. The modern SDP and the novel
algorithm on Hermitian matrix rank one decomposition are exploited to perform code
selection which can maximize the detection performance and control the Doppler esti-
mation accuracy and the similarity with a prefixed radar code [405]. Meanwhile, another
force to propel the research on waveform diversity is the introduction of cognition to the
radar system, that is, cognitive radar which means the radar can actively learn about the
environment, and the whole radar system forms a dynamic closed feedback loop includ-
ing the transmitter, environment, and receiver [406]. Waveform diversity will play an
important role in cognitive radar. The radar transmitter can adjust its illumination of the
environment in an intelligent, effective, adaptive, and robust manner, taking into account
the results of learning and perception [406]. Thus, the philosophy of sequential testing
[407] can be embraced under the umbrella of cognitive radar smoothly. Several rounds
of illuminations will be used until the belief that the decision is correct is made. The
waveform and the transceiver scheme for each round can be adjustable according to the
results of the previous illuminations. For example, adaptive CS [384] gives us the hint to
this research field. Though the thought of waveform diversity for the radar system can be
traced back to World War II, due to the computational capability and hardware limitation,
a lot of waveform design algorithms cannot be implemented into the radar system [398]
for many years. Nowadays, these bottlenecks are broken, and waveform diversity becomes
a hotspot afresh in the radar society. Time reversal or phase conjugating waveform, col-
ored waveform, sparse and regular nonuniform Doppler waveform, noncircular waveform,
and so on are dealt with based on advanced mathematics tools in [404]. New trends in
coded waveform design for radar applications are presented in [405]. The modern SDP
and the novel algorithm on Hermitian matrix rank one decomposition are exploited to
perform code selection which can maximize the detection performance and control the
Doppler estimation accuracy and the similarity with a prefixed radar code [405]. Mean-
while, another force to propel the research on waveform diversity is the introduction of
cognition to the radar system, that is, cognitive radar which means the radar can actively
learn about the environment, and the whole radar system forms a dynamic closed feedback
loop including the transmitter, environment, and receiver [406]. Waveform diversity will
play an important role in cognitive radar. The radar transmitter can adjust its illumination
of the environment in an intelligent, effective, adaptive, and robust manner, taking into
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246 Cognitive Radio Communications and Networking

account the results of learning and perception [406]. Thus, the philosophy of sequential
testing [407] can be embraced under the umbrella of cognitive radar smoothly. Several
rounds of illuminations will be used until the belief that the decision is correct is made.
The waveform and the transceiver scheme for each round can be adjustable according
to the results of the previous illuminations. For example, adaptive CS [384] gives us the
hint to this research field.

The previous theoretical researches on waveform diversity do not take the robustness
into account. There are several reasons for this:

• The theory of robust optimization was not that mature in the old days.
• Robustness makes waveform diversity complex.
• The research on waveform diversity was only limited to computer simulation.

Nowadays, as the theory of robust optimization becomes mature and bottlenecks of
computation and implementation are broken, robust optimization for waveform diversity,
that is, robust waveform diversity, will bring more attention. Meanwhile, robustness is
the bridge between the theoretical work and the practical situation.

Robust optimization is the key mathematical tool for robust waveform diversity, which
gives the optimal waveform with robustness. Robust optimization is systematically intro-
duced in [396]. The most frequently used optimization formats within robust optimization
are robust linear programming [396, 408, 409], robust least squares [8, 410], robust mean
square error (MSE) [411–417], and robust SDP [418, 409]. If the optimization issues can
be formulated as robust linear programming, robust least squares, or robust MSE with
some specific uncertainty models, these optimization issues will be solvable and tractable.
For example, if the uncertainty model is the ellipsoidal uncertainty set, robust linear pro-
gramming becomes an SOCP and a robust SOCP becomes an SDP [419], which can be
efficiently solved via interior point methods. However, a robust SDP with the ellipsoidal
uncertainty set is NP-hard to solve [419]. Because SDP is harder than SOCP, and SOCP
is harder than linear programming taking the complexity of solving method into account,
robustness increases the difficulty of the optimization issue [419]. Robust least squares
with the finite uncertainty set, norm bound error, uncertainty ellipsoids, and norm bounded
error with linear structure are discussed in [8]. Meanwhile, the solution of robust least
squares where the coefficient matrices are unknown but bounded is also given in [410].
The worst case residual is minimized, and the corresponding optimization problem can
be formulated as SOCP. The work on robust MSE is done by [411–417] from classical
estimation’s point of view. Robust MSE can also be called minimax MSE. The core idea
of the competitive minimax approach [412] is to seek the linear estimator that minimizes
the worst case regret with the assumption that the covariance of parameter vector is sub-
ject to uncertainties. The minimax MSE estimator, the linear estimator that minimizes the
worst case MSE among all parameter vectors with bounded norm [414], can be found by
solving an SDP. Similarly, robust MSE with noise covariance uncertainty is dealt with
in [415]. Robust MSE is extended to a multisignal estimation issue in [416] where both
model and noise uncertainties are considered.

Transmitter power control can be treated as one kind of waveform diversity schemes.
Traditionally, power control or power allocation was implemented above the physical
layer as one kind of radio resource management issues. Power control can be imple-
mented in the physical layer. In this way, the period of power control loop will be greatly
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reduced. Different power control patterns will synthesize different transmitted waveforms
to meet different requirements. Robust transmitter power control is documented in [397].
OFDM modulation scheme is adopted in the physical layer. Every cognitive radio should
dynamically control the transmission powers for its own subcarriers in order to maximize
the total benefits. Thus, the objective of this optimization issue is the maximization of
total capacities of all cognitive radios, and the constraints consist of the individual power
constraints and interference constraints. Because there is no central node in cognitive
radio network, the feasible algorithm to solve this optimization issue should be imple-
mented in a decentralized manner. For the nonrobust version of optimization issue, the
classical iterative waterfilling can be used, and the convergence of the solution can be
guaranteed. However, the cognitive radio network has a dynamic nature [397] due to the
random mobility of cognitive radios and primary radios. Thus the noise plus interference
term includes two components: a nominal term and a perturbation term to form the robust
version of optimization issue. The price of the robustness is that a convex optimization
problem becomes a nonconvex optimization problem. Most of the algorithms for convex
optimization cannot be used. A new numerical technique to solve the nonconvex robust
optimization issue is proposed in [420]. Neighborhood searches and robust local moves
are applied iteratively to achieve the robust solutions [397]. Similar to transmitter power
control, transmitter beamforming can be thought of as another kind of waveform diversity
schemes. Robust transmitter beamforming in multiuser MISO cognitive radio networks
is considered in [421]. Channel state information in [421] is assumed to be imperfectly
known, and the imperfectness of channel state information is modeled using an Euclidean
ball shaped uncertainty set [421]. Specifically speaking, the objective is to design the
optimal beamforming weights for different cognitive radios with the least total transmit-
ted power at the central node while simultaneously the least possible received signal to
interference plus noise ratio (SINR) for each cognitive radio should be equal to or greater
than a threshold defined by the quality of service (QoS) requirement. The interference
for each primary radio should be equal to or less than a threshold to make primary radio
work properly. Robust transmitter beamforming with partial channel state information for
cognitive radio can also be seen in [422]. Because of the limitation of sounding system
and feedback system, robustness to partial channel state information, channel state infor-
mation error, or the limited feedback is very important to dealing with transmitter power
control and beamforming. Meanwhile, due to the perturbation of the radio environment
and the fading of the radio channel, how to deal with outdated channel state information is
still worth studying. Sometimes, without channel state information, the directional beam
for far field can still be formed at the transmitter using array manifold, steering vector,
or spatial signature.

Robust waveform diversity is applied to MIMO radar system in [423]. The design
criteria are mutual information and MMSE estimation for target identification and clas-
sification. Target PSD is assumed to lie in an uncertainty class of spectra bounded by
known upper and lower bounds [423]. With this kind of prior information, the designed
waveform can well match the target and bring back more information. The minimax
robust waveforms can bound the worst case performance at an acceptable level [423].
Optimal and robust waveform design for MIMO radars with the consideration of the sig-
nal dependent noise, that is, clutter, is studied in [424]. Robust waveforms to minimize
the estimation error of the worst case target realization are obtained [424].
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248 Cognitive Radio Communications and Networking

It has been widely accepted that waveform diversity is implemented at the transmitter.
But waveform diversity should have broader meaning and significance. First of all, any
type of signal processing in the waveform level at the receiver should also be included into
the waveform diversity framework. The most common signal processing is the receiver
beamforming including the narrowband beamforming and wideband beamforming. Robust
receiver beamforming is dealt with in [425, 426]. The uncertainty comes from the mis-
match of steering vector and the estimation error of the sampled covariance matrix for
interference plus noise. The worse case performance of the minimum variance beam-
former or Capon beamformer is taken care of. SDP or SOCP can be exploited to solve
the corresponding robust optimization issues. Robust minimum variance beamformer with
probabilistic constraint is mentioned in [427], and the relationship between probability
constrained and worst case optimization is discussed. Robust least squares are applied to
antenna design in [409]. The optimal solution obtained from the nominal least squares
is completely unstable w.r.t. small implementation errors [409]. However, robust least
squares will bring stable results to combat the uncertainty. Robust wideband beamform-
ing is addressed and presented by [428]. Similarly, error from steering vector brings
instability to the system and inevitably degrades the beamformer’s performance [428].
Hybrid steepest descent method is proposed to find the unique minimizer of the cost
function over the feasible convex set [428].

6.8 Multiobjective Optimization

Practical optimization problems, especially the engineering design optimization problems,
seem to have a multi-objective nature much more frequently than a single objective one
[429]. For example, to form wideband beampattern with arbitrary shape, we need to
consider at least four objectives: main beam, sidelobe, nulling, and frequency invariant
property.

In terms of solution, the difference between the multiobjective optimization and the
single-objective optimization is the former has a set of Pareto-optimal solutions while the
latter has a single global optimum if such a solution exists. The term “Pareto-optimal
solution” refers to a solution around which there is no way of improving any objective
without worsening at least one other objective [429]. The set of Pareto-optimal solutions
can be characterized by Pareto front—a hypersurface in the objective function space in
which the Pareto-optimal points are located [429].

How to get the solution for the multiobjective optimization is based on how the indi-
vidual objective should be weighted in relation to all others. Thus, four kinds of methods
can be applied in terms of preference [429, 430]:

• A Priori Preference. We can specify the preferences before running the optimiza-
tion algorithm. Most likely, a single utility function is developed to combine all the
objectives.

• Progressive Preference. We can interact with the optimization algorithm and change
the preferences during the optimization process.

• A Posteriori Preference. No preferences is given before or during the optimization
process. We can choose the solution from a set of candidates provided by the optimiza-
tion algorithm.
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• No Preference. No preferences are needed in the whole process of the multiobjective
optimization.

If preferences are given beforehand, the weighted sum method is the simplest approach
and probably the most widely used classical method. This method transforms the multi-
objective optimization problem into a single objective one by multiplying each objective
with a predetermined weight and adding all the weighted objectives together. The solu-
tion to the single objective problem is Pareto-optimal if the weights are positive for all
objectives. However, the weighted sum method cannot guarantee that any Pareto-optimal
solution can be obtained using a positive weight vector. Meanwhile, if preferences are not
given beforehand, we have to find a set of candidate solutions as completely as possible.

For deterministic strategy, ε-constraint method, weighted metric methods, rotated
weighted metric method, value function method, and so on can be exploited. Besides,
stochastic algorithms, especially evolutionary algorithms, seem to be more popular than
deterministic algorithms to solve the multiobjective optimization problem [430–433].
Convergence and diversity are two important issues for multiobjective evolutionary
algorithms [434]. An efficient evolutionary method to approximate the Pareto optimal set
in multiobjective optimization has been proposed in [435]. A relevant example is to use
strength Pareto evolutionary algorithm 2 to design simultaneous multimission waveforms
[436]. A genetic algorithm is also applied in [437] to obtain OFDM radar waveform for
target detection with consideration of error bound and Mahalanobis-Distance. Similarly,
in order to make algorithms scalable, parallel genetic algorithms [438] are worth using.

The performance optimization of cognitive radio or cognitive radio network itself is a
multi-objective optimization problem. First of all, multiple objectives exist from physical
layer to application layer in cognitive radio network [439]. Different layers may have
different performance metrics. Different applications may have different QoS require-
ments. Different users may have different subjective performance needs. Hence, multiple
objectives should be taken into account simultaneously. Meanwhile, the external radio
environment and internal network state determine the validity, feasibility, and sensitiv-
ity of objectives. Specifically speaking, bit error rate (BER) minimization, out-of-band
interference minimization, power consumption minimization, and overall throughput max-
imization have been achieved using a multiobjective fitness function in the framework of
distributed optimization [440, 441]. Genetic algorithm and its variants are widely exploited
[441–449]. Besides, PSO can also be used for spectrum allocation in cognitive radio net-
work with consideration of sum bandwidth reward and access fairness of secondary users
[450]. From the perspective of artificial intelligence, a case-based reasoning method using
the divide-and-conquer concept has been explored to generate solutions for problems with
multiple objectives in cognitive radio [451].

6.9 Optimization for Radio Resource Management

Radio resource management is the system-level control for the wireless communication
system [452–457]. Generally, radio resource management tries to optimize the utilization
of various radio resources such that the performance of radio system can be improved.
Mathematical optimization, especially convex optimization, is the main tool supporting
radio resource management [458]. Meanwhile, radio resource management will be the
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250 Cognitive Radio Communications and Networking

basic function in cognitive radio [459]. Spectrum related management for spectrum sens-
ing spectrum access, spectrum sharing, and so on, will be the feature for cognitive radio
[460, 461].

Radio resource management includes but is not limited to

• power control [462–467];
• frequency band allocation;
• time slot allocation;
• adaptive modulation and coding [468–470];
• rate control [471];
• antenna selection [472–475];
• scheduling [471, 476–479];
• handover [480–482];
• admission control [483–489];
• congestion control [484, 490–494];
• load control [495];
• routing plan [496–498];
• base station deployment.

The work about radio resource management can also be found in [499–507]. Capacity,
communication rate, spectrum efficiency, or capacity region is used frequently as per-
formance metric for radio resource management. Besides, MIMO related radio resource
management and OFDM related radio resource management will also be mentioned in
the following chapters.

6.10 Examples and Applications

The examples and applications will show the beauty and benefit of mathematical opti-
mization.

6.10.1 Spectral Efficiency for Multiple Input Multiple Output
Ultra-Wideband Communication System

It is assumed that there are Nt transmitter antennas and Nr receiver antennas in the system.
The channel transfer function is H(f ) with bandwidth W = f1 − f0 where f0(> 0) is

the starting frequency and f1(> 0) is the end frequency

H(f ) =




H11(f ) H12(f ) · · · H1Nt
(f )

H21(f ) H22(f ) · · · H2Nt
(f )

...
...

...
...

HNr 1(f ) HNr 2(f ) · · · HNrNt
(f )


 , (6.33)
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where Hmn(f ) is channel transfer function from the transmitter antenna n to the receiver
antenna m. Its corresponding channel impulse response is

H(t) =




H11(t) H12(t) . . . H1Nt
(t)

H21(t) H22(t) · · · H2Nt
(t)

...
...

...
...

HNr 1(t) HNr 2(t) · · · HNrNt
(t)


 . (6.34)

The spectrum shaping filter at the transmitter side is

X(t) =




X11(t) X12(t) . . . X1Ns
(t)

X21(t) X22(t) · · · X2Ns
(t)

...
...

...
...

XNt 1(t) XNt 2(t) · · · XNtNs
(t)


 (6.35)

and its corresponding transfer function is

X(f ) =




X11(f ) X12(f ) . . . X1Ns
(f )

X21(f ) X22(f ) · · · X2Ns
(f )

...
...

...
...

XNt 1(f ) XNt 2(f ) · · · XNtNs
(f )


 . (6.36)

The input of the spectrum shaping filter is the transmitted signal vector a(t). The entries
of a(t) are a1(t), a2(t), . . ., and aNs

(t),

a(t) =




a1(t)

a2(t)
...

aNs
(t)


 , (6.37)

all of which are independent white Gaussian random processes with zero mean and unit
PSD.

The transmitted signal at the transmitter array is

S(t) = X(t) ⊗ a(t), (6.38)

where “⊗” denotes convolution operation and each entry of S(t) is

Si(t) =
Ns∑
j=1

(Xij (t) ⊗ aj (t)), i = 1, 2, . . . , Nt . (6.39)

Hence, the PSD of the transmitted signal at the transmitter array is

RS(f ) = X(f )XH (f ). (6.40)
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252 Cognitive Radio Communications and Networking

The received signal at the receiver array is

R(t) = H(t) ⊗ S(t) + N(t) (6.41)

where N(t) is AWGN the entries of which are independent random processes with zero
mean and one-sided PSD N0.

If a one-sided situation is considered, then the transmitted power is

P =
∫ f1

f0

trace [RS(f )] df. (6.42)

The equivalent ratio of the transmitted signal power to the received noise power (TX
SNR) is defined as

ρ = P

N0W
. (6.43)

The spectral efficiency is [508]

C

W
= 1

W

∫ f1

f0

log2

∣∣∣∣INr
(f ) + H(f )RS(f )HH (f )

N0

∣∣∣∣ df , (6.44)

where | • | represents the determinant of the matrix.
The methods for the design of spectrum shaping filter are

• water filling;
• constant power water filling;
• time reversal;
• channel inverse;
• constant power spectral density;
• MMSE.

6.10.1.1 Water Filling

It is well known that the spectral efficiency of water filling is greater than that of any
other spectrum shaping scheme. Let λi(f ), i = 1, 2, . . . , Nt denote the set of eigenvalues
of N0H−1(f )[H−1(f )]H . So SVD of N0H−1(f )[H−1(f )]H can be written as

N0H−1(f )[H−1(f )]H = U(f )diag{λi(f )}UH (f ), (6.45)

where diag(a), if a is a vector with n components, returns an n-by-n diagonal matrix
having a as its main diagonal. Because of the property of unitary matrix, HH (f )H(f )

N0
can

be expressed as

HH (f )H(f )

N0
= U(f )diag{λ−1

i (f )}UH (f ). (6.46)

Then, RS(f ) can be given by

RS(f ) = U(f )diag{�i(f )}UH (f ), (6.47)
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Convex Optimization 253

where �i(f ) = (µ − λi(f ))+, i = 1, 2, . . . , Nt and (x)+ = max[0, x]. Here, the constant
µ is the water level chosen to satisfy the power constraint with equality

Nt∑
i=1

∫ f1

f0

�i(f ) df = P. (6.48)

So, the spectral efficiency C
W

in this case is [509]

1

W

Nt∑
i=1

∫ f1

f0

(
log2

(
µ

λi(f )

))+
df . (6.49)

6.10.1.2 Constant Power Water Filling

Constant power water filling is well studied in [510]. For water filling, the power alloca-
tion scheme is �i(f ) = (µ − λi(f ))+, i = 1, 2, . . . , Nt . While for constant power water
filling, the power allocation scheme is

�i(f ) =
{

p0, if λi(f ) ≤ λ0
0, if λi(f ) > λ0.

(6.50)

How to get the optimal p0 and λ0 is the key point of constant power water filling.
Similarly, the frequency band sets �i, i = 1, 2, . . . , Nt are defined as

�i = {f : λi(f ) ≤ λ0; f0 ≤ f ≤ f1}. (6.51)

The measure of �i is θi , and

θ =
Nt∑
i=1

θi. (6.52)

λ0 should be selected to meet the condition that min{λi (f ), f ∈ �i, i = 1, 2, . . . , Nt} + P
θ

is equal to

max {λi(f ), f ∈ �i, i = 1, 2, . . . , Nt}. (6.53)

Meanwhile, p0 = P
θ

.

6.10.1.3 Time Reversal

For time reversal, it follows that

X(f ) = αHH (f ), (6.54)

where the constant α is the scale factor chosen to satisfy the power constraint with
equality,

P =
∫ f1

f0

trace [RS(f )] df

=
∫ f1

f0

trace [X(f )XH (f )] df
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254 Cognitive Radio Communications and Networking

=α2
∫ f1

f0

trace [HH (f )H(f )] df

=α2
∫ f1

f0

Nr∑
i=1

Nt∑
j=1

|Hij (f )|2 df. (6.55)

Hence

α =
√√√√√

P∫ f1
f0

Nr∑
i=1

Nt∑
j=1

|Hij (f )|2 df

(6.56)

and

X(f ) =
√√√√√

P∫ f1
f0

Nr∑
i=1

Nt∑
j=1

|Hij (f )|2 df

HH (f ). (6.57)

The spectral efficiency C
W

in this case is [509]

1

W

∫ f1

f0

log2

∣∣∣∣∣∣∣∣∣
I + ρWH(f )HH (f )H(f )HH (f )∫ f1

f0

Nr∑
i=1

Nt∑
j=1

|Hij (f )|2 df

∣∣∣∣∣∣∣∣∣
df . (6.58)

6.10.1.4 Channel Inverse

For channel inverse, it follows that

X(f ) = αHH (f )[H(f )HH (f )]−1, (6.59)

where the constant α is the scale factor chosen to satisfy the power constraint with
equality,

P =
∫ f1

f0

trace [RS(f )] df

=
∫ f1

f0

trace [X(f )XH (f )] df

= α2
∫ f1

f0

trace [[H(f )HH (f )]−1] df. (6.60)

Hence

α =
√

P∫ f1
f0

trace [[H(f )HH (f )]−1] df
(6.61)
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Convex Optimization 255

and

X(f ) =
√

P∫ f1
f0

trace [[H (f )HH (f )]−1] df
HH (f )[H(f )HH (f )]−1. (6.62)

The spectral efficiency C
W

in this case is [509]

C

W
= Nr log2

(
1 + ρW∫ f1

f0
trace [[H(f )HH (f )]−1] df

)
. (6.63)

6.10.1.5 Constant Power Spectral Density

If power is equally allocated to each transmitter antenna, then

RS(f ) = P

WNt

I(f ). (6.64)

The spectral efficiency C
W

in this case is [509]

C

W
= 1

W

∫ f1

f0

log2

∣∣∣∣I + ρH(f )HH (f )

Nt

∣∣∣∣ df . (6.65)

6.10.1.6 Minimum Mean Square Error

For MMSE, it follows that

X(f ) = αHH (f )[H(f )HH (f ) + Nr

ρ
I]−1, (6.66)

where the constant α is the scale factor chosen to satisfy the power constraint with
equality,

P =
∫ f1

f0

trace [RS(f )] df

=
∫ f1

f0

trace [X(f )XH (f )] df. (6.67)

So α is equal to √
P∫ f1

f0
tr[HH (f )[H(f )HH (f ) + Nr

ρ
I]−2H(f )] df

. (6.68)

Similarly, the spectral efficiency in this case can be calculated by Equation (6.40) and
Equation (6.44).
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256 Cognitive Radio Communications and Networking

6.10.2 Wideband Waveform Design for Single Input Single Output
Communication System with Noncoherent Receiver

OOK modulation is considered and the transmitted signal is

s(t) =
∞∑

j=−∞
djp(t − jTb), (6.69)

where Tb is the bit duration; p(t) is the transmitted bit waveform defined over [0, Tp];
and dj ∈ {0, 1} is j -th transmitted bit. Without loss of generality, assume the minimal
propagation delay is equal to zero. The energy of p(t) is∫ Tp

0
p2(t) dt = Ep. (6.70)

The received noisy signal at the output of the receiver front-end is

r(t) = h(t) ⊗ s(t) + n(t)

=
∞∑

j=−∞
djx(t − jTb) + n(t), (6.71)

where h(t), t ∈ [0, Th] is the multipath impulse response that takes into account the effects
of channel impulse response and the RF front-ends of the transceivers including antennas.
h(t) is available at the transmitter [511, 512]. n(t) is a low-pass additive zero mean
Gaussian noise with one-sided bandwidth W and one-sided PSD N0. x(t) is the received
noiseless bit-“1” waveform defined as

x(t) = h(t) ⊗ p(t). (6.72)

We further assume that Tb ≥ Th + Tp = Tx , that is, no existence of intersymbol inter-
ference (ISI).

An energy detector performs nonlinear square operation to r(t) without any explicit
analog filter at the receiver. Then the integrator does the integration over a given inte-
gration window TI . Corresponding to the time index k, the k-th decision statistic at the
output of the integrator is given by

zk =
∫ kTb+TI0+TI

kTb+TI0

r2(t) dt

=
∫ kTb+TI0+TI

kTb+TI0

(dkx(t − kTb) + n(t))2dt, (6.73)

where TI0 is the starting time of integration for each bit, and 0 ≤ TI0 < TI0 + TI ≤ Tx ≤
Tb.

An approximately equivalent SNR for the energy detector receiver, which provides the
same detection performance when applied to a coherent receiver, is given as [400]

SNReq =
2
(∫ TI0+TI

TI0
x2(t) dt

)2

2.3TIWN2
0 + N0

∫ TI0+TI

TI0
x2(t) dt

. (6.74)
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Convex Optimization 257

For the best performance, the equivalent SNR SNReq should be maximized. Define

EI =
∫ TI0+TI

TI0

x2(t) dt. (6.75)

For given TI , N0, and W , SNReq is an increasing function of EI . So the maximization
of SNReq in Equation (6.74) is equivalent to the maximization of EI in Equation (6.75).

The optimization problem to get the optimal waveform is shown as

maximize∫ TI0+TI

TI0
x2(t) dt

subject to∫ Tp

0 p2(t) dt = Ep.

(6.76)

In order to solve the optimization problem (6.76), numerical approach is employed. In
other words, p(t), h(t), and x(t) are uniformly sampled, and the optimization problem
(6.76) will be converted to its corresponding discrete time form. Assume the sampling
period is Ts . Tp/Ts = Np. Th/Ts = Nh. Tx/Ts = Nx . So Nx = Np + Nh.

p(t), h(t), and x(t) are represented by pi, i = 0, 1, . . . , Np, hi, i = 0, 1, . . . , Nh, and
xi, i = 0, 1, . . . , Nx , respectively [400].

Define

p = [p0 p1 · · · pNp
]T (6.77)

and

x = [x0 x1 · · · xNx
]T . (6.78)

Construct channel matrix H(Nx+1)×(Np+1)

(H)i,j =
{

hi−j , 0 ≤ i − j ≤ Nh

0, else
, (6.79)

where (•)i,j denotes the entry in the i-th row and j -th column of the matrix or vector.
Meanwhile, for vector, taking p as an example, (p)i,1 is equivalent to pi−1.

The matrix expression of Equation (6.72) is

x = Hp (6.80)

and the constraint in the optimization problem (6.76) can be expressed as

‖p‖2
2Ts = Ep, (6.81)

where “‖ • ‖2” denotes the Euclidean norm of the vector. In order to make the whole
document consistent, we further assume

‖p‖2
2 = 1. (6.82)
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258 Cognitive Radio Communications and Networking

Let TI/Ts = NI and TI0/Ts = NI0. The entries in x within integration window consti-
tute xI as,

xI = [xNI0
xNI0+1 · · · xNI0+NI

]T (6.83)

and EI in Equation (6.75) can be equivalently shown as

EI = ‖xI‖2
2Ts. (6.84)

Simply dropping Ts in EI will not affect the optimization objective, so EI is redefined
as

EI = ‖xI‖2
2. (6.85)

Similar to Equation (6.80), xI can be obtained by

xI = HI p. (6.86)

where (HI )i,j = (H)NI0+i,j , and i = 1, 2, . . . , NI + 1 as well as j = 1, 2, . . . , Np + 1.
The optimization problem (6.76) can be represented by its discrete time form as,

maximize
EI

subject to
‖p‖2

2 = 1.

(6.87)

The optimal solution p∗ for the optimization problem (6.87) is the dominant eigenvector
in the following eigendecomposition [400]

HT
I HI p = λp. (6.88)

Furthermore, E∗
I will be obtained by Equation (6.85) and Equation (6.86).

6.10.2.1 Tradeoff between Energies Within and Outside Integration Window

In order to reduce ISI, the energies within and outside of integration window should be
considered simultaneously, which means there is a tradeoff between energies within and
outside integration window [401].

The entries in x outside of integration window constitute xĪ as

xĪ = [x0 · · · xNI0−1
xNI0+NI +1 · · · xNx

]T (6.89)

and the energy outside of integration window EĪ can be expressed as

EĪ = ‖xĪ‖2
2. (6.90)

Similar to Equation (6.86), xĪ can be obtained by

xĪ = HĪ p, (6.91)

where (HĪ )i,j = (H)i,j when i = 1, . . . , NI0 and (HĪ )i−(NI +1),j = (H)i,j when i = NI0 +
NI + 2, . . . , Nx + 1 as well as j = 1, 2, . . . , Np + 1.
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Convex Optimization 259

In order to balance energies within and outside of integration window, the tradeoff
factor α is introduced. The range of α is from 0 to 1. How to choose α depends on the
performance requirement. Given α, the optimization problems is formulated as

maximize
αEI − (1 − α)EĪ

subject to
‖p‖2

2 = 1.

(6.92)

The optimal solution p∗ for the optimization problem (6.92) is the dominant eigenvector
in the following eigendecomposition [401]

[αHT
I HI − (1 − α)HT

Ī
HĪ ]p = λp. (6.93)

6.10.2.2 Binary Waveform

If the transmitted waveform is constrained to the binary waveform because of the hardware
limitation or implementation simplicity, which means pi, i = 0, 1, . . . , Np is equal to
− 1√

1+Np
or 1√

1+Np
, then the optimization problem is

maximize
EI

subject to
[(p)i,1]2 = 1

1+Np
, i = 0, 1, . . . , Np.

(6.94)

One suboptimal solution p∗
b1 to the optimization problem (6.94) is derived from the optimal

solution p∗ of the optimization problem (6.87). When p∗ is obtained, then

(p∗
b1)i,1 =




1√
1+Np

, (p∗)i,1 ≥ 0

− 1√
1+Np

, (p∗)i,1 < 0.
(6.95)

This simple method can lead to the optimal solution to the optimization problem (6.94)
when TI → 0, which can be proved by Cauchy Schwarz inequality, but if TI is greater
than zero, there is still an improvement potential to this suboptimal solution obtained from
Equation (6.95).

Define

P = ppT (6.96)

P should be a symmetric positive semidefinite matrix, that is, P �= 0, and rank of P
should be equal to 1. Reformulate EI as

EI = pT HT
I HI p

= trace (HT
I HI ppT )

= trace (HT
I HI P). (6.97)
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260 Cognitive Radio Communications and Networking

Rank constraint is nonconvex constraint, so after dropping it, the optimization problem
(6.94) is relaxed to

maximize

trace (HT
I HI P)

subject to

(P)i,i = 1
1+Np

, i = 0, 1, . . . , Np

P �= 0.

(6.98)

The optimal solution P∗ of the optimization problem (6.98) can be obtained by using
CVX tool [513], and the value of the objective function in the optimization problem (6.98)
gives the upper bound of the optimal value in the optimization problem (6.94). Projecting
the dominant eigenvector of P∗ on − 1√

1+Np
and 1√

1+Np
based on Equation (6.95), the

suboptimal solution p∗
b2 is achieved [514].

Finally, the designed binary waveform is [401]

p∗
b = arg max

p∈{p∗
b1,p∗

b2}
pT HT

I HI p. (6.99)

6.10.2.3 Ternary Waveform

If the transmitted waveform is constrained to the ternary waveform, which means pi, i =
0, 1, . . . , Np is equal to three levels, that is, −c, 0 or c, then the optimization problem is
expressed as

maximize

EI

subject to

[(p)i,1]2 = c2 or 0, i = 0, 1, . . . , Np

‖p‖2
2 = 1.

(6.100)

The optimization problem (6.100) is still NP-hard and can be approximately reformulated
as

maximize

EI

subject to

Cardinality(p) ≤ k

1 ≤ k ≤ Np + 1

‖p‖2
2 = 1

(6.101)

where Cardinality(p) denotes the number of nonzero entries of p, and cardinality constraint
is also a nonconvex constraint.

Because k is the integer number between 1 and Np + 1, the optimization problem
(6.101) can be decomposed into Np + 1 independent, and parallel subproblems and each
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Convex Optimization 261

subproblem is shown as

maximize
EI

subject to
Cardinality(p) ≤ k

‖p‖2
2 = 1

(6.102)

where k is equal to 1, 2, · · ·, or Np + 1.
Problem (6.102) can be solved in parallel, and then the solutions are combined to get

the solution of the original optimization problem (6.100). The definition in Equation (6.96)
is reused, and problem (6.102) can be converted to the following SDP by semidefinite
relaxation combined with l1 heuristic [514].

maximize
trace (HT

I HI P)

subject to
trace (P) = 1
aT |P|a ≤ k

P �= 0,

(6.103)

where a is the column vector with all ones and

‖p‖2
2 = pT p

= trace (ppT )

= trace (P). (6.104)

The CVX tool [513] is also operated to get the optimal solution P∗
k of SDP (6.103).

From the dominant eigenvector p∗
k of P∗

k and the threshold pthk , the solution for the
subproblem (6.102) can be achieved as

(p∗
tk)i,1 =




ck, (p
∗
k)i,1 > pthk

0, |(p∗
k)i,1| ≤ pthk

−ck, (p
∗
k)i,1 < pthk

, (6.105)

where

pthk = arg max
{pth}

(p∗
tk)

T HT
I HI p∗

tk

subject to
Cardinality(p∗

tk) ≤ k

(6.106)

and

ck = 1√
Cardinality(p∗

tk)
. (6.107)

Finally, the designed ternary waveform is [401]

p∗
t = arg max

p∈{p∗
tk,k=1,2,...,Np+1}

pT HT
I HI p. (6.108)
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262 Cognitive Radio Communications and Networking

6.10.3 Wideband Waveform Design for Multiple Input Single Output
Cognitive Radio

MISO system is one kind of multiantenna systems in which there are multiple antennas
at the transmitter and one antenna at the receiver. MISO system can explore the spatial
diversity and execute the beamforming to focus energy on the desired direction or point
and avoid interference to other radio systems. It is well known that waveform and spatially
diverse capabilities are made possible today due to the advent of lightweight digital
programming waveform generator [402] or AWG.

6.10.3.1 Cauchy−Schwarz Inequality-Based Iterative Algorithm

There are N antennas at the transmitter, and one antenna at the receiver. OOK modulation
is used for transmission. The transmitted signal at the transmitter antenna n is

sn(t) =
∞∑

j=−∞
djpn(t − jTb), (6.109)

where Tb is the bit duration; pn(t) is the transmitted bit waveform defined over [0, Tp] at
the transmitter antenna n; and dj ∈ {0, 1} is j -th transmitted bit. The energy of transmitted
waveforms is

N∑
n=1

∫ Tp

0
p2

n(t) df = Ep. (6.110)

The received noisy signal at the output of LNA is

r(t) =
N∑

n=1

hn(t) ⊗ sn(t) + n(t)

=
∞∑

j=−∞
dj

N∑
n=1

xn(t − jTb) + n(t), (6.111)

where hn(t), t ∈ [0, Th] is the multipath impulse response. hn(t) is available at the trans-
mitter [511, 512].

∫ Th

0 h2
n(t) dt = Enh. n(t) is AWGN. xn(t) is the received noiseless

bit-“1” waveform defined as

xn(t) = hn(t) ⊗ pn(t). (6.112)

We further assume that Tb ≥ Th + Tp = Tx , that is, no existence of ISI.
If the waveforms at different transmitter antennas are assumed to be synchronized, the

k-th decision statistic is

r(kTb + t0) =
∞∑

j=−∞
dj

N∑
n=1

xn(kTb + t0 − jTb) + n(t)

= dk

N∑
n=1

xn(t0) + n(t). (6.113)
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Convex Optimization 263

In order to maximize the system performance,
N∑

n=1
xn(t0) should be maximized. The

optimization problem can be formulated as follows to get the optimal waveforms pn(t).

maximize
N∑

n=1
xn(t0)

subject to
N∑

n=1

∫ Tp

0 p2
n(t) dt ≤ Ep

0 ≤ t0 ≤ Tb.

(6.114)

An iterative method is proposed here to give the optimal solution to the optimization
problem (6.114). This method is a computationally efficient algorithm. For simplicity in
the following presentation, t0 is assumed to be zero, which will not degrade the optimum
of the solution if such solution exists.

x(t) =
N∑

n=1

xn(t). (6.115)

From inverse Fourier transform,

xnf (f ) = hnf (f )pnf (f ) (6.116)

and

xf (f ) =
N∑

n=1

hnf (f )pnf (f ), (6.117)

where xnf (f ), hnf (f ), and pnf (f ) are the frequency domain representations of xn(t),
hn(t), and pn(t), respectively. xf (f ) is frequency domain representation of x(t). Thus,

x(0) =
N∑

n=1
xn(0) and xn(0) = ∫∞

−∞ xnf (f ) df .

If there is no spectral mask constraint, then according to the Cauchy−Schwarz
inequality,

x(0) =
N∑

n=1

∫ ∞

−∞
hnf (f )pnf (f ) df

≤
N∑

n=1

√∫ ∞

−∞
|hnf (f )|2 df

∫ ∞

−∞
|pnf (f )|2 df

≤
√√√√ N∑

n=1

∫ ∞

−∞
|hnf (f )|2 df

√√√√ N∑
n=1

∫ ∞

−∞
|pnf (f )|2 df

=
√√√√Ep

N∑
n=1

Enh, (6.118)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



264 Cognitive Radio Communications and Networking

where when pnf (f ) = αhnf (f ) for all f and n, two equalities are obtained. Hence,

α =
√√√√√ Ep

N∑
n=1

∫∞
−∞ |hnf (f )|2 df

. (6.119)

In this case, pn(t) = αhn(−t), which means the optimal waveform pn(t) is the corre-
sponding time reversed multipath impulse response hn(t).

If there is spectral mask constraint, then the following optimization problem will become
complicated:

maximize
x(0)

subject to
N∑

n=1

∫ Tp

0 p2
n(t) dt ≤ Ep

|pnf (f )|2 ≤ cnf (f ),

(6.120)

where cnf (f ) represents the arbitrary spectral mask constraint at the transmitter antenna n.
Because pnf (f ) is the complex value, the phase and the modulus of pnf (f ) should be

determined.
Meanwhile

x(0) =
∫ ∞

−∞
xf (f ) df (6.121)

and

xf (f ) =
N∑

n=1

|hnf (f )||pnf (f )|ej2π(arg(hnf (f ))+arg(pnf (f ))) (6.122)

where the angular component of the complex value is arg(•).
For the real value signal x(t), xf (f ) is equal to the conjugate of xf (−f ). Hence,

xf (−f ) =
N∑

n=1

|hnf (f )||pnf (f )|e−j2π(arg(hnf (f ))+arg(pnf (f ))) (6.123)

and xf (f ) + xf (−f ) is equal to

N∑
n=1

|hnf (f )||pnf (f )| cos(2π(arg(hnf (f )) + arg(pnf (f )))). (6.124)

If hnf (f ) and |pnf (f )| are given for all f and n, maximization of x(0) is equivalent
to

arg(hnf (f )) + arg(pnf (f )) = 0, (6.125)

which means the angular component of pnf (f ) is the negative angular component of
hnf (f ).
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Convex Optimization 265

The optimization problem (6.120) can be simplified as

maximize

N∑
n=1

∫ ∞

−∞
|hnf (f )||pnf (f )| df

subject to (6.126)

N∑
n=1

∫ ∞

−∞
|pnf (f )|2 df ≤ Ep

|pnf (f )|2 ≤ cnf (f ).

|hnf (f )| = |hnf (−f )| (6.127)

|pnf (f )| = |pnf (−f )| (6.128)

|cnf (f )| = |cnf (−f )| (6.129)

for all f and n. Thus uniformly discrete frequency points f0, . . ., fM are considered in
the optimization problem (6.126). Meanwhile, f0 corresponds to the DC component, and
f1, . . ., fM correspond to the positive frequency components.

Define column vectors hf , h1f , . . ., hNf

hf = [hT
1f hT

2f · · · hT
Nf ]T (6.130)

(hnf )i =
{ |hnf (fi−1)|, i = 1√

2|hnf (fi−1)|, i = 2, . . . , M + 1.
(6.131)

Define column vectors pf , p1f , . . ., pNf

pf = [pT
1f pT

2f · · · pT
Nf ]T (6.132)

(pnf )i =
{ |pnf (fi−1)|, i = 1√

2|pnf (fi−1)|, i = 2, . . . , M + 1.
(6.133)

Define column vectors cf , c1f , . . ., cNf

cf = [cT
1f cT

2f · · · cT
Nf ]T (6.134)

(cnf )i =
{ √|cnf (fi−1)|, i = 1√

2|cnf (fi−1)|, i = 2, . . . , M + 1.
(6.135)

The discrete version of the optimization problem (6.126) is shown as

maximize
hT

f pf

subject to
‖pf ‖2

2 ≤ Ep

0 ≤ pf ≤ cf .

(6.136)
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266 Cognitive Radio Communications and Networking

An iterative algorithm is shown as follows to give the optimal solution p∗
f to the

optimization problem (6.136) [2],

1. Initialization: P = Ep and p∗
f is set to be the column vector with all zeros.

2. Solve the following optimization problem to get the optimal q∗
f using Cauchy-Schwarz

inequality:

maximize
hT

f qf

subject to
‖qf ‖2

2 ≤ P.

(6.137)

3. Find i, such that (q∗
f )i is the maximal value in the set {(q∗

f )j |(q∗
f )j >(cf )j }. If {i} = ∅,

then the method is terminated and p∗
f := p∗

f + q∗
f . Otherwise go to step 4.

4. Set (p∗
f )i = (cf )i .

5. P := P − (cf )2
i and set (hf )i to zero. If ‖hf ‖2

2 is equal to zero, then the algorithm is
terminated; otherwise go to step 2.

When p∗
f is obtained for the optimization problem (6.136), from Equation (6.125),

Equation (6.132), and Equation (6.133), the optimal pnf (f ) and the corresponding pn(t)

can be smoothly achieved.

6.10.3.2 SDP-Based Iterative Algorithm

The pn(t) and the hn(t) are uniformly sampled at Nyquist rate. Assume the sampling
period is Ts . Tp/Ts = Np and Np is assumed to be even, Th/Ts = Nh. pn(t) and hn(t)

are represented by pni, i = 0, 1, . . . , Np and hni, i = 0, 1, . . . , Nh, respectively.
Define

pn = [pn0 pn1 · · · pnNp
]T (6.138)

and

hn = [hnNh
hn(Nh−1) · · · hn0]T . (6.139)

If Np = Nh, then
N∑

n=1
xn(t0) can be equivalent to

N∑
n=1

hT
n pn. Define

p = [pT
1 pT

2 · · · pT
N ]T (6.140)

and

h = [hT
1 hT

2 · · · hT
N ]T . (6.141)

Thus,

N∑
n=1

hT
n pn = hT p. (6.142)
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Convex Optimization 267

Maximization of hT p is the same as maximization of (hT p)2 as long as hT p is equal
to or greater than zero.

(hT p)2 = (hT p)T (hT p)

= pT hhT p

= trace (hhT ppT )

= trace (HP), (6.143)

where H = hhT and P = ppT . P should be rank one positive semidefinite matrix. How-
ever, rank constraint is nonconvex constraint, which will be omitted in the following
optimization problems. The optimization objective in the optimization problem (6.120)
can be reformulated as

maximize trace (HP). (6.144)
Meanwhile

‖p‖2
2 = pT p

= trace (ppT )

= trace (P). (6.145)

The energy constraint in the optimization problem (6.120) can be reformulated as

trace (P) ≤ Ep. (6.146)

For cognitive radio, there is a spectral mask constraint for the transmitted waveform.
Based on the previous discussion, pn is assumed to be the transmitted waveform, and F
is the discrete time Fourier transform operator. The frequency domain representation of
pn is

pf n = Fpn, (6.147)

where pf n is a complex value vector. If the i-th row of F is fi , then each complex value
in pf n can be represented by

(pf n)i,1 = fipn, i = 1, 2, . . . ,
Np

2
+ 1. (6.148)

Define

Fi = fHi fi , i = 1, 2, . . . ,
Np

2
+ 1. (6.149)

Given the spectral mask constraint in terms of power spectral density cn =[
cn1cn2 · · · c

n
Np
2 +1

]T

,

|(pf n)i,1|2 = |fipn|2

= pT
n fHi fipn

= pT
n Fipn

≤ cni, i = 1, 2, . . . ,
Np

2
+ 1. (6.150)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



268 Cognitive Radio Communications and Networking

Define selection matrix Sn ∈ R(Np+1)×(Np+1)N

(Sn)i,j =
{

1, j = i + (Np + 1)(n − 1)

0, else
(6.151)

pn = Snp (6.152)

and

|(pf n)i,1|2 = pT
n Fipn

= pT ST
n FiSnp

= trace (ST
n FiSnppT )

= trace (ST
n FiSnP). (6.153)

The optimization problem (6.120) can be reformulated as SDP [515]:

maximize
trace (HP)

subject to
trace (P) ≤ Ep

trace (ST
n FiSnP) ≤ cni

i = 1, 2, . . . ,
NP +1

2
n = 1, 2, . . . N.

(6.154)

If the optimal solution P∗ to the optimization problem (6.154) is the rank one matrix,
then the optimal waveforms can be obtained from the dominant eigenvector of P∗. Oth-
erwise, Ep in the optimization problem (6.154) should be decreased to get the rank one
optimal solution P∗ to satisfy all the other constraints.

An SDP based iterative algorithm is presented to get the rank one optimal solution P∗

[515]:

1. Initialization of Ep.
2. Solve the optimization problem (6.154) and get the optimal solution P∗.
3. If the ratio of dominant eigenvalue of P∗ to trace (P∗) is less than 0.99, then set Ep

to be trace (P∗) and go to step 2; otherwise, the algorithm is terminated.

The optimal waveforms can be obtained from the dominant eigenvector of P∗ and
Equation (6.140).

6.10.4 Wideband Beamforming Design

Wideband beamforming is a hot research topic in both communication and radar society,
partly due to the advent of powerful real-time FPGA processing. The array working
with wide frequency band can operate in both spatial domain and frequency domain
simultaneously.

The architecture of wideband beamforming consists of LUT, high performance com-
puting engine, and a two-dimensional filter bank. Look-up table (LUT) is explored to
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Convex Optimization 269

remove the presteering delay component in the traditional wideband beamforming archi-
tecture. This component is hard to implement and manipulate either in the analog domain
or in the digital domain. If the presteering delay component is designed in the analog
domain, the unfixed delay line with the delay from subnanosecond to nanosecond should
be implemented. If the presteering delay component is designed in the digital domain,
fractional delay filter bank should be implemented [516]. In this novel architecture, the
data sampled by ADC from the impulse response of each RF chain with the consideration
of assumed angle of arrival will be stored in LUT. The impact of channel imbalances and
fractional delay will be taken care of in the general optimization issue. The coefficients
of the filter bank will be calculated in the high performance computing engine. Thus, this
architecture reduces the implementation burden at the cost of computational complexity.
However, the computational capability has grown much faster over the last few years and
the price of computation is lower than the implementation cost.

There are M antennas in the linear array. The distance between antennas is d. The
mutual coupling among antennas is not considered here. The system works with the central
frequency of fc and the bandwidth of B. The equivalent baseband complex response of RF
chain related to each antenna is given by hm(t), t ∈ [0, T ],m = 0, 1, . . . , M − 1. Because
of the limitation of ADC, it is hard for us to obtain continuous time hm(t). If the sampling
rate of ADC is 1/Ts and 1/Ts ≥ 2B, the discrete time counterpart of hm(t) is hm[k] which
is measured for each RF chain

hm[k] = hm(kTs). (6.155)

In the calibration phase, LUT should be set up. First the interpolation is performed on
hm[k] to get high sampling rate data to emulate hm(t). Assume δ(t) is the signal in the
far field of the system and impinges on it from the angle θ . The equivalent baseband
complex response of each RF chain after ADC is defined as hm,θ [k].

If the signal from far field reaches the first antenna at time T0 = (M−1)d

c
, then hm(t)

will be extended to

hm,θ (t) = 0, t ∈
[

0, T0 + md cos θ

c

)
(6.156)

hm,θ (t) = am,θhm(t), t ∈
[
T0 + md cos θ

c
, T + T0 + md cos θ

c

]
(6.157)

hm,θ (t) = 0, t ∈
[
T + T0 + md cos θ

c
, T + 2T0

)
, (6.158)

where c is the speed of light and am,θ is the response of antenna m to the angle θ .
Without loss of generality, am,θ is assumed to be 1 here. Hence,

hm,θ [k] = hm,θ (kTs) exp

{
−√−12πfc

md cos θ

c

}
. (6.159)

Finally, hm,θ [k] are saved in LUT for the following wideband beamforming.
If angles of arrival of interest are in the set �θ = {θ1, θ2, . . . , θL+1}, the output of

LUT will be hm,θ [k], θ ∈ �θ . The vector representation of hm,θ [k] is hm,θ . F is the
discrete Fourier transform operator. Thus, the baseband response of each RF chain
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270 Cognitive Radio Communications and Networking

after ADC in the frequency domain is hf

m,θ = Fhm,θ . If the frequency points of interest
�f = {f1, f2, . . . , fJ+1} correspond to the entries from index to index + J in hf

m,θ , where
index can be any reasonable integer value such that fJ+1 − f1 ≈ B,

(h̃
f

m,θ )1:J+1,1 = (hf

m,θ )index:index+J,1 (6.160)

where (•)a:b,c:d means the entries in the matrix from the a-th row to the b-th row and
from the c-th column to the d-th column.

After a two-dimensional filter bank, the array response is defined as B(fj , θl), which
can be expressed as

B(fj , θl) =
M−1∑
m=0

N−1∑
n=0

wm,n(h̃
f

m,θl
)j,1 exp{−√−1n2πfjTs}, (6.161)

where wm,n is the coefficient at the (n + 1)-th tap of the (m + 1)-th filter.
The array response can be reformulated as the vector representation as

B(fj , θl) = s(fj , θl)w, (6.162)

where w is the coefficient vector defined as

w = [wH
0 wH

1 · · · wH
M−1]H (6.163)

and

wm = [wm,0 wm,1 · · · wm,N−1]H . (6.164)

s(fj , θl) is the M × N steering vector. Define 1 ≤ i ≤ M × N

m = � i − 1

N
� (6.165)

and

n = i − m × N − 1. (6.166)

Each entry in s(fj , θl) is

(s(fj , θl))1,i = (h̃
f

m,θl
)j,1 exp{−√−1n2πfjTs}. (6.167)

The core task of wideband beamforming is to design coefficients w of a two-dimensional
filter bank such that the array response B(fj , θl) aims at:

• desired main lobe shape with consideration of magnitude and phase;
• overall constrained side lobes;
• nulling at given angles and frequency points;
• frequency invariant property for the given angle rang and frequency range.
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Convex Optimization 271

The aforementioned approaches are only suitable for the simple shapes of wideband
beam patterns with the small number of optimization objectives and constraints. If the
shape of wideband beam pattern is complex or the size of optimization issue for wideband
beamforming is large, we need to resort to advanced signal processing scheme to perform
the general tasks of wideband beamforming. SDP based approach can be competent
for these general tasks. SDP is widely used in narrowband beamforming not only for
the radar system [517, 518] but also for the communication system [421, 519]. Several
papers [520, 521] formulates the design of the two-dimensional filter bank for wideband
beamforming as SDP or second order cone programming (SOCP), which can be efficiently
solved by SeDuMi [522] or CVX [8, 513].

Based on the architecture, we will present the general formulation of optimization issue
for wideband beamforming with the consideration of 4 mentioned tasks [523].

If the look direction is at the angle θl0
, the desired main beam pattern at this angle

is P(fj , θl0
), the optimization objective is to minimize the Euclidean distance between

P(fj , θl0
) and B(fj , θl0

) [523]

minimize
∑

fj ∈�f

|P(fj , θl0
) − B(fj , θl0

)|2. (6.168)

For each frequency point, we would like to constrain the total energy of array response
except the energy for the look direction [523]

∑
θl∈�θ −θl0

|B(fj , θl)|2 ≤ ε(fj )

fj ∈ �f ,
(6.169)

where ε(fj ) is the energy threshold for each frequency point.
If there are nullings at frequency points in the set �fnulling

and angles in the set �θnulling
,

then [523]

|B(fj , θl)|2 ≤ εnulling(fj , θl)

fj ∈ �fnulling

θl ∈ �θnulling
,

(6.170)

where εnulling(fj , θl) is the nulling threshold for the frequency fj and the angle θl .
Assume the frequency invariant property is imposed on the frequency range �fFIB

and
the angle range �θFIB

. Similar to the concept of spatial variation [524], fre ∈ �fFIB
is

chosen as the reference frequency point and the spatial variation should be bounded [523]

∑
fj ∈�fFIB −fre

∑
θl∈�θFIB

|B(fj , θl) − B(fre, θl)|2 ≤ εsv, (6.171)

where εsv is the threshold for spatial variation to keep the frequency invariant property.
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272 Cognitive Radio Communications and Networking

The general optimization issue for wideband beamforming by combining (6.168)
(6.169) (6.170) (6.171) can be presented as [523]

minimize∑
fj ∈�f

|P(fj , θl0
) − B(fj , θl0

)|2

subject to∑
θl∈�θ −θl0

|B(fj , θl)|2 ≤ ε(fj )

fj ∈ �f

|B(fj , θl)|2 ≤ εnulling(fj , θl)

fj ∈ �fnulling

θl ∈ �θnulling∑
fj ∈�fFIB −fre

∑
θl∈�θFIB

|B(fj , θl) − B(fre, θl)|2 ≤ εsv.

(6.172)

The optimization problem can be efficiently solved by CVX [8, 513]. Because CVX
can only give the real value solution, in order to use CVX, B(fj , θl) in Equation (6.161)
should be reformulated as

B(fj , θl) = [s(fj , θl)
√−1s(fj , θl)]

[
re(w)

im(w)

]
, (6.173)

where re(•) gets the real part of complex value and im(•) gets the image part of complex
value. CVX will return the optimization solution as[

re(w∗)
im(w∗)

]
, (6.174)

if such a solution exists. Then the optimal coefficients for the two-dimensional filter bank
is

w∗ = re(w∗) + √−1im(w∗). (6.175)

6.10.5 Layering as Optimization Decomposition for
Cognitive Radio Network

6.10.5.1 Background

We would like to design and assess innovative solutions to create cognitive cross-layer
wireless networking architectures and protocols to achieve automatic network resiliency
in contested RF spectrum.

