
Color in Computer
Vision

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Color in Computer
Vision
Fundamentals and Applications

Theo Gevers
Intelligent Systems Lab. Amsterdam,
University of Amsterdam (The Netherlands)
and
Computer Vision Center,
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Preface

Visual information is our most natural source of information and communication.
Apart from human vision, visual information plays a vital and indispensable role
in society and is the nucleus of current communication frameworks such as the
World Wide Web and mobile phones. With the ever-growing production, use,
and exploitation of digital visual information (e.g., documents, websites, images,
videos, and movies), a visual overflow will occur, and hence demands are urgent
for the (automatic) understanding of visual information. Moreover, as digital
visual information is nowadays available in color format, there is the irreversible
necessity for the understanding of visual color information. Computer vision
deals with the understanding of visual information. Although color became a
central topic in various disciplines (ranging from mathematics and physics to the
humanities and art) quite early on, in the field of computer vision it has emerged
only recently. We take on the challenge of providing a substantial set of tools for
image understanding from a color perspective. The central topic of this book is
to present color theories, representation models, and computational methods that
are essential for image understanding in the field of computer vision.

The idea to make this book was born when the authors were sitting on a terrace
overlooking the Amstel River. The rich artistic history of Amsterdam, the river,
and that sunny day gave us the inspiration for discussing the role of color in art,
in life, and eventually in computer vision. There, we decided to do something
about the lack of textbooks on color in computer vision. We agreed that the most
productive and pleasant way to reflect our findings on this topic was to write this
book together. A book in which color is taken as a valuable collaborative source
of synergy between two research fields: color science and computer vision. The
book is the result of more than 10 years of research experience of all four authors
who worked closely together (as PhDs, postdocs, professors, colleagues, and
eventually friends) on the same topic of color computer vision at the University
of Amsterdam. Because of this long-term collaboration among the authors, our
research on color computer vision is a tight connection of color theories, color
image processing methods, machine learning, and applications in the field of
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Preface

computer vision, such as image segmentation, understanding, and search. Even
though many of the chapters in the book have their origin as a journal article,
we ascertained that our work is rewritten and trimmed down. This process, the
long-term collaboration, and many discussions resulted in a book in which a
uniform style has emerged and in which the material represents the best of us.

The book is a valuable textbook for graduate students, researchers, and profes-
sionals in the field of computer vision, computer science, color, and engineering.
The book covers upper-level undergraduate and graduate courses and can also
be used in more advanced courses such as postgraduate tutorials. It is a good
reference for anyone, including those in industry, interested in the topic of color
and computer vision. A prerequisite is a basic knowledge of image processing
and computer vision. Further, a general background in mathematics is required,
such as linear algebra, calculus, and probability theory. Some of the material
in this book has been presented as part of graduate and postgraduate courses at
the University of Amsterdam. Also, part of the material has been presented at
conference tutorials and short courses at image processing conferences (Inter-
national Conference on Image Processing (ICIP) and International Conference
on Pattern Recognition (ICPR)), computer vision conferences (Computer Vision
and Pattern Recognition (CVPR) and the International Conference on Computer
Vision (ICCV)), and color conferences (Colour in Graphics, Imaging, and Vision
(CGIV) and conferences organized by the International Society for Optics and
Photonics (SPIE)). Computer vision contains more topics than what we have
presented in this book. The emphasis is on image understanding. However, the
topic of image understanding has been taken as the path along which we were
able to present our work. Although the material represents our view on color
in computer vision, our sincere intention was to include all relevant research.
Therefore, we believe this book is one of the first extensive works on color in
computer vision to be published with over 360 citations.

This book consists of five parts. The topics range from (low-level) color
image formation to (intermediate-level) color invariant feature extraction and
color image processing to (high-level) semantic descriptors for object and scene
recognition. The topics are treated from low-level to high-level processing
and from fundamental to more applied research. Part I contains the (color)
fundamentals of the book. This part presents the concept of trichromatic color
processing and the similarity between human and computer vision systems.
Furthermore, the basics are provided on the color image formation. Reflection
models that describe the imaging process, the interplay between light and matter,
and how photometric conditions influence the RGB values in an image are
presented. In Part II, we consider the research area of extracting color invariant
information. We build detailed models of the color image formation process and
design mathematical methods to infer the quantities of interest. Pixel-based and
derivative-based photometric invariance are discussed. An overview is given on
the computation of both photometric invariance and differential information. Part
III contains an overview on color constancy. Computational methods are presented
to estimate the illumination. An evaluation of color constancy methods is given on
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Preface

large-scale datasets. The problem of how to select and combine different methods
is addressed. A statistical approach is taken to quantify the priors of unknowns in
noisy data to infer the best possible estimate of the illumination from the visual
scene. Feature detection and color descriptors are discussed in Part IV. Color
image processing tools are provided. An algebraic (vector-based) approach is
taken to extend scalar-signal to vector-signal processing. Computational methods
are introduced to extract a variety of local image features, such as circle detectors,
curvature estimation, and optical flow. Finally, in Part V, different applications
are presented, such as image segmentation, object recognition, color naming, and
image retrieval.

This book comes with a large amount of supplementary material, which can be
found at

■ http://www.colorincomputervision.com

Here you can find

■ Software implementations of many of the methods presented in the book.

■ Datasets and pointers to public image datasets.

■ Slides corresponding to the material covered in the book.

■ Slides of new material presented at tutorials at conferences.

■ Pointers to workshops and conferences.

■ Discussions on current developments, including latest publications.

Our policy is to make our software and datasets available as a contribution to
the research community. Also, in case you want to share your software or dataset,
please drop us a line so we can add a pointer to it on our website. If you have any
suggestions for improving the book, please send us an e-mail. We want to keep
the book accurate as much as possible.

Finally, we thank all the people who have worked with us over the years and
shared their passion for research and color with us.

Arnold Smeulders at the University of Amsterdam is one of the best researchers
we had the opportunity to work with. He was heading the group during the time we
paved the way for this book. His insatiable passion for research and lively debates
have been a source of inspiration to all of us. We enjoyed working with him.

We are very grateful to Marcel Lucassen who contributed Chapter 2 to this
book. Furthermore, his thorough proofreading and enthusiasm were indispensable
for the quality of the book. It is a fortune to have him as a human (color) vision
scientist amidst us. It was certainly a pleasure to work with him. We are indebted
to Jan van Gemert for his proofreading and Frank Aldershoff for LaTeX and
Mathematica issues.

We are also grateful to NWO (Dutch Organisation for Scientific Research),
who granted Theo Gevers with a VICI (#639.023.705) with the same title of
this book ‘‘Color in Computer Vision’’ and Jan-Mark Geusebroek with a VENI.
These grants were valuable for this book.
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While working at the University of Amsterdam, we had the opportunity to
collaborate with many wonderful colleagues. We want to thank Arnold Smeulders
for his work on Chapters 6 and 13, Rein van de Boomgaard for Chapter 6, Gertjan
Burghouts for Chapters 14 and 15, Koen van de Sande and Cees Snoek for their
help on Chapter 16, and Harro Stokman for Chapter 18. Furthermore, we thank
the following persons: Virginie Mes, Roberto Valenti, Marcel Worring, Dennis
Koelma, and all other members of the ISIS group.

At the Computer Vision Center (Universitat Autònoma de Barcelona), we thank
José Álvarez and Antonio López for their contribution to Chapter 7. Further, we
are indebted to Robert Benavente, Maria Vanrell, and Ramon Baldrich for their
contribution to Chapter 17. At the LEAR team in INRIA rhône Alpes, France,
we thank Cordelia Schmid, Jakob Verbeek, and Diane Larlus for their help with
Chapters 5 and 17. We also appreciate the contribution of Andrew Bagdanov at
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1
1 Introduction

Color is one of the most important and fascinating aspects of the world surrounding
us. To comprehend the broad characteristics of color, a range of research fields
has been actively involved, including physics (light and reflectance modeling),
biology (visual system), physiology (perception), linguistics (cultural meaning of
color), and art.

From a historical perspective, covering more than 400 years, prominent
researchers contributed to our present understanding of light and color. Snell
and Descartes (1620–1630) formulated the law of light refraction. Newton (1666)
discovered various theories on light spectrum, colors, and optics. The percep-
tion of color and the influence on humans has been studied by Goethe in his
famous book ‘‘Farbenlehre’’ (1840). Young and Helmholtz (1850) proposed the
trichromatic theory of color vision. Work on light and color resulted in quantum
mechanics elaborated by Max Planck, Albert Einstein, and Niels Bohr. In art
(industrial design), Albert Munsell (1905) invented the theory on color ordering
in his ‘‘A Color Notation.’’ Further, the value of the biological and therapeutic
effects of light and color have been analyzed, and views on color from folklore,
philosophy, and language have been articulated by Schopenhauer, Hegel, and
Wittgenstein.

Over the last decades, with the technological advances of printers, displays,
and digital cameras, an explosive growth in the diversity of needs in the field
of color computer vision has been witnessed. More and more, the traditional
gray value imaginary is replaced by color systems. Moreover, today, with the
growth and popularity of the World Wide Web, a tremendous amount of visual
information, such as images and videos, has become available. Hence, nowadays,
all visual data is available in color. Furthermore, (automatic) image understanding
is becoming indispensable to handle large amount of visual data. Computer vision
deals with image understanding and search technology for the management of

Color in Computer Vision: Fundamentals and Applications, First Edition.
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© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

1

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1 Introduction

large-scale pictorial datasets. However, in computer vision, the use of color has
been only partly explored so far.

This book determines the use of color in computer vision. We take on the
challenge of providing a substantial set of color theories, computational methods,
and representations, as well as data structures for image understanding in the
field of computer vision. Invariant and color constant feature sets are presented.
Computational methods are given for image analysis, segmentation, and object
recognition. The feature sets are analyzed with respect to their robustness to
noise (e.g., camera noise, occlusion, fragmentation, and color trustworthiness),
expressiveness, discriminative power, and compactness (efficiency) to allow for
fast visual understanding. The focus is on deriving semantically rich color indices
for image understanding. Theoretical models are presented to express semantics
from both a physical and a perceptual point of view.

1.1 From Fundamental to Applied

The aim of this book is to present color theories and techniques for image
understanding from (low level) basic color image formation to (intermediate
level) color invariant feature extraction and color image processing to (high level)
learning of object and scene recognition by semantic detectors. The topics, and
corresponding chapters, are organized from low level to high level processing
and from fundamental to more applied research. Moreover, each topic is driven
by a different research area using color as an important stand-alone research topic
and as a valuable collaborative source of information bridging the gap between
different research fields (Fig. 1.1).

Research topic 1

Humans

Perception

Applied

High levelLow level

Fundamental

Research topic 2

Color invariance

Physics

Research topic 3

Color image processing

Mathematics

Research topic 4

Visual exploration

Machine learning

Figure 1.1 The different topics are organized from low level to high level processing and

from fundamental to more applied research. Each topic is driven by a different research area

from human perception, physics, and mathematics to machine learning.

The book starts with the explanation of the mechanisms of human color
perception. Understanding the human visual pathway is crucial for computer
vision systems, which aim to describe color information in such a way that it is
relevant to humans.
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1.3 Part II: Photometric Invariance

Then, physical aspects of color are studied, resulting in reflection models from
which photometric invariance is derived. Photometric invariance is important
for computer vision, as it results in color measurements that are independent of
accidental imaging conditions such as a change in camera viewpoint or a variation
in the illumination.

A mathematical perspective is taken to cope with the difference between gray
value (scalar) and color (vector) information processing, that is, the extension
of single-channel signal to multichannel signal processing. This mathematical
approach will result in a sound way to perform color processing to obtain
(low level) computational methods for (local) feature computation (e.g., color
derivatives), descriptors (e.g., SIFT), and image segmentation. Furthermore, based
on both mathematical and physical fundamentals, color image feature extraction
is presented by integrating differential operators and color invariance.

Finally, color is studied in the context of machine learning. Important topics
are color constancy, photometric invariance by learning, and color naming in the
context of object recognition and video retrieval. On the basis of the multichannel
approach and color invariants, computational methods are presented to extract
salient image patches. From these salient image patches, color descriptors are
computed. These descriptors are used as input for various machine learning
methods for object recognition and image classification.

The book consists of five parts, which are discussed next.

1.2 Part I: Color Fundamentals

The observed color of an object depends on a complex set of imaging conditions.
Because of the similarity in trichromatic color processing between humans and
computer vision systems, in Chapter 2, an outline on human color vision is
provided. The different stages of color information processing along the human
visual pathway are presented. Further, important chromatic properties of the
visual system are discussed such as chromatic adaptation and color constancy.
Then, to provide insights in the imaging process, in Chapter 3, the basics on color
image formation are presented. Reflection models are introduced describing the
imaging process and how photometric changes, such as shadows and specularities,
influence the RGB values in an image. Additionally, a set of relevant color spaces
are enumerated.

1.3 Part II: Photometric Invariance

In computer vision, invariant descriptions for image understanding are relatively
new but quickly gaining ground. The aim of photometric invariant features is to
compute image properties of objects irrespective of their recording conditions.

3
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1 Introduction

This comes, in general, at the loss of some discriminative power. To arrive at
invariant features, the imaging process should be taken into account.

In Chapters 4–6, the aim is to extract color invariant information derived
from the physical nature of objects in color images using reflection models.
Reflection models are presented to model dull and gloss materials, as well as
shadows, shading, and specularities. In this way, object characteristics can be
derived (based on color/texture statistics) for the purpose of image understanding.
Physical aspects are investigated to model and analyze object characteristics (color
and texture) under different viewing and illumination conditions. The degree of
invariance should be tailored to the recording circumstances. In general, a color
model with a very wide class of invariance loses the power to discriminate among
object differences. Therefore, in Chapter 6, the aim is to select the tightest set of
invariants suited for the expected set of nonconstant conditions.

1.3.1 Invariance Based on Physical Properties

As discussed in Chapter 4, most of the methods to derive photometric invariance
are using 0th order photometric information, that is, pixel values. The effect of
the reflection models on higher-order- or differential-based algorithms remained
unexplored for a long time. The drawbacks of the photometric invariant theory
(i.e., the loss of discriminative power and deterioration of noise characteris-
tics) are inherited by the differential operations. To improve the performance
of differential-based algorithms, the stability of photometric invariants can be
increased through the noise propagation analysis of the invariants. In Chapters 5
and 6, an overview is given on how to advance the computation of both photometric
invariance and differential information in a principled way.

1.3.2 Invariance By Machine Learning

While physical-based reflection models are valid for many different materials,
it is often difficult to model the reflection of complex materials (e.g., with
nonperfect Lambertian or dielectrical surfaces) such as human skin, cars, and
road decks. Therefore, in Chapter 7, we also present techniques to estimate
photometric invariance by machine learning models. On the basis of these models,
computational methods are studied to derive the (in)sensitivity of transformed
color channels to photometric effects obtained from a set of training samples.

1.4 Part III: Color Constancy

Differences in illumination cause measurements of object colors to be biased
toward the color of the light source. Humans have the ability of color constancy;
they tend to perceive stable object colors despite large differences in illumi-
nation. A similar color constancy capability is necessary for various computer

4
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1.5 Part IV: Color Feature Extraction

vision applications such as image segmentation, object recognition, and scene
classification.

In Chapters 8–10, an overview is given on computational color constancy.
Many state-of-the-art methods are tested on different (freely) available datasets.
As color constancy is an underconstrained problem, color constancy algorithms
are based on specific imaging assumptions. These assumptions include the set
of possible light sources, the spatial and spectral characteristics of scenes, or
other assumptions (e.g., the presence of a white patch in the image or that the
averaged color is gray). As a consequence, no algorithm can be considered as
universal. With the large variety of available methods, the inevitable question,
that is, how to select the method that induces the equivalence class for a certain
imaging setting, arises. Furthermore, the subsequent question is how to combine
the different algorithms in a proper way. In Chapter 11, the problem of how
to select and combine different methods is addressed. An evaluation of color
constancy methods is given in Chapter 12.

1.5 Part IV: Color Feature Extraction

We present how to extend luminance-based algorithms to the color domain. One
requirement is that image processing methods do not introduce new chromatici-
ties. A second implication is that for differential-based algorithms, the derivatives
of the separate channels should be combined without loss of derivative infor-
mation. Therefore, the implications on the multichannel theory are investigated,
and algorithmic extensions for luminance-based feature detectors such as edge,
curvature, and circular detectors are given. Finally, the photometric invariance
theory described in earlier parts of the book is applied to feature extraction.

1.5.1 From Luminance to Color

The aim is to take an algebraic (vector based) approach to extend scalar-signal
to vector-signal processing. However, a vector-based approach is accompanied
by several mathematical obstacles. Simply applying existing luminance-based
operators on the separate color channels, and subsequently combining them, will
fail because of undesired artifacts.

As a solution to the opposing vector problem, for the computation of the color
gradient, the color tensor (structure tensor) is presented. In Chapter 13, we give
a review on color-tensor-based techniques on how to combine derivatives to
compute local structures in color images in a principled way. Adaptations of the
tensor lead to a variety of local image features, such as circle detectors, curvature
estimation, and optical flow.

5
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1 Introduction

1.5.2 Features, Descriptors, and Saliency

Although color is important to express saliency, the explicit incorporation of
color distinctiveness into the design of image feature detectors has been largely
ignored. To this end, we give an overview on how color distinctiveness can
be explicitly incorporated in the design of color (invariant) representations and
feature detectors. The approach is based on the analysis of the statistics of color
derivatives. Furthermore, we present color descriptors for the purpose of object
recognition. Object recognition aims to detect high level semantic information
present in images and videos. The approach is based on salient visual features and
using machine learning to build concept detectors from annotated examples. The
choice of features and machine learning algorithms is of great influence on the
accuracy of the concept detector. Features based on interest regions, also known
as local features, consist of an interest region detector and a region descriptor.
In contrast to the use of intensity information only, we will present both interest
point detection (Chapter 13) and region description (Chapter 14), see Figure 1.2.

Figure 1.2 Visual exploration is based on the paradigm to divide the images into meaningful parts

from which features are computed. Salient point detection is applied first from which color descriptors

are computed. Then, machine learning is applied to provide classifiers for object recognition.

1.5.3 Segmentation

In computer vision, texture is considered as all what is left after color and local
shape have been considered or it is given in terms of structure and randomness.
Many common textures are composed of small textons usually too large in
number to be perceived as isolated objects. In Chapter 15, we give an overview
on powerful features based on natural image statistics or general principles
from surface physics in order to classify a large number of materials by their
texture. On the basis of their textural nature, different materials and concepts
containing certain types of material can be identified (Fig. 1.3). For features
at the level of (entire) objects, the aim is to aggregate pieces of local visual
information to characteristic geographical arrangements of (possibly missing)

6
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1.6 Part V: Applications

(a) (b)

Figure 1.3 On the basis of their textural nature, different materials and concepts containing

certain types of material can be identified.

parts. The objective is to find computational models to combine individual
observations of an object’s appearance under the large number of variations in that
appearance.

1.6 Part V: Applications

In the final part of the book, we emphasize on the importance of color in several
computer vision applications.

1.6.1 Retrieval and Visual Exploration

In Chapter 16, we follow the state-of-the-art object recognition paradigm consist-
ing of a learning phase and a (runtime) classification phase (Fig. 1.4). The learning
module consists of color feature extraction and supervised learning strategies.
Color descriptors are computed at salient points in the image by different point
detectors (Fig. 1.2). The learning part is executed offline. The runtime classification
part takes an image or video as an input from which features are extracted. Then,
the classification scheme will provide a probability to what class of concepts the
query image/video belongs to (people, mountain, or cars). A concept is defined
as a material (e.g., grass, brick, or sand, as illustrated in Fig. 1.3a) or as an object
(e.g., car, bike, or person, as illustrated in Fig. 1.3b), an event (explosion, crash,
etc.), or a scene (e.g., mountain, beach, or city), see Figure 1.5.

