Downloaded from https://onlinelibrary.wiley.com/doi/ by Dhaka University of Engineerin, Wiley Online Library on [07/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

SERVICE AVAILABILITY

SERVICE AVAILABILITY

PRINCIPLES AND PRACTICE

Editors

Maria Toeroe

Ericsson, Canada

Francis Tam
Nokia Research Center, Finland

FWILEY

A John Wiley & Sons, Ltd., Publication

85UBD17 SUOLILLIOD) AA[IR1D 3|qedt|dde ayy Aq peusenob afe sapie YO ‘8sn JO Sa|nJ 10} Akelq1auljuQ AB|IAA UO (SUO N PUOD-PUR-SWLLBIWOY A3 | 1M Afeiq U1 [uo//SAdny) SUORIPUOD pue sWwB | 3Y) 39S *[£202/0/L0] uo AriqiauliuQ A|Im ‘utsaulbug jo AiseAiun exeyq Ag /1op/wod Aa|im Azeiqiuljuo//sdny woly papeojumoq

This edition first published 2012
© 2012 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse
the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs
and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and
Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate
and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not
engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Service availability : principles and practice / editors, Maria Toeroe,
Francis Tam.
p. cm.

Includes bibliographical references and index.

ISBN 978-1-119-95408-8 (cloth)

1. Reliability (Engineering) I. Toeroe, Maria. II. Tam, Francis.

TA169.S465 2012

620.00452—dc23

2011047219

A catalogue record for this book is available from the British Library.
Print ISBN: 9781119954088

Typeset in 9/11pt Times by Laserwords Private Limited, Chennai, India

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Contents

List of Contributors

Foreword

Preface

Acknowledgments

List of Abbreviations

Part I INTRODUCTION TO SERVICE AVAILABILITY

1.1
1.2

1.3

1.4

2.1
22
23

Definitions, Concepts, and Principles
Francis Tam

Introduction

Why Service Availability?

1.2.1 Dossier on Unavailability of Service
1.2.2 Issues and Challenges

Service Availability Fundamentals

1.3.1 System, Behavior, and Service

1.3.2 Dependable Computing Concepts
1.3.3 The Meaning of Availability
Achieving Service Availability

1.4.1 Following the Framework of Fault Tolerance
14.2 Redundancy is a Requisite

1.4.3 Dealing with Failures

1.44 Upgrade Matters

Conclusion

The Birth of the Service Availability Forum
Francis Tam

Introduction

Technology Environment

Business Environment

2.3.1 Ecosystem

2.3.2 COTS and Open Systems

xiii

XV

Xix

XXV

XXVii

23

23
23
24
25
26

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

vi Contents
24 The Service Availability Forum Era 27
2.5 Concluding Remarks 28
Part I THE SA FORUM SYSTEM: SERVICES AND FRAMEWORKS
3 Overview of the Service Availability Architecture 33
Dave Penkler
3.1 Introduction 33
3.1.1 Background and Business Context 33
3.1.2 Goals and Requirements 34
3.1.3 Service Availability Architecture Scope and Presentation 36
3.2 HA Concepts Applied 39
3.2.1 To Be or Not to Be High Availability Aware 39
3.2.2 HA Aware Application Perspective 42
33 Architecture 43
3.3.1 Basic Architectural Model 43
332 The AIS Services and Frameworks Architecture 47
3.3.3 Service Dependencies 58
3.4 Open Issues 59
34.1 The Optional Features Issue 60
3.4.2 Integrated AIS Service API 60
3.4.3 Common Low Level Communication Facility Interface 60
3.4.4 Common Distributed Process Management Interface 61
3.4.5 System Trace Service 61
3.4.6 Diagnostics Framework 61
3.4.7 Overload Control Framework 61
3.5 Conclusion 62
4 The SA Forum Information Model: The Heart of Control
and Monitoring 63
Maria Toeroe
4.1 Introduction 63
4.2 Background 64
4.2.1 Management Models Out There 64
4.2.2 The SA Forum Needs 65
4.3 The SA Forum Information Model 67
4.3.1 Overview of the SA Forum Solution 67
4.3.2 Administrative and Management Aspects 80
4.3.3 Application Information Models 81
4.3.4 Open Issues and Recommendations 81
4.4 Conclusion 83
5 Consistent and High Level Platform View 85
Maria Toeroe
5.1 Introduction 85
5.2 Hardware Platform Interface 86
5.2.1 Background 86

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Contents vii
522 Overview of the Hardware Platform Interface 87
523 The HPI Model 88
5.2.4 HPI Capability Discovery 93
525 Error Handling and Administrative Operations 94
5.2.6 Open Issues and Conclusions 95
5.3 Platform Management Service 96
5.3.1 The Conception of PLM 96
5.3.2 Overview of the SA Forum Platform Management 97
533 The PLM Information Model 98
534 Tracking of PLM Entities 107
5.3.5 Administrative and Management Aspects 110
5.3.6 Service Interaction 118
5.3.7 Open Issues and Conclusions 120
54 Cluster Membership Service 121
54.1 Background 121
542 Overview of the Cluster Membership Service 122
5.4.3 CLM Configuration: The Bootstrap Trap 125
5.4.4 Are You a Member? 126
54.5 Administrative and Management Aspects 127
54.6 Service Interaction 129
5.4.7 Open Issues 130
54.8 Recommendation 131
5.5 Conclusion 131
6 Model Based Availability Management: The Availability
Management Framework 133
Maria Toeroe
6.1 Introduction 133
6.2 Background 134
6.2.1 Error Detection and Repair 134
6.2.2 Fault Zones and Error Escalation 135
6.2.3 Separation of Services from Serving Entities 136
6.2.4 Service Provisioning Roles 136
6.2.5 Delicacies of Service State Replication 137
6.3 The Availability Management Framework 138
6.3.1 Overview of the SA Forum Solution 138
6.3.2 Components and Component Service Instances 139
6.3.3 The AMF Information Model 148
6.3.4 Redundancy Models 167
6.3.5 The AMF Administrative Interface 176
6.3.6 Interactions Between AMF and Other AIS Services 187
6.3.7 Open Issues 190
6.3.8 Recommendation 191
6.4 Conclusion 191
7 Communication and Synchronization Utilities 193
Maria Toeroe and Sayandeb Saha
7.1 Introduction 193

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

viii Contents
7.2 Event Service 194
7.2.1 Background: Event Service Issues, Controversies,
and Problems 194
7.2.2 Overview of the SA Forum Event Service 195
7.2.3 Event Service Architecture and Model 196
7.24 User Perspective 200
7.2.5 Administrative and Management Aspects 201
7.2.6 Service Interactions 201
7.2.7 Open Issues and Recommendations 202
7.3 Message Service 202
7.3.1 Need for Reliability and Load Distribution 202
7.3.2 Overview of the SA Forum Message Service 203
7.3.3 Message Service Architecture and Model 205
7.3.4 User Perspective 207
7.3.5 Administrative and Management Aspects 210
7.3.6 Service Interaction 210
7.3.7 Open Issues and Recommendations 211
7.4 Checkpoint Service 212
7.4.1 Background: Why Checkpoints 212
7.4.2 Overview of the SA Forum Checkpoint Service 213
7.4.3 Checkpoint Service Model 215
7.4.4 User Perspective 217
7.4.5 Administrative and Management Aspects 220
7.4.6 Service Interaction 221
7.4.7 Open Issues 222
7.4.8 Recommendation 222
7.5 Conclusion 223
7.5.1 Common Issue: Entity Names 223
7.5.2 Conclusion 223
8 Services Needed for System Management 227
Maria Toeroe
8.1 Introduction 227
8.2 Log Service 228
8.2.1 Background: Data, Data, and More Data 228
822 Overview of the SA Forum Solution 229
8.2.3 The LOG Information Model 231
8.2.4 User Perspective 232
825 Administrative and Management Aspects 233
8.2.6 Service Interaction 233
8.2.7 Open Issues and Recommendations 235
8.3 Notification Service 236
8.3.1 Background: Issues, Controversies, and Problems 236
832 Overview of the SA Forum Notification Service 237
8.3.3 User Perspective 239
8.3.4 Correlation of Notifications 241
8.3.5 Administrative and Management Aspects 243
8.3.6 Service Interaction 244
8.3.7 Open Issues and Recommendation 246

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Contents ix
8.4 Information Model Management Service 247
84.1 Background: Issues, Controversies, and Problems 247
84.2 Overview of the SA Forum IMM Solution 249
8.4.3 The Object Manager API 251
8.4.4 The Object Implementer API 255
84.5 IMM XML File 258
8.4.6 Administrative and Management Aspects 258
8.4.7 Service Interaction 258
8.4.8 Open Issues 260
8.4.9 Recommendation 261
8.5 Conclusion 262
9 Model-Based Software Management: The Software Management
Framework 265
Maria Toeroe
9.1 Introduction 265
9.2 Background 266
9.3 Software Management a la Carte 268
9.3.1 Overview of the SA Forum Solution 268
9.3.2 Entity Types File: Is It Eaten or Drunk by SMF? 271
9.3.3 The Upgrade Campaign and Its Specification 273
9.3.4 Upgrade Campaign Execution Status and Failure Handling 279
9.3.5 Administrative and Management Aspects 285
9.3.6 User Perspective 288
9.3.7 Service Interaction 289
9.3.8 Open Issues 291
9.3.9 Recommendation 292
9.4 Conclusion 294
10 Combining the Services 297
Maria Toeroe
10.1 Introduction 297
10.2 Application Design and Development 297
10.3 Application Platform Design 299
10.4 Operation and Maintenance 301
Part III SA FORUM MIDDLEWARE IN ACTION
11 SA Forum Programming Model and API Conventions 305
Francis Tam
11.1 Introduction 305
11.2 Programming Model 306
11.2.1 AlS Area Service Interfaces 306
11.2.2 Real-Time Support 306
11.2.3 Naming Conventions and Type Definitions 308
11.2.4 Usage Model and Library Life Cycle 309
11.2.5 Tracking 311

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

X Contents
11.3 Making Sense of the API Specifications 312
11.3.1 Structure of Service API Specification 314
11.3.2 Administration API 315
11.4 Practical Topics 316
11.4.1 Interacting with POSIX 316
11.4.2 Allocating and Freeing Memory 319
11.4.3 Handling Pointers 319
11.4.4 Finding Out Implementation Limits 320
11.4.5 When an Area Service is Unavailable 321
11.4.6 Backward Compatibility 322
11.5 Concluding Remarks 322
12 SA Forum Java Mappings: Specifications, Usage, and Experience 325
Robert Hyerle and Jens Jensen
12.1 Introduction 325
12.2 Background 325
12.2.1 Early Exploration of Java Mappings in Hewlett—Packard 325
12.2.2 Java in Ericsson 326
12.2.3 The SA Forum Java Mapping Initiative 327
12.3 Understanding the Java Mappings 328
12.3.1 Java Application Integration Architecture 328
12.3.2 Naming 329
12.3.3 Package Structure 330
12.3.4 The Underlying Objects 330
12.3.5 Types 331
12.3.6 Parameters, Exceptions, and Method Signatures 332
12.3.7 Factories, Callbacks, and Life-cycles 333
12.3.8 Callbacks and the Selection Object in Java 334
12.4 Using the Java Mappings 335
12.4.1 Integrating AIS Services with Java Applications 335
12.4.2 Integrating AIS Services with Containerized Java Applications 342
12.4.3 AIS Services in Mixed Language and Mixed Implementation Environments 343
12.5 Going Further 343
12.5.1 The Java Mapping Roadmap 343
12.5.2 Related Java Standards and Other References 344
13 SA Forum Middleware Implementations 347
Mario Angelic and Ulrich Kleber
13.1 Introduction 347
13.1.1 OpenHPI 347
13.1.2 OpenSAF 348
13.2 The OpenHPI Project 348
13.2.1 Overview of the OpenHPI Solution 348
13.2.2 User Perspective 351
13.2.3 OpenHPI Tools 353
13.2.4 Open Issues and Recommendations 354
13.3 The OpenSAF Project 355
13.3.1 Background 355

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Contents xi
13.3.2 OpenSAF Architecture 356
13.3.3 SA Forum Compliant Services 360
13.3.4 OpenSAF Infrastructure Services 364
13.3.5 Managing OpenSAF 365
13.3.6 Deploying OpenSAF 367
13.4 Conclusion 368
14 Integration of the VideoLAN Client with OpenSAF: An Example 371
Anik Mishra and Ali Kanso
14.1 Introduction 371
142 Going Under the Hood: The VLC Workflow 372
14.3 Integrating VLC with OpenSAF 373
14.3.1 Nonproxied-Non-SA-Aware Integration 374
14.3.2 SA-Aware VLC Integration 379
14.3.3 SA-Aware VLC with Service Continuity 384
14.4 Summary and Conclusion 387
15 Migration Paths for Legacy Applications 391
Mario Angelic
15.1 Introduction 391
15.2 Reasons for Migration 392
15.2.1 Benefits for System Owners 392
15.2.2 Benefits for ISVs 392
15.3 Integration Criteria 393
15.3.1 Main Factors 393
15.3.2 Easy Management 394
15.3.3 Streamlined Architecture 396
15.3.4 Code Quality 397
15.3.5 Integration Levels 397
154 How to Migrate 399
15.4.1 Availability Integration 399
15.4.2 Manageability Integration 409
15.5 Open Issues 413
15.6 Conclusion 413
16 Overcoming Complexity: Formal Modeling Techniques at the Rescue 415
Maria Toeroe and Ferhat Khendek
16.1 Introduction 415
16.2 Background 416
16.2.1 The Model-Based Approach 416
16.2.2 Starting Points in the Specifications 417
16.3 Model-Based Software Management 419
16.3.1 Configuration Model 419
16.3.2 Configuration Generation 420
16.3.3 Upgrade Campaign Generation 424
16.3.4 Analytical Models and How They Can Help 427
16.4 Conclusion 428

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Downloaded from https://onlinelibrary.wiley.com/doi/ by Dhaka University of Engineerin, Wiley Online Library on [07/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

431
431
433
435
443

Contents

Conclusion
Summary

17.2 The Future
References

ii
17
17.1
Index

List of Contributors

Mario Angelic, Ericsson, Stockholm, Sweden

Robert Hyerle, Hewlett-Packard, Grenoble, France

Jens Jensen, Ericsson, Stockholm, Sweden

Ali Kanso, Concordia University, Montreal, Quebec, Canada
Ferhat Khendek, Concordia University, Montreal, Quebec, Canada
Ulrich Kleber, Huawei Technologies, Munich, Germany

Anik Mishra, Ericsson, Town of Mount Royal, Quebec, Canada
Dave Penkler, Hewlett-Packard, Grenoble, France

Sayandeb Saha, RedHat Inc., Westford, Massachusetts, USA
Francis Tam, Nokia Research Center, Helsinki, Finland

Maria Toeroe, Ericsson, Town of Mount Royal, Quebec, Canada

85UBD17 SUOLILLIOD) AA[IR1D 3|qedt|dde ayy Aq peusenob afe sapie YO ‘8sn JO Sa|nJ 10} Akelq1auljuQ AB|IAA UO (SUO N PUOD-PUR-SWLLBIWOY A3 | 1M Afeiq U1 [uo//SAdny) SUORIPUOD pue sWwB | 3Y) 39S *[£202/0/L0] uo AriqiauliuQ A|Im ‘utsaulbug jo AiseAiun exeyq Ag /1op/wod Aa|im Azeiqiuljuo//sdny woly papeojumoq

Foreword

The need to keep systems and networks running 24 hours a day, seven days a week has never
been greater, as these systems form some of the essential fabric of society ranging from business
to social media. Keeping these systems running in the presence of hardware and software failures
is defined as service availability. In some areas of networking, such as telecommunications, it has
formed an essential requirement for almost 100 years; it is part of why traditional plain old telephone
service (POTS) would still be available when power went out. With the advent of the Internet, service
availability requirements are increasingly being demanded in the marketplace, not necessarily due to
regulatory requirements, as was the case with telephone networks, but due to business requirements
and pressures from the marketplace. Of course, it’s not just communications where service availability
is important, many other industries such as aerospace and defense have similar requirements. Imagine
the impact of a loss of control during missile flight, for example.

After the Internet bubble of the late 1990s, and an almost global deregulation of the telecommu-
nications market, it was increasingly recognized that the high cost of development for proprietary
hardware and software systems was no longer viable. The future would increasingly be based on
commercial off-the-shelf (COTS) systems, where time to market for new services, outweighs the ele-
gance of proprietary hardware and software systems. High availability middleware, which forms a
core aspect of delivering service availability, was one of these complex components. Traditionally
viewed as high value and differentiating, in this new environment of time to market service emphasis,
where rapid application development, adaptation, and integration are key, proprietary middleware is
both time consuming to develop and costly to maintain.

The Service Availability Forum (SA Forum) was established in 2001 to help realize the vision of
accelerating the implementation and deployment of service available systems, through establishing a
set of open specifications which would define the boundaries between hardware and middleware and
between the middleware and the application layer. At the time, concepts which are generally accepted
today, such as a layered approach to building systems, the use of off-the-shelf hardware and software,
and defacto standards developed through open source, were in their relative infancy.

The Founders of the SA Forum, Force Computers, GoAhead Software, HP, IBM, Intel, Motorola,
Nokia, and Radisys all recognized that in 2001 the world was changing. They understood that redun-
dancy and service availability would spread downstream from the traditional high end applications,
such as telecommunications and that the key to success was a robust ecosystem built around a set of
open specifications for service availability. This would allow applications to run on multiple platforms,
with different hardware and operating systems, and enable rapid and easy integration of multiple appli-
cations onto a single platform, realizing the vision of rapid development to meet the demands of new
services in the marketplace. None of what was envisioned precluded the continued development of
proprietary systems, but the concepts were clearly aimed at the increased use of COTS hardware and
software with a view accelerating the interoperation between components.

Although it has changed over time, as the organization and the market has evolved, the current
mission statement of the SA Forum characterizes the objectives set out in 2001.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

xvi Foreword

The Service Availability Forum enables the creation and deployment of highly available,
mission critical services by promoting the development of an ecosystem and publishing
a comprehensive set of open specifications. A consortium of industry-leading companies,
the SA Forum maintains ‘There is no Upside to Downtime.’

It is always a challenge to create an industry organization when so much investment in proprietary
technology already exists. On the one hand, there needs to be a willingness to bring some of this
expertise and possibly intellectual property to the table, to serve as a basis for creating the speci-
fications. This has to be tempered with the fear that someone will contribute intellectual property
and later aggressively seek to assert patent rights. To avoid issues in this area, the SA Forum was
established as a not-for-profit organization and a key aspect of the bylaws was that all members agreed
to license any intellectual property to any other members on fair and reasonable terms. Since the SA
Forum was dealing primarily in software application programming interfaces around an underlying
conceptual architecture, the assertion of patents is quite difficult, but in any event, the Forum has
always operated on a cooperative model, with everyone seeking to promote the common good and to
address differences within the technical working groups. To further control the objective of a common
goal, the SA Forum established three levels of membership, promoters, contributors, and adopters.
An academic (associate) membership level was added at later date, and the status of adopter was
conferred on anyone with an implementation and use of the specifications in a product.

Promoters were the highest level, and only promoters could be on the board of directors. They were
the founders of the organization, and hence the main initial contributors. To avoid predatory actions by
other companies, additional promoters could be added only by a unanimous vote of all the promoters.
While this may seem overly restrictive, it has worked well in practice, and companies who have
demonstrated commitment and who have contributed to the Forum have been offered promoter status.

In order to participate in SA Forum work groups and contribute to the specifications, companies had
to be contributor members. This proved to be the workhorse membership level for the organization
and many valuable contributions came from this group of members.

The adopter members have generally been companies with interest in supporting the SA Forum’s
work, or who have developed products that have incorporated some aspect of the SA Forum’s
specifications.

The cooperative nature of the SA Forum has led to the development of a robust set of specifications
for service availability. Indeed, that is what this book is all about, the concepts and use of the SA
Forum specifications.

The first tentative steps after the formation in 2001 were white papers on the then new concepts of
service availability and a layered architecture approach. These were followed by the initial specifica-
tions focused on the hardware platform interface (HPI), which has gone through a number of revisions
and enhancements. The most recent release of the HPI specification includes provisions for firmware
upgrades and hardware diagnostics.

Work on the more challenging application interface specification (AIS), which address the interfaces
to applications, management layers, and overall control of the availability aspects of a distributed
system. Early work focused on what has come to be known as the utility services, the fundamental
services necessary to create a service available system, cluster concepts, checkpointing, messaging,
and so on. By the 2005-2006 timeframe, the Forum was ready to address overall system concepts,
such as defining the framework and policy models for managing availability. This resulted in the
Availability Management Framework (AMF) and the Information Model Management (IMM). These
critical services provide both the flexibility to architect a system to meet application requirements,
but also a common mechanism for managing availability, with extensibility to manage applications
themselves if desired. This complex work really created the core of the SA Forum AIS and it is in many

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Foreword Xvii

ways a remarkable piece of work. More recent developments have included the Software Management
Framework (SMF) to enable seamless upgrading (and downgrade if necessary) campaigns for systems,
demonstrating the true idea of service availability, and platform management (PLM), which enables a
coherent abstraction of a system. This encompasses complex hardware designs with computer boards
equipped with mezzanine cards, which are themselves compute engines, and enables modern virtual
machine architectures to be embraced by the SA Forum system model. This in turn enables the SA
Forum specifications to become an essential part of cloud computing concepts.

The SA Forum itself has been responsible for the genesis of other industry organizations. It was
recognized that the scope of the SA Forum was insufficient to meet the objective of the wide-spread
adoption of off-the-shelf technology and the cooperation between the component layers of the solution.
By its very charter, the SA Forum was focused on service availability and middleware. An outgrowth
of the Forum was the creation in 2007 of the SCOPE Alliance.

The SCOPE Alliance was founded by Alcatel-Lucent, Ericsson, Motorola, NEC, Nokia, and
Siemens. It is a telecom driven initiative which now includes many leading network equipment
providers, hardware, and software companies, with the mission to enable and promote a vibrant carrier
grade base platform (CGBP) ecosystem for use in telecom network element product development.
The SCOPE members believe that a rich ecosystem of COTS and free open source software (FOSS)
communities provide building blocks for the network equipment manufacturers to adopt, accelerating
their time to market and better serving the service provider marketplace.

To accomplish these goals, SCOPE has created a reference architecture which has been used to
publish profiles that define how off-the-shelf technologies can be adopted for various application and
platform requirements. These profiles also identify where gaps exist between the various layers of
CGBP technology. A core component of the CGBP is service availability middleware, based on SA
Forum specifications.

Creating specifications is a complex and intellectually challenging task. This is an accomplishment
in and of itself. However, the success of the SA Forum and its specifications is really measured by
their adoption in the marketplace and their use in systems in the field. Over the years, there have
been a number of implementations of the specifications. When the Forum was founded, and the use of
open source software was in its infancy, it was foreseen that the specifications would enable multiple
implementations and the portability would be accomplished at the application programming interface
(API) layer. From 2006 onwards, the Forum had various initiatives aimed at demonstrating portability.
Multiple companies did indeed implement some or part of the specifications to varying degrees. These
implementations ranged from selected services to complete implementations of the specifications.

On the hardware side, most major hardware vendors have adopted the HPI specification. There are
both proprietary, commercial implementations and an open source solution, OpenHPI, available in
the marketplace. With the broad adoption of HPI, this can be very much considered a success in the
marketplace.

AIS is much more complex and a range of proprietary and open source solutions have appeared
in the marketplace since the mid-2000s. These have had various levels of implementation relative to
the specifications discussed in this book, and they have included internal development by network
equipment manufacturers, proprietary commercial products, and open source solutions. OpenAlS is
an open source solution dating from around 2005 and it has been used extensively for clustering in
the Linux community. The most complete implementation of the AIS is the OpenSAF project, this
is a focus for many adopters of the SA Forum AIS moving forward, with rollout commitments from
major equipment manufacturers and a vibrant ecosystem.