Although, the highly advanced technologies, for example, MIMO, multiuser detection,
interference cancellation, noncontinuous OFDM (NC-OFDM), low-density parity-check
(LDPC) code, together with sophisticated radio resource management methods are
exploited in the modern wireless communication systems, for example, LTE, WiMAX,
and so on, to push the data rate to beat the fundamental limits, spectrum is still a scarce
radio resource. There are at least two reasons for this conclusion. One is most of the
spectra that can be reasonably used for wireless communication are rigidly allocated
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and licensed [525]. However, these licensed spectra are underutilized to make spectral
efficiency and utilization very low. The other reason is the spectrum is becoming
increasingly crowded by the ever-increasing number of users with their competing and
conflicting data rate requirements in some military and commercial wireless applications,
for example, Electronic Warfare, Central Business District in a big city, and so on.
Hence, the concept of cognitive radio was proposed and widely studied to address the
radio resource shortage issue. Basically, cognitive radio can be treated as one approach
of implementing DSA on software defined radio (SDR) platforms [525]. However,
cognitive radio is more than DSA. Traditionally, a cognitive radio user is the unlicensed
user or the secondary user without licensed spectrum. Cognitive radio users can only
access the spectrum when primary users do not use it. That means cognitive radio users
cannot interfere with primary users. Meanwhile, primary users have no obligation to
cooperate with cognitive radio users. All the burden is imposed on cognitive radio users.
Thus, cognitive radio should have the capability of self-awareness, observation, learning,
decision making, as well as DSA.

Cognitive radio only solves the point to point wireless communication issues to improve
spectrum efficiency and utilization. From an application’s point of view, cognitive radio
network from physical layer to application layer should be set up to perform different
application tasks. This is the complex and dynamic system. How to make this kind of
system work involves a lot of challenging issues. Because of the introduction of cognition
to wireless network, the design of architectures and protocols confronts unprecedented
difficulties. Cognition can undoubtedly bring benefits to the system. For example, overall
spectrum efficiency and utilization can be increased. However, cognition is a two-edged
sword. First, more functions are needed to support cognition. In the current stage, spec-
trum sensing, spectrum decision, spectrum sharing, and spectrum mobility [525] are at
least required. More functions will make the system more complex. Second, cognition
can lead to uncertainty. No matter how sophisticated cognition is, the capability of cog-
nition is finite. The output of cognition depends on several factors, for example, the
scheme of decision making, the method of machine learning, the input data as well as
their modeling. Any deviation of these factors or incomplete information will cause the
wrong decision which will make the performance of the system even worse than with-
out cognition capability. Thus, cognition should be carefully exploited. Third, cognition
demands more information to support the stable network operation, which means the
overhead of system will be inevitably increased. It can be foreseen that the protocols for
cognitive wireless network will be more substantial than those in any traditional wireless
network. Meanwhile, the acquisition and delivery of such information may lead to sig-
nificant and uncontrollable delay, which will be very harmful for network operations and
some real-time applications.

The basic network model is the OSI model [526] shown in Figure 6.1. The OSI model
divides a communication system into smaller parts called layers. Each layer performs a
different set of similar functions to provide services to the upper layer and receive services
from the lower layer. The basic functions of each layer are also shown in Figure 6.1.
The idea of the OSI model is simple but it works very well. The design of each layer
can be independent from all the others, which breaks the complex problem into small
manageable pieces. Meanwhile, the functions in each layer can be modified and upgraded
in a decoupled fashion as long as the service interface is maintained. Thus, information
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(LLC/MAC)
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Host
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Applications for different services

Data representation, encryption, decryption
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End-to-end connection, flow control,
congestion control, TCP/UDP protocol

Routing, IP protocol

Power control, scheduling, addressing

Coding, modulation, array signal processing,
binary transmission

 

Figure 6.1 OSI model [526].

hiding, decoupling change, implementation and specification separation can be achieved
in the OSI model.

The virtually strict boundaries between layers in an OSI model make the design of net-
works not globally optimal. Toward the goal of global optimum in the context of network
design, cross-layer optimization was proposed and has recently become one of the pop-
ular approaches to design and optimize the network architecture [527]. Based on an OSI
model, cross-layer optimization treats the system as a whole and designs the functions
in different layers jointly. More information will be exchanged between layers, and more
dependencies among layers will be taken into account. In order to implement cross-layer
optimization, a cross-layer optimization engine should be added into the OSI model to
perform design and optimization centrally. The inputs of the cross-layer optimization can
be internal or external parameters of the network, for example, channel state information,
traffic information, internal buffer information, and so on. The engine is responsible for
determining a set of internal operating parameters and functionalities for different layers
based on the inputs and design objectives. The overall objectives of cross-layer optimiza-
tion are to improve application performance, to increase user satisfaction, and to enhance
efficiency of network utilization. Some simple cross-layer optimization techniques have
already been deployed in the current advanced wireless networking system. Take the 3G
network as an example. Power control is used to increase the throughput and minimize the
interference. Hybrid automatic repeat request (HARQ) is exploited to make link condition
stable. Orthogonal frequency-division multiple access (OFDMA) is a promising multiple
access technique to allocate different subcarriers to different users.

Cross-layer optimization opens a wide space for the network design and optimization,
but the full cross-layer optimization from physical layer through application layer is still
unfeasible for implementation at the current stage. It is impossible to build a network
with fully central control and design for global optimality. Thus, there is a contradiction
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between network design and network implementation. How can this dilemma be bypassed?
Some research pioneers Mung Chiang, Steven H. Low, A. Robert Calderbank, and John
C. Doyle gave a mathematical theory of network architectures, that is, layering as opti-
mization decomposition [528]. This theoretical framework will be the analytic foundation
of the work for the design of architectures and protocols for cognitive cross-layer wire-
less networking system. Network Utility Maximization (NUM) is exploited as the design
objective in a globally optimal fashion. While for network implementation, layering as
optimization decomposition is explored to decompose the master problem into several
subproblems. Different subproblems correspond to different layers. Different decomposi-
tion schemes determine different layering architectures. The basic difference between the
traditional OSI model and layering as optimization decomposition is that the separation of
the whole network system in the OSI model is based on experiences and human intuition
while the decomposition for the latter has the solid background of mathematical theory.
Meanwhile, optimization decomposition will also lead to the distributed and modularized
algorithm which can be implemented in disparate network nodes. The distributed algo-
rithms rely on the local information to perform the tasks. In this way, the overhead of
system can be greatly reduced.

6.10.5.2 Design Philosophy

Currently, there is no general approach to cross-layer design for wireless network. From
a theoretical point of view, layering as optimization decomposition [528] is one of the
general and analytic methodologies for network design. It uses common mathematical
language for thinking, deriving, and comparing. Two key concepts behind it are network
as an optimizer and layering as decomposition [528]. In this mathematical framework,
network architecture relates to the decomposition scheme of the global optimization
problem and answers the questions of how to or how not to determine different layers
[528]. There are two main decompositions, that is, vertical decomposition and horizontal
decomposition [528].

Vertical decomposition maps an optimization problem into several subproblems which
correspond to different layers. Different functionalities are allocated to different layers to
solve these subproblems. Functions of primal or dual variables coordinating subproblems
will be treated as the interfaces among layers [528]. For example, cross-layer congestion
control, routing, and scheduling design in ad hoc wireless networks have been studied
in [529]. Jointly optimal congestion control and power control are explored to balance
transport layer and physical layer in wireless multihop networks [491].

Horizontal decomposition is executed within one functionality and decomposes central
computation into distributed computation over geographically different network nodes
[528]. For example, congestion control protocols can be modeled as distributed algorithms
for NUM [490, 530, 531]. The contention resolution algorithm in backoff based random
access wireless media access control (MAC) protocols is implicitly participating in a
noncooperative game [532], which is a distributed and selfish action.

Vertical decomposition across the layers and horizontal decomposition across the net-
work nodes can be conducted together to decompose the optimization problem system-
atically [528]. Meanwhile, decomposition structures are not limited to aforementioned
vertical decomposition and horizontal decomposition. Partial decomposition, multilevel
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...... ......
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Primal Decomposition

Master Problem
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Dual Decomposition

Master Problem

Subproblem 1 Subproblem N

Multilevel Decomposition

Subproblem 11 Subproblem 1N

Figure 6.2 Basic decomposition schemes [533].

decomposition, and their versatile combinations can lead to many alternative decomposi-
tions [533]. These alternative decompositions can be exploited as a way to obtain different
novel network architectures [533]. Figure 6.2 shows the basic decomposition schemes
[533]. The original master problem is decomposed into several solvable subproblems
which are coordinated through some kind of signaling [533]. For primal decomposi-
tion, the master problem properly allocates the available resources to each subproblem.
Resource is the signaling between master problem and subproblems [533]. In dual decom-
position, the master problem uses the price set for resource as the control signaling and
subproblems should determine the amount of resources they would like to use based on
price [533]. In multilevel decomposition, primal decomposition or dual decomposition will
be used repeatedly to divide the master problem into smaller and smaller subproblems.
These subproblems can be solved in different layers or in different network nodes.

6.10.5.3 Cognitive Capability

Cognition is the key capability and foundation of cognitive cross-layer wireless network-
ing system, which differentiates cognitive network from the traditional wireless networks.
According to the Oxford English Dictionary, cognition is knowing, perceiving, or conceiv-
ing as an act [406]. Cognitive network is far more than cognitive radio which only covers
layer one and layer two. In a cognitive network, all layers in all network nodes should
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Cognitive Network
Management

Knowledge
Representation and

Reasoning

Cognitive Network
Monitoring OSI Model

Figure 6.3 Abstract architecture of cognitive capability.

have the capability of cognition. However, different layers or different nodes may have
different levels of cognition. The upper layer should be more intelligent than the lower
layer. Take spectrum usage as an example: spectrum sensing, spectrum decision, spec-
trum mobility, and spectrum sharing are the basic functions corresponding to cognition.
Spectrum sensing is implemented in physical layer. Spectrum sensing obtains information
of radio environment and provides it to the upper layer. The upper layer will make the
decision which spectrum can be used for transmission. Spectrum mobility means cognitive
radio users can move away from the licensed spectrum once the primary user occupies
this spectrum again. If multiple cognitive radio users compete for the limited available
spectrum, a spectrum sharing scheme should be set up to coordinate different users and
different requirements.

Cognitive cross-layer wireless networking system is a highly dynamic system. Network
topology, user behavior, and radio environment are rapidly changing. Cognition is an
imperative capability for the networking system to work adaptively and intelligently. For
example, if link stability is not maintained in harsh and dynamic RF environments or links
are determined unsuitable for the following communication requirement, routing selection
should be performed with consideration of spectrum occupancy, network topology, and
user demand.

The abstract architecture of cognitive capability of a cognitive cross-layer wireless net-
working system is shown in Figure 6.3. There are three main modules to support cognition:
cognitive network management, cognitive network monitoring, as well as knowledge
representation and reasoning. Cognitive network management is the brain of cognitive
cross-layer wireless networking system to determine network behavior intelligently. Net-
work management refers to the activities, methods, procedures, and tools that relate to
the operation, administration, maintenance, and provisioning of networking systems. Thus,
the basic functions of cognitive network management are shown in Figure 6.4.

Cognitive network monitoring is to monitor the internal and external network data
under the control of cognitive network management. These data can be spectrum sensing
results, traffic information, buffer state information, channel state information, quality
of connectivity, and so on. Recently, network tomography [534, 535] has been proposed
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Figure 6.4 The basic functions of cognitive network management.

to extract a network’s internal characteristics using information derived from end point
data. Originally, tomography is imaging by sections or sectioning, through the use of
waves of energy, which is widely used in medical imaging, for example, Computerized
Tomography. Network monitoring and inference have a strong resemblance to tomography
[535] because the internal characteristics of an objective cannot be observed directly
but can be inferred from external observations. In the current literature, two issues of
network tomography have been addressed. One is link level parameter estimation from
end-to-end path level traffic measurements [535]. The other is path level traffic intensity
estimation based on link level traffic measurements [535]. The measurements of network
tomography may be passive or active. Passive measurement will monitor the existing
traffic flows. However, the temporal and spatial structure of the traffic process may make
the measurement sample biased [535]. Active measurement will generate probe traffic into
the network. If so, the probe traffic should not distort the network state for the existing
traffic [535].
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Knowledge representation and reasoning is to represent knowledge in a manner that
facilitates inferencing from knowledge. Cognitive network can be treated as a wireless
communication network augmented by this kind of knowledge plane that can span verti-
cally over layers and horizontally across nodes [536]. There are at least two categories of
functionalities in knowledge representation and reasoning. One is a representation of rel-
evant knowledge. The other is a cognition loop using artificial intelligence, for example,
machine learning technique. Besides, prediction is also the main function. Prediction
results are very important information for cognitive network management to make the
decision beforehand and to tackle the possible situations in the future. In this way, the
operation of the networking system will be smooth and stable.

6.10.5.4 Potential Architectures

The key design of layering as optimization decomposition is that versatile network archi-
tectures can be rigorously obtained from the decomposition of an underlying cross-layer
optimization problem [533].

Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc net-
works have been studied in [537]. The main contribution in [537] is that a distributed
and localized algorithm was derived for joint dynamic routing and spectrum allocation
called ROSA for multihop cognitive radio networks. The cross-layer ROSA algorithm
aims to maximize throughput through opportunistic routing, dynamic spectrum alloca-
tion, scheduling, and power control in a distributed fashion from transport layer to MAC
layer. It is a good example to explore optimization decomposition for the network design.

Based on design philosophy and cognitive requirement, several network architectures
will be presented using multilevel decomposition. As mentioned before, NUM is widely
used as a design objective. QoS will be measured as NUM which implicitly covers many
network performance metrics, for example, capacity, latency, security, stability, and so
on. The cross-layer optimization issue is to maximize the sum of QoSs for different appli-
cations in the cognitive wireless networking system. Different applications or different
services may have different weights in the design objective. This is the case in the con-
text of multiobjective optimization. In the cognitive wireless networking system, there are
many restrictions and limitations for the network operation, which will be formulated as
the constraints in the optimization issue. These constraints at least include:

• network carrying capacity;
• limited power and limited computing capability in each network node;
• different spectral availabilities in different locations and at different times;
• interference tolerance;
• no interference to primary user;
• queue and buffer limitation.

Cognitive capability, for example, monitoring and inference, will be integrated into
the cross-layer optimization issue. Because of the uncertainty introduced by cognition,
the idea from robust optimization should be explored. Meanwhile, the overhead used
for cognition will be formulated as the constraints for the cross-layer optimization issue.
There are several potential architectures:
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280 Cognitive Radio Communications and Networking

• Layered and distributed architecture. Vertical decomposition is performed to the
cross-layer optimization issue first. Different functionalities are allocated to differ-
ent layers to solve the optimization issue jointly. In transport layer, traffic control
including congestion control and flow control are executed. Multipath routing and
dynamic routing selection are exploited in network layer. Here, multipath routing can
improve the robustness of data delivery in the dense deployment of network nodes
[538]. Sophisticated scheduling, power control, and DSA are implemented in MAC
layer for heterogeneous traffic. After vertical decomposition, horizontal decomposition
will be carried out for each layer, respectively. Then, the same functionality will be
distributed to the different network nodes.

• Distributed and layered architecture. The cross-layer optimization issue is divided
into several subproblems by horizontal decomposition. Different subproblems will be
solved by different network nodes. And then the task for each network node can be
partitioned by vertical decomposition. There is an essential difference between the first
architecture and the second architecture, because the first level decomposition plays a
more important role for network architecture than the second level decomposition.

• Hybrid architecture. The cross-layer optimization issue will be decomposed com-
pletely by multilevel decomposition. Several different indecomposable subproblems
will be assigned to one network node. The rule of assignment is that different nodes
can share less information and use less coordination to solve these subproblems. This
architecture breaks the standard layered architecture. Each node should have the capa-
bility of recomposing its functionalities flexibly and dynamically. Hybrid architecture
is fully adaptive in the function level. Thus, in some situations, some nodes may have
the light burden, and others may have heavy duty. Meanwhile, some nodes can even
hibernate without any tasks for power saving. For dynamic routing selection in wire-
less sensor network, battery is the key issue for the sensor’s life time. The sensor with
less energy cannot be chosen as the next hop in the routing path even if the radio
environment around this sensor is very suitable for wireless communication.

• Cluster based architecture. The cross-layer optimization issue is divided into several
subproblems by horizontal decomposition. Different subproblems will be solved by
different clusters in the wireless networking system. The cluster consists of a cluster
head and several nodes around the cluster head. The cluster head is more powerful
than any other node in the cluster. The cluster head is responsible for exchanging
control information among different clusters and supervising other nodes in the cluster.
Thus, the first level subproblem obtained by horizontal decomposition can be further
partitioned. More functionalities will be allocated to the cluster head. The rest will be
distributed to other nodes based on node capability and radio environment. The cluster
based architecture is a good scheme to balance the central control and the distributed
implementation.

• Mobility based architecture. The key point of this architecture is that the node, for
example, unmanned aerial vehicle (UAV), has the mobile capability. The node can at
least search for the available spectrum in different locations intelligently. The move-
ment of nodes can change the existing network topology. However, this change is
still under some level of control. Mobility based architecture can undoubtedly achieve
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Convex Optimization 281

autonomous network resiliency in the contested RF spectra. If the relay node is out of
the communication range or there is no available spectrum for the relay node to use,
this node can intelligently change its location to maintain the connectivity of wireless
communication.

6.10.5.5 Physical Layer Consideration

In order to support the potential cognitive cross-layer wireless networking architectures
and protocols, NC-OFDM will be exploited as the basic physical layer transmission tech-
nique. NC-OFDM is a noncontiguous version of OFDM with some unused subcarriers.
OFDM is a highly recognized signal waveform for the current advanced wireless com-
munication system, for example, 3G network, WiFi, WiMAX, and so on. DSA as well as
OFDMA can be implemented based on NC-OFDM. Cognitive radio users can easily turn
off some subcarriers which a primary user occupies and use other available subcarriers
to transmit data.

How to efficiently implement NC-OFDM transceiver will be studied. At the transmitter,
an FFT pruning algorithm and spectral shaping technique should be used to generate arbi-
trary NC-OFDM signaling. Because channel state information, primary user occupancy,
and throughput requirement for cognitive radio users vary over time, an FFT pruning
algorithm should be able to design an efficient FFT implementation every time condi-
tions change [539]. Besides, PAPR issue should be taken into account in synthesizing
NC-OFDM signaling from implementation consideration.

The other challenge for NC-OFDM transceiver is the synchronization at the receiver,
especially for blind synchronization [540]. It is hard for cognitive radio to set up a dedi-
cated control channel between the transmitter and the receiver. If the transmitter changes
subcarriers to be used for data transmission, the receiver should have a way to detect
or track this change, and jump to the correct subcarriers for receiving data without any
control information aided from the transmitter. Meanwhile, due to the presence of the
primary user, time domain correlation fails [540], even if the predetermined preamble is
used. Thus, for blind synchronization, spectrum detection should be performed to find
a new transmission first [540]. And then, the preamble is learned from those subcarri-
ers for the new transmission. The regenerated preamble will be exploited to correlate
with the following incoming signal [540]. Cognitive radio has no licensed spectrum. The
reliable transmission between transceiver should be built as quickly as possible if some
parts of spectra are available. Thus, it is worthwhile to implement a fast and effective
synchronization scheme even at the cost of computational and implementation complexity.

MIMO will be also exploited in physical layer. MIMO technique or array signal
processing can bring array gain, spatial diversity gain, and spatial multiplexing gain.
Interference alignment [541] has been performed based on MIMO to explore degree of
freedom in the spatial domain. Meanwhile, widely studied beamforming technique can be
used together with routing selection and scheduling to improve spatial reuse [542]. Direc-
tional beam patterns can increase the communication range and reduce the interference to
other directions.
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282 Cognitive Radio Communications and Networking

6.11 Summary

In this chapter, optimization theory, especially convex optimization has been presented.
Convex optimization is a powerful signal processing tool which can be exploited any-
where, for example, system control, machine learning, operation research, management,
and so on. Linear programming, quadratic programming, geometric programming,
Lagrange duality, optimization algorithm, robust optimization, and multiobjective
optimization have been covered. This chapter can give readers the whole picture of
optimization theory. Some examples have been shown in this chapter to help readers to
understand how to use convex optimization to solve engineering problems or improve the
system performances. If the engineering problems can be formulated as convex optimiza-
tion problems, these problems will be solved without doubt. In cognitive radio network,
optimization theory can be widely used for spectrum sensing [543, 544], cross-layer
design, resource allocation, sensing disruption from adversary [545], and so on.
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7
Machine Learning

Artificial intelligence [546–554] aims at making intelligent machines where an intelligent
machine or agent is a system that perceives its environment and takes actions to maximize
its own utility. The central problems in artificial intelligence include deduction, reasoning
[555], problem solving, knowledge representation, learning, and so on.

In order to understand how the brain learns and how the computer or system achieves
intelligent behavior, the interdisciplinary study of neuroscience, computer science, cog-
nitive psychology, mathematics, and statistics gives a new research direction of artificial
intelligence, called computational neuroscience research. Computational neuroscience tries
to build artificial systems and mathematical models to explore the computational prin-
ciples for perception, cognition, memory, and motion. More related information can be
found in Computational Neuroscience Research at Carnegie Mellon University. Leonid
Perlovsky, who won the John McLucas Award in 2007, the highest US Air Force Award
for science, uses knowledge instinct and dynamic logic to express and model the brain
mechanisms of perception and cognition [556]. Especially, dynamic logic is a mathemat-
ical description of the knowledge instinct which describes mathematically a fundamental
mind mechanism of interactions between bottom-up signals and top-down signals as a
process of adaptation from vague to crisp concepts [557]. Besides, bionics also motivates
the study of artificial intelligence and extend its capability. Bionics tries to build artificial
systems based on the biological methods and systems found in nature.

Machine learning [547, 558–563] is the main branch of artificial intelligence which
deals with the design and development of algorithms that allow the machine or computer
to evolve behaviors based on example data or past experience. Machine learning algo-
rithms can be organized into different categories: unsupervised learning, semi-supervised
learning, supervised learning, transductive inference, active learning, transfer learning,
reinforcement learning, and so on.

There are two basic models for machine learning. One is generative model [564] and
the other is discriminative model [565]. A generative model can generate observable data
given some hidden parameters. Examples of generative models include Gaussian mixture
model, hidden Markov model, naive Bayes, Bayesian networks, Markov random fields,

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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284 Cognitive Radio Communications and Networking

and so on. Hence, a generative model is a full probabilistic model of all variables and
models the underlying process of how the data is generated [566]. A discriminative model
only provides the dependence of the target variables on the observed variables which can
be done directly by posterior probabilities or conditional probabilities. Hence, discrimina-
tive model can focus computational resources on given task and give better performance.
However, a discriminative model looks like a black box and lacks explanatory power
of the generative model. Examples of discriminative models include logistic regression,
linear discriminant analysis, support vector machine, boosting, conditional random fields,
linear regression, neural networks, and so on.

Artificial intelligence as well as machine learning can be generally applied to many
different areas, for example, cognitive radio, cognitive radar, smart grid, computational
transportation, data mining, robotics, web search engine, human computer interaction,
manufacturing, bioengineering, and so on.

• Cognitive Radio and Network. Cognitive radio is a brand new concept for the wireless
communication system. The idea of cognitive radio was first presented by Joseph Mitola
III in a seminar at KTH, The Royal Institute of Technology, in 1998, and published
later in an article [567] by Mitola and Gerald Q. Maguire, Jr in 1999. Software radio
provides an ideal platform for the realization of cognitive radio [567], and cognitive
radio makes software radio smart. Later Simon Haykin gave a review of cognitive
radio and treated it as brain-empowered wireless communications [568]. The goal is
to improve the utilization of a precious natural resource: the radio electromagnetic
spectrum [568].

Cognitive radio can be treated as one approach of implementing DSA on SDR
platforms [525]. However cognitive radio is more than DSA. Cognition differentiates
cognitive radio from any other radio system. Most of the research about cognitive radio
focuses on the behaviors of one pair of cognitive radios. If multiple cognitive radios
are taken into account or the network behaviors of cognitive radios are of interest,
cognitive radio network will be the main research object. In cognitive radio network,
cognition should cover from the physical layer through the application layer to reliably
meet the requirements of the information system.

Cognitive radio architecture and applications of machine learning to cognitive radio
network have been presented in [569]. In cognitive radio engine, knowledge base, rea-
soning engine, and learning engine are three main components. Capacity maximization
and DSA are used as examples to describe how cognitive radio works. Reasoning,
learning, knowledge representation, and reconfiguration of cognitive radio have also
been discussed in [570]. Learning is the basic function in cognitive radio network. The
materialization of learning in cognitive radio network can be found in [571–578].

• Cognitive Radar and Network. A lot of algorithms which were infeasible decades
ago are now coming possible. Such examples are common in machine learning and
artificial intelligence. These algorithms revolutionize areas like robotics [579]. Radar
is experiencing a similar revolution in the general direction of cognitive radar [580].

The radar system evolves from the current adaptive radar and the radar with a
function of waveform design to cognitive radar. The adaptive radar focuses more on
the adaptivity at the receiver. The radar waveform design deals with the probing signal
according to some optimization criterion. The dominant feature of cognitive radar is
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Machine Learning 285

cognition, which means the radar can actively learn about the environment, and the
whole radar system forms a dynamic closed feedback loop including the transmitter,
environment, and receiver [580].

Cognitive radar only considers one pair of radar transceivers, and the cognition only
focuses on the physical layer. In order to further enhance the capability of radar system,
cognitive radar network is proposed. Cognitive radar network is not simply summation
of multiple cognitive radars. Cognitive radar network itself at least integrates cognitive
radio network, cognitive radar, MIMO radar, layered sensing, and so on. Cognition will
run through physical layer to network layer and application layer.

With the support of cognition, radar network resource management will take care
of operation, resource allocation, and maintenance of the networking system. Radar
network resource management includes: (1) radio resource management; (2) network
resource management; (3) radar task scheduling and prioritization.

Radio resource management is well studied in wireless communication. Similarly,
DSA, spectrum management, power allocation, and so on are still very important for
cognitive radar network. Network resource management focuses on the control strategy
for the network behavior. Dynamic network configuration, adaptive routing, coordina-
tion, and competition should be taken into account.

Radar task scheduling and prioritization are application driven. Radar task schedul-
ing and prioritization set the orders and priorities to all accepted radar tasks based
on: (1) radio resource; (2) network resource; (3) the significance of radar task; (4) the
urgency of radar task; (5) the condition of cognitive radar network. Radar task with
higher priority will be scheduled first, and multiple radar tasks can be performed simul-
taneously. Thus radar task scheduling and prioritization should be executed dynamically
and intelligently. Meanwhile, radar task admission control and radar task waiting
list maintenance will also be taken into account under the framework of radar task
scheduling and prioritization. If the capacity of cognitive radar network approaches
its limitation or the heavy duties make the system unstable, the newest radar tasks
cannot be admitted immediately. These tasks can be put in the waiting list for future
service. The waiting list maintenance takes care of the order of radar tasks in the wait-
ing list. Knowledge based resource management for multifunction radar takes a look
at scheduling and task prioritization for adaptive radar in [581]. The analysis in [581]
indicates that priorization is a key component to determining overall performance of
radar system.

A partially observable Markov decision process (POMDP) is a well studied model
and tool to solve decision making problem. POMDP is a generalization of a Markov
decision process (MDP). A POMDP models a decision process in which it is assumed
that the system dynamics are determined by an MDP, but the underlying state can-
not be directly observed. Instead, it must maintain a probability distribution over the
set of possible states based on observations and observation probabilities. Multivariate
POMDPs are used for radar resource management in [582]. The problems of multitar-
get radar scheduling are formulated as multivariate POMDPs, the aim of which is to
compute the scheduling policy to determine which target to choose and how long to
continue with this choice so as to minimize a cost function [582]. Sensor scheduling
for multiple target tracking and detection is discussed in [583]. The algorithm is also
based on POMDP.
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286 Cognitive Radio Communications and Networking

• Smart Grid. Smart grid explores and exploits two-way communication technology,
advanced sensing, metering and measurement technology, modern control theory, net-
work grid technology, and machine learning in the power and electricity system to
make the power and electricity network stable, secure, efficient, flexible, economical
and environmentally friendly.

Novel control technology, information technology, and management technology
should be effectively integrated to realize the smart information exchange within the
power system from power generation, power transmission, power transformation,
power distribution, power scheduling to power utilization. The goal of smart grid is to
systematically optimize the cycle of power generation and utilization.

Based on open system architecture and shared information mode, power flow,
information flow and transaction flow can be syncretized. In this way, the operation
performance of electric power enterprises can be increased. From electric power
customer’s perspective, demand response should be implemented. Customers would
like to participate more activities in the power system and power market to reduce
their electric power bill.

Distributed energy resources, for example solar energy, wind energy, and so on,
should also play an important role in smart grid. Versatile distributed energy resources
can perform the peak power shaving and increase the stability of power system. How-
ever, distributed energy generation imposes a new challenge on the power system,
especially on the distribution network. Power system planning, power quality, and so
on should be reconsidered.

To support smart grid, the infrastructure for the two-way communication should be
set up dedicatedly for the power system only. In this way, secure, reliable, efficient
communication and information exchange can be guaranteed. Meanwhile, the device,
equipment, and facility of the current power system should also be updated and reno-
vated. Novel technology for power electronics should be used to build advanced power
devices, for example, transformer, relay, switch, storage, and so on.

Machine learning for the New York City power grid has been presented in [584].
A general process for transforming historical electrical grid data into models that aim
to predict the risk of failures for components and systems in the power grid is given
[584]. These models can be used directly by power companies for the scheduling of
maintenance work [584].

• Computational Transportation. Computational transportation [585, 586] or intelligent
transportation [587–592] studies how to improve the safety, mobility, efficiency,
and sustainability of transportation system by taking advantage of computer science,
communication technology, information technology, sensing technology, computing
technology, and control theory. Modeling, planning, and economic aspects of
transportation are taken into account. The research topics and enabling solutions
to transportation problems range from ride-sharing [593], routing, scheduling, and
navigation, to autonomous/assisted driving, travel pattern analysis, and so on.
More related information can be found in Computational Transportation Science at
University of Illinois at Chicago.

• Data Mining. Data mining [561, 594–598] tries to discover new patterns and extract
knowledge or intelligence from large scale data using methods at the intersection
of artificial intelligence, statistics, and database system. Data mining can be widely
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Machine Learning 287

used for science and engineering. Bioinformatics exploits data mining to generate new
knowledge of biology and medicine, and discover new models of biological compu-
tation, for example, DNA computing, neural computing, evolutionary computing, and
so on. Data mining is also useful for business applications. Take Internet advertising
as an example, by data mining, more relevant advertisements can be sent to the right
Internet audience at the right time.

• Computer Vision. Computer vision tries to obtain, process, analyze, and understand the
real-world images or videos [599]. Information and intelligence can be extracted from
the large scale data by computer vision. Machine learning is widely used in computer
vision for detection, classification, recognition, tracking, and so on [600].

• Robotics. Robot is a virtual intelligent agent which can perform a variety of duties
automatically or under guidance [601]. These duties can be part handling, assembly,
painting, transport, surveillance, security, home help, and so on. The intelligence of
robot is realized in software. Artificial intelligence gives robot the functions of percep-
tion, localization, modeling, reasoning, interaction, learning, planning, and so on. UAV
can be treated as one kind of mobile robots.

• Web Search Engine. A web search engine [602] is mainly used to search for infor-
mation on the website. Google, Yahoo, Bing, and so on are widely used web search
engines. Machine learning is the powerful tool for web search engine. Commercial web
search engines began to use machine learned ranking systems since the past decade. A
ranking model is automatically constructed from training data by supervised learning
or semisupervised learning. This ranking model for web search engine can reflect the
importance of a particular web page.

• Human Computer Interaction. Human computer interaction [603] tries to design the
interaction between people and computers. The researches about human computer inter-
action include cognitive models, speech recognition, natural language understanding,
gesture recognition, data visualization, and so on. iPhone 4S can be treated as one kind
of human computer interaction devices. iPhone 4s includes a new automated voice
control system called Siri. Siri can allow the user to give the iPhone commands.

• Social Network. Social network is a network of social structure, social interdependency,
or social relationships of human beings. Friendship, common interest, common belief,
financial exchange, and so on are considered in the social network. Data related to social
network have exploded recently due to the fast development of information technology.
Thus, machine learning is a powerful tool to analyze social network for learning and
inference [604–607].

• Manufacturing. Machine learning can be used in manufacturing to perform automatic
and intelligent operations. In this way, the efficiency of manufacturing can be improved,
especially for the dark factory with no involvement of human labor. The novel develop-
ments in machine learning and substantial applications of machine learning in modern
industrial engineering and mass production have been presented in [608]. The analysis
of data from simulations and experiments in the development phase and measure-
ments during mass production plays a crucial role in modern manufacturing [608]. For
example, various machine learning algorithms are applied to detection and recogni-
tion of spatial defect patterns in semiconductor fabrication processes [609–612]. These
spatial defect patterns generated during integrated circuit (IC) manufacturing processes
contain information about potential problems in the processes [612].
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288 Cognitive Radio Communications and Networking

• Bioengineering. Bioengineering [613] tries to exploit both concepts of biology and
engineering’s analytical methodologies to deal with problems in life science. With the
developments of mathematics and computer science, machine learning can be used in
bioinformatics, medical innovations, biomedical image analysis, and so on.

7.1 Unsupervised Learning

Unsupervised learning [614–616] tries to find hidden or underlying structure from the
unlabeled data. The key feature of unsupervised learning is that the data or examples
given to the learner are unlabeled.

Clustering and blind signal separation are two categories of unsupervised learning
algorithms [616]. Clustering assigns a set of objects into different groups or clusters such
that the objects in the same group are similar [617]. The clustering algorithms include:

• k-means or centroid-based clustering [618–621];
• k-nearest neighbors [622, 623];
• hierarchical clustering or connectivity-based clustering;
• distribution-based clustering;
• density-based clustering.

Blind signal separation or blind source separation tries to separate a set of signals from
a set of mixed signals without the information about the source signals or the mixing
process [624]. The approaches for blind signal separation include:

• principal component analysis [625, 626];
• singular value decomposition [627];
• independent component analysis (ICA) [628–630];
• nonnegative matrix factorization [631–633].

Robust signal classification using unsupervised learning has been discussed in [634]. k-
means clustering and the self-organizing map (SOM) are used as unsupervised classifiers.
Meanwhile, the countermeasures to the class manipulation attacks are developed [634].

7.1.1 Centroid-Based Clustering

In centroid-based clustering [635], the whole data set is partitioned into different clusters.
Each cluster is represented by a central vector. This central vector is not necessarily a
member of the data set. Meanwhile, each member in the cluster has the smallest distance
from the corresponding mean. If the number of the clusters is k, k-means clustering gives
a corresponding optimization problem for centroid-based clustering.

Given a set of data X = {x1, x2, . . . , xn}, k -means clustering attempts to partition the
data set X into k(k ≤ n) sets S1, S2, . . . , Sk such that the sum of squared distances within
the cluster is minimized [618–621]

minimize
k∑

i=1

∑
xl∈Si

‖xl − yi‖2, (7.1)

where yi is the mean of the cluster related to data set Si .
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Machine Learning 289

7.1.2 k-Nearest Neighbors

The k-nearest neighbor (k-NN) algorithm assigns a class to an object by a majority vote
of its k-nearest neighbors. Genetic programming with k -NN has been used in [636] to
perform automatic digital modulation classification.

7.1.3 Principal Component Analysis

PCA is also called Karhunen-Loeve transform, Hotelling transform, or proper orthogonal
decomposition [637]. PCA uses an orthogonal transformation to transform a set of corre-
lated variables into a set of uncorrelated variables [637]. These uncorrelated variables are
linear combinations of the original variables. They are called principal components. The
number of principal components is less than or equal to the number of original variables.
Thus, PCA is a widely used linear transformation for dimensionality reduction.

The goal of PCA is to ensure that the first principal component bears the largest
variance and the second principal component has the second largest variance. Meanwhile,
the directions of different principal components are orthogonal. Generally, PCA can be
executed by eigenvalue decomposition of covariance matrix.

Given a set of high-dimensional real data x1, x2, . . . , xM where xm ∈ RN , PCA can be
performed as:

1. x̄ = 1
M

∑M

m=1 xm.

2. x̃m = xm − x̄.

3. C = 1
M

∑M

m=1 x̃M x̃T
M .

4. Compute the eigenvalues λ1, λ2, . . . , λN of C and the corresponding eigenvectors
u1, u2, . . . , uN where λ1 ≥ λ2 ≥ · · · ≥ λN .

5. Obtain the linear transformation matrix,

U = [u1 u2 · · · uK ], (7.2)

where K � N .
6. Perform dimensionality reduction,

y = UT x̃ (7.3)

and PCA approximation x̃ = Uy.

In sum, PCA projects the data from the original directions or bases to the new directions
or bases. Meanwhile, the data varies the most along the new directions. These directions
can be determined by the eigenvectors of the covariance matrix corresponding to the
largest eigenvalues. The eigenvalues relate to the variances of the data along the new
directions. PCA gives a way to construct the linear subspace spanned by the new bases
from the data.

x̃ = Uy is extended to X̃ = UY. If Y contains as many zeros as possible, this problem
is called sparse component analysis [638].

PCA can also be extended to its robust version. The background of robust PCA
[639, 640] is to decompose a given large data matrix M as a low rank matrix L plus
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290 Cognitive Radio Communications and Networking

a sparse matrix S, that is,

M = L + S. (7.4)

Specifically speaking, PCA finds a rank-r approximation of the given data matrix M
in an l2 sense by solving the following optimization problem,

minimize
‖M − L‖
subject to
rank(L) ≤ r.

(7.5)

This problem can be easily solved by SVD. An intrinsic drawback of PCA is that it can
work efficiently only when the low rank matrix is corrupted with small and i.i.d. Gaussian
noise. That is PCA is suitable for the model of M = L + N where N is the i.i.d. Gaussian
noise matrix. PCA will fail when some of the entries in L are strongly corrupted as shown
in Equation (7.4) in which the matrix S is a sparse matrix with arbitrarily large magnitude.

In order to find L and S from M, robust PCA tries to solve the following optimiza-
tion problem,

minimize
rank(L) + λ‖S‖1
subject to
M = L + S.

(7.6)

From the convex optimization point of view, the rank function is a nonconvex function.
Solving the optimization problem with a rank objective or rank constraint is NP-hard.
However, it is known that the convex envelope of rank(L) on the set {L : ‖L‖ ≤ 1} is
the nuclear norm ‖L‖∗ [641]. Hence, the rank minimization can be relaxed to a nuclear
norm minimization problem which is a convex objective function. In this regard, there
are a series of papers that have studied the conditions required for successfully applying
the nuclear norm heuristic to rank minimization from different perspectives [641–643].
Hence, the optimization problem (7.6) can be relaxed to

minimize
‖L‖∗ + λ‖S‖1
subject to
M = L + S.

(7.7)

In this way, L and S can be recovered.
Robust PCA is widely used in video surveillance, image processing, face recognition,

latent semantic indexing, ranking, and collaborative filtering [639].

7.1.4 Independent Component Analysis

ICA tries to separate a mixed multivariate signal and identify the underlying non-Gaussian
source signals or components that are statistically independent or as independent as
possible [562, 629, 644]. Even though the source signals are independent, the observed
signals are not independent due to the mixture operation. Meanwhile, the observed signals

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Machine Learning 291

look like normal distributions [562]. A simple application of ICA is the “cocktail party
problem.” Assume in the cocktail party, there are two speakers denoted by s1(t) and s2(t)

and there are two microphones recording time signals denoted by x1(t) and x2(t). Thus,

x1(t) = a11s1(t) + a12s1(t)

x2(t) = a21s1(t) + a22s1(t),
(7.8)

where a11, a12, a21, and a22 are some unknown parameters that depend on the distances
between the microphones and the speakers [629]. We would like to estimate two source
signals s1(t) and s2(t) using only the recorded signals x1(t) and x2(t).

Using the matrix notation, the linear noiseless ICA can be written as

X = AS, (7.9)

where the rows of S should be statistically independent. Due to the unknown A and S,
the variances and the order of the independent components cannot be determined [629].
In order to solve ICA problems, minimization of mutual information and maximization
of non-Gaussianity are often used to achieve the independence of the latent sources.

The applications of ICA include separation of artifacts in magnetoencephalography
(MEG) data, finding hidden factors in financial data, reducing noise in natural images,
blind source separation for telecommunication [629]. ICA can also be used for chem-
ical and biological sensing to extract the intrinsic surface-enhanced Raman scattering
spectrum [645].

7.1.5 Nonnegative Matrix Factorization

Matrix decomposition has long been studied. A matrix decomposition is a factorization of
a matrix into some canonical form. There are many different matrix decompositions, for
example, LU factorization, LDU decomposition, Cholesky decomposition, rank factor-
ization, QR decomposition, rank-revealing QR factorization, SVD, eigen-decomposition,
Jordan decomposition, Schur decomposition, and so on.

Nonnegative matrix factorization [633, 646] is one kind of matrix decomposition with
the nonnegative constraint on the factors. Mathematically speaking, a matrix X is factor-
ized into two matrices or factors W and H such that

X = WH + E (7.10)

and all entries in W and H must be equal to or greater than zero where E represents
approximation error.

There are many useful variants based on nonnegative matrix factorization [633]:

• Symmetric nonnegative matrix factorization,

X = WWT + E. (7.11)

• Semi-orthogonal nonnegative matrix factorization,

X = WH + E (7.12)

and WT W = I and HHT = I.
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292 Cognitive Radio Communications and Networking

• Three-factor nonnegative matrix factorization,

X = WSH + E. (7.13)

• Affine nonnegative matrix factorization,

X = WH + a1T + E. (7.14)

• Multilayer nonnegative matrix factorization,

X = W1W2 · · · WLH + E. (7.15)

• Simultaneous nonnegative matrix factorization,

X1 = W1H + E1
X2 = W2H + E2.

(7.16)

• Nonnegative matrix factorization with sparseness constraints on the each column of W
and H [647].

Two-dimensional nonnegative matrix factorization can be extended to n-dimensional
nonnegative tensor factorization [633, 648, 649]. Various algorithms for nonnegative
matrix and tensor factorization are mentioned in [633]. In [650], Bregman divergences
are used for generalized nonnegative matrix approximation.

Similar to robust PCA, the robust version of nonnegative matrix factorization is
expressed as

X = WH + S + E, (7.17)

where S is the sparse matrix. The optimization problem for robust nonnegative matrix
factorization can be represented as

minimize ‖X − WH − S‖2
F + λ‖S‖1 (7.18)

such that W and H are both the nonnegative matrices. The optimization problem (7.18)
is not convex in W, H, and S jointly. Thus, we need to solve them separately [651]:

1. Solve the nonnegative matrix factorization problem for fixed S.
2. Optimize S for fixed W and H.

This procedure will be repeated until the algorithm converges.
Nonnegative matrix factorization is a special case of general matrix factorization.

Probabilistic algorithms for constructing approximate matrix factorization have been com-
prehensively discussed in [652]. The core idea is to find structure with randomness [652].
Compared with standard deterministic algorithms for matrix factorization, the randomized
methods are often faster and more robust [652].

7.1.6 Self-Organizing Map

An SOM is one kind of ANN within the category of unsupervised learning. SOM
attempts to create spatially organized low-dimensional or internal representation (usually
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Machine Learning 293

two-dimensional grid) of input signals and their abstractions which is called map
[653–655]. SOM is different from other ANNs because a neighborhood function is
used to preserve the topology of the input space. Thus, the nearby locations in the map
represent the inputs with similar properties.

The training algorithms of SOM are based on the principle of competitive learning
[653, 656] which is also used for the well-known vector quantization [657–659].

7.2 Supervised Learning

Supervised learning learns a function from supervised labeled training data [660]. In super-
vised learning, the training data consist of a set of training examples. Each training
example includes an input object together with a desired output value. If the output value
is discrete, the learned function is called a classifier. If the output value is continuous, the
learned function is called a regression function. Algorithms for supervised learning gen-
eralize from the training data to the unseen data. The popular algorithms for supervised
learning are:

• linear regression [661–664];
• logistic regression [665, 666];
• artificial neural network [667, 668];
• decision tree learning [669];
• random forests [670];
• naive Bayes classifier [671];
• support vector machines [672–674].

7.2.1 Linear Regression

Linear regression tries to model the relationship between a scalar dependent variable y

and one or more explanatory (independent) variables x. Mathematically speaking,

y = xT a + ε, (7.19)

where
x = [x1 x2 · · · xP ]T ; (7.20)

a is called the parameter vector or regression coefficients

a = [a1 a2 · · · aP ]T ; (7.21)

and ε is the noise or error.
If there are N dependent variables, Equation (7.19) can be extended to

y = XT a + ε, (7.22)

where

y = [y1 y2 · · · yN ]T (7.23)

X = [x1 x2 · · · xN ] (7.24)

ε = [ε1 ε2 · · · εN ]T . (7.25)
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7.2.2 Logistic Regression

Logistic regression [675] is a nonlinear regression which can predict the probability of
an event occurrence using a logistic function. A simple logistic function is defined as

f (t) = 1

1 + exp(−t)
, (7.26)

which always takes on values between zero and one. Thus, logistic regression can be
expressed as

y = f (x) = 1

1 + exp(−(a0 + a1x1 + · · · + aP xP ))
, (7.27)

where a0 is called intercept and a1, a2, . . . , aP are called regression coefficients of
x1, x2, . . . , xP .

Logistic regression is a popular way to model and analyze binary phenomena, which
means the dependent variable or the response variable is a two-valued variable [676].

7.2.3 Artificial Neural Network

The idea of artificial neural network [677] is borrowed from biological neural network to
mimic the real life behavior of neurons. Artificial neural network is an adaptive system
used to model relationship between inputs and outputs. The mathematical expression of
the simplest artificial neural network is

o = f

(
N∑

n=1

wnxn

)
, (7.28)

where x1, x2, . . . , xN are inputs; w1, w2, . . . , wN are the corresponding weights; o is
output; and f is an activation (transfer) function.

Perceptron, one type of artificial neural network, is a binary classifier which maps
its inputs to an output with binary values. Given threshold θ , if

∑N

n=1 wnxn ≥ θ , then
o = 1; otherwise o = 0. This single-layer perceptron has no hidden layer. The single-
layer perceptron can be extended to the multilayer perceptron which consists of multiple
layers of nodes in a directed graph. The multilayer perceptron can use backpropagation
algorithm to learn the network.

7.2.4 Decision Tree Learning

A decision tree [678] is a tree-like graph or model for decision, prediction, classification,
and so on. In a decision tree, each internal node tests an attribute. Each branch corre-
sponds to one possible value of attribute. Each leaf node assigns a classification for the
observation. Decision tree learning tries to learn a function which can be represented as
a decision tree [679]. A number of decision trees can be used together to form a ran-
dom forest classifier which is an ensemble classifier [680]. In random forest, each tree is
grown at least partially at random. Bootstrap aggregation is used for parallel combination
of learners which is independently trained on distinct bootstrap samples. Final result is
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the mean prediction or class with maximum votes. Random forest can increase accuracy
by reducing prediction variance.

7.2.5 Naive Bayes Classifier

A naive Bayes classifier [681] is a probabilistic classifier based on Bayes’ theorem with
independence assumptions.

Based on Bayes’ theorem, the naive Bayes probabilistic model can be expressed as,

p(C | X1, X2, . . . , XN) ∝ p(C)

N∏
n=1

p(Xn | C), (7.29)

where C is a dependent class variable and X1, X2, . . . , XN are the feature variables. p(C |
X1, X2, . . . , XN) is the posterior probability. p(C) is the prior probability. p(Xn | C) is
the likelihood probability.

According to the maximum a posteriori (MAP) decision rule, A naive Bayes classifier
can be written as [671]

c = f (x1, x2, . . . , xN) = arg maxp(C = c)

N∏
n=1

p(Xn = xn | C = c). (7.30)

7.2.6 Support Vector Machines

SVM [682] is a set of the supervised learning algorithms used for classification and regres-
sion. SVM includes linear SVM, kernel SVM [683, 684], multiclass SVM [685–692],
support vector regression [693–697]. Design of learning engine based on SVM in cogni-
tive radio has been mentioned in [698]. Both classification and regression results of SVM
for eight kinds of modulation modes are demonstrated. The experimental data come from
802.11a protocol platform. SVM is used for MAC protocol classification in a cognitive
radio network [699]. The received power mean and variance are chosen as two features for
SVM. Two MAC protocols, time division multiple access and slotted Aloha, are classified.

Let’s study SVM from the linear two-class SVM [674]. Given the training data set
having M pairs of inputs and outputs,

(xi , li), i = 1, 2, . . . , M (7.31)

and

li ∈ {−1, 1}. (7.32)

SVM attempts to find the separating hyperplane

w · x − b = 0 (7.33)

with the largest margin satisfying the following constraints:

w · xi − b ≥ 1, for li = 1

w · xi − b ≤ −1, for li = −1
(7.34)
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296 Cognitive Radio Communications and Networking

in which w is the normal vector of the hyperplane and · stands for inner product. The
constraint (7.34) can be combined into:

li(w · xi − b) ≥ 1. (7.35)

The distance between two hyperplanes w · xi − b = 1 and w · xi − b = −1 is 2
‖w‖ . In

order to obtain the largest margin, the following optimization is used [674]

minimize
1
2‖w‖2

subject to
li(w · xi − b) ≥ 1, i = 1, 2, . . . , M.

(7.36)

The dual form of the optimization problem (7.36) by introducing Lagrange multipliers
αi ≥ 0, i = 1, 2, . . . , M is [674]

maximize∑
i

αi − 1
2

∑
i,j

αiαj li lj xi · xj

subject to∑
i

αi li = 0

αi ≥ 0, , i = 1, 2, . . . , M.

(7.37)

The solution to w can be expressed in terms of a linear combination of the training
vectors as

w =
M∑
i=1

αilixi . (7.38)

Those xi , i = 1, 2, . . . , MSV with αi > 0 are called support vectors which lie on the
margin and satisfy li(w · xi − b) = 1. Thus, b can be obtained as

b = 1

MSV

MSV∑
i=1

(w · xi − li). (7.39)

Thus, a classifier based on SVM can be written as [674]

f (x) = sign

(
M∑
i=1

αilixi · x − b

)
. (7.40)

When the number of classes for outputs is more than two, multiclass SVM can be
used to perform multiclass classification. The common approach for multiclass SVM is
to decompose the single multiclass classification problem into multiple two-class clas-
sification problems. Each two-class classification problem can be addressed by the well
known two-class SVM. Within this framework, one-against-all and one-against-one are
widely used [692]. Besides, a pairwise coupling strategy can be exploited to combine
the probabilistic outcomes of all the one-against-one two-class classifiers to obtain the
estimates of the posterior probabilities for the test input [692, 700].

Based on the idea of SVM, the multiclass classification problem can also be handled
by solving one single optimization problem [685, 688, 701].
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The linear two-class SVM can be modified to tolerate some misclassification inputs,
which is called soft margin SVM [674]. Soft margin SVM can be done by introducing a
nonnegative slack variable ξi, i = 1, 2, . . . , M which measures the degree of misclassifi-
cation for the input xi . Hence, the constraint (7.34) should be modified as

w · xi − b ≥ +1 − ξi, for li = 1
w · xi − b ≤ −1 + ξi, for li = −1,

(7.41)

which can be combined into

li(w · xi − b) ≥ 1 − ξi (7.42)

and ξi ≥ 0, i = 1, 2, . . . , M .
The optimization problem for soft margin SVM is expressed as [674]

minimize
1
2‖w‖2 + C

∑M

i=1 ξi

subject to
li(w · xi − b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, . . . , M,

(7.43)

where C is a trade-off parameter to compromise the slack variable penalty and the size
of margin. The dual form of the optimization problem (7.43) is [674]

maximize∑
i

αi − 1
2

∑
i,j

αiαj li lj xi · xj

subject to∑
i

αi li = 0

0 ≤ αi ≤ C, , i = 1, 2, . . . , M.

(7.44)

If the value of output li is continuous, the learned function is called a regression func-
tion. SVM can be extended to supoort vector regression. Analogously to the soft margin
SVM, the optimization problem for support vector regression can be written as [697]

minimize
1
2‖w‖2 + C

∑M

i=1(ξ
+
i + ξ−

i )

subject to
li − (w · xi − b) ≤ ε + ξ+

i , i = 1, 2, . . . , M

(w · xi − b) − li ≤ ε + ξ−
i , i = 1, 2, . . . , M

ξ+
i ≥ 0, ξ−

i ≥ 0, i = 1, 2, . . . , M.

(7.45)

where ε is a parameter to determine the region bounded by li ± ε, i = 1, 2, . . . , M which
is call li ± ε-insensitive tube. The dual form of the optimization problem (7.45) is [697]

maximize∑M

i=1 li(α
+
i − α−

i ) − ε
∑M

i=1(α
+
i + α−

i ) − 1
2

∑
i,j (α

+
i − α−

i )(α+
j − α−

j )xi · xj

subject to∑M

i=1(α
+
i − α−

i ) = 0, i = 1, 2, . . . , M

0 ≤ α+
i ≤ C, i = 1, 2, . . . , M

0 ≤ α−
i ≤ C, i = 1, 2, . . . , M.