1.6.2 Color Naming

Color names are linguistic labels that humans attach to colors. We use them
routinely and seemingly without effort to describe the world around us. They
have been primarily studied in the fields of visual psychology, anthropology, and
linguistics. One of the most influential works in color naming is the linguistic
study of Berlin and Kay on basic color terms. In Chapter 17, color names are

7
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1 Introduction

Supervised
learning

Classification

Its an image containing a

person with a probability of

0.87

Feature
extraction

Color
feature

extraction

Classification

Learning

Figure 1.4 First, during training, features are extracted and objects/scenes are learned

offline by giving examples of different concepts (e.g., people, buildings, mountains) as the

input to a learning system (in this case pictures containing people). Then, during online

recognition, features are extracted from the incoming image/video and provided to the

classification system to result in a probability of being one of the concepts.

Aircrat

Crowd

Screen Sky Sports Studio Truck Urban Vegetation Vehicle Violence

Desert Entertainment Explosion Face Flag USA Gov. leader Map Meeting

Animal Boat Building Bus Car Chart Corp. leader Court

Figure 1.5 TRECVID concepts and corresponding key frames.

presented in the context of image retrieval. This allows for searching objects in
images by a certain color name.

1.6.3 Multispectral Applications

Finally, in Chapter 18, we give an overview on multispectral imaginary and
applications to segmentation and detection. In fact, techniques are presented to
detect regions in multispectral images. To obtain robustness against noise, noise
propagation is adopted.
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1.7 Summary

1.7 Summary

Visual information (images and video) is one of the most valuable sources of
information. In fact, it is the core of current technologies such as the Internet and
mobile phones. The immense stimulus of the use and exploitation of digital visual
information demands for advanced knowledge representations, learning systems,
and image understanding techniques. As all digital information is nowadays
available in color (documents, images, videos, and movies), there is an increasing
demand for the use and understanding of color information.

Although color has been proved to be a central topic in various disciplines, it
has only been partly explored so far in computer vision, which this book resolves.
The central topic of this book is to present color theories, color representation
models, and computational methods, which are essential for visual understanding
in the field of computer vision. Color is taken as the merging topic between
different research areas such as mathematics, physics, machine learning, and
human perception. Theoretical models are studied to express color semantics
from both a physical and a perceptual point of view. These models are the
foundations for visual exploration, which are tested in practice.
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PART I

COLOR FUNDAMENTALS
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2
2 Color Vision

By Marcel P. Lucassen

2.1 Introduction

For any vision system, color vision is possible only when two or more light sensors
sample the spectral energy distribution of the incoming light in different ways. In
animal life, several instantiations of this principle are found, some of them even
using parts of the electromagnetic spectrum not visible to the human eye. Human
color vision is basically trichromatic, involving three types of cone photoreceptors
in the retinae of our eyes. According to a number of reports, however, some women
may possess tetrachromatic vision involving four photoreceptor types. Less than
three functional sensors—color deficiency—is a well-known phenomenon in
humans, often erroneously termed as color blindness. But apart from these two
anomalies, ‘‘normal’’ color vision starts with the absorption of light in three
cone types. Responses arising from these cones are combined in retinal ganglion
cells to form three opponent channels: one achromatic (black–white) and two
chromatic channels (red–green and yellow–blue). Retinal ganglion cells send off
pulselike signals through the optic nerve to the visual cortex, where the perception
of color eventually takes place. With the advances in neural imaging techniques,
vision researchers have learned much about the specific locations of information
processing in the visual cortex. How this eventually results in the perception of
color and associated color phenomena in the context of other perceptual attributes
such as shape and motion is largely unknown. This chapter describes the basic

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.
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2 Color Vision

building blocks of the visual pathway and provides some grip on the factors that
affect the fascinating process of color vision.

2.2 Stages of Color Information Processing

2.2.1 Eye and Optics

Color vision starts with light that enters our eyes. At the cornea, a very sensitive
part of our eyes, the incoming light is refracted. The diameter of the pupil, the hole
in the iris through which light enters the eye, is dependent on the light intensity. Iris
muscles cause the dilation and contraction of the pupil, which thereby regulates
the amount of light entering the eye ball by a factor of about 10–30, depending
on the exact minimum and maximum pupil diameters. Adjustment of the lens
curvature by the lens muscles is the process known as accommodation and ensures
the projection of a sharply focused image on the retina at the back of the eye ball.
Unfortunately, because of the chromatic aberration of the lens it is not possible
to have a focused image for all wavelengths simultaneously. This explains why
red text on a blue background or vice versa can appear blurry and difficult to
read. Blue and red are associated with the lower and upper ends of the visible
wavelength spectrum, implying that when we focus on one, the other will be out
of focus.

2.2.2 Retina: Rods and Cones

The retina contains two kinds of light-sensitive cells, rods and cones, named after
their basic shapes. Each retina holds about 100 million photoreceptors, roughly
95 million rods and 5 million cones. At low light levels (<0.01 cd/m2), our vision
is scotopic and served by rod activity only. In pure scotopic vision we sense
differences in the light–dark dimension, but color vision is not possible. Also,
visual acuity is poor. At intermediate light levels (0.01–1 cd/m2) our vision is
mesopic, in which both rods and cones are active. In mesopic light conditions
color discrimination is poor. At light levels above 1 cd/m2 our vision becomes
photopic, where cone activity is best and allows for good color discrimination.

The spatial distribution of rods and cones along the retina is not uniform. Where
cone density is high, rod density is low, and vice versa. Usually the visual field is
divided into a central area (having high cone density) and a peripheral area (high
rod density). Cone density is at maximum (around 150,000–200,000 cones/mm2)
in a tiny spot central to the retina, the fovea, which allows us to perform high
acuity tasks such as reading, and provides the best color discrimination. A yellow
macular pigment covers the fovea and may serve to maintain high visual acuity
because it filters out the blurry short wavelength light that is scattered in the ocular
media. At the very heart of the fovea, an area known as the foveola, no S-cones
are present at all, which causes small blue objects to be invisible to the S-cone
system (Fig. 2.1c). This phenomenon is known as small-field tritanopia, a color
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2.2 Stages of Color Information Processing

(a) (b) (c)

Figure 2.1 Cone mosaic at the central fovea, showing (a) L-cones, (b) M-cones, and (c) S-cones. The

area shown is approximately 0.3 × 0.3 mm and is rod-free. The labeling in red, green, and blue refers

to the spectral region where the cones have their maximum sensitivity. Note the different number of

cones and the absence of S-cones in the center. Source: Figures adapted from Reference 1.

vision deficiency for objects subtending visual angles smaller than 0.35◦. The
three cone types (L, M, S) occur in different numbers, in L:M:S ratios of about
60:30:5 although these numbers may vary considerably from person to person.

The three cone types have peak sensitivities at different wavelengths and are
sensitive to the long-wave (L), middle-wave (M), and short-wave (S) portions
of the wavelength spectrum. In Figure 2.2, the spectral sensitivities of the cone
types are shown. Note that the sensitivities of the L- and M-cones are largely
overlapping whereas the S-cones are spectrally more isolated. Owing to the
spectral overlap, at each wavelength there exists a unique combination of L,
M, S sensitivities. However, wavelength information is lost in the process that
determines the cone responses. For each cone type, the response is obtained by
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Figure 2.2 (a) Relative spectral sensitivity of the three cone types. (b) Spectral luminous efficiency

functions V(λ) for photopic vision and V ′(λ) for scotopic vision, with sensitivities normalized to their

maximum. Source: Data for 2◦ observer, after Reference 2.
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2 Color Vision

summing up the wavelength-by-wavelength product of the light spectrum with
the spectral sensitivity over the spectral window, resulting in three numbers (one
for each cone type). The perceived color of an object is determined by the relative
magnitude of these three numbers that the object ‘‘produces,’’ but not exclusively
so. The visual system also makes spatial comparisons, which make the perceived
color of an object dependent on neighboring colors as well.

A quantity often used in vision is the spectral luminous efficiency function,
which is denoted by the symbol V(λ) for photopic vision and V ′(λ) for scotopic
vision. It represents the spectral sensitivity of the eye. For photopic vision, V(λ)

is the spectral envelope obtained from a weighted average of the three cone
sensitivities, and for scotopic vision it is the spectral sensitivity of the rods. Note
that the latter is shifted toward the blue end of the spectrum.

2.2.3 Ganglion Cells and Receptive Fields

If each photoreceptor were to be connected to individual brain cells, one can
imagine that a neural cable of considerable thickness would be required. It makes
sense therefore that, before signals are sent to the brain, the output signals of the
cones are spatially pooled and combined. Also, from an information theory point
of view it makes sense to compress the amount of visual information, given the
limited bandwidth of the visual pathway [3]. The rods and cones are connected to
subsequent layers of horizontal cells, bipolar cells, amacrine cells, and ganglion
cells. Interestingly, the incoming light has to first pass these layers in reverse
order to reach the layer containing the photoreceptors. The incoming light and
the nerve signals thus travel in opposite directions. All neurons have inputs and
outputs forming a complex structure in the retinal layer. The output of a neuron is
influenced by inputs that can be excitatory (stimulating the output) or inhibitory
(suppressing the output). The horizontal and amacrine cells make it possible to
combine information from photoreceptors at different spatial locations. A single
ganglion cell may thus receive inputs from many photoreceptors. The area on
the retina that contributes to the stimulation of a ganglion cell is known as the
receptive field. Likewise, neural cells along the visual pathway also have their
receptive fields, but these are not necessarily equal to the receptive fields of
ganglion cells. The axons of the ganglion cells together form the optic nerve,
the connection between the eyes and the brain. When excited, the ganglion cells
will fire sharply peaked output signals (pulses or spikes) to the optic nerve.
To summarize, the light that is initially absorbed in the cone photoreceptors is
transformed to electrical pulse signals that encode the visual information.

2.2.4 LGN and Visual Cortex

The next processing stage upstream the visual pathway to consider is the lateral
geniculate nucleus, or LGN in short. It is the place where two streams of
visual information meet: one stream coming from the left part of the visual field
(projected on the right part of each retina) and another coming from the right part
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2.2 Stages of Color Information Processing

of the visual field (projected on the left part of each retina). The LGN can be
thought of as a relay station, where signals from the retina pass and are sent to the
primary visual cortex (V1) in the back of the head. The left and right ‘‘halves’’
of V1 thus receive information from the right and left halves of the visual field,
respectively. Properties of cells within the LGN are very much like those of the
retinal ganglion cells, including their receptive field organization. Important for
the understanding of the (color) vision process is the notion of opponent cells,
usually in a center-surround configuration. The so-called on-cells are excited
by light stimulation in the central part of the receptive field, whereas they are
inhibited by stimulation in the outer part of it (surrounding the center). Off-cells
have the opposite spatial characteristics, that is, inhibition by light stimulation
in the center of the receptive field and excitation in the surround. Cells with
a center-surround configuration play an important role in vision, since they are
capable of detecting spatial transitions in light intensity (such as edges) and color.
Two types of chromatic cone opponent cells have been reported, sometimes called
red–green and blue–yellow cells [4, 5]. Such cells compare signals from different
cone types. In the case of the red–green on-cell, abbreviated to red-on, the cell
is excited by stimulation of the L-cones and inhibited by the stimulation of the
M-cones.

From LGN, nerve signals are sent to the visual cortex, which can be thought of
as divided in a number of functionally distinct areas (V1–V5). The idea is that
cells within such an area are predominantly responsible for analyzing different
properties of the retinal image, such as shape, motion, orientation, and color [6].
Area V4 is considered an area that is specialized in color processing, although
its role as ‘‘color center’’ is under debate. A recent review of the research of the
past 25 years on cortical processing of color signals has put more emphasis on the
role of area V1 [7]. Since the different areas in visual cortex are interconnected
and feature both forward and backward loops, it is indeed hard to imagine that
a single brain area would take care of all the color processing. We have also
learned that color cannot be considered as a completely isolated visual property,
since it is always in interaction with shape, texture, contrast, and so on, which
thus would require information exchange between specialized brain areas. It is
clear, however, that the visual information in one area depends on the presence
of information in a preceding area. Opponent cells were found in LGN and also
in V1. Another type of opponent cells, double opponent cells, was found in
the primary visual cortex. These cells are capable of both spatial and chromatic
opponency and are optimally excited when the color in the center of the receptive
field is the opposite color from the one in the surround. And to make it even
more complex, these cells also show temporal opponent characteristics [8]. Using
noninvasive imaging techniques such as PET (positron emission tomography)
and fMRI (functional magnetic resonance imaging), many studies have reported
on the mapping of brain activity, and many will follow. This will hopefully
lead to a more complete understanding of the processes underlying color vision
and perception, and how it integrates into higher order processes involving, for
instance, emotion and behavior.
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2 Color Vision

2.3 Chromatic Properties of the Visual System

2.3.1 Chromatic Adaptation

The dynamic range of the human visual system is very impressive, covering a
light intensity range of about 1012. This is achieved by adaptation to the ambient
light level, a process in which the sensitivity to light is adjusted. Two variants of
adaptation we are commonly aware of are light adaptation and dark adaptation,
occurring whenever we change from a low light intensity to a high light intensity
situation or vice versa. Light adaptation is a relatively fast process, in the order of
seconds, whereas dark adaptation takes minutes to complete. Perhaps somewhat
less noticeable is the process of chromatic adaptation, in which the sensitivities
of the primary color channels (L, M, S) are individually adjusted. This has the
effect of white-balancing because any color dominance is counterbalanced by
the sensitivity readjustments. Chromatic adaptation is a continuous and spatially
localized process, which may bring specific appearance effects when making eye
movements after a period of fixation. Studies into the temporal characteristics
of chromatic adaptation have shown that the underlying visual processes are
characterized by both a fast and a slow component and are located at the receptor
level as well as the cortical level [9, 10]. Figure 2.3 demonstrates the effect of
chromatic adaption.

(a) (b)

Figure 2.3 Demonstration of chromatic adaptation (inspired by the work of John Sadowski). Stare at

the black dot in the image (a) for about 20 s, without blinking or moving your eyes. Then quickly look at

the black spot in the center of the image (b). The image will appear as having natural colors for a brief

period because of the aftereffect of chromatic adaptation.

2.3.2 Human Color Constancy

The spectral distribution of daylight changes during the day. Despite these
changes, the color appearance of objects is remarkably stable, a phenomenon
known as color constancy. Grass remains green throughout the day, whereas
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2.3 Chromatic Properties of the Visual System

from a physical point of view the more reddish light toward the end of the day
would predict the grass to appear brownish. Color constancy is considered a
basic property of the visual system and has been intensively studied in the past
few decades. There exist different approaches to solving the problem of color
constancy, which focus on the question of how to disentangle the product of
illumination and surface reflection that enters our eye. Reviews of human color
constancy studies are presented by Smithson [11] and Foster [12]. An overview
of the computational approach to color constancy by illuminant estimation is
presented in Chapter 8. Contrary to what the term constancy may suggest,
there is abundant psychophysical evidence, coming from different experimental
paradigms, showing that human color constancy is not perfect. The degree of
color constancy can be quantified using a constancy index ranging between 0
(no constancy at all) and 1 (perfect constancy). Foster [12] tabulated values
for the constancy index for some 30 different experimental studies, showing
widely varying values. Imperfect constancy implies that a change in the color
of the illuminant is not fully discounted for by the visual system, which results
in noticeable shifts in object colors. Figure 2.4 presents a demonstration of
color constancy. Figure 2.4b shows the original scene, and Figure 2.4a shows a
simulated change in the color of the global illuminant acting on the whole image.
Although we easily perceive the global shift toward a purplish color, the fruit
colors stay reasonably constant. If, on the other hand, the simulated change in the
illuminant is locally restricted to the apple in the center of the fruit basket, color
constancy is lost and the apple appears purple. This demonstrates the different
effects of local versus global changes in the illumination.

2.3.2.1 Human Color Constancy by Ratios How can we explain the different
appearances of the apple in the images (a) and (c) in Figure 2.4 while the
physical light distributions reflected from the apples are identical? The key to the
explanation is the fact that for the global change in illumination, ratios across
object boundaries within the individual L-, M-, S-cone signals stay the same,
whereas for the local illuminant change these ratios change. The latter results in

(a) (b) (c)

Figure 2.4 (a) Global change in illumination, (b) original image (standard image from ISO

12640:1997), and (c) local change in illumination. Note the very different appearance of the

color of the apple for the global and the local illuminant change, although physically they are

identical.
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2 Color Vision

the perception of a completely different color, as if the apple had been replaced by
a different object. Ratios across borders or edges also play an important role in the
retinex theory [13, 14]. According to the theory, the visual system independently
processes three images, each image belonging to one cone type (L, M, or S).
Within each cone image, lightness values (so-called designators) are calculated
from spatial comparisons of the reflectance at a specific point to the maximum
reflectance in the image. The combination of the three lightness values occupies a
point in a three-dimensional space and determines the color. Retinex theory was
shown to correlate well with visual perception and received a lot of attention from
vision researchers (both in a positive and a negative way). Hurlbert [15] showed
that several other lightness algorithms, all having the retinex algorithm as their
precursor, are formally connected by one and the same mathematical formula. We
refer to Chapter 5 where the role of color ratios for computational color constancy
is discussed.

2.3.2.2 Human Color Constancy by Chromatic Adaptation An alternative
explanation of color constancy has a physiological basis. A well-known and often
used chromatic adaptation model is the coefficient rule of von Kries [16]. It
states that the sensitivities of the three cone types are regulated by cone-specific
gain factors that are inversely proportional to the level of cone stimulation. To
illustrate, let us assume that we are in a room in which we adapt to neutral (white)
illumination that stimulates the L-, M-, and S-cones in equal amounts. Within
the room are several colored objects and also a white object. Now we change
the room illumination from neutral toward blue such that the S-cone system
is stimulated twice as much, whereas the L- and M-cone stimulation remains
unaffected. According to the von Kries coefficient law, the sensitivity of the
S-cone system will be reduced by a factor of 2 to effectively rebalance the L-, M-,
S-cone stimulation. For the white object, which takes on the illuminant color, this
will result in unchanged cone stimulations, implying that von Kries adaptation
permits perfect color constancy for the white object. For the colored objects in the
room, however, perfect color constancy is not guaranteed because the interaction
between the illuminant spectrum and the surface reflectance may result in S-cone
ratios being different from 2.

Helson [17] proposed an adaptation model in which the visual system is adapted
to a medium gray level. Objects with reflectances above that of the adaptation
level take on the color of the illuminant, whereas objects with reflectances below
that of the adaptation level take on the complementary color. This effect is known
as the Helson–Judd Effect.

2.3.3 Spatial Interactions

The perceived color of an object is determined not only by the light coming from
that object but also by the light coming from neighboring objects in the scene.
Colors seen in complete isolation, such as a patch of color on a black background
presented on a color display, can appear as if they are self-luminous and emit light.
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2.3 Chromatic Properties of the Visual System

When put in context of other colors, however, the appearance is different and
dependent on the exact definition of the surrounding colors. Two important spatial
interactions are mentioned here, which influence color perception, contrast, and
assimilation. In contrast effects, the difference between a color and its surround
is enhanced so that the two will look more different. The effect can be interpreted
as an induction effect, whereby the color complementary to that of the surround
is induced into the center. Different surrounds may give dramatically different
effects, as demonstrated in Figure 2.5.

(a) (b) (c)

Figure 2.5 Simultaneous color contrast: the center squares are physically identical but

appear different because of a difference in surround color.