Many people, from a wide variety of companies, have contributed to the SA Forum specifications,
and their effort and foresight have led to a framework that is now being implemented, adopted,

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

xviii Foreword

and deployed. The current focus is on expanding the use cases for the SA Forum specifications and
demonstrating that they address a broad range of applications. This goes beyond the traditional five
and six ‘9’s’ of the telecom world and the mission critical requirements of aerospace and defense, to
the realms of the Enterprise and the emerging cloud computing environment.

Timo Jokiaho
Chairman of the SCOPE Alliance, 2011, President of the SA Forum, 2003

John Fryer
President of the SA Forum, 2011

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Preface

How This Book Came About
Maria’s Story

I joined the Service Availability (SA) Forum in 2005 with the mandate of representing Ericsson in
the efforts of the SA Forum Technical Working Group (TWG) to define the Software Management
Framework. This is where I met Francis and the representatives of other companies working on the
different specifications. The standardization has been going on already for several years and I had a
lot to learn and catch up with. Unfortunately there was very little documentation available besides the
specifications themselves, which of course were not the easiest introduction to the subject.

Throughout the discussions it became even more obvious that there was an enormous ‘tribal
knowledge’ — as someone termed it — at the base of the specifications. This knowledge was not writ-
ten anywhere, not documented in any form. One could pick it up gradually once he or she started to
decipher the acronym ridden discussions flying high in the room and on the email reflectors. There
were usually only a handful who could keep up with these conversations at the intensity that was
typical at these discussions. For newcomers they were intimidating to say the least. This was an issue
for the SA Forum from the beginning and for the years to come even though there was an Educational
Working Group with the mandate to prepare training materials. Many TWG members felt that it would
be good to write a book on the subject, but with everyone focusing on the specifications themselves
there was little bandwidth to spare for such undertake.

Gradually I picked up most of the tribal knowledge and was able to participate in those discussions,
but preparing educational materials or writing a book still did not come to my mind until Ericsson
started a research collaboration with Concordia University. Suddenly I had to enlighten my students
about the mysteries of the SA Forum specifications. These specifications are based on the years of
experience of telecom and information technology companies in high-availability cluster computing.
These systems evolved behind closed doors in those companies as highly guarded secrets and accord-
ingly very little if any information was available about them in the public domain. This also meant
that the materials were not taught at universities nor were books readily available to which I could
refer my students. Soon the project meetings turned into an ad-hoc course where we went through the
different details, the intricacies of the specifications and the reasoning behind the solutions proposed.
These solutions were steeped in practice and brewed for production. They reflected what has worked
for the industry as opposed to theoretical models and proofs more familiar to the academia. This does
not mean that they lack theoretical basis. It just means that their development was driven by practice.

Understanding all these details was necessary before being able to embark on any kind of research
with the students and their professors. These discussions of course helped the students but at the same
time they helped me as well to distill the knowledge and find the best way to present it. Again it
would have been nice to have a book, but there was none, only the specifications and the knowledge
I gathered in the TWG discussions.

A few years later OpenSAF, the open source implementation of the SA Forum specifications
reached the stage when people started looking at it from the perspective of deployment. They started

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

XX Preface

to look for documentation, for resources that they could use to understand the system. OpenSAF uses
mostly the SA Forum specifications themselves as documentation for the services compliant to these
specifications.

These people faced the same issue I had experienced coming to the world of the SA Forum. I
was getting requests to give an introduction, a tutorial presentation so that colleagues can get an idea
what they are dealing with, how to approach the system, where to start. After such presentations I
would regularly get the comment that ‘you should really write a book on this subject.” At this time
I saw the suggestion of writing a book more realistic and also with the increasing demand for these
presentations it made a lot of sense.

In a discussion with my manager I mentioned the requests I was getting to introduce the SA Forum
specifications and the suggestions about the book. He immediately encouraged me to make a proposal.
This turn of events transformed the idea I have toyed with for some time into a plan and the journey
has begun. I have approached Francis and others I knew from the SA Forum to enroll them in the
book project. This book is the realization of this plan, the end of this journey. It is a technical book
with a rather complex subject that we, the authors and editors tried to present in a digestible way.

Francis’ Story

My contribution related to the SA Forum specifications in this book was based on the project titled
‘High Availability Services: Standardization and Technology Investigation’ that I worked on during
2001-2006in Nokia Research Center. The project was funded by Strategy and Technology, the then
Nokia Networks (now part of Nokia Siemens Networks), with the objective to support the company’s
standardization effort in the SA Forum and contribute to a consistent carrier-grade base platform
architecture for the then Nokia Networks’ business. I became one of the Nokia representatives to
the SA Forum and took part in the development of the first release of the Availability Management
Framework specification with other member companies’ representatives. Subsequently, I took up the
role of co-chairing with Maria the Software Management specification development group. Regrettably
I had to stop my participation in the SA Forum at the end of 2006 before the Software Management
Framework was published.

Parallel to my full-time employments over the years, I have been giving a 12-hour seminar course
on highly available systems to the fifth (final) year Master of Engineering students in Computer
Science at INSA Lyon (Institut National des Sciences Appliquées de Lyon) in France almost every
year since 1993. It has been widely recognized in the academic community that there is a lack of
suitable books for teaching the principles and a more pragmatic approach to designing dependable
computer systems. Very often such materials have to be gathered from various sources such as
conference proceedings, technical reports, journal articles, and the like, and put together specifically
for the courses in question. On a number of occasions, the thought of writing such a book came
to my mind but it left rather quickly, probably due to my senses were warning me that such an
undertaking would have been too much.

I remember it was a few years ago when Maria asked me if I could recommend a book in this
area for her teaching. After explaining to her about the general situation with regard to books in this
subject area, I half-jokingly suggested to her that we could write one together. She left it like that but
only returned in January 2010 and asked if I would be interested in a book project. As they say, the
rest is history.

The Goal of the Book

Our story of how the book came about has outlined the need that has built up and which it was time
to address with a book. It was clear that the approach to the subject should not be too theoretical,

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Preface xxi

but rather an explanation of the abstractions used in the SA Forum specifications that would help
practitioners in mapping those abstractions to reality; it also needed to make the knowledge tangible,
to show how to build real systems with real applications using the implementations of the SA Forum
specifications. The time was right as these implementations were reaching maturity fast.

At the same time we did not want to write a programmers’ guide. First of all a significant portion
of the specifications themselves is devoted to the description of the different application programming
interface (API) functions. But there is so much reasoning in these systems and the beauty of their
logic cannot be delivered just by discussing the APIs, which are like the scrambled puzzle pieces do
not reflect the complete picture, the interconnection and interdependencies until they are put together
piece by piece. They give little information on the reasoning which animates the picture and fills in
even missing puzzle pieces.

The specifications may not be perfect at this time yet but they bring to the light this technology
that has been used and proved itself in practice to provide the magic five-nine figures of in service
performance, but has been hidden from the public eye. At this time they already come with open
source implementations meaning that they are available for anyone to experiment with or to use for
deployment, and also to evolve and improve.

The concepts used in these specifications teach a lot about how to think about systems that need
to provide their services continuously 24/71in the presence of failures. Moreover they are designed
to evolve respecting these same conditions, that is, these systems and their services develop without
being taken out for planned maintenance, they evolve causing minimal service outage. They are ideal
for anyone who needs to meet stringent service level agreements or SLAs.

The concepts presented in this book remain valid whether they are used in the framework of the
SA Forum specifications or transpired to cloud computing or any other paradigm that may come.
The SA Forum specifications provide an excellent basis to elaborate and present the concepts and the
reasoning. They also set the terminology allowing for a common language of discussion, which was
missing for the area.

We set out to explain these concepts and their manifestation in the specifications and demonstrate
their application through use cases.

So who would benefit from this book? The obvious answer is that applications and systems designers
who intend to use the SA Forum middleware. However since we look at the specifications more
as one possible manifestation of the concepts, ultimately the book benefits anyone who needs to
design systems and applications for guaranteed service availability, or who would like to learn about
such systems and applications. We see this book as a basis for an advanced course on high service
availability systems in graduate studies or in continuous education.

The Structure of the Book

The book is divided into three main parts:

Part One introduces the area of service availability, its basic concepts, definitions, and principles
that set the stage for the subsequent discussions. It also delivers the basic premise that makes the
subject timely. Namely that in our society the demand for continuous services is increasing in terms
of the number and variety of services as well as the number of customers. To meet this demand it is
essential to make the enabling technologies widely available by standardizing the service APIs so that
commercial off the shelf components can be developed. Enabling such an ecosystem was the mission
of the SA Forum, whose coming about is presented also in this part.

Part Two of the book focuses on the specifications produced by the SA Forum to achieve its
mission. The intention was to provide an alternative view of the specifications, a view that incorpo-
rates that ‘tribal knowledge’ not documented anywhere else and which provides some insight to the
specifications, to the choices that were made at their design.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

xxii Preface

We start out with the architectural overview of the SA Forum middleware and its information model.

The subsequent chapters elaborate on the different services defined by the SA Forum Architecture.
Among them the Availability Management Framework and the Software Management Framework
each has their own dedicated chapter while the other services are presented as functional groups: the
Platform services, the Utility services, and the Management Infrastructure services.

Rather than discussing all the SA Forum services at a high level we selected a subset on which we
go into deeper discussions so that the principles become clear. We do not cover the Security service
in our discussions as it is a subject crosscutting all the services and easily filling a book on its own.

The presentation of the different services and frameworks follow more or less the same pattern:

First the goals and the challenges addressed by the particular service are discussed, which are
followed by an overview of the service including the service model and architecture supporting the
proposed solution.

Rather than presenting the gory details of each of the API functions like it would be in a pro-
grammer’s guide we decided to explain the usage through the functionality that can be achieved by
using the APIs. This approach reveals better the complete picture behind the puzzle pieces of the API
functions. We mention the actual API functions only occasionally when it makes it easier to clarify
the overall functionality.

Whenever it is applicable we also present the administrative perspective of the different services.
The goal of these sections is to outline what a system administrator may expect to observe in a running
system and what control he or she can obtain through configuration and administrative operations
according to the specification. Sometimes these details could be overwhelming, so the anticipation is
that different implementations of the standard services may restrict this access while other vendors
may build management applications that enhance the experience by assisting the administrator in
different ways.

Subsequently the service interactions are presented inserting the service discussed thus far in iso-
lation into the environment it is expected to operate. Since the specifications themselves are written
in a somewhat isolated way, these sections collect information that are not readily available, which
require the understanding of the overall picture.

Finally the open issues and recommendations conclude each of the service overviews.

Particularly the open issues deserve some explanation here: even though the SA Forum specifications
are based on the best practice developed in the industry over the years, the specifications themselves
are not the reflection of a single working implementation. Rather they are based on the combined
knowledge derived by the participants from different working implementations. So at the time of
the writing of the different specifications the SA Forum system existed only in the heads of the
members of the SA Forum TWG. It was this common vision that was scrutinized in the process of
the standardization that obviously reshaped and adjusted the vision.

As the work progressed and people started to implement the different specifications the results
were fed back to the standardization process. In case of the simpler services most of the issues found
through these implementations have been resolved by the time of the writing of this book. But for the
more complex services there are still remaining open issues.

There are also a few cases where the TWG deliberately left the issues open so that the implemen-
tations have the freedom to resolve them in a way most suitable for the particular implementation;
for example, the system bootstrapping was left implementation specific. These are usually cases that
do not impact applications using the services, but for which service implementers would like to have
an answer (but typically not the one the specification would offer).

Part Three of the book looks at the SA Forum middleware in action, that is, at the different aspects
of the practical use of the specifications presented in Part Two.

It starts with the overview of the programming model used throughout the definition of the different
service APIs. There is a system in the API definitions of the different specifications and Chapters 11

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Preface xxiii

and 12 serve as Ariadne’s thread in what seem to be a labyrinth. This is followed by a bird’s-eye view
at the two most important open source implementations of the SA Forum specifications: OpenSAF
and OpenHPIL.

To help integrators and application developers to use these middleware implementations in
Chapter 14 we discuss different levels of integration of the VideoLAN Client (VLC) application
originally not developed for high availability. This exercise demonstrates in practice how an
application can take advantage of the SA Forum Availability Management Framework even without
using any of its APIs. Of course better integration and better user experience can be achieved using
the APIs and additional services, which is also demonstrated.

After this ‘hands on’ exercise the problem of migrating large scale legacy applications is discussed.
This chapter gives an excellent insight not only for those considering such migration, but also to
designers and developers of new applications. It demonstrates the flexibility of the SA Forum speci-
fications which people usually realize only after developing an intimate relationship with them. The
mapping of the abstractions defined by the specifications is not written in stone and it is moldable
to meet the needs of the situation. This is demonstrated on the example of two different database
integrations with the SA Forum middleware depending on the functionality inherent in the database.

The final chapter of Part Three takes yet again a different perspective. It discusses the issues
complementary to the specifications but necessary for the operation of the SA Forum middleware. It
introduces the use of formal models and techniques to generate system configurations and upgrade
campaigns necessary for the Availability and the Software Management Frameworks to perform their
tasks. This approach was part of the vision of the SA Forum specifications as they defined the concepts
enabling such technology opening the playground for tool vendors.

We could have continued exploring the subject with many exciting applications, but we had to put
an end as we reached our page limit as well as the deadline for delivering the manuscript. So we
leave the rest of the journey to the reader who we hope will be well equipped after reading our book
to start out with their own experimentations.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Acknowledgments

The group of people that were essential for the creation of this book are the Service Availability (SA)
Forum’s Technical Working Group representatives of the different member companies; who concocted
the specifications and provided a challenging yet inspiring environment for learning and growing in
the field. We cannot possibly list all the participants without missing a few, so we will not do so.
There were however a few outstanding:

We had extremely constructive and rewarding discussions with the SA Forum Software Management
Working Group when we were creating the Software Management Framework, for which we would
like to thank Peter Frejek, Shyam Penubolu, and Kannan Kasturi. We probably should not forget about
another regular participant of our marathon-length conference calls: the Dog whose comments broke
the seriousness of the discussions.

We would like to thank Fred Herrmann, who left his fingerprints over most if not all SA Forum
service specifications, and for the numerous stimulating discussions and debates which made the
experience so much more exciting. And in the debates it was a pleasure to have the calming wisdom
of Dave Penkler. Dave was also instrumental in the writing and reviewing of this book. We are grateful
to him for graciously stepping up and helping out with key chapters when we were under pressure of
time and short of a pair of fresh eyes.

We are deeply obliged to our co-authors for helping us create this book. For most of them this meant
the sacrifice of their spare time — stealing it from their families and friends to deliver the chapters and
with that make the book so much more interesting.

Finally we would like to thank Wiley and in particular Sophia Travis for recognizing the vision in
our book proposal and helping us through the stress of the first book with such an ease that it truly
felt like a breeze.

From Maria

First and foremost I would like to thank the generosity of Ericsson and within that of my managers
Magnus Buhrgard and Denis Monette for allotting me the time to work on this book and their
continuous support and trust that it would be completed. Not that I ever had a doubt, but it definitely
took more time and efforts than I anticipated. Their support made the whole project possible.

I am also grateful to the MAGIC team of Concordia University. The professors: Ferhat Khendek,
Rachida Dssouli, and Abdelwahab Hamou-Lhadj, the students Ali Kanso, Setareh Kohzadi, Anik
Mishra, Ulf Schwekendiek, Pejman Salehi, and the post-docs: Pietro Colombo and Abdelouahed
Gherbi. They provided me with a completely different learning experience. All of them had their own
approach to the problem and in the discussions I had to learn to investigate the subject from many
different sometimes unconventional angles and answer questions that within industry were taken for
granted. These discussions and working together on the problems led me to a fresh look and a deeper
understanding of the subject all facilitating (at least in my belief) a better delivery.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

xxvi Acknowledgments

Finally I would like to thank my colleagues in Montreal and across the sea in Stockholm who were
the initiators of this project with their requests and suggestions, who joined my family and friends, in
supporting and encouraging me in my writing from the beginning.

A heartfelt thank to all of you.

Maria Toeroe
September, 2011

From Francis

The undertaking to write a book is a daunting commitment even in the best of times, having to do
it in my spare time after the day job was rather demanding. My contribution to this book would not
have been possible if it was not for the thoughtful understanding and unreserved support from my
wife Riikka, who has the shared belief that this book project was good for me. She deserves a medal
for putting up with my long evenings and weekends of writing.

As if my lack of time were not enough, I went through one round of company reorganization and
was under the threat of lay-off for some weeks — a slightly different kind of redundancy I originally
planned to think about. My warm thank you goes to Minna Uimonen, who has always encouraged
me and reminded me of the Finnish sisu during this difficult time. I am grateful to all my friends for
their kind wishes and understanding of my short disappearance. I look forward to re-integrating with
the community and do what I do best — as a highly available ‘Chief Entertainment Officer.’

Francis Tam
September, 2011

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

List of Abbreviations

3G
3PP
ABI
AIS
AMF
AMM
ANSI
API
ARP
ASN.1
ATCA
ATL
BASH
CASE
CCB
CGBP
CIM
CIMOM
CKPT
CLC-CLI
CLI
CLM
CORBA
COTS
CPU
CSI
CST
DAM
DAT
DBMS
DET
DIMI
DMTF

3" generation

Third Party Product

Application Binary Interface

The SA Forum Application Interface Specification
The SA Forum Availability Management Framework
Availability Management Middleware
American National Standards Institute
Application Programming Interface

Address Resolution Protocol

Abstract Syntax Notation One

Advanced Telecommunication Computing Architecture
ATLAS Transformation Language

Born Again Shell

Computer-Aided Software Engineering
Configuration Change Bundle

Carrier Grade Base Platform

Common Information Model

Common Information Model Object Manager
the SA Forum Checkpoint Service
component life-cycle command line interface
command line interface

the SA Forum Cluster Membership Service
Common Object Request Broker Architecture
commercial-off-the-shelf

central processing unit

component service instance

component service type

dependability analysis modeling

domain alarm table

database management system

domain entity tree

Diagnostics Initiator Management Instrument
Distributed Management Task Force

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

xxviii List of Abbreviations

DN distinguished name

DNS domain name server

DRT domain reference table

(E)AM external active monitoring

EE execution environment

ETF entity types file

EVT the SA Forum Event Service

FAR Federal Acquisition Regulation

FOSS free open source software

FRU field replaceable unit

FT fault tolerant

ftp file transfer protocol

FUMI Firmware Upgrade Management Instrument

GUI graphical user interface

HA high availability

HE hardware element

HP Hewlett-Packard

HPI the SA Forum Hardware Platform Interface

HTTP hypertext transmission protocol

HW hardware

IBM International Business Machines

ID identifier

IDR Inventory Data Record

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IFIP International Federation for Information Processing

iLO2 HP Integrated Lights-Out 2

IMM the SA Forum Information Model Management Service

/0 input/output

1P the Internet Protocol

IPMB intelligent platform management bus

IPMI intelligent platform management interface

ISP in-service performance

ISV independent software vendor

1T information technology

ITU International Telecommunication Union

Java EE Java Enterprise Edition (formerly J2EE)

JCP Java Community Process

IMX Java Management eXtenstions

JSR Java specification request

JVM Java virtual machine

LDAP lightweight directory access protocol

LOG the SA Forum Log service

MAGIC Modeling and Automatic Generation of Information for Configuration and upgrade
campaigns for service availability

MARTE OMG’s Modeling and Analysis of Real-Time Embedded systems

MDA model driven architecture

MDE model driven engineering

MDS message distribution service

MIB management information base

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

List of Abbreviations

XXix

MOF
MSG
MTBF
MTTF
MTTR
NAM
NEC
NETCONF
NIO
NTF
NTP
OA
OAM
OCL
Ol
OI-API
OM
OM-API
OMG
oS
NP-hard
PCI
PICMG
PLM
POSIX
POTS
RIBCL
RDN
RDR
RPM
RPT
RSA
RTAS
RTP
RTSP
SA
SAF
SAI
SAN
SEC

SI

SG
SMF
SMIv2
SNMP
SOAP
SPNP
ssh
SSL
SU

meta object facility

the SA Forum Message Service
mean time between failures

mean time to failure

mean time to repair

the SA Forum Naming Service
Nippon Electric Company, Limited
network configuration protocol
New 1/0

the SA Forum Notification Service
network time protocol

onboard administrator

operations, administration, and maintenance (or management)

object constraint language

object implementer

the object implementer API of the IMM service
object manager

the object management API of the IMM service
Object Management Group

operating system

nondeterministic polynomial-time hard
peripheral component interconnect

PCI Industrial Computer Manufacturers Group
the SA Forum Platform Management Service
Portable Operating System Interface for Unix
plain old telephone service

remote insight board command language
Relative Distinguished Name

resource data records

RPM Package Manager or Redhat Package Manager

resource presence table

remote supervisor adapter

run-time abstraction services

real-time transport protocol

real-time streaming protocol

service availability

Service Availability Forum

Service Availability Interface

Storage Area Network

the SA Forum Security Service

service instance

service group

the SA Forum Software Management Framework
Structure of Management Information Version 2
simple network management protocol

simple object access protocol

stochastic Petri net package

secure shell

secure socket layer

service unit

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

XXX List of Abbreviations
SW software

TCP transmission control protocol

TID HP Telecom Infrastructure Division
TIPC transparent inter-process communication
TMR the SA Forum Timer Service

TWG the SA Forum Technical Working Group
UCMI universal chassis management interface
UML unified modeling language

UmL User-mode Linux

ucCs upgrade campaign specification

URI uniform resource identifier

VLC VideoLAN Client

VLM VideoLAN Manager

VM virtual machine

VMM virtual machine monitor

VoD Video on Demand

WBEM Web-Based Enterprise Management
WG working group

XMI XML metadata interchange format
XML eXtensible Markup Language

xTCA ATCA and MicroTCA

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Downloaded from https://onlinelibrary.wiley.com/doi/ by Dhaka University of Engineerin, Wiley Online Library on [07/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Part One
Introduction to
Service Availability

Definitions, Concepts,
and Principles

Francis Tam
Nokia Research Center, Helsinki, Finland

1.1 Introduction

As our society increasingly depends on computer-based systems, the need for making sure that services
are provided to end-users continuously has become more urgent. In order to build such a computer
system upon which people can depend, a system designer must first of all have a clear idea of all the
potential causes that may bring down a system. One should have an understanding of the possible
solutions to counter the causes of a system failure. In particular, the costs of candidate solutions in
terms of their resource requirements must also be known. Finally, the limits of the eventual system
solution that is put in place must be well understood.

Dependability can be defined as the quality of service provided by a system. This definition encom-
passes different concepts, such as reliability and availability, as attributes of the service provided by
a system. Each of these attribute can therefore be used to quantify aspects of the dependability of the
overall system. For example, reliability is a measure of the time to failure from an initial reference
instant, whereas availability is the probability of obtaining a service at an instant of time. Complex
computer systems such as those deployed in telecommunications infrastructure today require a high
level of availability, typically 99.999% (five nines) of the time, which amounts to just over five min-
utes of downtime over a year of continuous operation. This poses a significant challenge for those
who need to develop an already complex system with the added expectation that services must be
available even in the presence of some failures in the underlying system.

In this chapter, we focus on the definitions, concepts, principles, and means to achieving service
availability. We also explain all the conceptual underpinning needed by the readers in understanding
the remaining parts of this book.

Service Availability: Principles and Practice, First Edition. Edited by Maria Toeroe and Francis Tam.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

4 Service Availability

1.2 Why Service Availability?

In this section, we examine why the study on service availability is important. It begins with a dossier
on unavailability of services and discusses the consequences when the expected services are not
available. The issues and challenges related to service availability are then introduced.

1.2.1 Dossier on Unavailability of Service

Service availability — what is it? Before we delve into all the details, perhaps we could step back and
ask why service availability is important. The answer lies readily from the consequences when the
desired services are not available. A dossier on the unavailability of services aims to illustrate this point.

Imagine you were one of the one million mobile phone users in Finland, who was affected by a
widespread disturbance of a mobile telephone service [1] and had problems receiving your incoming
calls and text messages. The interrupt of service, reportedly caused by a data overload in the network,
lasted for about seven hours during the day. You could also picture yourself as one of the four million
mobile phone subscribers in Sweden when a fault, although not specified, had caused the network to
fail and unable to provide you with mobile phones services [2]. The disruption lasted for about twelve
hours, which began in the afternoon and continued until around midnight.