(7.46)
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298 Cognitive Radio Communications and Networking

Thus,

w =
M∑
i=1

(α+
i − α−

i )xi (7.47)

and

f (x) = sign

(
M∑
i=1

(α+
i − α−

i )xi · x + b

)
. (7.48)

7.3 Semisupervised Learning

Supervised learning exploits the labeled data for training to learn the function. However,
the labeled data, sometimes, are hard or expensive to obtain and generate. While the
unlabeled data are more plentiful than the labeled data [702]. In order to make use of
both labeled data and unlabeled data for training, semisupervised [703] learning can be
explored. Semisupervised learning falls between unsupervised learning and supervised
learning. The underlying phenomenon behind semisupervised learning is that a large
amount of unlabeled data used together with a small amount of labeled data for training
can improve machine learning accuracy [704, 705].

7.3.1 Constrained Clustering

Constrained clustering [706–708] can be treated as clustering with side information or
additional constraints. These constraints include pairwise must-link constraints and cannot-
link constraints. The must-link constraints mean two members or data points must be in the
same cluster while the cannot-link constraints mean two data points cannot be in the same
cluster. Take the k-means clustering as an example. The penalty cost function related to
the must-link constraints and the cannot-link constraints can be added to the optimization
problem (7.1) to form the optimization problem for the constrained k-means clustering.
Besides, if the partial label information is given, a small amount of labeled data can aid
the clustering of unlabeled data [709]. In [709], the seed clustering is used to initialize
the k-means algorithm.

7.3.2 Co-Training

Co-training is also a semisupervised learning technique [702, 710]. In co-training, the
features of each input are divided into two different feature sets. These two feature sets
should be conditionally independent given the class of the input. Meanwhile, the class
of the input can be accurately predicted from each feature set alone. In other words,
each feature set contains sufficient information to determine the class of the input [702].
Co-training first learns two different classifiers based on two different feature sets using
the labeled training data. Then, each classifier will label several unlabeled data with more
confidence. These data will be used to construct the additional labeled training data. This
procedure will be repeated until convergence.
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7.3.3 Graph-Based Methods

Recently, graph-based methods for semisupervised learning have become popular [711].
Graph-based methods for semisupervised learning are nonparametric, discriminative, and
transductive in nature [711]. The first step of graph-based methods is to create the graph
based on both labeled data and unlabeled data. The data correspond to the nodes on the
graph. The edge together with the weight between two nodes is determined by the inputs
of the corresponding data. The weight of the edge reflects the similarity of two data
inputs. The second step of graph-based methods is to estimate a smooth function on the
graph. This function can predict the classes for all the nodes on the graph. Meanwhile,
the predicted classes of the labeled nodes should be close to the given classes. Thus, how
to estimate this function can be expressed as the optimization problem with two terms
[711]. The first term is a loss function and the second term is a regularizer [711].

7.4 Transductive Inference

Transductive inference [712–714] is similar to semisupervised learning. Transductive
inference tries to predict outputs for the test inputs based on the training data and test
inputs. Transduction is different from the well-known induction. In induction, general
rules are first obtained from the observed cases; then these general rules are applied to
the test cases. Thus, the performances transductive inference are inconsistent on different
test cases.

7.5 Transfer Learning

Transfer learning or inductive transfer [715, 716] focuses on gaining knowledge from
solving one problem or previous experience and applying it to a different but related
problem. Markov logic networks [717] and Bayesian networks [718] have already been
exploited for transfer learning.

Multitask learning or learning to learn is one kind of transfer learning [719]. Multitask
learning tries to learn a problem together with other related problems simultaneously,
with consideration of the commonality among the problems.

7.6 Active Learning

Active learning is also called optimal experimental design [720, 721]. Active learning is
a form of supervised learning in which the learner can interactively ask for information.
Specifically speaking, the learner actively queries the user, teacher, or expert to label the
unlabeled data. And then, supervised learning is exploited. Since the learner can select the
training examples, the number of examples to learn a function can often be smaller than
the number needed in common supervised learning. However, there is a risk for active
learning. Unimportant or even invalid examples may be chosed. The basic experimental
design types for active learning include A-optimal design which minimizes the trace of
the matrix, D-optimal design which minimizes the log-determinant of the matrix, and
E-optimal design which minimizes the maximum eigenvalue of the matrix. All these
design problems can be solved by convex optimization. Active learning based on locally
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300 Cognitive Radio Communications and Networking

linear reconstruction is presented in [722] where local structure of the data space is taken
into account.

7.7 Reinforcement Learning

Reinforcement learning [723–725] is a very useful and fruitful area of machine learning.
Reinforcement learning tries to learn how to act in response to an observation of the
world in order to maximize some kind of cumulative reward. Every action taken has
some influence on the environment. The environment will give its feedback through
rewards to the learner. This feedback can guide the learner to make the decision for
the next action. Reinforcement learning is widely studied in control theory, operation
research, information theory, economics, and so on. Many algorithms for reinforcement
learning are highly related to dynamic programming [726, 727]. Reinforcement learning
is a dynamic and life-long learning with focus on the online performance. Thus, there is a
trade-off between exploration and exploitation in reinforcement learning [728, 729]. The
basic components in reinforcement learning should include environment states, possible
actions, possible observations, transitions between states, and rewards.

Reinforcement learning is widely used in cognitive radio network for exploration and
exploitation [730–746]. Three learning strategies will be presented in detail:

• Q-learning;
• Markov decision process;
• partially observable Markov decision process.

7.7.1 Q-Learning

Q-learning is a simple but useful reinforcement learning technique [747, 748]. Q-learning
learns a utility function of a given action in a given state. Q-learning follows a fixed state
transition and does not require the environment information.

Given the current state st and the action at , the utility function Q(st , at ) is learned or
updated as

Q(st , at ) = Qold(st , at ) + αt(st , at )

(
r(st , at ) + γ max

at+1
Q(st+1, at+1) − Qold(st , at )

)
,

(7.49)

where αt(st , at ) ∈ (0, 1] is the learning rate; r(st , at ) is the immediate reward; γ ∈ [0, 1)

is the discount factor; st+1 is the next state due to the state transition from the current state
st by the action at . If αt is equal to 1 for all the states and all the actions, Equation (7.49)
can be reduced to

Q(st , at ) = r(st , at ) + γ max
at+1

Q(st+1, at+1). (7.50)

Finally, the utility function can be learned through iteration. For each state, the selected
action should be

π(s) = arg max
a

Q(s, a). (7.51)

Q-learning and its variants are widely used in cognitive radio network [734, 749–762].
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7.7.2 Markov Decision Process

MDP [763] is a mathematical framework for studying the decision-making problem. MDP
can be treated as an extension of Markov chain. Mathematically speaking, a Markov chain
is a sequence of random variables X1, X2, X3, . . . , Xt , . . . with the Markov property, that
is, the memoryless property of a stochastic process,

Pr(Xt+1 = x | Xt = xt , Xt−1 = xt−1, . . . , X2 = x2, X1 = x1)

= Pr(Xt+1 = x | Xt = xt ),
(7.52)

which means the following states and the previous states are independent given the cur-
rent state.

An MDP consists of [723]:

• a set of states S;
• a set of actions A;
• a reward function R(s, a);
• a state transition function T (s, a, s ′) = Pr(st+1 = s ′ | st = s, at = a).

The goal of MDP is to find a policy a = π(s) for the decision maker. When the police
is fixed, MDP behaves like a Markov chain. Typically, the optimization problem of MDP
can be formulated as

maximize
∞∑
t=0

γ tR(st , π(st )). (7.53)

There are three basic methods to solve MDP:

• value Iteration;
• policy Iteration;
• linear programming [764–767].

For value iteration and policy iteration, the optimal value function is defined as [723],

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′)V ∗(s ′)

)
,∀s ∈ S (7.54)

and given the optimal value function, the optimal policy can be obtained as [723],

π(s) = arg max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′)V ∗(s ′)

)
. (7.55)

Value iteration tries to find the optimal value function and then obtain the optimal
policy. The core part of value iteration is [723]:

1. Initialize V (s) arbitrarily.
2. Let V ′(s) be equal to V (s).
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3. For ∀s ∈ S, calculate

U(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s ′)V ′(s ′) (7.56)

and

V (s) = max
a

U(s, a). (7.57)

4. If max
s

|V ′(s) − V (s)| is less than the pre-defined threshold, the optimal value function

V (s) is obtained; otherwise go to step 2.

Policy iteration updates the policy directly. The core part of policy iteration is [723]:

1. Initialize π(s) arbitrarily.
2. Let π ′(s) be equal to π(s).
3. Solve the linear equations,

V (s) = R(s, π ′(s)) + γ
∑
s′∈S

T (s, π ′(s), s ′)V (s ′) (7.58)

and improve the policy,

π(s) = arg max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′)V (s ′)

)
. (7.59)

4. If π ′(s) is the same as π(s), then the optimal policy is obtained; otherwise go to step 2.

MDP and its variants can be exploited in cognitive radio network [736, 737, 740, 768–782].

7.7.3 Partially Observable MDPs

POMDP is an extension of MDP. The system dynamics are modeled by MDP. However,
the underlying state cannot be fully observed. POMDP models the interaction procedure
of an agent with the outside world [783]. An agent first observes the outside world, then
it tries to estimate the belief state using the current observation. The solution of POMDP
is the optimal policy for choosing actions.

An POMDP consists of

• a set of states S;
• a set of actions A;
• a set of observations O;
• a reward function R(s, a);
• a state transition function T (s, a, s ′) = Pr(st+1 = s ′ | st = s, at = a);
• an observation function �(o, s ′, a) = Pr(ot+1 = o | st+1 = s ′, at = a).
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Define a belief state over the states as

bt =




bt (s1)

bt (s2)
...


 , (7.60)

where bt (s) ≥ 0, ∀s ∈ S and
∑

s∈S b(s) = 1. There are uncountably infinite number of
belief states.

Given bt and at , if o ∈ O is observed with probability �(o, s ′, a), bt+1 can be obtained
as [784]

bt+1(s
′) = �(o, s ′, a)

∑
s∈S T (s, a, s ′)bt (s)

Pr(o | a, bt )
, (7.61)

where

Pr(o | a, bt ) =
∑
s′∈S

�(o, s ′, a)
∑
s∈S

T (s, a, s ′)bt (s). (7.62)

Define the belief state transition function as [784]

τ(b, a, b′) = Pr(b′ | b, a) (7.63)

and τ(b, a, b′) = Pr(o | a, b) if b′, b, a, and o follows Equation (7.61); otherwise
τ(b, a, b′) is equal to zero. Thus, POMDP can be treated as infinite state MDP with
[784, 785]

• a set of belief states B;
• a set of actions A;
• a belief state transition function shown in Equation (7.63);
• a reward function ρ(b, a) = ∑

s∈S b(s)R(s, a).

Solving a POMDP is not easy. The first detailed algorithms for finding exact solutions
of POMDP were introduced in [786]. There exist some software tools for solving POMDP,
such as pomdp-solve [787], MADP [788], ZMDP [789], APPL [790], and Perseus [791].
Among them, APPL is the fastest one in most cases [790].

POMDP and its variants are widely used in cognitive radio network [792–818].

7.8 Kernel-Based Learning

Kernel-based learning [819] is the great extension of machine learning by different kernel
functions. Kernel SVM [683, 684], kernel PCA [820–823], and kernel Fisher discriminant
analysis [824, 825] are widely used. Kernel functions can implicitly map the data from
original low-dimensional linear space x to high-dimensional feature nonlinear space �(x).

Kernel function K(x, y) is defined as the inner product of �(x) and �(y). If we know
the analytic expression of kernel function and we only care about the inner product of
�(x) and �(y), then we do not need to know the mapping nonlinear function � explicitly.
This is called the kernel trick. The commonly used kernel functions are:
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304 Cognitive Radio Communications and Networking

• Gaussian kernels: K(x, y) = exp
(
−‖x−y‖

2σ2

)
;

• homogeneous polynomial kernels: K(x, y) = (x · y)d ;
• inhomogeneous polynomial kernels: K(x, y) = (x · y + 1)d ;
• sigmoid kernels: K(x, y) = tanh(ax · y + b).

Gaussian kernels, polynomial kernels, and sigmoid kernels are all data independent.
Given kernel functions and training data, we can get kernel matrix. However, kernel
matrix can also be learned and optimized from data [388, 826–828]. In [829], Bregman
matrix divergences are used to learn the low-rank kernel matrix.

The brilliance of the optimization problem (7.37) and Equation (7.40) is that the inner
product between inputs is used. By applying the kernel trick, linear two-class SVM can
be easily extended to the nonlinear kernel SVM. In the feature space [683, 684],

w =
M∑
i=1

αiii�(xi ) (7.64)

and

w · �(x) =
M∑
i=1

αili〈�(xi ), �(x)〉 =
M∑
i=1

αiliK(xi , x). (7.65)

Thus, a classifier based on kernel SVM can be written as

f (x) = sign

(
M∑
i=1

αiliK(xi , x) − b

)
. (7.66)

Besides, kernel principal angles are explored for machine learning related tasks [830, 831].
The principal angles, also called canonical angles, give information about the relative
position of two subspaces of a Euclidean space [832–835].

7.9 Dimensionality Reduction

In large scale cognitive radio networks, there is a significant amount of data. However, in
practice, the data is highly correlated. This redundancy in the data increases the overhead
of cognitive radio networks for data transmission and data processing. In addition, the
number of degrees of freedom (DoF) in large scale cognitive radio networks is limited. The
DoF of a K user M × N MIMO interference channel has been discussed in [836]. The total
number of DoF is equal to min(M, N) ∗ K if K ≤ R, and min(M, N) ∗ R

R+1 ∗ K if K > R,

where R = max(M,N)

min(M,N)
. This is achieved based on interference alignment [541, 837, 838].

Theoretical analysis about DoF in cognitive radio has been presented in [839, 840]. The
DoF corresponds to the key variables or key features in the network. Processing the
high-dimensional data instead of the key variables will not enhance the performance of
the network. In some cases, this could even degrade the performance. Hence, compact
representations of the data using dimensionality reduction is critical in cognitive radio
networks.
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Machine Learning 305

Due to the curse of dimensionality and the inherent correlation of data, dimensionality
reduction [841] is very important for machine learning. Meanwhile, machine learning
provides the powerful tools for dimensionality reduction. Dimensionality reduction tries
to reduce the number of random variables or equivalently the dimension of the data
under consideration. Dimensionality reduction can be divided into feature selection and
feature extraction [842]. Feature selection tries to find a subset of the original variables
or features. Feature extraction transforms the data from the high-dimensional space to
low-dimensional space. PCA is a widely used linear transformation for feature extraction.
However, there are also many powerful nonlinear dimensionality reduction techniques.

Many nonlinear dimensionality reduction methods are related to manifold learning
algorithms [843–846]. The data set most likely lies along a low-dimensional manifold
embedded in a high-dimensional space [847]. Manifold learning attempts to uncover the
underlying manifold structure in a data set. These methods include:

• kernel principal component analysis [820–823];
• multidimensional scaling [848–850];
• isomap [843, 851–853];
• locally-linear embedding [854–856];
• Laplacian eigenmaps [857, 858];
• diffusion maps [859, 860];
• maximum variance unfolding or semidefinite embedding [861–864].

7.9.1 Kernel Principal Component Analysis

Kernel PCA is a kernel-based machine learning algorithm. It uses the kernel function to
implicitly map the original data to a feature space, where PCA can be applied. Assuming
the original dimensionality data are a set of M samples xi ∈ RN , i = 1, 2, . . . , M , the
reduced dimensionality samples of xi are yi ∈ RK , i = 1, 2, . . . , M , where K � N . xij

and yij are componentwise elements in xi and yi , respectively.
Kernel PCA uses the kernel function

K(xi , xj ) = ϕ(xi ) · ϕ(xj ) (7.67)

to implicitly map the original data into a feature space F, where ϕ is the mapping from
original space to feature space and · represents inner product. In F, PCA algorithm can
work well.

A function is a valid kernel if there exists a mapping ϕ satisfying Equation (7.67). Mer-
cer’s condition [683] gives us the condition about what kind of functions are valid kernels.

If K(·, ·) is a valid kernel function, the matrix

K =




K(x1, x1) K(x1, x2) · · · K(x1, xM)

K(x2, x1) K(x2, x2) · · · K(x2, xM)

...
...

...
...

K(xM, x1) K(xM, x2) · · · K(xM, xM)


 (7.68)

must be positive semidefinite [865]. The matrix K is the so-called kernel matrix.
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306 Cognitive Radio Communications and Networking

Assuming the mean of feature space data ϕ(xi ), i = 1, 2, . . . , M is zero, that is,

1

M

M∑
i=1

ϕ(xi ) = 0. (7.69)

The covariance matrix in F is

CF = 1

M

M∑
i=1

ϕ(xi )ϕ(xi )
T . (7.70)

In order to apply PCA in F, the eigenvectors vF
i of CF are needed. As we know that the

mapping ϕ is not explicitly known, thus the eigenvectors of CF can not be as easily derived
as PCA. However, the eigenvectors vF

i of CF must lie in the span [86] of ϕ(xj ), j =
1, 2, . . . , M , that is,

vF
i =

M∑
j=1

αijϕ(xj ). (7.71)

It has been proved that αi , i = 1, 2, . . . , M are eigenvectors of kernel matrix K [86].
In which αij are component-wise elements of αi .

Then the procedure of kernel PCA can be summarized in the following six steps:

1. Choose a kernel function K(·, ·).
2. Compute kernel matrix K based on Equation (7.67).
3. Obtain the eigenvalues λK

1 ≥ λK
2 ≥ · · · ≥ λK

M and the corresponding eigenvectors
α1, α2, . . . , αM by diagonalizing K.

4. Normalize vF
j by [86]

αj = αj√
λK

j

. (7.72)

5. Constitute the basis of a subspace in F from the normalized eigenvectors vF
j , j =

1, 2, . . . , K .
6. Compute the projection of a training point xi on vF

j , j = 1, 2, . . . , K by

yij = (vF
j , ϕ(xi )) =

M∑
n=1

αjnK(xn, xi ) (7.73)

in which the reduced dimensionality data in feature space corresponding to xi is yi =
(yi1, yi2, . . . , yiK).

So far the mean of ϕ(xi ), i = 1, 2, . . . , M has been assumed to be zero. In fact, the
zero mean data in the feature space are

ϕ(xi ) − 1

M

M∑
i=1

ϕ(xi ). (7.74)

The kernel matrix for this centering or zero mean data can be derived by [86]

K̃ = HKH (7.75)
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Machine Learning 307

in which H = I − 1
N

11T is the so-called centering matrix, I is an identity matrix, 1 is
all-one vector.

Kernel PCA can be used for noise reduction which is a nontrivial task. S. Mika and
co-workers have proposed an iterative scheme on noise reduction for Gaussian kernels
[821]. This method needs to rely on the nonlinear optimization. However, a distance-
constraint based method has been proposed by J. Kwok and I. Tsang which just relies on
linear algebra [823]. In order to apply kernel PCA for noise reduction, the pre-image x̃i (in
original space) of yi (in feature space) is needed. The distance-constraint based method for
noise reduction makes use of the distance relationship [866] found by Williams between
original space and feature space for some specific kernels. It tries to find the distance
between x̃i and xj once the distance between yi and ϕ(xj ) is known. d(xi , xj ) is used to
represent distance between two vectors xi and xj .

It has been proved that the squared distance between yi and ϕ(xj ) can be derived
by [823]

d2(yi , ϕ(xj ))

= (kxi
+ 1

N
K1 − 2kxj

)
T

HT MH(kxi
− 1

N
K1)

+ 1
N2 1T K1 + Kii − 2

N
1T kxj

,

(7.76)

where kxi
= (K(xi , x1), K(xi , x2), . . . , K(xi , xM))T and M =

K∑
k=1

1
λ̃k

α̃kα̃
T
k in which λ̃k and

α̃k are the k-th largest eigenvalues and corresponding column eigenvectors of K̃.
By making use of the distance relationship [866] between original space and feature

space, if the kernel is the radial basis kernel, then

d2(x̃i , xj ) = − 1
γ

log(0.5(Kii + Kjj − d2(yi , ϕ(xj ))). (7.77)

Once the above distances are derived, x̃i can be reconstructed [823].

7.9.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a set of data analysis techniques used to explore the
structure of similarities or dissimilarities in data [867]. The high-dimensional data can be
displayed in 2-D or 3-D visualization.

Given a set of the high-dimensional data {x1, x2, . . . , xM}, the distance between xi

and xj is δij . Arbitrary distance function can be used to define the similarity between
xi and xj . Take Euclidean distance as an example, the goal of MDS is to find a set of the
low-dimensional data {y1, y2, . . . , yM} such that

‖yi − yj‖ ≈ δij (7.78)

for all i = 1, 2, . . . , M and j = 1, 2, . . . , M . The low dimensional embedding can
preserve pairwise distances. Thus, MDS can be expressed as an optimization problem
[848–850]

minimize
∑
i<j

(‖yi − yj‖ − δij )
2, (7.79)
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308 Cognitive Radio Communications and Networking

where the sum of the squared differences between ideal distances in the original space
and actual distances in the low-dimensional space is used as the cost function. Stress
majorization can be used as a solver. It is well known that classical MDS is equivalent to
PCA when Euclidean distance is used for some particularly selected cost functions [843]
which simplifies the algorithm for MDS.

Local MDS is a technique for the nonlinear dimensionality reduction [850, 868]. MDS
is executed locally instead of globally. Mathematically speaking, the optimization problem
of local MDS can be expressed as

minimize∑
(i,j)∈�(‖yi − yj‖ − δij )

2 + ∑
(i,j)/∈� w(‖yi − yj‖ − δ∞)2,

(7.80)

where � is a symmetric set of nearby pairs (i, j) which describes the local fabric of a
high-dimensional manifold [868]; δ∞ is a very large value of dissimilarity and w is a
small weight. If δ∞ goes to infinity and w = t

2δ∞ , the optimization problem (7.80) can be
reduced to [868]

minimize∑
(i,j)∈�(‖yi − yj‖ − δij )

2 − t
∑

(i,j)/∈� ‖yi − yj‖, (7.81)

where the first term forces ‖yi − yj‖ to approach δij locally and the second term pushes
nonlocal data far away from each other [868].

7.9.3 Isomap

Isomap is classical MDS where small pairwise distances between neighboring data are
preserved while large pairwise distances between faraway data are replaced by geodesic
distances which can be estimated by computing the shortest path distances along the
neighborhood graph [843, 868, 869]. There are three steps to perform Isomap [843]. The
first step is to construct neighborhood graph. The neighborhood graph can be determined
by ε-neighborhoods or k-nearest neighbors. The second step is to compute shortest paths
to estimate geodesic distances. Floyd-Warshall algorithm can be applied. The third step is
to apply classical MDS to the matrix of graph distances and obtain the low-dimensional
embedding.

7.9.4 Locally-Linear Embedding

Locally linear embedding (LLE) tries to discover low-dimensional, neighborhood preserv-
ing embedding of the high-dimensional data by using a locally linear approximation of the
data manifold. Hence, data can be represented as the linear combinations of their neigh-
bors. The first step for LLE is to calculate the weight matrix W based on the following
optimization problem [854],

minimize∑
i (xi − ∑

j (W)i,j xj )
2

subject to∑
j (W)i,j = 1.

(7.82)
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Machine Learning 309

where xi can only be reconstructed from its neighbors [854]. Hence, (W)i,j will be equal
to zero if xi and xj are not neighbors.

The second step of LLE is to perform dimensionality reduction by solving the opti-
mization problem shown below [854]:

minimize∑
i (yi − ∑

j (W)i,j yj )
2,

(7.83)

where W is the solution to the optimization problem (7.82). Meanwhile, the local affine
structure is preserved.

7.9.5 Laplacian Eigenmaps

Laplacian eigenmaps use the notion of the Laplacian of the graph to compute a low-
dimensional representation of the high-dimensional data that can optimally preserve local
neighborhood information [857]. Similar to LLE, the first step of Laplacian eigenmaps
is to construct the neighborhood graph. The second step is to get weight matrix based
on the neighborhood graph. If xi and xj are neighbors, then (W)i,j = 1 and (W)j,i = 1;
otherwise (W)i,j = 0. Thus, W is the symmetric matrix. The third step is to perform
dimensionality reduction by computing eigenvalues and eigenvectors for the generalized
eigen-decomposition problem [857],

Lu = λDu, (7.84)

where D is a diagonal matrix and (D)i,i = ∑
j (D)i,j ;L = D − W is the Laplacian matrix

which is a positive semidefinite matrix. The embedding of the low-dimensional data is
given by the eigenvectors corresponding to the smallest nonzero eigenvalues.

7.9.6 Semidefinite Embedding

Within the framework of manifold learning, the current trend is to learn the kernel using
SDP [8, 388] instead of defining a fixed kernel. The most prominent example of such
a technique is semidefinite embedding (SDE) or maximum variance unfolding (MVU)
[861]. MVU can learn the inner product matrix of yi automatically by maximizing their
variance, subject to the constraints that yi are centered, and local distances of yi are equal
to the local distances of xi . Here, the local distances represent the distances between yi

(xi) and its k-nearest neighbors, in which k is a parameter.
The intuitive explanation of this approach is that when an object such as string is

unfolded optimally, the Euclidean distances between its two ends must be maximized.
Thus, the optimization objective function can be written as [861–864]

maximize
∑

ij
‖yi − yj‖2, (7.85)

subject to the constraints, ∑
i yi = 0

‖yi − yj‖2 = ‖xi − xj‖2 when ηij = 1
(7.86)

in which ηij = 1 means xi and xj are k-nearest neighbors otherwise ηij = 0.
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310 Cognitive Radio Communications and Networking

Apply inner product matrix

I = (yi · yj )
M
i,j=1 (7.87)

of yi to the above optimization can make the model simpler. The procedure of MVU can
be summarized as follows:

1. Optimization step: because I is an inner product matrix, it must be positive semidefinite.
Thus the above optimization can be reformulated into the following form [861]

maximize
trace(I)
subject to
I � 0∑

ij Iij = 0
Iii − 2Iij + Ijj = Dij , when ηij = 1

(7.88)

where Dij = ‖xi − xj‖2, and I � 0 represents I is positive semidefinite.
2. The eigenvalues λ

y
1 ≥ λ

y
2 ≥ · · · ≥ λ

y
M and the corresponding eigenvectors vy

1, vy
2, . . . ,

vy
M are obtained by diagonalizing I.

3. Dimensionality reduction by

yij =
√

λ
y
j v

y
ij (7.89)

in which v
y
ij are componentwise elements of vy

i .

Landmark-MVU (LMVU) [870] is a modified version of MVU which aims at solving
larger-scale problems than MVU. It works by using the inner product matrix A of ran-
domly chosen landmarks from xi to approximate the full matrix I, in which the size of
A is much smaller than I.

Assuming the number of landmarks is m which are a1, a2, . . . , am, respectively. Let
Q [870] denote a linear transformation between landmarks and original dimensional data
xi ∈ RN, i = 1, 2, . . . , M , accordingly,


x1
x2
...

xM


 ≈ Q ·




a1
a2
...

am


 (7.90)

in which

xi ≈
∑

j

Qij aj . (7.91)

Assuming the reduced dimensionality landmarks of a1, a2, . . . , am are ỹ1, ỹ2, . . . , ỹm,
and the reduced dimensionality samples of x1, x2, . . . , xM are y1, y2, . . . , yM , then the
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Machine Learning 311

linear transformation between y1, y2, . . . , yM and ỹ1, ỹ2, . . . , ỹm is Q as well [870],
consequently, 


y1
y2
...

yM


 ≈ Q ·




ỹ1
ỹ2
...

ỹm


 . (7.92)

Matrix A is the inner-product matrix of a1, a2, . . . , am,

A = (ỹi · ỹj )
m
i,j=1. (7.93)

Hence the relationship between I and A is

I ≈ QAQT . (7.94)

The optimization problem (7.88) can be reformulated into the following form:

maximize
trace (QAQT )

subject to
A � 0∑

ij (QAQT )ij = 0
D

y
ij ≤ Dij , when ηij = 1,

(7.95)

where

Dij = ‖xi − xj‖2 (7.96)

D
y
ij = (QAQT )ii − 2(QAQT )ij + (QAQT )jj (7.97)

and A � 0 represents A is positive semidefinite. The optimization problem (7.95) differs
from the optimization problem (7.88) in that equality constraints for nearby distances
are relaxed to inequality constraints in order to guarantee the feasibility of the simplified
optimization model.

LMVU can increase the speed of programming but at the cost of accuracy.

7.10 Ensemble Learning

Ensemble learning tries to use multiple models to obtain better predictive performance
which means a target function is learned by training a finite set of individual learners
and combining their predictions [871]. Ideally, if there are M models with uncorrelated
errors, simply by averaging them the average error of a model can be reduced by a factor
of M [872]. The common combination schemes include [873]:

• voting;
• sum, mean, median;
• generalized ensemble;
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312 Cognitive Radio Communications and Networking

• adaptive weighting;
• stacking;
• borda count;
• logistic regression;
• class set reduction;
• Dempster-Shafer;
• fuzzy integrals;
• mixture of local experts;
• hierarchical mixture of local experts;
• associative switch;
• bagging;
• boosting;
• random subspace;
• neural tree;
• error-correcting output codes [874].

Sometimes, the more general concept than ensemble learning is meta learning. Meta
learning [875] tries to learn the interaction between the mechanism of learning and the
concrete contexts in which that mechanism is applicable based on meta data [876].

7.11 Markov Chain Monte Carlo

MCMC methods [877–879] are a class of sampling algorithms. A Markov chain is con-
structed such that the equilibrium distribution of Markov chain is the same as the desired
density of the sampled probability distribution.

The key point of Monte Carlo principle is to draw a set of i.i.d. samples xn, n =
1, 2, . . . , N from the PDF p(x) defined on a high-dimensional space [878]. These N

samples can be exploited to approximate the PDF p(x) as [878]

pN(x) = 1

N

N∑
n=1

δ(x − xn). (7.98)

Based on Equation (7.98), Monte Carlo integration tries to compute integral using large
randomly-generated numbers,

IN(f ) = 1

N

N∑
n=1

f (xn). (7.99)

As N → ∞, then,

I (f ) =
∫

f (x)p(x)dx. (7.100)

Suppose we want to calculate the integral
∫

f (x)q(x)dx. However, the samples from
the PDF q(x) are hard to generate. But q(x)

p(x)
is easy to evaluate. Thus,

∫
f (x)q(x)dx ≈ 1

N

N∑
n=1

f (xn)

(
q(xn)

p(xn)

)
, (7.101)

where xn is drawn from the PDF p(x). This method is called importance sampling.
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Machine Learning 313

The Metropolis-Hastings algorithm is one of the most popular MCMC methods [878]. In
order to get samples from the PDF p(x), the Metropolis-Hastings algorithm is performed
as [878]:

1. Start with any initial sample x0 such that p(x0)> 0.
2. Sample u from the uniform distribution between 0 and 1.
3. Sample x∗ from the proposal distribution q(x∗ | xn).
4. Calculate

α = min

{
1,

p(x∗)q(xn | x∗)
p(xn)q(x∗ | xn)

}
. (7.102)

5. Accept x∗ as xn+1 = x∗ if u < α; otherwise, reject x∗ as xn+1 = xn.
6. Go to step 2.

The Metropolis-Hastings algorithm can be reduced to the Metropolis algorithm if the
proposal distribution is symmetric, that is,

q(x∗ | xn) = q(xn | x∗), n = 1, 2, . . . (7.103)

and the calculation of α in Equation (7.102) can be simplified as

α = min

{
1,

p(x∗)
p(xn)

}
. (7.104)

MCMC can work for various algorithms and applications within the framework of machine
learning [878, 880–898]. MCMC can be explored for various optimization problems,
especially for large-scale or stochastic optimization [899–907].

Gibbs sampling is a special case of the Metropolis-Hastings algorithm. Gibbs sampling
gets samples from the simple conditional distributions instead of the complex joint distri-
butions. If the joint distribution of {X1, X2, . . . , XN } is p(x1, x2, . . . , xN), the k-th sample
{x(k)

1 , x
(k)

2 , . . . , x
(k)
N } can be obtained sequentially as follows [908]:

1. Initialize {X1, X2, . . . , XN } as {x(0)

1 , x
(0)

2 , . . . , x
(0)
N }.

2. Sample x
(k)
n from the conditional distribution

x
(k)
n ∼

Pr(Xn = xn | X1 = x
(k)

1 , . . . , Xn−1 = x
(k)

n−1, Xn+1 = x
(k−1)

n+1 , . . . , XN = x
(k−1)
N ).

(7.105)

MCMC has also been applied to cognitive radio network [909–912].

7.12 Filtering Technique

Filtering is the common approach in signal processing. For communication or radar, fil-
tering can be used to perform frequency band selection, interference suppression, noise
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314 Cognitive Radio Communications and Networking

reduction, and so on. In machine learning, the meaning of filtering is greatly extended.
Kalman filtering and particle filtering are explored to deal with the sequential data, for
example, time series data. Collaborative filtering are exploited to perform recommenda-
tions or predictions.

7.12.1 Kalman Filtering

Kalman filtering is a set of mathematical equations that provides an efficient computational
and recursive strategy to estimate the state of a process such that the mean of squared error
can be minimized [913, 914]. Kalman filtering is very popular in the areas of autonomous
or assisted navigation and moving target tracking.

Let’s start from the simple linear discrete Kalman filtering to understand how Kalman
filtering works. There are two basic equations in Kalman filtering. One is the state equation
to represent the state transition. The other is the measurement equation to obtain the
observation. The linear state equation can be expressed as

xn = Anxn−1 + Bnun + wn, (7.106)

where

• xn is the current of a process or a dynamic system and xn−1 is the previous state;
• An represents the current state transition model;
• un is the current system input;
• Bn is the current control model;
• wn is the current state noise which follows a zero mean multivariate normal distribution

with covariance Wn.

The linear measurement equation is represented as

zn = Hnxn + vn, (7.107)

where

• zn is the measurement of the current state xn;
• Hn is the current observation model;
• vn is the current measurement noise which follows a zero mean multivariate normal

distribution with covariance Vn.

The goal of Kalman filtering is to estimate x̃n, n = 1, 2, . . . given x0. Meanwhile, An,
Bn, Hn, Wn, and Vn are all known. State noises and measurement noises are all mutually
independent.

There are two main steps in Kalman filtering [913]. One is the predict step and the
other is update step. These two steps are performed iteratively.

The procedure of the predict step is [913]:

1. Predict a priori current state x̃n|n−1

x̃n|n−1 = Anx̃n−1|n−1 + Bnun. (7.108)
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2. Predict a priori current error covariance of state estimation

Pn|n−1 = AnPn−1|n−1AT
n + Wn. (7.109)

The procedure of the update step is [913]

1. Obtain the current measurement residual rn

rn = zn − Hnx̃n|n−1. (7.110)

2. Obtain the current residual covariance Rn

Rn = HnPn|n−1HT
n + Vn. (7.111)

3. Get the current gain of Kalman filtering Gn

Gn = Pn|n−1HT
n R−1

n . (7.112)

4. Update a posteriori current state x̃n|n which can be treated as x̃n

x̃n|n = x̃n|n−1 + Gnrn. (7.113)

5. Update a posteriori current error covariance of state estimation Pn|n

Pn|n = (I − GnHn)Pn|n−1. (7.114)

Linear Kalman filtering can be extended to the extended Kalman filtering and
the unscented Kalman filtering to deal with the general nonlinear dynamic system. In the
nonlinear Kalman filtering, the state transition function and state measurement function
can be the nonlinear functions shown as

xn = f (xn−1, un) + wn (7.115)

and

zn = h(xn) + vn. (7.116)

If the nonlinear functions are differentiable, the extended Kalman filtering computes
the Jacobian matrix to linearize the nonlinear functions [913]. The state transition model
An can be represented as

An = ∂f

∂x
|x̃n−1|n−1,un

(7.117)

and the state observation model Hn can be represented as

Hn = ∂h

∂x
|x̃n|n−1

. (7.118)

If the functions f and g are highly nonlinear and the state noise and measurement
noise are involved in the nonlinear functions, the performance of the extended Kalman
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316 Cognitive Radio Communications and Networking

filtering is poor. We need to resort to the unscented Kalman filtering to handle this tough
situation [915, 916].

The unscented transformation is the basis of the unscented Kalman filtering. The
unscented transformation can calculate the statistics of a random variable which goes
through a nonlinear function [915]. Given an L-dimensional random variable x with
mean x̄ and covariance Cx, we would like to calculate the statistics of y which satis-
fies y = f (x). Based on the unscented transformation, 2L + 1 sigma vectors are sampled
according to the following rule,

x0 = x̄

xl = x̄ + (
√

(L + λ)Cx)l, l = 1, 2, . . . , L

xl = x̄ − (
√

(L + λ)Cx)l−L, l = L + 1, L + 2, . . . , 2L,

(7.119)

where λ is a scaling parameter and (
√

(L + λ)Cx)l is the l-th column of the matrix square
root [916]. These sigma vectors go through the nonlinear function to get the samples of y,

yl = f (xl), l = 0, 1, 2, . . . , 2L. (7.120)

Thus, the mean and covariance of y can be approximated by the weighted sample mean
and the weighted sample covariance [916],

ȳ ≈
2L∑
l=0

w
(m)
l yl (7.121)

and

Cy ≈
2L∑
l=0

w
(c)
l (yl − ȳ)(yl − ȳ)T , (7.122)

where w
(m)
l and w

(c)
l are given deterministically [916].

The state transition function and the state measurement function for the unscented
Kalman filtering can be written as [916]

xn = f (xn−1, un−1, wn−1) (7.123)

and

zn = h(xn, vn). (7.124)

The state vector for the unscented Kalman filtering is redefined as the concatenation of
xn, wn, and vn [916],

xUKF
n =


 xn

wn

vn+1


 . (7.125)
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Machine Learning 317

There are three steps in the unscented Kalman filtering. The first step is to calculate
sigma vectors. The second step is the predict step and the third is the update step. These
three steps are performed iteratively. The whole procedure of the unscented Kalman
filtering is [916],

1. Calculate sigma vectors

xUKF
0,n−1 = x̃UKF

n−1|n−1

xUKF
l,n−1 = x̃UKF

n−1|n−1 +
(√

(L + λ)PUKF
n−1

)
l

, l = 1, 2, . . . , L

xUKF
l,n−1 = x̃UKF

n−1|n−1 −
(√

(L + λ)PUKF
n−1

)
l−L

, l = L + 1, L + 2, . . . , 2L,

(7.126)

where PUKF
n−1 is equal to

PUKF
n−1 =


 Pn−1|n−1 0 0

0 Wn−1 0
0 0 Vn


 . (7.127)

2. The predict step

xx
l,n|n−1 = f (xx

l,n−1, un−1, xw
l,n−1), l = 0, 1, 2, . . . , 2L (7.128)

x̃n|n−1 =
2L∑
l=0

w
(m)
l xx

l,n|n−1 (7.129)

Pn|n−1 =
2L∑
l=0

w
(c)
l (xx

l,n|n−1 − x̃n|n−1)(x
x
l,n|n−1 − x̃n|n−1)

T . (7.130)

3. The update step

zl,n|n−1 = h(xx
l,n|n−1, xv

l,n|n−1) (7.131)

z̃n|n−1 =
2L∑
l=0

w
(m)
l zl,n|n−1 (7.132)

rn = zn − z̃n|n−1 (7.133)

Pz z
n|n−1 =

2L∑
l=0

w
(c)
l (zl,n|n−1 − z̃n|n−1)(zl,n|n−1 − z̃n|n−1)

T (7.134)

Px z
n|n−1 =

2L∑
l=0

w
(c)
l (xx

l,n|n−1 − x̃n|n−1)(zl,n|n−1 − z̃n|n−1)
T (7.135)

Gn = Px z
n|n−1(P

z z
n|n−1)

−1 (7.136)
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318 Cognitive Radio Communications and Networking

x̃n|n = x̃n|n−1 + Gnrn (7.137)

Pn|n = Pn|n−1 − GnPz z
n|n−1GT

n . (7.138)

Kalman filtering and its variants have been used in cognitive radio network [917–927].

7.12.2 Particle Filtering

Particle filtering is also called sequential Monte Carlo method [878, 928, 929]. Particle
filtering is the sophisticated model estimation technique based on simulation [928]. Particle
filtering can perform the on-line approximation of probability distribution using a set of
randomly chosen weighted samples or particles [878]. Similar to PSO, multiple particles
are generated in particle filtering and these particles can evolve.

Similar to Kalman filtering, particle filtering also has an initial distribution, a
dynamic state transition model, and the state measurement model [878]. Assume
x0, x1, x2, . . . , xn, . . . are the underlying or latent states and y1, y2, . . . , yn, . . . are the
corresponding measurements.

• The initial distribution of x is p(x0).
• The dynamic state transition model is p(xn | x0:n−1, y1:n−1), n = 1, 2, . . . .
• The state measurement model is p(yn | x0:n, y1:n−1), n = 1, 2, . . . .

x0:n = {x0, x1, . . . , xn} and y1:n = {y1, y2, . . . , yn}. Markov conditional independence
can be used to simplify the models as p(xn | x0:n−1, y1:n−1) = p(xn | xn−1) and p(yn |
x0:n, y1:n−1) = p(yn | xn) [878].

The basic goal of particle filtering is to approximate the posterior p(x0:n | y1:n) as

p(x0:n | y1:n) ≈
L∑

l=1

wl,nδ(x0:n − xl,0:n), (7.139)

where L is the number of particles used in particle filtering; xl,0:n is the l-th particle
maintaining the whole trajectory; wl,n is the corresponding weight which should be nor-
malized,

L∑
l=1

wl,n = 1, n = 1, 2, . . . . (7.140)

Based on the concept of importance sampling, sequential importance sampling is used to
generate the particle and the associated weight [930]. The importance function is chosen
such that [930]

q(x0:n | y1:n) = q(xn | x0:n−1, y1:n)q(x0:n−1 | y1:n−1). (7.141)

Given xl,0:n−1, l = 1, 2, . . . , L and wl,n−1, l = 1, 2, . . . , L, particle filtering updates the
particle and the weight as follows [878, 930]:
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1. Sample xn as,

xl,n ∼ q(xn | xl,0:n−1, y1:n), l = 1, 2, . . . , L. (7.142)

2. Augment the old particle xl,0:n−1 to the new particle xl,0:n with xl,n.
3. Update the weight as,

wl,n = wl,n−1

p(yn | xl,n)p(xl,n | xl,n−1)

q(xl,n | xl,0:n−1, y1:n)
. (7.143)

4. Normalize the weight as shown in Equation (7.140).

If the importance function is simply given by p(xn | xl,n−1), then the weight can be
updated as [928, 930],

wl,n = wl,n−1p(yn | xl,n). (7.144)

However, after a few iterations for sequential importance sampling, most of the parti-
cles have a very small weight. The particles fail to represent the probability distribution
accurately [928]. In order to avoid this degeneracy problem, sequential importance resam-
pling is exploited. Resampling is a method that gets rid of particles with small weights
and replicates particles with large weights [930]. Meanwhile, the equal weight is assigned
to each particle.

Particle filtering and its variants have been used in cognitive radio network [931–933].

7.12.3 Collaborative Filtering

Collaborative filtering [934] is the filtering process of information or pattern. Collabo-
rative filtering deals with large scale data involving collaboration among multiple data
sources. Collaborative filtering is a method to build the recommender system, which
exploits the known preferences of some users to make recommendation or prediction of
the unknown preferences for other users [935]. Item-to-item collaborative filtering is used
by Amazon.com to match each of the user’s purchased and rated items to the similar items
which are combined into a recommendation list [936]. Netflix, an American provider of
on-demand Internet streaming media, held an open competition for the best collaborative
filtering algorithm. A large scale industrial dataset with 480,000 users and 17,770 movies
was used for the competition [935].

The challenges of collaborative filtering are [935]:

• data sparsity;
• scalability;
• synonymy;
• gray sheep and black sheep;
• shilling attacks;
• personal privacy.
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320 Cognitive Radio Communications and Networking

Matrix completion [643, 937] can be used to address the issue of data sparsity in
collaborative filtering. The data matrix for collaborative filtering can be recovered even if
this matrix is extremely sparse as long as the matrix is well approximated by a low-rank
matrix [937, 938].

There are three categories for collaborative filtering algorithms [935]:

• memory-based collaborative filtering, for example, neighborhood-based collaborative
filtering, top-N recommendation, and so on;

• model-based collaborative filtering, for example, Bayesian network collaborative fil-
tering, clustering collaborative filtering, regression-based collaborative filtering, MDP-
based collaborative filtering, latent semantic collaborative filtering, and so on;

• hybrid collaborative filtering.

Collaborative filtering can be explored for cognitive radio network [939–942].

7.13 Bayesian Network

Bayesian network [943, 944] is also called belief network or directed acyclic graphical
model. Bayesian network explicitly uncovers the probabilistic structure of dependency in
a set of random variables. It uses a directed acyclic graph to represent the dependency
structure, in which each node denotes a random variable and each edge denotes the relation
of dependency. Bayesian network can be extended to dynamic Bayesian network to model
the sequential data or the dynamic system. The sequential data can be anywhere. Speech
recognition, visual tracking, motion tracking, financial forecasting and prediction, and so
on are the temporal sequential data [945].

The well-known hidden Markov model (HMM) can be treated as one simple dynamic
Bayesian network. Meanwhile, the variants of HMM can be modeled as dynamic Bayesian
networks. These variants include [945]:

• auto-regressive HMM;
• HMM with mixture-of-Gaussians output;
• input-output HMM;
• factorial HMM;
• coupled HMM;
• hierarchical HMM;
• mixtures of HMM;
• semi-Markov HMM;
• segment HMM.

State space model and its variants can also be modeled as dynamic Bayesian networks
[945]. The basic state space model is also known as dynamic linear model or Kalman
filter model [945].

Bayesian network is a powerful tool for learning and inference in cognitive radio
network. Various applications of Bayesian network in cognitive radio network can be
found in [536, 946–949].
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Machine Learning 321

7.14 Summary

In this chapter, machine learning has been presented. Machine learning can be applied
everywhere to make the system intelligent. In order to give readers the whole picture of
machine learning, almost all the topics related to machine learning have been covered
in this chapter which include unsupervised learning, supervised learning, semi-supervised
learning, transductive inference, transfer learning, active learning, reinforcement learn-
ing, kernel-based learning, dimensionality reduction, ensemble learning, meta learning,
MCMC, Kalman filtering, particle filtering, collaborative filtering, Bayesian network,
HMM, and so on. Meanwhile, the references about applications of machine learning
in cognitive radio network have been given. Machine learning will be the basic tool to
make cognitive radio network practical.
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8
Agile Transmission Techniques (I):
Multiple Input Multiple Output

MIMO [68, 950–954] in wireless communication tries to exploit multiple antennas at both
the transmitter and the receiver to improve the performances of wireless communication
without additional radio bandwidth. These performances can be spectral efficiency, data
throughput, link range, link reliability, QoS of multiuser situation, and so on. MIMO
is the core technology of modern wireless communication. MIMO is widely adopted as
radio communication standards by IEEE 802.11, IEEE 802.16, and 3GPP LTE.

8.1 Benefits of MIMO

The benefits of MIMO can be generally summarized as three different gains:

• array gain;
• diversity gain;
• multiplexing gain.

8.1.1 Array Gain

Array gain means the average SNR increase at the receiver due to the signal coherent
combination by using multiple-antennas at transmitter and/or receiver [953, 955]. Array
gain can also be called power gain which can increase energy efficiency. In order to
exploit array gain, channel knowledge or channel state information is required at both
transmitter and receiver. Beamforming is the signal processing technique which brings
array gain.

8.1.2 Diversity Gain

Diversity is used to combat fading in wireless communication [953, 956]. Fading will
cause the signal power to drop significantly and degrade the communication perfor-

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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324 Cognitive Radio Communications and Networking

mance [953]. Thus, multiple copies of the same signal can be transmitted through two
or more different communication channels. Diversity gain can also increase SNR. The
commonly used diversity schemes include:

• time diversity;
• frequency diversity;
• space diversity;
• polarization diversity;
• multi-user diversity.

In order to combine the signals from multiple communication channels at the receiver,
diversity combining techniques are needed which include:

• selection combining;
• switched combining;
• equal-gain combining;
• maximal-ratio combining.

If there are multiple antennas at the transmitter, transmit diversity is applied. Transmit
diversity can be extracted with or without channel knowledge at the transmitter [953].

We can also simply understand and differentiate array gain and diversity gain from the
perspective of random process. For the superposition of several random processes, array
gain can increase the mean and diversity gain can reduce the variance compared with the
single random process.

8.1.3 Multiplexing Gain

Multiplexing gain refers to the increase in capacity due to the simultaneous transmission of
different data streams on multiple spatial dimensions without additional power and radio
bandwidth [957]. Multiplexing gain can be achieved with or without channel knowledge
at the transmitter.

There is a fundamental tradeoff between diversity gain and multiplexing gain when
MIMO is explored [958, 959].

8.2 Space Time Coding

Space time coding tries to improve the reliability or link quality of data transmission by
using multiple antennas at the transmitter [960]. The two main types of space time coding
are [960]:

• space time block coding (STBC);
• space time trellis coding (STTC).

The coding is performed jointly in both time and space domains. The transmitted signals
in different time slots and from different antennas have some levels of correlation, which
leads to information redundancy. However, in order to provide multiplexing gain, layered
space time coding is explored. All these three space time codes require the receiver to
have channel state information.
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Agile Transmission Techniques (I): Multiple Input Multiple Output 325

8.2.1 Space Time Block Coding

Space time block coding [961] is based on a linear code which is an error-correcting
code. A space time block code can be represented as



x11 x12 · · · x1M

x21 x22 · · · x2M

...
...

...
...

xT 1 xT 2 · · · xT M


 , (8.1)

where xtm is the modulated symbol which will be transmitted in the t-th time slot from
the m-th antenna. M is the number of antennas at the transmitter and T is the number of
total time slots. If K symbols are encoded within T time slots by space time block code,
then the code rate of space time block code is

r = K

T
. (8.2)

Alamouti code is the simplest and the most well-known space time block code [962].
Alamouti code was originally designed for the system with two antennas at the transmitter
and the coding matrix is expressed as [962]

C2 =
[

x1 x2

−xH
2 xH

1

]
. (8.3)

Alamouti code does not require channel knowledge at the transmitter and obtains the
gain of transmit diversity. Alamouti code can achieve full code rate of one. Alamouti
code is also an orthogonal space time block code [963, 964], which means for Alamouti
code, the product of its coding matrix with its Hermitian transpose is equal to the 2 × 2
identity matrix,

C2CH
2 =

[ |x1|2 + |x2|2 0

0 |x1|2 + |x2|2
]

. (8.4)

Generally, the orthogonal space time block coding is performed such that any pair
of columns from the coding matrix is orthogonal. In other words, the data vectors for
different antennas are mutually orthogonal. This orthogonality will make the decoding at
the receiver simple, linear, and optimal.

If there are three antennas at the transmitter, the coding matrix with the code rate of 1
2

is [964]

C3, 1
2

=




x1 x2 x3

−x2 x1 −x4

−x3 x4 x1

−x4 −x3 x2

xH
1 xH

2 xH
3

−xH
2 xH

1 −xH
4

−xH
3 xH

4 xH
1

−xH
4 −xH

3 xH
2




(8.5)
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326 Cognitive Radio Communications and Networking

and the coding matrix with the code rate of 3
4 is [964]

C3, 3
4

=




x1 x2
x3√

2

−xH
2 xH

1
x3√

2

xH
3√
2

xH
3√
2

−x1−xH
1 +x2−xH

2
2

xH
3√
2

− xH
3√
2

x1−xH
1 +x2+xH

2
2




. (8.6)

If there are four antennas at the transmitter, the coding matrix with the code rate of 1
2

is [964]

C4, 1
2

=




x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

xH
1 xH

2 xH
3 xH

4

−xH
2 xH

1 −xH
4 xH

3

−xH
3 xH

4 xH
1 −xH

2

−xH
4 −xH

3 xH
2 xH

1




(8.7)

and the coding matrix with the code rate of 3
4 is [964]

C4, 3
4

=




x1 x2
x3√

2
x3√

2

−xH
2 xH

1
x3√

2
− x3√

2

xH
3√
2

xH
3√
2

−x1−xH
1 +x2−xH

2
2

x1−xH
1 −x2−xH

2
2

xH
3√
2

− xH
3√
2

x1−xH
1 +x2+xH

2
2

−x1−xH
1 −x2+xH

2
2




. (8.8)

8.2.2 Space Time Trellis Coding

Space time block code can only provide diversity gain. In order to exploit both diversity
gain and coding gain, we need to explore space time trellis coding [965, 966]. Space time
trellis coding combines transmit diversity and trellis coded modulation to improve the BER
performance. The encoding and decoding of space time trellis code are more complex than
the counterparts of space time block code due to the utilization of convolutional coding.

8.2.3 Layered Space Time Coding

Layered space time coding can provide multiplexing gain [967]. Meanwhile, diversity gain
and coding gain can still be achieved dependent on code structure. Based on layered space
time coding, Bell laboratories layered space time (BLAST) is the well known transceiver
architecture for achieving spatial multiplexing over MIMO wireless communication
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Agile Transmission Techniques (I): Multiple Input Multiple Output 327

system [952, 968–970]. BLAST is an extraordinarily bandwidth-efficient approach to
wireless communication which takes advantage of the spatial dimension by transmitting
and detecting a number of independent co-channel data streams using multiple, essentially
co-located, antennas. At the transmitter, several independent data streams are sent from
multiple antennas on the same bandwidth. The encoding formats of BLAST include:

• Diagonal BLAST (D-BLAST);
• Horizontal BLAST (H-BLAST);
• Vertical BLAST (V-BLAST);
• Turbo BLAST [971].

At the receiver, each receive antenna sees all of the transmitted data streams superim-
posed. There are three main decoding strategies:

• ML decoding;
• linear decoding includes zero-forcing criterion and MMSE criterion;
• nonlinear decoding called successive interference cancellation [972].

In successive interference cancellation, ordering plays an important role [967, 973, 974].
The received symbol with the highest SINR among all the undetected symbols should
be detected first. Then, this symbol will be canceled as the interference for the follow-
ing procedure.

8.3 Multi-User MIMO

Multiuser MIMO [975] can be treated as advanced MIMO which extends MIMO tech-
niques from a single wireless communication link to multiple users.