The effect of assimilation, on the other hand, is the opposite of the contrast
effect because with assimilation the difference between a color region and the
adjacent color appears smaller. This leads to the perception that the color seems
to be shifted toward that of the surrounding color. Figure 2.6 demonstrates how

(a) (b)

Figure 2.6 Demonstration of chromatic assimilation (after Reference 18). (a) Shows four

lines of text, the first two and the last two having the same color. When placed on differently

colored backgrounds and ‘‘behind’’ thin colored stripes, the color of the stripes seems to

spread into the color of the words. Physically, the colors of the text in (a) and the uncovered

parts of the text in (b) are identical.
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2 Color Vision

the perceived color of text may change completely. It appears that the color of the
stripes covering the text spreads out into the text. In other words, the surrounding
color induces its color into the target color.

The demonstrations in Figures 2.5 and 2.6 are dependent on viewing distance,
or more precisely, on the visual angles that the details subtend on the retina. We
already mentioned that the number of S-cones is much less than that of the L- and
M-cones; therefore they sample the retinal image at a lower spatial resolution.
This has consequences also for the spatial resolution of the blue–yellow channel.
Figure 2.7 shows how the contrast sensitivity of the achromatic channel and the
two chromatic channels of the visual system depends on the spatial frequency.
Fine details (higher spatial frequencies) are best detected by the luminance
channel, whereas the two chromatic channels are better equipped to detect more
coarse details (lower spatial frequencies). This property of the visual system is
used successfully in image compression techniques. Since the chromatic channels
cannot detect (at a certain viewing distance) the high spatial frequency contents
of a color image, this information can be removed or compressed without visually
degrading the image.
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Figure 2.7 Contrast sensitivity functions for luminance and chromatic contrast, as a function

of spatial frequency. Source: Replotted from Figures 7 and 9 in Reference 19. Solid lines

represent fits to the data. Note the difference between the low pass characteristic of the

chromatic channels and the bandpass characteristic of the achromatic channel.
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2.3 Chromatic Properties of the Visual System

Spatial effects can occur only when some form of spatial comparison is
performed by the visual system. We already noted the importance of center-
surround cells for vision because they allow the detection of intensity and
color edges. Mathematically, these edge detectors are obtained by taking spatial
derivatives, as presented in Chapter 6.

2.3.4 Chromatic Discrimination and Color Deficiency

A number of studies have focused on the question of how many colors can be
perceived by humans. There is no single answer to this question, since it depends on
the criteria used for counting discriminable colors. As a result, estimates vary from
order 103 to 106. If we go out to buy a can of red paint to match the color of a tomato
we saw earlier that day, chances are very high that the two colors will not match.
Humans are far better in seeing differences between colors (relative color) than
in memorizing absolute colors. Early measurements of chromatic discrimination
thresholds [20] have laid the basis for the developments of a perceptually uniform
color space (CIELAB), and the derivation of mathematical formulae to quantify
color differences [21]. The latter are abundantly used in industry.

There exist various tests to measure someone’s chromatic discrimination ability.
Even for normal trichromats, people with ‘‘normal’’ color vision, this ability may
change from person to person. There are different ways in which color vision may
be impaired; usually the distinction is made between acquired and congenital
color vision deficiencies. Aging causes the ocular media to become more yellow,
which reduces color discrimination along the yellow–blue axis of color space
[22]. Some diseases, alcohol consumption [23], medication, and drugs [24] can
negatively affect color vision abilities. These are examples of acquired color vision
deficiencies. With congenital deficiencies, abnormalities in the photopigments are
inherited and are already present at birth. This affects about 8% of men and 0.45%
of women. The spectral sensitivities of the photopigments can differ from normal
trichromats in many different ways. The terms protan, deutan, and tritan are
used to indicate that the L-, M-, and S-cone, respectively, are abnormal. We can
indicate the severeness of this abnormality by a number ranging between 0 (cone
type missing) and 1 (normal). If the abnormality is somewhere in between 0 and
1, we speak of anomalous trichromats. If one cone pigment is missing, only two
functional cone types are left, resulting in dichromatic color vision. Depending
on the cone type that is lacking (L, M, or S), dichromats are characterized as
protanopes, deuteranopes, or tritanopes. Color discrimination for dichromats is
strongly reduced as illustrated in Figure 2.8.

It is mistaken belief that color-deficient people are not able to see color, as the
term color blind would suggest. What is meant is that they are less well able to
discriminate colors; some colors are confused, which can be graphically shown in
color space (Fig. 2.9). Colors located on the so-called confusion lines cannot be
distinguished, and hence appear equal. For the different types of deficiency, the
confusion lines originate in different copunctal points.
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2 Color Vision

(a) (b)

Figure 2.8 (a) Original image. (b) Simulated appearance for a deuteranope (missing the M-cone

photopigment). Simulated image obtained with the TNO color deficiency simulator.
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Figure 2.9 CIE 1931 x, y chromaticity space showing confusion lines for a protan, deutan, and tritan.

Colors located on such confusion lines are not distinguished by color deficients.

2.4 Summary

The different stages of color information processing along the human visual
pathway have been highlighted. Color vision begins with the absorption of light in
the three cone types at the retinal level. Cone responses are spatially compared and
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2.4 Summary

transformed to three opponent color signals (one achromatic and two chromatic),
traveling along the optic nerve from LGN to the visual cortex, where the perception
of color eventually takes place. We discuss important chromatic properties of the
visual system, such as chromatic adaptation and color constancy, which provide
demonstrations of spatial interactions and finally take a look at color deficiency.

25

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3
3 Color Image Formation

The image formation process described in this chapter involves three processes
(illumination, material reflection, and detection/observation) interacting to gen-
erate the final color image. The process starts with light, which illuminates the
visual scene. Light is described as electromagnetic radiation of a certain intensity,
consisting of particles (photons) containing energy of certain wavelengths, each
photon traveling in a certain direction. When many of the photons travel in the
same direction, the light is directed and forms a beam of light. When all photons
travel in a random direction, the light is diffuse. Light is typically emitted by
light sources. A light source can be characterized by the way the light bundle
is directed and by the emitted spectra of photons over the wavelengths. When
more photons of short wavelength are emitted relative to the long wavelengths,
the color of the light source is bluish. When more photons of long wavelengths
are emitted, the color is reddish. For candle light and halogen illumination, the
emitted spectra follow that of a so-called black body radiator [25], for which the
smooth emitted spectra can be uniquely characterized by a single number, being
the temperature of the radiator. As many natural light sources emit spectra that
are similar in color to such a black body radiator, the color of a light source is
defined by the ‘‘correlated color temperature,’’ that is, the temperature of a black
body radiator at which a similar color is perceived. However, keep in mind that
there are many nonnatural light sources (such as fluorescent light) that might have
a color quite similar to black body radiators, but with a spectrum very different
from that of the smooth blackbody radiator.

The second process in image formation involves materials. Materials in the
scene interact with the incoming light, causing its reflection (Fig. 3.1). Materials
absorb photons, reflecting only part of the light hitting the material. In case of
‘‘white’’ materials, most of the photons are reflected. For ‘‘black’’ materials, most
of the photons are absorbed. Hence, in a certain way, materials modulate the light

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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3 Color Image Formation

intensity. Furthermore, the amount of light particles absorbed by a material may
depend on the wavelength of the photons. Depending on the material properties,
photons of certain wavelengths may be absorbed, whereas others are reflected. In
that case, the light is spectrally modulated by such a material, causing it to appear,
for example, reddish when all middle and short wavelengths are absorbed, and
others reflected. The Kubelka–Munk theory presented in Section 3.3 models such
effects in detail.

(a) (c)(b)

Figure 3.1 Example of white light interacting with material. White light contains energy over all

wavelengths of the visual spectrum. (a) When interacting with a perfect white surface all light is

reflected. (b) In the case of a perfect black object the light is absorbed. (c) In case of a blue material

only the spectrum representing blue light is reflected and the other wavelengths are absorbed by the

material.

Besides the absorption inside the material, there is an effect when light hits
the material. When light hits the material, light changes medium by going from
air through the material boundary. As such, part of the light is reflected at the
‘‘interface’’ between air and the material, which causes Fresnel reflection or, the
term we use in this book, interface reflection. Interface reflection is responsible for
specularities (also called highlights) on objects. This aspect is taken into account
in the dichromatic reflection model in Section 3.2.

In the third process in image formation, light is recorded or observed by a
camera or the eye. Here, the photons are registered, by integrating the energy over
a certain bandwidth, a certain spatial area, and for a certain period of time. For the
eye (Section 2.2.1), the integration is performed over three spectral broadbands,
covering the short-, middle-, and long-range wavelengths of the visual spectrum.
Integration time is around 50 ms, and the visual acuity depends on the position
of the retina at which the light falls. Acuity is highest for the central (fovea)
area of the retina, and falls off toward the periphery. Color cameras more or less
mimic the temporal and spectral characteristics of the eye, being composed
to record three color bands in about 50 ms, and often have a uniform spatial
resolution in the order of megapixels.

The modeling of the interactions between light, materials, and the observation
process together is the main goal of reflection models. Such models aim at a
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3 Color Image Formation

simplification of the physics involved in order to understand certain aspects of
the process. Different models make different simplifications, thereby being more
suitable under different conditions, or more suitable for different mathematical
frameworks, than alternative models. In this chapter, we discuss the most relevant
models used in computer vision.

Besides reflection modeling, one also needs to quantize the resulting color
information. As computers deal with numbers, the registration of the spectral
information at each pixel of the camera should be condensed into numbers. Any
arbitrary numbering scheme could do, as long as each number uniquely defines
a color. For example, a coding scheme could number the colors in the same
order as they appear in a rainbow, starting with zero being deep red and, say,
1 million being deep violet. For historical reasons, commercial cameras yield
their results in an RGB scheme. Section 3.5 in this chapter deals with common
color spaces, which reorder the RGB information into alternative schemes. All
these schemes essentially describe the same color information. However, similar
to the color formation models, a certain scheme might be more advantageous
to highlight certain properties in color information than another scheme. For
example, the well-known hue-saturation-value model decomposes the RGB values
into an orthogonal color scheme, where the (achromatic) intensity information is
independent of the chromatic information. As seen in this chapter, there are many
color coding schemes, each with its own advantages and disadvantages when used
for computer vision.

3.1 Lambertian Reflection Model

Many computer vision applications are based on the assumption of Lambertian
reflectance, which means that the intensity of light reflected by the surface
is independent of the viewing angle. The surface luminance is said to be
isotropic. Materials that have this property are called matte materials. Examples
of Lambertian reflectances are chalk, paper, and unfinished wood.

Consider that the illumination of the scene is given by, e(λ, x), where λ is
the wavelength and x is the spatial position in the image. Often we assume the
spectral distribution of the light source to be spatially uniform across the scene.
In that case, we write e(λ). The reflected energy (i.e., radiance) from the surface
E is given by

E (λ, x) = mb (x) s (λ, x) e (λ, x) , (3.1)

where s is the surface albedo that describes the spectral reflectance properties

of the material. The geometric dependence of the reflectance is described by
the term mb and depends on the light source direction and surface orientation
according to mb = cos(α), where α is the angle between the surface normal and
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3.2 Dichromatic Reflection Model

the illumination direction. x denotes the spatial coordinates of the image, and we
apply bold face to indicate vectors.

The measured observation values, fRGB = (R, G, B), of the camera with spectral
sensitivities ρc (λ), c ∈ {R, G, B}, are modeled by integrating over the visible
spectrum ω,

f c (x) =
∫
ω

E (λ, x) ρc (λ) dλ (3.2)

= mb (x)

∫
ω

s (λ, x) e (λ) ρc (λ) dλ. (3.3)

This can also be written in vectors as

f (x) = mb (x) cb (x) , (3.4)

where the body reflectance

cb (x) =
∫
ω

s (λ, x) e (λ)ρc (λ) dλ. (3.5)

The Lambertian model predicts that the pixels on a single colored object lie on a
line passing through the origin of the RGB cube. Note that for many materials the
Lambertian assumption does not hold in the strict sense. For example, materials
might be glossy, causing specularities at some spots on the material. Also for
these materials, the Lambertian assumption can be a good approximation since
often the specularities only occupy a small part of the objects. However, there
are better approximations of material properties in these cases, as discussed in the
following text.

3.2 Dichromatic Reflection Model

The Lambertian model does not include reflections such as specularities (high-
lights). The dichromatic reflection model (DRM) includes the interface reflection
or Fresnel reflection, which allows the anisotropic reflections of specularities.

The DRM is proposed by Shafer [26] and is, besides Lambert’s law, one of
the most popular reflection models in computer vision. The model focuses on the
color aspects of light reflection and has only limited usage for geometry recovery
of scenes. The model assumes a single light source in the scene. It separates
reflectance into surface body reflectance and interface reflectance. The model is
valid for the class of inhomogeneous materials, which covers a wide range of
materials such as wood, paints, papers, and plastics (but excludes homogeneous
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3 Color Image Formation

materials such as metals). The DRM is the summation of the body reflectance
(superscript b) and the interface reflectance (superscript i):

f c (x) = mb (x)

∫
ω

s (λ, x) e (λ)ρc (λ) dλ + mi (x)

∫
ω

i (λ) e (λ)ρc (λ) dλ. (3.6)

Note that for mi(x) = 0, this equation is equal to Equation 3.3. We will assume
neutral interface reflection (NIR), meaning that the Fresnel reflectance i is
independent of λ. Accordingly, we will omit i in further equations. The geometric
dependence of the reflectance is described by the terms mb and mi, which depend
on the viewing angle, light source direction, and surface orientation.

In many cases, we can assume the illumination in a scene to be white, and
hence e(λ) = i is constant. This can be obtained by, for example, white balancing
or estimation of the light source as discussed in Part III of this book. Removing
the dependence on e(λ) yields

f c (x) = mb (x)

∫
ω

s (λ, x)ρc (λ) dλ + mi (x)

∫
ω

ρc (λ) dλ, (3.7)

where the constant factor i is incorporated in the geometrical terms mb and
mi. When we further assume that the area under the sensitivity functions ρ is
approximately the same, called the integral white condition, that is,

∫
λ
ρR(λ)dλ =∫

λ
ρG(λ)dλ = ∫

λ
ρB(λ)dλ = 1, the equation simplifies to

f c (x) = mb (x)

∫
ω

s (λ, x)ρc (λ) dλ + mi (x) . (3.8)

An insightful way to interpret the DRM is by representing it in vector notation.
Then we can write Equation 3.6 as

f (x) = mb (x) cb (x) + mi (x) ci (x) , (3.9)

and Equation 3.8 as

f (x) = mb (x) cb (x) + mi (x) . (3.10)

The reflection of the light consists of two parts: (i) the body reflection part
mb (x) cb, which describes the light that is reflected after interaction with the
surface albedo, and (ii) the interface reflection mi(x)ci, which describes the part
of the light that is immediately reflected at the surface, causing specularities. Both
parts consist of a geometrical part dependent on the location in the scene, and
a spectral part dependent on the spectral wavelength. The dichromatic reflection
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3.2 Dichromatic Reflection Model
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Figure 3.2 Interaction of light with material according to the dichromatic reflection model.

(a) The reflected light consists of two parts, the body reflection and the interface reflec-

tion. (b) The dichromatic reflection model predicts that the pixel values of a single

colored object lie on a parallelogram formed by the vectors of the body and the interface

reflectance.

model projects pixel values of a single colored object f(x) onto a parallelogram
(Fig. 3.2). The position on the parallelogram is determined by the amount of body
reflectance and the amount of interface reflectance.

When the assumptions made by the original DRM are not met, more complex
reflectance models are required. One such case is the presence of ambient light,
that is, light coming from all directions. Ambient light is present in outdoor
scenes where next to the dominant illuminant, that is, the sun, there is diffuse
light coming from the sky. Similarly, it is present in indoor situations where
diffuse light is caused by reflection from walls and ceilings. Shafer [26] models
the diffuse light, a, by a third term

f (x) = mb (x) cb (x) + mi (x) ci (x) + a. (3.11)

Later work improved the modeling [27] and showed that the ambient term results
in an object-color-dependent offset, which could be crucial in handling the case
of colored shadows.

The original application to which the DRM was applied was the separation
of shading from specularities [26]. The specularities, being dependent on scene
incidental events such as viewpoint and surface normal, could be removed to
simplify color image understanding. The removal of specularities allowed for
improved segmentation algorithms [29, 28]. Throughout this book, we see several
applications of the DRM, such as color constancy, photometric invariant feature
computation, and color image segmentation.
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3 Color Image Formation

3.3 Kubelka–Munk Model

An older model from physics is the well-known Kubelka–Munk theory of light
transfer. The model essentially captures the same aspects of Shafer’s DRM model.
However, it provides a better background with established experimental work, as
well as better understanding of the physical principles involved in light reflection
by materials. Hence, we shortly introduce the theory here. For a more involved
explanation, we refer the reader to the excellent work by Judd and Wyszecki [30].

Transfer of light through a material is characterized by three fundamental
processes: absorption, scattering, and emission. Absorption is the process by
which radiant energy is transformed into heat. Scattering is the process by which
the radiant energy is diffused toward different directions. Emission is the process
by which new radiant energy is created (not considered in this book). The
Kubelka–Munk theory models the effect of these processes under the assumption
of an one-dimensional light flux, thereby implying isotropic scattering within
the material [25, 30–32]. Under this assumption, the material layer (i.e., the
object surface) is characterized by a wavelength-dependent scatter coefficient and
absorption coefficient. The class of materials for which the theory is useful ranges
from dyed paper and textiles, opaque plastics, paint films, liquids, up to enamel
and dental silicate cements. The model may be applied to both reflecting and
transparent materials.

n1

s

n

v

e(l)

E(l
,x)

Object

i(n
,s,

v)
e(

l)

e(
l)

(1
-i(

n,s,
v)

)2 R ∞
(l

)

n2

e(l)(1-i(n,s,v))R∞

d

Figure 3.3 The various aspects

involved in the Kubelka–Munk

model.
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3.3 Kubelka–Munk Model

Consider a homogeneously colored material patch of uniform thickness d and
infinitesimal area (Fig. 3.3) characterized by its absorption coefficient Ka(λ) and
scatter coefficient Ks(λ). When illuminated by light with spectral distribution
e(λ), light scattering within the material causes diffuse body reflection, while
Fresnel interface reflection occurs at the surface boundaries. Fresnel reflection at
the back can be neglected when the thickness of the layer is such that further
increase in thickness does not affect the reflected color. In that case, we consider
the material to have infinite optical thickness.

The incident light is partly reflected at the front surface and partly enters
the material, is isotropically scattered, and a part again passes the front surface
boundary. The reflected spectrum in the viewing direction v, ignoring secondary
scattering after internal boundary reflection, is given by

E(λ) = e(λ)(1 − i(λ, n, s, v))2R∞(λ) + e(λ)i(λ, n, s, v), (3.12)

where n is the surface patch normal and s is the direction of the illumination source.
Further, i is the Fresnel interface reflection coefficient in the viewing direction
v. The body reflectance R∞(λ) = a(λ) − b(λ) depends on the absorption and
scattering coefficients Ka(λ) and Ks(λ) by

a(λ) = 1 + Ka(λ)

Ks(λ)
, (3.13)

b(λ) =
√

a(λ)2 − 1. (3.14)

Note that the body reflectance R∞(λ) is equivalent to the surface reflectance s(λ)

discussed earlier.
Assuming Neutral Interface Reflectance (NIR) (Section 3.2), the reflection

model of Equation 3.12 simplifies as follows:

E(λ) = e(λ)(1 − i(n, s, v))2R∞(λ) + e(λ)i(n, s, v). (3.15)

Using this model, perfectly diffuse surfaces are modeled by substituting i(·) = 0,
while perfect mirroring of the light source is modeled by substituting i(·) = 1.
In reality, i(·) will assume a value somewhere in between 0 and 1, which results
in the spectral color E(λ), which is an additive mixture of the color of the light
source and the perfectly diffuse body reflectance color, similar as in the DRM
model.