Although the reported number of people affected in both cases does not seem to be that high at first
glance, one has to put them in the context of their populations. The two countries have respectively
5 and 9 millions of people so the proportion of the affected were considerable.

These two examples have given a somewhat narrow illustration of the consequences when services
are unavailable in the mobile communication domain. There are many others and they touch on
different kinds of services, and therefore different consequences as a result. One case in point was the
financial sector reported that a software glitch, apparently caused by a new system upgrade, had resulted
in a 5.5 hour delay in shares trading across the Nordic region including Stockholm, Copenhagen,
Helsinki, as well as the Baltic and Icelandic stock exchanges [3]. The consequence was significantly
high in terms of the projected financial loss due to the delayed opening of the stock market trading.

Another high-profile and high-impact computer system failure was at the Amazon Web Services [4]
for providing web hosting services by means of its cloud infrastructure to many web sites. The failure
was reportedly caused by an upgrade of network capacity and lasted for almost four days before the last
affected consumer data were recovered [5], although 0.07% of the affected data could not be restored.
The consequence of this failure was the unavailability of services to the end customers of the web sites
using the hosting services. Amazon had also paid 10-day service credits to those affected customers.

A nonexhaustive list of failures and downtime incidents collected by researchers [6] gives
further examples of causes and consequences, which includes categories of data center failures,
upgrade-related failures, e-commerce system failures, and mission-critical system failures. Practi-
tioners in the field also maintain a list of service outage examples [7]. These descriptions further
demonstrate the relationships between the cause and consequence of failures to providing services.
Although some of the causes may be of a similar nature to have made the service unavailable in the
first place, the consequences are very much dependent on what the computer system is used for. As
described in the list of failure incidents, this could range from the inconvenience of not having the
service immediately available, financial loss, to the most serious result of endangering human lives.

It is important to note that all the consequences in the dossier above are viewed from the end-users’
perspective, for example, mobile phone users, stockbrokers trading in the financial market and users
of web site hosting services. Service availability is measured by an end-user in order to gauge the
level of a provided service in terms of the proportion of time it is operational and ready to deliver.
This is a user experience of how ready the provided service is. Service availability is a product of
the availability of all the elements involved in delivering the service. In the example case of a mobile

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Definitions, Concepts, and Principles 5

phone user above, the elements include all the underlying hardware, software, and networks of the
mobile network infrastructure.

1.2.2 Issues and Challenges

Lack of a common terminology and complexity have been identified as the issues and challenges
related to service availability. They are introduced in this section.

1.2.2.1 Lack of a Common Terminology

Studies on dependability have long been carried out by the hardware as well as software communities.
Because of the different characteristics and as a result a different perspective on the subject, dissimilar
terminologies have been developed independently by many groups. The infamous observation of ‘one
man’s error is another man’s fault’ is often cited as an example of confusing and sometimes contradic-
tory terms used in the dependability community. The IFIP (International Federation for Information
Processing) Working Group WG10.4 on Dependable Computing and Fault Tolerance [8] has long been
working on unifying the concepts and terminologies used in the dependability community. The first
taxonomy of dependability concepts and terms was published in 1985 [9]. Since then, a revised ver-
sion was published in [10]. This taxonomy is widely used and referenced by researchers, practitioners,
and the like in the field. In this book, we adopt this conceptual framework by following the defined
concepts and terms in the taxonomy. On the general computing side, where appropriate, we also use
the Institute of Electrical and Electronics Engineers (IEEE) standard glossary of software engineering
terminology [11]. The remainder of this chapter presents all the needed definitions, concepts, and
principles for a reader to understand the remaining parts of the book.

1.2.2.2 Complexity and Large-Scale Development

Dependable systems are inherently complex. The issues to be dealt with are usually closely intertwined
because they have to deal with the normal functional requirements as well as the nonfunctional
requirements such as service availability within a single system. Also, these systems tend to be large,
such as mobile phone or cloud computing infrastructures as discussed in the earlier examples. The
challenge is to manage the sheer scale of development and at the same time, ensure that the delivered
service is available at an acceptable level most of the time. On the other hand, there is clearly
a common element of service availability implementation across all these wide-ranging application
systems. If we can extract the essence of service availability and turn it into some form of general
application support, it can then be reused as ready-made template for service availability components.
The principle behind this idea is not new. Over almost two decades ago, the use of commercial-oft-
the-shelf (COTS) components had been advocated as a way of reducing development and maintenance
costs by buying instead of building everything from scratch. Since then, many government and business
programs have mandated the use of COTS. For example, the United States Department of Defense
has included this term into the Federal Acquisition Regulation (FAR) [12].

Following a similar consideration in [13] to combine the complementary notions of COTS and open
systems, the Service Availability Forum was established and it developed the first open standards on
service availability. Open standards is an important vehicle to ensure that different parts are working
together in an ecosystem through well-defined interfaces. The additional benefit of open standards is
the reduction of risks in a vendor lock-in for supplying COTS. In the next chapter, the background
and motivations behind the creation of the Service Availability Forum and the service availability
standards are described. A thorough discussion on the standards’ services and frameworks, including

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

6 Service Availability

the application programming and system administrator and management interfaces, are contained in
Part Two of the book.

1.3 Service Availability Fundamentals

This section explains the basic definitions, concepts, and principles involving service availability
without going into a specific type of computer system. This is deemed appropriate as the consequences
of system failures are application dependent; it is therefore important to understand the fundamentals
instead of going into every conceivable scenario. The section provides definitions of system,
behavior, and service. It gives an overview of the dependable computing taxonomy and discusses
the appropriate concepts.

1.3.1 System, Behavior, and Service

A system can be generically viewed as an entity that intends to perform some functions. Such entity
interacts with other systems, which may be hardware, software, or the physical world. Relative to a
given system, the other entities with which it interacts are considered as its environment. The system
boundary defines the limit of a system and marks the place where the system and its environment
interact.

Figure 1.1 shows the interaction between a given system and its environment over the system
boundary. A system is structurally composed of a set of components bound together. Each component
is another system and this recursive definition stops when a component is regarded as atomic, where
further decomposition is not of interest. For the sake of simplicity, the remaining discussions in this
chapter related to the properties, characteristics, and design approaches of a system are applicable to
a component as well.

The functions of a system are what the system intends to do. They are described in a specification,
together with other properties such as the specific qualities (for example, performance) that these

interface
service interface use inte

system

external
state

internal
state

boundary environment

Figure 1.1 System interaction.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Definitions, Concepts, and Principles 7

restoration

incorrect
service

correct
service

failure

Figure 1.2 Service state transitions.

functions are expected to deliver. What the system does to implement these functions is regarded as
its behavior. It is represented by a sequence of states, some of which are internal to the system while
some others are externally visible from other systems over the system boundary.

The service provided by a system is the observed behavior at the system boundary between the
providing system and its environment. This means that a service user sees a sequence of the provider’s
external states. A correct service is delivered when the observed behavior matches those of the
corresponding function as described in the specification. A service failure is said to have occurred when
the observed behavior deviates from those of the corresponding function as stated in the specification,
resulting in the system delivering an incorrect service. Figure 1.2 presents the transition from a correct
service to service failure and vice versa. The duration of a system delivering an incorrect service is
known as a service outage. After the restoration of the incorrect service, the system continues to
provide a correct service.

Take a car as an example system. At the highest level, it is an entity to provide a transport ser-
vice. It primarily interacts with the driver in its environment. A car system is composed of many
smaller components: engine, body, tires, to name just a few. An engine can be further broken
into smaller components such as cylinders, spark plugs, valves, pistons, and so on. Each of these
smaller components is connected and interacts with other components of systems.

As an example, an automatic climate control system provides the drivers with a service to maintain
a user-selected interior temperature inside the car. This service is usually implemented by picking
the proper combination of air conditioning, heating, and ventilation in order to keep the interior
temperature at the same level. The climate control system must therefore have functions to detect
the current temperature, turn on or off the heater and air conditioning, and open or close air vents.
These functions are described in the functional specification of the climate control system, with clear
specifications of other properties such as performance and operating conditions.

Assuming that the current interior temperature is 18 °C and the user-selected temperature is 20 °C,
the expected behavior of the automatic climate control system is to find out the current temperature
and then turn on the heater until the desired temperature is reached. During these steps, the system
goes through a sequence of states in order to achieve its goal. However, not all the states are visible
to the driver. For example, the state of the automatic climate control system with which the heater
interacts is a matter of implementation. Indeed whether the system uses the heater or air conditioning
to reach the user-selected temperature is of no interest to the user. On the other hand, the state showing
the current interior temperature is of interest to a user. This gives some assurance that the temperature
is changing in the right direction. This generally offers the confidence that the system is providing the
correct service. If for some reason the heater component breaks down, the same sequence of steps does
not raise the interior temperature to the desired 20 °C as a result. In this case, the system has a service
failure because the observed behavior differs from the specified function of maintaining a user-selected
temperature in the car. The service outage can be thought of as the period of time when the heater
breaks down until it is repaired, possibly in a garage by qualified personnel and potentially takes days.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

8 Service Availability

reliability

Dependability

availability

| safety attributes

fault prevention

integrity fault tolerance
fault removal

fault forecasting

maintainability

Figure 1.3 Classifications of dependability concepts.

1.3.2 Dependable Computing Concepts

As discussed in the introduction, availability is one part of the bigger dependability concept. The term
dependability has long been regarded as an integrating concept covering the qualities of a system
such as availability, reliability, safety, integrity, and maintainability. A widely agreed definition of
dependability [10] is ‘the ability to deliver service that can justifiably be trusted.” The alternative
definition, ‘the ability to avoid service failures that are more frequent and severe than is acceptable’
is very often served as a criterion to decide if a system is dependable or not.

Figure 1.3 shows the organization of the classifications. At the heart is the main concept of depend-
ability, which is comprised of three subconcepts: threats, attributes, and means. It must be pointed
out that the concept of security has been taken out due to the subject being outside the scope of
this book. A threat is a kind of impairment that can prevent a system from delivering the intended
service to a user. Failures, errors, and faults are the kinds of threats that can be found in a system.
Since dependability is an integrating concept, it includes various qualities that are known as attributes.
These include availability, reliability, safety, integrity, and maintainability of the intended service. The
means are the ways of achieving the dependability goal of a service. To this end, four major groups of
methods have been developed over the years, namely, fault prevention, fault tolerance, fault removal,
and fault forecasting.

1.3.2.1 Threats

In order to understand the consequences of a threat to a service, it is important to differentiate the
different types of threats and their relationship. The fault—error—failure model expresses that a fault, a
physical defect found in a system, causes an error to the internal state of a system, and in turn finally
causes a failure to a system, which can be detected externally by users. Faults are physical defects and
that means they could be wiring problems, aging of components, and in software an incorrect design.
The existence of a fault does not mean that it immediately causes an error and then a failure. This is
because the part of the system that is affected by the fault may not be running all the time. A fault is
said to be in a dormant state until it becomes active when the part of the system affected is exercised.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Definitions, Concepts, and Principles 9

The activation of a fault brings about an error, which is a deviation from the correct behavior as
described in the specification. Since a system is made up of a set of interacting components, a failure
does not occur as long as the error caused by a fault in the component’s service state is not part of
the external service state of the system.

1.3.2.2 Attributes

o Reliability

This is defined as the ability of a system to perform a specified function correctly under the stated
conditions for a defined period of time.

Availability

This is defined as the proportion of time when a system is in a condition that is ready to perform
the specified functions.

o Safety
This is defined as the absence of the risk of endangering human lives and of causing catastrophic
consequences to the environment.

Integrity
This is defined as the absence of unauthorized and incorrect system modifications to its data and
system states.

e Maintainability
This is defined as a measure of how easy it is for a system to undergo modifications after its delivery
in order to correct faults, prevent problems from causing system failure, improve performance,
or adapt to a changed environment.

1.3.2.3 Means

e Fault prevention

This is defined as ensuring that an implemented system does not contain any faults. The aim is
to avoid or reduce the likelihood of introducing faults into a system in the first place. Various
fault prevention techniques are usually carried out at different stages of the development process.
Using an example from software development, the use of formal methods in the specification stage
helps avoid incomplete or ambiguous specifications. By using well-established practices such as
information hiding and strongly typed programming languages, the chances of introducing faults
in the design stage are reduced. During the production stage, different types of quality control are
employed to verify that the final product is up to the expected standard. In short, these are the
accepted good practices of software engineering used in software development. It is important to
note that in spite of using fault prevention, faults may still be introduced into a system. Therefore,
it does not guarantee a failure-free system. When such a fault activates during operational time,
this may cause a system failure.

e Fault tolerance

This is defined as enabling a system to continue its normal operation in the presence of faults.
Very often, this is carried out without any human intervention. The approach consists of the error
detection and system recovery phases. Error detection is about identifying the situation where the
internal state of a system is different from that of a correct one. By using either error handling
or fault handling in the recovery phase, a system can perform correct operations from this point
onwards. Error handling changes a system state that contains errors into a state without any detected
errors. In this case, this action does not necessarily correct the fault that causes the errors. On the
other hand, a system using fault handling in the recovery phase essentially repairs the fault that
causes the errors. The workings of fault tolerance are presented in Section 1.4 in more details.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

10 Service Availability

e Fault removal

This achieves the dependability goal by following the three steps of verification, diagnosis, and
correction. Removal of a fault can be carried out during development time or operational time.
During the development phase, this could be done by validating the specification; verifying
the implementation by analyzing the system, or exercising the system through testing. During
the operational phase, fault removal is typically carried out as part of maintenance, which first
of all isolates the fault before removing it. Corrective maintenance removes reported faults
while preventive maintenance attempts to uncover dormant faults and then removes them
afterwards. In general, maintenance is a manual operation and it is likely to be performed while
the system is taken out of service. A fault-tolerant system, on the other hand, may be able to
remove a fault without disrupting service delivery.

e Fault forecasting

This is concerned with evaluating the system behavior against likely failures. This involves iden-
tifying and classifying the failure modes and assessing how well a system deals with anticipated
faults in terms of probabilities. The assessment is usually carried out by two complementary quan-
titative evaluation approaches: modeling and operational testing. A behavioral model of the system
is first created and then processed to estimate the dependability measure of the system. The data
used in processing the model can either be obtained by operational testing, which is performed in
the system’s operational environment, or based on data from past system failures. It is important
to point out that fault forecasting only provides a prediction of how well the current system copes
with anticipated faults. If appropriate actions are taken, for example, by using fault removal, the
quality of the system would improve over time. However, there are situations when the identified
faults are not removed from the system. This is usually due to economic reasons such as the costs
of removing a fault outweighing its benefit, especially when the probability of the fault occurring
is low. If a fault is elusive and difficult to pin down, then fault tolerance could be an alternative to
fault removal.

It would be naive to believe that any one of the four approaches can be used on its own to develop
systems with high dependability. In practice, all or a combination of the methods are used at each
design and implementation stage of developing dependable systems. For example, it is common to
have extensive fault prevention and fault removals throughout the various system development stages
in a fault-tolerant system. After all, one would not want any faults to be introduced into the critical
phases of error detection and system recovery. Once a system is operational, live data are used in fault
forecasting in order to feed in the improvements and/or corrections for the next version of the system.

1.3.3 The Meaning of Availability

Due to the fact that studies of dependable systems have been carried out by a diverse group of
communities, there is a constant source of confusion over the use of some terms. Specifically, some
definitions associated with the measures of failures must be explained. Before we discuss the meaning
of availability, we first give the following definitions and then discuss their relationships in the context
of expressing a system’s availability.

e Mean time to failure (MTTF). This is defined as the expected time that a system takes to fail.
It is the same as uptime, which can be described as the duration of time when a system is operational
and providing its service.

e Mean time to repair (MTTR). This is defined as the expected time required to repair a system
such that it can return to its normal, correct operation. Assuming that all the overheads are accounted
for in arriving at the repair time estimate, it should be the same as the downtime. MTTR is known

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Definitions, Concepts, and Principles 11

to be difficult to estimate. One possible approach is to inject faults into a system and then determine
experimentally by measuring the time to fix them.

e Mean time between failures (MTBF). This is defined as the expected time between two successive
failures in a system. This measure is meaningful only if a system can be repaired, that is, a repairable
system, because a system fails the second time only if it has been repaired after the first failure.

Figure 1.4 illustrates the relationship among the different failure measures in a system. It shows
the status of a system, which can be either up or down, against the time of operation. At time Ty,
the system starts its operation and continues until time Tgjjure-1, When it encounters the first failure.
After the duration of MTTR, which is the downtime, the system is repaired and continues its normal
operation at time Tiepaired-1- It continues until the second failure hits the system at time Teajture-2-

As shown in Figure 1.4, the relationship among the failure measures of a system can be
expressed as:

MTBF = MTTF + MTTR

Another way of expressing the MTBF of a system is the sum of the downtime and uptime during
that period of time. This is essentially linked to a system’s dependability attribute of availability.

Availability is defined as the degree to which a system is functioning and is accessible to deliver its
services during a given time interval. It is often expressed as a probability representing the proportion
of the time when a system is in a condition that is ready to perform the specified functions. Note that
the time interval in question must also include the time of repairing the system after a failure. As a
result, the measure of availability can be expressed as:

Availability = MTTF/MTBF = MTTF/(MTTF + MTTR)

The availability measure is presented as a percentage of time a system is able to provide its services
readily during an interval of time. For example, an availability of 100% means that a system has no
downtime at all. This expression also highlights the fact that the availability of a system depends on
how frequently it is down and how quickly it can be repaired.

It is generally accepted that a highly available system, such as those used in telecommunications,
must have at least 99.999% availability, the so-called systems with 5—9s availability requirements.
Table 1.1 shows the maximum allowable downtime of a system against the different number of 9s
availability required under various operating intervals. As shown, a 5-9s system allows for just
5 minutes 15 seconds of downtime in 1 year’s continuous operation.

status
MTTF — mean time to failure
MTTR — mean time to repair
MTBF — mean time between failures
failure failure
MTBF
up
MTTR MTTF
down .
time
Tstart Tfailure-1 Trepaired-1 Tfailure-z

Figure 1.4 Different failure measures.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

12 Service Availability

Table 1.1 Maximum allowable downtime for different availability levels

Years of continuous operations 1 2 3
Availability Maximum allowable downtime

99.0000% (2-9s) 3d 15h36min 0s 7d 7h 12min Os 10d 22h 48 min Os
99.9000% (3-9s) 8h 45min 15s 17h 31 min 12 1d2h 16 min 48 s
99.9900% (4-9s) 52min 34s 1h45min 7s 2h 37min 41s
99.9990% (5-9s) Smin 15s 10 min 31s 15min 46
99.9999% (6-9s) 32s 1min 3s 1 min 35s

In order to relate to the service users of a system, the availability expression above can be rewritten
for a service in terms of service uptime and service outage as:

Service availability = service uptime/(service uptime + service outage)

As stated in the definition in Section 1.2, a measure of service availability is the product of the
availability of all the elements involved in implementing the service. This turns out to be more com-
plicated than just looking at the plainly stated downtime for a single element. In reality, a system
implementing end-user services is typically composed of many subsystems. The availability calcu-
lation must therefore take into account the availability of all the constituent subsystems. In general,
subsystems must achieve a high level of availability in order to meet the expected service avail-
ability requirement. In practice, however, the availability requirements for each subsystem are more
fine-grained and are usually attached to individual functions, instead of a single figure for the entire
subsystem. Nevertheless, a whole range of possible failures such as hardware, operating system, appli-
cation, operator errors, and environmental problems may still contribute to the piling up of downtimes
in the availability calculation equation.

While the main source of impacting service availability has been the failure of some of the underly-
ing elements, the need to modify a system after it has been put into operation is increasingly becoming a
vital factor for system designers to consider. All systems need changes, be it an upgrade or replacement
of hardware components, new features or simply bug fixes. In order to deal with an increase in service
capacity, for instance, more service requests per second, additional hardware is typically put into the
system to increase its storage and/or processing capability. In the case of repairing a faulty hardware
component, it is normally taken away and replaced by a new and functional one. Other required
changes at some regular intervals include operating system changes and new application versions.

The traditional way of dealing with changes or upgrades is to stop the system and carry out the
modifications accordingly. This obviously makes an impact on the service availability measure because
from the end-users’ perspective, the service is no longer operational to offer the intended function.
This is also deemed unacceptable to a service operator because the service outage is translated into loss
of revenues. A mobile phone service is a case in point. In addition, upgrading an operational system
has been known to be error-prone [3, 5] primarily due to its intrinsic complexity. Therefore, some
methods must be devised to keep the services going while an upgrade is carried out on the operational
system. As the society is depending on more and more computer-based services nowadays, there is a
clear trend to expect services to be available in more and more systems even during their upgrades.
Even if service unavailability is inevitable, the disruption must be kept to a minimum to reduce its
impact on users. This is especially true for those systems that have a long mission time and this
requirement cannot be underestimated.

In the next section, we will discuss how service availability can be achieved for both unplanned
and planned events, primarily caused by failures and upgrades respectively.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Definitions, Concepts, and Principles 13

1.4 Achieving Service Availability

This section focuses on how the notion of service availability can be realized in systems. It shows
how fault tolerance can be used as the basis for delivering service availability to systems. It explains
various forms of protective redundancy and the workings of fault tolerance. It also highlights the
interrelationship between upgrade without loss of service and protective redundancy in the context of
providing service availability in a system.

1.4.1 Following the Framework of Fault Tolerance

Fault tolerance aims to be a failure avoidance approach. It attempts to intervene and defend against
faults from causing failures. The general assumption is that in spite of all the fault prevention methods
employed, there is still a chance that faults can creep into a system and cause a failure. The basic
principle behind fault tolerance is to ensure that a system is sufficiently designed to withstand such pos-
sibility by means of error detection and system recovery. The approach tries to make sure that if a fault
is activated, the caused error can be detected and then handled accordingly before it causes a failure.

Fault tolerance is considered to be equally applicable to implementing service availability for
unplanned events such as those caused by failures of the underlying system. The four phases of fault
tolerance [14] are outlined below to show how the principles can be applied to delivering service
availability:

1. Error detection.
Before any action can be taken to address a service failure, the presence of an error must first be
identified.

2. Damage confinement and assessment.
The level of damage caused by a fault is evaluated and if possible, the effect of the error should be
restrained as much as possible. It is worth pointing out that an error can be passed as data, which
may be in the form of either user data over the service interface or as system state information.
This phase basically tries to limit the scope and propagation of an error from one part of the system
to another.

3. Error recovery.
Error recovery is the process of transforming an erroneous system state into one that has no detected
errors. Therefore, the possibility of the activated fault causing a service failure can be eliminated.

4. Fault treatment and service continuation.
If the fault that causes the detected error to occur can be identified and corrected, it could prevent
the same fault from being activated again. Even without this fault handling, a system can continue
to provide its intended service because the error condition has now been cleared. The key concern
in this phase is the attempt to create a perception to service users that the intended service continues
to be available as if nothing has happened.

In the ideal case, a service continues operating regardless of what kinds of faults it encounters.
Due to the application requirements and/or resource constraints, a service implementation does not
necessarily have all of the above fault tolerance phases. As always, there is a trade-off between
the resources needed and the protection it offers. There are also the influences of the application
requirements. For example, some application scenarios have strict requirements on the types of faults to
be tolerated, while other application scenarios have less stringent requirements. Some applications may
even allow for service failures provided that certain safety conditions are fulfilled. Some applications
are in between, where a partial service failure is acceptable.