8.3.1 Space-Division Multiple Access

In wireless communication, there are four main multiple access methods which allow
multiple users to share the same transmission channel using different radio resources:

• Frequency-division multiple access (FDMA). FDMA is based on the frequency-
division multiplexing scheme. Different nonoverlapping frequency bands are allocated
to different users or different data streams. An example of an FDMA system is the
first-generation cellular network. In order to increase spectral efficiency of FDMA,
OFDMA is used based on the well-known OFDM scheme.

• Time-division multiple access (TDMA). TDMA is based on the time-division multi-
plexing scheme. Different time slots are allocated to different users or different data
streams. An example of TDMA system is the second-generation cellular network.

• Code-division multiple access (CDMA). CDMA is based on the code-division multi-
plexing scheme. CDMA is also called spread spectrum multiple access. Different codes
are allocated to different users or different data streams. An example of CDMA system
is the third-generation cellular network.
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328 Cognitive Radio Communications and Networking

• Space-division multiple access (SDMA). In SDMA, different spatial subchannels or
spatial pipes are allocated to different users through spatial multiplexing or spatial
diversity. The cellular network deployed with multiple antennas can explore SDMA to
support multiuser wireless communication.

In order to implement SDMA, smart antenna, beamforming or phase array technique can
be used for directional signal transmission or reception. In this way, power is saved and
interference is avoided. The researches related to SDMA, smart antenna, beamforming,
and phase array technique can be found in [976–988].

8.3.2 MIMO Broadcast Channel

MIMO broadcast channel [68, 953, 989, 990] is the multiuser downlink channel. In MIMO
broadcast channel, the joint signal processing is allowed at the transmitter.

In MIMO broadcast channel, there is one transmitter with M > 1 antennas and there
are K users to receive the signals. There are Nk ≥ 1 antennas at the k-th user. Assume
x ∈ CM×1 is the transmitted signal which contains the independent information for each
of the users [989]. The covariance matrix of x is Cx. The average transmitted power
should be bounded which means trace(Cx) ≤ P [989].

Hk ∈ CNk×M is the channel state matrix from the transmitter to the k-th user. nk ∈ CNk×1

represents the circularly symmetric complex Gaussian noise at the k-th user which follows
normal distribution with zero mean and unit variance on each vector component [989].
Let yk ∈ CNk×1 be the received signal at the k-th user which can be expressed as

yk = Hkx + nk, k = 1, 2, . . . , K. (8.9)

Let

y =




y1
y2
...

yK


 (8.10)

H =




H1
H2
...

HK


 (8.11)

and

n =




n1
n2
...

nK


 (8.12)
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Agile Transmission Techniques (I): Multiple Input Multiple Output 329

then the mathematical model for MIMO broadcast channel is

y = Hx + n. (8.13)

Different from single user wireless communication system, for multiuser MIMO, the
sum-rate capacity and the achievable rate region are used to evaluate the performance
of potential algorithms or schemes. In MIMO broadcast channel, dirty paper coding
[991–993], a precoding technique, is exploited to achieve the sum-rate capacity. The
idea of dirty paper coding is if the interference is known, the interference can be pre-
subtracted at the transmitter. In this way, the performance remains the same even with
the interference. The sum-rate capacity of MIMO broadcast channel can be achieved by
solving the following optimization problem [989, 992–995]:

maximize∑K

k=1 log
|I+Hk(

∑
j≤k Cj )HH

k
|

|I+Hk(
∑

j<k Cj )HH
k

|
subject to∑K

k=1 trace(Ck) ≤ P

Ck ≥ 0, k = 1, 2, . . . , K,

(8.14)

where the maximization is over the M × M positive semidefinite covariance matrices
C1, C2, . . . , CK . The optimization problem (8.14) is not a concave optimization problem
which is hard to solve. Meanwhile, both all the channel state information and the additive
interference information should be known. Ordering of users for precoding is also very
important. Because by using dirty paper coding, the interference from the unintended
signal can be reduced or completely eliminated [989].

Due to the duality of MIMO broadcast channel and MIMO multiple access channel,
the sum-rate capacity of MIMO broadcast channel is equal to the sum-rate capacity of the
dual MIMO multiple access channel which gives a beautiful solution to the optimization
problem (8.14) [989, 993].

Although the sum-rate capacity of MIMO broadcast channel can be achieved by dirty
paper coding, it is hard to implement dirty paper coding with high computational complex-
ity in practice [996]. Hence, the pre-equalizer can be explored. Zero-forcing precoding is
a transmission method in MIMO broadcast channel [997, 998]. Zero-forcing beamform-
ing has been presented in [996] together with the user selection scheme and scheduling
scheme. Low-complexity linear zero-forcing has been proposed for MIMO broadcast
channel in [999]. Random matrix theory has been used to analyze the zero-forcing
precoding in MISO broadcast channel with limited feedback [1000]. Zero-forcing pre-
coding is also used together with nonlinear Tomlinson-Harashima precoding to improve
the performance of MIMO broadcast system [1001]. Zero-forcing dirty paper coding is
proposed in [992]. Besides zero-forcing equalizer, the other well-known linear equalizer
is MMSE equalizer. Error performance has been analyzed for linear zero-forcing and
MMSE precoders in MIMO broadcast channel [1002]. If imperfect channel knowledge
is assumed at the transmitter, robust MMSE precoding is presented in [1003]. Precod-
ing for point-to-multipoint transmission over MIMO ISI channels has been presented in
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330 Cognitive Radio Communications and Networking

[1004]. Both intersymbol interference and multiuser interference are taken into account.
The nonlinear spatial/temporal Tomlinson-Harashima precoding is explored [1004, 1005].

Block diagonalization is a popular linear precoding for MIMO broadcast channel
[1006–1008]. The signal of each user is multiplied by the precoding matrix before the
signal is transmitted. In order to eliminate the mutual interference, the precoding matrix
for each user should be designed to lie in the null space of channel matrix of all the
other users. Hence, the number of users supported by block diagonalization is dependent
on transmitter antennas, receiver antennas of each user, and channel state information.
Block diagonalization can be treated as the generalized zero-forcing or channel inversion
to deal with MIMO broadcast channel when users have more than one antenna [1009].
MMSE based block diagonalization can also be applied [1010]. The achievable through-
put for the optimal strategy of dirty paper coding has been compared to that achieved
with suboptimal and lower complexity linear precoding, for example, zero-forcing and
block diagonalization, in high SNR for MIMO broadcast channel [1011]. Both strategies
exploit all available spatial dimensions and therefore have the same multiplexing gain,
but an absolute difference in terms of throughput does exist [1011].

Most of the precoding schemes require channel state information at the transmitter.
However, it is difficult for the transmitter to have perfect channel knowledge. Meanwhile,
in order to reduce the overhead of the system, finite rate feedback is practical. MIMO
broadcast channels with imperfect channel state information, partial side information,
limited feedback, or finite rate feedback have been considered in [1003, 1008, 1012–1017].

Multiuser diversity is one form of selection diversity among users when the number of
users is large [996]. Multi-user diversity can be achieved by user selection and scheduling.
In MIMO broadcast system with large number of users, the transmitter cannot serve all the
users simultaneously. Multiuser selection and scheduling should be used to choose a group
of users to be served. The selection criteria can be the channel conditions of users, fairness,
sum-rate capacity of the system, and so on. Multiuser selection and scheduling in MIMO
broadcast channel can be found in [996, 1006, 1014–1016, 1014–1016, 1018–1020].

The work about MIMO broadcast channel or MIMO downlink system in cognitive
radio network can be found in [1021–1025].

8.3.3 MIMO Multiple Access Channel

MIMO multiple access channel [990, 993, 1026] is the multiuser uplink channel. In MIMO
multiple access channel, the joint signal processing is allowed at the receiver.

In MIMO multiple access channel, there is one receiver with M > 1 antennas and there
are K users to transmit the signals. There are Nk ≥ 1 antennas at the k-th user. Assume
xk ∈ CNk×1 is the transmitted signal from k-th user. The covariance matrix of xk is Qk .
If there is a sum-power constraint, then

∑K

k=1 trace(Qk) ≤ P .
HH

k ∈ CM×Nk is the channel state matrix from the k-th user to the receiver. n ∈ CM×1

represents the noise at the receiver. Hence, the mathematical model of MIMO multiple
access channel can be expressed as

yMAC =
K∑

k=1

HH
k xk + n. (8.15)
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Agile Transmission Techniques (I): Multiple Input Multiple Output 331

The sum-rate capacity of MIMO multiple access channel can be achieved by solving
the following optimization problem [989, 990]:

maximize
log |I + ∑K

k=1 HH
k QkHk|

subject to∑K

k=1 trace(Qk) ≤ P

Qk ≥ 0, k = 1, 2, . . . , K,

(8.16)

where the maximization is over the Nk × Nk positive semidefinite covariance matrices
Qk, k = 1, 2, . . . , K . The objective function in the optimization problem (8.16) is a con-
cave function of the covariance matrices. The efficient numerical algorithms exist to solve
the optimization problem (8.16), for example, iterative water filling algorithm [990, 1027].
Meanwhile, it is well known that the dirty paper rate region for MIMO broadcast channel
is equal to the capacity region of the dual MIMO multiple access channel with sum-
power constraint P [993, 989, 990]. Meanwhile, there is a deterministic transformation
which maps from uplink covariance matrices Q1, Q2, . . . , QK to downlink covariance
matrices C1, C2, . . . , CK that achieve the same rate and use the same power [990].

8.3.4 MIMO Interference Channel

MIMO interference channel [836, 1028, 1029] includes more than one transmitter and
more than one receiver. In MIMO interference channel, neither transmitters nor receivers
directly involve joint signal processing.

Assume there are K transmitter-receiver communication links in MIMO interference
channel [1029]. There are Mk antennas at the k-th transmitter and there are Nk antennas
at the corresponding receiver. xk ∈ CMk×1 is the transmitted signal vector for the k-th
user. Hkl ∈ CNk×Ml represents the channel state matrix from the l-th transmitter to the
k-th receiver. Hence, the received signal vector yk ∈ CNk×1 for the k-th receiver is [1029]

yk = Hkkxk +
K∑

l=1,l �=k

Hklxl + nk, (8.17)

where nk is the AWGN vector at the k-th receiver with zero mean and covariance matrix
Cnk

.
∑K

l=1,l �=k Hklxl is the interference to the k-th receiver.
The straightforward way to handle MIMO interference channel is to exploit precoding

matrix V ∈ CMk×dk and filtering matrix U ∈ Cdk×Nk to suppress the inference which can
be expressed as [1029]

rk = UkHkkVksk +
K∑

l=1,l �=k

UkHklVlsl + Uknk, (8.18)

where dk is the number of independent data streams sk for the k-th user. Uk performs the
linear dimensionality reduction from yk ∈ CNk×1 to rk ∈ Cdk×1 [1029]. rk can be further
processed to extract the transmitted signals.

It is well known that the capacity in AWGN channel is proportional to log(SNR) at high
SNR. Hence, we can use the simple concept of spatial degrees of freedom to quantify the
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332 Cognitive Radio Communications and Networking

maximum multiplexing gain of the MIMO system [1028]. The spatial degrees of freedom
can be defined as [1028]

η = lim
ρ→∞

C�(ρ)

log(ρ)
, (8.19)

where ρ represents SNR and C�(ρ) is the corresponding sum capacity.
For a single user MIMO system with M transmitters and N receivers, η = min{M, N}

[1028]. For MIMO broadcast channel with two users, η = min{M,N1 + N2} where M is
the number of antennas at the transmitter and Nk, k = 1, 2 is the number of antennas at
the k-th receiver [1028]. Similar result is obtained for MIMO multiple access channel.
For two-user MIMO Gaussian interference channel with full rank channel state matrices,
if perfect channel knowledge is known at all transmitters and receivers,

η = min{M1 + M2, N1 + N2, max{M1, N2}, max{M2, N1}}, (8.20)

where Mk, k = 1, 2 is the number of antennas at the k-th transmitter and Nk, k = 1, 2
is the number of antennas at the k-th corresponding receiver [1028]. The zero-forcing
scheme is sufficient to obtain all the available degrees of freedom [1028].

Furthermore, degrees of freedom of MIMO Gaussian interference channel with K users
have been discussed in [836]. Assume there are M antennas for each transmitter and there
are N antennas for each receiver. For the outer bound of degrees of freedom [836],

η ≤ K min{M,N}, if K ≤ R (8.21)

and
η ≤ K

max{M,N}
R + 1

, if K > R, (8.22)

where
R = �max{M, N}

min{M, N} 	. (8.23)

The achievable inner bound of degrees of freedom is obtained under the assumption
that the channel coefficients are time-varying and drawn from a continuous distribution
[836]. For the inner bound of degrees of freedom [836],

η ≥ K min{M,N}, if K ≤ R (8.24)

and
η ≥ R

R + 1
min{M,N}, if K > R. (8.25)

When R defined in Equation (8.23) is equal to an integer, then the bound is tight which
means [836]

η = K min{M,N}, if K ≤ R (8.26)

and
η = R

R + 1
min{M,N}, if K > R, (8.27)
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Agile Transmission Techniques (I): Multiple Input Multiple Output 333

where the results of the achievable degrees of freedom is based on interference align-
ment [836]. If channel coefficients of MIMO interference channel are constant, using
interference alignment together with zero-forcing can achieve more degrees of freedom
than using only zero-forcing for some situations [836]. For example, if MIMO Gaus-
sian interference channel with constant channel coefficients has R + 2 users where each
transmitter has M > 1 antennas and each receiver has RM, R = 2, 3, . . . antennas, then
RM +

⌊
RM

R2+2R−1

⌋
degrees of freedom can be obtained [836]. RM degrees of freedom

can be achieved using zero-forcing [836]. Hence, if M ≥ R + 2, then � RM

R2+2R−1
	 > 0 and

more than RM degrees of freedom can be achieved [836].
There are three general approaches to deal with interference management:

• decode interference;
• treat interference as noise;
• orthogonalize interference and signal in time, frequency, code, and space, for example,

interference alignment.

Interference alignment is the core technique used in MIMO interference channel. Inter-
ference alignment refers to a construction of signals such that they cast maximized
overlapping shadows at the receivers where they constitute interference while they retain
distinguishable at the receivers where they are desired [541]. Hence, we need to restrict
interference into some subspaces and remain other subspaces for interference free commu-
nication. The challenge of interference alignment is that the global channel knowledge is
required. Distributed interference alignment has been presented using only local channel
knowledge instead of global channel knowledge [1030].

The benefits of user cooperation and cognitive message sharing for degrees of free-
dom of a two-user MIMO interference channel have been explored in [839]. The term
“cognitive message sharing” refers to the genie-aided type of message sharing among
cognitive radios [839]. Cognitive message sharing can increase the sum degrees of free-
dom [839]. Meanwhile, a cognitive transmitter may be more beneficial than a cognitive
receiver [839]. Constrained interference alignment and the spatial degrees of freedom of
MIMO cognitive networks have been studied explicitly in [1031]. Cognitive radios can
align their transmitted signals to produce a number of interference-free channels at each
secondary receiver without causing any interference to the primary user [1031].

Opportunistic interference alignment in MIMO cognitive networks has been presented
in [1032]. Power limitations lead the primary user to leave some of its spatial directions
unused [1032]. The opportunistic link of cognitive radio can be used to transmit data if
it is possible to align the interference produced on the primary link into unused spatial
directions [1032]. Similarly, opportunistic spatial orthogonalization has been proposed to
allow the existence of secondary users even if the primary user occupies all the frequency
bands all the time [1033]. Opportunistic spatial orthogonalization can be interpreted as
an opportunistic interference alignment scheme where the interference from multiple sec-
ondary users is opportunistically aligned at the direction that is orthogonal to the primary
user’s signal space [1033].
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334 Cognitive Radio Communications and Networking

8.4 MIMO Network

Traditionally, MIMO is a physical-layer technique. However, we cannot ignore the great
impact of MIMO on the performance of the whole network. Hence, cross-layer MIMO,
cooperative MIMO, MIMO routing, and so on have attracted much attention recently
[954, 975].

Cross-layer MIMO explores cross-layer optimization for the networking system using
MIMO technique and configuration. Cross-layer optimization breaks virtually strict bound-
aries between layers and jointly designs and optimizes the whole communication archi-
tecture from physical layer to application layer [1034]. Cross-layer optimization for
MIMO-based wireless ad hoc network has been studied in [1035]. Multihop/multipath
routing optimization, power allocation, and bandwidth allocation are considered jointly.
Cross-layer optimization for MIMO-based mesh network with Gaussian vector broadcast
channel has been presented in [1036]. Jointly optimizing power allocation for dirty paper
coding and multihop/multipath routing in MIMO-based mesh network is considered. Dis-
tributed link scheduling, power control, and routing for multihop wireless MIMO network
have been developed in [1037].

A cross-layer optimization framework for effective interference management has been
developed to understand fundamental tradeoffs among possible MIMO gains in multi-
hop networks [1038]. Network utility maximization is also used for cross-layer design of
MIMO-enabled wireless local area network(WLAN) [1039]. A cross-layer framework
to determine the user selection, rate selection, power selection as well as diversity/
multiplexing selection has been studied for multiuser MIMO system [1040]. A cross-layer
transmission control protocol (TCP) modeling framework for MIMO wireless system has
been presented and the TCP performances of two representative MIMO systems, namely,
the BLAST system and the orthogonal STBC system, have been analyzed [1041]. For
service-differentiated multiuser MIMO systems, joint feedback and scheduling scheme is
used to meet both average and instantaneous delay constraints of delay sensitive applica-
tions [1042]. A cross-layer design approach to multicast service in wireless network with
MIMO links has been shown in [1043].

Cooperative MIMO explores the distributed MIMO techniques in the coordinated fash-
ion [1044]. In cooperative MIMO, antennas belong to different users, terminals, or base
stations with different geo-locations. Diversity gain, especially cooperative diversity, and
multiplexing gain can still be achieved in cooperative MIMO. Simulation results shown in
[1044] indicate that distributed MIMO systems can provide large spatial diversity, and the
data rate in cooperative networks can be significantly increased. Relay is one realization
of cooperative MIMO. The basic relay strategies are:

• amplify-and-forward relay;
• decode-and-forward relay;
• compress-and-forward relay.

Infrastructure relay transmission with cooperative MIMO has been studied in [1045].
A signal is transmitted from a base station to a randomly located mobile station using
fixed-location relay stations [1045]. Compress-and-forward cooperative MIMO relaying
with full channel knowledge has been studied in [1046]. An achievable rate on the
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Agile Transmission Techniques (I): Multiple Input Multiple Output 335

Gaussian MIMO relay channel is derived by using distributed vector compression tech-
niques [1046]. Throughput maximization of ad-hoc wireless networks using adaptive
cooperative diversity and truncated ARQ has been presented in [1047]. The relay nodes
are not fixed and are selected according to the channel conditions [1047]. Transmitter
antenna selection strategies of cooperative MIMO amplify-and-forward relay network
have been analyzed in [1048]. One optimal strategy and two suboptimal strategies are
considered. Optimized distributed MIMO for cooperative relay network has been intro-
duced in [1049]. An optimization criterion has been derived for the decision of signature
vector used in the optimized distributed MIMO. Discrete stochastic algorithms have been
exploited for joint transmit diversity optimization and relay selection for multirelay coop-
erative MIMO system [1050]. The performance is shown to converge to the optimum
exhaustive solution [1050].

Joint source and relay optimization for two-way MIMO multirelay networks has been
investigated in [1051]. An iterative algorithm is developed to jointly optimize the source,
relay, and receive matrices such that the two-way sum MSE of the signal waveform
estimation is minimized [1051]. Cooperative power scheduling for a network of MIMO
links has been presented in [1052]. Price-based iterative water filling algorithm is a dis-
tributed algorithm by which each link computes its power scheduling through an iterative
and cooperative process [1052]. Cooperative and constrained MIMO communications in
wireless ad hoc/sensor networks have been investigated in [1053]. Given constraints of
energy, delay, and data rate, a source node dynamically selects its cooperating nodes from
its neighbors to form a virtual MIMO system with communication to the destination node
[1053]. Similarly in a wireless sensor network, it is possible to group several sensors to
form a virtual MIMO link [1054]. A distributed MIMO-adaptive energy-efficient cluster-
ing/routing scheme has been proposed in [1054], which tries to reduce energy consumption
in a multihop wireless sensor network.

Multicell MIMO cooperative networks have been analyzed in [1055]. Multicell cooper-
ation can dramatically improve the system performance by exploiting intercell interference
[1055]. A linear precoding technique called soft interference nulling has been explored in
cooperative MIMO celluar networks for low-complexity implementation [1056]. Coopera-
tion among base stations allows the joint encoding of user signals, which can successfully
handle the interference [1056]. The idea of cooperation is also used in LTE-Advanced
called coordinated multipoint transmission/reception [1057–1059]. Cooperative cellular
networks using multiuser MIMO have been considered in [1060]. The impacts of the
scheduling criterion, cell density, and coordination on the average and cell edge user rates
across different designs have been analyzed [1060]. QoS-aware base station selections for
distributed MIMO links in broadband wireless networks have been presented in [1061].
The BS usages can be minimized and the interfering range can be reduced [1061]. Capac-
ity of a multicell multi-antenna cooperative cellular network with co-channel interference
has been analyzed in [1062]. Simulation results shown in [1062] indicate that cooperative
transmission can improve the capacity performance of multicell multi-antenna cooperative
cellular networks. Capacity of MIMO cellular systems with base station cooperation has
been comprehensively studied in [1063]. Several bounds are derived for the minimized
transmitted power of the rate-constrained MIMO cellular systems with various base station
cooperation strategies [1063].
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336 Cognitive Radio Communications and Networking

Wideband waveform design for relay cognitive network has been presented in
[1064]. Among the basic relay strategies, amplify-and-forward is the simplest scheme.
The received signal at the relay node is multiplied by the complex value and then
retransmitted to the destination. Extending from narrowband relay network to wideband
relay network, amplify-and-forward can be replaced by its wideband counterpart, called
filter-and-forward [1065]. FIR filter is implemented at the relay node. The received
signal is filtered and then re-transmitted to the receiver. Besides, in order to improve the
performance, the approach based on multiple relay nodes is also proposed in [1065] to
perform distributed cooperative beamforming. In relay cognitive networks [1064], there
is one transmitter, several relay nodes and one or several receivers. Assume there is
no direct communication link between the transmitter and the receiver. All the channel
knowledge is perfectly known. The transmitted waveform and the FIR filters at the relay
nodes are jointly designed such that the received SNR can beat the threshold derived
from QoS. However, the general formulation of this problem is not convex. It is hard to
find the global optimal solutions for the transmitted waveform plus the relay FIR filters.
Thus a new iterative method is proposed in [1064] to obtain the suboptimal solution and
the received SNR can still be guaranteed. With any initial transmitted waveform, the
relay FIR filters are jointly optimized similar to distributed cooperative beamforming.
Then the transmitted waveform is optimized with fixed relay FIR filters. Afterward, the
relay FIR filters are redesigned based on the previous optimized transmitted waveform.
This process continues until the transmitted waveform converges to a stable waveform.
Because cognitive network is taken into account, there are spectral mask constraints
imposed on the transmitted waveform and the forwarded signal from each relay node,
which will make the optimization issue more complex [1064].

8.5 MIMO Cognitive Radio Network

MIMO can be fully explored in cognitive radio network. Spatial diversity, spatial mul-
tiplexing, beamforming, smart antenna, and so on can help cognitive radio network to
access the valuable spectrum and increase the link quality as well as spectrum efficiency.
Optimal spectrum sharing in MIMO cognitive radio networks via SDP has been pre-
sented in [815]. A unified homogeneous QCQP formulation is applied to three scenarios
in which the cognitive radio has complete, partial, or no knowledge about the channels to
the primary users [815]. The homogeneous QCQP formulation, though nonconvex can be
relaxed to SDP [815]. Similarly, dynamic spectrum management for multi-antenna cogni-
tive radio system with imperfect channel state information has been studied in [1066]. A
linear matrix inequality (LMI) transformation is used to facilitate the proper treatment of
channel uncertainty at the transmitter of cognitive radio [1066]. Opportunistic spectrum
sharing has also been exploited for multi-antenna cognitive radio network [1067]. The
channel capacity of cognitive radio is characterized under both its own transmitted power
constraint and interference power constraints imposed by primary users [1067]. Similarly,
interference minimization approach in MIMO-based cognitive radio networks has been
studied in [1068]. The proposed precoder tries to maximize the sum capacity through the
minimization of interference power [1068].

Antenna selection in MIMO cognitive radios has been addressed in [1069]. Two solu-
tions are given to the problem of joint transmit-receive antenna selection which aims at
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Agile Transmission Techniques (I): Multiple Input Multiple Output 337

maximizing cognitive radio data rates and satisfying interference constraints at the pri-
mary users [1069]. Cross-layer antenna selection and learning-based channel allocation
for MIMO cognitive radios have been proposed in [1070]. The spectrum efficiency and
fairness issue are considered [1070]. Optimal resource allocation for MIMO ad hoc
cognitive radio networks has been discussed in [1071]. A semidistributed algorithm is
introduced for the maximization of the weighted sum-rate of secondary users [1071]. The
throughput of MIMO-empowered multihop cognitive radio networks has been investi-
gated in [1072]. The goal is to achieve the ultimate flexibility and efficiency in DSA and
spectrum utilization [1072]. A tractable mathematical model is developed to capture the
essence of channel assignment of cognitive radio and degree-of-freedom allocation for
MIMO within a channel [1072].

Game theory is widely used in MIMO cognitive radio network. A competitive optimality
principle based on game theory is explored in cognitive MIMO radio [1073]. Similarly,
a novel game theoretical formulation is proposed to solve one of the challenging and
unsolved resource allocation problems in MIMO cognitive radio network: how to allow the
concurrent communication over MIMO channels among cognitive radios in a decentralized
way, under different interference constraints [1074]. Robust MIMO cognitive radio via
game theory has been presented in [1075]. Cognitive radios compete with each other over
the resources made available by primary users, by maximizing their own information rates
subject to the transmitted power and robust interference constraints [1075].

The work related to applications of beamforming in cognitive radio network can be
found in [575, 1076–1094]. Some of the efforts are put into the robust beamforming
design for reliable communication in cognitive radio network. Beamforming can also be
used for routing due to its directional transmission. Directional transmission can reduce the
interference area and directional reception can avoid interference from other radios. Hence,
beamforming can increase the efficiency of spectrum sharing. Beamforming supported
routing has been exploited in ad hoc network and wireless mesh network which can be
straightforwardly extended to cognitive radio network [542, 1095, 1096].

8.6 Summary

MIMO transmission techniques have been presented in this chapter. MIMO can bring array
gain, diversity gain, and multiplexing gain by taking advantage of multiple antennas at the
transceivers. The basic topics about MIMO have been covered which include space time
coding, multiuser MIMO, MIMO network, and so on. The references about applications
of MIMO in cognitive radio network are also given. MIMO explores the spatial radio
resources to support spectrum access and spectrum sharing in cognitive radio network.
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9
Agile Transmission Techniques (II):
Orthogonal Frequency Division
Multiplexing

OFDM is a technique of digital data transmission based on multicarrier modulation
[68, 1097–1099]. The history of OFDM can be traced back to the middle 1960s
[1097, 1100–1103]. OFDM is the extension of the frequency division multiplexing
scheme. In frequency domain, though the signals of subchannels or subcarriers are
overlapped, they are orthogonal after demodulation. Hence, OFDM improves efficiency
of spectrum utilization compared to the frequency division scheme which assigns
nonoverlapping frequency bands to different signals [68].

OFDM is an effective tool to handle ISI without using equalization at the receiver. The
high-data-rate data stream is divided into many low-data-rate substreams and these sub-
streams are sent over many different subchannels [68]. The bandwidth of each subchannel
is much smaller than the total system bandwidth [68]. Meanwhile, the bandwidth of each
subchannel is less than the coherent bandwidth of the radio channel. Hence, the effect of
ISI on each sub-channel is small and flat fading can be assumed for each subchannel [68].

OFDM is the core technology in the current wireless and wired communications. OFDM
is widely used by 3GPP LTE, WLAN, WiMAX, digital TV [1104], power line commu-
nication, ADSL, VDSL, and HDSL [1105].

9.1 OFDM Implementation

OFDM can use DFT or FFT for efficient implementation. If N subcarriers are used in
OFDM, the continuous-time baseband OFDM signal can be expressed as

x(t) =
N−1∑
k=0

X[k] exp(j2πkt/T ), 0 ≤ t < T , (9.1)

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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340 Cognitive Radio Communications and Networking

where T is the time duration of one OFDM symbol and X[k] is the complex data symbol
assigned to the (k + 1)-th subcarrier with the central frequency of k

T
. The frequency space

of the adjacent subcarriers is 1
T

. N subcarriers are mutually orthogonal over T .
x(t) is sampled with sampling interval of T

N
. If x[n] = x(nT

N
), n = 1, 2, . . . , N − 1,

then the discrete-time OFDM signal is

x[n] =
N−1∑
k=0

X[k] exp

(
j2πkn

N

)
, 0 ≤ n ≤ N − 1, (9.2)

where Equation (9.2) can be implemented by IDFT/IFFT which means IDFT gener-
ates the time-domain OFDM symbol consisting of the sequence x, x[1], . . . , x[n − 1]
from a complex data symbol stream X, X[1], . . . , X[n − 1] which can be treated as the
frequency-domain data. The following discussion about OFDM implementation will be
based on the discrete-time model. DFT and IDFT operations are represented simply as

X[n] = DFT{x[n]} (9.3)

and

x[n] = IDFT{X[n]}. (9.4)

One property of DFT used in OFDM implementation is circular convolution in time
domain leads to multiplication in frequency domain [68]. The N-point circular convolution
of x[n] and h[n] is defined as [68]

y[n] = x[n] ⊗ h[n]

=
∑

k

h[k]x[n − k]N, (9.5)

where [n − k]N denotes n − k modulo N . x[n − k]N is a periodic version of x[n − k]
with period of N [68]. Thus,

Y [n] = DFT{y[n]}
= DFT{x[n] ⊗ h[n]}
= DFT{x[n]}DFT{h[n]}
= X[n]H [n], n = 0, 1, 2, . . . , N − 1. (9.6)

If h[n], 0 ≤ n ≤ L represents a discrete time channel impulse response, y[n], 0 ≤ n ≤
N can be expressed as [68]




y[N − 1]
y[N − 2]

...

y


 =




h h[1] · · · h[L] 0 · · · 0
0 h · · · h[L − 1] h[L] · · · 0
...

...
...

...
...

...
...

0 · · · 0 h[0] · · · h[L − 1] h[L]



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Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 341

×




x[N − 1]
x[N − 2]

...

x

x[−1]
x[−2]

...

x[−L]




+




n[N − 1]
n[N − 2]

...

n


 , (9.7)

where n, n[1], . . . , n[N − 1] are AWGNs.
In order to eliminate ISI from the previous symbol and explore the property of circular

convolution mentioned in Equation (9.6), a guard interval with cyclic prefix is exploited
[68]. Cyclic prefix adds prefix of a symbol using a repetition of the end. Thus, x[−1] =
x[N − 1], x[−2] = x[N − 2], . . . , x[−L] = x[N − L]. In this way, OFDM implemented
by IDFT and DFT can decompose ISI channel into N orthogonal subchannels [68].

9.2 Synchronization

One of the challenging problems in OFDM is synchronization [1106]. OFDM system is
very sensitive to synchronization errors, especially carrier frequency offsets [1107, 1108].
In OFDM system, there are four synchronizations involved:

• carrier frequency synchronization;
• sampling timing synchronization;
• sampling frequency synchronization;
• symbol synchronization or frame synchronization.

Carrier frequency offset can destroy the orthogonality among subcarriers and cause
intercarrier interference (ICI) which will greatly degrade the system performance. Thus,
carrier frequency synchronization tries to remove carrier frequency offset and the cor-
responding phase offset. Carrier frequency synchronization is usually performed in two
steps. The first step is coarse synchronization which usually reduces carrier frequency
offset to within one-half of the subcarrier spacing [1109, 1110]. Then, the second step is
the fine carrier synchronization which further estimates and reduces the residual carrier
frequency offset [1109, 1110]. Carrier frequency synchronization algorithms can be:

• time domain correlation algorithm based on training symbol;
• frequency domain correlation algorithm based on training symbol;
• ML estimator based on training symbol [1111];
• ML estimator based on cyclic prefix [1112, 1113];
• blind synchronization [1114, 1115].

For OFDM blind carrier offset estimation, the method called ESPRIT does not need
training symbols, pilot tones, or excess cyclic prefix [1114]. The inherent structure of
OFDM signals can be used to provide an accurate carrier frequency offset estimate [1114].
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342 Cognitive Radio Communications and Networking

Oversampling is exploited for blind estimation of OFDM carrier frequency offset [1115].
The intrinsic phase shift of neighboring sample points caused by carrier frequency offset
should be common among all subcarriers [1115]. Only a single OFDM symbol is required
to achieve reliable estimation which makes the blind method data efficient [1115]. The
second-order cyclostationarity of OFDM signals has been exploited for blind estimation of
symbol timing and carrier frequency offset [101]. A cyclic prefix is not needed necessarily
[101]. The similar idea has also been explored in [1116]. The blind estimator exploits
the second-order cyclostationarity of received signals and then uses the symbol-timing
and carrier frequency offset information appearing in the cyclic correlation [1116]. No
channel state information is required [1116].

A blind synchronizer based on SINR maximization for OFDM systems has been
developed in [1117]. Besides, the synchronization algorithms taking advantage of the
redundancy introduced by cyclic prefix are still treated as the blind algorithms. The joint
ML symbol timing and carrier frequency offset estimator has originally presented in
[1112]. Redundancy information included in cyclic prefix is utilized without additional
training symbols or pilot tones [1112]. Furthermore, a new class of blind cyclic-based
estimators for carrier frequency offset and symbol timing estimation have been devel-
oped in [1113]. A new likelihood function is derived for joint estimation [1113]. The
resulting probabilistic measure is used to develop three unbiased estimators, that is, ML
estimator, minimum variance unbiased estimator, and moment estimator [1113]. Virtual
carriers are used as intrinsic structure information of OFDM signals for blind estimation
of OFDM carrier frequency offset [1118–1120]. MUSIC-like estimation algorithm and
ML estimation are explored.

Sampling frequency offset can also cause ICI due to the loss of orthogonality between
the subcarriers. Pilot symbol, training symbol, or reference symbol can be used for
sampling timing synchronization and sampling frequency synchronization [1121, 1122].
Besides, a novel blind estimation algorithm for sampling clock offset based on second
order statistics of the received OFDM samples is devised in [1123], which can be used
successfully for noncooperative communications.

Joint synchronization can also be applied to OFDM systems [101, 1112, 1113, 1116,
1117, 1124–1126]. In this way, we do not need to do different synchronizations
separately. The different synchronizations are considered simultaneously.

Robust frequency synchronization for OFDM-based cognitive radio systems has been
discussed in [1127]. Carrier frequency offset is estimated in the presence of narrow-band
interference [1127]. The carrier frequency offset and interference power on each subcarrier
are jointly estimated through ML method [1127].

Carrier frequency synchronization and sampling frequency synchronization can reduce
ICI. Sphere decoding together with a new search strategy is developed to reduce ICI for
OFDM systems [1128]. The suppression of ICI in OFDM systems has also been mentioned
in [1129]. The time variations of the channel during one OFDM frame destroy the orthog-
onality of different subcarriers and result in power leakage among the subcarriers [1129].
A simple and efficient polynomial surface channel estimation technique is proposed to
obtain the necessary channel state information first [1129]. Based on the estimated channel
state information, a MMSE based OFDM detection technique is used to reduce the per-
formance degradation caused by ICI distortion [1129]. Iterative methods for cancellation
of ICI in OFDM Systems have been suggested in [1130]. Operator-perturbation technique
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Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 343

is used for the inversion of a linear system of equations [1130]. Furthermore, serial and
parallel interference cancellations are proposed to drastically reduce the error floor caused
by ICI [1130]. Similarly, an iterative method for frequency domain estimation and com-
pensation of ICI in OFDM systems has been presented in [1131]. There are two steps in
the proposed iterative method. Firstly, correlation between received signal and estimated
transmitted signal is used to estimate the channel matrix, and the second step estimates the
actual transmitted data by means of MMSE equalization [1131]. An iterative algorithm for
estimating multipath complex gains with ICI mitigation has also been proposed in [1132].
The ICI self-cancellation schemes have been analyzed in [1133–1139] which include:

• time domain windowing techniques;
• precoding techniques.

Similarly, two-path parallel cancellation schemes can also be used for ICI cancella-
tion [1140–1143]. Reducing ICI in OFDM systems by partial transmit sequence and
selected mapping has been proposed in [1144, 1145]. In partial transmit sequence, each
block of subcarriers is multiplied by a constant phase factor and these phase factors are
optimized to minimize the peak interference to carrier ratio [1144]. In selected mapping,
several independent OFDM symbols representing the same information are generated and
the OFDM symbol with lowest peak interference to carrier ratio is chosen for transmis-
sion [1144]. A novel ICI mitigation method for OFDM by taking advantage of a planar
extended Kalman filter has been developed in [1146]. Kalman filter algorithm can esti-
mate and track the frequency offset caused by Doppler in high mobility [1146, 1147]. The
Doppler frequency drift information can be updated at each step to get a more accurate
result [1146]. Estimation and suppression of ICI due to phase noise in OFDM systems
have been discussed in [1148–1151].

9.3 Channel Estimation

Channel estimation in wireless communication system tries to find the time domain char-
acteristics and the frequency domain characteristics of radio channel. For OFDM system,
channel estimation identifies the channel gains for different subchannels at different time
slots which can be viewed as a two-dimensional lattice in a time-frequency plane [1152].
The two main challenges for channel estimation are:

• how to design pilot symbol pattern;
• how to design an estimator with both low complexity and good channel tracking ability.

Pilot information is the transmitted data or signals known at the receiver. Pilot infor-
mation can be used as a reference for channel estimation. Locations, powers, and phases
of pilot symbols play important roles in the channel estimation [1153]. The basic pilot
patterns are [1152]:

• block-type pilot symbol pattern;
• comb-type pilot symbol pattern [1154, 1155].
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344 Cognitive Radio Communications and Networking

Block-type pilot symbol patterns are used in slow fading wireless channel. The pilot
symbols are inserted into all subcarriers of one OFDM symbol within a specific period.
There is no need for interpolation in frequency domain. The estimated channel state
will be used to decode the received data inside the block until the next OFDM symbol
with pilot information arrives [1152]. Comb-type pilot symbol pattern are mostly used in
fast fading wireless channel. Pilot symbols are inserted into certain subcarriers of every
OFDM symbol. The interpolation is needed in frequency domain. The one-dimensional
interpolation methods can be [1152]:

• linear interpolation;
• second-order interpolation;
• low-pass interpolation;
• spline cubic interpolation.

The basic estimators for channel estimation include [1152, 1156–1158]:

• least square estimator;
• MMSE estimator;
• ML estimator;
• parametric channel modeling estimator;
• filter-based estimator.

Two-dimensional interpolation can also be performed. The optimal solution in terms of
MMSE is two-dimensional Wiener filter interpolation [1152]. However, two-dimensional
interpolation requires a huge computational complexity. Hence, two-dimensional interpo-
lation can be simplified to two concatenated one-dimensional interpolations in frequency
domain and time domain sequentially [1152]. In this way, the system complexity is
reduced.

In OFDM-based cognitive radio, due to the noncontiguous positions of the available
subcarriers for the secondary users, the conventional pilot design methods are no longer
effective [1159]. To obtain satisfactory channel estimation performance, a shift pilot
scheme is proposed in [1160–1162]. After deactivating some of pilot tones according
to the spectrum sensing result, the shift pilot scheme chooses some nearest activated data
subcarriers as the new pilot tones. However, the positions of pilot tones are not opti-
mized [1159]. An efficient pilot design method for OFDM-based cognitive radio systems
has been proposed in [1159]. The pilot design including placement is formulated as a
optimization problem. Besides, OFDM pilot design for channel estimation with null edge
subcarriers has been presented in [1163]. Null subcarriers on band edges can reduce adja-
cent channel interference [1163]. An arbitrary-order polynomial parameterization of the
pilot subcarrier indices is exploited [1163].

Blind channel estimation [1164–1166] and semiblind channel estimation [1167–1169]
are also used in the OFDM system. Joint channel estimation and synchronization in OFDM
systems can be found in [1170–1175].
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Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 345

9.4 Peak Power Problem

One OFDM symbol is the superposition of many independent modulated subcarriers. If
this addition is executed coherently, the instantaneous power of OFDM signal will be
big, which leads to high PAPR. High PAPR will reduce the efficiency of linear power
amplifier at the transmitter. If the power is beyond the linear region of power amplifier,
the OFDM signal will be distorted. Meanwhile, high PAPR require thigh resolution ADC
with high dynamic range at the receiver [68]. Hence, we need to reduce PAPR for OFDM
communication system. The PAPR of a continuous-time signal is [68]

PAPR = max{|x(t)|2}
E{|x(t)|2} (9.8)

and the counterpart of a discrete-time signal is

PAPR = max{|x[n]|2}
E{|x[n]|2} . (9.9)

There are many ways to reduce PAPR of OFDM signals [68, 1176–1178]:

• clipping and windowing [1179, 1180];
• adaptive symbol selection scheme [1179];
• selective mapping [1181–1183];
• partial transmission sequence [1183–1187];
• phase optimization [1188];
• nonlinear companding transformation [1189];
• special coding techniques [1190];
• constellation shaping [1191, 1192];
• pulse shaping [1193].

9.5 Adaptive Transmission

Adaptive transmission can adapt the coding and modulation scheme and other signal
and protocol parameters, for example, transmitted power, signaling bandwidth based on
prevailing channel conditions in order to increase spectrum efficiency. Adaptive transmis-
sion requires some channel state information at the transmitter. There are various metrics
which can be used as channel state information, for example, SNR, SINR, BER, and
packet error rate [1194]. Adaptive transmission can be exploited over a fading channel
to improve the energy efficiency and increase the data rate [1195]. Meanwhile, adaptive
transmission can modify transmission scheme according to the radio interference.

Adaptive transmission can be applied to MIMO system where there are multiple spatial
subchannels with different channel gains. We can dynamically determine the coding and
modulation scheme as well as transmitted power for each subchannel. Adaptive mod-
ulation and coding in MIMO WiMAX with limited feedback has been experimentally
evaluated in [1196]. The condition number of the spatial correlation matrix is used as an
indicator of the spatial selectivity of the MIMO channel for adaptive MIMO transmission
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346 Cognitive Radio Communications and Networking

[1197]. The adaptive algorithm selects the MIMO transmission method, among spatial
multiplexing, double space-time transmit diversity, and beamforming, to enhance the
spectral efficiency for a target error rate performance and transmitted power [1197].

Adaptive transmission can be exploited in OFDM system where there are multiple par-
allel subchannels in frequency domain. The independent coding and modulation scheme
will be selected for each subchannel [1194]. High-level modulation and high-rate coding
will be used on subchannel with good channel condition [1194]. In order to support adap-
tive transmission, adaptation threshold and adaptation rate should be determined [1194].
Meanwhile, feedback overhead and computation load should also be taken into account
when adaptive transmission is explored. For example, adaptive transmission based on
sub-band instead of subcarrier for OFDM system can reduce the demanding overhead
[1194]. Adaptive transmission for OFDM system can be found in [1198–1201].

Take adaptive modulation as an example to show how adaptive transmission works
in OFDM system. Assume there are N subchannels without consideration of ISI and
ICI. The power allocated to the n-th subchannel is Ptn. The number of bits transmitted
over the n-th subchannel is bn which corresponds to the modulation scheme. Based on
the transmitted power, the gain of subchannel, and the modulation scheme, BER can be
obtained. BER for the n-th sub-channel is Pen. If we would like to minimize the total
transmitted power given the constraints of data rate and BER, the optimization problem
of adaptive modulation with bit loading can be expressed as

minimize∑N

n−1 Ptn

subject to∑N

n−1 bn = btarget

Pen ≤ Petarget, n = 1, 2, . . . , N,

(9.10)

where btarget is the minimum number of bits transmitted over one OFDM symbol and
Petarget is the maximum tolerable BER. If we would like to maximize the data rate given
the constraints of transmitted power and BER, the corresponding optimization problem
is,

maximize∑N

n=1 bn

subject to∑N

n=1 Ptn ≤ Pt target

Pen ≤ Petarget, n = 1, 2, . . . , N

(9.11)

where Pt target is the maximum total transmitted power for one OFDM symbol.
There are three basic algorithms to solve the optimization problem for adaptive

modulation:

• Hughes-Hartogs algorithm [1202, 1203];
• Chow algorithm;
• Fischer algorithm [1204, 1205].

The Hughes-Hartogs algorithm is a greedy algorithm based on gradient allocation. Every
incremental power to transmit one additional bit over each subchannels is compared.
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Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 347

One bit will be added to the subchannel with the least incremental power. The whole
procedure is repeated until btarget is achieved. The Chow algorithm loads the bit based on
the capacity of subchannel while the Fischer algorithm allocates bit from the minimization
of BER.

Generally, adaptive transmission also includes dynamic radio resource allocation for
various OFDM systems [506, 1206, 1207].

9.6 Spectrum Shaping

Due to the easy power control, adaptive transmission, and pulse shaping of each subcarrier
in OFDM signal, spectrum shaping can be performed for OFDM-based broadband wireless
communication. Spectrum shaping plays an important role for interference management,
DSA, and so on. Thus, OFDM is the key technology used in cognitive radio network for
spectrum access and spectrum sharing.

Spectrum shaping of OFDM-based cognitive radio signals has been presented in [1208].
Modulated OFDM sub-carriers suffer from high side-lobes which result in adjacent chan-
nel interference [1208]. Hence, active cancellation carrier and raised cosine windowing
are used to reduce adjacent channel interference [1208]. Sidelobe suppression in OFDM-
based spectrum sharing systems using adaptive symbol transition has been proposed in
[1209]. An extension is added to OFDM symbol that is calculated using the optimiza-
tion method to minimize adjacent channel interference [1209]. Similarly, reduction of
out-of-band radiation in OFDM systems by insertion of cancellation carriers has been
investigated in [1210]. Spectral sculpting for OFDM-based spectrum access has been
studied in [1211]. The idea is also to add a cancellation signal to the OFDM signal to
cancel interference in the target spectrum band caused by data tones, so that interference
received by primary user can be limited [1211]. The researches about active interference
cancellation can also be found in [1212–1214]. Dynamic spectral shaping has been used
in cognitive radio to avoid spectral bands used by licensed users and maintain specified
target SINR at the receiver of cognitive radio [1215].

NC-OFDM can be used for spectrum shaping in cognitive radio by deactivating subcar-
riers located in the spectrum band occupied by primary user. An efficient implementation
of NC-OFDM transceivers for cognitive radio has been presented in [539]. The main idea
is to prune the FFT efficiently and quickly [539]. Similarly, low-power FFT design for
NC-OFDM in cognitive radio systems has been introduced in [1216]. The resource alloca-
tion in NC-OFDM based cognitive radios can be found in [1217]. Portfolio optimization
is used to achieve QoS maintenance [1217].

9.7 Orthogonal Frequency Division Multiple Access

OFDMA is the multiple access technique based on the popular OFDM digital modulation
scheme [1218]. Different subcarriers or different subsets/groups of subcarriers are chosen
to different users. Multiple users can be served simultaneously. OFDMA is a promis-
ing technique to improve the transmission reliability and efficiency of multiuser wireless
communications [1219]. The fundamental relationship between multiplexing and diversity
in OFDMA systems has been investigation in [1219]. The proposed H -matching method
achieves the optimal outage performance at a given target multiplexing gain, which shows
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348 Cognitive Radio Communications and Networking

that the optimal diversity multiplexing tradeoff can be achieved by only allocating subcar-
riers [1219]. For green communication, energy efficiency and spectrum efficiency tradeoff
in downlink OFDMA networks has been discussed in [1220]. Under the general trade-
off framework between energy efficiency and spectrum efficiency, energy efficiency is
strictly quasiconcave in spectrum efficiency [1220]. Uplink synchronization in OFDMA
spectrum-sharing systems has been considered in [1221]. The frequency and timing errors
of multiple unsynchronized users are estimated [1221].

Optimal radio resource allocation can improve the performances of OFDMA downlink
systems [1222]. Weighted sum rate maximization and weighted sum power minimization
problems are considered with the assumption that each tone is taken by at most one user
[1222]. Lagrange dual decomposition method is exploited due to the non-convex property
of the original resource allocation problems [1222]. Resource allocation for OFDMA-
based cognitive radio network with application to H.264 scalable video transmission has
been presented in [1223]. Minimum and maximum rate constraints are considered for the
transmission of scalable video sequences [1223]. Integer programming is used to deter-
mine how to allocate radio resources to different cognitive radio users with consideration
of interference tolerances of primary users [1223]. Radio resource allocation in OFDMA
cognitive radio systems has also been considered in [1224]. A novel three-step cross-layer
optimization of OFDMA radio resource allocation has been developed to keep fairness
among users and maximize total capacity [1224]. For multicast service in cognitive radio
network, taking the maximization of the expected sum rate of cognitive multicast groups as
the design objective, an efficient joint subcarrier and power allocation scheme is proposed
in [1225].

Joint cross-layer scheduling and spectrum sensing have been explored in the downlink
transmission of an OFDMA-based cognitive radio system [1226]. The power allocation
and the subcarrier assignment across the secondary users are adjusted to optimize a sys-
tem utility [1226]. Meanwhile, distributed implementation for the cross-layer sensing and
scheduling design is given using the primal-dual decomposition approach [1226]. Dis-
tributed resource allocation for OFDMA-based relay networks has been investigated in
[1227]. The data rate and user fairness can be improved by cognitive radio techniques
used at the relay nodes [1227]. Iterative waterfilling and its variants are exploited for
resource allocation [1227]. A novel subchannel and power allocation scheme for multi-
cell OFDMA networks with cognitive radio functionality has been proposed in [1228].
Intercell interference together with the interference to the primary user is considered
[1228]. Dual decomposition method is exploited to derive a distributed algorithm [1228].
Similarly, coexistence and optimization of a multicell OFDMA-based cognitive radio
network which is overlaid with a multicell primary radio network have been studied in
[1229]. A Lagrange duality based technique is used to optimize the weighted sum rate of
secondary users over multiple cells [1229]. Interference-aware radio resource allocation
in OFDMA-based cognitive radio networks has been presented in [1230]. Out-of-band
emissions from cognitive radio and the interference that arises as a result of imperfect
spectrum sensing are explicitly considered [1230]. The resource allocation problem is for-
mulated as a mixed-integer nonlinear programming problem [1230]. In order to combat a
passive multi-antenna eavesdropper and the effects of imperfect channel state information
at the transmitter, secure resource allocation and scheduling for OFDMA decode-and-
forward relay networks have been explored [1231]. The packet data rate, secrecy data
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Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 349

rate, power, and subcarrier allocation policies are optimized to maximize the average
secrecy outage capacity [1231]. Distributed energy efficient spectrum access in cogni-
tive radio ad hoc networks has been considered in [1232]. A fully distributed subcarrier
selection and power allocation algorithm is proposed by combining an unconstrained opti-
mization method with a constrained partitioning procedure [1232]. Distributed resource
allocation for cognitive radio ad hoc networks with spectrum-sharing constraints has also
been discussed in [1233]. A dual decomposition framework is explored for the realization
of distributed solutions [1233].

A novel spectrum trading model for OFDMA-based cognitive radio systems has been
introduced in [1234]. Primary users can trade their spare subcarriers with secondary users
for better utilities [1234]. Pricing policies and market equilibrium are also considered
[1234]. Similarly, joint pricing and resource allocation for OFDMA-based cognitive radio
systems has been presented in [1235]. The secondary users try to maximize their capacity
under three different constraints: total transmitted power, a given budget for sharing
subchannels, and tolerable interference to the primary users [1235]. Nash bargaining is
explored for efficient resource allocation with flexible channel cooperation in OFDMA
cognitive radio networks [1236]. In cooperative cognitive radio networks, secondary users
cooperatively relay data for primary users in order to access the spectrum [1236]. A novel
design of flexible channel cooperation is proposed, which allows secondary users to freely
optimize the utilization of channels for transmitting data of primary users along with their
own data [1236].

9.8 MIMO OFDM

MIMO and OFDM can be exploited together for high-capacity, high-reliability wireless
connectivity [1237–1241].

The researches about synchronization for MIMO OFDM system can be found in
[1242–1244]. Channel estimation for MIMO OFDM system has been discussed in
[1245–1252]. Adaptive transmission can also be extended to MIMO OFDM system
[1253–1255]. Various radio resource allocation and management strategies for MIMO
OFDMA systems have also been developed [1256–1262] to optimize the performance
of the multiuser system.

9.9 OFDM Cognitive Radio Network

The underlying sensing and spectrum shaping capabilities of OFDM, together with its
flexibility and adaptivity, probably make it the best transmission technology for cognitive
radio network to perform DSA and spectrum sharing [1263, 1264].

Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio
systems have been presented in [1265]. Furthermore, adaptive power loading with statis-
tical interference constraint is developed in [1266]. Cognitive radio transmitter does not
require the instantaneous channel quality feedback from the receivers of primary users
[1266]. An efficient power loading scheme is also studied in [1267]. Cognitive radios may
use both active and nonactive bands of primary users as long as the generated interfer-
ence is within the interference temperature limits of primary users [1267]. A risk-return
model is explored to perform energy-efficient power allocation in OFDM-based cognitive
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350 Cognitive Radio Communications and Networking

radio systems [1268]. Based on a risk-return model, a convex optimization problem is
formulated [1268]. A fast power allocation algorithm is mentioned in [1269]. Resource
allocation in an OFDM-based cognitive radio system has been formulated as a multidi-
mensional knapsack problem with consideration of sub-carrier, bit, and power [1270]. A
low-complexity, greedy, max-min algorithm is proposed to give the near-optimal solution
[1270]. Cross-layer resource allocation is also explored for multiuser OFDM-based cog-
nitive radio systems with consideration of both real-time and non-real-time applications
[1271]. Due to the dynamic nature of the available spectrum, two challenges, that is,
problem feasibility and false urgency, are explicitly addressed [1271].