Because the 3D coordinates are projected onto a 2D image plane, the vectors
n, s, and v depend on the position in the image. The energy of the incoming
spectrum at spatial location x on the image plane is then related to

E(λ, x) = e(λ, x)(1 − i(x))2R∞(λ, x) + e(λ, x)i(x), (3.16)
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3 Color Image Formation

where the spectral distribution at each point x is generated off a specific material
patch. When the following substitutions are made

cb(λ, x) = e(λ, x)R∞(λ, x), (3.17)

ci(λ, x) = e(λ, x), (3.18)

mb(x) = (1 − i(x))2, (3.19)

mi(x) = i(x), (3.20)

Equation 3.16 reduces to the dichromatic reflection model as proposed by Shafer
[26]:

E(λ, x) = mb(x)cb(λ, x) + mi(x)ci(λ, x), (3.21)

and hence

f c (x) =
∫
ω

E (λ, x) ρc (λ) dλ. (3.22)

However, do note that the coefficients mb and mi are dependent on each other,
as can be derived from the above equation. Further simplification is obtained by
assuming only matte, or dull surfaces, for which specular reflection is negligible,
that is, i(x) ≈ 0, and Equation 3.16 reduces to the Lambertian model for diffuse
body reflection:

E(λ, x) = e(λ, x)R∞(λ, x). (3.23)

The Kubelka–Munk theory also generalizes the case of transmission of light.
Assuming the material layer is of limited optical thickness, light will leave the
material at the side opposite of the one it entered. In that case, the absorption and
scattering within the material cause an exponential decay of the light intensity,
resulting in the well-known Beer–Lambert equation

E(λ, x) = e(λ, x) exp {−d(x)c(x)α(λ, x))} , (3.24)

where d is the local thickness of the layer, c is the concentration of the colorant
particles, and α indicates the absorption and scattering coefficient for the colorant
particles. Again, e is the emitted spectrum of the illuminant. The law plays an
important role in, for example, transmissive light microscopy.

3.4 The Diagonal Model

The colors in a scene change significantly with variations in the light source color.
Part III of this book is dedicated to estimating the light source of a scene. Here,
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3.4 The Diagonal Model

we shortly discuss the diagonal model that predicts the change in the camera
responses under variations of the illuminant.

The diagonal transform or von Kries Model [33] is given by

⎛
⎝ Rc

Gc
Bc

⎞
⎠ =

⎛
⎝ a 0 0

0 b 0
0 0 c

⎞
⎠

⎛
⎝ Ru

Gu
Bu

⎞
⎠ , (3.25)

or in short

fc = Du,cfu, (3.26)

where fu is the image taken under an unknown light source, fc is the same image
transformed, so that it appears as if it was taken under the canonical illuminant,
and Du,c is a diagonal matrix that maps colors that are taken under an unknown
light source u to their corresponding colors under the canonical illuminant c. Often
a white illuminant such as D65 is used as the canonical reference illuminant.

The diagonal model can be derived by assuming dirac delta functions for the
camera sensitivities ρc(λ) = δ(λc). If we substitute this into Equation 3.3, then

f c (x) = mb (x) s
(
λc, x

)
e
(
λc

)
, (3.27)

at wavelength λc. If we consider two different illuminants e1 and e2, then the
relation between the two is given by

f c
1 (x)

f c
2 (x)

= mb (x) s
(
λc, x

)
e1

(
λc

)
mb (x) s

(
λc, x

)
e2

(
λc

) = e1
(
λc

)
e2

(
λc

) (3.28)

and hence the relation between the camera responses under the two illuminants
can be modeled by f1 = D1,2f2, where D1,2 is a diagonal matrix.

To include a diffuse light term, Finlayson et al. [34] extended the diagonal
model with an offset (o1, o2, o3), resulting in the diagonal-offset model:

⎛
⎝ Rc

Gc
Bc

⎞
⎠ =

⎛
⎝ a 0 0

0 b 0
0 0 c

⎞
⎠

⎛
⎝ Ru

Gu
Bu

⎞
⎠ +

⎛
⎝ o1

o2
o3

⎞
⎠ . (3.29)

Although this model is merely an approximation of illuminant change and might
not accurately be able to model photometric changes, it is widely accepted as a
color correction model and is at the base of many color constancy algorithms.
Several improvements of the diagonal transformation exist, such as changing the
color basis [35] and applying spectral sharpening [36].
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3 Color Image Formation

3.5 Color Spaces

After light is reflected off an object surface, it can be detected and ‘‘measured’’
by a human observer or by a color camera. The light that reaches the sensor
(either eye or camera) is the result of the interaction between the spectral power
distribution of the light source e(λ) and the spectral reflectance distribution of the
object s(λ) and is modeled using any of the equations for E in the previous section.
These distributions can be transformed into actual color signals as follows:

f c(x) =
∫

ω

E(λ, x)ρc(λ)dλ, (3.30)

where the simplest model, being the Lambertian model, obtains the tristimulus
values f c by integrating the product of the three components at each wavelength of
the visible spectrum ω. The three components are the spectral power distribution
of the light source e(λ), the reflectance distribution of the object s(λ), and the
sensitivity function ρc(λ) of the sensor. Trichromacy theory indicates that three
channels are required to generate the full range of human visible colors, so three
camera sensitivities need to be defined to specify the sensitivity of the sensor to
the incoming spectral power distribution.

3.5.1 XYZ System

From Equation 3.30 it becomes obvious that the camera sensitivities significantly
influence the final color values. As one would like cameras to ‘‘perceive’’ spectra
similarly as the human eye does, a specification of the human sensitivities is
required. However, the human visual system in operation can only be probed as a
black box, to which one can ask questions such as ‘‘are these two colors similar?’’
This is exactly how knowledge about the sensitivities of the eye is obtained [37].
Two panels are shown, one illuminated by a test light source of arbitrary color and
the other illuminated by a mixture of three primary light sources. Now, an observer
is asked to change the intensities of the primary light sources until the two test
panels appear equivalent. That is, one cannot distinguish a color edge in between
the opposing panels. The intensity values of the three primary light sources
(the tristimulus values) now indicate a ‘‘color matching pair.’’ When choosing
three monochromatic (small-band) light sources for the primaries, and taking
monochromatic test light sources of various wavelengths, the resulting intensity
values per test wavelength yield the so-called color matching functions. These
color matching functions essentially describe the human chromatic response.
Unfortunately, for some wavelengths in the above-described experiment, no
satisfactory color match could be obtained. In that case, the experimenter had to
move one of the primaries from one panel, to add to the test light source at the
other panel. This effectively resulted in negative values of the color matching
functions. To circumvent this, the Commission Internationale de l′Éclairage (CIE)

36

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.5 Color Spaces

introduced three imaginary primaries, X , Y , and Z, that result in only positive
tristimulus values of the associated color matching functions.

To match the human visual system as closely as possible, the CIE introduced
two standards: the CIE 1931 2◦ standard observer (shortened to the 2◦ standard
observer) and the CIE 1964 10◦ standard observer (shortened to 10◦ standard
observer). The first should be used to model an observer with a narrow field of
view (∼0.4 in at reading distance of 10 in), while the latter standard corresponds
to visual matching of larger sampling (∼1.9 in at reading distance of 10 in).

With three color matching functions of the standard observer, three numbers
(called the tristimulus values) can be computed equivalent to the response of a
standard observer:

X =
∫

λ

E(λ, x)x(λ)dλ, (3.31)

Y =
∫

λ

E(λ, x)y(λ)dλ, (3.32)

Z =
∫

λ

E(λ, x)z(λ)dλ, (3.33)

where x(λ), y(λ), and z(λ) are the CIE color matching functions of either the 2◦

CIE standard observer or the 10◦ CIE standard observer (Fig. 3.4). These XYZ
values can be converted to chromaticity coordinates to describe the chromaticity
of the color

x = X

X + Y + Z
, (3.34)
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Figure 3.4 (a) Color matching functions of the CIE 1931 2◦ standard observer. (b) CIE 1931 xy
chromaticity diagram. The horseshoe shape indicates the gamut of visible colors in the xy-plane. On

the outside curve (the spectral locus) the wavelengths are indicated.
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3 Color Image Formation

y = Y

X + Y + Z
, (3.35)

z = Z

X + Y + Z
. (3.36)

Since the intensity of the color is factored out and the sum of these chromaticity
values equals unity, only two chromaticity values are sufficient to describe the
color. However, in order to retain full information on the color as well as the
intensity, it is often specified in terms of two chromaticity channels x and y, as
well as the intensity channel Y , resulting in xyY color space. The visible spectrum
forms a horseshoe shape in the xy-plane as can be seen in Figure 3.4. Values
outside the horseshoe shape are not visible for humans. Conversion from xyY to
the original XYZ coordinates is specified as follows:

X = xY

y
, (3.37)

Y = Y , (3.38)

Z = (1 − x − y)Y

y
. (3.39)

Using Equations 3.31–3.36, precise numerical values can be assigned to the color
sensation of a standard observer in an objective manner. In fact, the XYZ system
introduced by CIE is the scientific basis of objective color measurement. In the
next section, color systems (RGB) are derived to express colors for use in displays
and digital cameras.

3.5.2 RGB System

The television industry has opted for RGB sensitivities according to a ‘‘stan-
dard’’ that is reasonably well able to match the human eye. However, as several
manufacturers had slightly different photo sensors, the RGB sensitivity curves
are device dependent. This is immediately obvious when recording an image
with a camera (illuminant not known, or in best case estimated, primaries
known) and reproducing the image on a monitor (known but different illumi-
nant and primaries), or printing it on paper (known but different primaries,
unknown ‘‘illuminant’’—being the paper’s reflectance function combined with
the illuminant under which the paper is observed).

Transformations between XYZ and RGB are expressed by a set of color
primaries (xyY coordinates), a reference white and a γ -correction function. The
γ -correction function is used for visualization of the linear color values on a
nonlinear display device and is usually specified as a power law expression:

fout = fγ

in, (3.40)
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3.5 Color Spaces

where γ is chosen to match the display device. All RGB color spaces are defined
for a specific device (or set of devices) and are defined with a specific value for
γ . The only notable difference is the sRGB space, which is discussed later.

The reference white is the color of a nominally white object color stimulus.
When this value is unknown, which it usually is, an assumption must be made.
Since the color primaries are partially dependent on the value of the reference
white, the transformation between XYZ and RGB is expressed as combination
of color primaries and reference white, where the latter is usually defined by
referring to one of the standard CIE illuminants (e.g., D65, D50, C, etc.). Many
different sets of color matching functions have been proposed to be able to
visualize colors on displays, resulting in different RGB standards, for example,
NTSC-RGB, PAL-RGB, and sRGB. Given these data, the conversion between
XYZ and RGB is performed as follows:

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝SrXr SgXg SbXb

SrYr SgYg SbYb

SrZr SgZg SbZb

⎞
⎠

⎛
⎝R

G
B

⎞
⎠ , (3.41)

where (X , Y , Z)r, (X , Y , Z)g, and (X , Y , Z)b are computed from the color primaries
using Equation 3.39. Further, (Sr, Sg, Sb) is computed using

⎛
⎝Sr

Sg

Sb

⎞
⎠ =

⎛
⎝Xr Xg Xb

Yr Yg Yb

Zr Zg Zb

⎞
⎠

⎛
⎝Xw

Yw
Zw

⎞
⎠ , (3.42)

where (X , Y , Z)w is the reference white, often expressed in terms of CIE standard
illuminant. Note that the RGB values must be linear and in the nominal range
[0, 1]. Transformation from XYZ to RGB is simply the inverse of Equation 3.41:

⎛
⎝R

G
B

⎞
⎠ =

⎛
⎝SrXr SgXg SbXb

SrYr SgYg SbYb

SrZr SgZg SbZb

⎞
⎠

−1 ⎛
⎝X

Y
Z

⎞
⎠ . (3.43)

Different RGB working spaces exist, each resulting in different transforma-
tion matrices. Two often used working spaces are specified here. The NTSC
is often used in digital cameras and videos, which use the C illuminant
as reference white. The color primaries are xyYr = (0.6700, 0.3300, 0.2988)T ,
xyYg = (0.2100, 0.7100, 0.5868)T , and xyYb = (0.1400, 0.0800, 0.1144)T and the
transformation between RGBNTSC and XYZ can be done as follows:

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝0.6069 0.1735 0.2003

0.2989 0.5866 0.1145
0.0000 0.0661 1.1162

⎞
⎠

⎛
⎝R

G
B

⎞
⎠ , (3.44)
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3 Color Image Formation

and the transformation from XYZ to RGBNTSC is done using

⎛
⎝R

G
B

⎞
⎠ =

⎛
⎝ 1.9100 −0.5325 −0.2882

−0.9847 1.9992 −0.0283
0.0583 −0.1184 0.8976

⎞
⎠

⎛
⎝X

Y
Z

⎞
⎠ . (3.45)

Alternatively, the sRGB is a standard working space specified for use in mon-
itors, printers, and the internet. This color space uses slightly different color
primaries, xyYr = (0.6400, 0.3300, 0.2127)T , xyYg = (0.3000, 0.6000, 0.7152)T ,
and xyYb = (0.1500, 0.0600, 0.0722)T , and uses D65 as reference white. Trans-
formation between RGBsRGB and XYZ is specified as

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝0.4125 0.3576 0.1804

0.2127 0.7152 0.0722
0.0193 0.1192 0.9503

⎞
⎠

⎛
⎝R

G
B

⎞
⎠ . (3.46)

and the transformation from XYZ to RGBsRGB is done using

⎛
⎝R

G
B

⎞
⎠ =

⎛
⎝ 3.2405 −1.5371 −0.4985

−0.9693 1.8760 −0.0416
0.0556 −0.2040 1.0572

⎞
⎠

⎛
⎝X

Y
Z

⎞
⎠ . (3.47)

Various other RGB working spaces exist but are beyond the scope of this book.

3.5.3 Opponent Color Spaces

Once the spectral sensitivities of a camera are known to match the human
observer, any numbering scheme can be assigned to colors. As long as each
possible color value is assigned to a unique number, different schemes describe
the same color information. However, a different coding scheme might highlight
certain properties of color, as seen in the forthcoming sections. It even can be
advantageous to assign similar numbers to different values. For example, by
assigning all shades of a color to a single value, one obtains invariance to intensity
changes caused by shadow and shading, as discussed in Chapter 4.

One of the properties of RGB is that the values of the three channels are highly
correlated (e.g., a high value in one of the three channels usually corresponds
to high values in the other two channels as well). Decorrelating the RGB color
space leads to an opponent color space. The opponent color theory started at about
the year 1500 when Leonardo da Vinci came to the conclusion that colors are
produced by the mixture of yellow and blue, green and red, and white and black.
Arthur Shopenhauer noted the same opposition of red–green, yellow–blue, and
white–black. This opponent color theory has been completed by Edwald Hering
concluding that the working of the eye is based on the three kinds of opposite
colors. A demonstration of opponent color theory is given by the so-called
afterimage: looking for a while at a green sample will cause a red after-image
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3.5 Color Spaces

(see Fig. 2.3 also). Focusing on the chromatic channels (i.e., red–green and
blue–yellow), they are opponent in two different ways. First, no color seems
to be a mixture of both members of any opponent pair (e.g., no color ever
seems yellowish-blue, while greenish-blue is often encountered). Secondly, each
member of an opponent pair exhibits the other, that is, by adding a balanced
portion of two opponent colors, gray will be the result. The opponent color theory
has been confirmed in 1950 when opponent color signals were detected in the
optical connection between eye and brain.

Several models have been proposed to model opponent color theory. One of
the simplest models is denoted as opponent color space in this book and can be
computed by simply rotating the RGB color system:

O1 = R − G√
2

, (3.48)

O2 = R + G − 2B√
6

, (3.49)

O3 = R + G + B√
3

. (3.50)

Note that O1 roughly corresponds to the red–green channel, O2 corresponds to
the yellow–blue channel, and O3 corresponds to the intensity channel. Besides
being intuitive, an additional advantage of this color system is that it largely
decorrelates the RGB color channels. Further, the opponent color space is device
dependent and not perceptually uniform.

3.5.4 Perceptually Uniform Color Spaces

In order to overcome these disadvantages, the CIE proposed two opponent color
systems that are designed to be perceptually uniform (i.e., the numerical distance
between two colors can be related to perceptual differences) but at the cost of
intuitiveness. These two systems are computed from XYZ and hence are device
independent. The first color system is intended to describe light source colors,
and is called CIE L∗u∗v∗:

L∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

116

(
Y

Yw

) 1
3

− 16 if
Y

Yw

> ε

903.3

(
Y

Yw

)
if

Y

Yw
≤ ε

(3.51)

u∗ = 13L∗(u′ − u′
w), (3.52)

v∗ = 13L∗(v′ − v′
w), (3.53)

u′ = 4X

X + 15Y + 3Z
, (3.54)
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3 Color Image Formation

v′ = 9Y

X + 15Y + 3Z
, (3.55)

u′
w = 4Xw

Xw + 15Yw + 3Zw
, (3.56)

v′
w = 9Yw

Xw + 15Yw + 3Zw
, (3.57)

where ε = 216
24389 = 0.008856. The color channels u∗ and v∗ become unstable and

meaningless when the intensity is low (i.e., when (X + 15Y + 3Z) is close to
zero). The second color system is intended for use with surface colors, and is
called CIE L∗a∗b∗:

L∗ = 116f (
Y

Yw
) − 16, (3.58)

a∗ = 500

(
f (

X

Xw
) − f (

Y

Yw
)

)
, (3.59)

b∗ = 200

(
f (

Y

Yw
) − f (

Z

Zw
)

)
, (3.60)

f (t) =
⎧⎨
⎩

t
1
3 if t > ε

903.3t + 16

116
if t ≤ ε

. (3.61)

These color spaces are advantageous in computer vision applications, such as
image retrieval or image quality assessment, where the aim is to align to human
vision. On the other hand, it does not make much sense to use these color spaces
in applications that have no direct link to human vision, such as stereo or motion
tracking. In those cases, it is more efficient not to perform the time-consuming
nonlinear transformations from RGB to L∗a∗b∗.

3.5.5 Intuitive Color Spaces

Besides the opponent color space, color systems discussed until now are not
expressed in intuitive terms; the different color channels do not have an intuitive
meaning. To this end, different color systems are introduced, which are based
on an artist’s reasoning. All such color systems express colors in terms of hue,
saturation, and intensity. However, many different definitions of these terms exist
and none of these definitions are standardized. Further, different definitions are
often used for different abbreviations, for example, HSV, HSI, HSL, etc. In this
book, subscripts will be used to indicate the corresponding definitions.

One of the common definitions of hue is that it is described by the dominant
wavelength of a spectral power distribution, that is, hue is described with the
words that we normally use to describe any given color: red, blue, orange, yellow,
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3.5 Color Spaces

etc. Mathematically, hue can be computed in angular degrees using the following
cartesian to polar coordinates transformation:

HRGB = arctan

( √
3(G − B)

(R − G) + (R − B)

)
. (3.62)

Alternatively, hue is defined as the angle between a reference line (e.g., horizontal
axis) and the color point:

Hrgb = arctan

(
r − 1/3

g − 1/3

)
. (3.63)

A device-independent version of hue can be computed from either CIE L∗u∗v∗ or
CIE L∗a∗b∗:

Huv = arctan

(
v∗

u∗

)
, (3.64)

Hab = arctan

(
b∗

a∗

)
. (3.65)

Note that hue is undefined for achromatic colors (i.e., R = G = B, u∗ = v∗ = 0,
or a∗ = b∗ = 0).