In a traditional fault-tolerant system, the failure response defines how such a system reacts when a
failure is encountered. As a result, the response can be viewed as the level of fault tolerance provided
by a system. The same definitions are also relevant to services:

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

14 Service Availability

e Fail-operational
A service continues to operate in the presence of errors with no loss of functionality or performance.
This is the highest level of service availability as the users do not even notice any significant
differences in terms of their expectations. Needless to say, the required additional resources to
cover all the conceivable failure scenarios are usually prohibitively high for most applications.

e Fail-soft (graceful degradation)

A service continues to operate in the presence of errors with a degradation of functionality and/or
performance. This is perhaps the most common level of application requirements. The idea behind
this is to at least keep some of the functions going with the current, limited resources available.
The system can subsequently be taken off for repair before full service is restored. The choices of
which functions are kept naturally depend upon the types of error the system is facing. They also
depend on how an application is designed. The most intuitive line of thinking would be placing
more protection on critical functions than their less essential counterparts. Relaxing nonfunctional
requirements such as performance at the time the system is in trouble is another option available
to a system designer. For example, reducing serving capacity would put less strain on the demand
of limited resources.

o Fail-safe

A system maintains its integrity and halts its intended operation. It must be pointed out that halting
the intended operation does not necessarily mean stopping the system. For example, a traffic light
reverting to flashing reds in all directions [11] is not the intended operation for directing traffic.
Instead, it is a warning signal to all road users that there is something wrong with the traffic lights.
This is a safety measure to help ensure that the possibility of lights erroneously going into greens in
all directions when there is a failure is excluded. The primary concern in this type of application is
safety. However, the precise meaning of what is a safe condition is entirely application dependent:
a service being stopped and not doing anything is a possible and sometimes applicable scenario.

o Fail-stop
A service halts immediately upon a detected malfunction. In some literature, this property is also
a synonym for fail-fast, which adds the connotation that the stopping is done very quickly. It is a
useful and desirable property if a system cooperates with other systems, especially when it prevents
the erroneous system from spreading incorrect information to others.

1.4.2 Redundancy is a Requisite

The key to a fault tolerance approach is to have protective redundancy built into a system. Protective
redundancy is an additional resource that would be unnecessary if a system operates correctly. That
is why the term redundant. Protective redundancy, or redundancy for short, is usually a replica of a
resource. In the event that a fault causes an error to occur, the replicated resource is used instead of the
erroneous one. Thus, the replica protects a system against failures, giving the impression that services
are uninterrupted even when there are failures in the underlying system. It is precisely this property
that makes fault tolerance stand out as a candidate approach (discussed in Section 1.3.2) that can be
used as a basis for achieving service availability. There are two main aspects related to redundancy
that require consideration: what should be replicated and how the redundancy is structured in order
to achieve the desired service availability.

There are many forms of resources that can be replicated in order to provide redundancy in a
system, for example, hardware, software, communications, information, and even time. Duplicating
a piece of hardware is perhaps the most common form of redundancy to deal with hardware faults.
Running a copy of a piece of software on different hardware can tolerate hardware faults. It must
be stressed that if the fault lies in the software, which is basically a design fault, a copy of the
same software in the exact same state with the exact same data would only duplicate the same fault.
A whole range of solutions based on diversity can be found in the additional reading [15]. Having

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Definitions, Concepts, and Principles 15

more than one communications path among interconnected systems is a way to handle failures in
connectivity. Maintaining multiple copies of critical information or data has long been used as a
mechanism for dealing with failures in general. This inevitably brings in the issues of consistency
among replicas. Simply by repeating the execution of a task has been known to be able to correct
transient hardware faults. This is also referred to as temporal redundancy as time is the additional
resource in this context. In practice, a combination of these forms of redundancy is used according to
the application requirements and resources available.

Since there are replicated resources in the system, it is necessary to differentiate what roles each of
these resources should take. A resource is considered to have an active role if it is used primarily to
deliver the intended service. The redundant resource is regarded as taking a standby role if it is ready
to take over the active role and continue delivering the service when the current active element fails. It
must be noted that a standby element usually needs to follow what the current active element is up to
in order to be successful in taking over. This typically requires that a standby element has up-to-date
state information of the current active element, implying that there are communications between active
and standby elements. The end result is that users are given the perception that a service continues as
if there was no failure.

The most basic structure for a system employing protective redundancy is to have one active
element handling all the service requests, while a standby element tracks the current state of its active
counterpart. If the active element fails, the standby element takes over the active role and continues
to deliver the intended service. The manner in which resources are structured in terms of their roles
in a system is known as the redundancy model.

Figure 1.5 illustrates a frequently used redundancy model known as active-standby involving both
the active and standby roles. As shown in (a), an active role is taken to provide service S by an
application A running on computer node X under normal operation. The application is replicated
on node Y and assumes the standby role of providing service S. During this time, the necessary
information for the standby application to take over the active role must be obtained and maintained.
If there is a failure on node X rendering the application in the active role to fail as well, as depicted
in (b), the application with the standby role takes over and continues to provide service S. At this
point, however, there is no redundancy to protect further failures. If the failed node X is not repaired,
a further failure on node Y will cause service outage.

There are many ways of structuring redundancy in a system, involving different numbers of active
or standby roles, each of which has resource utilization and response time implications. For example,
it is possible to have one standby element protecting a number of active elements in order to increase
the overall resource utilization. With only a single redundant element, the resulting system will not be
protected against further failures if the faulty element is not repaired. The trade-off of how many active
and standby elements and in what way they are structured must be weighed against the application

(a) (b)

Lo I O

node Y node X node Y

S —service A — application

Figure 1.5 Active-standby redundancy model (a) Active-standby: normal operation; (b) Active-standby:
node X failed.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

16 Service Availability

requirements. It is worth noting that with the coordination of the active and standby roles, an application
becomes distributed in nature and that makes it more complex. In Chapter 6, some of the commonly
used redundancy models in the context of managing service availability are discussed in more details.

1.4.3 Dealing with Failures

Fault tolerance is performed by means of error detection and then system recovery. In this section,
we look at the mechanics of fault tolerance in more detail during the four phases, in particular, how
service availability can be accomplished by following the framework of a fault tolerance approach.

1.4.3.1 Error Detection

Error detection aims to identify the occurrence when the state in a system deviates from its expected
behavior as specified. This can be done by either the system itself or an external entity monitoring the
system. There are many ways to detect an error and the precise mechanism used is obviously application
dependent. In general, these techniques fall into two main types: concurrent detection and pre-emptive
detection. The main difference is that concurrent detection is carried out during normal service delivery
while pre-emptive detection is performed when normal service delivery is suspended. Pre-emptive
detection aims at finding latent errors and dormant faults. Although the service is unavailable in the
case of the pre-emptive detection type, it is worth mentioning that its use may still be appropriate for
some applications provided that the anticipated service outage is within the allowable limit.

1.4.3.2 Damage Confinement and Assessment

The main purpose of damage confinement and assessment is to contain the detected error and limit
its effect from spreading to other parts of a system. At design time, a commonly used approach is to
hierarchically decompose a system into smaller and manageable parts. Not only is each part a unit
of service, but also a unit of failure [16]. If such a unit fails, it is replaced by a similar, functional
unit. The notion of a field replaceable unit (FRU) has long been used in hardware. The equivalent
in software is usually a software module. However, defining a unit of failure for software is more
complicated because software tends to be more complex due to its structure, and that different pieces
of software usually cooperate to achieve some functions. As pointed out in a previous section, errors
can be spread via incorrect data among these cooperating software entities. Therefore, the boundary
of a unit of failure changes depending on what the fault is.

A fault zone is used for fault isolation and repair. It defines the boundary of a unit of failure for a
specific fault and can be viewed as a collection of entities that may be damaged by this fault. This can
therefore be used to determine how widespread the effect of this fault may have when it is activated.
A fault zone is associated with a recovery strategy so that appropriate corrective actions can be taken
in the recovery phase.

Figure 1.6 shows the structure of a simple application and is used to illustrate the concept of a
fault zone in isolating faults. The application, which is composed of three subsystems, interacts with
its environment. Each subsystem, which consists of a number of software modules, has some defined
functions to perform. In the communication subsystem, for example, modules A and B cooperate
in order to provide the subsystem’s functions. Altogether, the subsystems cooperate to provide the
application’s functions. If a fault originates from module A and does not cause any error outside the
module, then the fault zone is module A. If a fault originates from within the communication subsystem
and may cause errors within the subsystem but not outside, the fault zone is the communication
subsystem. If a fault may cause errors all over the application, the corresponding fault zone is the
application. The corresponding recovery action of a fault zone will be described in the next section
on error recovery under recovery escalation.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Definitions, Concepts, and Principles 17

Application

communication
subsystem

®—@

=P Fnvironment

storage
subsystem

processing
subsystem

o0 | 60O

Figure 1.6 Example application.

1.4.3.3 Error Recovery

Error recovery is essentially a way of correcting the error condition, which results in masking the effect
of an error. After a successful recovery action, a system continues to deliver a seemingly error-free
service. In general, error recovery does not normally repair the fault that caused the error in the first
place. In some cases though, it has the combined effect of error recovery and fault repair. There are
many techniques available and they are not mutually exclusive. That is, if an error persists, another
method can be attempted next according to some predefined recovery strategy for a system.

e Rollback

Rollback, or backward error recovery, attempts to restore the system to a correct or error-free state
so that it can continue to provide the intended service from this point onwards. It assumes that
the state just before an error appears is correct. A rollback mechanism requires the process known
as checkpointing to record prior system states at various predetermined recovery points. When an
error is detected, the system state is restored to the last saved, presumably error-free state. Rollback
does not require the knowledge of the error it deals with and therefore provides a general recovery
scheme. However, it takes additional resources for the checkpointing operation and time redundancy
to perform.

e Roll-forward

Roll-forward, or forward error recovery, tries to move the system into a new and correct state so that
it can continue from there to provide the intended service. It requires that a new and correct state
be found. Roll-forward is commonly used to gracefully degrade a system by moving the system to
a state where reduced capability is delivered to its users. It is generally regarded as being quick but
it requires application-specific knowledge. In the context of transaction processing, roll-forward is
typically performed by restoring a database from a backup and then applying a separately recorded
changes to the database to bring it up to date.

e Failover
A failover action corrects an error condition by using an element that previously has the standby role
assigned instead of the one currently assigned the active role to deliver the service. This change of

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

18 Service Availability

role assignments is typically used to replace a failed element that has an active role assigned at the
time when the error condition is detected. It usually requires that a system has protective redundancy
in place and a redundancy model defined. A main objective is to enable a service to continue as
soon as possible by using a standby element instead. It assumes that an active element’s service
state has not been corrupted and therefore neither is that of the standby. Typically the element that
has a detected error is not used any more until it has been repaired. At the point when a repaired
element is reintroduced into the system, an option known as fail-back which reassigns the active
role again can be applied. This is usually used in a system where there is a preferred element for
delivering services under normal operating condition, probably due to the richer resources available
in this element.

e Restart

A restart action clears an error by stopping an element and then starting it again in a controlled
manner. The idea is to bring an element back to a normal state, which is usually found at the
beginning of its operation. This term is used in its most generic form in this context and the concept
encompasses all the variations of this action. The differences stem from the fact that different terms
are traditionally associated with hardware and software. For example, reser is commonly used in
referring to hardware, while restart is typically linked to software. Reboot is generally connected
to a computer which normally means initializing its hardware and reloading the operating system.
There are also differences in terms of how a restart operation is carried out, for example, whether an
element is stopped in an abrupt or orderly manner; how many changes to the element’s settings are
retained when its operation starts again; and if power is taken off from the element or not are just
some of these variations. Caution is therefore required when this term is interpreted with reference
to the precise actions taken.

It must be noted that a recovery action can normally mask an error condition only at the place
where the error was detected. However, if the fault does not originate from the affected element
and it has not been repaired, the same error condition is likely to return, in addition to which more
errors may be detected on other elements due to the spreading of damage caused by the fault. In a
system where fault zone is used for isolating faults, recovery escalation can be used to raise the error
condition to its containing fault zone, that is, the next higher level of fault zone. The recovery action
associated with this fault zone is carried out on all the entities in the same fault zone. If the recovery
action in the new fault zone still cannot remove this persistent error condition, this process continues
to the next higher level until the condition is cleared or there are no more levels to go up to. It is
important to remember that due to the hierarchical structure, the higher the level of fault zone goes,
the more entities are impacted during the corresponding recovery action. If services of the affected
elements are disrupted during a recovery action, this may potentially have an impact on the overall
service availability of the system.

In calculating the service availability measure for a system, recovery time is an important factor.
The smaller the recovery time, the higher the service availability in a system. The recovery times of
various elements in a system, for example, hardware, operating systems, and software must also be
taken into account.

1.4.3.4 Fault Treatment and Service Continuation

Fault treatment in this phase aims to stop faults from activating again in a system, thus preventing
faults from causing errors that may lead to a system failure. Treating faults is usually accomplished
by corrective maintenance, which aims to remove faults from a system altogether while a system
is in its operational phase. Handling a fault first of all requires the identification of the fault in
terms of its location and type. This is followed by excluding the faulty elements from taking part

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Definitions, Concepts, and Principles 19

in delivering the service, before a healthy and correctly functioning element is put into the system
to replace the faulty one. A new element may be a spare part for hardware, or a new version of
program with bug fixes for software. In order to provide service continuation, the new element must
be put into the system without stopping it. For hardware, technologies such as hot swap have been
successfully used to replace components without the need for taking the power off a system. As
for software, it typically requires a restart and therefore it may render services unavailable for a
period of time during this operation. However, with protective redundancy deployed in a system to
achieve service availability, it is possible to avoid or minimize a service outage if an upgrade is
carefully planned.

1.4.4 Upgrade Matters

We have seen in the previous section how unplanned events such as failures are dealt with by following
the framework of fault tolerance. In this section, we turn our attention to planned events — the issues
of upgrading a system with minimum or no service outage.

In order to reduce the chances of losing availability of a service during an upgrade, an intuitive way
is to decrease the scope of affected elements in a system to the smallest possible. In a system where
protective redundancy is already put in place for dealing with anticipated failures, it can also be used
to keep a service functioning while some parts of the system are being upgraded. Rolling upgrade is
one such popular method that attempts to limit the scope of impact by upgrading one part of a system
at a time. If the operation is successful, it continues to another part of the system until all the required
elements have been upgraded. During this upgrade process, when an element to be upgraded must be
taken out of service, the protective redundancy is there to help provide service continuation.

Figure 1.7 shows an example of rolling upgrade and the basic principle behind the method. The
objective of the upgrade in the example is to update the currently running service from version 1 (S1)
to version 2 (S2). The initial state of the system is shown in (a), where nodes X and Y are configured
in an active-standby redundancy mode in which node X assumes the active role whereas node Y is
assigned the standby role. When the rolling upgrade begins in (b), the standby role of node Y is taken
away when the application is being updated to version 2. Although service S1 is still available at this
time, a failure would incur a service outage because the protective redundancy has been removed.
Step (c) shows that after a successful upgrade of the application on node Y, it is the turn for node X.
At this point, node Y with the newly updated service takes over the active role to provide the service
(S2) while node X is taken off for the upgrade. Similar to the condition in step (b), a failure at this
point would incur a service outage. Finally in step (d), it shows that node X has been successfully
upgraded and therefore can be assigned the standby role, returning the system to its initial state of
having an active-standby redundancy model to protect it from service outage.

In practice, there are variations to the basic steps as illustrated. For example, if node X is the
preferred provider of the service in an application scenario then it must be reverted back to the active
role after a successful upgrade. It must be added that if we want service continuity during an upgrade,
S1 needs to behave in the same way as S2. When the system transitions from step (b) to (c), A2
on node Y must synchronize with A1 on node X. Indeed there are many other upgrade methods,
including some custom schemes that are needed to meet the requirements of a specific site in terms
of its capacity planning and service level agreement. The key issue here is to provide applications
with a flexible way for applying different upgrade methods, with the aim of eliminating or reducing
the window of vulnerability of service outage (as shown in steps (b) and (c) above), if any.

In case the new version does not work, a plan is also needed to ensure that the system can be
restored to the state prior to the upgrade such that the service, albeit the previous version, contin-
ues to operate. Therefore, the monitoring and control of the upgrade, together with measures for
error recovery of the upgrade process, are essential. Since an upgrade is a planned event, these extra

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

20 Service Availability

(a) (b)

node Y node X node Y

(© (d)

node X node Y node X

S1 - service version 1 A1 — application version 1
S2 — service version 2 A2 — application version 2

Figure 1.7 Rolling upgrade example (a) Initial state: current versions; (b) Application A on node Y is being
upgraded; (c) Application A on node X is being upgraded; (d) Upgraded system: new versions.

actions can be taken into consideration and designed into an upgrade operation. A related issue is that
error-prone manual processes are typically used in upgrades. Experience has shown that human mis-
takes account for a considerable number of cases of system crashes during an upgrade, especially in
large-scale systems. The upgrade process thus needs to be automated as much as possible. Chapter 9
has an in-depth treatment on the subject of upgrade.

1.5 Conclusion

We have presented the definitions, basic concepts, and principles of dependable computer systems in
general, service availability in particular, at the level appropriate for the remaining of the book. By
showing the consequences when expected services were not available, we examined why the study on
service availability was important. Issues and challenges related to service availability were introduced.
We presented how fault tolerance can be used as the basis for delivering service availability to systems.
Various forms of protective redundancy have been explained, together with its interrelationship with
upgrade without loss of service in the context of delivering service availability to a system.

The subject area of dependable computer systems is a broad one. It is therefore impossible to
cover all aspects and the wide-ranging issues in a single chapter. Interested readers are referred to
the additional reading list. In [17] an in-depth treatment of designing dependable systems is presented
along the development life cycle that includes the specification, design, production, and operation
stages. The fundamentals of reliable distributed systems, web services and applications of reliability
techniques are thoroughly covered in [18]. Pullum [19] gives an account of the techniques that are
based on design and data diversity, which are applicable solutions for tolerating software design faults.
A closely related subject of disaster recovery is covered in full in [20]. A document [21] published

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Definitions, Concepts, and Principles 21

by the High Availability Forum, a predecessor of the Service Availability Forum, provides an insight
into the background, motivation, and the approach to developing the specifications discussed in the
rest of this book.

In the next chapter, we will examine the benefits of adopting open standards of service availability
in general for carrier-grade systems, and the Service Availability Forum specifications in particular.
It includes the rationale behind the development of the Service Availability Forum from both the
technical and business perspectives.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

The Birth of the Service
Availability Forum

Francis Tam
Nokia Research Center, Helsinki, Finland

2.1 Introduction

On 4 December 2001, a group of leading communications and computing companies announced
an industry-wide coalition to create and promote an open standard for service availability (SA)
[22, 23]. The announcing companies included the traditional network equipment providers, IT com-
panies, hardware suppliers, and software vendors. A series of questions ensued. What was going on?
Why were these companies working together? Why did they need an open standard for SA? What
were they going to standardize?

These were the typical questions one heard after the SA Forum launch events. In order to answer
these questions, one has to take a step back and take a look at what was happening at around the time
of the late 1990s and early 2000. For example, the rapid technological advancements in the commu-
nications sector, the incorporation of mobility in traditional services and the considerably increased
use of the Internet had all contributed to the convergence of the information and communications
industries. As a result, the landscape of the overall business environment had changed, requiring the
necessary matching actions to be taken in developing these new products and services.

This chapter first examines the technology developments at around that time in the information and
communications technology industry. It then discusses the changes from the business perspective as
a result of these technological developments. We then delve into the rationale behind the forming of
the SA Forum and the benefits that it intended to provide to the users of the standards. We elaborate
on the scope and the approach taken by the SA Forum middleware, together with the justification,
and explain how it enables a SA ecosystem for the telecommunications industry.

2.2 Technology Environment

In the first chapter, we introduced the concept, principle, and fundamental steps for achieving SA. We
have also highlighted a few reported cases of service outage and their corresponding consequences.

Service Availability: Principles and Practice, First Edition. Edited by Maria Toeroe and Francis Tam.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

24 Service Availability

The described unavailability of mobile communications services perhaps had the most impact in terms
of the number of people that were directly affected. It is therefore not surprising to observe that a
very high level of SA has been a well-known characteristic expected of a communications service, be
it a traditional landline or the more contemporary mobile communications system. Indeed, the term
carrier-grade has long been used to refer to a class of systems used in public telecommunications
network that deliver up to five nines or six nines (99.999 or 99.9999%) availability. Its origin comes
from the fact that a telecommunications company provides the public for hire with communications
transmission services is known as a carrier [24]. The equipment associated with providing these
highly available services has traditionally been dubbed ‘carrier-grade.” This reinforces our association
of communications services with high level of availability.

Ever since the introduction of the public telephone service in the late nineteenth century, which
was a voice-grade telephone service for homes and offices, very little in terms of service features had
changed over a long period of time, and the expectation of new telephony services was not very high
either. During this time the development was more on the quality of the provided services such as
intelligibility of transmitted voice and issues with reliability. Decades later, the introduction of digital
electronics had led to its use in telephony services and systems. By the 1960s, digital networks had
more or less replaced the analog ones. The benefits of doing so were the lower costs, higher capacity
and more flexible to introduce new services.

The technology for communications services took a fork along the path of mobility, with the first
commercial analog mobile phones and networks were brought out in 1983. The digital counterparts
appeared as commercial offerings in 1991. In 2001, the first 3G (3rd Generation) networks were
launched in Japan. 3G was all about communicating via a combination of text, voice, images, and video
while a user was on the move. In just a mere two decades, we saw the tremendous pace of advancement
in communications technologies as well as an exponential growth in the telecommunications market.

In parallel to the developments of 3G, another trend around this time was the considerably
increased use of the Internet — 6 August 1991 is considered to be the public debut of the World
Wide Web [25]. This trend turned out to be one of the biggest technological drivers for the paradigm
shift in the information and communications industry. If we look at the Internet today, it is clear that
it has become the convergence layer for different technologies, regardless of whether the information
is data or voice, passive or interactive, and stored or real-time. At the time of these changes, infor-
mation technology has also found its way into the deeper part of communications systems such as
the infrastructure. A significant influence of this trend in the communications networks was apparent,
based on the observation of the emerging of all Internet protocol (IP) core networks for mobile com-
munications and services at the time. This transitioning from the traditional way of implementing and
offering communications services using closed, proprietary technologies into the then new era had
substantial effect on the way these services should be developed.

From a user’s perspective, however, all these new and exciting technological developments were
primarily translated into new features they could now experience. The expectation of the high level of
SA was nevertheless untouched because this perception had been around since the beginning, certainly
for the majority who had enjoyed the highly available communications services.

2.3 Business Environment

While the pace of technological developments in the information and communications industries were
remarkable during just a short period of two decades, it had brought with it some significant changes
to the landscape of the environment in which businesses were conducted. On the one hand, the
technological advances had considerably broadened the scope and increased business opportunities
for a company. On the other hand, a company had to change and adapt to this new environment. In
the following subsections, we will speculate about the reasons why the seemingly disparate companies
decided to work together, and the need for an open standard for SA.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

The Birth of the Service Availability Forum 25

2.3.1 Ecosystem

An important aspect of the changes in the industry was that transferring bits over communications
lines was no longer that profitable. New services based on innovations during this time of convergence
with a clear customer value were needed. Due to the increased competition from previously different
industry segments, most communications companies had the urgency to roll-out these new services as
soon as possible. This was easier said than done when the sheer scale and complexity of the expected
products and services were daunting to say the least. Many companies had started to look for new
ways of developing these products and services, with a clear objective to increase productivity by
reducing the development effort and costs. These included model-driven architecture with automatic
code generation, and reusing software assets. The former attempts to produce code as fast as possible
at the push of a button, while the latter tends to avoid duplication of effort by using the same code
over and over again.

It should be noted that assets for reuse can be either developed in-house or bought from outside.
These kinds of ready-made components were generally referred to as Commercially-Off-The-Shelf
(COTS) components. They were used as a building block and incorporated into products or services. It
is important to point out that a COTS component may come in many different forms. The broad notion
of a COTS component is that it is available to the general public and can be obtained through a variety
of manners including buying, leasing, or licensing. It is worth mentioning that open source software is
therefore considered to be COTS components. In some cases, the open-source implementations have
become so dominantly accepted that they are even considered to be de facto standards.

At about this time, the communications industry was going through a period of transitioning from
building everything itself in a proprietary way to adopting solutions from the information technology
world. For example, the use of COTS components for hardware such as processors and boards; for
system software such as operating systems and protocol stacks. One key question was what sorts of
items should be made a commodity from a business perspective. Since SA was a natural common
function across most communications products and services, support in a middleware was deemed
appropriate in this new hybrid architecture.

As a sidenote, middleware was originally developed to provide application developers with assis-
tance to deal with the problems of diverse hardware and complexity of distribution in a distributed
application [26]. It positions between an application and its underlying platform, hence the name
middleware. One such example is the Object Management Group’s Common Object Request Broker
Architecture (CORBA) [27], which is a standard enabling software components written in different
programming languages and running on different computers to interoperate.