A distributed resource allocation algorithm is proposed for OFDM cognitive radio
systems to provide good fairness among users [1272]. Queue-aware subchannel and power
allocation for downlink OFDM-based cognitive radio networks has been investigated
in [1273]. Secondary users with small queue backlogs are only given sufficient rates
to support their demands and the remaining radio resources are shared among highly
backlogged users [1273]. The work in [1273] is extended to downlink OFDMA cognitive
radio networks in [1274]. The achievable rate of an OFDM-based cognitive radio system
sharing the spectrum with an OFMDA-based primary system has been studied in [1275].
Rate loss constraint is used for primary transmission protection [1275]. Relay and power
allocation schemes for OFDM-based cognitive radio systems have been developed in
[1276]. The capacity of cognitive radio using relay is optimized while total transmitted
power is bounded and the interference introduced to the primary user is kept within a
prescribed threshold [1276]. The corresponding optimization problem is a mixed-integer
problem, which is NP-hard [1276].

Robust transmit power control for cognitive radio network based on OFDM technology
has been discussed in [397]. Robust optimization problem for multiuser dynamic power
control is given [397]. Robust optimization can guarantee the acceptable performance
under the worst case conditions. Robust optimization is a conservative approach, but
it can provide seamless communication [397]. Due to the dynamic nature of cognitive
radio network and the delay introduced by the feedback channel, it is hard to obtain
the accurate and real-time information for interference [397]. Hence, robust optimization
gives us a way to address this issue by taking into account the worst case uncertainty in
the interference and noise [397]. Multiuser radio resource allocation is a game problem.
Robust iterative water filling algorithm is exploited to solve the robust game [397].

OFDM can be exploited together with MIMO to support wireless transmission in cogni-
tive radio network. The researches about MIMO-OFDM based cognitive radio network can
be found in [1277–1283]. Most of these efforts are related to radio resource management.

9.10 Summary

OFDM transmission techniques have been presented in this chapter. The critical issues
in OFDM systems including OFDM implementation, synchronization, ICI, channel esti-
mation, peak power problem, adaptive transmission, spectrum shaping, OFDMA, and so
on have been discussed. OFDM is the basic transmission technique used in cognitive
radio network. DSA and spectrum sharing can be well supported by OFDM.
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10
Game Theory

10.1 Basic Concepts of Games

In cognitive radio networks, there are many secondary users, as well as possible attackers;
each has its own action and payoff and can be considered as a rational agent, as long
as secondary users are usually equipped with powerful computing devices. Hence, it is
natural to introduce game theory, which traces back to early 1900s [1284] and analyzes
the possible conflict or collaboration and the corresponding strategies of rational players,
to study the interactions among the agents in the cognitive radio network. In this section,
we introduce the basic concepts in game theory. There are many types of games, such as
the strategic-form games, repeated games, stochastic games, and differential games, etc.
A comprehensive introduction of game theory can be found in [1285]. A more modern
introduction to game theory, from the computer science perspective, can be found in
[1286]. Games in dynamical systems, such as Markov processes or continuous time sys-
tems, are discussed in [1287] and [1288]. As a preliminary introduction to game theory,
we focus on the simplest strategic-form game in this book, which provides a starting point
for studying more complicated games, and then provide a brief introduction to Bayesian
games and stochastic games which are carried out in multiple stages.

10.1.1 Elements of Games

For simplicity, we assume that there are two players in the game. It is not difficult to
extend the two-player game to the general case with multiple players. Before we step
into the formal formulation of a game, we first explain a famous example of game, the
prisoner’s dilemma, which will be used as the example throughout the introduction. In
this game, there are two prisoners being accused for a crime which can be convicted only
when one or more confesses. If one prisoner confesses while the other does not, the latter
one will be sentenced to 6 years while the former can go free. If both confess, both will
be sentenced to 5 years. If both do not confess, they are both sentenced to 1 year. As will
be seen, this game will yield a very surprising result.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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352 Cognitive Radio Communications and Networking

In a two-player strategic-form game, we assume that each player has the following
elements:

• Action: Each player can take a finite number of actions. We denote by Ai

= {ai1, . . . , aini
}, where aij stands for an action and ni is the total number of actions,

the set of actions for player i. Take the prisoner’s dilemma as an example, we have
a11 = a21 = confess and a12 = a22 =not confess. Obviously n1 = n2 = 1.

• Strategy: Each player can choose the action in a random manner. We denote by πij

the probability that player i chooses action j . The probabilities of action are called
strategies, denoted by π i for player i. When there exists a j such that πij = 1, we call
it pure strategy, that is, player i only chooses action j ; otherwise, we call it mixed
strategy since the player has more than one options. In the example of prisoner’s
dilemma, a strategy of prisoner 1 is to confessor with probability 0.6 and not to confess
with probability 0.4. The prisoner can flip a asymmetric coin to make the decision.

• Payoff: After the players choose their actions, they will receive payoffs which are
functions of the actions. We denote by ri(a1m, a2n) the payoff of player i if the actions
are a1m and a2n. For example, the prisoner receives payoff −6 if he chooses not to
confessor but the other prisoner chooses to confess. The payoffs can be represented by
the following table: (

(−1, −1) (−6, 0)

(0, −6) (−5, −5)

)
, (10.1)

where the rows and columns represent the actions of players 1 and 2, respectively. One
special type of the payoff is r1(a1m, a2n) = −r2(a1m, a2n), that is, the sum of the payoffs
of the two players is 0. We call it zero-sum game. Usually, we use it to model the game
between two players with completely conflicting interest. In zero-sum games, we need
to specify only the payoff of one player. The payoff of the other player is obtained
correspondingly. Obviously, the game of the two prisoners is not a zero-sum one.

10.1.2 Nash Equilibrium: Definition and Existence

Now we discuss the Nash equilibrium of the game, which is the key concept in game
theory and a corner stone of modern economics. It was named after the legendary math-
ematician John. F. Nash, Jr [1289]. First, the expected payoff the each player is given by

R̄i(π1,π2) =
n1∑

j=1

n2∑
k=1

π1jπ2kri(a1j , a2k), i = 1, 2. (10.2)

We assume that both players are rational. Hence, they want to choose strategies to
maximize their own expected payoffs. However, when player 1 fixes a strategy, player 2
may change its strategy such that the expected payoff of player 1 is reduced. Hence,
each player must consider the possible strategy of each other and make corresponding
decisions. So how can they decide their strategy in such a bilateral decision scenario? As
we will see, the players can only choose strategies at Nash equilibrium if they are rational.
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Game Theory 353

We call a pair of strategy, denoted by π∗
1 and π∗

2 a Nash equilibrium if{
R̄1(π

∗
1,π

∗
2) ≥ R̄1(π1,π

∗
2), ∀π1

R̄2(π
∗
1,π

∗
2) ≥ R̄2(π

∗
1, π

∗
2), ∀π2

. (10.3)

An intuitive explanation of (10.3) is that, at the Nash equilibrium, if one players changes
its own strategy unilaterally, it will receive less expected payoff. Hence, at the Nash
equilibrium, both players do not want to change their strategies; thus the game reaches
an equilibrium.

We can examine this concept using the example of prisoner’s dilemma. We examine
only the pure strategies now and will check mixed strategies in another example.
Obviously, the pure strategies of (confess, confess) is not a Nash equilibrium since, if
player 1 changes his action to not confess, he can improve his payoff from −1 to 0,
which contradicts the definition of Nash equilibrium. Similarly, the pure strategies of
(confess, not confess) is also not a Nash equilibrium since the prisoner who takes the
action of not confess can switch his action to confess such that his payoff is improve
from −6 to −5. Finally, the pure strategy (confess, confess) is a Nash equilibrium since,
if a prisoner changes to not confess, his payoff will be decreased from −5 to −6. The
analysis shows that both prisoners will choose not to confess and then be sentenced to
5 years, which is a much worse result than the situation in which both do not confess
(both sentenced to 1 year).

We have seen that, in the example of prisoner’s dilemma, there is a pure strategy Nash
equilibrium. However, not every game has a pure strategy Nash equilibrium. Consider
the following zero-sum game with two actions for each player and the following payoff
table: (

(2, −2) (1, −1)

(1, −1) (3, −3)

)
. (10.4)

We can verify that all four possible combinations of pure strategies are not Nash
equilibrium. For example, when the pure strategies are (a11, a21), the payoffs are 2 and
−2. Then, player 2 desires to switch to action a22 such that his payoff will be increased
from −2 to −1. Then, does this mean that this game has no Nash equilibrium? No. We
have not checked the mixed strategies yet. Actually, it is easy to verify that the following
mixed strategy: {

π11 = 2
3 , π12 = 1

3

π21 = 2
3 , π22 = 1

3

. (10.5)

The verification is left as an exercise (Problem 1).
Now, we have examined the Nash equilibria of two games. A question arises naturally:

does every strategy-form game have Nash equilibrium? The answer is yes: each finite1

strategic game has at least one Nash equilibrium. A rigorous proof can be found in
Section 3.12 of [1285]. We omit it here due to the limited length.

1 Here finite means that the set of actions is finite.
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Output all
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Figure 10.1 Procedure of computing Nash equilibrium.

10.1.3 Nash Equilibrium: Computation

Once we solved the problem of the existence of Nash equilibrium, the next question is
how to find the Nash equilibrium. A detailed rigorous discussion about the computational
complexity of finding Nash equilibrium can be found in Chapter 2 of [1286]. In this
book, we provide some working techniques for computing Nash equilibrium, which is
illustrated in Figure 10.1. We first consider the general case of payoffs. We denote by Si

the set of actions that player i will take with nonzero probabilities. Then, if there exists a
Nash equilibrium (π1, π2) over the action sets S1 and S2, that is, at the Nash equilibrium
both players will confine their actions within these two sets, there must exist numbers w1
and w2 such that the following conditions are satisfied:



∑
y∈S2

π2yr1(x, y) = w1, x ∈ S1∑
x∈S1

π1xr2(x, y) = w2, y ∈ S2

πij = 0, i = 1, 2, j /∈ Si∑
j∈Si

πij = 1, i = 1, 2

. (10.6)

It is quite easy to understand the last two equations since they are simply the definition
of Si and the normalization condition of probability. The first two equations are more
essential to the Nash equilibrium. An intuitive explanation for the first equation is that, at
the Nash equilibrium, the expected payoff of taking an action x, namely

∑
y∈S2

π2yr1(x, y),
is the same as that of taking any other action in S1. Otherwise, say player 1 receives more
expected payoff when taking action 1, it will put more probability to action 1, thus
breaking the Nash equilibrium. So is the explanation for the second equation. By solving
the above linear equations, we can obtain the strategies at the Nash equilibrium, which is
quite straightforward. The real challenges is how to choose sets S1 and S2. Unfortunately,
there is no systematic approach to find S1 and S2. One approach is to exhaustively search
all possible combinations of S1 and S2. In some cases, we can also incorporate some a
priori information about the Nash equilibrium.

We use the game with payoffs defined in (10.3) to illustrate the computation of Nash
equilibrium. First, we assume S1 = {a11, a12} and S2 = {a21, a22}, that is, both players will
take each action with nonzero probability. Then, we have{

2π21 + (1 − π21) = π21 + 3(1 − π21)

−2π11 − (1 − π11) = −π11 − 3(1 − π11)
, (10.7)
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according to the first two equations in (10.6). Note that the last condition in (10.6) has
been implicitly incorporated since we assume π12 = 1 − π11 and π22 = 1 − π21. Solving
the equations results in π11 = 1/3 and π21 = 1/3.

We can also take the Prisoner’s dilemma as another example. First, we assume S1 =
{a11, a12} and S2 = {a21, a22}. Then, according to the conditions in (10.6), we have{ −π21 − 6(1 − π21) = −5(1 − π21)

−π11 − 6(1 − π11) = −5(1 − π11)
. (10.8)

Obviously, there is no solution to these equations. Hence, the assumption that S1 =
{a11, a12} and S2 = {a21, a22} is incorrect. Hence, we should check other possible com-
binations of S1 and S2. Finally, we will find that (confess, confess) is the only Nash
equilibrium.

10.1.4 Nash Equilibrium: Zero-Sum Games

In the previous discussions on the Nash equilibrium, the payoffs are of general form. As
we have introduced, zero-sum game is an important type of games. The Nash equilibrium
of zero-sum game has a special structure which is worthy of special introduction. It
has been shown that the Nash Equilibrium of a zero-sum game, denoted by (π∗

1, π
∗
2), is

given by {
π∗

1 = maxπ1
minπ2

R1(π1, π2)

π∗
2 = minπ2

maxπ1
R1(π1, π2)

. (10.9)

The above equations are very intuitive. At the Nash equilibrium, player 1 wants to
maximize the expected payoff minimized by player 2, while player 2 wants to minimize the
expected payoff maximized by player 1. Such a maxmin and minimax structure embodies
the conflicting nature of zero-sum game. We call the maxmin value the value of the
zero-sum game.

10.1.5 Nash Equilibrium: Bayesian Case

In the previous discussions, we assume that the players know the payoffs of each other
perfectly. However, in many cases, this assumption may not be true. As will be discussed,
in the collaborative spectrum sensing, a secondary user may not be sure about the trust-
worthiness of a collaborator: it could be an honest collaborator, or a malicious attacker.
For the two different possibilities, the other player may have different payoffs. When the
collaborator is an attacker (honest secondary user), it received positive (negative) payoff
when the spectrum sensing fails. In this case, we say the game has incomplete information.

To better describe the game, we define the type of each player, denoted by ti for
player i, and denote by Ti the set of possible types. For example, the collaborator in
the collaborative spectrum sensing may have two types: honest or malicious. Each type
means a set of payoffs. The payoff of player i is not only determined by the actions of
both players but also its type. Hence, the payoff of player is given by ri(ti , a1, a2).

The players have conjectures on the type of each other. We denote by pi(t−i |ti) the
player i’s conjecture on the probability that the other player (here −i means the player
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356 Cognitive Radio Communications and Networking

other than player i) has type t−i , when player i’s own type is ti . We assume that the
probabilities {pi(t−i |ti)}i,ti ,t−i

are perfectly known to both players. The strategy of each
player is also dependent on its own type. Take the collaborative spectrum sensing as an
example, a malicious collaborator will be more likely to send out a false report while an
honest collaborator always sends its own observation. Hence, the strategy can be written
as π i (·|ti). We denote by π i = {π i (·|ti)}ti∈Ti

. Then, when player i has type j , its expected
payoff will be

R̄i(π1, π2|ti) =
∑

t−i∈T−i

pi(t−i |ti)
n1∑

j=1

n2∑
k=1

π1j (a1j |t1)π2k(a2k|t2)ri(a1j , a2k). (10.10)

In contrast to the strategic form game with perfect information, the players with imper-
fect information must consider the different possible types of the other player, as the type
of the opponent can affects its payoff.

For the Bayesian game, we can define a Bayesian equilibrium, in which for every player
i and every type ti of itself, the following equation is satisfied:{

π∗
1(·|t1) = arg maxπ R̄1(π ,π∗

2|t1)
π∗

2(·|t2) = arg maxπ R̄2(π
∗
1, π |t2) . (10.11)

Similarly to the Nash equilibrium, at the Bayesian equilibrium, unilaterally changing the
strategy does not increase the expected payoff according to the belief on the opponent’s
type. Obviously the computation of Bayesian equilibrium is more complicated.

10.1.6 Nash Equilibrium: Stochastic Games

In strategic-form games and Bayesian games, the game lasts for only one snapshot. How-
ever, in many problems, the game may last for many stages. Moreover, there may exists a
system state evolving with time (usually impacted by the actions of both players) and the
payoffs are dependent on the system state. For example, in cognitive radio networks, the
queue lengths can be considered as system state. The payoff of each secondary user may
be dependent on the system state. For example, it may be more important for a secondary
user with more packets in its queue to access the spectrum than for a secondary user
with less packets. The evolution of queue lengths is also dependent on the actions taken
by the secondary users, namely the channels to access. We can such multistage and state
dependent games stochastic games . Note that a stochastic game can be considered as an
extension of one-stage games to multiple-stage ones. Meanwhile, we can also consider
it as an extension from the one-decider optimization problems discussed in Chapter 8 to
the case of multiple rational deciders.

To describe stochastic games, in addition to the elements defined for strategic-form
games, we have the following elements:

• System State: For simplicity, we assume that there are finitely many system states,
denoted by s1, . . . , sM . The set of possible states is denoted by S.

• State Transitions: We assume that the state transitions are Markovian; that is, the state
transition is dependent on only the current system state and the players’ actions. We
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denote by Q(sm|sn, a1, a2) the probability that the system state transits from sn to sm

when the players’ actions are a1 and a2, respectively.
• Payoff: In each stage, each player receives some payoff which is determined by the

actions and current system state. We denote by ri(a1, a2, sm) the payoff of player i

when the actions are a1 and a2, and the system state is sm. Then, the total payoff is
accumulated through the stages. There are two possible definitions for the total payoff.
One is the discounted sum of rewards, which is given by

Ri =
∞∑
t=0

βtri(a1(t), a2(t), sm(t)), (10.12)

where 0 < β < 1 is a discounting factor. The other definition of total payoff is the
average one, which is given by

Ri = lim
T →∞

1

T

T∑
t=0

ri(a1(t), a2(t), sm(t)). (10.13)

For simplicity, we consider only the discounted sum in (10.12) due to the simplicity
of analysis. The analysis for the average payoff is much more complicated, which can
be found in [1288].

• State Dependent Strategy: Now the strategy of each player should be dependent on the
current system state since it needs to consider the payoff subject to the current state as
well as the future system state evolution. We denote by πi(·|s) the strategy of player i

when the current system state is s and by π i the set {πi(·|s)}i .

For the stochastic game, we define the Nash equilibrium as the strategy pair π∗
1 and

π∗
2 such that {

E[R1](π1, π
∗
2) ≤ E[R1](π∗

1, π
∗
2)

E[R2](π∗
1,π2) ≤ E[R2](π∗

1, π
∗
2)

. (10.14)

Again, at the Nash equilibrium, unilaterally changing the strategy does not increase the
expected payoff. The only difference from the one-stage game is that the stochastic game
needs to consider the rewards along infinitely many stages.

Next we will study the Nash equilibrium of stochastic games. For simplicity of analysis,
we assume that the game is a zero-rum one, namely r2 = −r1. The discussion of general-
sum games can be found in [1288]. First, we define matrices R(s), ∀s ∈ S. For a given
system state s, R(s) contains the payoffs of player 1 with respect to different action pairs,
namely

(R(s))mn = r1(s, a1m, a2n). (10.15)

Since we consider only zero-sum games, the payoff information for each state can
be summarized in a matrix. Then, we define a value vector v, each element of which
corresponds to the expected payoff of a state. For example, v1 is the expected future
payoff of player 1 when the current state is s11. Based on the definitions of R(s) and v,
we define another matrix R̃(s, v) as

(R̃(s, v))mn = r(s, a1m, a2n) + β
∑
s′∈S

p(s ′|s, a1m, a2n)v(s ′), (10.16)
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358 Cognitive Radio Communications and Networking

where v(s ′) is the element of v corresponding to state s ′. Readers who have read Chapter 8
carefully can feel familiar with (10.16). Yes, it is very similar to the Bellman’s equation
for dynamic programming. We can take a closer look at the two terms on the right hand
side of (10.16): the first term is the instantaneous payoff of player 1 when the actions are
a1m and a2n; the second term is the expected payoff in the future since all possible state
transitions are considered and v(s ′) means the future payoff when the next system state
is s ′. Obviously, the left hand side of (10.16) is the expected payoff when the actions are
a1m and a2n, and the current system state is s.

Obviously, R is known since the instantaneous payoffs are assumed to be known. If
v is known, it is also easy to obtain R̃. However, v is still unknown. Without v, we are
unable to evaluate the future rewards when certain actions are taken. Fortunately, Shapley
showed that the value vector v can be determined by R̃ via the following equation [1290]:

v(s) = val [R̃(s, v)], (10.17)

where val means the value of the zero-sum game determined by matrix R̃(s, v).
Equation (10.17) looks surprisingly elegant; actually it is very intuitive. We can under-

stand (10.17) in the following way. First, we assume that v has been given by a genie.
Hence, when the players take certain actions, the instantaneous payoff and the expected
future payoff can be determined from R and R̃, respectively. Then, given the current
system state, we can simplify the multiple-stage game into a single-stage one by incor-
porating the expected future payoff into the instantaneous one, thus obtaining a zero-sum
game with the payoff matrix R̃. Note that we have multiple one-stage zero-sum games
since each system state corresponds to a game. Finally, when the players take actions,
they will choose Nash equilibrium ones corresponding to the equivalent zero-sum game.
The value of the zero-sum game is then equal to the corresponding element in the value
vector v. Once v is determined, the strategies at the Nash equilibrium, given the system
state, can also be obtained from analyzing the zero-sum game with R̃.

Although we have found the equation describing the value vector v, it is still unclear
how to compute v since we do not have an explicit expression for the functional val.
Fortunately, we have some efficient algorithms for computing the Nash equilibrium of
some special stochastic games, which will be explained below.

First, we consider the special case in which the system state is controlled by only
one player. Without loss of generality, we assume that this controlling player is player
1. Then, the value vector and the strategy π2 can be obtained by solving the following
linear programming problem:

min
v,π2

∑
s∈S

v(s)

s.t. v(s) ≥
∑
a2

R(s)a1,a2
π2(a2|s) + β

∑
s′∈S

p(s ′|s, a1) v(s ′), s ∈ S, ∀a1

∑
a2

π2(a2|s) = 1, ∀s ∈ S

π2(a2|s) ≥ 0, s ∈ S, ∀a2. (10.18)

There are many efficient algorithms to solve the above linear programming problem,
for example, the simplex method or the interior-point method. The rigorous proof of
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Game Theory 359

the conclusion that the above linear programming results in the Nash equilibrium of the
single-controller stochastic game is omitted due to the limited space. Here we can provide
some intuitions for the linear programming problem. The second and the third constraints
are obvious since they are simply the requirements of normalization and nonnegativity of
probabilities. The first constraint means that, given the action of player 1, the strategy of
player 2 can always try to reduce the payoff of player 1; hence, the right hand side of the
constraint is always less than or equal to the actual value. In the objective function, the
average value is minimized, which represents the impact of player 2’s action. Note that
the dual form of the linear programming can also be used to compute the value vector
and the strategy of player 1 at the Nash equilibrium can be obtained correspondingly. The
details can be found in [1288, pp. 94–95].

We notice that the assumption of single state controller is implicitly embedded in
the first constraint in (10.18), where the state transition is independent of the strategy of
player 2 since the state is dependent on only player 1. When the system state is dependent
on the actions of both players, the optimization problem can be rewritten as

min
v,π2

∑
s∈S

v(s)

s.t. v(s) ≥
∑
a2

R(s)a1,a2
π2(a2|s) + β

∑
a2

∑
s′∈S

p(s ′|s, a1, a2)v(s ′)π2(a2|s), s ∈ S, ∀a1

∑
a2

π2(a2|s) = 1, ∀s ∈ S

π2(a2|s) ≥ 0, s ∈ S, ∀a2, (10.19)

where we added the impact of the strategy of player 2 to the first constraint. The involve-
ment of the strategy of player 2 also makes the optimization problem nonlinear since
there exist products of value v(s) and probability π2(a2|s). Hence, we are no longer
able to solve the optimization problem using linear programming approaches. Many other
approaches like Newton’s method can be used to solve the optimization problem. More
details can be found in Section 3.7 of [1288].

In the remainder of this chapter, we will use three typical games in cognitive radio,
namely the primary user emulation attack, channel synchronization and collaborative
spectrum sensing, to illustrate the above explanations of game theory. The types of the
three games are summarized in Table 10.1.

Table 10.1 Optimal Strategies for Cases 1 and 2

Game Type PUE Attack Chan. Synch. Spectrum Sensing

Strategic-form game X — —
Bayesian game — X X
Stochastic game X — —
Zero-sum game X — X
Collaboration game — X —
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PUE Attacker

Chan 1 Chan 2 Chan 3 Chan 4 Chan 5

Attack strategy: choosing one
channel for PUE attack by
intercepting the defenders’

actions and rewards

Defending strategy: choose a
channel randomly avoiding

PUE attack

Secondary
User

Figure 10.2 Illustration of the dogfight in spectrum.

10.2 Primary User Emulation Attack Games

In this section, we consider another type of game in cognitive radio network, namely the
primary user emulation (PUE) attack game. PUE attack is a serious threat to cognitive
radio networks; hence, it is important to analyze the game between secondary users and
PUE attackers. Meanwhile, it is also a good example to illustrate how to analyze stochastic
games.

10.2.1 PUE Attack

The dynamical spectrum access in cognitive radio, particularly the spectrum sensing mech-
anism, also incurs vulnerabilities for the communication system. One is the false report
attack in collaborative spectrum sensing, which has been discussed in the previous section.
Another serious threat is the primary user emulation (PUE) attack, originally proposed in
[1291]. As illustrated in Figure 10.2, in PUE attacks, the attacker sends out signal emu-
lating that of primary users during the spectrum sensing period, such that the secondary
users will be “scared” away even if the spectrum is actually idle, based on the assumption
that it is difficult for secondary users to distinguish the signals of primary user and the
attacker. This assumption is usually true, especially when energy detection is used in
spectrum sensing. Such a PUE attack is very efficient for the attacker since only very
weak power is consumed due to the high requirement on the spectrum sensing sensitivity
of secondary users; hence, it is much more power efficient (for the attacker side) than
traditional jamming attackers which use high power to suppress the legitimate signals.

There are usually two approaches to combat the PUE attack:

• Proactive Approach [1292, 1293]: In this approach, the secondary users detect
the attacker in a proactive manner. Although the secondary users cannot distinguish
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the signal structures of primary users and attackers, they can collaboratively estimate
the transmit power of the radio emitter. It is assumed that the attacker has much
less transmit power than the primary user, which is reasonable if the primary user is
TV station. Then, the radio emitter with low transmit power will be considered as
an attacker. Such an approach is very effective for cognitive radio in the TV band.
However, if primary users can also have low transmit power, it is impossible to
distinguish the attacker from primary user by merely considering the signal power.

• Passive Approach [1294, 1295]: If the proactive approach does not work, we can only
carry out passive approach. We assume that there are multiple channels in the licensed
spectrum, which is true for practical systems. Furthermore, we assume that the attacker
cannot cover all channels since it requires expensive equipments for a wideband trans-
mission. Hence, the secondary users can sense/access channels in a random manner
such that the attacker is unable to always block the transmission (of course the proba-
bility that a secondary user happens to sense the channel that the attacker is attacking
is nonzero). This is similar to the frequency hopping in jamming and anti-jamming;
hence it is called dogfight in spectrum in [1294].

In this section, we adopt the passive approach and model it as a game between the
cognitive radio network and the PUE attacker.

10.2.2 Two-Player Case: A Strategic-Form Game

We first consider the simplest case, in which there is one attacker and one cognitive
radio transmitter. We consider a cognitive radio system having N licensed channels. We
denote by pnI the idle probability of channel n. Without loss of generality, we assume that
p1I < p2I < . . . < pNI . For simplicity of analysis, we assume that the attacker (secondary
user) can attack (sense) one channel at a time. If they happen to choose the same channel,
the secondary user will be unable to use this channel; otherwise, whether the secondary
user can use this channel depends on only the activity of primary user. We consider only
one stage and will extend it to multiple stages later.

Then, we can model the dogfight as a strategic-form game. Below are the elements of
the game:

• Player: We assume that there are two players: player 1 is the secondary user (the
transmitter) and player 2 is the PUE attacker.

• Action and Strategy: In such a dogfight game, the action space of the secondary user
(attacker) contains the choice of channel to sense (to jam). The strategies of the sec-
ondary user and attacker are the probabilities to sense and jam different channels,
denoted by {ui}i=1,...,N and {vi}i=1,...,N , respectively.

• Reward: For player 1 (the secondary user), we assume that it receives a reward piI when
it chooses channel i to sense and the channel is not attacked by the PUE attacker. Note
that this reward is the idle probability of channel i. Hence, it is actually the expectation
of the actual reward if we define the actual reward as 1 when the secondary user finds
an idle channel to transmit. The definition of the reward simplifies the analysis since
it does not involve the actual state of primary user. When channel i is being attacked
by player 2, player 1 receives reward 0. We assume that this is a zero-sum game since
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362 Cognitive Radio Communications and Networking

the two players have completely conflicting interests. Then, the reward of player 2 is
also determined.

The Nash equilibrium of the dogfight game is disclosed in the following theorem [1294].
An interesting observation is that some channels exist with bad qualities (that is, small
idle probabilities) that both players will not access. The probabilities of the corresponding
actions are then equal to zero.

Theorem 10.1 Define K as

K = max


k

∣∣∣∣
k−1

pN−k+1,I∑N

j=N−k+1
1

pjI

< 1


 . (10.20)

Then, there is a unique Nash equilibrium point in the game of spectrum dogfight, which is
given by

ui =



1
piI∑N

j=N−K+1
1

pjI

, i = N − K + 1, . . . , N,

0, i = 1, . . . , N − K

, (10.21)

and

vi =

 1 −

K−1
piI∑N

j=N−K+1
1

pjI

, i = N − K + 1, . . . , N

0, i = 1, . . . , N − K

. (10.22)

The above Nash equilibrium is illustrated using real measurement data using the system
shown in Figure 10.3. An E4407B-COM ESA-E spectrum analyzer is used to collect the
spectrum activity. The range of 2.4 GHz to 2.5 GHz is divided into 20 channels, each
spanning 5 MHz. The measurement is carried out for both inside and outside the Ferris
Hall of the University of Tennessee. The busy probabilities of the 20 channels are shown
in Figure 10.4.

For both the indoor and outdoor measurements, we show the sensing/jamming probabil-
ities at the Nash equilibrium in Figure 10.5. We observe that, for the indoor case, K = 19,
that is, only one channel will not get involved in the game; while K = 18 for the outdoor
environment. Note that this conclusion is valid for only the set of measurements used in
the simulation. It may not be true for other spectrum environments.

10.2.3 Game in Queuing Dynamics: A Stochastic Game

In the previous discussion, we consider only two players. However, in practice, there
could be multiple PUE attackers while the defender could be the whole cognitive radio
network. Moreover, the goal of the strategic game in the previous discussion is essentially
increasing/decreasing the throughput of the secondary user transmitter. However, this goal
may not be reasonable in a network with delay-tolerable traffics. For example, if the goal
of the secondary user is to deliver all packets to the destination regardless of the delay, the
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Figure 10.3 A picture of the spectrum measurement system.
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Figure 10.4 The probabilities of different channels of both indoor (upper figure) and outdoor
(lower figure) environments.

attacker has no reward if all packets are eventually delivered. Hence, here we extend the
strategic game of the PUE attack to the more interesting scenario of network-wide game
for the queuing dynamics in the cognitive radio network. Since the reward is dependent
on the system state, namely the queue lengths of each node, the game is a stochastic
one over multiple stages. Briefly speaking, the goals of the players are to stabilize (the
cognitive radio network side) or destabilize (the attacker side) the queuing dynamics in
the cognitive radio network.

Note that the queuing dynamics have been widely studied in wireless communication
system. In their seminal work [1296], Tassiulas and Ephremides proposed a scheduling
algorithm for wireless communication networks that achieves the maximal throughput
region. In the context of cognitive radio network, the scheduling algorithm is extended
[1297], which will be explained in details in Chapter 10. In [1298], a “drift-plus-penalty”
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Figure 10.5 Optimal sensing/jamming probabilities for the indoor and outdoor environments.

cost function is proposed to achieve the tradeoff between the queuing stability and other
factors like delay. The centralized scheduling algorithm in [1296] has been extended
to decentralized cases at the cost of reasonable performance loss [1299]. Although the
scheduling algorithm and the corresponding queuing stability have been widely studied,
they are almost all on the single side optimization of the scheduling policy without the
consideration of attacks.

For formulating the game, we consider a cognitive radio network with N secondary
users, whose topology can be represented by a graph. We assume that there are totally
M licensed channels that may be used by K primary users. We denote by Nk the set of
secondary users that may be affected by primary user k and denote by Mk the set of
channels that primary user k occupies when it is active. For simplicity, we assume that the
activities in different time slots of each primary user are mutually independent, and the
probability of being active is denoted by pk for primary user k. At time slot t , the status
of channel m is denoted by sm; that is, sm = 0 when the channel is not being used by
primary users and sm = 1 otherwise. Due to the limited capability of spectrum sensing,
we assume that each secondary user can sense only one channel during the spectrum
sensing period.

We assume that there are totally F data flows in the cognitive radio network. We denote
by Sf and Df the source and destination nodes of flow f , respectively. We assume that
the packet arrival at the source node of data flow f is Poisson with expectation af . The
routing paths of the F data flows can be represented by an F × N matrix R, in which
Rf n = 1 if data flow f passes through secondary user n and Rf n = 0 otherwise. We
denote by In the set of data flows passing through secondary user n.

For each flow, the data are packetized using the same packet length. Each secondary user
has one buffer for each data flow passing through it. In each time slot, the secondary users
will choose one packet from its buffer(s), if there is any, for the opportunistic spectrum
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Game Theory 365

access. Suppose that one channel can support only one data flow in one time slot. We
assume that there are sufficiently many channels such that any set of interfering sec-
ondary users can be assigned to different channels. Thus, all secondary users can transmit
simultaneously (if there is no primary user) by appropriately allocating the channels.

When secondary user n decides to transmit to a neighbor j , and an idle channel, say
channel m, is assigned to secondary user n, the packet can be delivered successfully with
probability pnjm which is determined by the channel quality. Hence, the probability that
a packet can be delivered is given by

µnjm = pnjm

∏
k:n∈Nk,m∈Mk

(1 − pk). (10.23)

We assume that there are totally L PUE attackers. In each time slot, each attacker chooses
Q (Q ≤ M) channels to attack. We denote by Vl the set of potential secondary user victims
that are jammed by attacker l. We assume that the attackers have perfect knowledge
about the current state of the cognitive radio network. Such an assumption can make the
game theoretic analysis easier. It provides a starting point for more complicated cases in
which the attackers have only partial observations on the network state. Moreover, this
assumption is reasonable if any node in the cognitive radio network is compromised, or
the attackers have acquired the secrecy key and can decode/decypher the messages like
current queue lengths.

Then, we formulate the game between the cognitive radio network and the attackers in
the following way:

• Players: We consider only two players, namely the cognitive radio network and the
attackers. This implicitly assumes that there are two centralized controllers making
decisions for the network and the attackers, respectively.

• System State: We denote by s the system state, which is composed by all queue lengths
(denoted by {qf n}f =1,...,F,n=1,...,N ). The state space is denoted by S.

• Actions: The set of actions of the attackers and secondary users are denoted by Aa

and As , respectively. The actions of the attackers, denoted by aa , include the channels
to jam of each attack, which are denoted by {ca

l }l=1,...,L (cl is a vector containing the
Q channels to jam). The actions of the secondary users, denoted by as , have more
elements. It consists of the channel assignment, as well as the flow schedule (which
flow to choose the packet if there are multiple flows?). We denote by cn(t) and fn(t)

the assigned channel and scheduled flow at secondary user n at time slot t .
• Reward: This is the key element in this PUE game for queuing dynamics. Recall that the

goals of the players are to stabilize and destabilize the queuing dynamics, respectively.
Hence, we need a quantity to characterize the system stability. We follow the analysis
in [1296], we define the following Lyapunov function, which is given by

V (s(t)) =
F∑

f =1

N∑
n=1

q2
f n(t), (10.24)

that is, the square sum of all queue lengths. Obviously, a larger Lyapunov function
implies more instability in the queuing dynamics. As illustrated in Figure 10.6, the
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Figure 10.6 An illustration of the Lyapunov function.

Lyapunov function means the energy of the queuing system. The attacker wants to
increase it while the network wants to decrease it. We can rewrite V (s(t)) as

V (s(t)) = V (s(0)) +
t∑

r=1

V (s(r)) − V (s(r − 1)). (10.25)

Then, we observe that the Lyapnov function is the sum of the Lyapunov drift of
each time slot, namely the increase of the Lyapunov function d(t) = E[V (s(t)) −
V (s(t − 1)] [1296, 1298]. Hence, we can define the Lyapunov drift d(t) as the reward
of the attacker. For a positive d(t), the system becomes more unstable, thus benefiting
the attackers. We model the game as a zero-sum one, thus defining the payoff of the
network. We add a discounting factor 0 < β < 1 to the reward such that the total payoff
of the attacker is given by

R =
∞∑
t=0

βtd(t), (10.26)

which simplifies the analysis since it is much easier to analysis the game with a dis-
counted sum of rewards. It is also possible to consider the average of the Lyapunov
drift, which makes the analysis more complicated. Note that this definition of reward is
motivated by the classical works on scheduling queuing network in which the schedul-
ing algorithm tries to minimize the Lyapnov drift in order to stabilize the queuing
dynamics [1296, 1298].

We applied the Shapley’s theorem and the corresponding numerical approach, which
are introduced in Section 10.1, to compute the Nash equilibrium defined above. The
example is illustrated in Figure 10.7, in which there is one attacker and three secondary
users. We assume that there are only two channels over which two data flows are sent
from secondary user 3 to secondary users 1 and 2, respectively. The attacker can only
interfere secondary user 3. For simplicity, we assume that secondary user 3 can sense and
transmit over both channels simultaneously; hence, there are only two possible actions
for secondary user 3. When computing the Nash equilibrium, we assume that the strategy
is the same for the state of more than 10 packets in either buffer; otherwise, there will be
infinitely many system states. Note that the computation is prohibitively difficult to large
networks. Hence, we consider only the small scale network.
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Figure 10.7 An illustration of the example.
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Figure 10.8 Rate region subject to PUE attacks in Figure 10.7.

In Figure 10.8, we show the rate region subject to PUE attacks for the network in
Figure 10.7. We judge whether a given set of rates is stable by carrying out the simulation
for the queuing dynamics; if one of the queues has more than 50 packets after 2000
time slots, we claim that the rates are unstable. We tested the case of Nash equilibrium,
uniformly choosing the actions and no PUE attack. The region of each case is the area
below the corresponding curve. We observe that the PUE attack can cause a significant
reduction of the rate region.
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368 Cognitive Radio Communications and Networking

10.3 Games in Channel Synchronization

In this section, we consider a strategic form game in cognitive radio with the essence
of collaboration. Essentially, it is about how two secondary users can synchronize the
channel information. Since a success in channel synchronization is beneficial to both
players, the game is a collaborative one. It helps to illustrate how to formulate a problem
into a game, how to define the different elements of game and how to analyze the Nash
equilibrium. Note that the discussion follows [1300].

10.3.1 Background of the Game

Now, we introduce the background of the channel synchronization game in cognitive
radio. Most current studies on cognitive radio are focused on the data communication, for
example, how to allocate channels to different secondary user during the data transmission
period. However, as often ignored, a control channel is needed to convey control signal-
ings, for example, ACK/NACK messages, routing tables or SYN messages in transport
layer. Uniquely to cognitive radio, control channel is needed for channel synchroniza-
tion; that is, the transmitter needs to inform the receiver which channel it will use for
its data transmission, since the available channels could be dynamic and change with
time. Therefore, control channel, as the backbone of cognitive radio networks, is a key
design issue.

Many wireless systems use dedicated channels, for example, a frequency channel, a
set of time slots or a spreading code, for control signaling. For reliability, the dedicated
resource is predetermined since the whole band is fixed. However, it is difficult to allocate
a reliable channel in cognitive radio systems due to the possibly dynamic spectrum.
One possible approach is to use UWB signal, which can overlay on existing wireless
systems and does not need dedicated channel. However, UWB signal is limited by its
short transmission range (around 10 to 15 meters) and by the fact that it is typically used
in indoor environments. Another approach is to use unlicensed frequency band such as
the industrial, scientific and medical (ISM) band. However, it has to compete with WLAN
such as IEEE 802.11 which also use this band and may cause substantial interference and
damage to the control signals in cognitive radio systems.

In this book, we assume that a set of licensed channels are used as the control chan-
nel. Similar schemes are also considered in [1301, 1302]. In these studies, symmetric
environments are assumed at both the transmitter and receiver; that is, they share the
same spectrum occupancies. However, in practical systems, the transmitter may not have
the information that some channels have been strongly interfered by primary users at the
receiver’s location. Therefore, if the transmitter uses only one frequency channel for the
control signaling, the receiver may never receive it and then loses connection. Hence,
the receiver should not monitor only one channel; we need to intelligently synchronize
frequency channels for transmission in the control channel.

10.3.2 System Model

The system is illustrated in Figure 10.9. We consider two secondary users, one planning
to transmit a message to the other in the control channel. Suppose that the control channel
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Figure 10.9 Illustration of the channel synchronization.

contains N licensed frequency channels while the transmitter/receiver can transmit/receive
over only one channel. We denote by pn and qn the probabilities that channel n is idle at
the transmitter and receiver sides, respectively. Stacking them into vectors, we define p =
(p1, . . . , pN) and q = (q1, . . . , qN). For simplicity, we assume that all these probabilities
are nonzero.

For each frequency channel, we define the state as whether it is occupied by primary
users (B: Busy) or not (I: Idle). We have the following assumptions:

• The transmitter (receiver) knows the states of all channels at its own location before
each time slot, which can be accomplished by spectrum sensing. However, they do not
know the spectrum state of their partners.

• We consider a perfect spectrum sensing; that is, there is no spectrum sensing error.
• We assume that the occupancies of different frequency channels are mutually inde-

pendent. The spectrum situations at the transmitter and receiver are also mutually
independent.

• Both transmitter and receiver know the beginning of channel synchronization, which
can be achieved by a perfect time synchronization and a uniform timing structure.

For simplicity, we consider only one-stage synchronization; that is, if the receiver fails
in choosing the same channel as the transmitter does, then the synchronization fails and
does not continue. The discussion on multistage synchronization can be found in [1300].
We denote by µT

n the probability of choosing channel n for transmission when the set
of idle bands is T at the transmitter. Similarly, we denote by by νR

n the probability of
choosing band n to receive when the set of idle bands is R at the receiver.

10.3.3 Game Formulation

Based on the above mechanism of channel synchronization, we can formulate it as a game
and define the following elements of the game:

• Player: Obviously, the transmitter and the receiver are the two players.
• Action: For each player, the action space is the selection of frequency channel to access.

The mixed strategies for the transmitter and receiver are the probabilities of transmitting
and receiving over different channels, that is, {µT

n }n,T and {νR
n }n,R, respectively. We

denote by ST X
T and SRX

R the mixed strategies of the transmitter and receiver when the
corresponding sets of usable bands are T and R, respectively.
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370 Cognitive Radio Communications and Networking

• Type: Since the two players do not know the spectrum situation of each other, this
collaboration game has incomplete information and can be modeled as a Bayesian
game. Each player has a type, namely the set of usable frequency channels T or R,
which is known to itself but unknown to its collaborator. Since the statistics of frequency
channels are assumed to be perfectly known to both players, the a priori probability
of the receiver’s type can be computed by the transmitter, namely

P(R) =
∏
n∈R

qn

∏
m/∈R

(1 − qm). (10.27)

Similarly, the a priori probability of the transmitter’s type can also be computed by
the receiver, which is given by

P(T) =
∏
n∈T

pn

∏
m/∈T

(1 − pm). (10.28)

• Reward: If the transmitter and receiver choose the same frequency band, the reward is
1; otherwise, the reward is 0. Hence, in this game, both players share the same reward.

10.3.4 Bayesian Equilibrium

According to the definition of Bayesian equilibrium, if {µT
n }n and {νR

n }n are Bayesian
equilibrium strategies, they should satisfy the following equations:

ST X
T = arg max

∑
R

P(R)


 ∑

j∈R,T

νR
j µT

j


 (10.29)

and

SRX
R = arg max

∑
T

P(T)

( ∑
i∈R,T

µT
i νR

i

)
. (10.30)

We can search for equilibrium points using the following procedure: let DT x
T and DRx

R
denote the sets of bands whose sensing probabilities are nonzero when the sets of usable
bands at the transmitter and receiver are T and R, respectively, that is,

DT x
T = {n|µT

n > 0, n ∈ T}, (10.31)

and

DRx
R = {n|νR

n > 0, n ∈ R}. (10.32)

For all possible combinations of DT x
T and DRx

R and for all possible T and R, we have
the following equations:∑

i∈T

P(T)µT
i = C1(D

Rx
R ), ∀i ∈ DRX

R ,∀R, (10.33)
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and ∑
j∈R

P(R)νT
j = C2(D

T x
T ), ∀j ∈ DT x

T , ∀T, (10.34)

as well as the constraints ∑
i∈DT x

T

µT
i = 1, (10.35)

and ∑
j∈DRx

R

νR
j = 1. (10.36)

Note that C1(D
Rx
R ) and C2(D

T x
T ) are constants (to be determined) independent of i and j

but dependent on DRx
R and DT x

T , respectively. Intuitively, Equations (10.33) and (10.34)
mean that the players are indifferent among the selections of bands whose probabilities
are positive.

For all combinations of {DT x
T }T and {DRx

R }R, we list all Equations (10.33) and (10.34),
as well as the constraints (10.35) and (10.36, and then solve it. It is possible that, for some
combinations of DT x

T and DRx
R , there is no solution for the above equations. It is also

possible that there are multiple (maybe uncountable) solutions. In this case, we choose only
the solution that maximizes a certain linear object function, thus converting the procedure
of solving equations to an optimization problem which can be efficiently solved by linear
programming. In this chapter we consider the following linear programming problem:

max
{µT

n }n,T,{µR
n }n,R

∑
T,R

P(T)C2(D
T x
T ) + P(R)C1(D

Rx
R ), (10.37)

subject to constraints (10.34), (10.33), (10.35) and (10.36), as well as 0 ≤ µT
i ≤ 1 and

0 ≤ νR
i ≤ 1.

After exhaustive search for all possibilities of {DT x
T }T⊂{1,...,n} and {DRx

R }R⊂{1,...,n}, we
can obtain all equilibrium points. It is easy to check that we need to verify

N∏
t=1

(2t − 1)

(
N

t

)
(10.38)

possibilities for {DT x
T }T⊂{1,...,n} and the same for {DRx

R }R⊂{1,...,n}. When N is not small, we
need to search prohibitively large number of possibilities, which is infeasible for numerical
computations. Therefore, in numerical simulations, we consider only the case of small
N . For large N , it is still an open problem to find an efficient algorithm to compute
the equilibria according to the features of the collaboration game. The application of the
above procedure in the simplest case of N = 2 is left as an exercise problem.

10.3.5 Numerical Results

We consider the case N = 3, that is, there are three available bands. According to (10.38),
there are 189 possible configurations of nonzero input distributions for the transmitter
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Figure 10.10 CDF of the success probability for different equilibrium points.

Table 10.2 Optimal Strategies for Cases 1 and 2

available bands Tx Case1 Rx Case1 Tx Case2 Rx Case2

1,2 2 1 1 1
1,3 1 1 1 1
2,3 2 2 2 2
1,2,3 2 1 1 1

(same for the receiver). Therefore, we need to check 35721 possible joint configurations.
We consider two cases. In Case 1, p = (0.8, 0.6, 0.3) and q = (0.3, 0.9, 0.7). We found
totally 975 equilibrium points and the highest successful synchronization probability is
0.5508. In Case 2, p = (0.99, 0.93, 0.97) and q = (0.94, 0.98, 0.90), in which 2237 equi-
librium points are found and the highest successful synchronization probability is 0.9311.
The cumulative distribution functions (CDFs) of the probabilities of successful synchro-
nization of different equilibrium points are provided in Figure 10.10. We observe that
different equilibrium points may yield considerably different performances.

By examining the obtained equilibrium points, we found the optimal strategies yielding
the maximal success probabilities are pure strategies for both cases and the corresponding
band selections are provided in Table 10.2 (we do not list the cases when there is only
one available band since the corresponding band synchronization is trivial), where Tx and
Rx stand for transmitter and receiver, respectively.

10.4 Games in Collaborative Spectrum Sensing

In this section, we consider the game in collaborative spectrum sensing by formulating a
Bayesian game. Hence, on one hand, we can better understand the possible attack/defense
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Game Theory 373

in collaborative spectrum sensing; on the other hand, we can use it as an example to
illustrate how to formulate and analyze Bayesian games. Note that the discussion mainly
follows that in [1303].

10.4.1 False Report Attack

Collaborative spectrum sensing has been introduced in Chapter 3. Hence, the readers can
check Chapter 3 for the details. In the collaborative spectrum sensing in Chapter 3, we
implicitly assume that every secondary user is honest; that is, they exchange their true
observations or decisions. However, this assumption may not be true in the following
situations:

• When a collaborator is malicious, it may send out false reports in order to ruin the
collaborative spectrum sensing.

• When a collaborator is selfish, it may report a busy channel although the channel is
actually idle, such that it can use this channel by itself.

• When a collaborator is malfunctioning, for example, the spectrum sensor configuration
is incorrect, the reports may not be true, although it does not intend to do so.

In all these cases, the incorrect reports may incur spectrum sensing errors, thus degrad-
ing the system performance. For simplicity, we consider only the malicious attacker case
and the corresponding false report attack. Many studies have been paid to detect such false
report attacks [1304–1307]. Usually these schemes are based on a centralized collabo-
rative spectrum sensing in which a center will collect the reports and make decision on
whether an attacker exists and who the attacker is. In the decentralized spectrum sensing,
each secondary user needs to make its own decision. Since the type, honest or malicious,
is unknown, we can model it as a Bayesian game and analyze the Bayesian equilibrium
therein.

10.4.2 Game Formulation

For simplicity, we consider the spectrum sensing over only one channel. We denote by B

and I the busy and idle states of primary user, respectively. For general case, we denote
by S the primary user state. The corresponding a priori probabilities are denoted by PB

and PI , respectively.
We consider two secondary users in the collaborative spectrum sensing, in which they

exchange messages. One secondary user is honest (player 1) while the other one secondary
user is malicious (player 2). Player 1 does not know the type of player 2 while player 2
knows that player 1 is honest. We denote by Xi the local observation of player i during the
spectrum sensing. We assume that N possible observations during the spectrum sensing,
denoted by O1, . . . , ON , which is reasonable for practical systems due to the quantization
of measurements in spectrum sensing. The observations are mutually independent for
different players due to independent noise. We denote by P(X|S) the probability of
observing X conditioned on the channel state S, which is common for both players. It is
assumed that the probability P(X|S) is perfectly known to both player.
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374 Cognitive Radio Communications and Networking

The two secondary users exchange their local observations to each other. Player 1
sends its local observation, X1, to player 2 first. In the viewpoint of player 1, if player 2
is malicious, it sends a fake value X′

2 back to player 1. Note that the fake value X′
2 is

determined by X1, X2 and its attacking strategy; if player 2 is honest, it sends the original
observation X2 to secondary user 1. Then, player 1 makes a decision on whether primary
user exists, based on X1, X′

2 and its own strategy.

10.4.3 Elements of Game

For simplicity we consider only a single round of the game. It is more interesting to study
multiple stages to see how the honest player accumulates its belief on its collaborator and
how the malicious attacker sometimes pretends to be innocent in order to elude player 1.
However, this is beyond the scope of this book.

Note that this game is slightly different from the one introduced in Section 10.1 since
the actions of the two players are not taken simultaneously (recall that player 2 decides
its report X′

2 first and then player 1 makes a decision on the sensing result). On the other
hand, the information is also asymmetric since player 2 knows that player 1 is honest
while player 1 does not know the type of player 2. Hence, it is essentially a signaling
game [1308], a special type of Bayesian game, in which one player (leader) has a private
type while the other player (follower) has a public type. The leader takes an action first.
Then, the follower decides its own action by guessing the type of the leader from the
leader’s action.

Below, we define the elements of the signaling game, namely type, action, strategy and
reward, as illustrated in Figure 10.11:

• Type: The type of player i consists of whether it is honest (H) or malicious (M) and is
denoted by ci . Note that the observation Xi is also a part of type if it could be private.
The type of player 1, that is, being honest and observation X1, is known to both players.
However, the type of player 2, namely being malicious and having observation X2, is
unknown to player 1. Player 1 has an a priori probability (or belief) of player 2 being
malicious, which is denoted by πM . Summarizing the above discussion, we denote by
Ti = (Ci, Xi) the type of player i.

• Action: The action of player 1 is the decision on the spectrum sensing result, given the
report from player 2 and its own observation. The action of player 2 is how to fake the

Player 1

Action: decision for
spectrum sensing

Player 2

Step 1
X1(t)

Strategy: decision
probability conditioned on
the local observation and

external report

Step 2
X2'(t)

Action: faked report to the
defender

Strategy: probability over report
conditioned on observations of

both

Type: honest or malicious; local
observation

Figure 10.11 Illustration of the game elements.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Game Theory 375

report, X′
2: should it send the true observation or not? If not, what observation should

it report to player 1?
• Strategy: For player 1, its strategy is the probability of claiming that the channel is

busy, given its own observation and the report from player 2. We denote this probability
by π1(B|i, j) if X1 = Oi and X′

2 = Oj . The strategy of player 2 is the probability of
reporting observation On, n = 1, . . . , N , which is denoted by π2(n|i, j), given X1 = Oi

and X2 = Oj . Recall that we use π1 and π2 the overall strategies of players 1 and 2,
respectively.