Saturation is usually defined as the purity of a color, which decreases when
more achromaticity is mixed into a color. Completely desaturated colors coincide
with the gray axis, while fully saturated colors coincide with pure colors.
Mathematically, saturation is defined as the distance of a color to the achromatic
axis, but different equations can be used to compute this distance; for example,

Srgb =
√

(r − 1/3)2 + (g − 1/3)2 + (b − 1/3)2, (3.66)

SRGB = 1 − min(R, G, B)

R + G + B
, (3.67)

SHSL = max(R, G, B) − min(R, G, B), (3.68)

SHSV = 1 − min(R, G, B)

max(R, G, B)
. (3.69)

Note that saturation is undefined for dark pixels (i.e., R + G + B = 0). Another
color channel, related to saturation, is chroma, which can be computed from CIE
L∗u∗v∗ or CIE L∗a∗b∗ color systems as follows:

C∗
uv =

√
(u∗)2 + (v∗)2, (3.70)

C∗
ab =

√
(a∗)2 + (b∗)2, (3.71)

and which, similarly as saturation, describes the purity of the color.
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3 Color Image Formation

B

G
R

O3

O2

O1

B

G

f

f′
R

O3

O2
hue

sat

O1

Figure 3.5 (a) The opponent axes are depicted. (b) The relation between the opponent and

hue-saturation-intensity coordinate system is shown. Projection of f on O3 is the intensity.

Let f′ be the projection of f on the O1-O2 plane; then its length is the saturation and the

angle in the plane is the hue.

Within the context of coordinate transformations, the hue-saturation-intensity
transformation is computed by performing a polar coordinate transformation on
the opponent color plane formed by O1 and O2, according to

⎛
⎝ h

s
i

⎞
⎠ =

⎛
⎝ arctan

(
O1
O2

)
√

O12 + O22

O3

⎞
⎠ =

⎛
⎜⎜⎝

arctan
(√

3(R−G)
R+G−2B

)
√

4
6

(
R2 + G2 + B2 − RG − RB − GB

)
R+G+B√

3

⎞
⎟⎟⎠

(3.72)

This transformation is depicted in Figure 3.5. Note that it is more correct to
talk about saturation strength in this transformation because the saturation has not
been normalized by the intensity as in the equations above.

3.6 Summary

In this chapter, we have introduced the color image formation process. We have
discussed several physics-based reflectance models. They provide us with tools
to analyze the various physical causes that have led to the color measurement.
More precisely, they will allow us to distinguish shadow, specular, and material
variations in the image. We will see that this information can be used in many
stages of color image understanding, such as improved feature detection, feature
description, and meaningful image segmentation.
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3.6 Summary

Additionally, we have enumerated a set of relevant color spaces. Depending
on the task at hand, one color space might be preferable over the other. The
reflectance models that were introduced in this chapter are used in Chapter 4 to
analyze the photometric properties of the color spaces. This will provide further
insight into what color space could be best used for each application.
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PART II

PHOTOMETRIC INVARIANCE
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4
4 Pixel-Based Photometric

Invariance

Computer vision systems have to deal with widely varying imaging conditions. To
obtain robust vision systems, an important property is photometric invariance or
the so-called color invariance. Color invariance is derived from color spaces that
are more or less insensitive to disturbing imaging conditions such as variations in
the light source (both intensity and color), camera viewpoint, and object position.

In the previous chapter, it has been shown that from the RGB color space, several
linear and nonlinear transformations can be applied to obtain new color spaces.
In this chapter, an overview is given of the color invariant properties of these
transformed color spaces. From the dichromatic reflection model, Equation 3.6,
it can be derived that the recorded color value at each (pixel) location is highly
dependent on the light source characteristics and the object geometry (e.g., the
absence/presence of shadows or highlights partly depends on the position of the
object with respect to the light source), see Figure 4.1. Many computer vision tasks
such as image segmentation and object recognition require stable and repeatable
image properties rather than color measurements that are sensitive to imaging
conditions. For this purpose, color invariance is needed.

In this chapter, color invariance is obtained by color transformations at a
pixel. Both linear and nonlinear color transformations are presented. In general,
nonlinear transformations tend to intensify the amount of noise. As a consequence,
a small perturbation of RGB values will cause a large jump in the transformed
values. The way to deal with noise amplification is to analyze how perturbations
in RGB values propagate through these nonlinear color transformations. The field

Portions reprinted, with permission, from ‘‘Adaptive Image Segmentation by Combining Photometric
Invariant Region and Edge Information,’’ by Th. Gevers, in IEEE Transactions on Pattern Analysis
and Machine Intelligence, Volume 24 (6), pp. 848–852 2002 © 2002 IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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4 Pixel-Based Photometric Invariance

(a) (b)

Figure 4.1 Pixel values are highly dependent on the light source characteristics and the object

geometry. Assuming Lambertian reflection and white illumination, RGB colors of a homogeneously

colored surface will generate elongated streaks in color space. (a) Original image and (b) pixels in RGB
color space.

of error analysis or error propagation provides such a principled approach and is
discussed in detail.

In summary, we first present different color transformations and their invariant
characteristics. Then, computational methods are discussed to analyze the influ-
ence of noise on these color invariants. Finally, as an application, color invariants
are used in object recognition.

4.1 Normalized Color Spaces

In Figure 4.2, it is shown that color pixel values are highly dependent on the
light source characteristics and the object geometry, where pixel values of a
homogeneously colored surface will generate elongated streaks in RGB color
space. As these streaks are mainly caused by intensity changes (object geometry
and shadows) and not by chromaticity changes, invariant values can be obtained
by normalizing RGB values by their intensity (I = R + G + B) resulting in the
rgb color system (or normalized rgb):

r = R

R + G + B
, (4.1)

g = G

R + G + B
, (4.2)
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4.1 Normalized Color Spaces

(a) (b) (c)

Figure 4.2 The rgb transformation is independent of surface orientation, illumination direction, and

illumination intensity. (a) Original image, (b) pixels in RGB color space, and (c) normalized color image

(RGB representation).

b = B

R + G + B
. (4.3)

Because intensity is factored out, this color system has the property that its
channels are robust to surface orientation, illumination direction, and illumination
intensity when we assume dichromatic reflection and white illumination according
to Equation 3.8. In fact, from Equation 3.8, Lambertian reflectance under white
illumination is given by

f c (x) = mb (x)

∫
ω

s (λ, x)ρc (λ) dλ. (4.4)

By substituting Equation 4.4 into Equations 4.1–4.3, the invariant properties of
the rgb color system can be derived:

r = mb (x) kR

mb (x) (kR + kG + kB)
= kR

kR + kG + kB
, (4.5)

g = mb (x) kG

mb (x) (kR + kG + kB)
= kG

kR + kG + kB
, (4.6)

b = mb (x) kB

mb (x) (kR + kG + kB)
= kB

kR + kG + kB
, (4.7)

where kc = ∫
ω

s (λ, x)ρc (λ) dλ and c ∈ {R, G, B}. kc is used in the remainder as a
compact representation to simplify the notation.
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4 Pixel-Based Photometric Invariance

The coefficient denoting the interaction between the white light source and
surface reflectance (represented by mb (x)) is cancelled out, resulting in the
independence for the surface orientation, illumination direction, and illumination
intensity. Hence, assuming Lambertian reflection and white illumination, the rgb
color space is only dependent on kc, which is the sensor ρc (λ) and the surface
albedo s (λ, x). In Figure 4.2a, a shampoo bottle against a uniformly colored
background is shown. The RGB pixel values are given in Figure 4.2b. Further, the
RGB representation of the rgb color image is given in Figure 4.2c. It is shown that
the normalized color image is free from shading and shadows. Note that the rgb
color system is still dependent on highlights and on the color of the light source.

4.2 Opponent Color Spaces

Consider the opponent color space as defined in Chapter 3 by Equations 3.48–3.50.
In this section, we focus on O1 and O2. Assuming dichromatic reflection and
white illumination, the opponent color channels O1 and O2 are independent of
highlights as follows from substituting Equation 3.8 in Equations 3.48 and 3.49:

O1 =
(
mb (x) kR + mi (x)

) − (
mb (x) kG + mi (x)

)
√

2
(4.8)

= mb (x) kR − mb (x) kG√
2

, (4.9)

O2 =
(
mb (x) kR + mi (x)

) + (
mb (x) kG + mi (x)

) − 2
(
mb (x) kB + mi (x)

)
√

6
(4.10)

= mb (x) kR + mb (x) kG − 2mb (x) kB√
6

. (4.11)

Note that O1O2 is still dependent on mb (x)
∫
ω

s (λ, x)ρc (λ) dλ and consequently
sensitive to object geometry, shading, and the intensity of the light source. Note
that O3 corresponds to intensity and contains no invariance at all.

4.3 The HSV Color Space

The hue defined in Chapter 3 by Equation 3.63 is invariant to surface orientation,
illumination direction, and illumination intensity under the assumption of dichro-
matic reflectance and white illumination. This can be derived by substituting
Equation 3.8 in Equation 3.62:

HRGB = arctan

( √
3mb (x)

(
kG − kB

)
mb (x)

((
kR − kG

) + (
kR − kB

))
)

(4.12)
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4.4 Composed Color Spaces

= arctan

( √
3(kG − kB)

(kR − kG) + (kR − kB)

)
, (4.13)

and is only dependent on kc, which is the surface albedo and image sensor.
The light source and the surface reflectance are cancelled out, resulting in the
independence for the surface orientation, illumination direction, and illumination
intensity. Moreover, the hue is invariant to highlights.

Because saturation SRGB corresponds to the radial distance from a pixel color
to the main diagonal in the RGB color space, SRGB is an invariant for matte,
dull surfaces illuminated by white light. This can be derived by substituting
Equation 4.4 into Equation 3.67:

SRGB = 1 − min(mb (x) kR, mb (x) kG, mb (x) kB)

mb (x) kR + mb (x) kG + mb (x) kB
(4.14)

= 1 − mb (x) min(kR, kG, kB)

mb (x) (kR + kG + kB)
(4.15)

= 1 − min(kR, kG, kB)

kR + kG + kB
. (4.16)

The dependencies on the illumination and surface reflectance are eliminated. The
result is only dependent on the image sensors and the surface albedo.

4.4 Composed Color Spaces

Until now, we considered existing color spaces that allow for a meaningful rep-
resentation of color, either physically or perceptually as described in Chapter 3.
Many computer-vision-related tasks, however, do not require such a representa-
tion, introducing the possibility of generating new color invariant representations.
This section discusses several such color invariant representations. First, a set of
color invariants will be discussed under the assumption of Lambertian reflectance
and white illumination. Then, the assumption of Lambertian reflectance is relaxed
resulting in a slightly more complex set of invariants. More information can be
found in Reference 38.

4.4.1 Body Reflectance Invariance

Considering Lambertian reflection and white illumination, Equation 4.4 reveals
that the measured color depends on the surface albedo and camera filters (i.e.,
kc = ∫

ω
s (λ, x)ρc (λ) dλ), in combination with the local intensity of the illuminant

and the roughness and shape of the object mb (x). The first component mainly
determines the chromaticity of the color, while the latter component mainly
determines the intensity of the color. In other words, a uniformly colored surface
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4 Pixel-Based Photometric Invariance

that is curved (i.e., varying surface orientation) may give rise to a broad variance
of intensity values (i.e., generating elongated streak as shown in Figs. 4.1 and 4.2).
To reduce the effects of the illuminant intensity and the shape of the surface on
these measured color values, expressions need to be derived that factor out these
dependencies.

To this end, the following basic set of irreducible color invariants is pro-
vided [38]:

f i(x)

f j(x)
= f i

f j
, (4.17)

where x can be omitted as this invariant is computed at the same surface location.
Substituting Equation 4.4 into Equation 4.17 proves the invariance of this basic
set:

f i

f j
= mb (x) ki

mb (x) kj
= ki

kj
, (4.18)

where ki = ∫
ω

s (λ, x)ρi (λ) dλ for any sensor ρi (λ). The expression is only
dependent on the surface albedo and the sensors. Dependencies on the viewpoint,
surface orientation, illumination direction, and illumination intensity are cancelled
out. From now on, we focus on color images and hence f i ∈ {f R, f G, f B}.

Any linear combination of the basic set of irreducible color invariants will
result in a new color invariant. A systematic approach to compute invariants for
f R, f G, and f B is given by

CRGB =
∑

i
ai(f

R)
p
i (f

G)
q
i (f

B)r
i∑

j
bj(f R)s

j (f
G)t

j(f
B)u

j
, (4.19)

where p+q+r = s+t+u and p,q,r,s,t,u ∈ R. Further, i, j ≥ 1, and ai, bi ∈ R.
Assuming Lambertian reflectance and white illumination, CRGB is independent
of the viewpoint, surface orientation, illumination direction, and illumination
intensity. By substituting Equation 4.4 into Equation 4.19, we obtain

CRGB =
∑

i
ai(f

R)
p
i (f

G)
q
i (f

B)r
i∑

j
bj(f R)s

j (f
G)t

j(f
B)u

j
(4.20)

=
∑

i
ai(m

b (x) kR)
p
i (m

b (x) kG)
q
i (m

b (x) kB)r
i∑

j
bj(mb (x) kR)s

j (m
b (x) kG)t

j(m
b (x) kB)u

j
(4.21)

=
∑

i
ai(m

b (x))p+q+r((kR)
p
i (kG)

q
i (kB)r

i )∑
j

bj(mb (x))s+t+u((kR)s
j (kG)t

j(kB)u
j )

. (4.22)
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4.4 Composed Color Spaces

Since p+q+r = s+t+u, Equation 4.22 can be further simplified by factoring out
the dependencies on the viewpoint, surface orientation, and illumination direction
and intensity:

CRGB =
∑

i
ai((kR)

p
i (kG)

q
i (kB)r

i )∑
j

bj((kR)s
j (kG)t

j(kB)u
j )

. (4.23)

Numerous invariants can be obtained. For ease of use, they can be classified into
orders, for example, the set of first-order color invariants involves the set where
p+q+r = s+t+u = 1:{

R

G
,

R

B
,

G

B
,
−B

R
,

R

R + G + B
,

R − G

R + G
,

R + G + B

2G + 3B
,

3(B − G)

2R + G + 3B
, . . .

}
, (4.24)

and the set of second-order color invariants involves the set, where p+q+r =
s+t+u = 2: {

RG

B2
,

R2 + B2

RB
,

2RG − 3RB

R2 + G2
,

RG + RB + GB

R2 + G2 + B2
, . . .

}
. (4.25)

Each of these expressions is a color invariant for Lambertian reflectance under
white illumination. Note that the rgb color channels, Equations 4.1–4.3, are
instantiations of the first-order color invariants.

4.4.2 Body and Surface Reflectance Invariance

Assuming dichromatic reflection with white illumination (Eq. 3.8), the observed
colors of a uniformly colored (but shiny) surface will form a dichromatic plane
spanned by the body and surface reflection components, which originates from
the main diagonal axis (Fig. 4.3). Therefore, any expression defining colors
on this dichromatic plane is a color invariant for the dichromatic reflection
model.

To this end, the following basic set of irreducible color invariants at location
x is chosen [38]:

f i(x) − f j(x)

f k(x) − f m(x)
= f i − f j

f k − f m
, (4.26)

where fk �= fm and x can be omitted again, as this invariant is computed at the
same surface location. Color invariants can be computed in a systematic way in
terms of f R, f G, and f B as follows:

LRGB =
∑

i
ai(f

R − f G)
p
i (f

R − f B)
q
i (f

G − f B)r
i∑

j
bj(f R − f G)s

j (f
R − f B)t

j(f
G − f B)u

j
, (4.27)
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4 Pixel-Based Photometric Invariance

(a) (b)

Figure 4.3 In RGB color space, the observed colors of a uniformly colored (shiny) surface will form a

dichromatic plane spanned by the body and surface reflection components. Any expression defining

colors on this dichromatic plane is a color invariant for the dichromatic reflection model. (a) Original

image and (b) pixels in RGB color space.

where p+q+r = s+t+u and p,q,r,s,t,u ∈ R. Further, i, j ≥ 1, and ai, bi ∈ R.
Assuming dichromatic reflectance and white illumination, LRGB is independent
of the viewpoint, surface orientation, illumination direction, and illumination
intensity and highlights. The subtraction of two terms in Equation 4.27 results in
the independence of specular reflection:

(f i − f j) = (mb (x) ki + mi (x)) − (mb (x) kj + mi (x)) (4.28)

= mb (x) ki − mb (x) kj (4.29)

for i �= j, i ∈ {R, G, B}, which is just the subtraction of the two body reflection
components. Then, substituting Equation 3.8 into Equation 4.27 results, for RGB,
in

LRGB =
∑

i
ai(f

R − f G)
p
i (f

R − f B)
q
i (f

G − f B)r
i∑

j
bj(f R − f G)s

j (f
R − f B)t

j(f
G − f B)u

j
(4.30)

=
∑

i
ai(m

b (x) (kR − kG))
p
i (m

b (x) (kR − kB))
q
i (m

b (x) (kG − kB))r
i∑

j
bj(mb (x) (kR − kG))s

j (m
b (x) (kR − kB))t

j(m
b (x) (kG − kB))u

j
(4.31)

=
∑

i
ai(m

b (x))p+q+r((kR − kG)
p
i (kR − kB)

q
i (kG − kB)r

i )∑
j

bj(mb (x))s+t+u((kR − kG)s
j (kR − kB)t

j(kG − kB)u
j )

. (4.32)
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4.4 Composed Color Spaces

Since p+q+r = s+t+u, Equation 4.32 can be further simplified by

LRGB =
∑

i
ai((kR − kG)

p
i (kR − kB)

q
i (kG − kB)r

i )∑
j

bj((kR − kG)s
j (kR − kB)t

j(kG − kB)u
j )

. (4.33)

Similar to CRGB, the various different color invariants can be classified by their
order. The set of first-order color invariants involves the set where p+q+r =
s+t+u = 1:{

R − G

R − B
,

R − B

G − B
,

G − B

R − G
,

R − G

(R − G) + (R − B)
,
(R − B) + 3(B − G)

(R − G) + 2(R − G)
, . . .

}
(4.34)

and the set of second-order color invariants involves the set, where p+q+r =
s+t+u = 2:{

(R − G)(R − B)

(R − B)2
,
(G − B)(R − B)

(R − G)(B − R)
,
(R − G)2 + (R − B)(G − B)

(R − B)2 + 2(G − B)2
, . . .

}
.

(4.35)

Each of these expressions is a color invariant for dichromatic reflectance under
white illumination.

As an illustration, consider an instantiation of LRGB, for instance,
(R−G)2

(R−G)2+(G−B)2+(R−B)2 , which is a different (nonangular) representation of hue.
In Figure 4.4a, a pill-shaped object is shown against a uniformly colored
background. The RGB representation of the color invariant image is given in

(a) (b)

Figure 4.4 The transformed color space (R−G)2

(R−G)2+(G−B)2+(R−B)2
is independent of varying photometric

conditions. (a) Original image and (b) color invariant space (RGB representation).
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4 Pixel-Based Photometric Invariance

Figure 4.4b. It is shown that the color invariant image is free from shading, shadow,
and highlights. This transformation is indeed independent of varying imaging
conditions as illustrated in Figure 4.4. Note that the hue HRGB color channel,
Equation 3.62, is one of the instantiations of the first-order color invariants
as a function of arctan. For example, hue can be obtained by substituting
a1 = √

3, a2 = 0, and b1 = b2 = 1. Note the instability in the center of the
highlight. This is because of the lack of saturation. Hence, it is problematic to
determine the color (hue) of a pixel value. In the next section, instabilities of color
invariants are addressed.