The term platform is used here to collectively refer to its operating system, processor, and the
associated low-level services. By providing a set of common functions for an application that resides
on different platforms, middleware relieves an application developer’s burden of handling interactions
among these different application instances across a network. Early use of middleware in database
systems and transaction monitors had proved to be effective. By incorporating the SA support functions
into a middleware in a similar fashion, it was generally believed that comparable benefit could be gained.

Many communications companies had gone down this path and started to develop their own SA
middleware for their own internal reuse. Some had even gone further by releasing them as products,
for example, Ericsson’s Telecom Server Platform [28]. Other IT and software vendors had also worked
with their partners in the communications sector to develop similar products, for example, Sun’s Netra
Carrier-Grade Servers [29] and Go Ahead’s Self Reliant [30]. There were many more at the time.
Some companies — and, in some cases, products — are no longer in the market.

While these solutions addressed product efficiency internally within each of the companies, they
did not offer the same interface to external application developers. Therefore the same applications
still could not be offered across platforms without laborious porting, adaptation, and integration work.
At the same time the number of applications that have been implemented in these systems and offering
the same functionality was steadily growing yet still lagging behind the (anticipated) demand for new

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

26 Service Availability

common services. This was the early indication of an ecosystem in which new cooperation among
different companies could be beneficial to all parties involved. This explains why a diverse range
of companies such as network equipment providers, IT companies, hardware suppliers, and software
vendors were interested in working together, as pointed out at the beginning of this chapter.

2.3.2 COTS and Open Systems

These trends underlie the point argued in [13] that COTS and open systems are related concepts but
they are not the same. An open system has the characteristics of having interfaces defined to satisfy
some stated needs; group consensus is used to develop and maintain the interface specifications; and
the specifications are available to the public. The last two qualifying criteria of an open system have
essentially made the interface specifications open standards. An implementation of such a standard
specification can therefore be made available as a COTS component, although this is not required by an
open system. While the different SA middleware solutions could be considered as COTS components,
the systems they were part of remained closed.

There was a potential that by opening up what was a closed and proprietary solution on SA support
could create an environment in which new cooperation among different companies would become
beneficial to all parties involved. However this had to be a collective effort in the tradition of tele-
and data communications standardization.

The reasons behind the companies’ joining forces together were far from obvious. There were many
speculations and observations. My co-editor has theorized the IT bubble [31] and its burst could also
be a contributing factor. She has suggested that the World Wide Web brought about the IT bubble
in which the trends were as we have described them in this chapter. Initially when the companies
had money for development, everyone was doing it on their own and hiring many people to keep up
with the demand and the competition. Being different was considered to be a benefit as it locked-in
customers for the coming future.

Then in the year 2000 when the bubble burst the profit went down. Existing systems boosted up
during the bubble were still working fine and therefore they did not need to be replaced. The main
opportunity to increase profit was to address the appetite of the customers which was still growing for
the new services and applications. Eventually companies started to look inward and reorganize their
processes to save money, and at the same time trying to meet the demand so that they could keep or
even grow market share. Standardization was a way of accomplishing this goal.

Her conclusion was that the burst of the IT bubble was a contributor if not really the trigger for
the companies’ collaboration.

Regardless of whatever the reasons were that caused the companies joining forces and working
in a standardization body, adopting a standards-based approach is considered to be a sound risk
management strategy. In addition, compatibility of products delivered by different vendors can be
ensured. A key role played by standards is to divide a large system into smaller pieces with well-
defined boundaries. As a result, an ecosystem is created with different suppliers contributing to different
parts. The standardization process ensures that the stakeholders are involved in the development and
agreement of the outcome, resulting in conforming products being compatible and interoperable across
interface boundaries. This is particularly important to those businesses involving many vendors: the
only way to ensure that the system as a whole works is to have standardized interfaces.

Standard COTS components have the added advantage of having a wider choice of vendors and
one can normally take the best solution available. By standardizing the design of commonly used high
availability (HA) components and techniques, it opens up a competitive environment for improving
product features, lowering costs and increasing performance of HA components. The application
developers can concentrate on using their core competence during application development, leaving the
SA support to the middleware. As a result, a wider variety of application components can be developed
simultaneously in shorter development time, thus addressing exactly the trend of the demands we

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

The Birth of the Service Availability Forum 27

were observing. Being a standard also enables the portability of highly available applications between
hardware, operating systems, and middleware. This to a certain extent has answered the question of
‘Why did they need an open standard for SA?

2.4 The Service Availability Forum Era

The predecessor of the SA Forum was an industry group called the HA Forum. Its goal was to
standardize the interfaces and capabilities of the building blocks of HA systems. However, it only
went as far as publishing a document [14] that attempted to describe the best-known methods and a
guide to a common vocabulary for HA systems. The SA Forum subsequently took over this initiative
and developed the standards for SA.

The focus of the SA Forum is to build the foundation for on-demand, uninterrupted landline, and
mobile network services. In addition, the goal is to come up with a solution that is independent of the
underlying implementation technology. This has been achieved by first of all identifying a set of
building blocks in the context of the application domain, followed by defining their interfaces and
finally, obtaining a majority consensus among the member companies.

So ‘What is in the SA Forum middleware then?’ A short answer is the essential, common functions
we need to place in the middleware in order to support the applications to provide highly available
services. This was carried out by extracting the common SA functions that were not only applicable
to telecommunications systems, but also to the upcoming new technology and applications areas.
The basis of the standardization was drawn from the experiences brought into the Forum by the
member companies. It is important to note that they contributed the technical know-how [28-30] to
the specifications.

A high-level view of such a SA middleware is shown in Figure 2.1, illustrating an overall architec-
ture and areas of functions. The diagram also shows the relationship between a SA middleware with
its application, platform, and cooperating nodes over a system interconnect. Each of these nodes is
connected, forming a group to deliver services in a distributed system environment. According to the

Application

Service availability middleware

- Service availability
Utilities management

I
I
1
1
1
]
I
1
1
1
1
:
1
Failure handling :
]
(Upgrace)| |
1
1
1
1
I
1
1
1
1
]
I

System
Management

| Platform management|

1

|

1

' ——] eee

| Hle=t [

. i = =

1 1] I | 1
— Operating system y 1 System ; |

: and hardware l interconnect *

Figure 2.1 High-level view of a service availability middleware.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

28 Service Availability

functions required to support SA, the identified functions are put into four functional groups. They
are platform management, SA management, common utilities for developing distributed applications,
and system management.

Although the functions have been partitioned into different groups, ultimately all of them must
work together in order to deliver SA support to applications. We will go through each functional
group and describe what it does; why it is needed; and what kinds of functions are expected.

¢ Platform management
This group of functions manages the underlying platform, which consists of the operating system,
hardware and associated low level services. If any of these underlying resources are not operating
correctly, the problem must be detected and handled accordingly. Since we are in a distributed
environment, and the separate instances of the middleware must cooperate, there is a need to
maintain information regarding which node is healthy and operating and which is not at any point
in time. It must be mentioned that this kind of group membership information is distributed and
dynamic in nature, and must be reliably maintained. The expected functions in this group include the
monitoring, control, configuring, and reconfiguring capabilities of platform resources; and a reliable
facility for maintaining membership information for a group of nodes over a system interconnect.

¢ SA management

This group of functions is essentially the core for providing SA support to applications. As discussed
in Chapter 1, both unplanned and planned events may impact the level of SA. Therefore, the
functions are further split into two subgroups to deal with failures handling and upgrade respectively.
The expected functions in failures handling include support for error detection, system recovery,
and redundancy models. For the upgrade, the expected functions include a flexible way to apply
upgrades with minimum or no service outage; monitoring, control, and error recovery of upgrades.
Although there are two subgroups in this area, it must be pointed out that the functions need to
collaborate closely because protective redundancy is used in both.

e Common utilities for developing distributed applications

One of the original goals of developing a piece of middleware was to hide the complexity caused
by the required interactions among distributed instances of an application. As the name suggests,
this group provides applications with distributed programming support to conceal the behavior of a
distributed system. Most of the frequently used functions for supporting distribution transparency
are therefore expected in this group. For example, naming services for providing a system-wide
registry and look-up of resources; communication and synchronization support such as message
passing, publish/subscribe, and checkpointing; and coordinating distributed accesses to resources.

e System management

This group of functions primarily deals with external systems or applications for the purpose of
managing a deployed system as a whole. Before any management operations can be performed,
management information regarding the system must be present. There is also a need to keep track
of the configuration data for the initial set-up and runtime information of resources while the system
is operating, and having functions to manipulate this information. Other expected functions in this
group include informing significant events arising in the system; and keeping a record of important
events for further analysis.

A thorough discussion on the architecture of such a SA middleware and its corresponding functions
are in Part Two.

2.5 Concluding Remarks

We have described the technology and business environments of the information and communications
industries around the period of the late 1990s to early 2000, when there was a tremendous pace

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

The Birth of the Service Availability Forum 29

of advancement in communications technologies. Against this backdrop of what was going on, we
explained how the business environment had changed, and how the companies had reacted by joining
forces and cooperating to build a viable ecosystem. We distinguished between COTS and open systems,
and explained the benefits of having an open standard for a SA middleware. We have also given a
high-level view of a SA Forum system and described the intended functions of the middleware.

There you have it: the answers to the questions we raised about the announcement in the beginning
of the chapter. These were the circumstances and motivations behind the founding of the SA Forum
dated back to the year of 2001 — the SA Forum was born!

In the years that followed 2001, the SA Forum, backed by a pool of experienced and talented
representatives from its member companies and with the desire to realize the Forum’s vision, had
diligently worked to develop the necessary specifications. There have also been separate open source
implementations to deliver what were written in the specifications, instead of just a pile of papers
containing the descriptions of the interfaces.

In the next part of the book we will be looking at the results of these developments. We will run
through the reasoning and design decisions behind the development of these specifications. We will
also give hints on the best way to use the various SA Forum services and frameworks, and the pitfalls
to avoid where appropriate.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Downloaded from https://onlinelibrary.wiley.com/doi/ by Dhaka University of Engineerin, Wiley Online Library on [07/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Part Two

The SA Forum
System: Services
and Frameworks

Overview of the Service
Availability Architecture

Dave Penkler
Hewlett-Packard, Grenoble, France

3.1 Introduction

The Service Availability (SA) Forum architecture is presented as a logical software architecture that
is comprised of a set of interface abstractions, operational models, and information models. The
architecture is not of itself prescriptive but is intended to provide a categorization of the service
interfaces and a view of how the various services fit together in the context of a system. We begin
by examining the context surrounding the architecture behind the SA Forum service availability
specifications. This includes some historical background, the requirements and assumptions regarding
the scope and physical systems that were used in selecting the functionality to be included in the
specifications. We then look at the problem of software architecture in general and specifically in
the context of interface standards.

3.1.1 Background and Business Context

As the explosive growth of the Internet in the late 1990s started to blur the boundaries between
traditional telecommunications and information technology (IT) services a joint need emerged between
IT and telecommunication equipment manufacturers to reduce the development and maintenance cost
of their software-based infrastructure products while accelerating the time to market of new products
and services. On the one hand IT manufacturers were maintaining a number of different hardware
and software stacks for their respective equipment manufacturer customers. The differences were
mainly due to specific legacy requirements but also a number of custom functional details. The
commercial IT hardware or cluster based fault tolerant solutions were only applicable to a small
subset of the types of network elements used in modern networks. On the other hand in order for the
equipment manufacturers to address the cost issue they were seeking to reuse standard components
in a base platform that would be able to support a broad variety of network elements. They were
also keen to move off their monolithic proprietary technologies to be in a position to benefit from

Service Availability: Principles and Practice, First Edition. Edited by Maria Toeroe and Francis Tam.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

34 Service Availability

o O© O
- Application(s) O O

High availability Ot vare
Management
Middleware

Operating system

Platform hardware

Figure 3.1 Open HA individual system architecture.

the rapidly improving price to performance ratio of commercial of the shelf (COTS) products such as
microprocessors, processor boards, storage, and system interconnect technologies.

Under the initiative of a number of companies, comprised of hardware and software suppliers,
an industry group called the high availability (HA) Forum (see Chapter 2) was formed to address
the complexity of integrating COTS products to build highly available systems. They produced a
document ‘Providing Open Architecture High Availability Solutions’ [21] which collected the best
practices and capabilities needed for building highly available systems. It was intended as a guide
to a common vocabulary and potentially applicable HA functions from which it was expected that
the system designer would select the appropriate functions for each system based on the specific HA
requirements, design complexity, and cost. The basic structure of the open HA architecture described
in this document was used as a starting point for the SA Forum reference architecture. The architecture
for a single constituent COTS system from [21] is depicted above in Figure 3.1.

The SA Forum took this initiative forward by developing a set of open standard application program-
ming interface (API) specifications for the services needed to enable the delivery of highly available
carrier-grade systems based on cost-effective COTS components. Wide adoption of these standard
interfaces for HA middleware would enable reuse and portability, thereby reducing cost and effort
for developers, system integrators, and operators. The specifications were shaped by group of highly
talented and experienced system architects from major IT and network equipment manufacturers.

The goals and requirements that guided the process for creating the specifications are outlined in
the next section.

3.1.2 Goals and Requirements

During the specification development process at the SA Forum a set of requirements and goals were
used to assess the proposals made by various member companies and elaborate the final specifica-
tion. These were derived from the business considerations and technical experience of the members.
We describe these in some detail here to give insight into the background and motivation of the spec-
ifications. Among the architectural and business driven objectives the following considerations were
borne in mind:

e Separation of hardware from software concepts to allow for the independent evolution of hardware,
middleware, and application technologies and products.

e Providing a common set of abstractions for hardware and software resources for the purposes of
HA management.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 35

e Enabling the open integration of COTS components into a highly available system by factoring out
common availability functions into a modular set of frameworks and services.

e Specifying interfaces rather than protocols to enable the development of common APIs that
will protect application investment. It also allows for innovation and differentiation by mid-
dleware based on nonfunctional aspects such as performance, latency, and scalability. This
also allows implementations to choose the protocols that best suit their particular application
requirements.

A number of so called nonfunctional requirements were also taken into account. It was not feasible
to directly assess the extent to which the proposals made by the various members for the candidate
interface specifications complied with these requirements. The SA Forum relied on the implementation
experience of the evaluation committees to make the appropriate judgments.

e Usability: Providing a simple programming model that covers a broad spectrum of systems and
applications. Specifications should use a common consistent naming and programming style to
facilitate learning and adoption. The interfaces should be described in directly usable programming
interface for which there are established tools and integrated development environments.

e Portability: Dependencies on unique operating system or hardware specific features should be
avoided and exposed system functions should be wrapped in abstractions that can be readily and
efficiently mapped to different platforms.

e Upgradeability: Interfaces should be constructed such that they facilitate backward compatibility
with newer releases of the specification.

e Deployment: Interfaces should be able to be implemented as one or more profiles representing
subset-solutions for resource constrained platforms.

o Integration: Interfaces should be designed to facilitate integration with other interfaces and in
particular with the configuration and management models.

e Performance: The nature of Service Availability Interface (SAI) specifications can to a certain
extent influence performance trade-offs that need to be made when implementing and using the
specification. For example, different replication styles impose varying trade-offs on central pro-
cessing units (CPUs) and I/O overhead against fail-over and recovery times. Flexibility to use
or configure low overhead operation variants, possibly with concomitant loss of functionality, is
important for soft real-time systems such as communication controller network elements.

e Reliability: While not a property of interfaces per se; ensuring simplicity and clear functional
separation between operations defined in the interface tends to lead to more robust implementations
and applications.

e Scalability: As with performance there is a trade-off between imposing strong consistency seman-
tics on the implementations and ensuring that systems will scale linearly and incrementally when
adding resources, such as processors, memory, I/O interfaces, and nodes.

e Security: Interfaces should be designed to facilitate the application of the principle of least privilege
policies in a system. This requires that separate functions are defined for operations requiring
different privilege levels.

Whereas interoperability is important at mechanical and electrical interfaces as well as for low-level
HW management (e.g., automatic bus enumeration, etc.) it was decided not to make it a fixed require-
ment to provide for interoperability of HA middleware services provided by different vendors on the
same system.

Openness and choice of implementation technologies were identified as the key requirements which
put the emphasis on defining interface specifications that could be implemented on a reasonably rich
modern operating system with portability of the applications being the primary goal.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

36 Service Availability

3.1.3 Service Availability Architecture Scope and Presentation

In working out the specifications, certain assumptions concerning the type of the systems being targeted
had to be made. Before describing the conceptual model of the SA architecture we first describe the
scope of the systems which the architecture is expected to address.

3.1.3.1 Scope

The architecture is intended to provide a structured view of the SA functions defined in the speci-
fications, how they relate to each other and how they relate to the hardware and other software in
the system. A system in this context is considered to be a configured set of hardware, software, and
applications which are managed by or use SA functions. The system is further constrained by the
following assumptions:

e The physical computational, networking, and storage resources of a system are assumed to be
co-located in a single environment (such as a data-center or central office) under the control of a
single operator. This implies that the physical security of all the resources is maintained by a single
trusted organization. There can however be applications running on the system from more than
one provider. Furthermore, no assumptions are made about the number of administrative entities
managing their respective applications on the system.

e The computational resources are represented by a set of compute elements that are interconnected
by a (possibly redundant) physical network in a logical mesh topology. A computing element is a
unit comprised of a set of hardware resources capable of hosting or running applications and SA
management software.

e Another implication of the co-location assumption is that the failure rates due to environmental
conditions (e.g., air-conditioning or power failures), acts of nature, or vandalism are the same for
all components of the system.

e The physical, software, and data resources of the system are assumed to be adequately protected
against intrusion from external elements.

e Apart from the local or network storage required for compute elements to load their oper-
ating systems, middleware, and application software, no further assumptions are made on
persistent storage.

The specified SA functions apply to the installation, operation, and upgrade lifecycle phases of the
hardware, software, and applications that use them. While the architecture provides some guidance
for system design phase, the development and test phases are currently not covered.

We note however, that implementations of the SA architecture and services could be built that
perform adequately beyond this envisaged scope.

3.1.3.2 Architecture Description Approach

There is no common agreed definition of software architecture but for our purposes the following
definition from Bass et al. [32] is appropriate:

The software architecture of a system is the structure or structures of the system, which
comprise the software components, the externally visible properties of those components,
and the relationships among them.

The SA Forum architecture itself is comprised of a comprehensive set of services that can be used
in the construction of software systems capable of delivering the high levels of SA and continuity.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 37

Thus in our case the components of the architecture to be described are in fact the services provided
to the applications as opposed to the functional components that constitute an actual final system. Also
for reasons of modularity most of the services are fairly self-contained such that there is little or no
coupling between them. The architecture is presented in terms of the common and unique attributes
among the services on the one hand, and the relationships between the services and other elements
of the system on the other. In our description of the architecture we will adopt some common views
used in practice to describe software architectures:

Interface abstraction — functional view;
Operational model — dynamic view;
Information model — static view;

Use case view.

The published interface specifications of the various services define their externally visible properties
which include their functional interfaces, information model, operational model, and administra-
tive interface where appropriate. Some of the service specifications also provide use case views.
In Section 3.3 we will look at the different services and how they relate to one another from a func-
tional and dependency perspective. Brief details on the functional, operational, and information model
view for each of the services as they relate to system and application availability are given. Part of the
requirements for the specifications called for the cohabitation of the specified services with custom
or legacy services within the scope of a SA system. For brevity and clarity we do not cover the
interactions with these types of services here.

In the remainder of this section we make some general remarks concerning the first three views as
regards the architecture and specifications.

3.1.3.3 Service Interface Abstraction Models

A compromise was sought between a high level of abstraction and a very implementation oriented
specification. With a high level of abstraction broad applicability could be achieved but it was consid-
ered that this would leave too much room for interpretation in implementations which in turn would
lead to divergence. An implementation detail oriented specification would need to make a choice
between currently available technologies which would limit the addressable designs with the risk
of not being future-proof. In order to satisfy the requirements for openness a number of interface
abstraction models were eliminated:

e Fault-tolerant operating system abstraction;

e Protocol specific fault tolerance middleware (e.g., FT-CORBA (fault-tolerant common object request
broker architecture) [33];

e Fault-tolerant programming languages or fault-tolerance extensions for programming languages.

The primary interface abstraction model adopted in the SAI specifications for the HA middleware is
that of a concrete API specified in ANSI (American National Standards Institute) ‘C’ syntax that can be
implemented and delivered as binary or source level interface libraries. A specification that describes
the Java bindings for the interfaces has also been released. The specification for each service provides
the signature and associated data-types for the functions provided by the service.

One of the consequences of the COTS hardware requirement is that the implementations of the
specified HA middleware services should assume a ‘shared nothing’ platform model. This implies that
the different elements of an HA service implementation can only communicate with one another via
message passing. The SAI specifications only standardize the APIs leaving the design of the distributed

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

38 Service Availability

algorithms and message formats to the implementers of the HA middleware services. Experience had
shown that there is not a ‘one-size-fits-all’ distributed computing paradigm which led to the trade-
oft of sacrificing interoperability between different HA middleware implementations for application
portability and system flexibility. In this context, to promote usability while meeting the scalability and
reliability requirements, it was necessary that the interface specifications hide the distributed nature
of the underlying platform from the service user. Since many functions would require the exchange of
messages within the system, which would cause the function call to block for a duration proportional
to the message latency and number of messages sent, many functions provide both synchronous and
asynchronous invocation styles. Furthermore the programming model ensures that the application has
complete control of the computing resources. When any HA middleware service needs to communicate
with its user it is done via a callback mechanism. The programming model allows the application to
fully control the dispatching of the callback invocations. Further details on the C/C++ programming
model and the Java mappings are provided in Chapters 11 and 12 respectively.

3.1.3.4 Operational Model

Each service is specified to follow the same life-cycle in terms of initiating and terminating the
service on behalf of a service user. Services also follow the same model for initiating and handling
asynchronous operations as well as for tracking state changes in one or more of their defined entities.
This uniformity in the programming model meets our usability requirement. Services also expose an
internal operational model on the entities they define. These models are described in the specifications
themselves. The complexity of the models varies significantly between the different services.

3.1.3.5 Information Model

There is no single encompassing information model for the architecture; rather the information model
is the aggregation of the entities defined by the various services. As for the functional view this was
driven by the need for modularity so that designers and implementers could adopt only those services
of interest for their needs.

Let us now consider a SA system as consisting of a set of resources. Some of these are physical
resources such as CPU boards, network interfaces and the like, others are software resources like
operating systems and yet others could be system services that entities in the system can invoke such
as network name to address translation. Depending on the set of HA middleware services configured
in the system and their coverage in the system, a greater or smaller number of the resources of the
system will be reflected in aggregated information model. Each HA middleware service represents the
resources within its scope by the logical entities that are defined in its specification. Some of these
entities can be acted on programmatically through the APIs of the respective services.

The services also expose some of their logical entities as managed objects in the management
information model. Figure 3.2 illustrates how certain hardware and software resources are represented
as logical entities in the system model and how some logical entities and resources are represented
as managed objects in the management information model. This managed object model is managed
by the Information Model Management service (IMM), which is intended to be used by all HA
middleware services. Applications can also expose locally defined logical entities in the managed
information model. These application defined entities may represent resources internal to the appli-
cation or resources that are external to it, even resources that are external to the system. As part of
the specifications the SA Forum provides the object definitions of all the managed objects defined by
the various services as the ‘SA Forum Information Model’ file in XML Metadata Interchange (XMI)
format [34]. Note that this only contains the managed logical entities of the different services exposing
their configuration attributes, runtime attributes and administrative operations through the IMM.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 39

/ Managed objects \
oooowoyoo

Management Information Model

{

sanius [ealbo

System Model

Compute U Compute U O O O [Compute

element element element

| | I
Hardware resources
\ Service availability system /

Figure 3.2 Service availability system and information models.

In summary we may regard the architectural information model as the aggregation of the man-
aged and unmanaged logical entities defined by the set of HA middleware services published in the
specifications.

Chapter 4 further elaborates the SA Forum Information Model.