• Reward: There are two types of costs in the spectrum sensing, namely the missed
detection and false alarm. We denote by CM the cost incurred by missed detection, that
is, claiming an idle channel while primary users actually exist. Similarly, we denote by
CF the cost caused by false alarm, that is, claiming a busy channel while no primary
user exists. Then, the reward of player 1 is −CM upon a missed detection and −CF

upon a false alarm. The reward is 0 for a correct detection. Given observation X1,
report X′

2, type T2 and player 1’s strategy π1, the expected reward of player 1 is
given by

r1(π1, X1, X
′
2, T2) = −CF P (I |X1, T2)π1(B|X1, X

′
2)

− CMP(B|X1, T2) (1 − π1(B|X1, X
′
2)), (10.39)

where P(I |X1, T2) and P(B|X1, T2) are the actual a posteriori probabilities of the
channel being idle and busy, respectively, given the observations X1 and X2. It is easy
to verify that P(B|X1, T2) is given by

P(B|X1, T2) = P(X1|B)P (X2|B)PB

P (X1|B)P (X2|B)PB + P(X1|I )P (X2|I )PI

, (10.40)

where X2 is the actual observation of secondary user 2, as a part of T2.
We model the game as a zero-sum one since the goal of the malicious user is to ruin
the collaborative spectrum sensing. When the true observations are X1 and X2, the
expected reward of player 2 is equal to

r2(π1, π2, X1, X2) =
N∑

n=1

CMP(B|X1, X2)π2(On|X1, X2)(1 − π1(B|X1,On))

+
N∑

n=1

CF P (I |X1, X2)π2(On|X1, X2)π1B|X1, On. (10.41)

Note that, although the true cost is modeled as zero-sum, the sum of the expected
rewards in (10.39) and (10.41) may not be zero. The reason is that the two players
have different sets of information, thus having different capabilities of predicting the
rewards.
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376 Cognitive Radio Communications and Networking

10.4.4 Bayesian Equilibrium

Now we begin to analyze the Bayesian equilibrium of the game. According to the def-
inition of Bayesian equilibrium, the following conditions should be satisfied for the
equilibrium strategies π∗

1 and π∗
2:

• Player 2: For any types T1 and T2 (both are known to player 2), we have

π∗
2(·|T1, T2) ∈ arg max

π2
r2(π

∗
1, π2, X1, X2), (10.42)

where the observations X1 and X2 are parts of the types T1 and T2, respectively. This
condition means that the equilibrium strategy of player 2 should be optimal for any
type pairs T1 and T2, given the strategy of player 1 π∗

1.
• Player 1: For any report X′

2 and type T1, which are the observations of player 1, we
have

π∗
1(·|T1, X

′
2) ∈ arg max

π1

∑
T2

µ(T2|X′
2, T1)r1(π1, X1, X

′
2, T2), (10.43)

where µ(T2|X′
2, T1) is the conjecture on the real type of player 2 when player 1 has

type T1 and receives a report X′
2 from player 2.

• Conjecture of Type 2: The a posteriori probability of type T2 given report X′
2 and type

T1, µ(T2|X′
2, T1), is given by (the derivations of the equations will be left as exercises)

µ(T2|X′
2, T1) = P(T2|T1)P (X′

2|T2, T1)∑
T̃2

P(T̃2|T1)P (X′
2|T̃2, T1)

, (10.44)

where the conditional probability P(T2|T1) is given by

P(T2|T1) = P(T1, T2)

P (X1|S = B)PB + P(X1|S = I )PI

, (10.45)

and the joint probability P(T1, T2) is given by

P(T1, T2) = P(C2)PBP (X1|S = B)P (X2|S = B)

+ P(C2)PIP (X1|S = I )P (X2|S = I ), (10.46)

where

P(C2) =
{

πM, if C2 = M

1 − πM, if C2 = H
. (10.47)

Note that P(X′
2|T2, T1) in (10.44) is given by

P(X′
2|T2, T1)

=



1 , if C2 = H, X2 = X′
2

0 , if C2 = H, X2 
= X′
2

π2(X
′
2|X1, X2) , if C2 = M

. (10.48)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Game Theory 377

Now, we discuss the computation of Bayesian equilibrium by optimizing the strategy
of player 1 first and then optimizing that of player 2, based on the above conditions of
the Bayesian equilibrium.

• Player 1: We first fix the strategy of player 2 and substitute (10.39) into (10.43), thus
obtaining

∑
T2

µ(T2|X′
2, T1)r1(σ1, X1, X

′
2, T2)

= −CF


∑

T2

µ(T2|X′
2, T1)P (I |X1, T2)


 π1(B|X1, X

′
2)

− CM


∑

T2

µ(T2|X′
2, T1)P (B|X1, T2)


 (1 − π1(B|X1, X

′
2))

= RF (T1, X
′
2)π1(B|X1, X

′
2) + RM(T1, X

′
2)(1 − π1(B|X1, X

′
2)), (10.49)

where RF (T1, X
′
2) is the expected reward when false alarm occurs, which is negative

and is defined as

RF (T1, X
′
2) = −CF

∑
T2

µ(T2|X′
2, T1)P (I |X1, T2), (10.50)

and RM(T1, X
′
2) is the expected reward when missed detection occurs, which is defined

as

RM(T1, X
′
2) = −CM

∑
T2

µ(T2|X′
2, T1)P (B|X1, T2). (10.51)

Obviously, the optimal strategy of secondary user 1, given T1 and X′
2, is given by the

following pure strategy:

π1(B|X1, X
′
2) =

{
1, if RM(T1, X

′
2)> RF (T1, X

′
2)

0, if RM(T1, X
′
2) ≤ RF (T1, X

′
2)

. (10.52)

Upon the event RM(T1, X
′
2) = RF (T1, X

′
2), we simply assign zero to π1(B|X1, X

′
2),

since it is an event with zero probability. Intuitively, the optimal strategy of player 1 in
(10.52) is to choose the decision corresponding to the minimum of the expected risks
of miss detection and false alarm. Note that the current optimal strategy of player 1 is
still dependent on the strategy of player 2 since (10.48) is dependent on π2(X

′
2|X1, X2).
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378 Cognitive Radio Communications and Networking

• Player 2: Now, we derive the optimal strategy of player 2. Substituting the optimal
strategy of secondary user 1 into the reward of secondary user 2 in (10.41), we have

r2(π
∗
1,π2, X1, X2) =

N∑
n=1

CMP(B|X1, X2)π2(On|X1, X2)

× I (RM(T1, n) ≤ RF (T1, n))

+
N∑

n=1

CF P (I |X1, X2)π2(On|X1, X2)

× I (RF (T1, n)> RF (T1, n)), (10.53)

where I (·) is the characteristic function of the corresponding event. Then, the equilib-
rium strategy π∗

2 can be obtained by optimizing (10.53). We observe that the strategies
corresponding to different X1’s do not couple with each other; hence, we can optimize
(10.53) for different X1’s separately.
Note that the same strategy π2 must optimize the N rewards, each corresponding
to a given X2, simultaneously, thus resulting in multiple objectives for the optimiza-
tion. Although we can optimize the N rewards separately (e.g., for given X2, we
optimize π2(X

′
1|X1, X2)), we can convert the multiple-objective optimization into a

single-objective one in the following manner:

r̄2(π
∗
1,π2, X1) =

∑
X2

P(X2|X1)r2(π
∗
1, π2, X1, X2), (10.54)

whose solution must be an equilibrium point since it must maximize all individual
rewards (each corresponding to an X2) in (10.53). Summarizing (10.53) and (10.54),
we have the following objective function for the strategy of player 2, which is given
by

∑
X2

P(X2|X1)

N∑
n=1

CMP(B|X1, X2)π2(On|X1, X2)

× I (RM(T1, n|π2) ≤ RF (T1, n|π2))

+
N∑

n=1

CF P (I |X1, X2)π2(On|X1, X2)

× I (RF (T1, n|π2)> RF (T1, n|π2)), (10.55)

where we added π2 to the arguments of function RM and RF since both functions are
dependent on the strategy of player 2.

We summarize the procedure of computation for the Bayesian equilibrium in Procedures
1 and 2, respectively. Procedure 2 is the main procedure, in which the strategy of player 2
is computed, while Procedure 1 is a subfunction of Procedure 2, which is used to compute
the optimal strategy of player 1 and the functions RM and RF .
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Game Theory 379

Procedure 1 Procedure of optimal strategy of player 1

1: Input: the strategy of player 2 π2
2: for Each observation X1 do
3: for Each report X′

2 do
4: Use Equations (10.44) to (10.48) to compute the a posteriori probability µ(T2|X′

2, T1).
5: Use (10.40) to compute P(I |X1, T2) and P(B|X1, T2).
6: Use (10.50) and (10.51) to compute the risks RF (T1, X

′
2) and RM(T1, X

′
2).

7: Choose the decision using (10.52).
8: end for
9: end for

10: Output: The functions RF and R − M .

Procedure 2 Procedure of optimal strategy of player 2

1. for Each observation X1 do
2. Optimize π2 using the optimization in (10.55); the functions RM and RF are
evaluated using Procedure 1.
3. end for

Note that it is very difficult carry out an analytic optimization (e.g., using the KKT
condition) for (10.55). Hence we can use the function of constrained optimization in the
optimization toolbox of Matlab for the optimization.

10.4.5 Numerical Results

The analysis on the Bayesian equilibrium can be demonstrated by numerical simulations
[1303]. For simplicity of computation, we assume that N = 4, that is, there are 4 possible
observations (e.g., very high energy, high energy, medium energy and low energy). The
discrete observation is reasonable since continuous observations can be discretized. The
observation distribution for different primary user state is given by the following matrix:(

0.5 0.2 0.17 0.13
0.13 0.17 0.2 0.5

)
, (10.56)

X1 = O2 X1 = O3

X2 = O1 O2 O3 O4 O1 O2 O3 O4

P(X2’) = O1 0 0.5 0.5 0 0.33 0.33 0.33

P(X2’) = O2 0

0

0

0

0

0

0

0.5 0.5

0

0

0

0

0

0

0

0

01

P(X2’) = O3 0.56 0.44 1

P(X2’) = O4 0.95 0.05 1

Figure 10.12 Examples of attacking strategies in typical situations.
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380 Cognitive Radio Communications and Networking

where the first row means the probabilities of observation when the channel is idle while
the second row is the probabilities when the channel is busy. The four columns in the
matrix, indexed from left to right, represent the observations O1 to O4, respectively.
When primary user is not present, it is more possible to receive observations with lower
indices (e.g., O1); on the other hand, when primary users emerge, observations with higher
indices (e.g., O4) will have high probabilities. We set CM = 2 and CF = 1 since missed
detections in spectrum sensing typically incur more damage than false alarms.

The Bayesian equilibrium is computed using the algorithms in Procedures 1 and 2. The
optimization is achieved using the optimization toolbox in Matlab. In Figure 10.12, two
examples of the attacking strategies are shown when X1 = O2 and X1 = O3, respectively.
We set πM = 0.1, that is, player 1 has the belief that player 2 is a malicious one with
probability 0.1. We observe that, when X1 = O2 and X2 = O1, O2, that is, the channel is
more likely to be idle, player 2 intends to send reports indicating the existence of primary
users in order to incur false alarms. On the other hand, when X1 = O2 and X2 = O3, O4,
that is, the channel is more likely to be busy, the attacker believes that the channel is
actually busy and thus sends reports indicating an idle channel. We can also observe
similar strategies for the case X1 = O3.
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11
Cognitive Radio Network

In all our previous discussions, we focused on point to point communications using
cognitive radio technology. Having solved the problem of two-party communications, we
can now focus on using the cognitive radio link to form a network. Wireless networking
has been widely studied for decades. However, the revolutionary new spectrum access
mechanism in cognitive radio incurs substantial challenges for the design of networks.
In this chapter, we provide a brief introduction to the basics of general networks; more
details about networks can be found in [1309]. Then, we will study the special design
suitable for cognitive radio in different layers in a bottom-up manner.

11.1 Basic Concepts of Networks

Intuitively, a network is an ensemble of parties that can communicate with each other,
directly or indirectly. Usually, a network can be represented by a graph, in which each
node represents a communication party while each edge means that the two incident nodes
can communicate with each other.

11.1.1 Network Architecture

There are typically two types of architectures for networks, as illustrated in Figure 11.1,
both having plenty of applications.

• Cellular networks: This can also be called server-client architecture. In such a network,
there exist multiple base stations and many mobile stations. Two mobile stations cannot
communicate directly even if they are within a communication range. Their informa-
tion transmission must take route through a base station. Our cellular phones fall in
this category.

• Peer-to-peer networks: This architecture can also be called an ad hoc one. In a peer-to-
peer network, there is no centralized base station. Nodes within communication range
can talk to each other directly. If two nodes are too far away from each other, they can
communicate with an intermediate relay node. Such an architecture is of particular use
in sensor networks or battlefield communication networks.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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user

user

user

cell

user

(a) (b)

user
user

user

user

Base station

Figure 11.1 An illustration of the two types of architectures. (a) Cellular architecture. (b) Peer-
to-peer architecture.

Cognitive radio can adopt both architectures. An advantage of the cellular system is
that the base station has a powerful sensing and data processing capability, which can fuse
the spectrum sensing results of different secondary users and schedule the transmissions.
On the other side, the cost of the base station may not justify the risk that there emerge
many primary users such that the secondary users within the cell cannot find enough
spectrum for data transmission. The peer-to-peer architecture has the opposite advantages
and disadvantages.

11.1.2 Network Layers

To facilitate the design of communication networks, the functionalities of networks can
be organized into a stack of layers. Each layer takes charge of different tasks and commu-
nicate with adjacent layers. Certain protocols are also designed for the interfaces between
two adjacent layers. The most popular definition of network layers is the OSI refer-
ence model developed by the International Standards Organization (ISO). Another typical
model is the TCP/IP reference model. Both are illustrated in Figure 11.2. The details of
the models are explained as follows.

We first introduce the OSI model, in which the network is divided into seven layers.
Since the layers of session and presentation are not used in most network designs, we
focus on the remaining five layers which have been widely used in the design and analysis
of communication networks.

• Physical Layer: The physical layer concerns how to transmit information bits from
a transmitter to a receiver. It mainly concerns the modulation/demodulation, coding/
decoding,1 and signal processing for transmission and reception. Most of our previous
discussions fall in the physical layer.

1 In the original definition of OSI model, the coding and decoding are issues in the data link layer; however, in
practice, people usually consider them as physical layer issues.
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Physical

Data link

Network

Transport

Session

Representation

Application

Host-to-network

Internet

Transport

Application

OSI reference model TCP/IP reference model

Figure 11.2 An illustration of layers in OSI and TCP/IP.

• Data Link Layer: This layer takes charge of tasks such as frame acknowledgment, flow
regulation and channel sharing. The last one, called MAC is the most important for
wireless networks due to the broadcast nature of wireless transmissions, thus usually
considered as an independent layer. Essentially, the MAC layer addresses the resource
allocation, for example, how to allocate different communication channels to different
users, and scheduling, for example, when there is a competition among users, which
user should obtain the priority to transmit. We have mentioned some MAC layer issues
in cognitive radio before. In this chapter, we will explain more details about it.

• Network Layer: This layer determines how to find a route in the network from the
source to the destination. For example, we need to design an addressing mechanism to
for the routing. Moreover, when the addresses of the source and destination are known,
we need to design algorithms for the network to find a path with the minimum cost
(e.g., number of hops) to the destination. When a path is broken by emergency, the
network layer needs to find a new path for the data flow.

• Transport Layer: This layer receives data from the application layer, splits it into smaller
units if needed, and then pass to the network layer. The main job of the transport layer
is congestion control, that is, how to control the source rate according to the congestion
situation in the network.

• Application Layer: It provides various protocols for different applications. For example
the HyperText Transfer Protocol (HTTP) is used for websites.

Note that the physical, data link and network layers concern the intermediate nodes in
the network, while the transport and application layers concern only the two ends of data
flow, namely the source and destination.

In the TCP/IP reference model, the physical and data link layers are not well specified.
They are considered as the host-to-network layer. The Internet and TCP layers in the
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384 Cognitive Radio Communications and Networking

TCP/IP reference model roughly correspond to the network and transport layers in the
OSI model. More details can be found in [1309].

11.1.3 Cross-Layer Design

In traditional design of communication networks, the design and operation of different
layers are carried out independently. Different layers are coupled only through the inter
layer interfaces. However, people have found that the isolated design of different layers
may decrease the efficiency of the network. Hence, the cross-layer design is proposed
for communication networks. An excellent tutorial on cross-layer design can be found
in [1034]. Moreover, the theory of network utility maximization and optimization based
decomposition provides unified framework for cross-layer designs in communication net-
work. Due to the limited space, we do not introduce this theory. Readers can find a
comprehensive introduction on this topic in [528].

A motivating example for cross-layer design is the opportunistic scheduling in cellular
systems [1310]. Consider a base station serving for multiple users. Different users may
have different channel gains. The base station needs to schedule the transmission of the
multiple users. Recall that scheduling is a MAC layer issue while the channel gain is a
physical layer quantity. In traditional layered design, the scheduling algorithm does not
take channel gains into account. However, it has been shown that, to maximize the sum
capacity, it is optimal to schedule only the user having the largest channel gain. Hence,
we see that, if the sum capacity is the performance metric, it is more desirable to take
the physical layer issues into the scheduling algorithm in the MAC layer, thus resulting
in a cross-layer design.

Note that the frequency spectrum is actually a physical layer concept. Hence, if we
adopt the layered design for cognitive radio networks, only the physical layer issues like
spectrum sensing or transmission schemes for non-contiguous spectrum bands are con-
cerned; the networking issues like scheduling and routing still follow traditional designs.
However, such a layered may result in a low efficiency of spectrum utilization. Take the
above opportunistic scheduling for instance. We can replace the channel gain with the
channel availability in the context of cognitive radio. Then, it is obvious that the schedul-
ing should take the spectrum situation into account since only secondary users having
available channels should be scheduled. Similarly, routing in the network layer should
also consider the spectrum situations such that it can circumvent the region with more
frequent emergences of primary users. Therefore, the cross-layer design is a must for high
performance cognitive radio networks and each layer should be aware of the spectrum in
the physical layer.

11.1.4 Main Challenges in Cognitive Radio Networks

Since it is necessary to incorporate the spectrum situation in the physical layer into
account when designing the upper layers of cognitive radio networks, the novel mechanism
of spectrum access brings many challenges to the design and performance. The major
challenge is the spectrum dynamics. The corresponding impact on all upper layers is
explained as follows.
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Cognitive Radio Network 385

• MAC Layer: As we have explained, the main taks of MAC layer is to allocate commu-
nication resources to different transmitters. However, in cognitive radio, the available
communication resource could be dynamical. Hence, the MAC layer must be adap-
tive to the current spectrum situation, which demands high processing speed and fast
information collection.

• Network Layer: In traditional wireless communication networks, once a path is found,
it will be used for a long period of time. However, in cognitive radio, the data path
should be adaptive to the spectrum situation. For example, when a primary user emerges
and blocks a data path, the data path should either be re-routed or should wait for the
recovery of the original path, which is a decision problem. Since the spectrum is
random, the data path could also be random.

• Transport Layer: The congestion control mechanism used for the Internet cannot be
applied directly in cognitive radio networks. A key difficulty is that it is difficult to
distinguish the packet drop due to congestion and the packet blockage due to the
emergence of primary users. Hence, an explicit mechanism should be designed to
inform the source about the primary user emergence such that the source node can
better control the data traffic rate.

In the subsequent sections, we will explain how to address the above challenges for
different layers. For each layer, we will explain the general principle of the spectrum-aware
design and use a typical example of algorithm or protocol to illustrate the principle.

11.1.5 Complex Networks

Another topic that we will mention is the complex network phenomenon in cognitive
radio networks. Although both studies on network design and complex networks concern
communication networks, the latter is more focused on the interesting properties when
the size of network becomes very large.

An important complex network phenomenon in communication networks is the phase
transition of the network connectivity [1311]. Suppose that there are sufficiently many
nodes within a network, there exists a communication link between two nodes with a
certain probability p. Then, there exists a critical value denoted by pc such that, when
p < pc, most nodes are separated; when p > pc, most nodes are connected. Hence, the
network connectivity experiences a sudden change at p = pc, similarly to the conversion
from liquid water to vapor at 100 ◦C. This phenomenon occurs only when the network is
sufficiently large and complex.

Below are some other examples of complex network phenomenon.

• The epidemic propagation in social networks [1312], that is, how the network topology
affects the propagation of certain behavior in complex networks.

• The vulnerability of large power networks [1313], that is, how failures can propagate
within a large power network.

• The small world phenomenon in complex networks [1314], that is, how many interme-
diate acquaintances are needed for any two people to get connect.

• The synchronization phenomenon in many complex systems [1315], that is, how a
network of oscillators become synchronized or lose synchronization.
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386 Cognitive Radio Communications and Networking

Since there exist interactions among secondary users in cognitive radio networks, such
as collaborations or recommendations, it is interesting to study the complex network phe-
nomenon in cognitive radio networks, which provides insights for the design and analysis.
Hence, we will also discuss the complex network analysis for cognitive radio networks.

11.2 Channel Allocation in MAC Layer

Now we begin to study the networking in cognitive radio systems from the MAC layer. As
we have explained, the major task of MAC layer is to allocate communication resource to
different secondary users. In this section, we consider the resource allocation for elastic
data traffics. The discussion on data traffics having constant source rate will be given
in the next section. Since the major challenging for networking with cognitive radio is
the dynamic communication resource, we will see how an effective algorithm addresses
this challenge.

11.2.1 Problem Formulation

There have been many studies on the channel allocation in cognitive radio [1316, 1317]. In
this chapter, we focused on the study in [1318] (best paper award of IEEE Globecom2010).
In the study, a set of L licensed channels are considered. We assume that there are 2N

secondary users, namely source nodes 1, 2, . . . , N and destination nodes 1, 2, . . . , N ,
forming N source-destination pairs. We denote by al

s,i and al
d,i the availability of channel

l at source node s and destination node d, respectively. Value 1 for al
s,i or al

d,i means the
corresponding channel is available; otherwise, the value equals 0.

An example is shown in Figure 11.3. Three transmission pairs are shown in the cognitive
radio network. When the transmitter and receiver have common available channels, they
are able to communicate. Otherwise, like S3 and D3, the communication is unfeasible
because they cannot find a common channel.

We consider the following protocol for the cognitive radio network. Each time slot is
divided into three periods: sensing, access and data transmission.

• Sensing period: Each secondary user senses the spectrum and determines the available
channels. Then, each secondary user chooses one available channel as its working
channel. For a transmitter, the working channel is for transmission, while, for a receiver,
the working channel is for listening.

• Access period: This period mainly solves the possible collisions among multiple sec-
ondary users within the same channel. This period is divided into K mini-slots. Each
source node chooses a random number for the time of sensing a request-to-send (RTS).
Before sending the RTS, the source node listens to the channel; once any spectrum
activity is detected, the source nodes keeps silent. When the destination node receives
an RTS, it sends back a clear-to-send (CTS). Note that such a mechanism is very similar
to a carrier sense multiple access (CSMA) one.

• Data transmission: Once a source node and a destination node are hooked up via RTS
and CTS, they can begin the data transmission during the remainder of the time slot.
The transmission approach can be the same as traditional communication systems.
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S1

D1

S2

D2

S3

D3

[1,2,3]

[2,3]

[1,2]

[2,3]

[1,2]

[3]

Figure 11.3 An example of channel situation.

Obviously, the spectrum sensing period and the data transmission period are not the
focus of the study. We are focused on the access period, particularly, on the problem of
which channel to access. This problem is essentially a resource allocation one.

11.2.2 Scheduling Algorithm

In [1318], the scheduling of the channels is formulated as an optimization problem.
The essential purpose of the optimization is to maximize the utilization of the licensed
spectrum, which coincides with the purpose of cognitive radio.

First, we denote by Ml
s and Ml

d the sets of source nodes and destination nodes that
choose channel l during the spectrum sensing period. We define Ml = Ml

s ∩ Ml
d , namely

the set of transmission pairs that can use channel l for the data transmission.
We denote by {Xk}k=1,...,|Ml | the random backoff values during the access period of the

source nodes choosing channel l. We define W = min{Xk}k=1,...,|Ml |. Then, the utility of
channel l, defined as the probability that a successful transmission occurs over channel l,
is given by

Ul =
|Ml |∑
i=1

P(W = Xi)

K∑
x=1

(p(Xi = x)P (∩j �=i{Xj > x}))

= |Ml|
K|Ml

s |
K∑

x=1

(
K − x

K

)|Ml
s |−1

. (11.1)

We focus on the case K → ∞. Then, we have

K∑
x=1

(
K − x

K

)|Ml
s |−1

= 1, (11.2)

and

Ul = |Ml|
|Ml

s |
. (11.3)
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388 Cognitive Radio Communications and Networking

Obviously, a reasonable metric for the spectrum utility is the average utility over all
channels, which is given by

U =
L∑

l=1

Ul =
L∑

l=1

|Ml|
|Ml

s |
. (11.4)

Then, the goal of channel allocation is to maximize the spectrum utilization U . It can
be formulated as an integer programming problem in which the variables are

xs,i =
{

1, if source i selects channel l

0, otherwise
, (11.5)

and

xd,i =
{

1, if destination i selects channel l

0, otherwise
. (11.6)

Based on the above definitions, we have

Ul =
∑N

i=1 xl
s,ix

l
d,i∑N

i=1 xl
s,i

. (11.7)

Then, the optimization problem is formulated as

max
{xd,i },{xs,i }

L∑
l=1

∑N

i=1 xl
s,ix

l
d,i∑N

i=1 xl
s,i

s.t. xl
s,i = 0 or 1, ∀l, i

xl
d,i = 0 or 1, ∀l, i

L∑
l=1

xl
s,i = 1

L∑
l=1

xl
d,i = 1

xl
s,i = 0, if al

s,i = 0

xl
d,i = 0, if al

d,i = 0. (11.8)

Obviously, the objective function is the spectrum utility. The first two constraints are
the binary values of the variables. The third and the fourth constraints mean that one
source or destination can choose only one channel. The last two constraints mean that a
secondary user should not choose a channel that has been occupied by primary users.
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Cognitive Radio Network 389

11.2.3 Solution

Although the channel allocation has been formulated as an optimization problem, it is
challenging to solve it. Unfortunately, it has been shown in [1318] that the optimization
problem in (11.8) is an NP-hard one. Hence, it is impossible to find a polynomial time
algorithm for the optimization. For a large cognitive radio network, we have to use some
heuristic approaches. In [1318], both centralized and decentralized greedy algorithms are
introduced and achieve good performance. Below we provide a brief introduction on
both approaches.

Centralized Algorithm: In this approach, we divide the transmission pairs into two
groups Gwc and Goc, which have at least one common channel or have no common
channel between the transmitter and receiver, respectively. We also denote by Csd,i the set
of common channels for transmission pair i and define Csd = ∪iCsd,i . Then, the following
steps are used for the channel allocation. The detailed description and pseudocode can be
found in [1318].

1. Initialization: We initialize Gwc, Goc, Csd,i and Csd .
2. Constructing a bipartite graph: We use the sets Gwc and Csd to construct a bipartite

graph, which is denoted by G, where an edge points from a transmission pair to a
channel if the channel is a commonly available one for the transmission pair.

An example is shown in Figure 11.4, in which there are three transmission pairs
and four channels. From the bipartite graph, we can see that transmission pair 2 has
common channels 2 and 3, while channel 2 is also available for the transmitter and
receiver in pair 1; hence, pairs 1 and 2 may conflict over channel 2. Obviously,
the bipartite graph provides the information about available channels for different
transmission pairs, as well as possible collisions among the transmission pairs.

3. Matching maximization: With the aid of the bipartite graph, we can formulate the
optimization problem in (11.8) as a maximum bipartite matching problem in graph
theory. In a bipartite graph, a matching means a set of edges, in which any two
edges do not share a node. In the context of channel allocation, if an edge is within
the matching, we say that the corresponding transmission pair uses the corresponding
channel. The requirement of no common nodes in the matching is due to (a) any two
transmission pairs cannot use the same channel which may incur collision; (b) one
transmission pair can use only at most one channel. A maximum matching means that
adding any more edge to the set will make the set no longer a matching.

SD1 SD2 SD3

C1 C2 C3 C4

Transmission pair

Channel

Figure 11.4 An example of the bipartite graph used in channel allocation.
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390 Cognitive Radio Communications and Networking

For example, in Figure 11.4, the edges {SD1 → C2, SD2 → C3, SD3 → C4} is a
maximum matching. When we add one more edge, say SD2 → C2, the definition of
matching will be violated.

Hence, when we maximize the matching in the bipartite graph, it means that we can
no longer add one more channel to the transmission, thus maximizing (could be locally)
the spectrum utility. Many algorithms can be used for the matching maximization, for
example the greedy algorithm.

Decentralized Algorithm: In the previous discussion, the scheduling is carried out by
a centralized scheduler. In many cases, for example, in ad hoc cognitive radio networks,
there is no such a center that can carry out the optimization for the channel allocation.
The channel allocation has to be carried out in a distributed manner.

A heuristic algorithm is proposed for the decentralized channel allocation, based on
a predetermined priority order. In each time slot, the secondary users sort the channels
using a common order (which could change with time). Then, each secondary user choose
the channel that has the highest priority among all its available channels. In [1318], the
order is simply defined as a round-robin manner; that is, the order at time t is given by

p mod (h+t−1,L)+1 > p mod (h+t,L)+1 > . . . > p mod (h+t+L−2,L)+1, (11.9)

where pc is the priority of channel c. It is easy to see that the secondary users can keep
synchronized in the priority order. The rationale of this round-robin priority is to guarantee
the fairness among different secondary users and channels. The performance analysis of
the decentralized algorithm is left as an exercise problem.

11.2.4 Discussion

Note that the introduced scheduling algorithm is far from solving the scheduling problem
in cognitive radio networks. There are still many problems to be solved, such as

• QoS scheduling: The scheduling algorithm proposed in this section aims at maximizing
the spectrum utilization. However, this may starve some unfortunate nodes, thus not
being able to guarantee the QoS. Hence, it is necessary to study the scheduling for
the QoS of secondary users. In the next section, we will consider the QoS of source
data rate and study the corresponding scheduling algorithm to stabilize the queuing
dynamics.

• Scheduling with limited communications: In the decentralized algorithm discussed in
this section, we assume that the priorities have been predetermined. However, this
may not result in the optimal scheduling. A better approach is to let the secondary
users exchange a limited amount of messages such that the scheduling can be better
adapted to the spectrum environment. This is equivalent to carrying out a distributed
maximization of discrete objective function.

• Partial observability: In this section, we have assumed that each secondary user can
perfectly detect the primary user activity in all licensed spectrum band. However, this
assumption may not be true if the licensed band is wide, since it requires a significantly
high sampling rate to perfectly reconstruct a wideband signal. In this case, a practical
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Cognitive Radio Network 391

approach is to sense only a few channels within the sampling capability. Then, the
scheduling becomes how to allocate different channels to different secondary users to
sense. Due to the randomness of spectrum, the objective function could be chosen as
the expectation of the spectrum utility or other metrics.

11.3 Scheduling in MAC Layer

In the previous section, the criterion for scheduling the channels is to maximizing the
channel utility, or equivalently maximizing the throughput. However, this is not suitable
for traffics with tight QoS requirements, for example, with fixed source data rates. Hence,
in this section, we consider the case with strict data rates and study the scheduling
algorithm to stabilize the queuing dynamics in the cognitive radio network. Note that we
follow the argument in [1319].

11.3.1 Network Model

We consider a cognitive radio network with N secondary users and M primary users,
which are illustrated in Figure 11.5. Each primary user uses a single licensed channel. We
denote by Inm the set of channels that secondary user n interferes when it is accessing
channel m. For simplicity, it is assume that each primary user can interfere all secondary
users using the corresponding channel. Note that there is no channels never used by
any primary user; hence, the total number of channels is also M . We denote by sm(t)

the state of channel m at time slot t : channel m is available when sm(t) = 1 and is not
available otherwise. As in many studies on cognitive radio networks, we assume that
the primary user state follows a Markov chain. Given the primary user state s(t − 1) =
(s1(t), . . . , sM(t)), the probability that channel m is idle is given by Pm(t), namely

Pm(t) = E[sm(t)|s(t − 1)]. (11.10)

1 1 2

3

2

3

4

5Secondary user

Primary user

Secondary base stations

Figure 11.5 An illustration of the primary and secondary networks.
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392 Cognitive Radio Communications and Networking

Obviously, a secondary user can successfully transmit a packet through channel m only
if the following conditions hold

• sm(t) = 1, that is, primary users are not using channel m.
• The transmissions of all other secondary users i do not interfere channel m at the

secondary user.

We assume that each secondary user receives external data in an i.i.d. manner. The
packet arrival process is denoted by An(t) for secondary user n. The average arrival rate
is denoted by λn packets/time slot. Unlike the frequently used Poisson arrival model, we
put an upper bound for the number of packet arrivals, which is denoted by Amax. The
backlog in the queue of secondary user n is denoted by Un(t) at time slot t . The number
of new packets admitted into the queue is denoted by Rn(t) (note that Rn(t) ≤ An(t)

since a newly arriving packet is not necessarily admitted into the queue). The number of
attempted packet transmissions in channel m by secondary user n is denoted by µnm(t) at
time slot t . For simplicity, we assume that µnm is either 0 or 1; that is, a secondary user
either transmit one packet in a given channel or transmit nothing at all. It is interesting to
study the case in which a secondary user can transmit two or more packets in a channel
according to the channel quality; however, this will be much more complicated.

Then, the queuing dynamics are given by

Un(t + 1) = max

[
Un(t) −

M∑
m=1

unm(t)sm(t), 0

]
+ Rn(t), (11.11)

where the constraints are

unm = 0 or 1, ∀m, n (11.12)

unm(t) ≤ hnm(t), ∀m, n

0 ≤
M∑

m=1

unm(t) ≤ 1, ∀n

unm(t) = 1 ⇔
M∑

j=1

N∑
i=1,i �=n

Im
ij uij (t) = 0, m, n

0 ≤ Rn(t) ≤ An(t). (11.13)

The physical meaning of the constraints is:

1. The transmission is either successful (unm=1) or not (unm = 0).
2. The transmission is limited by the spectrum occupancy.
3. Each secondary user can transmit over only one channel.
4. If secondary user transmits within a channel, all channels that will be interfered will

not be used by other secondary users.
5. The number of packets admitted into the queue is limited by the number of arriving

packets.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Cognitive Radio Network 393

11.3.2 Goal of Scheduling

In [1319], it is assumed that the goal of scheduling is to maximize the weighted throughput.
To that end, we define

rn = lim
t→∞

1

t

t−1∑
s=0

Rn(s), (11.14)

which means the throughput of secondary user n. We also define a metric to measure how
much interference the secondary users cause on the primary users, which is given by

cm(t) = I (a collision with primary user occurs in channel m in time slot t). (11.15)

Then, the average collision with primary users in channel m is defined as

cm = lim
t→∞

1

t

t−1∑
s=0

cm(s). (11.16)

Then, the goal of scheduling is to carry out the following optimization:

max
N∑

n=1

wnrn

s.t. 0 ≤ rn ≤ λn, n

cm ≤ ρm, m

r ∈ �, (11.17)

where wn is the weight for secondary user n, r = (r1, . . . , rN) and � is the network
capacity region within which the queuing dynamics are stable.

Obviously the objective function is the weighted sum of throughputs. The meanings of
constraints are given below:

1. The throughput cannot be larger than the packet arrival rate.
2. The collision with primary users should be confined within a certain range; otherwise,

the secondary users will cause too much interference to the primary system.
3. The throughput should be within the capacity of the cognitive radio network.

11.3.3 Scheduling Algorithm

Now, we begin to study how to scheduling the data traffic in cognitive radio in order to
optimize the constrained objective function in (11.17). There are two components in the
scheduling algorithm:

• Flow control, that is, how to admit the packets into the queues. Here, the control
variable is Rn(t), that is, how much packet to admit into the queues.

• Resource allocation, that is, how to allocate different channels to different users. Here,
the control variable is unm(t), that is, which secondary user should be scheduled over
which channel.
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394 Cognitive Radio Communications and Networking

The two components are formulated as the following two separate optimization prob-
lems. The integration of the two components is called Cognitive Network Control (CNC)
algorithm [1319].

• Flow control: The packet admittance is carried out according to the following opti-
mization problem:

min
Rn(t)

Rn(t)(Un(t) − V wn)

s.t. 0 ≤ Rn(t) ≤ An(t). (11.18)

Here V is a predetermined constant which controls the tradeoff between throughput
and delay (when the queue length is too large, the delay will be increased).

The solution is obvious:

Rn(t) =
{

An(t), if Un(t) ≤ V wn

0, if Un(t) > V wn

,

that is, if the queue length is not large, all arriving packets are admitted; otherwise, no
packet admittance.

• Resource allocation: The resource allocation can be formulated as another optimization
problem. Before formulating the optimization problem, we need to define a ‘vir-
tual’ queue which represents the amount of collisions with primary users. The dynamics
of queue are defined as (recall that cm(t) is the notation for the account of collisions
with primary users)

Xm(t + 1) = max[Xm(t) − ρm, 0] + cm(t), (11.19)

where Xm is the backlog of the virtual queue in channel m. Recall that ρm is the average
number of collisions at channel m. An intuitive explanation for the virtual queue is that,
when the number of collisions is more than the average one, the queue accumulates;
otherwise the queue depletes such as that we allow more collisions. The incorporation
of this virtual queue is used to prevent too many collisions with primary users and
avoid the violation of the game rule of cognitive radio.

Based on the definition of the virtual queue, we can define the optimization problem
for the resource allocation, which is given by

max
{unm}

∑
n,m

unm(t)

(
Un(t)Pm(t) −

M∑
k=1

Xk(t)(1 − Pk(t))I
k
nm

)

s.t. The constraints in (11.12). (11.20)

An intuitive explanation is given as follows: Un(t)Pm(t) means the desire of transmit-
ting the packet in secondary user n using channel m, since a larger queue length or
a larger channel idle probability motivates the system to assign unm = 1; meanwhile
the term

∑M

k=1 Xk(t)(1 − Pk(t))I
k
nm provides a penalty on the possible collisions with

primary users (here I k
nm takes all possibly interfered channels into account); then, the

scheduling should achieve a tradeoff between both the queue depletion and the colli-
sions with primary users. The solution of the above optimization will be discussed in
the next subsection.
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Cognitive Radio Network 395

When all channels are orthogonal to each other (that is, there is no cross-channel
interference), the optimization problem in (11.20) can be simplified to

max
{unm}

∑
n,m

unm(t)(Un(t)Pm(t) − Xm(t)(1 − Pk(t)))

s.t. The constraints in (11.12). (11.21)

Note that the above simplified problem is a maximum weight match (MWM) problem
on an N × M bipartite graph. If a centralized scheduling is used, this can be achieved
within a polynomial time.

11.3.4 Performance of the CNC Algorithm

Now, we begin to study the the performance of the CNC algorithm. It follows the frame-
work of Lyapunov function which Tassiulus and Emphremides have exploited for the
stability of controlled queueing dynamics [1296]. Recall that this is also discussed, when
we discuss the game between PUE attackers and cognitive radio network.

To that end, we let L(q) be a function of queue lengths q, which is scalar and nonnega-
tive. We call it Lyapunov function, which can be considered as the energy of the queuing
system. The Lyapunov drift, intuitively meaning the decrease of the system energy, is
defined as

�L(t) = E[L(q(t + 1)) − L(q(t))]. (11.22)

Obviously, the smaller the Lyapunov drift is, the more stable the queuing dynamics
are. It has been shown in [1319] that

�L(t) − V E

[
N∑

n=1

wnRn(t)

]
≤ B − E

[
N∑

n=1

Un(t)

(
M∑

m=1

unm(t)Sm(t) − Rn(t)

)]

− E

[
M∑

m=1

Xm(t)(ρm − ĉm(t))

]

− V E

[
N∑

n=1

wnRn(t)

]
, (11.23)

where V is a control parameter.
In [1319], the Lyapunov function is defined as

L(q(t)) = 1

2

[
N∑

n=1

U 2
n (t) +

M∑
m=1

X2
m(t)

]
. (11.24)

In contrast to the stability analysis for traditional queuing systems, in which the Lyapunov
function is defined as the square sum of the queue lengths, the Lyapunov function defined
for the cognitive radio network has an extra term, namely the square sum of the lengths of
the virtual queues, which addresses the unique issue of collisions with primary users. If we
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396 Cognitive Radio Communications and Networking

consider the virtual queues as normal queues, the analysis falls in the same framework as
traditional networks.

Then, we have the following fact, which is called the Optimal Stationary Randomized
Policy in [1319]. Consider any rate vector denoted by (λ1, . . . , λN) (recall that λn is the
average arriving rate of secondary user n). We can always find a stationary randomized
scheduling policy STAT . It selects feasible solutions RSTAT

n (t), uSTAT
nm (t) as a function of

the channel state P(t) and H(t). They can yield the following equations:

E[RSTAT
n (t)] = r∗

n , (11.25)

and

uSTAT
n ≡ lim

t→∞
1

t

t−1∑
s=0

E

[
M∑

m=1

uSTAT
nm (s)sm(s)

]
≥ r∗

n , (11.26)

and

ĉ ≡ lim
t→∞

1

t

t−1∑
s=0

E[ĉSTAT
m (t)] ≤ ρm. (11.27)

This claim can be proved by using the approaches in [1320]. Then, it is shown in
[1319] that the CNC algorithm can minimize the right hand side of (11.23) over all
feasible actions that can be made in time slot t .

11.3.5 Distributed Scheduling Algorithm

For the distributed case, we consider the case of orthogonal channels. Hence the opti-
mization problem is formulated as (11.21), which is essentially an MWM problem. To
achieve a distributed version (also constant time), a greedy maximum matching algorithm
is proposed in [1319].

The algorithm is described as follows:

• Step 0: Assign weights to each communication link. The weights are obtained from
(11.21).

• Step 1: Choose the link having the largest weight. Activate it.
• Step k (k > 1): Choose the link having the largest weight among the links that have

not been activated and do not have conflict with the activated links. If there is no more
feasible link, stop.

The greedy algorithm tries to increase the objective function as much as possible in
each step. However, once a link is activated, it does not remove it. Hence, the algorithm
could be suboptimal. It has been shown in [1319] that the throughput utility achieved by
the CNC algorithm is within a bounded range of the optimal performance.

11.4 Routing in Network Layer

In this section, we focus on the network layer and study the routing issues in cognitive
radio networks.
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Cognitive Radio Network 397

11.4.1 Challenges of Routing in Cognitive Radio

The key challenge for routing in cognitive radio networks is the dynamical spectrum
occupancies (or equivalently the dynamical transmission opportunities). When the channel
being used by a secondary user is occupied by primary users, the corresponding link is
broken; thus the data route no longer works. Then, there are three possible actions the
secondary user can take:

• Wait: If the primary users will leave the channel soon, the secondary user can wait
until the channel is cleared.

• Switching channels: If there are multiple channels, the secondary user can also try to
sense other channels and resume the transmission until an available channel is found.

• Re-routing: If there is only one channel and the primary user does not leave quickly,
a new path has to be found in order to resume the data traffic.

Note that all the above actions incur cost. It incurs packet delay when waiting for the
primary user to leave. In most wireless hardware, it takes time to switch to a new channel.
It also incurs significant overhead to carry out re-routing since the secondary users need
to exchange messages on the path information. Then, it is determined by the dominating
factor to choose the corresponding action. This results in two type of routing schemes:

• Stationary Routing: The data traffic has a fixed route. This type routing requires a
quick channel switch mechanism or the primary user can leave quickly (that is, the
spectrum is highly dynamical). Or when the spectrum is highly stationary (in this case,
the network is similar to a traditional one), the route can also be stationary, since the
primary users seldom break the data path; however, in this case, a re-routing mechanism
may be needed in case the emergence of primary users.

• Dynamical Routing: In this case, the data traffic does not have a fixed route. The packet
forwarding is adaptive to the spectrum situation or is random. The dynamical routing
is suitable for the case in which the spectrum is moderately dynamical and the channel
switching incurs significant overhead; otherwise, the secondary users can either wait
for the leave of primary users or quickly switch to another channel.

The change of routing strategy with respect to the level of dynamical spectrum is illus-
trated in Figure 11.6. Hence, the selection of routing strategy should be highly dependent
on the spectrum environment and the hardware specifications of the secondary users.

dynamicalstationary

Dynamical routing

Spectrum occupancy

Stationary routingStationary routing

Figure 11.6 An illustration of the change of routing strategy with respect to the spectrum
dynamics.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



398 Cognitive Radio Communications and Networking

11.4.2 Stationary Routing

In this subsection, we study the stationary routing in cognitive radio network, that is,
the data path is fixed throughout the operation of the network. There have been many
corresponding studies. We follow the one in [1321], which takes the following unique
challenges in cognitive radio networks as summarized in Section I of [1321]:

• The routing can protect the primary users explicitly, as illustrated in Figure 11.7.
• There are two classes of secondary user services: class I assigns more significance to

end-to-end latency under the constraint of primary user interference; class II puts more
priority on the protection of primary users at the cost of certain performance loss for
cognitive radio network.

• The routing algorithm must be scalable and takes the routing and spectrum selection
into account jointly.

The algorithm proposed in [1321] is called Cognitive Radio Routing Protocol (CRP).
Briefly speaking, CRP has the following stages:

• Stage 1. Spectrum Band Selection: In this stage, the secondary users choose the best
spectrum band according to their local observations. An optimization problem is for-
mulated for each class of secondary users. Each secondary user develops an initiative
for the routing procedure.

• Stage 2. Next Hop Selection: In this stage, the initiative of each secondary user is
mapped to a delay function when the Route Requests (RRQE) messages are exchanged.
A ranking of neighboring nodes are established by the delay function. And finally a
routing path is formed by the destination.

Moreover, a mechanism for route maintenance is also proposed in [1321] in case that
any cognitive radio link is broken due to the emergence of new primary users. The details
of CRP are described in the remainder of this subsection.

SU

SU

SU

SU

SU

PU

PU

Figure 11.7 An illustration of the avoidance of primary user regions.
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Cognitive Radio Network 399

11.4.2.1 Stage 1. Spectrum Selection

To select the spectrum (also for the route selection), we need metrics to measure the use-
fulness of different spectrum channels. In [1321], the following five metrics are selected:

• Probability of bandwidth availability. Essentially this metric measure the possibility that
the channel is not occupied by primary users and can be used for data transmission.
For channel i in band k, this probability is estimated as

pk
i = αk

i

αk
i + βk

i

, (11.28)

where 1
αk
i

( 1
βk
i

) is the average time that channel i in band k is idle (busy). Obviously,

it is more desirable to choose a channel with a higher available probability. Then, the
available probability of the channels selected within band k is given by

Mk
B =

∏
i∈Ck

pk
i , (11.29)

where Ck is the set of channels selected to use within band k. Obviously, this expression
is based on the assumption that the spectrum occupancies at different channels are
mutually independent.

• Variance of capacity. This metric measures the variance of the capacity that can be
provided by a band. The larger the variance is, the more jitter the transmission will
incur. Particularly, it has been found that a large variance of capacity will cause a
significant difficulty in the design of transport layer [1322], which will be explained in
detailed later. To compute this metric, we define the metric for channel i in band k as

ξk
i = 1

Nv

Nv∑
s=1

[
1

βk
i

− tOFF
s

]2

, (11.30)

where Nv is the number of previous busy periods (which can be considered as a window
for estimating the variance) and tOFF

s is the length of the s-th busy period. Obviously,
ξk
i is the estimation of the variance of busy period within the time window specified

by Nv . Then, for band k, we can define the metric as

V k
B = ψk

∑
i∈Ck

ξ k
i , (11.31)

where ψk is the bandwidth of each channel in band k. The purpose of scaling by ψk is
to compute the variance of the number of bits that can be conveyed.

• Spectrum propagation characteristics. Different spectrum bands may have different
characteristics of radio propagation. Particularly, the lower frequency bands may have
better performance. In [1321], this metric is defined as

Dk =
[(

c

4πfk

)2
P CR

tx

P CR
rx

] 1
β

, (11.32)
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400 Cognitive Radio Communications and Networking

where c is the light speed, P CR
tx is the maximum transmit power of secondary user,

P CR
rx is the threshold of receive power at the receiver, fk is the frequency of the band

and β is the attenuation factor.
• Protection for primary users: A key consideration of cognitive radio network is to

avoid interference to primary users. Hence, this should be considered in the spectrum
selection and routing. Areas with primary users can be considered as minefields and
secondary users should try to avoid them.

When a secondary user forwards its packets to a neighbor, it needs to consider
the overlap between the transmission ranges of the next hop neighbor and primary
user. For secondary user i and primary user j , this overlap can be computed in the
following way:

Ai,j = D2
K cos−1

{
D2

i,j + D2
k − (r

j

k )2

2Di,jDk

}

+ (r
j

k )2 cos−1

{
D2

i,j − D2
k + (r

j

k )2

2Di,j r
j

k

}

− 1

2

√
s(s − 2Di,j )(s − 2Dk)(s − 2r

j

k ), (11.33)

where s = D2
i,j + D2

k + r
j

k , Di,j is the distance between secondary user i and primary
user j , Dk is the propagation distance in (11.32) and r

j

k is the transmission range of
primary user j . The detailed derivation can be found in [1321]. Then, for secondary
user i and spectrum band k, the metric for measuring the protection of primary users
is defined as

Ak
i =

∪j=1,...,Np
Ai,j

πD2
k

, if Di,j < Dk + r
j

k , (11.34)

where Np is the number of primary users.
• Consideration on spectrum sensing: Since it is difficult to distinguish the signal of

primary users from that of secondary users (particularly when the energy detection is
used), when a secondary user is carrying out spectrum sensing, nearby secondary users
are forbidden to transmit in order to avoid interfering the spectrum sensing procedure.
Hence, the secondary users close to a selected data path are substantially affected by
this requirement from spectrum sensing.

To formulate the metric representing the requirement of spectrum sensing, we denote
by T z

s and T z
t the times of spectrum sensing and transmission for secondary user z,

which lies within the carrier-sensing time interval of secondary user y. When we
consider the requirement of spectrum sensing of both users x and z, the available
time for data transmission of user y is then illustrated in Figure 11.8. Hence the time
available for the data transmission of user y is given by

T y
a = max

j
{T j

s + T
j
t } − ∪{T i

s }, i ∈ Iy, (11.35)
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Spectrum
sensing

Data
transmission

Spectrum
sensing

Spectrum
sensing

Spectrum
sensing

Data
transmission

Available time
for data transmission

User x
time

User z
time

User y
time

Figure 11.8 An illustration of the impact of spectrum sensing on the data transmission of nearby
secondary users.

where Iy is the set of secondary users that can be interfered by user y. Based on the
above definition and discussion, we define the metric as

T
y

f = T
y
a

max{T j
s + T

j
t }

, i ∈ Iy. (11.36)

Based on the above definitions of metrics, the spectrum selection problem for secondary
user x can be modeled as the following optimization problem:

max
k

OI = DkT
x
f

or min
k

OII = DkA
k
x

s.t. Mk
B > P

|Ck |
B

V k
B < JT

Bk
c > ψk|Ck|

T s
� + T c

�(1 − Mk
B) < Tth. (11.37)

The explanation of the above optimization problem is given as follows:

• Objective function: There could be two types of objective functions, namely OI and
OII . For OI , the goal is to maximize the transmission time such that the end-to-
end delay can be minimized; the avoidance of interference to primary users is of
the secondary priority. For OII , the goal is to minimize the interference caused to
primary users.
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402 Cognitive Radio Communications and Networking

• The first constraint: The probability of available spectrum should be lower bounded by
a threshold.

• The second constraint: The variance of the throughput should be upper bounded by a
threshold.

• The third constraint: The coherence bandwidth Bk
c should be large enough.

• The fourth constraint: T s
� and T c

� denote the inter- and intraspectrum switching time.
Hence, the switching time latency should be smaller than a threshold.

11.4.2.2 Stage 2. Next Hop Selection

The route selection is based on the optimization problem in (11.37). When each secondary
x receives an RREQ packet, it computes the optimal objective function OI or OII . Then,
the optimal objective function, called initiative in [1321], is mapped to a delay. The RREQ
packet is then broadcasted according to this delay. The final destination will choose the
route with max

∑
j O

j

I or min
∑

j O
j

II .

11.4.2.3 Route Maintenance

We assume that a route is broken due to the mobility of secondary users. For example,
when a secondary user in a data path moves to an area with many primary users, this
route may be damaged according to the protection of primary users. At this time, a new
route should be found to resume the data traffic.

A simple scheme for route maintenance is discussed in [1321]. In such a scheme, it is
supposed that each secondary user knows its own location (e.g., using a GPS), as well
as the locations of primary users. When a secondary user finds that it is close to primary
users by comparing with a threshold, it signals its previous hop user that a new route
discovery procedure should be initiated. Then, the previous hop user sends out RREQ
packets and finds a new route.

11.4.3 Dynamic Routing

Now, we use the proposed scheme in [755] to illustrate how to carry out dynamic routing.
It is assumed that the secondary user do not have prior information about the spectrum
situation. Hence, the reinforcement learning (introduced in Chapter 7) is applied for the
secondary users to learn how to carry out the routing.

First, we describe how the MAC layers works in the network studied in [755]. Suppose
that secondary user a plans to send a packet to secondary user b. It first choose a channel
that is idle by carrying out spectrum sensing. Then, it sends a request-to-send (RTS) over
this available channels. If no clear-to-send (CTS) from secondary user b is received in
a predetermined period of time, a sends the RTS again until it receives the CTS. When
b sends back the CTS, it also knows that a will transmit over this channel; thus, b will
wait for the packets from a in this channel. Note that the RTS-CTS mechanism is the
same as many traditional communications systems, such as the systems with CSMA-CA
mechanism. However, the novelty of this approach is that the channel information is
implicitly conveyed in the RTS message.
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Neighbor
Selection

Packet
Forwarding

Updating
Q-table

Figure 11.9 The Q-learning procedure for routing.

Then, we describe how the reinforcement learning is applied in the routing procedure,
as illustrated in Figure 11.9. Since we assume that the secondary users do not any prior
information about the spectrum activities, each secondary user (say user a) keeps a Q-
table in which each element is a 2-tuple, denoted by Qa(b, d) where b is the ID of a
neighbor and d is the destination. Intuitively, Qa(b, d) means the metric of routing when
secondary user a sends a packet to destination d via user b. A larger Qa(b, d) implies
that secondary user a should choose to forward packets to neighbor b more frequently.