4.5 Noise Stability and Histogram Construction

The color transformations used to compute the color invariants, as discussed in the
previous section, bring with them several drawbacks since these transformations
are singular at some RGB values and unstable at others. For example, rgb is
undefined at the black point (R = G = B = 0) and hue H at the achromatic axis (R
= G = B). As a consequence, a small perturbation of sensor values near these RGB
values may cause a large jump in the transformed values. Traditionally, the effect
of noise blowup at unstable color invariant values is simply ignored or suppressed
by ad hoc color thresholding. For instance, in object recognition based on color
histograms, when constructing histograms, all RGB values along and near the
achromatic axis are discarded by eliminating all RGB values having a saturation
and intensity value smaller than 5% of the total range. Another approach is given
by Burns and Berns [39], analyzing the error propagation through the CIE L∗a∗b∗
color space. Shafarenko et al. [40] use an adaptive filter for noise reduction in
the CIE L∗u∗v∗ space before 3D color histogram construction. In fact, the filter
width is steered based on the covariance matrix of the noise distribution in the
CIE L∗u∗v∗ space.

In this section, a more principled method is discussed to suppress the effect of
noise during histogram construction from color invariants [41]. In fact, variable
kernel density estimation is used to construct color invariant histograms. To apply
variable kernel density estimation in a proper way, computational methods are
used for the propagation of sensor noise through color invariant transformations.
As a result, the associated uncertainty is measured for each color invariant value.
The associated uncertainty is used to derive the optimal parameterization of the
variable kernel used during histogram construction.

4.5.1 Noise Propagation

Assuming that sensor noise is normally distributed, then for an indirect measure-
ment, the true value of a variable u is related to its N arguments, denoted by uj,
as follows:

u = q(u1, u2, · · · , uN ). (4.36)
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4.5 Noise Stability and Histogram Construction

Assume that the estimate û of the variable u can be obtained by the substitution
of ûj for uj. Then, when û1, . . . , ûN are measured with corresponding standard
deviations σû1

, . . . , σûN
, we obtain [42]:

û = q(û1, . . . , ûN ). (4.37)

It is known that the approximation of a given function can be written in the form
of Taylor series. For N = 2, the Taylor series with respect to noise is given by

q(û1, û2) =q(u1, u2) +
(

∂

∂u1
E1 + ∂

∂u2
E2

)
q(u1, u2) + · · · (4.38)

+ 1

m!

(
∂

∂u1
E1 + ∂

∂u2
E2

)m

q(u1, u2) + Rm+1, (4.39)

where û1 = u1 + E1, û2 = u2 + E2(E1 and E2 are the errors of û1 and û2), and
Rm+1 is the remainder term. Further, ∂q/∂ ûj is the partial derivative of q with
respect to ûj.

As the general form of the error of an indirect measurement is

E = û − u = q(û1, û2) − q(u1, u2), (4.40)

we obtain in terms of the Taylor series the following:

E =
(

∂

∂u1
E1 + ∂

∂u2
E2

)
q(u1, u2)

+ · · · + 1

m!

(
∂

∂u1
E1 + ∂

∂u2
E2

)m

q(u1, u2) + Rm+1. (4.41)

In general, only the first linear term is used to compute the error

E = ∂q

∂u1
E1 + ∂q

∂u2
E2. (4.42)

Then, for N arguments, it follows that if the uncertainties in û1, . . . , ûN are
independent, random, and relatively small, the predicted uncertainty in q is given
by Taylor [42]:

σq =
√√√√ N∑

j=1

(
∂q

∂ ûi
σûi

)2

, (4.43)

the so-called square-root sum method.
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4 Pixel-Based Photometric Invariance

4.5.2 Examples of Noise Propagation through Transformed
Colors

As an example, assume that we want to compute the noise for the normalized
color system rgb. First, the amount of noise should be estimated for each RGB
color channel. Assuming normally distributed random quantities, the standard
way to calculate the standard deviations (noise) σR, σG, and σB is to compute
the mean and variance estimates computed from homogeneously colored surface
patches in an image. For example, the measured amount of noise for the image
shown in Figure 4.5 is σR = 4.6, σG = 3.8, and σB = 4.0 Further, the amount
of noise (or uncertainty) for rgb is obtained by substituting Equations 4.1–4.3 in
Equation 4.43:

σr =
√

R2
(
σ 2

B + σ 2
G

) + (B + G)2σ 2
R

(R + G + B)4
, (4.44)

σg =
√

G2
(
σ 2

B + σ 2
R

) + (B + R)2σ 2
G

(B + G + R)4
, (4.45)

σb =
√

B2
(
σ 2

R + σ 2
G

) + (R + G)2σ 2
B

(R + G + B)4
. (4.46)

(a) (b)

Figure 4.5 The amount of noise/uncertainty of normalized color is inversely related to the amount of

intensity. (a) Original image and (b) the amount of noise, in black, for r .

From the analytical study of Equations 4.44–4.46, it can be derived that normalized
color becomes unstable around the black point R = G = B = 0. If the intensity
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4.5 Noise Stability and Histogram Construction

I = R+G+B is low, the denominator is relatively small and hence the amount of
noise is relatively high. In other words, if the intensity increases, the denominator
increases and therefore the amount of noise decreases. In conclusion, the amount
of noise/uncertainty of normalized color is inversely related to the amount of
intensity (Fig. 4.5).

The noise/uncertainties of O1 and O2 are given by

σO1
=

√
σ 2

G + σ 2
R√

2
, (4.47)

σO2
=

√
4σ 2

B + σ 2
G + σ 2

R√
3

, (4.48)

which are the same (stable) at all RGB values. Hence, opponent color does not
vary with changes in RGB values.

Furthermore, the substitution of Equation 3.62 in Equation 4.43 gives the
uncertainty for hue:

σθ =
√

3

4

σ 2
B(G − R)2 + σ 2

G(B − R)2 + σ 2
R(B − G)2

(B2B(G + R) + G2 − GR + R2)2
, (4.49)

which is unstable at low saturation (i.e., the gray axis R = G = B). This can be
interpreted as follows. If the saturation is low, the denominator is relatively small
and hence the amount of noise is relatively high. If the saturation increases, the
denominator increases and therefore the amount of noise decrease. In conclusion,
the amount of noise/uncertainty of the hue is inversely related to the amount of
saturation. This means that hue is unstable at gray values.

In conclusion, normalized color is unstable at low intensity. Hue is unstable at
low saturation. Opponent color is relatively stable at all RGB values.

4.5.3 Histogram Construction by Variable Kernel Density
Estimation

A common approach to object recognition is to represent and match images on
the basis of histograms derived from color invariants. To suppress the effect
of noise for unstable color invariant values, histograms can be computed by
variable kernel density estimators. The associated uncertainty is used to derive
the parameterization of the variable kernel for the purpose of robust histogram
construction.

More precisely, a density function f gives a description of the distribution
of the measured data. A well-known density estimator is the histogram. The
(one-dimensional) histogram is defined as

f̂ (x) = 1

nh
(number of Xi in the same bin as x), (4.50)
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4 Pixel-Based Photometric Invariance

where n is the number of pixels with value Xi in the image, h is the bin width, and x is
the range of the data. Two choices have to be made when constructing a histogram.
First, the bin-width parameter needs to be chosen. Second, the position of the
bin edges needs to be established. Both choices affect the resulting estimation. In
general, bin widths and edges are chosen in an ad hoc way (e.g., by hand).

In contrast, the kernel density estimator is insensitive to the placement of the
bin edges

f̂ (x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
. (4.51)

Here, kernel K is a function satisfying
∫

K(x)dx = 1. In the variable kernel
density estimator, the single h is replaced by n values α(Xi), i = 1, . . . , n. This
estimator is of the form

f̂ (x) = 1

n

n∑
i=1

1

α(Xi)
K

(
x − Xi

α(Xi)

)
. (4.52)

The kernel centered around Xi has associated with it its own scale parameter
α(Xi), thus allowing different degrees of smoothing. To use variable kernel
density estimators for color images, we let the scale parameter be a function of the
RGB values and the color space transform. Assuming normally distributed noise,
the distribution is given by the Gaussian distribution [42]:

K(x) = 1√
2π

exp−x2/2 . (4.53)

Then, the variable kernel method estimating the density of color channel C is as
follows:

f̂ (C) = 1

n

n∑
i=1

σ−1
Ci

K

(
(C − Ci)

σCi

)
, (4.54)

where σC is the amount of noise for color channel C.
For example, the variable kernel method for the bivariate normalized rg kernel

is given by

f̂ (r, g) = 1

n

n∑
i=1

σ−1
ri

K

(
r − ri

σri

)
σ−1

gi
K

(
g − gi

σgi

)
, (4.55)

where σr and σg are defined by Equations 4.44 and 4.45, respectively. In
Figure 4.6, kernel density estimation is illustrated. For pixel values that gen-
erate color transformation instabilities, a smoother kernel is obtained. For stable
color invariant values, narrow kernel sizes are used. In this way, kernel sizes are
steered by the amount of uncertainty of the color invariant values.
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4.5 Noise Stability and Histogram Construction

#

#

High certainty

Image

Uncertainty

Low certainty

Color invariant value

Color invariant value

Figure 4.6 The uncertainty is used to derive the parameterization of the variable kernel for the purpose

of robust histogram construction. For pixel values that generate color transformation instabilities, a

smoother kernel is obtained. For stable color invariant values, narrow kernel sizes are provided. In this

way, kernel sizes are steered by the amount of uncertainty of the color invariant values.

The variable kernel method estimating the directional hue density is given by

f̂ (θ) = 1

n

n∑
i=1

σ−1
θi

K

(
(θ − θi) mod (π)

σθi

)
, (4.56)

where σθ is defined by Equation 4.49.
Finally, the variable kernel method for the bivariate normalized O1O2 kernel is

given by

f̂ (O1, O2) = 1

n

n∑
i=1

σ−1
O1i

K

(
O1 − O1i

σO1i

)
σ−1

O2i
K

(
O2 − O2i

σO2i

)
, (4.57)

where σO1
and σO2

are defined by Equations 4.47 and 4.48.
In conclusion, to reduce the effect of sensor noise during density estimation,

variable kernels are used where the normal distribution defines the shape of the
kernel. Further, kernel sizes are steered by the amount of uncertainty of the color
invariant values.
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4 Pixel-Based Photometric Invariance

4.6 Application: Color-Based Object Recognition

In this section, we compare the different ways to construct color histograms in the
context of object recognition. More information can be found in Reference [41].

4.6.1 Dataset and Performance Measure

In Figure 4.7, various images are shown. These images are recorded by a SONY
XC-003P CCD color camera and the Matrox Magic Color frame grabber. Two
light sources of average daylight color are used to illuminate the objects in the
scene. The database consists of N1 = 500 target images taken from colored objects
such as tools, toys, food cans, and art. Objects are recorded in isolation (one per
image), that is, 500 images are recorded from 500 different objects. The size of
the images is 256 × 256 with 8 bits per color. The images show a considerable
amount of shadows, shading, and highlights. A second, independent set (the query
set) of N2 = 70 query or test recordings is made of randomly chosen objects
already in the object database. These objects are recorded again one per image
with a new, arbitrary position and orientation with respect to the camera, some
recorded upside down, some rotated, and some at different distances.

Figure 4.7 Various images that are included in the image database of 500 images. The images are

representative of the images in the database. Objects were recorded in isolation (1 per image).

Then, for each image, traditional histograms (Eq. 4.50) and histograms based
on variable density estimation are constructed on the basis of the rg (Eq. 4.55)
and the hue space (Eq. 4.56). For the traditional (raw) histograms, the appropriate
bin size is determined by varying the number of bins on the axes over q ∈
{2, 4, 8, 16, 32, 64, 128, 256}. The results show (not presented here) that the number
of bins was of little influence on the recognition accuracy when the number of
bins ranges from q = 32 and up. Therefore, the color histogram bin size for each
axis used during histogram formation is q = 32.

For a measure of match quality, let rank rQi denote the position of the correct
match for test image Qi, i = 1, . . . , N2, in the ordered list of N1 match values. The
rank rQi ranges from r = 1 from a perfect match to r = N1 for the worst possible
match.
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4.6 Application: Color-Based Object Recognition

Then, for one experiment, the average ranking percentile is defined by

r =
(

1

N2

N2∑
i=1

N1 − rQi

N1 − 1

)
100%. (4.58)

In the remaining sections, we use 70 test images and 500 target images. Matching
is based on histogram intersection [43].

4.6.2 Robustness Against Noise: Simulated Data

The effect of noise is produced by adding independent zero-mean additive
Gaussian noise with σ ∈ {2, 4, 8, 16, 32, 64} to the query images. In Figure 4.8,
two objects are shown generating together 10 images by adding noise with
σ ∈ {8, 16, 32, 64, 128}.

Figure 4.8 Two images generating together 10 images by adding noise with σ ∈ {8, 16, 32, 64, 128}.

We concentrate on the quality of the recognition rate with respect to different
noise levels. To compare histogram matching, we constructed four different
histograms:

1. No thresholding is performed. This histogram construction scheme does not
cope with unstable color invariant values. Hence, all color invariant values
are equally weighted in the histogram as used by Swain and Ballard [43].
The color histogram without thresholding is denoted by Hθ1

based on the
hue θ color model and Hrg1

for the rg color model.

2. rg and θ values are discarded when the intensity is below 5% of the total
range. For this histogram construction scheme, we denote Hθ2

based on θ

and Hrg2
derived from rg.

3. rg and hue values are discarded during histogram construction when the
intensity and saturation are within the range of 4σ centered at the origin of
the RGB space yielding Hθ3

and Hrg3
.

4. The proposed variable kernel density estimator is given by Hθ4
and Hrg4

.

The influence of noise differentiated by the various histogram construction
schemes, shown in Figure 4.9 based on the hue color model, reveals that
kernel density estimation outperforms the ad hoc thresholding schemes. In
fact, the histogram intersection based on kernel density estimation gives good
results up to considerable amounts of noise (σ = 64). Further, the thresholded
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4 Pixel-Based Photometric Invariance

Average ranking percentile r against noise sn
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r
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rHθ 1
rHθ 2
rHθ 3
rHθ 4

Figure 4.9 The discriminative power of the matching process differentiated for the various

histogram construction schemes based on θ with respect to noise. The average percentile r
for histogram Hθ1

, Hθ2
, Hθ3

, and Hθ4
is given by rHθ1

, rHθ2
, rHθ3

, and rHθ4
, respectively.

histogram construction schemes always give higher recognition accuracy than no
thresholding at all.

Further, on the basis of the rg color model, the impact of noise differentiated
by the various histogram construction schemes is shown in Figure 4.10. Again
the kernel density estimator provides higher recognition accuracy than the other
schemes.

4.6.2.1 Robustness Against Noise: Realistic Data To measure the sensitivity
of different histogram construction schemes with respect to varying SNR (signal-
to-noise ratio), 10 objects were randomly chosen from the image dataset. Then,
each object was recorded again under a global change in illumination intensity
(i.e., dimming the light source) generating images with SNR ∈ {24, 12, 6, 3}
(Fig. 4.11).

These low intensity images can be seen as images of snap shot quality, a good
representation of views from everyday life, as it appears in home video, the news,
and consumer digital photography in general.

Matching based on the tradition histogram construction scheme, computed
for rg is denoted by HrgT

, and for θ , we obtain HθT
. Thresholding has been

applied on the images (not on the query image) and consequently rg and θ values
are discarded when the intensity is below 5% of the total range. The kernel
density estimation, based on rg, is denoted by HrgK

, and for θ , we have HθK
.

The discriminative power of the histogram matching process based on rg and θ

differentiated for the different histogram construction methods plotted against the
amount of SNR is shown in Figure 4.12.
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4.6 Application: Color-Based Object Recognition

Average ranking percentile r against noise sn
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2 4 8 16 32 64 128

r
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rHrg1
rHrg2
rHrg3

rHrg4

Figure 4.10 The discriminative power of the matching process differentiated for the various

histogram construction schemes based on rg with respect to noise. The average percentile

r for histogram Hrg1
, Hrg2

, Hrg3
, and Hrg4

is given by rHrg1
, rHrg2

, rHrg3
, and rHrg4

,

respectively.

Figure 4.11 Two objects under varying illumination intensity each generating four images with

SNR ∈ {24, 12, 6, 3}.

SNR

Average ranking percentile r against SNR

100

95

90

85

80

75

70
48 24 12 36

r

rrgbK
rrgbT

rθK

rθT

Figure 4.12 The discriminative power of the matching process, differentiated for the tradi-

tional histogram and kernel density estimation scheme, based on rg and θ with respect to

SNR.
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4 Pixel-Based Photometric Invariance

For 24< SNR <48, the results show a rapid decrease in the performance of the
traditional method as opposed to the kernel density estimation. For these SNRs,
the kernel density estimation outperforms the traditional histogram construction
scheme. For SNR <12, the performance of both methods decreases in the same
way, where the performance of the kernel density estimation remains slightly
higher than that of the traditional histogram matching methods. This is due
to quantization errors for very low intensity pixels that disturb the underlying
Gaussian noise model. In fact, quantization errors are caused by reducing the
image intensity and consequently limiting the range of RGB color values from
which the color invariants are computed. To this end, only a reduced number of
different color invariant values can be generated for which the assumption of a
Gaussian noise model is not valid anymore.

In conclusion, the kernel density estimator outperforms the traditional histogram
method up to considerable amounts of noise (SNR = 12). However, for very
low intensity images (SNR <12), due to quantization errors, the kernel density
estimation behaves the same as traditional histogram methods.

4.7 Summary

Sets of color invariant models have been discussed, which are independent of
the viewpoint, geometry of the object, and illumination conditions. These sets of
color models are derived from the dichromatic reflection model. Different color
transformations and their invariant characteristics are presented. Computational
methods have been discussed to measure the effect of noise through these color
invariants. As an application, color invariants are used for object recognition.
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5
5 Photometric Invariance

from Color Ratios

With contributions by Cordelia Schmid

In the previous chapter, several color channels were proved to be invariant to
photometric changes under the assumption of white illumination. However, in real-
world images, the light source can have different spectral power distributions.
Although for outdoor images an often assumed illuminant is D65 (which is
approximately white), the actual variety in outdoor light sources is much larger.
Moreover, for indoor images, the color of the light source can take on even
larger variations. The observed light reflected by the objects in the world is
the product of the spectral power distribution of the illuminant and the object
reflectance. Approaches that aim to describe scene reflectances invariant with
respect to illuminant changes can be divided into two groups. The first group
explicitly computes the illuminant and subsequently corrects the input image.
These methods are discussed in detail in Part III (color constancy) of this book.
The second group, which is discussed in detail in this chapter, does not aim to
explicitly estimate the illuminant first to correct the image. Rather, the so-called
color ratios combine measurements into dimensionless numbers that are invariant
with respect to the color of the light source.

Fascinated by the human ability to observe object reflectance independent of the
light source, Land and McCann [13] conducted a series of ingenious experiments

Portions reprinted, with permission, from ‘‘Blur robust and color constant image description,’’ by
J. van de Weijer and C. Schmid, in Int. Conference on Image Processing, Atlanta. © 2006 IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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5 Photometric Invariance from Color Ratios

aimed to unravel the underlying mechanisms. Observers were presented with
planar scenes of colored patches, called Mondrians in a reference to the paintings
of the Dutch artist (Fig. 5.1). For these images, observers correctly reported the
patch reflectances as being red, green, yellow, etc., independent of the light source
illuminating the scene. In their analysis of how humans manage to ignore the
undesired influence of the illuminant color, they observed that taking ratios of
adjacent points in images leads to an edge detection, which is invariant with
respect to the illumination. The main underlying assumption of their theory,
known as retinex theory, is that the illuminant of two adjacent (or nearby)
points in a scene is the same. On the other hand, the reflectance changes are
assumed to be abrupt. After the initial research of Land and McCann, the theory
of color ratios was further developed by Nayar and Bolle [45]. They show
that the reflectance ratios also hold for curved surfaces in a 3D world under
the assumption of locally smooth surfaces. In other words, illuminant changes
are assumed to be spatially low frequent, whereas reflectance changes are high
frequent. Note that this assumption does allow for multiple illuminants as long
as the changes in chromaticity and intensity are low frequent. This assumption of
locally constant illumination is at the basis of all the color ratios presented in this
chapter.