3.2 HA Concepts Applied

In the previous section we presented the scope of the architecture as a system with certain properties
and constraints. We also described the overall structure of the architecture and how it is to be pre-
sented. Before examining the services and their interrelations we review the HA concepts that strongly
influenced the specifications and how they can be applied on an abstract level.

3.2.1 To Be or Not to Be High Availability Aware

To deliver SA with cost effective COTS components requires the use of software fault tolerance
techniques. For some high value transaction applications such as financial services or airline reservation
systems the use of expensive hardware fault tolerant platforms may be appropriate. However hardware
fault tolerance is not cost effective for modern internet information, communication and entertainment
infrastructure systems where the total cost per transaction can only be a small fraction of a cent and
is dropping. Nonetheless HW fault tolerant nodes may sometimes be used to provide certain critical
functions such as system control in a largely COTS-based system.

In general systems based on software fault tolerance can only achieve the highest levels of SA with
the active involvement of the applications. This is the so called HA aware application model. In this
model some of the HA decisions are delegated to the application when a failure occurs allowing the
application to continue to provide service albeit in degraded mode while recovery and repair actions

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

40 Service Availability

are in progress. In contrast, in the HA unaware application model, the system can make no assumptions
about what subset of resources and services an application needs to function correctly. As a result
it will delay restarting or resuming the application until all the system level recovery actions have
completed. This is typically the model that is employed in commercial HA clustering solutions. In
order to achieve very high levels of SA all parts from the system must cooperate. For example:

e The hardware elements comprising the system must expose status and control interfaces for the
system to be able to detect and react to changes in the availability and operability of the underlying
resources.

e Applications need to cooperate with the SA middleware by signaling their ability to perform certain
tasks while reacting to reconfiguration requests.

e All layers, that is, platform, middleware, and applications need to expose configuration and man-
agement interfaces to the operational support or IT management systems.

However, even when using software fault tolerance there is still the need for some level of hardware
redundancy and excess system capacity to detect and recover from faults, tolerate hardware failures
or reduce down time during system upgrades. The flexibility requirements on system scalability and
reliability, that is, the ability to scale system capacity up and down as well as increasing or decreasing
the availability level without restructuring the application software, leads to the need to support various
redundancy models. These can range from having a back-up hardware element for each active element
to having no back-up at all. In the latter case if an element fails the active software load is redistributed
across the remaining elements potentially resulting in degraded service level if the remaining resources
are insufficient to meet the total workload.

The function that is responsible for receiving the hardware and software failure notifications and
redistributing the workload on the available and correctly functioning system resources is the avail-
ability management. It is in a way the core of the HA middleware.

3.2.1.1 Availability Management

Service Availability (SA) is ensured by the availability management functions at the platform, mid-
dleware, and application levels. In particular it is important for these functions to be able to cooperate
and coordinate their actions. We will refer to the subset of functions in the HA middleware that are
related to availability management as the availability management middleware (AMM). To ensure SA
subject to varying scalability and reliability constraints over the lifetime of the system it was necessary
that services be explicitly represented as entities in the system model of the AMM. One can think of
an instance of a service that needs to be delivered by an application as job that needs to be done. Fur-
ther, jobs are done by workers in a workplace and in our analogy workers are software resources and
workplaces are hardware resources. In order for software to do its job it needs operational hardware to
perform it on. So in a SA system we have a set of jobs to perform and a set of hardware and software
resources to perform those jobs with. The aim of the AMM is to ensure that all the jobs are being
performed properly as a function of the availability of the hardware and software resources. At a high
level of abstraction software resources can be modeled as components. Components can be thought
of as the workers that receive assignments for the jobs they need to perform by interacting with the
AMM. In the system model a component is the basic unit of software from which applications are
built. Essentially a component is comprised of a set of software functions that can be managed as a
unit from the perspective of the AMM. In the design of our architecture a component is conceived
as being instantiated by one or more processes (or tasks) executing on the same operating system on
a hardware element with a single physical memory address space. Processes (or tasks) correspond to
the basic software abstraction as provided in modern operating systems. The rationale for basing the
component on process boundaries include the following:

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 41

A process (or task) is the natural software unit that can be started and stopped by the operating
system.

e Most current operating systems use hardware memory management functions to ensure isolation
between processes by allocating a separate logical address space for each of them.

A process can stop itself as a unit allowing well-written components that detect their internal errors
to implement fail-stop semantics.

e The software of a process can also be replaced as a unit for upgrade or downgrade purposes.

We will call a hardware element that is capable of running an operating system a computing
element to distinguish it from other hardware elements such as power supplies, and so on. Note that
a computing element may host multiple operating systems concurrently as is the case with virtual
machines. Thus from an architectural perspective we have three nested natural failure zones within a
compute element:

1. The computing element itself;
2. The operating system running on the computing element;
3. The processes running in an operating system constituting a component.

To maintain SA in the event of a failure in one of the failure zones it is necessary to identify the
set of components that are capable of taking over the jobs that were being performed by the failed
component(s) (i.e., the worker(s) who are unable to continue to perform their jobs because they have
died, become sick, or their workplace has disappeared). Note that if a computing element or OS goes
down all the components housed by that computing element or OS are also considered as having failed.

Any form of automatic fault tolerant electronic data processing system must perform the following
availability management functions:

e Fault handling

— Detect that a fault that has occurred;

— Identify the failed hardware or software element;

— Generate an error report to trigger recovery and repair;

— Contain or limit the propagation of the effects of the fault in the system.
e Recovery and repair

— Continue processing on the remaining healthy resources;

— Initiate repair operations on the faulty resources;

— Integrate repaired resources back into the system.

3.2.1.2 Fault Handling

With software-based fault tolerance systems some hardware and most software failures are detected
by software monitoring and auditing. We also note in passing that the majority of failures in modern
systems are in fact caused by software defects. In our system, hardware and software faults are
monitored by various specialized HA services as described in Section 3.3. Note that whereas the
AMM receives notifications of computing element, OS and process failures in the system from its
internal monitoring functions, for HA-aware applications it relies on components to actively report
any failures occurring within them that require its intervention.

3.2.1.3 Recovery and Repair

Some transient hardware faults are detected and corrected by the hardware, for example, error cor-
recting memory. A component may also be able to recover from a failure occurring with its scope

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

42 Service Availability

without the aid of the AMM. For example, when a process fails in a multi-process component the
component may simply restart the failed process. When the AMM receives a failure notification in
the form of an error report from a component, it will initiate recovery actions to maintain or restore
the system functionality within the constraints of the available operational resources. Some of the
recovery actions it has recourse to are the following:

Restart the computing element on which the failure occurred;
Restart the operating system in which the failure occurred;
Restart the component in situ;

Restart the component on a different OS/hardware element;
Reassign the jobs of the failed components to other components;
Restart the whole system.

As the granularity of the component, which is determined by the natural isolation boundaries
provided by the operating systems, is fairly coarse we require the ability for a single component to
be able to take on multiple jobs of the same or different types.

The flexibility afforded by the redundancy models and the ability of assigning single or multiple
jobs to a component leads to a certain degree of complexity in the system model of the AMM. Despite
this complexity it is still possible to accommodate simple single service HA unaware or basic active-
standby HA-aware application models as well as the more sophisticated multi-service load balancing
configurations.

3.2.2 HA Aware Application Perspective

For an application that is HA unaware it suffices that it be configured in the system model of the
AMM. An HA-aware application, on the other hand, will have one or more components that will
interact with the AMM. Here we will refer to the middleware service with which applications interact
for availability management as the availability manager. Within the SA Forum system architecture it is
called the Availability Management Framework (AMF) which is described in Chapter 6. Components
are expected to detect faults within their scope, as mentioned above and to apply appropriate local
recovery actions. If they require system level recovery actions to be taken they send an error report
to the availability manager. A component may influence the choice of the recovery action that will
be taken by accompanying the error report with a recommended recovery action to reduce service
downtime.

The availability manager interacts with components by assigning jobs to or taking jobs away from
them. Each job assigned to a component has a role associated with it which is determined by the
availability manager. The role associated with a job tells the component whether it should play an
active or standby role for that job. The way the availability manager maintains SA is by assigning and
removing jobs from components and controlling the roles of the assigned jobs. For example, in the
case where there is a corresponding standby job assigned for each failed active job, the availability
manager performs a ‘fail-over’ by simply changing the roles of the standby jobs to active. The main
responsibilities of the components with regard to the availability manager are to report detected errors
and respond to the assignment of jobs and to changes in the role of their assigned jobs.

Some applications maintain an internal state that needs to be preserved between interactions with the
external environment. In order to mask failures occurring in these applications some form of replication
of their internal state across failure zones is required. Whereas hardware based fault tolerance systems
transparently replicate all application state, in a software fault tolerant system it is up to the application
or middleware to replicate sufficient state to be able to recover from a failure while incurring little or
no loss in service. From a component perspective: If a component has an active job assigned, it must
provide the associated service.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 43

When a component has a standby job assigned, it must be ready to rapidly provide the associated
service in the event that the availability manager sets the availability state of the job to active. In order
to react swiftly to the change from standby to active availability state for one of its assigned jobs
a component may require access to internal state from the component that was previously providing
active service. To protect this internal state against the failure of a component or the node it is running
on the state must be replicated to another component or node.

The methods used to replicate state between two or more components that are protecting the same
job fall into two categories. The first is so called passive replication. In this case the critical state main-
tained by the component that has the active job is replicated or ‘check-pointed’ to an alternate location
at regular intervals or when ‘significant’ state changes have occurred. The second category is the active
replication method. With active replication each component sees the exact same sequence of service
requests from the external environment where for the job assignments in the active state they generate
outputs or responses to the external environment whereas for the standby job assignments they do not.

If the components (by design) start off with the exact same initial state with respect to the protected
job under consideration, when a ‘fail-over’ does occur the component taking over the active state for
the job will have an up-to-date copy of the application state. Active replication does, however, require
that all choices in the execution streams of the participating components be deterministic to avoid
the possibility that their copies of the state information diverge. Functions that support or provide
active or passive replication mechanisms are generally provided as part of the HA high availability
middleware of a software fault tolerant solution. Even so, in some cases components may resort
to synchronizing their state using application specific mechanisms in order to take advantage of
‘piggy-backing’ replication data in application information flows.

While the availability manager consolidates the error reports from all HA-aware components it is
often necessary for software components to reliably communicate with one another about changes
in application or external state or synchronize access to resources. These features are also generally
provided by the HA middleware to ensure consistent cluster semantics across the components and the
availability manager.

In this section we have looked at HA high availability concepts and how they apply in the context of
providing flexible levels of SA in a software fault tolerant environment. Before describing the different
services in more detail we will introduce the architecture of the SA Forum Service Availability Interface
Specification.

3.3 Architecture
3.3.1 Basic Architectural Model

As mentioned in the requirements of Section 3.1.2 a fundamental separation of concerns that needed
to be respected was the decoupling of software management from hardware management to facilitate
hardware evolution while protecting software investment. Accordingly two sets of specifications were
produced: The Hardware Platform Interface (HPI) [35] and the AIS. This separation of concerns is
based on the nature of the logical entities that are represented and manipulated in the interfaces. For
the HPI the primary area of concern is to model hardware resources and to discover, monitor, and
control them in a platform independent manner. The AIS focus is to facilitate the implementation and
management of applications providing high levels of SA and continuity. Whereas the HPI functions
are generally implemented in hardware or processors embedded in the hardware, the AIS services are
implemented as middleware that typically runs on general purpose operating systems. The requirement
for HPI implementations to operate in environments with limited processing and storage capabilities
led to the difference in programming models adopted between the HPI and AIS. However, in order
to provide a convenient, complete, and consistent programmatic view of both software and hardware
in the AIS model a service dedicated to platform management was added to the AIS.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

44 Service Availability

3.3.1.1 The Service Availability System

The SA system as it is exposed to an application is the set of computing resources across which
the AIS services are available to it. In general terms it can be seen as a cluster of interconnected
nodes on which the services and applications run. The nodes represent the actual computing resources
which have corresponding entries in the configuration. Prior to virtualization being supported on
general purpose COTS computing elements there was a convenient one-to-one correspondence between
compute elements and nodes. Now however we need to make the distinction between a node as an
operating system instance and a computing element as a single hardware element capable of hosting
one or more than one operating system instance. In the SA system each node of a cluster corresponds
to a single operating system instance running on a computing element.

As shown in Figure 3.3 the computing elements in the system are attached to a possibly redundant
system interconnect. The AIS software running on the nodes of the computing elements communicates
over the system interconnect. From the platform perspective the system consists of the set of compute
elements that have been specified in the platform configuration data. The AIS can use the HPI services
to discover which of the computing elements are physically present and match them to its configured
resources.

The HPI services operate independently of the configured system in that it may ‘see’ computing
elements that are not part of the AIS system configuration. In typical implementations the HPI uses a
separate out-of-band communication mechanism to discover and control the various hardware resources
within its domains. Thus the topology and resource coverage of this out-of-band communication facility
can be different from those of the system interconnect. There may also be separate communication
paths to other computational, storage, and network resources that are not part of the computing
elements or the system interconnect. In an ideal system all the hardware resources are discovered by

A
Management
Services:
configuration,
monitoring,
administration,
notifications,
etc.

Applications

AIS Frameworks, Utility, and
Platform Services

Hardware Platform Interface (HPI)
General Purpose/RTOS

Redundant System Interconnect

[FUEVEE]
aindwo)
¢ 30
u3o

LI Hardware platform

Service availability system

Figure 3.3 Service availability high level system architecture.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

Overview of the Service Availability Architecture 45

the HPI and exposed in the management information model which identifies the set of configured
computing elements present among them from the platform configuration data. The configuration data
also specifies which operating systems should be loaded on the configured computing elements. Each
operating system instance, referred to as a node, also has a unique node name assigned to it in the
cluster configuration. The list of these node names in the cluster configuration data defines the system
at the cluster level. At the highest level the availability manager configuration defines a set of nodes,
some of which map onto cluster nodes. For applications managed by the availability manager the SA
system is the set of these nodes that map to the healthy cluster nodes. In summary then the SA system
exists at three levels: Platform level, Cluster level, and Availability management level. There is a
one-to-one mapping of the availability management node to the cluster node and the cluster node to
the platform operating system instance running on a compute element. For each level the configured
system may differ from the actual physical system which may be different to the set of currently active
and healthy nodes. The three level architecture of the SA system is depicted in Figure 3.4 below.

3.3.1.2 The Hardware Platform Interface (HPI)

The primary purpose of the HPI is to expose the monitoring and control functions of the hardware
through a set of standard, platform independent APIs to applications, and SA management software.
It includes functions to discover and access the inventory of hardware entities, sensors, and controls
within the scope of the addressable hardware domain controllers. It also supports the fault handling,
recovery, and repair mechanisms of the system through monitoring, control, and event management
functions. The level of abstraction of the API provides ample room for hardware manufacturers to
innovate and differentiate themselves by allowing certain fault handling, recovery, and repair actions
to be performed automatically at the hardware platform level. For example, on failure of a fan the
hardware controller might adjust the speeds of the remaining fans or resetting or power cycling a
computing element via a watchdog timer.
Further details on HPI are discussed in Chapter 5.

Configured AMF nodes

AMF cluster
AMF AMF AMF AMF AMF
node 1 node 2 node 3 node 4 node 5
@O @O @O
[@) [@) [@)

Availability management level

\ \ '\‘ N\
\ \Configured\cluster nodes N
\ \Cluster ﬁgmbership

Cluster | | Cluster [| Cluster | | Cluster | | Cluster Cluster
node A | [node B [| node C | | node D | | node E node F

AN IR U B4

Cluster level

vt [vmz || [fvmr [[vmz || [vwr || vmz || vus |
Compute Compute Compute
element 1 element 2 element 3

1 1 I I
Platform level 1 1 1

Figure 3.4 Service availability system architecture.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

46

Service Availability

3.3.1.3 The Application Interface Specification (AIS)

The AIS is split into a set of relatively independent services where each service covers a specific set of
related functions. The service lifecycle of each AIS service used within an application is independent
from that of the other services being used by the application. For convenience of presentation, related
services are further categorized into four functional groups. We briefly present these functional groups
before describing their constituent services in further detail.

e The AIS Platform Services are responsible for handling all the platform related functions and
providing the necessary abstractions and controls for the other services. It is divided into two
services:

The Platform Management service (PLM) [36] which provides the abstractions of the hardware
and low-level system software.

The Cluster Membership service (CLM) [37] provides a cluster level abstraction of the system
in terms of the current set operational nodes in the system. It supports the node level software
availability management functions of other services and applications.

e The AIS Management Services group together the essential management services that are commonly
required by software that provides management interfaces to external systems. In the SA Forum
system these management services are the following:

The IMM [38] which provides a consistent view of the configuration, administration, and man-
agement of all the hardware, software, and system resources that are exposed in the management
information model.

The Notification service (NTF) [39] hat provides a consistent way for applications and services to
notify external entities about alarms and changes in the system. There is a separate error reporting
mechanism used for the internal availability management of the system that is provided by
the AMF.

The Log service (LOG) [40] providing a system wide log management facility where alarms and
other notifications including application specific notifications can be recorded and consulted.
The Security Service (SEC) [41] which provides a means for the HPI and different AIS services
to control access to their different functions from authenticated applications.

e The AIS Utility Services is a set of support services commonly used in distributed HA software
applications.

The Checkpoint service (CKPT) [42] provides a set of programming interfaces used by applica-
tions to replicate their state in the system to maintain service in the case of failures.

The Event service (EVT) [43] is a publish-subscribe event distribution mechanism providing a
many-to-many, anonymous, asynchronous communication facility.

The Message service (MSG) [44] is a mailbox style distributed message passing facility.

The Lock service (LCK) [45] is a distributed resource access coordination facility based on
system wide lock objects.

The Naming service (NAM) [46] is a simple distributed facility used for binding system object
references to names and retrieving them by name.

The Timer service (TMR) [47] is a node local facility for setting timers and receiving expiry
events.

e The AIS Frameworks are special services that directly manage the applications and software con-
figured in their system models.

The AMF [48] provides the availability management functions to its configured applications.
The Software Management Framework (SMF) [49] maintains SA during system or application
software upgrades by coordinating the application of changes in the software configuration with
the AMF.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 47

/" AIS Management \ /" Al Frameworks / AIS Utility Services

Services
: || checkpoint (CKPT)]
Information Model Availability
Management (IMM) Management [Event (EVT)]
Framework
Lock (LCK
[Notification (NTF)] ___(AMF)) [ock (LCK)]
(sofware) || [Message (MsG) |
[_tost0®) ||| wanagement ||| (Naming vamp |
[Ssecurity (SEC) | W\ (SMF) N Timer (TMR) 1y,

AIS Platform Services

(Cluster Membership (CLM) J
[Platform Management (PLM)]
[Hardware Platform Interface (HPI)]

Figure 3.5 Functional grouping of the HA middleware services.

The AMM we introduced in Section 3.2.2 maps to the group of availability management functions
of the HPI, PLM, CLM, and AMF. A high level functional representation of the HPI and AIS service
functional groups is provided in Figure 3.3. The functionality in each box depicted above the operating
system exposes APIs to those above it and uses the APIs of those below. Each compute element in
the system hosts one or more operating system instances. The software functionality depicted above
the operating system layer is distributed across all the computing elements.

In this section we have introduced the various services constituting the HA middleware specified
by the SA Forum. The functional grouping of the services is summarized in Figure 3.5.

3.3.2 The AIS Services and Frameworks Architecture

Now that we have defined the SA system and introduced the services we will briefly describe the
roles and scope of the various AIS services and frameworks in providing SA support capabilities. In
particular we will examine how their fault handling and recovery-repair functions interact with each
other and the applications using them.

3.3.2.1 AIS Platform Services

The combined AIS Platform Services provide the interfaces and abstractions for the AMF to monitor
and control platform resources. Applications and other availability management software running on
the system can also avail itself of these interfaces to manage hardware resources attached to the
computing elements that are not covered by the implementation of AIS platform service being used.
These will typically be resources used to provide application specific services such as specialized
digital signal processing capabilities in digital radio communications systems.

Platform Management Service
PLM provides a model in which to represent the desired configuration of the hardware and low
level software (hypervisor and operating system) resources. It also provides a view of the actual

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

48 Service Availability

hardware and low level software for monitoring and control purposes. In particular it exposes infor-
mation on the presence, operational, and administrative states of the entities in the model. For example,
the presence state indicates whether the configured resource is not-present, inactive, or active. When
the presence state for a configured hardware resource becomes active it can be taken into account
for availability management purposes. PLM allows service users to track this and other state changes
affecting availability via its readiness status tracking APIs. For the purposes of this exposition we
consider that the readiness state of a resource reflects whether the resource is able to function cor-
rectly or not. This notion is made more precise in the actual specification. When PLM detects that a
resource has failed, its readiness state will be set to out-of-service and PLM will attempt to isolate
the failed resource from the rest of the system to prevent the propagation of errored state. The PLM
implementation may also be designed to attempt to automatically repair the failed resource. Should
any of the AMM functions track the readiness state of the failed resource, when a successful repair
action has been effected on it, they will be notified that the operational state has now transitioned to
the in-service state.

Through administrative operations on a hardware resource or low-level software entity (e.g., an
operating system or hypervisor) an administrator or manager application can shut them down or bring
them back into service without regard to the actual implementation of the mechanisms used to perform
the specific operations on the device or software entity. It also allows hardware and software resources
modeled by PLM to be isolated from the system even if they are considered operational at the PLM
level.

PLM also allows for the modeling of dependency relationships between the entities in its information
model. This allows the reflected state of an entity be determined, in addition to the entity’s own status,
by the status of the other entities it depends on greatly simplifying the view that needs to be exposed
to the PLM users.

The tracking interface provided by the service further simplifies the view for AMM functions and
other users by allowing the tracking of groups of entities in a single request. The tracking interface
also provides for fine grained coordination of managed operations. For example, let us suppose a
blade computing element, currently actively providing service, is to be extracted for maintenance
purposes. When the extraction lever of the blade is opened the HPI informs PLM of the intent to
remove the blade. PLM will check whether the operation may proceed by asking its interested users
such as the AMM to validate the operation. The AMM checks to see if there are sufficient resources
to maintain service and if so it allows PLM to proceed with the operation. PLM now notifies users
tracking this resource or the entities that depend on it, in particular the nodes or operating system
running on it, that a termination operation has been started and waits for their responses. The AMF
for its part receives its notification via CLM for each affected node and will accordingly migrate any
active services off of the affected nodes by assigning the active jobs to components running on other
blades. Once all the users have responded to the start of termination notification PLM terminates the
entity and sends an operation completed notification to all tracking users. At the same time, when all
software entities running on the blade have been terminated, PLM instructs the HPI to put the resource
into the inactive state and sets the presence state to inactive. This toggles the state of a light-emitting
diode (LED) on the blade informing the service technician that the board can now safely be extracted.

Reports of state changes of each of the entities in the PLM’s information model are also sent to the
AIS NTF where, depending on the configuration, they will also be logged. Operations support systems
can automatically generate trouble tickets from these reports. The logs can be a valuable resource for
operations, the system architect and reliability engineering staff.

3.3.2.2 Cluster Membership Service

The Cluster Membership service (CLM) is responsible for maintaining a consistent view of the set
of currently operational nodes in the cluster. It uses PLM to track the state of the various hardware

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 49

resources that need to be monitored to assess whether a node is functioning or able to function
correctly. Depending on the implementation CLM may need to have recourse to other mechanisms
such as node to node heartbeating over the system interconnect to determine the state of health of the
configured nodes in the cluster. A healthy node must be able to provide all the services required of
the node by the AIS services of the system as well as the application components configured to run
on that node. In particular it must be able to communicate with the other nodes of the cluster.

The precise semantics of what constitutes a healthy node is not prescribed by the specification
and is left up to the implementation. In a tightly coupled system a healthy node must be able to
communicate with every other healthy node of the cluster. Effectively ensuring this tight semantics on
a system with a large number of nodes can be very difficult. In another more loosely coupled model
it may suffice for a node to be able to communicate with a small set of ‘controller’ nodes in order to
be considered healthy.