There are two approaches for selecting the next-hop neighbor when secondary user a

has a data packet for destination d:

• Deterministic forwarding: In this approach, secondary user a selects the neighbor having
the highest Q-value to forward, that is,

t = arg max
b∼a

Qa(b, d), (11.38)

where b ∼ a means that b is a neighbor of a. Note that [755] adopted this approach.
• Stochastic forwarding: In the stochastic forwarding, secondary user chooses the for-

warding neighbor in a random manner. There are also two approaches for the stochastic
forwarding. In the first approach, user a forwards packets to t obtained in (11.38) with
a predetermined probability p or, with probability 1 − p, randomly selects another
neighbor other than t . Usually p > 0.5. In the second approach, the probability for
choosing a neighbor b is given by the following Boltzman distribution:

P(choose b) = exp(βQa(b, d))∑
c∼a exp(βQa(c, d))

, (11.39)

where β is a parameter called inverse temperature. Obviously, when Qa(b, d) is larger
(that is, the reward of choosing neighbor b is larger), the probability of choosing
neighbor b is also larger. The parameter β is used to control the level of concentration
on the neighbors with good Q values. When β is large (that is, low temperature), the
selection will be more focused on neighbors having large Q values. When β → ∞,
the rule converges to the deterministic one in (11.38). When β is small (that is, the
temperature is large), the probability of selection is more dispersed among all neighbors.

An advantage of the stochastic forwarding over the deterministic one is as follows.
When the forwarding neighbor is chosen randomly, each neighbor has a chance to be
selected. Hence, a good candidate neighbor having a bad initial Q-value can get chance
to improve its Q-value such that it will receive more selections in the future. In the
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404 Cognitive Radio Communications and Networking

deterministic case, if a good candidate neighbor has a bad initial Q-value, it may never
be selected since another neighbor may dominate it forever.

After selecting the forwarding neighbor, the secondary user needs to update the Q-value
according to the experience of this action. Usually, the updating rule is given by

Qt+1
a (b, d) = (1 − α)Qt

a(b, d) + αrt , (11.40)

where t is the index of time, rt is the reward in the t-th action and 0 < α < 1 is the factor
controlling the speed of learning. When α is too large, it may be considerably impacted
by the randomness in the reward; when α is too small, the learning could be too slow.
Hence, it is important to choose a good value for α.

When secondary user a is able to know the spectrum occupancies of nearby secondary
users, it can add one more item to the Q-value, that is, the local spectrum state s.
Hence, the Q-value is changed to Qa(b, d, s). The local spectrum state s can refine
the Q-values and make the learning adaptive to instantaneous spectrum situations. In the
previous mechanism of Q-value, the forwarding neighbor is unaware of the local spectrum
situation. Even when a neighbor, say b, is unable to transmit due to the emergence of
primary user, secondary user a still forward its packet to b, if Qa(b, d) is large. The
addition of the local spectrum state s can prevent such a scenario. However, it requires
the information exchange among neighbors; moreover, the learning speed will be much
slower since now we have much more Q-values to learn.

The learning based dynamical routing can track the dynamics of spectrum occupancies.
Even if new primary users emerge or some primary users leave, the Q-learning based
routing can still adapt to the new spectrum environment since the Q-values can be updated
in time.

11.5 Congestion Control in Transport Layer

As we have explained, the main functionality of the transport layer is the congestion
control, that is, controlling the source traffic rate to avoid congestions at bottlenecks in
the network. Due to the new mechanism of spectrum access, new challenges arise for
the design of congestion control in cognitive radio networks. In this section, we will
first introduce the mechanism of congestion control in Internet. Then, we will explain
the new challenges in cognitive radio networks and discuss various schemes addressing
these challenges.

11.5.1 Congestion Control in Internet

On the Internet, congestion control, usually in TCP, is carried out by locally estimating
the possible congestions (not by explicit congestion notifications (ECNs)). The details of
TCP can be found in [1323]. In TCP, each source node maintains a sliding window, which
allows the source node to transmit multiple packets before sending an acknowledgement.
A key mechanism in TCP is how to determine the window size. A general principle of
TCP2 is: before a congestion occurs, the window size increases in an additive manner;

2 There are many versions of TCP. Each version has different details for the window size control.
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Figure 11.10 An illustration of the evolution of window size. (a) Increase of window size.
(b) Evoluation of window size.

when a congestion occurs, the window size decreases exponentially. Since there is no
explicit notification on the congestion, the source node claims a congestion when the
timer for the acknowledgement (ACK) of a packet expires (at this time, the source node
believes that the packet is lost or seriously delayed due to the congestion).

An illustration of the window size increase is shown in Figure 11.10 (a). At the very
beginning, the window size is 1. When an ACK is received, the window size is increased
by 1. Hence, after 3 batches of transmission, the window size becomes 4. As shown
in Figure 11.10, when the window size is increased to a threshold (equaling 8 at time
slot 3), the increase of the window size becomes linear. At time slot 7, a packet drop
occurs because the timer for ACK expires. Hence, the window size is decreased to 1. The
increase procedure is repeated again and the threshold is set to 6, that is, half of the peak
window size in the previous increase stage.

11.5.2 Challenges in Cognitive Radio

Note that the traditional congestion control mechanism is designed for wired networks
on the Internet, in which the main reason for packet drop is congestion. Hence, the
congestion is determined by the drop of packets. However, this assumption is incorrect
in wireless communication networks, where the packet drop can also be incurred by
bad channel conditions (e.g., deep fading situation). Hence, if we still apply the tradi-
tional congestion control mechanism in wireless network, it may cause false action of
the source node. For example, an intermediate communication link experiences a tem-
porary deep fading and thus causes a packet drop. Actually, the bad channel condition
may be recovered soon and there is no congestion; however, the source node will signifi-
cantly decrease its traffic rate, thus causing the underutilization of the wireless spectrum.
Hence, many approaches have been proposed to address the congestion control in wireless
communication network.
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406 Cognitive Radio Communications and Networking

The situation is even more involved in cognitive radio networks due to the novel
mechanism of spectrum access. As pointed out by [1322], the following issues in cognitive
radio networks must be addressed for the design of congestion control:

• Spectrum sensing state: Each secondary user needs to sense the spectrum. During the
spectrum sensing period, the secondary user is unable to transmit, thus making the data
path virtually disconnected and causing the delay of packet ACKs. If the source node
simply claims a congestion upon a packet timer expiration, it will substantially decrease
its traffic rate while the data path actually will be recovered once the spectrum sensing
is completed.

• Effect of primary user activity: When a primary user emerges, it is possible to inter-
rupt a communication link in cognitive radio. Then, the corresponding secondary user
will temporarily lose the capability of forwarding packets, as well as sending ACKs
upstream. The secondary user can either wait for the primary user to leave or search for
a new available spectrum channel. Again, the interruption may unnecessarily trigger
the significant reduction of traffic rate at the source node if it confuses the primary user
interruption with a real network congestion.

• Channel switching: When a secondary user changes its current working channel (e.g.,
because of a primary user emerging in this channel), it is unable to transmit. However,
after a certain channel switching time, the transmission can be recovered. Hence, there
is not need to decrease the transmission window size.

11.5.3 TP-CRAHN

In [1322], a protocol of congestion control has been proposed to address the above
challenges in the transport layer of cognitive radio networks. The key feature of the new
protocol is that multiple new states are added to the transport layer, which represent the
new features in cognitive radio, as illustrated in Figure 11.11. Then, we will discuss these
states and the corresponding state transitions.

Normal

Connection
Est.

Spectrum
sensing

Spectrum
change

Route
failure

Figure 11.11 An illustration of state transmission in TP-CRAHN.
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Cognitive Radio Network 407

11.5.3.1 States

There are multiple states in the TP-CRAHN (here we omit the state of Mobility Predicted
proposed in [1322] since it is less relevant to the cognitive radio mechanism):

• Normal: This state is the same as the state in traditional TCP. Within this state, the
connection operates as a traditional wireless network. When the connection is estab-
lished, there is no primary user and the secondary users are not interrupted by the
spectrum sensing period, the connection stays in the normal state. The normal state of
TP-CRAHN is different from traditional TCP in the congestion avoidance and feedback
information, which will be explained later.

• Connection Establishment: The connection is established during this state. The pro-
cedure of the connection establishment is very similar to the traditional three-way
handshake in TCP newReno. The key difference is that some basic information for the
operation of cognitive radio is also established during this procedure. First, a synchro-
nization packet (SYN) is sent by the source node to the destination. The intermediate
nodes attach their information including their IDs, time stamps and tuples (t1

i , t2
i , t si ),

where i is the ID, t1
i is the time to go before the next round of spectrum sensing, t2

i is
the time interval between two spectrum sensing actions and t3

i is the time needed for
spectrum sensing.

• Spectrum Sensing: In this state, one (or more) secondary user is in the state of spectrum
sensing and cannot forward data packets. During this period, the connection needs to
do two things:
(a) Flow Control: Since the secondary user in spectrum sensing (say, user i) is unable

to forward or receive packets, user i − 1, which is the node right before user i

may be overwhelmed by the incoming packets. Hence, the effective transmission
window size can be changed to

ewnd = min{cwnd, rwnd, B
f

i−1}, (11.41)

where B
f

i−1 is the free buffer space of user i − 1. Then, the buffer of user i − 1
will not overflow. More details of the operations can be found in [1322].

(b) Sensing Time Regulation: If no (or limited) primary user activities have been
detected in a channel, the spectrum sensing time over this channel can be reduced
in order to reduce the end-to-end throughput. The detailed mechanism for reducing
the spectrum sensing time is given in [1322].

• Spectrum Change State: In this state, a communication link is interrupted by primary
user(s) and thus cannot forward packets. An illustration is given in Figure 11.12. Sup-
pose that secondary user i is affected by a primary user. Upon detecting the primary
user, it sends an explicit pause notification (EPN) to the source node to freeze the
whole connection, since the connection is temporarily in outage. Then, user i sends a
list of available channels to user i − 1, which in turn feeds back a channel selection to
user i. After this handshake, a new spectrum channel is established between user i and
user i − 1. The next task is to measure the capacity of the new channel. User i sends
back a probe packet and receives an ACK from user i − 1. From the probe packet and
ACK, the bandwidth of the new channel can be estimated to update the round trip time.
Details can be found in [1322].
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408 Cognitive Radio Communications and Networking

i−1 i+1i

PU range
Channel list

Channel selection

Probe

ACK

(a) (b)

i−1 i

Figure 11.12 An illustration of spectrum change. (a) Illustration of the primary user interruption.
(b) Information exchange for spectrum change.

As we have mentioned, the operation in the normal state is different from the traditional
TCP in the following two aspects:

• Explicit Congestion Notification (ECN): In traditional communication networks, the
congestion is detected by packet losses or the timeout of ACK. This is reasonable in
wired communication networks since the main reason of packet loss or long delay is
congestion. However, as we have explained, there could be many other reasons for
packet loss or long ACK latency such as fading in general wireless communication
networks or primary user emergence in cognitive radio networks. Hence, it is more
reasonable to use ECN in cognitive radio networks in order to differentiate different
reasons of congestions. The ECN packet is sent from the affected node to the source
node in two ways: (a) an independent ECN packet is sent to the source node directly;
(b) the ECN message is also piggybacked to data packets that are sent to the destination;
then the destination node will send the ECN message to the source node in an ACK
packet. The procedure is illustrated in Figure 11.13. Upon receiving an ECN message,
the source node make an assessment on the timeliness of the ECN. If the time stamp
of the ECN is within a certain range, the source node will decrease its window size.

• Feedback through ACK: Each intermediate node along the path will piggyback the
following information to the data packets to the destination node, which will be sent
back to the source node in ACK packets: (a) residual buffer space; (b) observed link
bandwidth; (c) total link latency.

11.5.4 Early Start Scheme

As we have seen above, it is reasonable to freeze or slow the whole connection or some
upstream nodes when an intermediate secondary user is interrupted by primary users.
Only when the affected secondary user sends back a notification to clear the freezing, can
a packet before the affected node resume its journey along the data path. We call such
a strategy the ‘slow-and-start’ one, which is similar to what drivers do when meeting
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Source node Affected node Destination node

ECN message Data

ECN

ACK | ECN

Figure 11.13 An illustration of the ECN transmission.

perturbations on the highway. Hence, this will bring interruptions to the data traffic.
As we will see, even small perturbations to the data traffic may cause a serious dam-
age. We will find that the reason for the damage is due to the ‘slow-and-start’ policy.
Hence, we will proposed an early start policy within the framework of network utility
maximization.

11.5.4.1 Traffic Perturbation

To analyze the impact of the perturbation on the data traffic, we regard the packets as
vehicles running on a highway due to the similarity between data and vehicle traffics. For
simplicity, only one data flow along a single path is considered; otherwise, the analysis
for multiple traffics will be much more involved. We consider a fluid model; that is,
the time and space in the data traffic are continuous, thus facilitating the analysis of
stability. Although being different from the real data traffic in cognitive radio networks,
the continuous model will reveal much insight.

We assume that many packets are distributed along a path with ascending indices; that
is, packet n immediately follows packet n − 1. We denote by xn the location of the n-th
packet, which is a continuous variable. The dynamics of packet n are assumed to satisfy

d2xn(t)

dt2
= f (xn−1(t) − xn(t)) − b

dxn(t)

dt
, (11.42)

where d2xn(t)

dt2 is the acceleration rate, dxn(t)

dt
is the speed and f (xn−1(t) − xn(t)) is a

monotonically increasing function representing the impact of interpacket interval on the
acceleration rate. This model is similar to the one proposed for the vehicle traffics in
[1324]. The mode of the packet dynamics in (11.42) are justified by the following features:

• When the distance between packets becomes small, the behind packet will slow down in
order to avoid congestion/collision. When primary user interruption occurs and causes
a packet to stop, the succeeding packets will slow down more radically and the speed
will decrease to zero asymptotically.

• When the speed is high, the acceleration rate may become negative and bring the speed
down, thus avoiding an infinite speed. This is reasonable due to the control mechanism
of transmission window.
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410 Cognitive Radio Communications and Networking

We assume that the initial condition satisfies xn−1(0) − xn(0) = �x; that is, the packets
are evenly distributed. We assume that there exists a positive number v such that

f (�x) = bv, (11.43)

which implies that xn(t) = xn(0) + vt is a solution to the differential equation in (11.42).
It is very difficult to analyze the stability of the nonlinear dynamics. To linearize the

dynamics, we denote by yn(t) the disturbance of the stationary state xn(0) + vt , that is,

xn(t) = xn(0) + vt + yn(t). (11.44)

On assuming that yn(t) is sufficiently small and by linearizing the dynamics in (11.42),
we have

d2yn(t)

dt2
= f0(yn−1(t) − yn(t)) − b

dyn(t)

dt
+ o(y(t)), (11.45)

where f0 is the derivative of function f at �x and y = (y1, y2, . . . , y(N)). In the subse-
quence, we ignore the higher order term o(y(t)) and consider only the linear dynamics.

By defining dyn

dt
= θn and z = (y1, y2, . . . , yN, θ1, . . . , θN), it is easy to verify that the

second-order dynamics in (11.45) can be rewritten in a vector form, which is given by

dz
dt

= Az(t), (11.46)

where

A =
(

0 I
F −bI

)
, (11.47)

where 0 is the zero matrix, I is the identity matrix and F is a circulant matrix with the
first row being (−1, 0, . . . , 0, 1). For example, when N = 4, we have

F = f0




−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1


 . (11.48)

Then, we can prove the following conclusion for the system dynamics, whose detailed
proof is given in [1325].

Proposition 11.1 The traffic dynamics are stable for all N if and only if the following
condition holds:

f0 ≥ b2

2
. (11.49)

Some numerical simulation results related to this conclusion can be found in [1325].
Now, we discuss the implications of the conclusion in Proposition 11.1 in the context

of cognitive radio networks. According to Proposition 11.1, when f0 is not large enough,
the traffic is unstable at the equilibrium point; hence, a small perturbation may result in
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Cognitive Radio Network 411

the traffic congestion, which is called phantom traffic jam [1326] in the community of
transport traffic analysis, even if the highway can provide sufficient space when there is
no perturbation. People have found that the phantom jam is caused by the following two
reasons [1326]:

• Overreaction of drivers: that is, the drivers may be too sensitive to its speed, or equiv-
alently b is too large. When b is large, the driver is more included to slow down when
its speed is high.

• Chain reaction of followers: that is, the reaction to the preceding vehicle. For example,
suppose that three cars A, B and C are running on the highway in the order of C →
B → A. When vehicle A slows down or stops due to some interruption, vehicle B will
decelerate more quickly; on the other hand, if vehicle B accelerates, the acceleration
of vehicle C will be delayed since the driver of vehicle C needs some time to react.
A small f0 implies the slow reaction to the preceding vehicle, which may result in
f0 < b2/2 and thus the instability.

These conclusions in the community of transport traffic analysis provide substantial
insight for cognitive radio networks. Correspondingly, in the design of cognitive radio
networks, one needs to control the parameters such that f0 is increased and b is decreased,
in order to avoid the overreaction and chain reaction of followers. It is difficult to control
b in the transport layer. However, we can control f0 in cognitive radio networks. For
example, if a follower, that is, a upstream neighbor node, can respond very quickly to
the notification from the preceding secondary user that the interruption due to primary
user emergence has been mitigated (either due to finding a new channel or the leave of
primary user), then f0 is increased. Another possibility is that the follower secondary
user can predict the time when the interruption is alleviated and then accelerate its packet
transmission in advance (imagine a driver who can predict the time of interruption clear-
ance). As has been demonstrated in many studies, the future activities of spectrum can
be predicted to some extent. This motivates us the subsequent work.

11.5.4.2 Network Utility Maximization

As we have discussed above, small perturbations due to primary user emergence may
significantly affect the data traffic in cognitive radio networks. To address the primary
user interruptions, the key is to improve the reaction speed of upstream nodes. Now, we
propose to use the framework of NUM to study it.

We assume that there are totally N data flows and M cognitive radio links in the
cognitive radio network. The licensed frequency band is divided into multiple channels
and the time is divided into time slots. Each time slot lasts Ts seconds and consists of a
spectrum sensing period and then a data transmission period. For simplicity, we assume
that each secondary user can access one channel at a time. It is straightforward to extend
the results in this paper to the general case that each secondary user can use multiple
channels simultaneously. When an idle licensed channel is found, the secondary user will
keep transmitting over this channel until a primary user emerges over this channel. Upon
the emergence of primary user, the secondary user will switch to sense other channels
until a new available channel is found to resume the transmission.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



412 Cognitive Radio Communications and Networking

To simplify the analysis, we assume that the secondary users are full-duplex, that is,
they are able to receive and transmit simultaneously, by employing two radios. There
are sufficiently many idle licensed channels such that different cognitive radio links use
different channels for transmission, thus avoiding the co-channel interference. Moreover,
we ignore the problem of multiple access and assume that each secondary user can
perfectly receive all the incoming data flows by employing one radio for one incoming
data flow. These assumptions will be relaxed in our future study.

We denote by R the routing matrix, in which the rows are links and the columns are
the flows. If flow j passes through link i, Rij = 1; otherwise Rij = 0. We denote by ci(t)

the channel capacity of link i at time slot t . A block fading model is considered for the
cognitive radio link, that is, the corresponding channel gain is constant during the time slot
and changes at the beginning of the next time slot. If there are more than one data flows
passing through a secondary user, we assume that the secondary user uses a round-robin
scheduling algorithm, that is, allocating the same transmission time for different flows.

Now we begin to introduce the theory of network utilization maximization. In NUM,
each data flow, say flow i, is associated with a utility function Ui(xi) where xi is the data
generation rate of flow i. Then, the congestion can be formulated as the optimization of
the total utility within the constraint of channel capacities, which is given by

max
x

N∑
n=1

Un(xn)

s.t. Rx ≤ c, (11.50)

where x = (x1, . . . , xN) is the vector containing the data rates of all flows and channel
capacity vector c = (c1, . . . , cM) is assumed to be constant. It is well known that this
optimization can be decomposed as local optimizations via a pricing mechanism, that is,
a price is set at each link and each flow source determines its data generation rate by
maximizing its utility minus the cost due to the price, that is,

x∗
n(t) = arg max

x


U(x) − x

∑
j :Rnj =1

λj (t)


 , (11.51)

where λj (t) is the price of link j at time slot t . In practice, the source rate can be smoothed
using a weighting factor, that is,

xn(t + 1) = (1 − w)xn(t) + wx∗
n(t + 1), (11.52)

where 0 < w < 1 is the weighting factor.
Then, the evolution of the data source rates and prices can be written as{

x∗
n(t + 1) = F(xn(t), qn(t)), n = 1, . . . , N

λm(t + 1) = G(λm(t), ym(t)), m = 1, . . . , M,
(11.53)

where qn(t) is the n-th element of vector q = RT λ(t) and means the sum of prices along
the path of data flow n; ym(t) is the m-th element of the vector Rx and means the
total throughput in link m; F and G are the functions for updating the source rates and
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Cognitive Radio Network 413

prices. When the evolution functions F and G are properly chosen, the source rate and
price dynamics will converge to the optimal solution of the NUM problem in (11.50).
Throughout the discussion, we assume that every flow source can receive the current price
information immediately, which can be realized by using a broadcast mechanism. It is
interesting to study the case with a delayed price, which is beyond the scope of this book.

The traditional NUM formulation assumes that each flow source is tolled by the prices
immediately. This may not be reasonable in cognitive radio networks with dynamic spec-
trum activities, since there is still a period of time before the newly generated packets
arrive at the tolling links. For example, at time t , the flow source using TCP receives a high
price from a bottleneck link which is interrupted by primary users and then immediately
decreases its window size or even freezes the data flow; however, when the packets in the
small window arrive at the bottleneck node, the price at this link may have become lower
because the primary user has left or the link has found a new licensed channel. Hence,
the traditional NUM formulation may make the sources in cognitive radio networks too
conservative. To alleviate this problem, we introduce the real time network utility max-
imization (RT-NUM), in which each packet is tolled by each link using the price when
the packet passes through the link, instead of the price when the packet is generate.

To formulate the RT-NUM mechanism, we assume that the data rate of a generic flow
m at time slot xm(t) is proportional to the number of packets generated at this time slot;
these packets will arrive at the cognitive radio link of the h-th hop and thus receive the
tolls of this link at time slot t + h3. Hence, the source rate in RT-NUM is given by

xn(t) = arg max
x


U(x) − x

∑
j :Rnj =1

λj (t + hnj )


 , (11.54)

where hnj is the number of hops from the source to link j .
The difficulty in analyzing the price dynamics with time varying channel conditions is

that there is no simple and explicit expression for describing the channel condition dynam-
ics. Moreover, there are many communication links, which involve the high dimensional
integral in terms of many channel gains. Hence, we use phenomenological models for
describing the price, similarly to the price models used in economics or financial mar-
ket. We will consider both the Geometric Brownian Motion and Jump Diffusion Process
models.4 Note that both models are based on the continuous time while the timing in
cognitive radio is discrete; however, the continuous time model can significantly simplify
the analysis.

The Geometric Brownian Motion (GBM) model has been widely used to model the
price evolutions like stock. The use of GBM for price modeling traces back to the studies
of P. A. Samuelson in 1965 [1328]. In GBM, the price dynamics are described using the
following stochastic differential equation (SDE):

dλ(t) = µλ(t)dt + σλ(t)dW(t), (11.55)

3 This assumption may not be true in practical systems since the packets could be blocked or lost before reaching
the h-th hop. However, this assumption simplifies the analysis and will achieve a good performance, as will be
shown in the numerical simulations.
4 There could be many other models like the Lévy process [1327]. We will study them in the future.
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414 Cognitive Radio Communications and Networking

where µ and σ are the parameters of drift and volatility, and W(t) is the standard Brownian
motion. Note that the drift means the average shift of the price while the volatility mea-
sures the variance of the price with respect to the time. We assume that there is no drift
in the price; hence we can focus on only the volatility σ .

An equivalent description of GBM is given by

P(λ(t + τ) = x|λ(t)) = 1√
2πτσx

× exp

(
−1

2

(
log x − log λ(t) − µτ

στ

)2
)

(11.56)

We consider the discrete time prices {λ(t)}t=0,1,2,... as samples of the underlying continu-
ous time price. Suppose that a source node observes T (T > 1) consecutive price samples.
Then, volatility parameter can be calibrated using the following estimation [1329]

σ̂ =
√√√√ 1

T − 1

T∑
t=1

(
log λ(t) − log λ(t − 1)√

Ts

− µ̂

)2

, (11.57)

where

µ̂ = 1

T

T∑
t=1

log λ(t) − log λ(t − 1)√
Ts

. (11.58)

When the prices in cognitive radio evolve smoothly (that is, the channel conditions
change slowly), the GBM model is reasonable. However, the abrupt emergence of primary
users may cause a radical price change in the ‘market’ (imagine how fast the gas price
increases when a major gas refinery plant is out of work). Hence, it is preferable to
model the price jump caused by the primary user interruptions. Hence, we also consider
the modeling of price using the Jump Diffusion Process (JDP) which traces back to the
pioneering work of R. C. Merton [1330].

A JDP is a combination of the diffusion process in (11.55), which represents the
channel condition variation, and a jump process, which represents the emergence and
disappearance of primary users. On assuming that the jump process is a Poisson process
with the intensity parameter ρ, the dynamics of a typical JDP can be written as [1329]

dλ(t)

λ(t)
= (µ − ρk)dt + σdW(t) + (Y (t) − 1)dq(t), (11.59)

where µ and σ are the drift and volatility; W(t) is the standard Brownian motion; q(t)

is the Poisson process; Y (t) − 1 is a random variable standing for the jump magnitude;
and k = E[Y (t) − 1]. Note that the Poisson process satisfies


P(dq(t) = 0) = 1 − ρdt

P (dq(t) = 1) = ρdt

P (dq(t) > 1) = o(dt)

. (11.60)
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Cognitive Radio Network 415

For simplicity, we assume that the jump magnitude can take two values, namely +A

or −A. When Y (t) − 1 = A, a primary user emerges, while Y (t) − 1 = −A means the
disappearance of the primary user or the blocked secondary user has found a new available
channel. One drawback of the dynamics in (11.59) is that the parameter ρ results in the
same expected periods of high price and low price, which does not satisfy the assumption
that the activity of primary user is sparse. Hence, we propose to model the jump process
as a heterogeneous Poisson process, that is, the intensity parameter equals ρl when the
current price is low and ρh when the current price is high, respectively. Obviously, we
have ρh > ρl due to the assumption of sparse activity of primary users.

Below we propose a heuristic approach to estimate the parameters A, ρ, µ and σ , based
on price observations λ(0), . . . , λ(T ).

• Parameters of jump process: We divide the price samples into two classes, high price
and low price. This can be accomplished by comparing the prices with a predetermined
threshold or using a clustering approach. Denoting by Ph and Pl the index sets of high
and low prices, respectively, we use the following simple estimation for A, which is
given by

Â = 1

|Ph|
∑
t∈Ph

λ(t) − 1

|Pl|
∑
t∈Pl

λ(t). (11.61)

The intensity parameter ρh is estimated by

ρh = total number of jumps

|Ph|Ts

. (11.62)

The parameter ρl can be estimated similarly.
• Drift and volatility: Again, we assume that µ = 0, that is, there is no nonzero drift

in the pricing process. For estimating the volatility, we remove the offset due to the
primary user emergence in the high price by

λ̃(t) =
{

λ(t), t ∈ Pl

λ(t) − Â, t ∈ Ph

. (11.63)

Then, we use the normalized price samples {λ̃(t)}t=0,...,T to estimate the volatility σ .

The purpose of the pricing model is to study the congestion control in cognitive radio
networks, that is, how the source controls the congestion window size, or equivalently,
the amount of outgoing packets. We consider this problem as purchasing assets in the
area of mathematical finance. We can consider the following two types of assets:

• Asset 1: not generating a packet.
• Asset 2: generating a packet.

Suppose that the source obtains W tokens in each time slot and the unit price of each
asset is 1. Hence, the maximum number of packets that the source can send is given by
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416 Cognitive Radio Communications and Networking

W . When W1 < W tokens is used to purchase asset 2, the source generates W1 packets
for the data traffic. Then, the problem is formulated as

max
W1≤W

E

[
U(W1) −

W1∑
w=1

p(t + τw)

]
, (11.64)

where τw is the time needed for packet w to reach the bottleneck node. Note that here we
consider only the toll at the bottleneck node. It is straightforward to extend to the case of
considering all the tolls along the path. The source can collect the historic data, compute
the corresponding mathematical model and then optimize the asset purchase.

We randomly drop 50 secondary users and 10 primary users within a 1km×1km square.
The activities of primary user satisfy a two-state Markov chain. The maximum distance
for communication is 250 meters. We assume that there are 10 data flows within the
cognitive radio network and the shortest path routing is used to establish the flow paths.
The fading process of each wireless channel follows the 3GPP2 standard. Ten realizations
of the network are used to collect the required statistics.

Several realizations of the price process are shown in Figure 11.14. The peaks are due
to the primary user activities. When the channel is idle, the price fluctuation is due to the
channel fading process.

We first consider the GBM model. Figure 11.15 shows the CDF of the difference of
prices (in the logarithm scale), namely log λ(t + 1) − log λ(t). For standard GBM, the
difference is Gaussian. By comparing the empirical distribution of the difference with the
Gaussian distribution with the same expectation and variance, we observe that there is
still some gap, which means that the modeling is imperfect.
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Figure 11.14 Samples of price evolutions at different links.
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Figure 11.15 Comparison of the price change CDF.
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Figure 11.16 Comparison of the variance.

Figure 11.16 shows the variance of log λ(t) as a function of time for two data flows.
In standard GBM model, the variance should be a linear function of time. As we have
observed, the linearity holds for a short time; then, the actual variance becomes less than
the standard linear function. Hence, the GBM cannot be used for modeling long-term
price evolution, which is also true in stock price models. Similar conclusions also hold
for the JDP model.

11.6 Complex Networks in Cognitive Radio

Complex network is a powerful mathematical tool to describe many interesting phenom-
ena when the network size is sufficiently large, particularly when nodes in the network
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418 Cognitive Radio Communications and Networking

have mutual impacts. It has been used to analyze many behaviors of wireless networks,
for example,

• the connectivity of wireless communication networks;
• the information flow in random networks;
• the navigation in random networks;
• the behavior propagation in cognitive radio networks.

In this section, we will focus on the connectivity and behavior propagation in cognitive
radio networks, which are of significant importance for analyzing the performance of
cognitive radio networks and can also help to understand how to disclose the complex
network behaviors in large networks.

11.6.1 Brief Introduction to Complex Networks

We first provide a brief introduction to complex networks. In the next subsection, we will
apply the theory to the context of cognitive radio networks.

11.6.1.1 Connectivity

The study on the network connectivity is essentially to study whether there is an infinite
subset of connected nodes in a large random graph. This is very useful when studying
the network connectivity in randomly deployed sensor networks with a large number of
sensors. As we will see, the study is also very useful in cognitive radio networks. Note
that the random graph could have many types, for example, a random graph with a grid
topology or a stochastic geometric network with node randomly deployed in a plane. For
simplicity, we introduce only the former case.

We consider a network with a grid topology, as illustrated in Figure 11.17. Two adjacent
nodes are connected by an edge with probability p. Obviously, the larger p is, the more
nodes are connected within the same subgraph. It has been shown that there exists a critical

Figure 11.17 Illustration of bond percolation.
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Cognitive Radio Network 419

value for the probability, denoted by pc. When p > pc, with probability one, the graph
contains a connected subgraph with infinite cardinality; when p < pc, with probability
one, the graph contains only connected subgraphs with finite sizes. We say that there
is a phase change at pc since the connectivity experiences a sudden change at pc with
probability, which is similar to phase change from liquid water to vapor. This is called
bond percolation since the random factor is the existence of the edges.

Such a phase change of the connectivity is also valid for site percolation. In this case,
each node could be open or closed, with probability q, and every neighbors nodes are
connected by an edge. If a node is closed, an object cannot move through this node.
Using almost the same argument, we can show that there exists a critical probability qc

such that, when q > qc, an object can move through infinite nodes in the graph, and when
q < qc, an object can only move through finite nodes.

The phase change can also be extended to the case of stochastic geometric graphs. In
such graphs, nodes are randomly distributed in the space. Two nodes are connected if
and only if their distance is below a threshold. Then, the spatial density of the nodes
experience a phase change for the network connectivity.

When discussing the connectivity in cognitive radio networks, the connectivity of two
nodes depends on their distances and the positions of primary users. Hence, the densities
of both primary and secondary users play important roles in the network connectivity.
We will discuss this later.

11.6.1.2 Epidemic Propagation

Epidemic propagation is an important topic in the theory of complex networks. Intuitively,
the theory of epidemic propagation studies how epidemic is propagated in the social
network of population. It is very useful in studies on epidemics. However, here the
epidemic is not confined to real disease. It can also be many other social behaviors such
as rumors and habits. Such a study can use mathematics to describe how the social network
structure affects the propagation of a certain behavior (either harmful or beneficial), thus
helping researchers to understand or control such a propagation.

An illustration of epidemic propagation is given in Figure 11.18. The social network
of population is represented by a random network in which each node is a person and
each edge means that the two people corresponding to the two end nodes have contact
with each other. There are three types of nodes in the network:

• Infected: Such a person is infected by the epidemic, thus being able to infect his
neighbor in the social network. For example, in Figure 11.18, node 5 may propagate
the epidemic to his neighbor 1 or 7.

• Susceptible: Such a person is not infected by the epidemic; however, he is susceptible
to the epidemic if one or more neighbors of him is in the state of infected. For example,
in Figure 11.18, node 1 can be infected from his infected neighbor 4 or 5.

• Recovered: Such a person has recovered from the epidemic and will no longer be
infected; he also does not propagate the epidemic to his neighbors.

Given the above three types of nodes, there are three different models for the epidemic
propagation with different assumptions:
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Figure 11.18 An illustration of epidemic propagation.

• SIR (susceptible-infected-recovered) model: In this model, each infected person may
recover from the epidemic and then will never be infected. Hence, in a typical SIR
model, all people will recover and then the epidemic extinguishes in the network.

• SIS (susceptible-infected-susceptible) model: In this model, each infected person may
be cured and then becomes susceptible again. It is possible that all people become
susceptible and then the epidemic extinguishes due to the lack of infection source. It
is also possible that the epidemic never extinguish and there are always some people
being infected.

• SI (susceptible-infected) model: In a contrast to the SIS model, each person in the SI
model cannot be cured and stays in the state of infected. Hence, finally, all people will
become infected.

For simplicity, we consider only the SIS model. We denote by ik the proportion of the
infected people having degree k, that is, ik = Ik/Nk where Ik is the number of infected
people having degree k and Nk is the total number of people having degree k. It is assumed
that, for a susceptible person, his infection from an infected neighbor is given by βδt

within a short time period δt , where β is called the spreading rate. We also assume that a
infected node becomes susceptible again with probability µδt for sufficiently small time
δt . Then, the evolution of ik is described the following ordinary differential equation:

ik(t)

dt
= β(1 − ik(t))k�k(t) − µik(t). (11.65)

The explanations of each term are given as follows:

• β is the spreading rate which determines the probability that a susceptible person is
infected from a neighbor.

• 1 − ik(t) is the proportion of the susceptible people having degree k.
• �k(t) is the probability that one of the neighbor of a person with degree k is infected.

It is scaled by k since the susceptible person has k neighbors.

For a general network topology, it is very difficult to analyze the term �k . However, if
the network has no degree correlations (that is, for a node with degree k, the probability
that one of its neighbors has degree k′, denoted by P(k′|k) is independent of k), the
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Cognitive Radio Network 421

analysis can be simplified. It is easy to show that the probability P(k′|k) is given by

P(k′|k) = k′P(k′)
< k >

, (11.66)

where < k > = ∑
m mP(m) and P(k′) is the probability that a generic node has degree

k′. Note that the no-degree-correlation property is true for small world and scale free
networks. Then, for networks without degree correlation, one obtains

�k(t) =
∑

k′ k′P(k′)ik′(t)

< k >
, (11.67)

which is independent of k. Hence, we can ignore the subscript k in �k .
It is difficult to directly analyze the dynamics in (11.65) and (11.67) since there is no

explicit expression for the solution of the ordinary differential equation. However, we
can analyze the stationary solution as t → ∞. We assume that the ordinary differential
equation has a stable solution such that

dik(t)

dt
→ 0, as t → ∞. (11.68)

Then, ik(t) and �(t) converge to ik and �, respectively. We have

ik = kβ�

µ + kβ�
, (11.69)

which implies

� = 1

k >

∑
k

kP (k)
βk�

µ + βk�
. (11.70)

The stationary distribution of the infected and susceptible people can be obtained from
(11.69) and (11.70).

The analysis of SI and SIR models is similar. The difference is

• for the SI model, the last term in (11.65) does not exist since any infected person
cannot be recovered to susceptible;

• for the SIR model, the proportion of the recovered people should be added, thus increas-
ing the number of differential equations.

11.6.2 Connectivity of Cognitive Radio Networks

The connectivity of cognitive radio network has been studied. In this book, we focus on
the model and analysis.

11.6.2.1 Network Model

We consider a cognitive radio network distributed in an infinite plane as a two-dimensional
Poisson process. A primary network is also distributed in a Poisson manner. The densities
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422 Cognitive Radio Communications and Networking

of the cognitive radio and primary networks are denoted by λS and λP . It is assumed that
the primary system has a time slotted structure, in which each time slot lasts 1 time unit.
In different time slots, the set of active primary users changes in an i.i.d. manner. This
assumption is reasonable for networks with random data traffics or random scheduling of
traffic. The secondary users within a certain range can communicate with each other, if
they are not within a certain range of a primary user.

11.6.2.2 Conclusions on Connectivity

In summary, the network connectivity of cognitive radio system is illustrated in
Figure 11.19. The observations are given below:

• There is a critical value for λS , denoted by λc, such that when λS < λc, the cognitive
radio network is never connected, regardless of the primary user density.

• For each secondary user density larger than λc, there exists a critical value for λP (as
a function of λS) such that when λP is larger than this critical value, the network is
intermittently connected; otherwise, the network is connected.

Notice that the existence of λc is independent of primary users and is well known
in traditional wireless communication networks. The impact of primary user density is
unique for cognitive radio networks.

Note that the above conclusion concerns the definitions of network connectivity in the
cognitive radio network. The network connectivity is defined by the minimum multihop
delay (MMD):

• If the MMD between two randomly selected secondary users is infinite (or equivalently,
there is no finite path between these two users) with probability 1, we say that the
network is not connected.

• If the MMD between two randomly selected secondary users is finite with a positive
probability, we say that the network is connected.

Disconnected

Instantaneously connected

Intermittently connected

λ_p

λ_p(λ_s)

λ_c λ_s

Figure 11.19 Different regions of the connectivity.
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Cognitive Radio Network 423

For the connected network, we distinguish intermittent connection from instantaneous
connection:

• When we say that the cognitive radio network is intermittently connected, there is no
infinite connected component in the network. However, a message can wait for some
period of time for the recovery of spectrum and finally reach the destination.

• When we say that the cognitive radio network is instantaneously connected, there is an
infinite connected component in the network.

To be more mathematical, we assume that the delay is determined by only the waiting
time for spectrum opportunities. We denote by t (s, d) the MMD from source node s to
destination node d, and by h(s, d) the distance between s and d. Then, we have

lim
h(s,d)→∞

t (s, d)

h(s, d)
=

{ = 0, if instantaneously connected
>0, if intermittently connected,

(11.71)

almost surely. Hence, if we ignore the propagation delay and the processing delay at each
node, the cognitive radio network is almost the same as traditional ad hoc networks since
the primary users do not affect the scaling law.

11.6.3 Behavior Propagation in Cognitive Radio Networks

In cognitive radio networks, each node can sense and compute, thus being able to ‘see’
and ‘think’. Meanwhile, they can also communicate to each other, that is, they are
able to ‘talk’. This forms a social and the connections of the secondary users form a
complex social network, as illustrated in Figure 11.20. The patterns of spectrum access
can be considered as social behaviors that can be propagated in the network, since the
secondary users can exchange information and shape their spectrum access patterns for
better spectrum utilizations.

11.6.3.1 Network Model

We consider the behavior of ‘favorite channel’ in cognitive radio. We assume a cognitive
radio network with N secondary users and K licensed channels. The locations of these N

I prefer
channel 1

I prefer
channel 2

Which one
should I
choose?

Figure 11.20 An illustration of social network in cognitive radio.
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424 Cognitive Radio Communications and Networking

secondary users are denoted by X1, . . . , XN . The network can be represented by a graph
with multiple nodes, each of which represents a secondary user, and multiple edges, each
of which represent a communication link. The secondary users adjacent in the graph can
communication with each other. Primary users can emerge at any channel at any time
slot. A secondary user cannot transmit over a channel that primary users are using. For
facilitating the analysis, we assume that the secondary users are randomly distributed in the
plane. We assume that the N secondary users are independently and uniformly distributed
within a square S with area AN , that is, averagely each secondary user obtains an area
of A5. Formally, this means that, for any region R ∈ R

2, the probability that a given
secondary user n falls in region R is given by

P(Xn ∈ R) = |R ∩ S|
AN

. (11.72)

As N → ∞, the distribution of degree converges to a Poisson distribution with expec-
tation λ, which is given by

λ = πd2
max

A
. (11.73)

As we have discussed in the introduction of SIS model of epidemic propagation, it
is very important to obtain the conditional distribution of node degrees P(k′|k), that is
the probability that a node has a degree k′ when one of his neighbors has degree k. We
have explained that P(k′|k) is independent of k (given k > 0) for small world and scale
free networks. However, in the context of nodes randomly distributed in a plane, this
independence no longer holds. The reason is intuitive. Suppose that node 1 has degree
k and one of its neighbors, node 2, has degree k′. When k is large, there are many
nodes around node 1. Then, with a large probability, many of these nodes also fall in
the neighborhood of node 2. Hence, the probability that k′ is also large is large. To be
more mathematically precise, given a node with degree k, the probability that an arbitrary
neighbor of it has degree k′ is given by

P(k′|k) =
∫ dmax

0
P(k′|r) 2r

d2
max

dr, (11.74)

where P(k′|r) is the distribution of the sum of two independent random variables r1
and r2 + 1. The random variable r1 has a binomial distribution B(n, ρ(r)), where n =
k − 1 and

ρ(r) =
2d2

max cos−1
(

r
2dmax

)
+ r

2

√
d2

max − (
r
2

)2

πd2
max

. (11.75)

The random variable r2 has a Poisson distribution with expectation λ′(r), which is
given by

λ′(r) =
d2

max

(
π − 2 cos−1

(
r

2dmax

))
− r

2

√
d2

max − (
r
2

)2

A
. (11.76)

5 It is easy to extend to general nonuniform distribution case.
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Cognitive Radio Network 425

11.6.3.2 Favorite Channel

Now, we consider the social behavior of secondary users. We consider a certain channel,
say channel 1. Each secondary user keeps a channel that it prefers to sensing, which is
coined favorite channel . Each secondary user must be in one of two possible channels,
namely 0 (the favorite channel of this secondary user is not channel 1) and 1 (the favorite
channel of this secondary user is channel 1). The secondary users can recommend their
favorite channels to neighbors. At the beginning time, a fraction of the secondary users
have favorite channel 1. In the subsequent time, a secondary user in state 1 could be
changed to state 0. The reason could be a primary user nearby emerges in channel 1 or
the channel quality of channel 1 is worsened. We assume that the probability of this state
change is µδ where µ is the change rate and δt is a sufficiently small time interval. It
is also possible that a secondary user in state 0 changes to state 1, that is, it considers
channel 1 as its favorite. The reasons could be:

• The secondary user receives the recommendation from a neighbor in state 1. The
probability is λδt , given a neighbor is in state 1.

• The secondary user finds that channel 1 is good by itself. The probability is φδt .

Note that the key differences between the epidemic propagation and the channel pref-
erence propagation include:

• The channel preference is propagated in a plane while the epidemic is spread in the
abstract network.

• A secondary user could be changed from state 0 to 1 even if none of its neighbors is
in state 1, while a susceptible person cannot be infected if none of his friends has been
infected.

11.6.3.3 Dynamics of Social Behavior

To analyze how the selection of favorite channel is propagated in the cognitive radio
network, we consider continuous time and denote by xk(t) the proportion of the secondary
users with degree k and state 1. The dynamics of xk(t) is given by

ẋk(t) = −λxk(t) + µ(1 − xk(t))

(
φ +

∞∑
n=1

xn(t)P (m|k)

)
, (11.77)

for k = 1, 2, . . .. The first term on the right hand side is the proportion of secondary users
with degree k changing its preference from channel 1 to other channels while the second
term is the proportion of secondary users with degree k beginning to prefer channel 1 due
to the advice from other secondary users and the spontaneous discovery of the channel.

The following proposition provides a sufficient condition for the convergence of the
differential equation.

Proposition 11.2 Suppose that each secondary user has at most two neighbors and φ = 0,
then the differential equation in (11.77) converges to a stationary point as t → ∞ if

λ > µ max{P(1|1), P (2|2)}, (11.78)
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426 Cognitive Radio Communications and Networking

and √
(λ − µP(1|1))(λ − µP(2|2)) >

µ(P (2|1) + P(1|2))

2
. (11.79)

We assume that the differential equation in (11.77) converges, which can be demon-
strated by many numerical results. At the steady state, we have ẋk = 0, for k = 1, 2, . . .,
which means that the proportions no longer change. Similarly to the discussion on the
SIS model, we define

θk =
∞∑

n=1

xnP (m|k), (11.80)

which means the probability that an arbitrary neighbor of a secondary user with degree k

sets channel 1 as its favorite channel. Then the steady state condition ẋk = 0 implies

xk = µ(θk + φ)

λ + µ(θk + φ)
, (11.81)

as well as

θk =
∞∑

m=1

µ(θm + φ)

λ + µ(θm + φ)
P (m|k). (11.82)

Then, the steady state of the channel preference propagation is determined by
Equations (11.81) and (11.82).

The following proposition provides an upper bound for the proportion of secondary
users in state 1, that is, setting channel 1 as their favorite channel.

Proposition 11.3 A solution always exists for for Equation (11.82). Moreover, the steady
proportion is upper bounded by

xk ≤ µ(θ∞ + φ)

λ + µ(θ∞ + φ)
,∀k, (11.83)

where

θ∞ = −(λ + µφ − µ) +
√

(λ + µφ − µ)2 + 4µφ

2
. (11.84)
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12
Cognitive Radio Network
as Sensors

Cognitive radio network as sensors is a new initiative and tries to explore the vision of a
dual-use sensing/communication system based on cognitive radio network [1331–1333].
The motivation of cognitive radio network as sensors is to push the convergence of
sensing and communication systems into a unified cognitive networking system. Cogni-
tive radio network is a cyber-physical system with the integrated capabilities of control,
communication, and computing. Cognitive radio network can provide an information
superhighway and a strong backbone for the next-generation intelligence, surveillance,
and reconnaissance.

Multifunctional SDRs for both radar and communication have been studied in
[1334–1337]. OFDM waveform is explored. OFDM is the core technology in wideband
communication. OFDM is adopted by 3GPP LTE, WLAN, power line communication,
cognitive radio [1263], as well as ADSL and VDSL. The OFDM waveform has also
been used in the radar society [1338–1341]. The key feature of the OFDM waveform
is that multiple frequencies can be exploited simultaneously and in an orthogonal way.
Meanwhile, the radio resources of all frequencies in OFDM waveform can be adjusted
dynamically. The advantages of using OFDM in radar have also been summarized in
[1342]. Digital generation, inexpensive implementation, pulse-to-pulse shape variation,
interference mitigation, noise-like waveform for low probability of intercept/detection
(LPI/LPD), and so on are the benefits of the OFDM waveform [1342].

Similarly, the research about the joint OFDM-based radar and communication system
has been carried about in Karlsruhe Institute of Technology, Germany [1343–1347], espe-
cially for the future intelligent transportation systems. Range estimation, angle estimation,
and Doppler estimation are extensively studied. Besides, a communication waveform
is proposed for radar in [1348]. OFDM waveforms can be used to solve the unam-
biguous radial speed in a single transmission and improve the signal-to-background
contrast [1348].

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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428 Cognitive Radio Communications and Networking

In telecommunications, direct-sequence spread spectrum (DSSS) is a modulation
technique. Radar communication integration based on DSSS has been discussed in
[1349]. A multifunctional RF system that integrates radar and communication can
avoid mutual interference by using different pseudo random (PN) codes [1349]. Direct
sequence UWB signals are also applied [1350, 1351]. Oppermann sequences are utilized
to generate the weighted pulse trains for the integrated radar and communication system
[1352]. The ambiguity function of weighted pulse trains with Oppermann sequences is
analyzed. Oppermann sequences can facilitate both radar application and multiple-access
communication.

Communication information can be embedded in the radar system through waveform
diversity [1353, 1354]. Meanwhile, in the radar network, the communication message,
for instance the reports on the detected targets, can be embedded into the OFDM radar
waveform [1355]. A unique covert opportunistic spectrum access solution to enable the
coexistence of OFDM based data communication with UWB noise radar is presented
in [1356]. A multi-functional waveform has been designed, by embedding an OFDM
signal into a spectrally notched UWB random noise waveform [1356]. The performance
of a cognitive WiMAX system in the presence of an S-band swept pulse radar is studied
in [1357]. WiMAX can still work with opportunistic transmission as long as it avoids
interfering with the radar system [1357].

The USRP product family provided by Ettus Research is widely used as a hardware
platform in the area of cognitive radio [1358–1361]. A major advantage of USRP is
that it works with GNU Radio, an open source software with plenty of resources, which
simplifies and eases the usage of USRP. The USRP product family is also exploited for
sensing tasks, for example, SAR [1362], passive radar [1363–1365], multistatic radar
[1366], weather radar [1367], and so on. Besides, Path Intelligence Ltd. uses USRP
to track pedestrian foot traffic by receiving the control channel signal transmitted from
pedestrian’s cell phone. The data collected by USRP can provide information for retailer,
marketing, advertising, and so on. For example, this information can help retailers to
better understand customers’ behaviors in their stores and measure the effectiveness of
their marketing strategies.

The similar idea of cognitive radio network as sensors is called cognitive sensor
networks [1368–1373]. Though cognitive radio network can provide an information
superhighway and a backbone for sensing tasks, the resource limitation should always
be considered. The resource limitation issues have been addressed in [1374].

Optimization theory, machine learning, real-time adaptive signal processing, and graph
theory can be applied. An integrated sensing/communication cognitive network should
have the capabilities of cognition, waveform diversity, network resource management,
dynamic network topology, multilevel synchronization, and cyber security. In terms of
cognitive radio network as sensors, the following functions should be supported:

• Interference mitigation.
• Detection and estimation.
• Classification, discrimination, and recognition.
• Tracking.
• Sensing and imaging.
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Cognitive Radio Network as Sensors 429

12.1 Intrusion Detection by Machine Learning

Cognitive radio network is designed to utilize the radio spectrum optimally for the next
generation wireless communication network. Meanwhile, cognitive radio network as sen-
sors is also a practical trend for the future wireless sensor network as it saves infrastructure
cost while taking advantage of the rich communication and computing capabilities of
cognitive radio network.

Due to the embedded function of spectrum sensing in cognitive radio network. More
information about the radio environment can be obtained. This valuable information can
be exploited to detect, indicate, recognize, or track the target or intruder in the covered area
of cognitive radio network. The data related to this kind of information are intrinsically
high-dimensional and random.

Passive target intrusion detection is a very important application of cognitive radio
network as sensors. The target is device free. Active sensing is performed. The intruder
is detected and localized mainly through the intrusion effect on the radio environment.
Angle of arrival (AOA) [1375, 1376], time of arrival (TOA) [1377, 1378], and TDOA
[1379, 1380] are the commonly used methods for localization or positioning. However,
for the multipath environment, it is not easy to get the accurate information of AOA,
TOA, or TDOA. The performance of detection or localization will be degraded based
on physical-based methods. Thus, we would like to resort to machine learning and the
huge data of spectrum sensing in cognitive radio network. The passive target intrusion
detection can be formulated as a multiclass classification problem. Different intruder
locations correspond to different classes. Multi-class SVM can be applied. This idea is
similar to location fingerprinting [1378]. Location fingerprinting refers to methods that
match the fingerprint or a set of features of a signal that is location dependent [1378].

12.2 Joint Spectrum Sensing and Localization

Joint spectrum sensing and primary user localization in cognitive radio network has been
discussed in [1381]. Compressed sensing has been used here with the assumption that
the number of primary users is small. In order to find the location of the primary users,
the area covered by the primary users has to be discretized, and the primary users are
assumed to be located only at these discrete grid points. The resolution of localization is
largely dependent on the discretization granularity. A sparse Bayesian learning approach
is also applied to joint spectrum sensing and primary user localization [1382].