An important application area for color ratios is the field of color indexing
for image retrieval. To successfully index objects, image representations should
be robust to scene incidental events, such as variations in viewpoint, shadow,
shading, and illuminant color, which is exactly the strength of color ratios. Color
indexing was first proposed by Ballard and Swain [43] and applied to object
recognition. Their method recognizes objects by using RGB color histograms.
Funt and Finlayson [46] pointed out that this method lacks robustness with

(a) (b)

Figure 5.1 Examples of planar scenes that are commonly used in psychophysical research. The same

scene is illuminated by two different light sources. Land and McCann [13] found that humans are able

to describe the reflectance color of the patches in such scenes independent of the illuminant color. The

images are taken from Reference 44.
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5.1 Illuminant Invariant Color Ratios

respect to changes in the illuminant’s color. They showed that using color ratios
ensures robustness with respect to illuminant changes. In addition, they show how
to compute color ratios based on image derivatives. However, these descriptors
are still dependent on the lighting geometry. Hence, abrupt changes due to
object orientation or camera viewpoint alter the object’s description. A solution
to this problem was proposed by Gevers and Smeulders [47]. They introduced
an invariant that is both robust to variations of illuminant color and lighting
geometry. Finally, Van de Weijer and Schmid observed that color ratios based
on image derivatives are dependent on the smoothness of the edge [48, 49]. To
overcome this problem, they proposed a set of color ratios that is robust to blur.

In this chapter, we present various color ratios. We will show that they can
be computed either as ratios of pixels (different spatial locations) or as image
derivatives. As a matter of fact, they could have equally well been classified as
illuminant invariant image derivatives. Because of this double role in between
pixel-based invariants of Chapter 4 and the photometric invariant derivatives
discussed in Chapter 6, we now introduce the color ratios.

5.1 Illuminant Invariant Color Ratios

To derive the color ratios, we start with the reflectance model introduced in
Chapter 3. Under the assumption of Lambertian reflectance, Equation 5.3 can be
written as

f c(x) = mb(x)

∫
λ

e(λ, x)s(λ, x)ρc(λ)dλ, (5.1)

recalling that for three channels c ∈ {R, G, B}, mb(x) contains changes due to
illuminant intensity changes, object geometry, and lighting geometry. e is the
illuminant and s(λ, x) denotes object reflectance. Further, assuming narrow-band
sensor sensitivities, such that the spectral response can be approximated by delta
functions ρc(λ) = δ(λ − λc), Equaton 5.1 can be simplified as

f c(x) = mb(x)ec(x)sc(x), (5.2)

where ec(x) is short for e(λc, x) and sc(x) for s(λc, x). Narrow-band sensors imply
that only light of a particular wavelength is passed. If the color camera provides
narrow-band sensors then the measured values that are available from the camera
can be used. This approximation is found to be acceptable for most narrow-band
color sensors [50].

Equation 5.2 is at the basis of all the color ratios. The equation states that the
measured values are a multiplication of the scene and light geometry, the light
source color, and the object color. Land and McCann [13] made the observation
that in most real-world scenes, the light source is locally constant, meaning that
for two adjacent points x1 and x2 the following holds: ec(x1) = ec(x2). On the
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5 Photometric Invariance from Color Ratios

basis of this observation, Funt and Finlayson [46] (in a similar derivation as Nayar
and Bolle [45]) propose to use color ratios for the purpose of object recognition:

F(f c
x1

, f c
x2

) = f c
x1

f c
x2

. (5.3)

In fact, for c ∈ {R, G, B}, the color ratios are computed from colors at two
neighboring image locations, x1 and x2, and are given by

F1 = Rx1

Rx2

, (5.4)

F2 = Gx1

Gx2

, (5.5)

F3 = Bx1

Bx2

. (5.6)

Substituting Equation 5.2 into Equation 5.3, we obtain

F = mb(x1)e
c(x1)s

c(x1)

mb(x2)ec(x2)sc(x2)
. (5.7)

The effect of the illuminant e is factored out under the assumption of locally
constant illumination ec(x1) = ec(x2). Note that this assumption still allows
for varying illumination across the scene, for example, multiple light sources,
but only requires that the illuminant shows no sudden local changes. Further,
under the assumption that neighboring points have the same surface orientation
(mb(x1) = mb(x2)), for example, locally smooth surfaces, the body reflectance
term factors out, leaving only the surface albedo of the two neighboring points:

F = sc(x1)

sc(x2)
. (5.8)

Hence, computing the ratio between two neighboring points results in a color
invariant that is insensitive to object geometry, illumination direction, intensity,
and color under the assumption of smooth continuous surfaces.

As can be seen from Equation 5.3, F is unbounded. If the color signal of the
second location is small then F can take on huge values: f c

x2
→ 0 ⇒ F → ∞.

In order to turn F into a well-behaved function, Nayar and Bolle [45] propose a
slightly different ratio (also called the Michelson contrast):

N(f c
x1

, f c
x2

) = f c
x1

− f c
x2

f c
x1

+ f c
x2

. (5.9)

In this case, −1 ≤ N ≤ 1 if the two neighboring points are not both black.
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5.2 Illuminant Invariant Edge Detection

The underlying assumption of the color ratio F is that the neighboring points
have the same surface normal (and therefore mb(x1) = mb(x2)). This restriction
excludes many real-world objects that have abrupt geometry changes, such as
the transitions between sides of a cube for which mb(x1) �= mb(x2). To overcome
this, Gevers and Smeulders [47] proposed a color ratio that is not only invariant
to the color of the light source but also discounts the object’s geometry:

M(f c1
x1

, f c2
x1

, f c1
x2

, f c2
x2

) = f c1
x1 f c2

x2

f c2
x1 f c1

x2

, (5.10)

where f c1 and f c2 are two different color channels. For an RGB image, three
different color channels can be derived as follows:

M1 = Rx1
Gx2

Rx2
Gx1

, (5.11)

M2 = Rx1
Bx2

Rx2
Bx1

, (5.12)

M3 = Gx1
Bx2

Gx2
Bx1

. (5.13)

Note that the third is dependent on the first two according to M3 = M2/M1. It
can be shown that these ratios are invariant to the color of the light source (under
the assumption of locally uniform illumination), intensity of the light source,
viewpoint, and surface geometry:

M = (mb(x1)e
c1(x1)s

c1(x1))(m
b(x2)e

c2(x2)s
c2(x2))

(mb(x1)ec2(x1)sc2(x1))(mb(x2)ec1(x2)sc1(x2))
(5.14)

= sc1(x1)s
c2(x2)

sc2(x1)sc1(x2)
, (5.15)

as eci(x1) = eci(x2) under the assumption of locally constant illumination.

5.2 Illuminant Invariant Edge Detection

In the previous section, the color ratios have been computed by taking the ratio
of spatially varying points in the image. In this section, we show that the color
ratios can also be written as image derivatives, an observation that was first made
by Funt and Finlayson [46]. They noted that if the color ratio F is invariant for
illuminant changes then so is ln(F). Rewriting ln(F) shows that computing the
color ratios F is equal to taking the derivative of the logarithm of the channels:

ln
(
F1

) = ln

(
Rx1

Rx2

)
= ln

(
Rx1

) − ln
(
Rx2

) = ∂
∂x ln (R (x)) . (5.16)
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5 Photometric Invariance from Color Ratios

Hence, the derivative of the logarithm of an image is invariant to illuminant
changes under the assumption of locally constant surface normals. Using the fact
that ∂

∂x ln (f (x)) = fx(x)
f (x) , the three ratios can also be computed by

{F1, F2, F3} =
{

Rx

R
,

Gx

G
,

Bx

B

}
, (5.17)

where the subscript x indicates the spatial derivative.
A similar derivation holds for the color ratios proposed by Gevers and Smeulders

[47]. Starting from the logarithm of the color ratio M , this can be rewritten as

ln
(
M1

) = ln

(
Rx1 Gx2

Rx2 Gx1

)
= ln

(
Rx1

Gx1

)
− ln

(
Rx2

Gx2

)
= ∂

∂x
ln

(
R (x)

G (x)

)
. (5.18)

Hence the derivative of the logarithm of the division of two different channels
is independent of the illuminant color. The two color ratios can be computed
according to

{M1, M2} =
{

RxG − GxR

RG
,

GxB − BxG

GB

}
. (5.19)

In Figure 5.2, an illustration of the photometric invariant color ratios is provided.

5.3 Blur-Robust and Color Constant Image
Description

Apart from the previously discussed photometric variations, blur changes are
another frequently encountered phenomenon. They can be caused, among others,
by out-of-focus, relative motion between the camera and the object, and aber-
rations in the optical system [51]. For zero-order descriptions (e.g., normalized
RGB), variations in blur have little influence. However, a change in blur will
drastically change edge-based descriptions. Edge-based color methods measure
two intertwined phenomena: the color change between two regions and the edge
sharpness of the transition between the regions. A change in blur will have little
influence on the color change, but it will influence the edge sharpness of the
transition. Therefore, representations based on derivatives have the undesirable
effect that they vary under image blur. We now discuss the influence of blur on
the color constant ratios discussed previously. We further discuss a method to
reduce the sensitivity of color ratios to image blur.

Let us assume that the illuminant invariant derivatives discussed previously are
computed by derivation with a Gaussian derivative at scale σd . As a consequence
the ratios have a certain scale, for example, Fσd

1 = Rσd
x /Rσd . We model blur by
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5.3 Blur-Robust and Color Constant Image Description

f1M1

F1

M1

F1

f1

x

x

(a) (b)

Figure 5.2 Illuminant invariant edge detection: (a) two color transitions are shown. The left-

bottom figure contains an additional fall in intensity from left to right in the blue part.

This models variations that are common due to changes in scene geometry. In the middle,

the two color transitions on the left are illuminated by a locally smooth varying illuminant.

(b) The two graphs depict the edge response computed on the images in the middle along the

line separating the two regions. The responses are given for normal image derivative f1 and the color

ratios F1 and M1. For the top image both color ratios remain fairly stable, whereas the normal image

derivative response f1 varies significantly due to the illuminant changes. As predicted by theory, when

we also vary the scene geometry, as in the bottom row, the response of F1 varies, whereas only M1

remains stable under a combination of geometrical and illuminant variations.

a convolution with a Gaussian kernel with σb. Then blurring will have a similar

effect as computing the ratio at a different scale σ =
√

σ 2
d + σ 2

b , since

Fσ
1 = (R ⊗ Gσb) ⊗ ∂

∂x Gσd

R ⊗ Gσb ⊗ Gσd
= R ⊗ ∂

∂x G
√

σ 2
b +σ 2

d

R ⊗ G
√

σ 2
b +σ 2

d

, (5.20)

and hence robustness with respect to blur is equal to robustness with respect to
changing the scale of the ratios.

Next we analyze the influence of scale on the ratios. Assume that an edge can
be modeled by a step edge R (x) = αu (x) + β. Then,

Fσ
1 =

∂
∂x (αu (x) + β) ⊗ Gσ

(αu (x) + β) ⊗ Gσ
= αδ (x) ⊗ Gσ

(αu (x) + β) ⊗ Gσ
, (5.21)
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5 Photometric Invariance from Color Ratios

where we used the fact that the derivative of the step edge u(x) is the delta function
δ(x). Let us now consider the ratio response exactly at the edge, x = 0. Here the
denominator remains constant, and

Fσ
1 = α

β + 1
2α

Gσ (0) = α

β + 1
2α

1

σ
√

2π
. (5.22)

This response is clearly not independent of the scale, which proves that color
ratios vary with blur.

To obtain robustness with respect to blur, Van de Weijer and Schmid [48]
proposed the following color angles ϕF = {ϕ1

F , ϕ2
F}:

ϕ1
F = arctan

(
F1

F2

)
, ϕ2

F = arctan

(
F2

F3

)
. (5.23)

The dependence on blur is factored out by the division of the color ratios. Consider
the edge of the green channel to be modeled by G (x) = λu (x) + γ , then

ϕ1
F = arctan

(
α

(
γ + 1

2λ
)

(
β + 1

2α
)
λ

)
, (5.24)

which is independent of the scale σ , and therefore robust to variation of blur.
Moreover, ϕ1

F is invariant for illuminant color changes since both F1 and F2
are invariant. Note that the usage of the arctan is not necessary to obtain the
invariance. However, the arctan maps the output to the domain of [−π , π ], which
can be better represented in a histogram.

A similar derivation of dependence to blur can be given for the color constant
and lighting geometry invariant ratios, M1 and M2. To obtain robustness the
following color angle can be computed:

ϕM = arctan

(
M1

M2

)
. (5.25)

When using the color angles proposed in Equations 5.23 and 5.25, one should
take the reliability into account [41]. Application of error analysis to any of the
color angles yields the following results:

(
∂ arctan

(a

b

))2 = (∂ε)2

√
a2 + b2

, (5.26)

where we assume ∂a = ∂b = ∂ε. This equation informs us that color angles, for
which

√
a2 + b2 is small, are less reliable.
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5.4 Application: Image Retrieval Based on Color Ratios

5.4 Application: Image Retrieval Based on Color
Ratios

As an illustration of how color ratios can be used, we apply them to an image
retrieval task. The task is designed to test the image descriptions with respect
to changes in illuminant color variations. The performance of the retrieval is
assessed by the rank results of the correct matches, where the rank indicates
after how many images the correct image was retrieved. We also analyze the
normalized average rank (NAR) that is defined for a single query as

NAR = 1

NNR

(
NR∑
i=1

Ri − NR

(
NR + 1

)
2

)
, (5.27)

where N is the number of images in the database, NR is the number of relevant
images to the query, and Ri is the rank at which the ith relevant image is retrieved.
An NAR of zero indicates perfect results, and an NAR = 0.5 is equal to random
retrieval. We will give the average NAR results over all queries, indicated by
ANAR.

Histograms of the color ratios and color angles are constructed to represent the
image. We have used 16 bins in each color dimension (there are three dimensions
for F, two dimensions for ϕF and M , and one dimension for ϕM ). To robustify
the construction of the histograms of the color angles, we use Equation 5.26.

For example, for ϕM we update the histogram with
√

M2
1 + M2

2 . The retrieval is
based on the Euclidean distance between the histograms and the derivatives are
computed with Gaussian derivative filters with a standard deviation of σ = 2.
The first two experiments are performed on a set of 20 colorful objects, all taken
under 10 different light sources with varying object orientations [44], of which
examples are given in Figure 5.3.

5.4.1 Robustness to Illuminant Color

First, we test the image descriptions with respect to robustness to illuminant color
variations. For each of the 20 objects, we pick 1 single image as a query. For each
query, there exist 10 relevant images of the same object taken under different
light sources and in various object orientations. The results are summarized in
Table 5.1a. These images were all taken at a similar distance and hence the edges
are equally sharp in most images. Therefore, robustness with respect to blur is
not required and the two color ratios, F and M , obtain good results. The added
robustness with respect to blur for color angles results in lower discriminative
power; however, for ϕF the drop in performance is minimal. For the 16-bin
representation of ϕM , the performance drop due to loss of discriminative power is
higher.
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5 Photometric Invariance from Color Ratios

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3 Examples of object images from the Simon Fraser data set (637 × 468 pixels). (a–d)

Images of two objects and their smoothed versions used to test robustness with respect to Gaussian

blur. (e–h) Four instantiations of a single object under four different illuminants and with varying object

orientation. These are used to test the image description with respect to illuminant color and illuminant

geometry changes.

5.4.2 Robustness to Gaussian Blur

Next we test the image descriptions with respect to changes in blur. To this end,
we take a single image of all 20 objects taken under the same illuminant. Next,
Gaussian smoothing with standard deviation of σ = 2 is applied to the images,
which leads only to a slight visual change in the images (Fig. 5.3). We used the
nonsmoothed image as a query to find its smoothed counterpart in the set of 20
smoothed images. The retrieval results of this experiment are given in Table 5.1.
The sensitivity of the color ratios F and M under blur is apparent: only for a few
of the queries the relevant image was found with rank 1. The two color angles,
which were designed to be robust with respect to blur, obtain good results. For ϕF ,
only for a single image the relevant image was not the first image to be retrieved.
In conclusion, color angles provide a robust image description under image blur.

5.4.3 Robustness to Real-World Blurring Effects

This experiment is performed on a set of 20 pairs of images. Each pair consists
of two images of the same scene; however, the images vary in blur. The blur is
caused by changing the acquisition parameters such as shutter time and aperture,
and due to relative movement between the camera and the object (for examples,

This data is available on http://www.colorincomputervision.com.
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5.4 Application: Image Retrieval Based on Color Ratios

see Fig. 5.4). Table 5.1 provides the results. The variations in blur cause the color
ratios, F and M , to perform poorly. Although not all real-world blurring effects
can be modeled by a Gaussian [51], the proposed blur-robust color angles obtain
good results: for ϕF only a single image is not retrieved within the first two
images.

Table 5.1 Rank and ANAR for the retrieval experiment.

(a) Robustness to illuminant color

Rank 1–10 11–20 >20 ANAR

F 180 5 15 0.010

ϕF 169 17 14 0.012

M 155 22 23 0.024

ϕM 115 23 65 0.049

(b) Robustness to Gaussian blur

Rank 1 2 >2 ANAR

F 5 0 15 0.218

ϕF 19 1 0 0.003

M 1 3 16 0.258

ϕM 15 3 2 0.023

(c) Robustness to real-world effects

Rank 1 2 >2 ANAR

F 7 2 11 0.365

ϕF 16 3 1 0.018

M 6 2 12 0.303

ϕM 13 1 6 0.053

(a) (b) (c)

Figure 5.4 Examples database: (a) out-of-focus blur, (b) change in focus from foreground to back-

ground, and (c) motion blur.
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5 Photometric Invariance from Color Ratios

5.5 Summary

Assuming white illumination, as we saw in earlier chapters, might be a too
restrictive assumption for real-world applications. The assumption that illuminants
in a scene can be colored and vary spatially throughout the scene is more realistic.
In this chapter, we discussed the color ratios that are invariant for such illuminant
changes. The underlying insight is that illuminants are locally constant, and are
therefore equal on both sites of an edge. Dividing observations on both sites of
the edge will then factor out the illuminant color.

Several extensions on the basic principle have been discussed. We have shown
how to obtain invariance with respect to geometry and blur variations. Further-
more, we have derived how to compute the color ratios as image derivatives.
Finally, we have a shown several experiments to illustrate the descriptive power
of the color ratios.
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6
6 Derivative-Based Photometric

Invariance

With contributions by Rein van den Boomgaard and Arnold W. M.
Smeulders

Image derivatives are essential to describe the local structure in images. First-
order derivatives reveal information about the location of edges in images or
the speed of objects in videos. Second-order derivatives of images allow us to
identify corners in images and object acceleration in videos. Being essential
operations, image derivatives are applied in the vast majority of computer vision
applications, including basic operations such as edge detection, feature extraction,
and optical flow and more complex applications such as shape from shading,
image segmentation, and object detection.

A problem in classical derivative-based computer vision, which is based only
on luminance or RGB, is that derivatives describe both scene incidental edges such
as shadow and specularity transitions, as well as relevant material transitions. For
example, luminance-based optical flow estimation is flawed by moving shadows
or RGB-based object segmentations fails in the presence of specularities. These
problems can be solved by extending the photometric invariance theory described
in Chapter 4 to the computation of image derivatives. The differential structure
of images could then be split up into separate parts according to their invariance.