One of the primary roles of CLM in the SA architecture is to notify the AIS services (and appli-
cations) using it of the addition and removal of nodes from the current set of operational nodes in
the cluster. For example, when CLM informs the AMF that a new node has become operational, the
AMF will start up the configured components on the node and assign the appropriate jobs to them and
the role they should perform for these assigned jobs. As we saw from the board extraction example
with the PLM in section ‘Platform Management Service’ on page 47, CLM notifies the AMF not
only of node removals but also of pending node removals, allowing the AMF to take the appropriate
action before the removal actually takes place. When a node that is operational at the PLM level,
is not considered healthy at the CLM level (possibly due to connectivity issues) CLM can use PLM
functions to isolate and optionally repair the node by possibly rebooting it. In the SA system CLM
is the ultimate authority about which nodes constitute the membership of healthy nodes in the system
at any given time. The coherency of the AIS services in the system depends on the extent to which
all services in the system rely on CLM for information on the membership of the healthy nodes.

In summary the Platform services provide fault detection, isolation, error notification, and repair on
the entities within their domain of control in so far as these are handled by the implementation. PLM
deals with hardware and low-level system software while CLM deals with the cluster and cluster
nodes. CLM uses PLM for the fault handling and recovery functions but adds the necessary fault
detection mechanisms in order to measure all the criteria needed for determining the state of health
of a cluster node. Finally the Platform services provide interfaces for administrative management.

Chapter 5 presents the Platform services in more detail.

3.3.2.3 AIS Management Services

There are a number of common management functions that are needed in distributed systems providing
highly available services. These common functions include configuration and runtime management;
notifying applications, and external management systems of significant events occurring in the sys-
tem; saving a record of significant events for further analysis; controlling access to critical system
functionality. In this section we examine only how the AIS management services providing these
functions contribute to maintaining the availability of services and applications. For more details
see Chapter 8.

Information Model Management Service

In the AIS it is IMM that provides the interface for the configuration and runtime management
functions of the manageable objects in the system. Each service in the AIS exposes their configuration
and runtime information as well as their administrative interfaces through IMM. In the following we
will describe examples of these functions as used by the AIS platform services.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

50 Service Availability

As mentioned in Section 3.3.1.1 the SA system consists of the configured computing resources that
correspond to the nodes of the cluster. This cluster configuration data is stored and managed by IMM.
In the architectural model of the AIS the desired state of the system is described by the configuration
and administration information held in the system management information model. Until now we have
used the term system management information model to distinguish it from the logical information
model which may contain programmatic entities that are not exposed in the management information
model. The information model of IMM is the system management information model.

When the AIS services start they initialize themselves according to their configuration data. Once
running they are notified of any changes to their configuration by IMM and are expected to apply
the changes to the system. For example, the system configuration can have more computing elements
configured than are actually physically present on the system interconnect. This allows the cluster to
be scaled up to add capacity and/or redundancy by simply adding one or more physical computing
elements that match the existing entries in IMM configuration. When one such computing element
is added it is detected by HPI and reported to PLM which starts the configured operating system(s)
on it. Once the operating system has started the node is detected by the cluster management service
which adds it to the cluster membership and informs all interested parties which in turn then take the
appropriate actions as determined by their configuration.

The condition where there are unconfigured physical compute elements on the cluster interconnect
can also occur. These will only be taken into account if configuration data in the information model
is added to reflect them. In the case of the cluster only those nodes having an entry in the cluster
configuration data can become members of the cluster and therefore be used by the AIS services and
the applications. To permanently remove a configured node (say) from the cluster it is simply removed
from the configuration data. In order to remove its configuration data, the node would first have to be
administratively locked and all references to the node in other parts of the information model would
also have to be removed.

As we mentioned, when the configuration data for a particular entity is changed the service responsi-
ble for the entity will be informed by IMM of the change. In order to coordinate change of configuration
that affects multiple entities, as in our example of removing a node’s configuration, IMM provides a
lightweight transaction mechanism whereby a set of related changes can be grouped into a configu-
ration change bundle or CCB which will succeed or fail as a unit. If any operation or configuration
change in the bundle is rejected none of the changes in the bundle is applied. This allows services
to maintain availability by being able to enforce dependency or state change constraints that are not
explicitly modeled in the information model where a sufficiently comprehensive implementation of
IMM could take them into account.

IMM also plays a critical role in the case of a cold start or cluster restart in that it must provide for
persistence of all the configuration data and persistent state of the system (such as the administrative
state of the various entities). To protect the configuration against storage or other failures during system
start-up before the other AIS services are available IMM must implement its own specific HA mecha-
nisms. These might include replicating the configuration data onto different nonvolatile storage devices
and being able to probe and test these devices to ensure the system has the latest valid configuration.

Notification Service
The AIS management service that provides the standard way for a service or application to notify
other entities of significant events occurring in the system is the Notification service (NTF). The
service defines various types of notifications specifically supported by the APIs including alarms,
state change, security alarms, and object-lifecycle changes. Here we will examine how the general
and alarm specific notification information contributes to the SA architecture. Further details on NTF
can be found in Chapter 8.

NTF provides three interfaces corresponding to the role of the entity using them. These are
the producer API for creating and sending notifications and the consumer APIs consisting of a

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 51

subscriber API for receiving notifications as they are sent and the reader interface for retrieving stored
notifications. In order to reduce the complexity of notification handlers, users of the consumer APIs
can restrict the types of notifications they will receive or retrieve by applying filters on the values of
some general and notification specific fields. For example, the general event type field for an alarm
notification broadly classifies it according to the affected system area: communications, quality of
service, software, hardware, or environment.

Other general fields include a timestamp, a cluster unique notification identifier, a reference to the
object in the system information model emitting the notification as well as a reference to the object
that caused the alarm. The unique notification identifier of one or more previous notifications may
also appear in the general correlation field which together with the other fields mentioned allows the
sequence of events relating to an alarm to be reconstructed for on-line fault management or reliability
engineering purposes.

In addition to the general fields the alarm notification has a number of specific fields relating to
the cause, perceived severity, trend, and proposed repair actions. Particular care should be taken in
applications and services when setting the perceived severity field as the severity is often context
dependent and can be interpreted by various consumers. Six perceived severity levels are provided for
in the specification: alarm-cleared, undetermined, warning, minor, major, and critical. For alarms and
security alarms the NTF implementation must as far as possible guarantee delivery as the availability
of the system may depend on the notification reaching the appropriate fault handling function external
to the AMM.

The architecture envisages that all AIS services and their user applications exclusively use NTF
for alarm reporting to ensure consistent fault handling in the system. As the HPI is not an AIS
service user it is up to PLM to produce HPI-related notifications. Within the AMM, for example, the
AMF includes a separate error reporting function that allows components to inform the framework of
errors to trigger recovery and repair actions; therefore no alarms are needed. The AMF produces NTF
notifications based on the component error reports and sets the type and severity fields appropriately.
This separate error reporting function provides for a tight coupling between the AMF and high-
availability aware application components whereas the notification service’s producers and consumers
are loosely coupled and mostly independent of one another.

For consumers to reliably retrieve alarms even after a cluster restart NTF must ensure the persistence
of alarm notifications.

In our architecture the NTF implementation is supposed to provide guaranteed delivery.

Log Service

The Log service (LOG) of the AIS provides a standard interface for writing log records and standard
log record format rules which can be used to allow custom log analysis applications to be designed
and implemented. Four types of log streams are defined: alarm log, notification log, system log, and
application specific logs. The SA architecture envisions NTF as being the exclusive writer on the
alarm and notification log streams.

From an availability management perspective LOG provides persistence for certain log streams and
a log filtering mechanism to reduce the load LOG imposes on the system during high service load
conditions. As part of the application specific log stream configuration data LOG provides a HA flag.
When set LOG ensures that the log files associated with the log stream are persistent across cluster
restarts.

LOG in and of itself is not critical to the functioning of the system and as such it should not unnec-
essarily consume system resources during times of overload. For operational, governance, business,
or system engineering reasons some log records must be kept under all circumstances whereas other
may be discarded without incurring severe consequences. To this end LOG defines a log filtering
mechanism based on a log record severity attribute. Log record filtering applies only to the system
log stream and application defined log streams because the alarm and notification log streams are

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

52 Service Availability

considered to be essential in the context of the SA architecture. When writing a log record its log
severity level can be set to one of seven values defined by the specification. In decreasing order of
severity these are: emergency, alert, critical, error, warning, notice, and informational.

LOG provides an administrative interface to control the logging of records according to their log
severity. Upon the onset of high load conditions a system-wide overload control facility can set the
log filter on the log stream to block records with selected severities. When the load lightens previously
filtered severities can be unblocked. At the time of writing there are no provisions for signaling specific
load conditions in the AIS.

From an implementation perspective LOG must provide persistence of the highly available log
files. LOG implementations should also specify how log file names in the configuration map to the
node level path name of the valid copy of the associated log if node level replication is used.

Security Service

The Security service (SEC) is primarily concerned with preventing denial of service situations from
occurring due to the excessive use of HPI or AIS services by unauthorized applications. Essentially it
provides a framework for the authentication and authorization of it client service users. The enforce-
ment of the authorization is delegated to the actual service in each case. The system designer must
ensure that processes protecting a given service execute with same security privileges in order to avoid
them being denied access to AIS services during a fail-over.

3.3.2.4 AIS Frameworks

What distinguishes the AIS frameworks from the other services is that they explicitly model application
software artifacts in their system and management information models. For in depth introductions
to these frameworks see Chapters 6 and 9. Here we will limit ourselves to discussing how these
frameworks fit into the overall SA architecture.

Availability Management Framework

The AMF specifies the APIs that can be used by HA aware applications for them to actively participate
in the fault handling and recovery actions of the system. The APIs allow the application components
to be managed by the framework in accordance with the resources, services, and policies configured in
the information model. Interactions between the AMF and the components of HA-aware applications
follow the same model as the other AIS APIs, that is, AMF controls are received by components via
callbacks. For a discussion of the AIS programming model see Chapter 11. HA unaware applications
that are managed by the framework do not use the API but only appear in the AMF configuration.

As mentioned in Section 3.3.1.1 the AMF defines its own view of the system as a cluster of AMF
configured nodes which map onto the CLM configured cluster nodes. This indirection or ‘late binding’
of AMF nodes to CLM nodes allows an AMF managed application to be configured independently
from the clusters on which it will be deployed. The system model of the AMF defines a number of
manageable entities to facilitate the configuration and administration of applications. Here we will
limit ourselves to applications and the entities exposed at the AMF API, that is, components and jobs
(which are formally called component service instances). Thus for our purposes we will consider that
an application is composed of components and the jobs that those components are to perform.

The AMF application configuration specifies how the AMF should allocate the components to the
AMF nodes and how to assign the jobs to those components. This includes the configuration of the
redundancy relationship between components. Typically components are in a redundancy relationship if
they can be assigned the same jobs in active and standby roles. The AMF defines a number of different
redundancy models corresponding to the level of protection for the jobs that is to be provided by the

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 53

components. In general higher levels of protection require higher levels of redundancy. The additional
redundancy is manifested in the configuration by a greater number of components and AMF nodes.

When mapping AMF nodes to the CLM nodes in virtualized environments the administrator must
ensure that the components in a redundancy relationship are not allocated to nodes that are hosted by
the same computing element, if they are to protect their services against hardware failures. This can
be verified programmatically by following the mappings from the AMF to CLM to PLM and then
checking the PLM containment dependency relations in the PLM information model and its mapping
to HPI entities.

The AMF manages fault detection for applications by relying on the CLM for node failure detection
and implementation specific operating system mechanisms to detect the failure of the processes of
the component that it knows about. It also relies on components to report component failures on
themselves and on other components using an error report API. An HA-aware component reports
faults it has detected to the AMF to trigger recovery and repair actions.

The AMF also provides a configuration and administrative command to start an external process to
monitor the health of a component. This may entail having the external process send dummy service
requests to the component or have it inspect information about the component. When the external
process detects a problem with the component it also uses the error report API to notify the AMF.

An HA-aware component can also use the AMF health-check API to trigger periodic health checks
and have the AMF monitor for solicited or unsolicited health-check responses. Should the component
not respond within a configured time interval the AMF will assume the component has failed and take
the appropriate recovery actions.

Components and their related administrative entities have a comprehensive set of states (e.g., admin-
istrative, operational, presence, etc.). Of particular interest with regard to availability management are
the readiness and the HA states of the jobs assigned to a component. When the AMF has a job to
assign, it evaluates the candidate components based on their readiness state. As we already mentioned,
when the AMF assigns a job to a component it tells the component what role (or HA state) it should
assume for that job, that is, active or standby. Thus a component has an HA state for each job assigned
to it. The interpretation of this active or standby role is application specific in each case. AMF only
coordinates the appropriate number of assignments in each role for each job.

The AMF also provides a job dependencies configuration parameter for each job. Unless all the
jobs listed in the dependencies parameter of a particular job already have an active assignment the
AMF will not attempt to assign that particular job to a component with the active HA state. In other
words this is a way to inform that AMF that a given job can only be actively performed if the jobs
it depends on are already being actively performed.

In this subsection we have briefly summarized the AMF in terms of the functions, states, and
configuration only as they pertain to AMF nodes, applications, components, and jobs (aka component
service instances) in order to provide the reader with a simple overview of its architecture. For further
details the reader is referred to Chapter 6.

Software Management Framework
Modern software systems are continually evolving, whether it is to correct defects or to introduce
new functionality on the software side or add, remove or replace resources on the hardware side. The
purpose of the Software Management Framework (SMF) is to provide a well defined and ordered
process to move the software and hardware configuration of a system from the current state to the
new desired state while minimizing service impact. The sequence of changes and actions that describe
how the system is to be moved to the new state is defined in a structured machine readable eXtensible
Markup Language (XML) file called an upgrade campaign specification (UCS). The execution of
such an UCS is managed through a state-model that the SMF maintains in the IMM.

The campaign is divided up into phases, procedures, and steps. As the campaign progresses through
the steps it can roll-back to retry a failed step while not undoing all the work already done in previous

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

54 Service Availability

steps. In the case of an unrecoverable situation it can roll-back all the executed steps, or when even
that is not feasible fallback to the original configuration that was backed up in the initialization phase.

The upgrade campaign designer must take into account the dependency and compatibility constraints
present in the system but that are not modeled in the system information model where the AMF
automatically would take them into account. For example, when a component is being upgraded it
may change the representation of the state information it replicates using CKPT. In this case the
new component would not be compatible with the old component meaning that without application
coordination just mechanically upgrading the components will not work if no outage can be tolerated.
SMF exposes an API for such coordination.

The SMF relies on the AMF to maintain SA. It executes the upgrade campaign by applying CCBs
to the IMM configuration of the AMF managed entities. It also performs the software installations
and removals and interacts with AMF to lock/unlock, stop, and start the AMF entities. For details of
the SMF the reader is referred to Chapter 9.

3.3.2.5 AIS Utility Services

These services cover the common functions typically required when developing highly available
distributed applications.

Checkpoint Service

The Checkpoint service (CKPT) is designed to allow applications to replicate their state outside
their address space of their components such that their state can be preserved across failures. In
order to facilitate the implementation of highly efficient replication mechanisms no strong ordering
requirements are imposed on consistency and the outcomes of concurrent updates to the same area of
a checkpoint by different processes. On the other hand ordering of writes by a single writer must be
preserved and inconsistencies signaled to the applications.

Redundancy is achieved by having multiple copies of a checkpoint on different nodes. A copy
of a checkpoint maintained by the service is called a replica. The propagation of updates between
replicas is determined at creation time by the application. At any one time there is a single active
replica to which the updates are being applied with the updates being propagated to the remaining
replicas by CKPT. If an application has chosen synchronous replication, write operations block until
all replicas have been updated. In the case of asynchronous replication, write operations return as soon
as the active replica has been written to while the propagation of updates to the other replicas occurs
asynchronously.

Interestingly, CKPT has no configuration data in the system information model: the management
of checkpoints and their replicas across the nodes of the cluster is handled automatically between the
service and its users. Applications can control the number and placement of replicas by creating a
so-called collocated checkpoint. A replica is created on each node on which an application opens a
previously created collocated checkpoint. Collocated checkpoints can only be used with asynchronous
replication. In order to ensure the highest performance for writing checkpoints the service provides a
mechanism whereby an application can request the active replica be collocated with it. In this way
when the AMF assigns a job in the active role to a component the component can set its local replica
active to ensure that the state information needing to be replicated for the job can be written with
low overhead while the service asynchronously propagates the information to the other replicas which
were opened by the components that were assigned the same job in the standby role. If subsequently
the AMF were to change the state of one of the standby assignments to active, when the component
accordingly requests its local replica to be active the service will ensure that the replica is up-to-date
before completing the request.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 55

Although CKPT does not have any configuration data it does expose runtime information and
statistics about checkpoints and their replicas through the IMM.
Chapter 7 takes a deeper look at CKPT.

Event Service

The Event service (EVT) is intended to provide a cluster wide event distribution service whereby
applications can publish information to anonymous subscribers on named cluster wide event chan-
nels. EVT is typically used by application designers wishing to distribute state information between
applications in a loosely coupled scalable manner.

As with CKPT, EVT does not define any configuration in the system information model. Event
channels are created programmatically by the applications. An application may create or open an event
channel taking on the role of publisher, subscriber, or both at once. Events are in fact just messages
with a common header allowing subscribers to request the service to only forward those events to
them that match their specific filter criteria on the header.

The specification calls for best effort and at most once delivery of published events to subscribers.
Publishers set a priority level for each event sent. In the case of overflow due to resource limitations
lower priority events may be lost. Should events be lost the service informs affected subscribers of
the fact. Each subscriber sees events in published order within a given priority level and for a given
publishing process. In other words the specification does not require strict global ordering with regard
to multiple receivers and multiple senders.

In order to further reduce coupling between publishers and subscribers the service allows a retention
time to be specified on events. This allows a subscriber that starts some time after an event has been
published to still be able to receive it. EVT does expose runtime information about each event channel
in the system information model. It includes information such as the number of subscribers, publishers,
retained and lost events for each channel.

More details on the EVT can be found in Chapter 7.

Message Service

The Message service (MSG) was conceived to provide a flexible, cluster wide distributed message
passing capability. The main use case is to facilitate the implementation of reliable scalable cluster
internal client-server applications. Here typically the client in the cluster receives service requests from
the external environment and distributes them to a set of servers. Additionally it was required that the
service masks failures in a receiver from senders and to support load sharing between receivers.

In order to allow one receiver to take over from another receiver without the involvement of the
sender the abstraction of a message queue or mailbox was introduced. A message queue acts as a
buffer for messages sent to the queue where they are held until retrieved by the receiver. For example,
assume we associate a single message queue, to which service requests are being sent, with a job that
the AMF assigns to a pair of components. The job assignment for the first component is set to the
active state and that of the other to standby. The first component, with the active state for the job, has
opened the queue and is retrieving and processing the messages from the queue. In the meantime the
second component simply waits for instructions from the AMF. Now assume that the first component
suddenly crashes. When the AMF detects the failure of the first component it sets the state of the
second component’s job to active. The second component then opens the same queue and proceeds
to receive and process the service requests from it. Any processes sending services requests to the
queue will be unaware that there has been a failover. Any messages sent to the queue after the
component crashed will have been buffered in the queue until received by the second component.
Ensuring that sent messages are preserved in the face of random failures is a challenging task for MSG
implementers.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

56 Service Availability

The specification does not require that messages stored in message queues be preserved across
node failures or cluster restarts. This allows message queues to be memory based for performance
reasons. Sophisticated implementations may however provide protection against node failures without
compromising performance. Various message sending models are specified: send and forget, notify
sender on delivery to queue, and request-reply from the receiving process.

A message queue can have any number of processes sending messages to it but can only be opened
by one process at a time for receiving messages. This avoids the complexity of having to implement a
mechanism for notifying multiple processes for each message sent to the queue and providing ordering
guarantees between them for receiving the messages.

In order to support load sharing the concept of message queue groups was defined. A message
queue group has a name just like a single queue. Processes sending a message specify its destination
by providing a name which can be either that of a single queue or that of a message queue group.
The specification currently defines four load sharing policies for message queue groups of which
round-robin is the only mandatory one. To optimize for latency an optional local round-robin policy is
defined which behaves the same way as standard round-robin except that if there is a queue opened by
a process that is co-located on the same node with the sender that queue will be preferred. A variant
on this last policy is also defined which selects the local queue with the largest amount of available
buffer space. These are all so called uni-cast policies in which a message sent to the group will only
be delivered to a single member queue of the group.

The other policy is the broadcast or multi-cast policy which delivers messages that are sent to the
group to each queue of the group that has sufficient room to buffer it. Again to simplify and ensure
robust implementations atomic multicast semantics are not required.

MSG does not specify any configuration objects in the system information model but does expose
detailed runtime information about queues and message queue groups.

Further discussion on the service is presented in Chapter 7.

Lock Service

The Lock service (LCK) specifies a mechanism to perform simple cluster wide distributed resource
access coordination. The service defines an abstract entity called a lock resource which applications
associate to actual resources in the system to which access by different components needs to be
coordinated.

Both shared and exclusive locking of the lock resource are supported. Hierarchical or composite
and recursive locks are not catered for at the time of writing. Any number of processes can have
a resource locked in shared mode when no process has it locked exclusively. Only one process can
have a resource locked exclusively at any one time. The principal use cases being multiple concurrent
readers or a single process that can both read and write to the resource associated with the lock.

Locks held by a process are automatically released by the service if the process terminates or the
node on which it is running leaves the cluster membership. The service specifies two optional features:
dead-lock detection and orphaned locks. The orphaned locks feature allows the automatic releasing
of locks by the service to be disabled in order to allow clean-up operations to be undertaken by other
parts of the application. The application must explicitly purge the orphaned locks.

LCK maintains useful runtime information about lock resources in the system information model.

Naming Service
The Naming service (NAM) is intended to provide both node local and cluster wide name registry and
look-up functions. Names are simple strings that can be bound to object references or other resource
references which typically would include communication or service access point addresses.

The naming conventions used are a local matter for applications. In order to avoid namespace
conflicts the service defines the notion of a context in which names are bound to references. Two

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 57

contexts are defined by the service itself: a cluster wide context and a node local context. Applications
can define their own contexts with cluster wide or node local scope. All contexts represent mutually
disjoint namespaces irrespective of their scope. User created contexts with node local scope including
the bindings they contain do not persist across departures of the local node from the cluster
membership.

Apart from creating, looking-up, updating, and deleting name-reference bindings the specification
also provides a mechanism for an application to monitor for binding creation, updates, and delete
actions related to a name within a context. This can be used for an application to learn when a
service becomes available or when it needs to rebind to a new service access point. For example,
suppose an application needs to access some service called ‘S1° on an interface that is determined
dynamically at run time. The application will monitor for changes to the binding of the name ‘S1’ in
the application’s context by registering a call back function with NAM. Initially, when looking up the
‘S1’ it finds that no associated binding exists. When the interface is created and an address is assigned
to it, a configuration management process binds the name ‘S1’ to an object reference representing the
interface (possibly the distinguished name of a runtime object in the system information model). At
this point NAM will invoke the call back function that was previously registered by the application
to notify it of the new binding, obviating the need for the application to have to poll for changes or
doing a subsequent lookup.

Another example is where a service endpoint is implemented as a socket interface with an Internet
protocol (IP) address and port number as configuration parameters. When the job that provides service
at that socket interface fails-over, the new active service endpoint may have a different IP address and
port number. The process invoking services on the endpoint can be notified of the changed address by
using the same monitoring technique as in the previous example. The component whose job end-point
HA state is set to active updates the name binding. When this occurs, the service user is informed by
NAM of the binding update and the service user connects to the new IP address and port number. This
is in contrast to a failover of a service endpoint using a MSG queue instead of a socket address. Using
the MSG queue avoids the need of the invoking process to be involved at all in the failover procedure.

NAM defines a configuration object class for the service defined default cluster wide and node
local naming contexts in the system information model. This class allows the system administrator to
set the configuration parameters of these contexts. It also exposes run-time information for them. A
separate runtime object is exposed for each programmatically created naming context. The life-cycle
of the configured default cluster wide and local naming contexts is coupled to the life-cycles of the
cluster and the cluster nodes respectively. Applications, however, are responsible for removing any
unused user created naming contexts and cleaning up all stale or unused bindings.