12.3 Distributed Aspect Synthetic Aperture Radar

The static cognitive radio network can be extended to a dynamic cognitive radio network.
UAV can be incorporated into cognitive radio network shown in Figure 12.1. In this way,
the capability of cognitive radio network as sensors can be greatly increased. The develop-
ment of UAV system has gained a lot of attentions throughout the world. The importance
and significance of this kind of system in aerial activities have grown continuously, espe-
cially for military and reconnaissance purposes [1383]. Also, UAV systems are greatly
preferred in operations where the tasks are dangerous, tedious, and impossible for human
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430 Cognitive Radio Communications and Networking

Cognitive radio network

Extended cloud
computing

Figure 12.1 Distributed Aspect SAR.

pilots [1383]. Radio source localization by a cooperating UAV team has been presented in
[1384]. Source localization is formulated as a stochastic distributed estimation problem.
UAV is exploited to improve the observability in terms of the Fisher information matrix of
the corresponding estimation problem [1384]. An automatic flight control algorithm that
exploits network mobility and allows an autonomous UAV team to react cooperatively is
developed to determine the location of a radio emitter [1384]. The problem of close target
reconnaissance by a formation of three UAVs is considered in [1385]. The overall close
target reconnaissance includes tasks of avoiding obstacles or no-fly-zones, avoiding inter-
agent collisions, reaching a close vicinity of a specified target position, and forming an
equilateral triangular formation around the target [1385]. Some search algorithms utilizing
multiple mobile sensor nodes have been proposed in [1386]. The goal is to minimize the
total search time in a given search area while making cooperation among these mobile
sensor nodes and tolerating possible failures of one or more nodes [1386]. These search
methods can be directly used in the control algorithm for UAVs if a similar search mission
is required. The engineering design of a hand-launched, small UAV for ground reconnais-
sance has been presented in [1383]. Guidance strategy, control design, and the real data
from practical flight tests are given. The main goal of this work is to implement a low-
cost, portable, and reliable aerial platform for ground reconnaissance [1383]. UAVs have
been used for ground thread identification in [1387]. Improved direct inference algorithm
is proposed based on Bayesian network. Mobility models for UAV group reconnaissance
applications have been presented in [1388]. The short-term goal is to address the specific
requirements of UAV network cooperating to achieve a common mission [1388]. The long-
term goal is to study the algorithms and protocols that provide optimized performance with
respect to utilization of resources and exhibit robust behavior in the presence of attacks and
interference [1388].
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Cognitive Radio Network as Sensors 431

SAR [1389] is a form of imaging radar. SAR has become very popular recently because
of its wide use for both military and civil applications. Most commonly, SAR is mounted
on the airplane or satellite. The trajectory of these vehicles are predetermined and stale.
However, if SAR is put on an UAV, some pressing challenges and interesting opportunities
will appear, which leads to a lot of related research topics. Due to flexible mobility and
easy control of UAVs, distributed aspect SAR based on dynamic cognitive radio network
can be deployed. A fleet of UAVs can fly to anywhere at anytime in any situation to
form the image of a target of interest. Meanwhile, SAR using arbitrary trajectories and
UAV trajectory design for SAR are critical issues. UAV should fly along the optimized
trajectory to get more useful information for SAR imaging.

PSO can be used for path planning [1390] and in-flight route replanning is needed
[1391]. A multiobjective optimization under multiple constraints is applied [1391]. Image
quality of each target should be maximized and route length under constraints should be
minimized. Fuzzy selection is exploited to select the optimal route from the Pareto non-
dominant route set with consideration of image quality, route length, and risk given by
the expert system [1391]. The researchers at the Air Force Research Laboratory have pre-
sented a concept for exploiting UAV trajectories with perturbation for intelligent circular
SAR applications, especially for detecting slowly moving targets [1392]. The basic con-
cept is based on collecting subapertures of data over a given set of localized trajectories
and intelligently parsing the collected data based on time-varying angle estimates between
the localized UAV trajectory and subsets of a collection of moving point targets [1392].
An approximate analytic inversion method for bistatic SAR for arbitrary flight trajectories
has been derived in [1393]. Performance synthesis of UAV trajectories in multistatic SAR
has been analyzed in [1394]. A fleet of multiple UAVs operate in coordination over or
nearby a scene of interest. A tomographic model of the SAR measurement process is used
as the foundation to provide a guiding metric for trajectory optimization in the presence
of measurement noise. As early as 1983, the spotlight-mode SAR was interpreted as a
tomographic reconstruction problem and analyzed using the projection-slice theorem from
computer-aided tomography [1395]. Bistatic SAR and multistatic SAR using UAVs lead
to flexible network architecture of UAVs to perform imaging task.

Distributed aspect SAR also gives a potential to execute three-dimensional SAR imag-
ing with complete circular apertures. Similar experimental work has been done in Air
Force Research Laboratory GOTCHA project. The experiment data contains eight com-
plete circular passes collected at an altitude of 25,000 feet and 45 degree elevation angle
using an airborne fully polarimetric SAR sensor [1396]. Some three-dimensional SAR
imaging methods and results are reported in [1396–1398]. These methods can be poten-
tially used in distributed aspect SAR.

Due to atmospheric turbulence, aircraft property, and control bias, the stability of UAVs
or the pre-determined flight trajectory cannot be strictly guaranteed. The motion errors can
be considerably high for SAR sensors mounted on UAVs. This nonideal motion can seri-
ously degrade SAR image quality. Thus, the motion compensation for UAV SAR should
be studied. Motion compensation based on raw radar data has been shown in [1399]. The
main idea is to extract necessary motion parameters, for example, forward velocity and
displacement in line-of-sight direction, from radar raw data, based on an instantaneous
Doppler rate estimation [1399]. Theory and application of motion compensation for linear
frequency modulated (LFM) continuous wave (CW) SAR have been presented in [1400].
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432 Cognitive Radio Communications and Networking

The effects of nonideal motion on the SAR signal are derived, and new methods for
motion correction are developed, which correct for motion during the pulse [1400]. The
real-time coarse compensation of motion error based on UAV SAR has been analyzed in
[1401]. The algorithm is based on the relation between motion error of airborne SAR and
the phase of echo [1401].

After an SAR image is obtained, we still need to extract information, knowledge,
and intelligence. Sometimes, this intelligence will be more useful than the pure SAR
image. One of the basic intelligence extraction strategies is change detection. SAR change
detection tries to find differences by comparison of SAR images from different moments in
time [1402] to indicate whether or not a change has occurred, or whether several changes
might have occurred and even identify the times of any such changes. These differences
can imply moving targets, terrain deformation, and so on. Hence, SAR change detection
is a very important technique for homeland security, military mission, and environmental
earth observation.

Generally, the change detection methods belong to two basic categories:

• coherent methods;
• noncoherent methods.

Coherent methods require phase information in the SAR imagery while noncoher-
ent methods only use amplitude information. Two-pass SAR change detection has been
reported in [1403]. The performance of coherent change detection is shown. The weak-
ness of coherent change detection is the high false alarm rate when it is applied to an
urban scenario [1403]. One potential algorithm to reduce the false alarm rate is called the
clutter location, estimation, and negation (CLEAN) method [1404]. In this way, multi-
ple classes of false alarms can be removed. Repeat-pass SAR change detection has also
been studied [1405]. The detection problem is formulated as a hypothesis testing prob-
lem which leads to a new log likelihood change statistic [1405]. Complex coherence is
estimated. A new statistical similarity measure for change detection has been mentioned
in [1406]. Two co-registered SAR intensity images are used. The local statistics are esti-
mated, which approximates probability density functions in the neighborhood of each pixel
in the image. The degree of change of the local statistics is measured using the Kullback-
Leibler divergence [1406]. A wavelet-based change-detection technique has been proposed
in [1407]. Two co-registered intensity SAR images are considered. This approach exploits
information at different scales which can be obtained by a proper wavelet-based multi-
scale decomposition of the log-ratio image [1407]. In this way, speckle reduction and
preservation of geometrical details can be compromised [1407]. Entropy image instead
of coherence map is explored for change detection in [1408]. The change detection per-
formance can be improved in both low coherence areas and high coherence areas [1408].
Similar discussion can be found in [1409]. Principal component analysis has been explored
for change detection in [1410]. However, the embedded feature or characteristic for no
change existence has not been explicitly used.

Because of the improvement of SAR data acquisition technique and the flexibility
of SAR sensor deployment, multipass SAR imageries can be easily obtained. Hence,
more information, knowledge, and intelligence can be extracted from SAR imageries.
In order to address the challenging issue of multipass SAR change detection, two state-
of-the-art PCA-based methods can be explored. One is robust PCA and the other is
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Cognitive Radio Network as Sensors 433

template matching plus thresholding. Both methods explore the local statistics and extract
some particular features for change detection. The robust PCA based approach tries to
find the sparse matrix which corresponds to the potential change. The larger value of
matrix Frobenius norm of the sparse matrix means the more chance of change occurrence.
Traditionally, template matching is a technique used in digital image processing for finding
small parts of an image which match a template image. Template matching can be used
in computer-aided diagnosis [1411], image watermark [1412], mobile robot navigation
[1413], and so on. For multipass SAR change detection, we should find a certain template
or feature when no change exists. Template matching plus thresholding will be performed
for each pixel one by one. Covariance matrix for each pixel will be calculated and the
dominant eigenvector of covariance matrix will be extracted as the feature. The inner
product between the feature and template will be computed. If the value of inner product is
greater than the predetermined threshold, there will be no change for this pixel; otherwise
change will be identified.

12.4 Wireless Tomography

As smart phones are widely used, there will be a potential large-scale communication
network deployed around the world. Remote sensing can be embedded into this kind of
large-scale communication network. However, communication components or communi-
cation nodes are not specifically designed for remote sensing. These components do not
meet the high-accuracy requirements of remote sensing. For example, RF tomography and
inverse scattering require accurate phase information to perform imaging. Accurate phase
information is hard to obtain using communication components, especially in the pres-
ence of noise. Meanwhile, the nonlinear operation of noise makes noise effect more severe
than expected. Thus, retrieving accurate phase information from noisy measurements is a
fundamental problem.

Wireless tomography was first proposed in [1414]. Wireless tomography which com-
bines wireless communications and RF tomography gives a novel approach to remote
sensing. There are three types of tomography based on the utilization of phase informa-
tion [1414],

• Incoherent tomography. Incoherent tomography uses attenuation only. Phase infor-
mation is not required. Meanwhile, phase information of scattered field is not
extracted. Radio tomographic imaging performed by University of Utah can be
treated as incoherent tomography [1415–1417]. Without phase measurement, the
equipment for incoherent tomography is cheap. Hence, the large-scale deployment
of incoherent tomography is applicable. Though the resolution and performance of
coherent tomography is not as good as expected, it can still be used for tracking people
and vehicles in security systems, locating victims in disaster situations, and so on.

• Coherent tomography. In coherent tomography, both attenuation information and phase
rotation information for the scattered field are required. The well-known diffraction
tomography [1418, 1419] is coherent tomography. The three basic approaches to diffrac-
tion tomography are filtered back-propagation [1420–1422], contrast source inversion
method [1423–1426], and Born iterative method [1427–1429]. Time reversal imaging
is also a coherent tomography approach [1430–1433].
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434 Cognitive Radio Communications and Networking

• Self-coherent tomography. In self-coherent tomography, we do not need to measure
phase information of the total or scattered fields. However, phase information of scat-
tered field should be reconstructed given the full data of the incident field [1434–1437].
Then, coherent tomography is performed. Meanwhile, the single step approach can also
be applied to intensity only inverse scattering once the incident field is known [1436]. A
subspace-based optimization method for inverse scattering problems utilizing phaseless
data has been developed in [1438]. The scatterer’s permittivity profile is reconstructed
by using only intensity data of the total field with no phase information [1438]. The dis-
torted Rytov iterative method with phaseless data is used for tomographic reconstruction
[1439]. Phase retrieval is not required.

Different from well studied tomography technique, for example, computerized tomo-
graphic imaging [1440] or inverse scattering technique, wireless tomography starts from
a system engineering’s point of view [1441] and is applied to the situation with com-
plex and dynamic harsh radio environments, for example, a low target SNR situation or
severely colored interference. It is without doubt that wireless tomography will be widely
and effectively used in many critical applications.

12.5 Mobile Crowdsensing

In mobile crowdsensing, individuals with sensing and computing devices collectively
share data and extract information to measure and map phenomena of common
interest.[1442]. These devices can be smartphones, music players, and in-vehicle sensing
devices [1442]. Thus, vast amounts of data can be generated from mobile crowdsensing.

Mobile crowdsensing can be used in environmental, infrastructural, and social areas
[1442]. Such applications include environmental monitoring, traffic measurement for
urban transportation, human activity pattern extraction, moving target tracking, and so
on [1442]. In the radar community, moving target indication has been widely studied.
Moving target indication tries to to discriminate a target against clutter. Moving target
indication exploits the fact that the target moves with respect to stationary clutter. Thus,
the Doppler effect can be explored [1443]. Moving target indication can be extended
to moving target tracking if a filtering technique is applied. As wireless communication
networks, for example, 3G cellular network, Wi-Fi network, and so on, are becoming
available everywhere, there will be a trend to reuse wireless communication networks
to perform mobile crowdsensing. In this way, we do not need to rebuild underlying
infrastructure.

There are several unique characteristics for mobile crowdsensing [1442]:

• today’s mobile devices with more computing, communication, and storage resources
than before;

• millions of mobile devices in use;
• dynamic architecture of mobile devices;
• data reuse;
• involvement of human intelligence;
• the incentive mechanism for human involvement.
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Cognitive Radio Network as Sensors 435

Due to the unique characteristics of mobile crowdsensing, localized analytics, aggregate
analytics, resource issue, privacy, security, load balancing, and so on should be studied
within the framework of mobile crowdsensing [1442].

12.6 Integration of 3S

Cognitive radio network as sensors also reflects the concept of integration of remote sens-
ing, geographic information system (GIS), and global positioning system (GPS) [1444].
A GIS tries to capture, store, analyze, and present all types of geographically related
data [1445]. GIS become more and more useful recently with the development of com-
puting and data storage techniques. GIS data can be stored and processed in cognitive
radio network for the spatial references. Meanwhile, spatial statistics is a powerful tool
to analyze the data for various sensing tasks [1446]. GPS [1447] can provide location
and time information in all weather conditions based on the signals from satellites. GPS
can synchronize different cognitive radios in different locations and add time reference
and location reference for the sensed data. Remote sensing is one kind of sensing task
which acquires information about an object or phenomenon without physical contact with
the object. SAR is a remote sensing technique. The integration of 3S can be used for
both military and civil applications, for example, homeland security, law enforcement,
urban planning, environmental monitoring, transportation, logistics, finance, telecommu-
nication, healthcare, and so on. Remote sensing and GIS techniques have been explored
for population estimation which can be used for decisions concerning resource alloca-
tion, market area delineation, new facility/transportation development, environmental and
socioeconomic assessments [1448, 1449].

12.7 The Cyber-Physical System

The term “cyber-physical systems” refers to the complex engineering system with the tight
conjoining of and coordination between computational and physical resources [1450].
The materialization of the cyber-physical system can be found in aerospace, automotive,
communication, civil infrastructure, energy, manufacturing, transportation, entertainment,
homeland security, and so on [1450].

Within the cyber-physical system, data acquisition and data processing are equally
important. Computational and data-enabled science and engineering will play an important
role in the cyber-physical system. National Science Foundation has identified several
research examples in computational and data-enabled science and engineering,

• Novel computational or statistical modeling for simulation, prediction, and assessment
in computation-intensive and data-intensive scientific problems.

• Novel tool and theory in statistical inference and statistical learning from massive,
complex, and dynamic dataset.

• Large-scale problem with particular computational difficulties, such as strong het-
erogeneities and anisotropies, multiphysics coupling, multiscale behavior, stochastic
forcing, uncertain parameters or dynamic data, and long-time behavior.

• Mathematical and statistical challenges of uncertainty quantification.
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436 Cognitive Radio Communications and Networking

• Large-scale data acquisition, data processing, data management, data dissemination,
and data security.

Random matrix theory is a powerful tool to derive and analyze the algorithms for
processing the large-scale data [18, 1451, 1452]. The applications of random matrix
theory in wireless communication include detection, estimation, performance analysis
of multi-antenna systems, performance analysis of multihop systems, and so on [1452].
Random matrix theory is explored for spectrum sensing in cognitive radio network
[255, 258, 260], which can be easily extended to cognitive radio network as sensors for
the general sensing tasks.

Moreover, random matrix theory can be applied to local failure localization of large
dimensional systems. These failures include sensor failure, link failure, and so on. These
failures can be easily identified through the perturbation matrix as well as its eigenvector
properties. The limiting distribution of the largest eigenvector in the spiked model for
Gaussian sample covariance matrices has been shown in [12, 27]. Meanwhile, the effect
of matrix perturbation on singular vectors can be found in [1453].

We can also monitor the sudden parameter change in the large-scale cognitive radio
network. These sudden parameter changes can be analyzed through random matrix the-
ory. We can infer and extract information from sudden parameter change for intrusion
detection, anomaly detection, moving target tracking, network tomography, and so on.
For intrusion detection or moving target tracking, the perturbations of the received signal
matrices are different due to the different locations of target of interest and the mobility
of target. By random matrix theory, we can detect the different perturbations and extract
the corresponding features which can be used to identify and locate the target. In a homo-
geneous network, the sudden parameter change may lead to similar amplitudes of the
extreme eigenvalues [12]. Thus, leading eigenvector or leading subspace may be more
sensitive to the change and perturbation than the extreme eigenvalue. Network tomogra-
phy is the study of a network’s internal characteristics using information derived from
external observations. A cognitive radio network is a large complex system with so many
nodes. Measured continuous data flows from all the nodes can be used to build a large
random matrix from which we can infer the properties and traffic flows in cognitive radio
network. These properties include data loss, link delay, routing state, and network fault.

12.8 Computing

Computing will always be the main issue in cognitive radio network as sensors or the
cyber-physical system. Computing, including hardware and software, gives strong sup-
port to the data-enabled science, engineering, and technology. The formats of computing
include:

• high performance computing;
• cloud computing [1454, 1455];
• grid computing;
• distributed computing;
• parallel computing [1456, 1457];
• cluster computing;
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Cognitive Radio Network as Sensors 437

• mobile computing [1458];
• wireless distributed computing [1459].

Cloud storage is the new concept developed from cloud computing. Cloud storage
denotes a family of popular on-line services for archiving, backup, and even primary
storage of files. [1460, 1461]. Data storage similar to cloud storage is needed for cognitive
radio network as sensors. The large-scale data should be kept safely in cognitive radio
network. Security and access issues are two main challenges.

12.8.1 Graphics Processor Unit

Host computer with GPU can be used as computing engine. Recently, a computing
enhancement technology called GPGPU appearing in the PC industry. GPGPU refers to
a relatively new method by which the various cores of a GPU can be utilized for general
purpose parallel computing [1462]. This idea of utilizing GPUs for nongraphical applica-
tions first became popular in 2003, but was limited by the amount of knowledge required
to successfully write such programs. November 2008 saw the introduction of Nvidia’s
G80 architecture which brought greater versatility through support of the C computer
language, and a more generalized and programmer friendly hardware structure [1463].

CUDA is both a hardware and software architecture by Nvidia, which is actually what
allows GPUs to run programs that have been written using C, C++, Fortran, etc. It works
by executing a kernel across several parallel threads [1463]. GPUmat allows standard
MATLAB code to run on GPUs. Furthermore, CULA is a linear algebra library which
has been designed to utilize the NVidia CUDA architecture for computational acceleration.
This library is designed in a manner such that those with little or no GPGPU programming
experience can take advantage of the parallel computing power offered by GPGPU.

The CULA library is compatible with Python, C/C++, Fortran, and MATLAB. When
using C/C++, the library is designed in such a way that the user may simply replace
existing functions in the program with those from the library. CULA is designed such
that it automatically handles the memory allocation required for GPGPU programming.
This is the most attractive feature of this software because it allows users who are not
experienced with GPGPU programming to take advantage of the increased speed it offers.
The code is also flexible enough so that more experienced programmers can manually
adjust the memory allocation for the GPU.

12.8.2 Task Distribution and Load Balancing

Task distribution and load balancing are especially important for the computing system to
deal with huge workloads. This function mainly focuses on how to allocate resources to
the workload to increase the efficiency and effectiveness of the system. Load balancing is
usually implemented as a scheduler plus many task pools. After the large-scale problem
is divided into many subproblems, these subproblems should be processed in a paral-
lel and distributed fashion. Meanwhile, time cost and resource cost need be taken into
account when we perform load balancing. Time cost relates to the time waiting for the
synchronization among different tasks and the latency for the intertask communication.
Resource cost corresponds to the machine cycles for processing the task.
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438 Cognitive Radio Communications and Networking

From a theoretical point of view, game theory is a popular approach used for load bal-
ancing [1464, 1465]. Cooperative game or noncooperative game can be exploited based
on whether the tasks belong to the same user or different users. Dynamic or static game
can still be applied based on whether the instantaneous system state is available or not
for load balancing. In terms of implementation, dynamic load balancing on single-and
multi-GPU systems has been discussed in [1466]. Experimental results show the signifi-
cant performance improvement using load balancing at a fine granularity, especially for
the irregular and unbalanced workload. Similarly, an efficient support for matrix compu-
tations on heterogeneous multicore and multi-GPU architectures is proposed in [1467] to
achieve four objectives: a high degree of parallelism, minimized synchronization, mini-
mized communication, and load balancing. The key idea is to developed heterogeneous
rectangular-tile algorithms with two different tile sizes to cope with processor heterogene-
ity [1467]. The problem of designing efficient recursive algorithms on GPUs with dynamic
work distribution and balancing has been addressed in [1468]. Meanwhile, implementing
parallel genetic algorithm on the CUDA architecture illustrates GPU has great potential
for acceleration of simple numerical function optimization [1469].

12.9 Security and Privacy

Security is as important as or even more important than any other performance of interest
for both cognitive radio network and cognitive radio network as sensors. To realize a
secure system, security should pervade every aspect of the system design and be inte-
grated into every system component [1470]. Security, especially information security for
cognitive radio network as sensors should include [1470, 1471]:

• data confidentiality;
• data authenticity;
• data integrity;
• data freshness;
• key infrastructure for generation and distribution;
• secure communication and routing;
• trusted computing;
• trusted storage;
• attack detection;
• robustness and attack survivability;
• privacy.

12.10 Summary

Cognitive radio network as sensors is a new initiative and tries to explore the vision
of a dual use sensing/communication system based on cognitive radio network. Cogni-
tive radio network is a cyber-physical system with the integrated capabilities of control,
communication, and computing. Cognitive radio network can provide an information
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Cognitive Radio Network as Sensors 439

superhighway and a strong backbone for the next generation intelligence, surveillance,
and reconnaissance. Data enabled science and engineering, computing, security, and so
on are the open issues in cognitive radio network as sensors. Besides, intrusion detection
by machine learning, joint spectrum sensing and localization, distributed aspect SAR,
wireless tomography, mobile crowdsensing, and so on are given as potential applications
in cognitive radio network as sensors.
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Appendix A

Matrix Analysis

A.1 Vector Spaces and Hilbert Space

Finite-dimensional random vectors are the basic building blocks of many applications.
Halmos (1958) [1472] is the standard reference. We just take the most elementary material
from him.

Definition A.1 (Vector space) A vector space is a set � of elements called vectors satis-
fying the following axioms. (A) To every pair x and y, of vectors in �, there corresponds
a vector x + y, called the sum of x and y, in such a way that

• addition is communicative, x + y = y + x,

• addition is associative, x + (y + z) = (x + y) + z,
• there exists in � a unique vector (called the origin) such that x + 0 = x, for every x,

and
• to every vector in � there corresponds a unique vector −x such that x(−x) = 0.

(B) To every pair, α and x, where α is a scalar and x is a vector in �, there corresponds
a vector αx in �, called the product of α and x, in such a way that

1. multiplication by scalars is associative, α(βx) = (αβx), and
2. 1x = x.

(C)

1. Multiplication by scalars is distributive with respect to vector addition, α(x + y) =
αx + βy, and

2. Multiplication by vectors is distributive with respect to scalar addition, (α + β)x =
αx + βx.

These axioms are not claimed to be logically independent.

Cognitive Radio Communications and Networking: Principles and Practice, First Edition.
Robert C. Qiu, Zhen Hu, Husheng Li and Michael C. Wicks.
 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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442 Cognitive Radio Communications and Networking

Example A.1

1. Let C1(= C) be the set of all complex numbers; If we regard x + y and αx as ordinary
complex numerical addition and multiplication, C1 becomes a complex vector space.

2. Let Cn, n = 1, 2, . . . , be the set of all n-tuples of complex numbers. If

x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn)

are elements of Cn, we write, by definition,

x + y = (ξ1 + η1, . . . , ξn + ηn).

Cn is a vector space since all parts of our axioms are satisfied; it will be called
n-dimensional complex coordinate space. �

Definition A.2 (Linear dependence and linear independence) A finite set xi of vectors
is linear dependent if there exists a corresponding set αi of scalars, not all zero, such that

∑
αixi = 0.

If, on the other hand,
∑

αixi = 0 implies that αi for each i, the set xi is linearly

independent.

Theorem A.1 (Linear combination) The set of nonzero vectors x1, · · · , xn is linearly
dependent if and only if some xk, 2 ≤ k ≤ n, is a linear combination of the preceding
ones.

Definition A.3 (Finite-dimensional) A (linear) basis (or a coordinate system) in a vector
space � is the set � of linearly independent vectors such that every vector in � is a linear
combination of elements of �. A vector space � is finite-dimensional if it has a finite basis.

Recall that the basic building block in “Big Data” is a random vector which is defined
in a finite-dimensional vector space. The dimension is high but still finite-dimensional.
The high-dimensional data processing is critical to many modern applications.

Theorem A.2 (Basis) If � is a finite-dimensional vector space and if {y1, · · · , ym}
is any set of linearly independent vectors in �, then, unless the y’s already form a
basis, we can find vectors {ym+1, · · · , ym+p} so that the totality of the y’s, that is,
{y1, · · · , ymym+1, · · · , ym+p} is a basis. In other words, every linearly independent set can
be extended to a basis.

Theorem A.3 (Dimension) The number of elements in any basis of a finite-dimensional
vector space � is the same as in any other basis.

Definition A.4 (Isomorphism) Two vector spaces U and V (over the same field) are iso-
morphic, if there is a one-to-one correspondence between the vectors x of U and the vectors
y of V, say y = T(x), such that

T(α1x1 + α2x2) = α1Tx1 + α2Tx2.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Appendix A 443

In other words, U and V are isomorphic if there is an isomorphism (such as T) between
them, where an isomorphism is a one-to-one correspondence that preserves all linear
relations.

Theorem A.4 (Isomorphic) Every n-dimensional vector space � over a field F is iso-
morphic to Fn.

Definition A.5 (Subspaces) A nonempty subset � of a vector space � is a subspace or a
linear manifold if along with every pair, x and y, of vectors contained in �, every linear
combination αx + βy is also contained in �.

Theorem A.5 (Intersection of Subspace) The intersection of any collection of subspaces
is a subspace.

Theorem A.6 (Dimension of Subspace) A subspace � of an n-dimensional vector space
� is a vector space of dimension ≤ n.

Definition A.6 (Linear functional) A linear functional on a vector space � is a scalar-
valued function y defined for every vector x, with the property that (identically in the
vectors x1 and x2 and the scalars α1 and α2)

y(α1x1 + α2x2) = α1y(x1) + α2y(x2).

If y1 and y2 are linear functions on � and α1 and α2 are scalars, let us define the
function by

y(x) = α1y1(x) + α2y2(x).

It is easy to check that y is also a linear functional; we denote it by α1y1 + α2y2. With
these definitions of the linear concepts (zero, addition, scalar multiplication), the set �′

forms a vector space, the dual space of �.

A.2 Transformations

Definition A.7 (Linear transformation) A linear transformation (or operator) A on a
vector space � is a correspondence that assigns to every vector x in � a vector Ax in �,
in such a way that

A(αx + βy) = αAx + βAy

identically in the vectors x and y and the scalars α and β.

Theorem A.7 (Linear transformation) The set of all linear transformations on a vector
space is itself a vector space.

Linear transformations can be regarded as vectors.
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444 Cognitive Radio Communications and Networking

Definition A.8 (Matrices) Let � be an n-dimensional vector space, let X = {x1, . . . , xn}
be any basis of �, and let A be a linear transformation on �. Since every vector is a
linear combination of the xi , we have in particular

Axj =
∑

i

αij xi , j = 1, . . . , n.

The set αij of n2 scalars, indexed with the double subscript i, j, is the matrix of A in the
coordinate system X; A matrix (αij ) is usually written in the form of a square array:

[A] =




α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

...

αn1 αn2 · · · αnn


 ;

the scalars (αi1, · · · , αin) form a column; (α1j , · · · , αnj ) form a row, of A.

A.3 Trace

The trace function, TrA = ∑
i aii, satisfies the following properties [110] for matrices

A, B, C, D, X and scalar α:

Trα = α, Tr(A ± B) = TrA ± TrB, TrαA = αTrA

TrCD = TrDC =
∑
i,j

cij dji,

Tr
K−1∑
k=0

x∗
kAxk = Tr(AX), where X =

K−1∑
k=0

xkx∗
k. (A.1)

To prove the last property, note that since x∗
kAkxk is a scalar, the left side of (A.1) is

Tr
K−1∑
k=0

x∗
kAkxk =

K−1∑
k=0

Tr(x∗
kAkxk) =

K−1∑
k=0

Tr(Akxkx∗
k)

= TrAX, where X =
K−1∑
k=0

xkx∗
k, for Ak = A

TrCC∗ = TrC∗C =
∑
i,j

|cij |2.

A.4 Basics of C∗-Algebra

C*-algebras (pronounced “C-star”) are an important area of research in functional analysis.
The prototypical example of a C*-algebra is a complex algebra A of linear operators on
a complex Hilbert space with two additional properties:

1. A is a topologically closed set in the norm topology of operators.
2. A is closed under the operation of taking adjoints of operators.
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Appendix A 445

C*-algebras [138, 1473] are now an important tool in the theory of unitary representa-
tions of locally compact groups, and are also used in algebraic formulations of quantum
mechanics. Another active area of research is the program to obtain classification, or to
determine the extent of which classification is possible. It is through the latter area that
its connection with our interest in hypothesis detection is made.

A.5 Noncommunicative Matrix-Valued Random Variables

We mainly follow [11] this section, but with different notations that are convenient for our
context. Random variables are functions defined on a measure space, and they are often
identified by their distributions in probability theory [11]. In the simplest case when the
random variables are real valued, the distribution is a probability measure on the real line.
In this appendix probability distributions can be represented by means of linear Hilbert
space operators, as well. (In this appendix an operator is an infinite-dimensional matrix.)
This observation is as old as quantum mechanics; the standard probabilistic interpretation
of the quantum mechanical formalism is related.

In an algebraic generalization, elements of a typically noncommutative algebra together
with a linear functional on the algebra are regarded as noncommutative random variables.
The linear functional evaluated on this element is the expectation value, its use to powers
of this selected element leads to the moments of the noncommunicative random vari-
ables. One does not distinguish between two random variables, when they have the same
moments. A very new feature of this theory occurs when these noncommunicative ran-
dom variables are truly noncommuting with each other. Then, one cannot have a joint
distribution in the sense of classical probability theory, but a functional of the algebra
of polynomials of noncommuting indeterminates may work as an abstract concept of
joint distribution [11]. Random matrices with respect to the expectation of their trace are
natural “noncommuniting” noncommutative (matrix-valued) random variables.

Random variables over a probability space form an algebra. Indeed, they are measurable
functions defined on a set �, and so are the product and sum of two of them, that is,
AB and A + B. As mentioned before, the expectation value EA is a linear functional on
this algebra. The algebraic approach to probability stresses this point. An algebra over
a field is a vector space equipped with a bilinear vector product. That is to say, it is
an algebraic structure consisting of a vector space together with an operation, usually
called multiplication, that combines any two vectors to form a third vector; to qualify as
an algebra, this multiplication must satisfy certain compatibility axioms with the given
vector space structure, such as distributivity. In other words, an algebra over a field is
a set together with operations of multiplication, addition, and scalar multiplication by
elements of the field [1474].

If A is a unital algebra (a vector space defined above) over the complex numbers and
φ is a linear functional of A such that

ϕ1 = 1,

then (A, φ) will be called a noncommutative probability space and an element A of
A will be called a noncommunicative random variable. of course, a random matrix is
such a noncommunitative random variable. The number φ(Ak) is called the n-th moment
of a noncommutative random variable.
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446 Cognitive Radio Communications and Networking

Example A.2 (Bounded operators [11])
Let B(H) denote the algebra of all bounded operators acting on a Hilbert space H. If the
linear functional φ : B(H) → C is defined by means of a unit vector U ∈ H as

ϕ(A) = (AU, U),

then any element of B(H) is a noncommunitative random variable. �

If A ∈ B(H) is, further, self-adjoint (or Hermitian for the finite-dimensional case), then
a probability measure is associated to A and ϕ, as mentioned above. The algebra used in
the definition of a noncommunitative random variable is often replaced with a *-algebra.
In fact, B(H) is a *-algebra, if the operation A∗ stands for the adjoint of A. The most
familiar example of a *-algebra is the field of complex numbers C where * is just complex
conjugation. Another example is the matrix algebra of n × n matrices over C with * given
by the conjugate transpose. Its generalization, the Hermitian adjoint of a linear operator
on a Hilbert space is also a *-algebra (or star-algebra).

A *-algebra is a unital algebra over the complex numbers which is equipped with an
involution*. The revolution recalls the adjoint operation of Hilbert space operators as
follows:

1. A �→ A∗ is conjugate linear.
2. (AB)∗ = (BA)∗,
3. A∗∗ = A.

When (A, φ) is a noncommunitative probability space over a *-algebra A, φ is always
assumed to be a state on A, that is, a linear function such that

1. ϕ(1) = 1,

2. ϕ(A∗) = ϕ̄(A) and ϕ(A∗A) � 0 for every

A ∈ A.

A matrix X whose entries are (classical) random variables on a (classical) probability
space is called a random matrix, such as a sample covariance matrix XXH. Here H stands
for the conjugate and transpose (Hermitian) of a complex matrix.

Random matrices form a *-algebra. For example, consider X11, X12, X21, X22 to be four
bounded (classical) scalar random variables on a probability space. Then

X =
(

X11 X12
X21 X22

)

is a bounded 2 × 2 random matrix. The set X of all such matrices has a *-algebra struc-
ture when the unit matrix operations are considered, and (X, ϕ) is a noncommunitative
probability space when, for example,

ϕ(X) = E(X11).

A C∗-algebra is a ∗-algebra A which is endowed with a norm such that

‖A∗A‖ = ‖A‖2, ‖AB‖ � ‖A‖‖B‖, for every A, B ∈ A, and ‖1‖ = 1,

and furthermore, A is a Banach space with respect to this norm.
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Appendix A 447

Gelfand and Naimark give two important theorems concerning the representation of
C∗-algebras.

1. A communicative, unital C∗-algebra is isometrically isomorphic to the algebra of all
continuous complex functions on a certain compact Hausdorff space, if the function
space is equipped with the supremum norm and the involution of point-wise conjuga-
tion.

2. A general C∗-algebra is isometrically isomorphic to the algebra of operators on a
Hilbert space, if the function space is equipped with the operator norm and the invo-
lution of adjoint conjugation.

Combination of the above two theorems yields a form of the spectral theorem. For a
linear functional ϕ of a C∗-algebra,

||ϕ|| = ϕ(1)

is equivalent to
ϕ(A∗A) � 0, A ∈ A.

A noncommunitative probability space (A, ϕ) will be called a C∗-probability space
when A is a C∗-algebra and ϕ is a state on A.

All real bounded classical scalar random variables may be considered as noncommu-
nicative random variables.

A.6 Distances and Projections

For projections, we freely use [1475]. Let B(H) denote the algebra of linear operators
acting on a finite-dimensional Hilbert space H. The von Neumann entropy of a state ρ,
i.e. that is, a positive operator of unit trace in B(H), is given by S(ρ) = −Trρ log ρ.

For A ∈ Mn(C), the absolute value |A| is defined as (A∗A)
1
2 and it is a positive matrix.

The trace norm of A − B is defined as

||A − B||1 = Tr|A − B|.
This trace norm||A − B||1 is a nature distance between complex n × n matrices A and B,
A, B ∈ Mn(C). Similarly,

||A − B||2 =

∑

i,j

|Aij − Bij |2



1/2

is also a natural distance. We can define the p-norm as

||X||p = (Tr(X∗X)
2/p

)1/p, 1 ≤ p, X ∈ Mn(C)

It was Von Neumann who showed first that the Hoelder inequality remains true in the
matrix setting

||AB||1 ≤ ||A||p||B||q,
1

p
+ 1

q
= 1.
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448 Cognitive Radio Communications and Networking

If A is a self-adjoint and written as

A =
∑

i

λieie
∗
i

where the vector ei form an orthonormal basis, then it is defined as

{A ≥ 0} = A+ =
∑

i:λi≥0

λieie
∗
i ; {A < 0} = A− =

∑
i:λi<0

λieie
∗
i .

Then A = {A ≥ 0} + {A < 0} = A+ + A− and |A| = {A ≥ 0} − {A < 0} = A+ − A−.

The decomposition is called the Jordan decomposition of A. Corresponding definitions
apply for the other spectral projections {A < 0}, {A > 0}, and {A ≤ 0}. For two operators,
{A < B}, {A > B}, and {A ≤ B}.

For self-adjoint operators A, B and any positive operator 0 ≤ P ≤ I we have

Tr[P(A − B)] ≤ Tr[{A ≥ B}(A − B)]
Tr[P(A − B)] ≥ Tr[{A ≤ B}(A − B)].

Identical conditions hold for strict inequalities in the spectral projections {A < B} and
{A > B}.

The trace distance between operators A and B is given by

|A − B||1 = Tr[{A ≥ B}(A − B)] − Tr[{A < B}(A − B)].

The fidelity of states ρ and ρ ′ is defined as

F(ρ, ρ ′) = Tr

√
ρ

1
2 ρ ′ρ

1
2 .

The trace distance between two states is related to the fidelity as follows:

1

2
||ρ − ρ ′||1 ≤

√
1 − F(ρ, ρ ′)2 ≤

√
2(1 − F(ρ, ρ ′)2).

For self-adjoint operators A, B and any positive operator 0 ≤ P ≤ I, the inequality

||A − B||1 ≤ ε

for any ε > 0, implies that
Tr[P(A − B)] ≤ ε.

The “gentle measurement” lemma is given here: For a state ρ and any positive operator
0 ≤ P ≤ I, if Tr(ρP) ≥ 1 − δ, then

||ρ −
√

Pρ
√

P||1 ≤ 2
√

δ.

The same holds if ρ is only a subnormalized density operator, that is, Trρ ≤ 1.

If ρ is a state and P is a projection operator such that Tr(Pρ) > 1 − δ for a given δ > 0,
then

ρ̃ =
√

Pρ
√

P ∈ Bε(ρ),
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Appendix A 449

where

Bε(ρ) = {ρ̃ ≥ 0 : ||ρ − ρ̃||1 ≤ ε, Trρ̃ ≤ Trρ},
and ε = 2

√
δ.

Consider a state ρ and a positive operator σ ∈ Bε(ρ), for some ε > 0. If πσ denote the
projection onto the support of σ , then

Tr(πσρ) ≥ 1 − 2ε.

Lemma A.1 (Hoffman-Wielandt) [16, 34] Let A and B be N × N self-adjoint matrices,
with eigenvalues λA

1 ≤ λA
2 ≤ · · · ≤ λA

N and λB
1 ≤ λB

2 ≤ · · · ≤ λB
N . Then,

N∑
i=1

|λA
i − λB

i | ≤ Tr(A − B)2.

The singular values of a matrix A ∈ Mn are the eigenvalues of its absolute value
|A| = (A ∗ A)

1
2 ,, we have fixed the notation s(A) = (s1(A), . . . , sn(A)) with s1(A) ≥

. . . ≥ sn(A). Singular values are closely related to the unitary invariant norm. Singular
values inequalities are weaker than Löwner partial order inequalities and stronger than
unitarily invariant norm inequalities in the following sense [133]:

|A| ≤ |B| ⇒ si(A) ≤ si(B) ⇒ ||A|| ≤ ||B||
for all unitarily invariant norms. The norm ||A||1 = Tr|A| is unitarily invariant. Singular
values are unitarily invariant: s(UAV) = s(A) for every A and all unitary U, V. A norm
|| · || is called unitarily invariant if

||UAV|| = ||A|| (A.2)

for all A ∈ Mn and all unitary U, V ∈ Mn. ||A|| ≤ ||B|| for all unitarily invariant norms
if and only if s(A) ≺w s(B), that is,

s(A) ≺w s(B) ⇒ ||A|| ≤ ||B||. (A.3)

The differences of two positive semidefinite matrices A, B ∈ Mn are often encountered.
Denote the block diagonal matrix

A ⊕ B
Def=

(
A 0
0 B

)

by the notation A ⊕ B. Then [133]

1. si(A − B) ≤ si(A ⊕ B), i = 1, 2, . . . , n,

2. ||A − B|| ≤ ||A ⊕ B|| for all unitarily invariant norms,
3. s(A − |z|B) ≺wlog s(A + zB) ≺wlog s(A + |z|B),

4. ||A − |z|B|| ≤ ||A + zB|| ≤ ||A + |z|B||, for any complex number z.

Note that the weak log majorization ≺wlog is stronger than the weak majorization ≺w.
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450 Cognitive Radio Communications and Networking

A.6.1 Matrix Inequalities

Let α : B(H) → B(K) be a linear mapping from finite-dimensional Hilbert spaces H and
K. α is called positive if it sends positive (semidefinite) operators to positive (semidefinite)
operators. Let α : Mn(C) → Mk(C) be a positive, unital linear mapping and f : R → R
be a convex function. Then, it follow [34, p. 189] that

Tr f(α(A)) ≤ Tr α(f(A)) (A.4)

for every A ∈ Mn(C)sa. Here sa denotes the self-adjoint case.
Let A and B be positive operators, then for 0 ≤ s ≤ 1,

Tr(AsB1−s) ≥ Tr(A + B − |A − B|)/2.

The triangle inequality for the matrix A∗A
1
2 is [114, p. 237]

|A + B| ≤ U∗|A|U + V∗|B|V, (A.5)

where A and B are any square complex matrices of the same size, and U and V are
unitary matrices. Taking the trace of (A.5) leads to the following

Tr|A + B| ≤ Tr|A| + Tr|B|. (A.6)

Replacing B in (A.6) with B + C leads to

Tr|A + B + C| ≤ Tr|A| + Tr|B + C| ≤ Tr|A| + Tr|B| + Tr|C|.
Similarly, we have

Tr|A1 + A2 + · · · + AK | ≤ Tr|A1| + Tr|A2| + · · · + Tr|AK |. (A.7)

For positive operators A and B,

‖A − B‖2
1 + 4(Tr(A1/2B1/2))2 ≤ (Tr(A + B))2.

The n-tuples of the coefficients of real numbers may be regarded as diagonal matrices
and the majorization can be extended to self-adjoint matrices. Suppose that A, B ∈ Mn are
so. Then A ≺ B means that the n-tuple of eigenvalues of A is majorized by the n- tuple
of eigenvalues of B; similarly for the weak majorization. Since the majorization depends
only on the spectrums, A ≺ B holds if and only if UAU ∗ ≺ V BV ∗ for some unitaries U
and V. It follows from Birkhoff’s theorem [34] that A ≺ B implies that

A =
n∑

i=1

piUiBU∗
i

for some pi > 0 with
∑

i pi = 1 and for some unitaries.

Theorem A.8 Let ρ1 and ρ2 be states. Then the following statements are equivalent.

1. ρ1 ≺ ρ2.
2. ρ1 is more mixed than ρ2.
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Appendix A 451

3. ρ1 =
n∑

i=1
λiUiρ2U∗

i for some convex combination λi and for some unitaries Ui .

4. Trf (ρ1) ≤ Trf (ρ2) for any convex function f : R → R.

A.6.2 Partial Ordering of Positive Semidefinite Matrices

Let A ≥ 0 and B ≥ 0 be of the same size. Then

1. A + B ≥ B,
2. A

1
2 BA

1
2 ≥ 0,

3. Tr(AB) ≤ Tr(A)Tr(B),
4. (det (A + B))

1
n ≥ (det (A))

1
n + (det (B))

1
n , when n > 1,

5. the eigenvalues of AB are all nonnegative, λi(AB) ≥ 0.
6. AB is positive semidefinite, AB ≥ 0, if and only if AB = BA. AB may not be even

Hermitian.

If A ≥ B ≥ 0, then

1. rank(A) ≥ rank(B),
2. det A ≥ det B,
3. B−1 ≥ A−1 if A and B are nonsingular,
4. TrA ≥ TrB.

Let A, B ∈ Mn be positive semidefinite. Then for any complex number and any unitarily
invariant norm [133],

||A − |z|B|| ≤ ||A + zB|| ≤ ||A + |z|B||.

A.6.3 Partial Ordering of Hermitian Matrices

We follow [126, p. 273] for a short review. [115] has the most exhaustive collection.
Positive definite and semi-definite matrices are important since covariance matrix and
sample covariance matrix (used in practice) are semi-definite. A Hermitian matrix A ∈
Cn×n is called positive definite if

xH Ax > 0 for all nonzero x ∈ Cn×n

and positive semidefinite if the weaker condition xH Ax ≥ 0 holds. A Hermitian matrix is
positive definite if and only if all of its eigenvalues are positive, and positive semidefinite
if and only if all of its eigenvalues are nonnegative. For A, B ∈ Cn×n, we write A > B
when A − B is positive definite, and A ≤ B if B − A is positive definite. This is a partial
ordering of the set of n × n Hermitian matrices. It is partial because we may have A � B
and B � A.

Let A ≥ 0 and B ≥ 0 be of the same size and C is nonsingular. We have

1. CH AC > 0,
2. CH BC > 0,
3. A−1 > 0,
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452 Cognitive Radio Communications and Networking

4. A + B ≥ B,

5. A
1
2 BA

1
2 ≥ 0,

6. Tr(AB) ≤ TrATrB,
7. A ≥ B ⇒ λi(A) ≥ λi(B), where λi are the eigenvalues (sorted in decreasing order),
8. det (A) ≥ det (B) and TrA ≥ TrB.
9. the eigenvalues of AB are all nonnegative. Furthermore, AB is positive semidefinite

if and only if AB = BA.

The partitioned Hermitian matrix

A =
(

A B
B∗ D

)

with square blocks A and D, is positive definite if and only if A > 0 and its Schur
complement D − BH A−1B > 0, or D > BH A−1B.

The Hadamard determinant inequality for a positive semidefinite A ∈ Cn×n is

detA ≤ det Adet D.

The Minkowski determinant inequality for positive definite A, B ∈ Cn×n is

det1/n(A + B) ≥ det1/nA + det 1/nB

with equality if and only if B = cA for some constant c.
If f is convex then

f (x) − f (y) − (x − y)f ′(y) ≥ 0

and

Trf (B) ≥ Trf (A) + Tr(B − A)f ′(B). (A.8)
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nth-tensor powers, 118

a spiked population model, 11
active learning, 299
AGM, 67
Alamouti code, 325
algorithm complexity, 22
application layer, 273, 383
artificial intelligence, 283
artificial neural network, 294
asymptotic freeness, 213
AWGN, 20, 24

Bayesian equilibrium, 356, 370
Bayesian network, 320
beamforming, 248, 268
BER, 249, 345
Big Data, 1, 6
BLAST, 326
blind signal separation, 288
blind synchronization, 341
block diagonalization, 330
Bregman divergence, 13

canonical correlation analysis, 171
Cauchy Schwarz inequality, 263
CDMA, 7, 327
centroid-based clustering, 288
channel inverse, 254
Chebyshev inequality, 113
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Chernoff, 114
circular convolution, 340
clustering, 288
cognitive radar, 284
cognitive radio, 2, 244, 250, 267, 273,

284
cognitive radio network, 336, 349, 381,

429
cognitive radio network as sensors, 427
coherent tomography, 433
collaborative filtering, 319
completely positive mappings, 104
compressed sensing, 77
computing, 436
congestion control, 404
constant power spectral density, 255
constant power water filling, 253
convex optimization, 4, 235–6
covariance matrix, 52
covariance matrix estimation, 193
CPTP, 105
cross-layer optimization, 274
cyber-physical system, 435
cyclostationary detection, 29, 47

decision tree learning, 294
deformed quarter circle law, 145
density operator, 51
diagonalizing transforms, 68
dimensionality reduction, 304
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dirty paper coding, 329
DKLT, 22
DOA, 49
DSA, 2, 273
DTV signal, 46
dynamic logic, 283

effective rank, 64, 79
eigenvalue distribution function, 186
empirical spectrum distribution, 120
energy detection, 15, 29
ensemble learning, 311
epidemic propagation, 419
estimator-correlator, 34

FDMA, 327
feature detection, 29
FFT, 19, 281, 339
finite dimensional statistical inference,

232
FMD, 67
free additive convolution, 219
free multiplicative convolution, 219
free probability, 213
FTM, 42, 67
full-circle law, 145
function of matrix, 67

game theory, 6, 351
Gaussian white noise, 23
generalized densities, 138
generalized variance, 59
geometric ideas, 75
geometric programming, 239
Gibbs sampling, 313
GIS, 435
GLRT, 13, 95, 157, 183
Golden-Thompson inequality, 112
GPS, 435
GPU, 437
greatest root statistic, 169

Haar distribution inverse semicircle law,
145

Hankel matrices, 151
Hermitian, 245, 325, 451

Hermitian Toeplitz matrix, 53
Hilbert space, 441, 444, 447, 450
Hilbert-Schmidt norm, 36
Hilbert-Schmidt theory, 41
HMM, 320
Hoffman-Wielandt, 55
Holevo-Helstrom, 116
Hotelling T 2 distribution, 74
Hotelling transform, 69
hypothesis testing, 121

ICA, 290
ICI, 341
incoherent tomography, 433
interference alignment, 333
interior point methods, 242
intrusion detection, 429
isomap, 308

Kalman filtering, 314
extended Kalman filtering, 315
unscented Kalman filtering, 316

Karhunen-Loeve expansion, 18, 22
Karhunen-Loeve transform, 69

Lagrange duality, 241
Laplacian eigenmaps, 309
large random matrices, 6, 121
layering as optimization decomposition,

275
limiting SNR, 162
linear discriminant analysis, 200
linear discrimination, 97
linear programming, 237
linear regression, 293
LLE, 308
load balancing, 437
logistic regression, 294
low SNR detection, 59
LRT, 32
LUT, 268–9

MAC, 275, 383, 385
machine learning, 283
Mahalanobis distance, 68
Mahalanobis transformation, 60
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majorization, 105
Marchenko-Pastur distribution, 176
Marchenko-Pastur law, 120, 124, 131
Markov inequality, 113
Markov matrices, 151
matched filter, 29
matrix normal distribution, 71
maximum and minimum eigenvalues,

63
MCMC, 312
MDP, 285, 301
MDS, 307
meta learning, 312
MIMO, 7, 281, 323, 349

array gain, 323
broadcast channel, 328
diversity gain, 323
interference channel, 331
layered space time coding, 326
multiple access channel, 330
multiplexing gain, 324
STBC, 325
STTC, 326

MIMO rate estimation, 232
minimax risk, 210
MISO, 244, 262
ML, 59, 81, 327, 341, 344
MME, 67
MMSE, 33, 255, 329, 344
mobile crowdsensing, 434
moment convergence theorem, 130
moving average process, 202
MSE, 246
multiuser diversity, 49
multiobjective optimization, 248
multisource power inference, 187
multivariate linear model, 173
MVN, 67
MVU, 309

LMVU, 310

naive Bayes classifier, 295
Nash equilibrium, 352, 354–5
NC-OFDM, 281
network layer, 383, 385
Neyman-Pearson criterion, 33

nonnegative matrix factorization, 291
noncentral chi-square distribution, 19
noncommunicativity, 65
noncommunicative, 445
NUM, 275, 411

OFDM, 7, 339, 349, 427
adaptive transmission, 345
channel estimation, 343
peak power problem, 345
spectrum shaping, 347
synchronization, 341

OFDMA, 347
orthogonal decomposition, 88
OSI, 273, 382

Pareto-optimal solutions, 248
partial ordering, 104–5, 109–110, 115
particle filtering, 318
PCA, 60, 289

kernel PCA, 44, 303, 305
PDF, 20
perturbed random response matrix, 189
physical layer, 273, 281, 382
POD, 40
Poincaré-Nash inequality, 143
POMDP, 285, 302
positive semidefinite, 65
positive semidefinite cone, 64
positive semidefinite matrix, 239, 259,

309, 449, 451
positivity of block matrices, 102
POVM, 115
power estimation, 234
power spectral density, 28
PSD, 30, 247, 251
PSO, 243, 431
PUE attack, 360

Q-learning, 300
QCQP, 238
QoS, 247, 249, 279, 323
quadratic programming, 238
quantum Chernoff distance, 118
quantum Neyman-Pearson lemma, 116
quarter circle law, 145
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R-transform, 146
radio resource management, 249
Radon-Nikodym derivative, 202
random forest, 294
random matrix theory, 9, 436
rank reduction, 89
regularized covariance estimates, 201
regularized sample covariance matrices,

206
reinforcement learning, 300
remote sensing, 435
robust optimization, 244
robust PCA, 290
routing, 396

S-transform, 146
sample covariance matrix, 10, 55, 77,

119, 131
SAR, 431

change detection, 432
distributed aspect SAR, 429

scaling transform, 60
scheduling, 391
SDE, 309
SDMA, 328
SDP, 239, 268, 309
SDR, 273, 427
second-order statistics, 23
security, 438
self-coherent tomography, 434
self-organizing map, 292
semicircle law, 130, 145
semisupervised learning, 298
SINR, 247, 327, 342, 345
smart grid, 286
SNR, 161, 184, 252, 256, 323, 345
SOCP, 238
spectral estimator, 30
spectrum sensing, 3, 15, 121, 250,

373
cooperative spectrum sensing, 49

spiked model, 154–5, 157, 180
Stieltjes transform, 8, 139
stochastic game, 362
stochastic order, 115

strong duality, 242
subspace, 289, 304, 333, 434, 436, 443
subspace methods, 30
supervised learning, 293
SVD, 22, 252, 290, 291
SVM, 295

kernel SVM, 303–4
multiclass SVM, 296
soft margin SVM, 297

tapering estimator, 208
TCP, 334, 382, 383, 404
TDMA, 327
TDOA, 49
time reversal, 253
Toeplitz matrices, 151
total variance, 59
trace, 237, 444
Trace-Widom law, 161
transductive inference, 299
transfer learning, 299
transport layer, 383, 385, 404

UAV, 280, 429
unitarily invariant norm, 109
unsupervised learning, 288
UWB, 243, 368, 428

Vandermonde matrices, 221
vector space, 441
vector-in vector-out, 137

water filling, 252
waveform diversity, 244
weak duality, 242
weak law of large numbers, 114
Wigner matrix, 130
Wilks’ � test, 83
Wilks’ lambda distribution, 74
wireless tomogrpahy, 433
Wishart distribution, 72
Wishart matrices, 123
WSS, 24, 32

zero-forcing, 329
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