Timer Service

The Timer service (TMR) is a node local service specifies an operating system independent interface
for common timer functions such as setting timers and receiving timer expiration notifications. TMR
supports both single event (one-shot) and periodic (repetitive) timers. The expiry time can be specified
as an absolute time or as a duration relative to the time at which the timer is started. Any timers
started by a process are only visible and usable by that process. They are cancelled (i.e., destroyed)
upon termination of the process.

Timers are a frequently used mechanism in HA applications to monitor for state changes or
responses to service requests which need to occur within specific time bounds. Should the change
or arrival of the response not occur within the time interval some recovery action such as retry or
cleanup must be invoked. The specification does not require timers to survive process restarts or
failures. A key design decision was to allow for implementations to support a very large number of
timers per process. Very large numbers of operating system based system timers can generate consid-
erable system overhead as it cannot make any assumptions about them. Implementations of the TMR
must assume that the vast majority of timers will be cancelled before expiry requiring them to be

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

58 Service Availability

extremely ‘lightweight.” Timer values are specified with the standard time type which has a resolution
of nanoseconds. However to promote portability and broad platform support for implementations the
specification exceptionally imposes a nonfunctional requirement which is that the timer resolution
should be no longer than 10 ms.

Unlike the other AIS utility services TMR is not a distributed service. It continues to provide service
even on nodes that are removed from the cluster membership. One of the main reasons that TMR is
not a distributed service is that it is complex and resource intensive to provide cluster wide scope for
a large number of timer instances. Another is that it would require highly reliable fine grained time
synchronization between the nodes in the cluster membership further exacerbating complexity and
increasing the number of platform failure modes. The additional burden on applications to replicate
timestamps of timer start times with their associated service requests and restarting them as part of
application recovery action is relatively small. Note, however, that applications must also deal with
the implications of time variations between different nodes on the cluster.

TMR has no administrative interface and exposes neither configuration data nor runtime information
in the system information model.

3.3.3 Service Dependencies

As mentioned in Section 3.1.3.2 the different services were specified such that each interface is self
contained with minimal coupling to other services. For example, the HPI and AIS specifications do
not have any formal dependencies upon one another. In other words they can each be used separately
or together. In the absence of an HPI implementation the PLM could be implemented directly on
proprietary interfaces or another server system management standard such as Systems Management
Architecture for Server Hardware (SMASH) [50]. A CLM implementation could even dispense with
both HPI and PLM and simply use native operating system functions directly and perform the system
network probing over the system interconnect to discover the set of operational nodes.

The SA architecture design does however impose two essential dependencies between the services:
dependencies on CLM and dependencies on the AIS management services. In order to provide a
coherent view of the scope of the operational system resources to applications all AIS distributed
services depend on CLM. The two AIS services that do not depend on CLM are the PLM and
TMR services. PLM was designed to facilitate the implementation of CLM. TMR is a node local
only service as discussed in section ‘Timer Service’ on page 57 and has no dependencies but all other
AIS service could use TMR.

The dependency of all AIS services except TMR on the AIS management services is intended to
provide a common administrative view on all services. This includes management of configuration and
runtime information, administrative interfaces, notification and logging of system events and changes.

In the preceding presentation of the various services we have already discussed some of the inter-
actions they have with other services. Figure 3.6 depicts the ideal dependency relations between the
various services as envisaged in the SA architecture from a service implementation perspective. These
dependency relations are not normative and may vary in actual implementations.

Here we limit ourselves to summarize the ideal and assumed dependency relationships.

The PLM was designed to work with HPI and to provide the bridge between HPI and AIS.
The relationships of AMF depending on CLM depending on PLM for availability management were
illustrated in Section 3.3.2.1. Although there are no direct dependencies of other services on the AMF,
service implementers can choose to model the service implementation as an AMF application. The
SMF clearly relies on the AMF in order to manage its activation and de-activation units (for details
please see Chapter 9). However, it does not directly interact with the AMF by calling the AMF APIs.
It drives the AMF by applying changes to the AMF managed entities in the IMM and using the
administration interface of the AMF.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 59
(AIS
/)
Mas'z?,ﬁ:::"t AIS Utility
AIS) Services
Frameworks (CKPT \

EVT

IM
LO

CK
N MSG

TMR
PLM |——-{ HPI ’

AIS Platform
Services

M

G
TF
EC

G
b
{

Figure 3.6 Ideal dependency relationships between services.

The AIS Frameworks, Platform services, and all the Utility services except for TMR depend on
IMM and NTF for management and administration purposes where appropriate.

All distributed services except PLM depend on CLM which depends on the AIS Management
services. Thus there is a mutual dependency between CLM and the Management services. Resolving
the mutual dependency between CLM and IMM during system start-up requires special care on the
part of the service implementers.

NTF ideally depends on LOG for persisting alarm and notification events and LOG depends on
NTF for sending alarms and log stream life-cycle and change notifications. All services that send
alarms or notifications indirectly depend on the LOG. For simplicity in the diagram of Figure 3.6 we
thus group LOG and NTF together.

Note that IMM depends on NTF for sending miscellaneous notifications and NTF depends on IMM
for its filter configuration settings. The use of the SEC for some of the AIS services has not yet
been defined but it is planned for all services to use SEC. SEC for its part does not have a direct
dependency on NTF as its service users are expected to send notifications and security alarms as part
of their authorization procedures.

In addition implementations may use one or more of the AIS utility services in the implementation
of other services. For example, TMR can be used in most other services. MSG can be used by the
AIS management services and the other utility services.

3.4 Open Issues

Over the past decade much has transpired in the industry and much experience has been gained by
the SA Forum members and the ecosystem of implementers and adopters of the specifications. In this
section we will look at some of the open issues that have emerged over time and some additional
services that still remain on the drawing board.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

60 Service Availability

3.4.1 The Optional Features Issue

The definition of optional features such as the nonmandatory load-sharing policies in the MSG or
support for orphaned locks and deadlock detection in the LOG is at variance with our primary goal
of application portability. Applications making use of the optional features may not be portable to
other AIS implementations. It thus becomes a difficult trade-off between the advantages realized by
the optional feature or features relative to the benefits of portability. Often the underlying reason for
making a feature optional in the specification is that the implementation may be particularly onerous
or that the feature may compromise certain nonfunctional characteristics of the service. We should
add that backward compatibility rules for the specifications allow new features to be added without
affecting existing applications. In retrospect then it may be preferable to avoid optional features
altogether. New features can then be introduced after it has been ascertained that they are useful
and able to be implemented efficiently while not compromising other desirable nonfunctional service
characteristics.

3.4.2 Integrated AIS Service API

The second open issue is a consequence of the conscious decision to try and ensure that each service
could be implemented in a self-contained manner. This decision was motivated by the business need
for software companies to be able choose to implement only that subset of the interfaces they were
interested in and for which they had sufficient development resources without depending on services
provided by other suppliers. As a result each service has its own independent life-cycle as seen from
the application perspective. While the consistency of the life-cycle and programming model required
by the architecture of the AIS services simplifies the use of many different services in an application,
it still creates a substantial housekeeping burden on the application to maintain the separate handles
and contexts of the different services. Thus there is the temptation for a project that will be using
many of the services in its programs is to wrap the life-cycle, selection and dispatch routines of the
different services into a single common proprietary library, which is then used across the project.
Now that high-quality, open-source implementations of most of the services exist there is no longer a
pressing need for independent services. Thus in retrospect it might have been better to define a single
life-cycle and interaction API framework into which the services could have been plugged.

3.4.3 Common Low Level Communication Facility Interface

The third issue is also related to the integration of independent services. When integrating different
AIS services, that have been implemented by separate independent suppliers into a single coherent
system there is the inevitable issue that there will be duplicated low level functions. In particular all
distributed services require some form of underlying cluster wide communication facility. Whereas
some services can use the MSG in their implementation, others cannot. The duplicate implementations
may have different behaviors when encountering a common fault affecting both facilities. Furthermore
when isolating a node during fault handling, multiple communication facilities need to be notified
and participate in the isolation. Of particular concern is the issue when the reachable set of nodes
is different over the various facilities. In short the duplication of communication facilities entails
increased configuration complexity as well as testing burden for the integrator. A common low-level
communication abstraction interface specification with well-defined semantics for use by all service
implementations would greatly facilitate the integration task.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

Overview of the Service Availability Architecture 61

3.4.4 Common Distributed Process Management Interface

Another missing common function needed by all service implementations is that of distributed process
(or task) management. While it was a stated objective to remain operating system neutral it would
nonetheless have been possible to define an abstract process management service that would support
the instantiation, monitoring, and termination of processes in the cluster. Users of this service could
include the AMF, service implementations not managed by the AMF and multi-process components.

3.4.5 System Trace Service

LOG is designed to maintain a record of system and application related events in support of the
system operator and application service provider. Distributed systems are notoriously difficult to test
and debug and there is a need to record runtime system implementation related information in support
of the developer and system integrator. The difference in requirements between tracing and logging
is sufficiently great to warrant a separate service. Firstly the nature of the information recorded
should allow the identification of the functional area in the source code emitting the trace record. The
service must be extremely efficient since it must support very high rates of trace message recording
in live systems without affecting service levels. Furthermore it should support the selective enabling
of global trace levels and tracing of specific functional areas without requiring specific explicit trace
configuration data for each process in the system information model. Finally it requires relatively fine
grained cluster-wide consistent time stamps to enable post hoc failure cause analysis across a set of
node local trace logs. This service has not yet been specified.

3.4.6 Diagnostics Framework

Another service that has been on the drawing board for some time is the diagnostics framework.
As part of the repair procedures following a failure it is often desirable to test the potentially still
faulty or repaired component in situ without its administrative or operational state changes being taken
into account by the AMF. Similarly it should be possible to schedule routine diagnostics on different
parts of the system and have the results in a standard format to facilitate automated analysis.

3.4.7 Overload Control Framework

Although disastrous total system failures are relatively rare, when they do occur, most often the cause
is inadequate overload control. While there are some discrete mechanisms defined such as the HA
readiness state for service assignments, node, and service capacities in the AMF, log levels or message
and event priorities that can be used to limit the use of resources when overload conditions occur there
are as yet no consolidated runtime usage states and throttling mechanisms defined in the specifications
to signal and control overload conditions. The runtime state might include usage states for cluster
resources and component job assignments. Controls may take the form of service priorities and service
request admission rate policies. Like security, one of the challenges with specitying overload detection,
prevention, and control services is that they affect most of the existing specifications. Making the
changes to accommodate overload control represents a considerable effort requiring great care to
maintain backward compatibility. Service related resource usage information for an overload control
framework could also be used to define additional load-sharing mechanisms in MSG. Adding this
feature may be a first step toward a full overload control framework.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

62 Service Availability

3.5 Conclusion

In this chapter we have presented the SA architecture with its constituent services. We began by giving
some background on the specification creation process and presenting the architecture description
approach. We then reviewed some basic HA concepts and outlined how they are applied in software
based fault tolerant systems. In the presentation of the architecture and its services we examined
the interactions between the services that illustrate how they work together to provide high levels
of SA and continuity. Throughout we have tried to describe the design considerations and trade-offs
that were made in selecting the functionality that was included in the specification. Designing and
implementing reliable, flexible, and high performance distributed systems is a complex and difficult
task. The choices of features and functionality in the specifications were strongly influenced by the
many lessons learned in previous proprietary systems. It is hoped that this exposition will help the
reader to obtain a better understanding of the specifications and to encourage the brave to tackle some
of the remaining open issues.

85UB01 7 SUOLUWIOD aA1IeR1D) 3[ceoldde ayy Aq peuenob aJe sooiLe VO ‘8sn JO SNl o Aleid18UIIUQ AB]IAA UO (SUONIPUOO-PUR-SWUIB)/IOY AS | 1M Afed| Ul Uo//Sthiy) SUORIPUOD pue sws | 84} 88S *[£202/€0/20] uo AkeiqiTauliuo A8jim ‘utesuibug jo Asiealunexeya Aq /iop/woo A im Areiqijeul|uo//sdny Wwos papeoumod

The SA Forum Information
Model: The Heart of Control
and Monitoring

Maria Toeroe
Ericsson, Town of Mount Royal, Quebec, Canada

4.1 Introduction

This chapter introduces the Service Availability (SA) Forum information model, which was created to
answer management needs and in particular that of the Availability Management Framework (AMF)
to be discussed in Chapter 6. Subsequently the concepts of the AMF information model were applied
to the management information of other Application Interface Specification (AIS) services; thus, the
SA Forum information model was born.

The first question is why AMF needs an information model and what type of model it requires.

From Part I of the book one may see that SA management is all about coordination of the available
resources so that at any moment in time there is at least one resource available in the system which
is able to provide any given service that is required to be highly available. To pull off this attraction
the availability manager needs to know or have a view of:

e the resources with their availability status and the services they are able provide;
e the services that the system needs to provide; and
e the relationship between these two sides.

What does all this mean when applied to some ‘random’ software application we want to be
managed? To begin with someone needs to tell to our availability manager at least part of this infor-
mation, that is, what the resources are and what services they should provide. They need to be given
in a way that suits this ‘random’ software as well as the availability manager. In other words a system
administrator needs to configure for the availability manager the application so it can interpret this
information. Thus, we need an information model that includes at least this configuration information.

Service Availability: Principles and Practice, First Edition. Edited by Maria Toeroe and Francis Tam.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

64 Service Availability

The information needs to be provided in an abstract and uniform way applicable to the wide variety
of applications that one may want to be managed by the availability manager.

The information model needs to provide enough information for the management functionality to
fulfill its task. In our case for the availability management the information needs to be enough so
that it can map the software resources executing in the system at runtime and their services into this
model representation and use this model representation to control those software resources with their
services.

Yet the information needs to be simple enough so that an administrator will actually be capable of
providing it, that is, it will be able to compose as well as to interpret the information and find its way
within the model.

Besides the configuration information the availability manager needs to maintain the availability
status and the current relationship between the resources capable of providing the services and the
to-be-provided services. This is a piece of information that the administrator may also be interested in.
For him or her knowing this information may provide an explanation why some required services are
not provided by the system at a particular moment in time or that the risk is high for such an outage.

The status information is typically runtime information that is collected from the system and
provided to the administrator to facilitate the monitoring and to support the administrative control.
The exposure of this information is not necessary for the management functionality (e.g., availability
management) itself, but there could be parties interested in the information even beyond the system
administration.

In any case we can say that in a typical system a management facility managing some physi-
cal resources — whether they be software or hardware resources — abstracts these managed resources
into some logical entities that characterize the resources from the perspective of that management
functionality.

In turn some or all of these logical entities can be reflected in an information model as managed
objects that may expose the status of the represented resources from the perspective of the manage-
ment functionality and/or allow the system administrator to configure and control the management
functionality and its resources. The collection of these managed objects composes an information
model, which serves as an interface between the system and the system administration.

Considering different management functionalities in a system where each of them exposes its
own information model, it is possible that the combined system information model exposes the same
physical resource through multiple managed objects, each representing a particular management aspect
of that resource. For example, even within the availability management we have already distinguished
the service provider aspect of a resource from the services it provides.

In this chapter we take a look at the main concepts used in SA Forum systems when it comes to
management information. This allows newcomers to have an easier way to understand the application
of these concepts to the different SA Forum services when they try to interpret their information
models. In turn this information also provides guidelines for application designers wanting or needing
to extend the SA Forum system information model for their applications.

4.2 Background
4.2.1 Management Models Out There

Many systems have faced in the past, and will face in the future, this problem of how to provide
an adequate management view of the system; and there are numerous solutions addressing it. Some
of these solutions are more suitable for the management functionality itself or a particular class of
them; in other cases they favor the administration functions. It is almost always a trade-off between
providing a comprehensive view and set of controls of the various system functions and resources on
the one hand and a simple and secure view for the system administrator on the other. The solution is
further flavored by the particular area of technology for which it was developed.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

The SA Forum Information Model: The Heart of Control and Monitoring 65

Among the best known existing solutions we need to mention the Internet Engineering Task
Force (IETF) regulated Management Information Base (MIB), which is a ‘virtual information
store’ — essentially a database of management information for a particular type of system. Initially
the target system was the Internet, but it could be and was applied to other systems as well including
the SA Forum system. To provide a management interface the SA Forum started out with defining
MIBs for its services.

The initial version of MIB-I [51] quickly evolved into MIB-II [52], which has become ubiquitous
on the Internet and it is used in conjunction with the Simple Network Management Protocol (SNMP)
[53]. The managed objects of the MIB are defined using a subset of the Abstract Syntax Notation One
(ASN.1) [54]. IETF specifies the used subset in the Structure of Management Information Version 2
(SM1v2) [55]. Multiple related objects are organized into tables, which together with the scalar objects
(i.e., defining a single object) are organized into a tree hierarchy. From the management perspective,
an object is a data structure that characterizes some resource (e.g., device, interface) in the system
that an administrator would like to control. To this end it uses an SNMP ‘agent,” which is capable
of receiving the instructions of the administrator in reference to such an object, interpreting the data
structure, and applying it to the resource represented by the object.

The SA Forum applied the MIB approach to the hardware platform interface for which it was well
suited but it turned out to be less suited to the needs of the AMF [48] — the flagship specification
of the SA Forum. In particular it was cumbersome to accommodate the dynamic nature of the rela-
tionships of the AMF model with the numerical enumeration of the naming hierarchy of the MIB.
Similar conclusions lead IETF to develop the Network Configuration Protocol (NETCONF) [56] and
its associated data modeling language YANG [57]. NETCONF provides mechanisms to install, manip-
ulate, and delete the configuration of network devices, for which the configuration and state data are
modeled in YANG. The primary target area of NETCONF and YANG - not surprisingly — remained
the Internet as it was for the MIB and SNMP. YANG would have been more suitable for the SA
Forum needs, but it came late. By the time it has been approved by IETF the SA Forum had its model
defined using the Unified Modeling Language (UML) [59].

A competing and similarly recent standard defining management information is the Common Infor-
mation Model (CIM) [58] standardized by the Distributed Management Task Force (DMTF) for the IT
environments in general. It is an object-oriented approach to represent the management information
in a vendor independent way for a wide variety of managed elements such as computer systems,
operating systems, networks, middleware, devices, and so on. In the Core Model DMTF defines the
concepts common for all targeted areas. Although extendable, this part is expected to stay stable over
time. In addition for each of the target areas DMTF defines a still technology independent Common
Model. The Core and Common Models provide a starting point to analyze and describe any managed
system. The Common Models are extendable in Extension Schemas to capture the different technology
specifics.

DMTF publishes the models as schemas. These are supplemented by specifications that define
the infrastructure, interchange format, and compliance requirements. CIM is a UML-based [59]
technology.

The initial attempts to derive the information models for the various SA Forum AIS services (and
AMF in particular) from the CIM led to overly complex object hierarchies without providing an
intuitive mapping onto SA Forum defined entities and relationships.

4.2.2 The SA Forum Needs

At the same time as the IETF and DMTF put efforts to define YANG and CIM respectively, the SA
Forum has also been working on an appropriate representation of the management data of SA Forum
compliant systems. The result falls somewhere between these two solutions. Let us examine why.

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

66 Service Availability

First of all there is a necessity of system configuration. For example, the availability management
function needs to know all services it needs to maintain and all the resources it can use for this purpose.
In a complex system — and SA Forum compliant systems are complex — this means a detailed repre-
sentation showing each component with its services and state. While such a detailed representation is
necessary for the availability management functions it is overwhelming for an administrator. There-
fore there is a need for an organization that simplifies this view such as higher level aggregation and
abstraction even when there is no physical manifestation of such compound entities in the system or
if the entities are quite different from the function manager’s perspective, but they are similar for the
administrator.

High-availability systems are relatively autonomous in the sense that once they have been configured
and deployed they operate 24/7 without continuous administrative control as the systems themselves
implement mechanisms to cope with emergency situations within the defined limits. (We will see this
in details in the discussion of the AMF [48] in Chapter 6.) This also means that these systems are
able to handle many other workload related (e.g., increase of traffic) issues and changes dynamically.

In particular the SA Forum utility services allow the creation and deletion of their service entities
dynamically through application programming interface (API) calls. The originator of these operations
may or may not be part the system.

For example, new checkpoints may be created in response to increased traffic, increased number of
open sessions toward the system or due to a new application that has been added to the system config-
uration. In either case the checkpoint service (CKPT) creates these checkpoints at runtime in response
to the requests it receives from its user processes via the service API and not through configuration.

The information model needs to accommodate this feature. More specifically, the creation and
deletion of these utility service resources at runtime via the service API is very similar to the creation
and removal of configuration resources by an administrator from the perspective of handling; that is,
the life-cycle of such an entity is controlled by the user and its representation should remain in the
model until the API user requests the removal of the entity and therefore its representation. On the one
hand, they have a similar ‘prescriptive power’ as the configuration has. On the other hand, they need
to be distinguished from the configuration information as they are created by the service management
functionality on behalf of the user and they should not be configured by the administrator.

Finally the information model also needs to be able to satisfy the needs of system monitoring
and system discovery. System administrators need to be able to find out the system state, easily find
their way around in the model and interpret the information even when they know very little about
the functionality a particular application. In other words, in spite of the wide range of application
functionality deployed on such systems and the variety of configurations, the model needs to express
clearly the system’s organization and state.

This requirement is related again to organizational aspects of the model, but also the differentiation
of the information depending on its source.

There could be different solutions for these requirements depending on the preferences or the target
behavior. The primary goal was to provide a management interface to external management systems to
manage and configure a system based on the SA Forum specifications and a number of suitable open
standard solutions could have been used. It was the need to provide runtime management access to
the service implementations themselves that drove the decision to specify the interfaces to the UML
model based on an adapted Lightweight Directory Access Protocol (LDAP) [60] model. However
the administrative interface exposed by the resulting Information Model Management service (IMM)
[38] is well adapted to be exploited by external management systems using agents based on the
existing open management standards. We describe the SA Forum definition of the different object
class categories catering to these two requirements further in this chapter.

Satisfying the above requirements were the primary drivers in the definition of the SA Forum infor-
mation model while also drawing on the concepts and techniques and therefore aligning it with existing
standards and developmental solutions such the MIB [52] and LDAP [60] from IETF, CIM [58] from
DMTF and UML [59] from Object Management Group (OMG).

85UBO| 7 SUOWIIOD 8AReR1D) 3|l dde auy Aq peueob 818 S3joe YO 188N JO SN 104 AReIq 1T UIIUO AB]IA UO (SUORIPUOD-PUR-SLUBY 0D A3 | 1M ATRAG 18U UO//SARY) SUORIPUOD PUe WS L 8L} 88S *[£202/€0/20] uo Arigiauluo AB|im ‘unssuibus jo Aseaiun exeya Aq /10p/woo A3 Im Ariq1feuluo//sdny woy papeo umoa

The SA Forum Information Model: The Heart of Control and Monitoring 67

4.3 The SA Forum Information Model

4.3.1 Overview of the SA Forum Solution
4.3.1.1 The Managed Object Concept

The SA Forum system consists of many different resources — software and hardware alike [61]
(Figure 4.1). These include the hardware nodes composing the system platform that run different
operating system instances within or without virtual machines providing execution environments for
different processes in the system. The processes may implement some SA Forum defined system
functionality or some application functionality the availability or other aspects of which are still
managed by the SA Forum services.

For the purpose of the management of these different resources an SA Forum service defines some
logical concepts that abstract the aspect of the resources, which is managed by the given service. We
refer to these logical concepts as SA Forum entities. The service semantics and functionality are defined
for these logical entities. For example, the Platform Management service (PLM) abstracts most of the
details of any hardware resource and represents all of them as hardware elements. Similarly, operating
systems, virtual machines, and virtual machine monitors are all summarized as execution environments.
Then the PLM specification describes the operation, the managed states, and other semantics of the
PLM in terms of these two logical entities, that is, the hardware element and the execution environment.

In addition, a service may also define logical entities that cannot be mapped directly to any single
resource present in the system, but which reflects some organizational aspect of those entities that
do have a physical manifestation. Typical examples would be the AMF’s service unit and service
group concepts. An AMF component may manifest in the system as a process managed by AMF. The
service unit, however, is only a grouping of such components and known only to AMF. If we look at
the reasons why it was defined in AMF we see that one of the reasons behind the se