Portions reprinted, with permission, from ‘‘Color Invariance,’’ by J. M. Geusebroek, R. van den
Boomgaard, A. W. M. Smeulders, H. Geerts, in IEEE Transactions on Pattern Analysis and Machine
Intelligence, Volume 23 (12), © 2001 IEEE, and from ‘‘Edge and Corner Detection by Photometric
Quasi-Invariants,’’ IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 27 (4),
© 2005 IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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6 Derivative-Based Photometric Invariance

(a) (b) (c)

Figure 6.1 (a) Input image. (b) The shadow and shading full invariant. (c) The shadow and shading

quasi-invariant. Both invariants do not have a response on edges, which are caused by shadows and

shading.

For example, image derivatives could be derived to be invariant to shading,
specularities, and illuminant changes. In Figure 6.1, an example of photometric
invariant edge detection is provided. The image shows two examples of invariants
that do not respond to shadow and shading edges. This can, for example, be seen
from the sharp shading edges on the green cube, which are ignored by both edge
detectors.

Before exploring how to extend photometric invariance theory to image
derivatives, we shortly introduce the difference between feature detection and
feature description (both are considered part of feature extraction), which will
help us explain the different approaches to photometric invariant edge detection.
Feature detection is the task of locating features in images, and it includes edge,
corner, and t-junction detection [52–54]. On the other hand, feature description
aims to describe these local features in images. Examples of often used feature
descriptors are the SIFT descriptor [55] and the shape-context descriptor [56].
In many computer vision applications, first a detector is applied to locate the
features, after which a descriptor is applied to describe the local features [57]. The
difference between feature detection and description is important to understand
the difference between two different photometric invariance theories that we
describe in this chapter.

The two approaches to compute photometric invariant features, which are
handled in this chapter, are called full invariants and quasi-invariants [58].
Section 6.1 derives full photometric invariants, which can be used for both feature
detection and feature description. Their properties are such that the resulting
invariant values are truly independent of the physical events they are designed
to ignore. Hence, these features can be used for recognition of an object under
different imaging conditions, as will be illustrated in Section 6.1. The alternative
approach is that of quasi-invariant discussed in Section 6.2, which concentrates
on the detection of features independent of certain photometric events. Similar to
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6 Derivative-Based Photometric Invariance

full invariants, quasi-invariants do not respond to changes in the images, which
are purely caused by the event, which they are designed to ignore (e.g., a pure
shadow edge). However, the strength of these invariants varies at places where
there is a mixture of events (such as a shadow variation on a material edge).
As a result, quasi-invariants are restricted to be used for feature detection, but
cannot be applied for feature description. For the task of feature detection, we will
see that quasi-invariants have improved discriminative power and reduced edge
displacement with respect to full invariants.

To illustrate the subtleties between full invariants and quasi-invariants, we
provide a practical example. In Figure 6.2, the edge response of the standard color
gradient and the full and quasi-invariants along the red dotted line are provided.
The red dotted line crosses three edges, first, a material transition from purple to
green, then, a shading edge on the green cube, and finally, a material transition
from green to purple. As expected, the color gradient yields a response for all
three edges. Both invariants do not have a response on the shading edge and
only respond to the material transitions. The figure also illustrates the difference
between the full and quasi-invariants. The full invariant has exactly the same
response for both green–purple transitions. However, the response of the quasi-
invariant varies between the two green–purple transitions. The response changes
due to variations in intensity of the object and background.

In conclusion, color edge detection has the added advantage that the color
information allows us to separate different causes of edges into shadow, shading,
or specular transitions. In this chapter, we discuss two approaches to obtain
photometric invariant edge derivatives. These derivatives can be used in all
computer vision applications that are based on image derivatives. As such, they

Gradient
Full invariant

E
dg

e 
re

sp
on

se

Quasi-invariant

(b)(a)

Figure 6.2 (a) Input image. (b) Edge response along the dotted red line in the input image for the

color gradient, the full invariant, and the quasi-invariant. Note that the shading variations on the green

cube, which results in the second peak in the gradient response, do not lead to any response for both

invariants.
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6 Derivative-Based Photometric Invariance

help to obtain robustness to scene accidental changes such as shadows, shading
effects, and specularities.

6.1 Full Photometric Invariants

The measurement of invariance involves a balance between constancy of the
measurement regardless of the disturbing influence of the unwanted transform on
the one hand and retained discriminating power between truly different states of
the objects on the other. As a rule of thumb, features that are more invariant have
less discriminative power. Hence, both invariance and discriminating power of
a method should be investigated simultaneously. Only this allows for assessing
the practical performance of the proposed method. The emphasis in this section
is on invariance, with an experimental assessment of discriminative power. In
Section 6.2, full invariance is sacrificed to improve discriminating power which
results in improved sensitivity and accuracy for feature detection.

In this section, we consider the introduction of wavelength in the scale-space
paradigm, as suggested by Koenderink [59]. This leads to a spatiospectral family of
Gaussian aperture functions, which smooth and differentiate the data. Hence, the
mathematical framework is that of differential calculus and differential invariants.
The general idea is that derivatives lead to orthogonalization of the influence
of the various parameters on the measurement, with the assumption that small
fluctuations can be accounted to a linear decomposition of the variation over the
effective parameters. This leads to the well-known chain rule, the fundamental
rule for differential calculus. The idea developed in this chapter is that one can
measure the spatial and spectral derivatives of the energy density E(λ, x) in
Equation 3.30. The integral in that equation acts as the effective differentiator
operator by ‘‘choosing’’ the right spectral (and spatial) sensitivity function f c(λ).
The next section illustrates how to ‘‘choose’’ the sensitivity function by an
appropriate linear transformation of the camera RGB sensitivities, such that the
result mimics the Gaussian smoothing and derivative operator up to second order
(as there are three spectral sensitivities). This model is termed the Gaussian
color model by Koenderink and is also referred to as the local color model
[59, Section 5.6]. Spatial derivatives are operationally defined by convolving the
image with the derivatives of the Gaussian smoothing operator, a by now basic
technique in computer vision. Exploiting the orthogonality of these derivatives
and the chain rule of differentiation, one can apply differential calculus to the
image formation models outlined in Chapter 3 and truly obtain the differential
invariants from images.

6.1.1 The Gaussian Color Model

Physical measurements imply integration over the spectral and spatial (and time)
dimensions. The integration reduces the infinitely dimensional Hilbert space
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6.1 Full Photometric Invariants

of spectra at infinitesimally small spatial neighborhood to a limited amount
of measurements. The Gaussian color model is not an essentially new color
model, but rather a theory of color measurement. The Gaussian color model
may be considered an extension of the Gaussian derivative framework into the
spatiospectral domain. As such, the model extents to the spatiospectral scale-space
and allows the measurement of combined photometric and geometric differential
invariants.

From scale-space theory we know how to probe a function at a certain scale;
the probe should have a Gaussian shape in order to prevent the creation of extra
details into the function when observed at a higher scale (lower resolution) [60].
We consider the Gaussian as a general probe for the measurement of spatiospectral
differential quotients. We follow [61] for the Gaussian color model. Let E(λ)

be the energy distribution of the incident light, where λ denotes wavelength and
let G(λ0; σλ) be the Gaussian at spectral scale σλ positioned at λ0. The spectral
energy distribution may be approximated by a Taylor expansion at λ0:

E(λ) = Eλ0 + λEλ0
λ + 1

2
λ2Eλ0

λλ + · · · . (6.1)

Measurement of the spectral energy distribution with a Gaussian aperture yields
a weighted integration over the spectrum. The observed energy in the Gaussian
color model E(λ), at infinitely small spatial resolution and spectral scale σλ, is in
second order equal to [59]

Eσλ = Eλ0,σλ + λEλ0,σλ

λ + 1

2
λ2Eλ0,σλ

λλ + O(λ3), (6.2)

where Eλ0,σλ = ∫
E(λ)G(λ; λ0, σλ)dλ measures the spectral intensity. Then, differ-

entiation Eλ0,σλ

λ = ∫
E(λ)Gλ(λ; λ0, σλ)dλ gives the first-order spectral derivative

and Eλ0,σλ

λλ = ∫
E(λ)Gλλ(λ; λ0, σλ)dλ measures the second-order spectral deriva-

tive. The aperture functions G, Gλ, and Gλλ denote derivatives of the Gaussian
with respect to λ, the sensitivities shown in Figure 6.3. The Gaussian model
of spectral measurement allows probing the differential structure of the spec-
trum. The measurements are obtained by integrating over the incoming spectrum,
weighted by derived Gaussian sensitivity functions. Hence, the Gaussian color
model measures the coefficients Eλ0,σλ , Eλ0,σλ

λ , and Eλ0,σλ

λλ of the Taylor expansion
of the Gaussian-weighted spectral energy distribution at λ0 and scale σλ.

Introduction of spatial extent in the Gaussian color model yields a local
Taylor expansion at wavelength λ0 and position �x0. Each measurement of a
spatiospectral energy distribution has a spatial as well as a spectral resolution.
The measurement is obtained by probing an energy density volume in a three-
dimensional spatiospectral space (Fig. 6.4). The size of the probe is determined
by the observation scale σλ and σ�x.

E(λ, �x) = E +
(�x

λ

)T [
E�x
Eλ

]
+ 1

2

(�x
λ

)T [
E�x�x E�xλ
Eλ�x Eλλ

](�x
λ

)
+ · · · . (6.3)
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6 Derivative-Based Photometric Invariance
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Figure 6.3 The Gaussian sensitivity functions

over the wavelengths. The incoming spectrum

E(λ) is weighted and integrated over the three

sensitivity curves {G(λ; λ0, σλ), Gλ(λ; λ0, σλ),

and Gλλ(λ; λ0, σλ)}, yielding the three spectral

measurements E, Eλ, and Eλλ. Gaussian

central wavelength λ0 = 520 nm and scale

σλ = 55 nm are chosen such that compatibility

with human vision is achieved.
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6.1 Full Photometric Invariants

sl
sy

sx

y

x

l

Figure 6.4 Probing the spatiospectral

energy density boils down to integrating

with a Gaussian sensitivity function over

the spatial and spectral dimensions.

The mth differentiation with respect to λ and the nth differentiation with
respect to �x may be transported using Gaussian derivative filters in the
well-known N-jet [62]

Eλm�xn(λ, �x) = E(λ, �x) ∗ Gλm�xn(λ, �x; σλ, σ�x). (6.4)

Here, Gλm�xn(λ, �x; σλ, σ�x) are the Gaussian-shaped spatiospectral probes, or color
receptive fields Figure 6.5. The coefficients of the Taylor expansion of E(λ, �x)
together form a complete representation of the local image structure. Truncation
of the Taylor expansion results in an approximate representation, optimal in a
least squares sense.

Figure 6.5 The Gaussian color smoothing and derivative filters up to second order in (x, y) and λ.

It appears that the above Gaussian color model approximates the Hering basis
[63] for human color vision when truncated at second order and taking the
parameters λ0 � 520 nm and σλ � 55 nm [61]. We follow this case and denote
spectral differential quotients by E, Eλ, and Eλλ, and spatial differential quotients
by Ex, Eλx, and Eλλx.

87

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 Derivative-Based Photometric Invariance

6.1.2 The Gaussian Color Model by an RGB Camera

Spectral differential quotients are obtained by a linear combination of given (RGB)
sensitivities, whereas spatial differential quotients are obtained by convolution
with Gaussian derivative filters. For general cameras, with unknown characteris-
tics, it is reasonably safe to assume the camera sensitivities are close to Gaussian
functions, centered somewhere at the red, green, and blue areas of the visible
spectrum in such a way that the RGB sensitivities capture a similar color space
as human perception. In that case, an approximation of the Gaussian color model
is given by a simple opponent color space (Section 3.5). The intensity channel
I = R+G+B represents the Gaussian-weighted spectral response, the yellow–blue
channel YB = R+G−2B the first-order derivative comparing one (blue) half of
the spectrum with the other half (yellow), and the reddish–green channel RG =
R−2G+B the second-order derivative comparing the center of the spectrum with
the outsides. Hence, ⎡

⎣ Ê
Êλ

Êλλ

⎤
⎦ = 1

3

⎛
⎝1 1 1

1 1 −2
1 −2 1

⎞
⎠

⎡
⎣R

G
B

⎤
⎦ . (6.5)

Note that we try to achieve derivative filters in the spectral domain by transforming
the spectral responses as given by the RGB filters. The transformed filters may be
imperfect, but are likely to offer accurate estimates of differential measurements.
When the spectral responses of the RGB filters are known, a better transform can
be obtained.

When a camera is calibrated and the XYZ responses are known, a more
elaborate and precise alignment of the camera sensitivities to the Gaussian basis
functions can be obtained. When establishing the Gaussian color model for the
XYZ sensitivities, we note that the first three components E, Eλ, and Eλλ of the
Gaussian color model very well approximate the CIE 1964 XYZ basis when taking
λ0 = 520 nm and σλ = 55 nm. A camera is developed to capture the same color
space as humans, hence we assume the RGB sensitivities to span a similar spectral
bandwidth and to have a similar central wavelength. When camera response is
linearized, an RGB camera approximates the CIE 1964 XYZ basis for colorimetry
by the linear transform [64]⎡

⎣X̂
Ŷ
Ẑ

⎤
⎦ =

⎛
⎝ 0.62 0.11 0.19

0.3 0.56 0.05
−0.01 0.03 1.11

⎞
⎠

⎡
⎣R

G
B

⎤
⎦ . (6.6)

The best linear transform from XYZ values to the Gaussian color model is given
by [61] ⎡

⎣Ê
Êλ

Êλλ

⎤
⎦ =

⎛
⎝−0.48 1.2 0.28

0.48 0 −0.4
1.18 −1.3 0

⎞
⎠

⎡
⎣X̂

Ŷ
Ẑ

⎤
⎦ . (6.7)
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6.1 Full Photometric Invariants

Figure 6.6 An example image and its color components E, Eλ, and Eλλ. For the latter two images,

negative values are indicated by dark intensities and positive values by bright intensities.

The product of Equations 6.6 and 6.7 gives the desired implementation of the
Gaussian color model in RGB terms.

⎡
⎣Ê

Êλ

Êλλ

⎤
⎦ =

⎛
⎝0.06 0.63 0.27

0.3 0.04 −0.35
0.34 −0.6 0.17

⎞
⎠

⎡
⎣R

G
B

⎤
⎦ . (6.8)

The resulting conversion from an RGB image to the opponent color space is
illustrated in Figure 6.6.

6.1.3 Derivatives in the Gaussian Color Model

Image derivatives for gray-value images are obtained by smoothing and differ-
entiation in both the x- and y-direction. In our notation, the intensity gradient is

denoted by ∇E = (
Ex, Ey

)
, with its magnitude Ew = |∇E| =

√
E2

x + E2
y . Each of

the gradient components are obtained by convolving the intensity channel of the
image E with the Gaussian derivative functions Gx(x, y) and Gy(x, y). The above
outlined Gaussian color model extends this framework to spectral derivatives.
Here, the spectral parameters of the Gaussian functions are fixed—the Gaussian
is centered at a fixed wavelength and has a fixed standard deviation (spectral
bandwidth), and there are three spectral derivatives available: a zero-order deriva-
tive E being the intensity, a first-order derivative Eλ comparing the yellow to
the blue part of the spectrum, and a second-order derivative Eλλ comparing the
green middle part to the two outer regions of the spectrum. These parameters are
implemented in the camera device, in accordance with the properties of human
color vision. Of course, there is still the freedom to choose the spatial position and
scale by convolving the spectral Gaussian measurements E, Eλ, and Eλλ with the
Gaussian derivative kernel. As such, we are able to take spatiospectral derivatives
of a color image by simply combining the appropriate channel of the Gaussian
color model with the appropriate spatial derivative operator. For example, the
total edge strength due to the color information in an image may be obtained by

Ew =
√

E2
x + E2

y + E2
λx + E2

λy + E2
λλx + E2

λλy. (6.9)
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6 Derivative-Based Photometric Invariance

The image processing operators involved to obtain the result Ew include (i) obtain-
ing three x-derivative images by filtering the Gaussian color channels E, Eλ, and
Eλλ with a Gaussian x-derivative filter Gx; (ii) obtaining three y-derivative images
by filtering the Gaussian color channels E, Eλ, and Eλλ with a Gaussian y-
derivative filter Gy; (iii) pixelwise squaring of each of the six derivate response
image; (iv) pixelwise addition of the six squared images together into a single
image; and (v) returning its pixelwise square root as the final edge strength image.

The Gaussian color model and Gaussian derivative operator smooth and
differentiate the spatial and spectral data in, say, one go. However, as both
operations are linear and follow linear systems theory, we may consider the
smoothing and differentiation as two independent steps of an operation. Although
in practice we cannot separate the two, we can use them separately in our
theoretical derivations. This observation is fundamental in the derivation of the
differential invariants that follow. Let us make this more explicit by considering
the properties of linear system theory.

∫
Gxn(x; σ)f (x)dx =

∫ {
∂n

∂xn
G(x; σ)

}
f (x) dx (6.10)

=
∫

∂n

∂xn
{G(x; σ)f (x)} dx =

∫
G(x; σ)

{
∂n

∂xn
f (x)

}
dx.

(6.11)

This implies that, independent of the fact that at which exact step we apply the
derivative operator, we may regard it as actually differentiating the underlying
function and measuring (by integrating over the Gaussian kernel) its response.
This of course under the assumption that responses are linear (up to an arbitrary
scaling), which does hold for many cameras that do not compress their data. Even
under compression, the artifacts may be considered noise and are smoothed out
by the Gaussian smoothing operator. Hence, the Gaussian color model allows
the assessment of derivatives of the spatiospectral energy function just before
observation by the camera system. This is the light field in front of the camera as
is modeled by the reflection models outlined in Chapter 3.

6.1.4 Differential Invariants for the Lambertian Reflection
Model

Using the Gaussian color model, we may apply differential calculus to establish
photometric invariant properties, as is the goal of this chapter. Therefore, we
may consider any reflectance model, like the well-known Lambertian model, the
dichromatic reflection model, or the Kubelka–Munk model. Before going into
depth, we first give an illustration using a simplified Lambertian model to sketch
the steps involved. Consider the simplified Lambertian reflectance model:

E(λ, x) = mb(x)s(λ, x), (6.12)
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6.1 Full Photometric Invariants

(see Equation 3.1, where we assume a white light source, that is, e(λ) = c).
Here, mb represents the intensity term due to the object geometry, that is, the
‘‘cosine rule’’ of Lambertian reflection. Furthermore, s represents the object
albedo function. Now, taking the spatial derivative results in

Ex(λ, x) = ∂

∂x

{
mb(x)s(λ, x)

}
(6.13)

= s(λ, x)
∂mb(x)

∂x
+ mb(x)

∂s(λ, x)

∂x
. (6.14)

The right-hand side of this equation expresses the properties of photometry, with
the spatial derivative operator ‘‘propagated’’ through the underlying physics.
Here, the chain rule has been applied to explicate the influence of fluctuations
in each of the components s(.) and mb(.) on the total fluctuation. The left-hand
side expresses what will be measured by the camera, the measurement obtained
by smoothing with the Gaussian kernel. Hence, the equation expresses that the
response of a Gaussian derivative filter on an intensity image (the left-hand side)
yields something (the right-hand side) that depends on both the geometry term
(mb) and the material reflectance term (s) in the Lambertian model. This is of
course a well-known fact made explicit by our framework.

Let us now consider the case of a spectral derivative of the simplified Lambertian
model:

Eλ(λ, x) = ∂

∂λ

{
mb(x)s(λ, x)

}
, (6.15)

= mb(x)
∂s(λ, x)

∂λ
. (6.16)

Here, the geometrical term mb(x) does not depend on the wavelength, and hence is
considered a constant in the partial derivative. Again, the right-hand side expresses
the photometry, now with the spectral derivative operator propagated through the
underlying physics. The left-hand side expresses the yellow–blue component of
the Gaussian color model. As can be observed from the equation, the measured
yellow–blue color channel Eλ does linearly depend on the intensity term mb and
hence on the geometry of the imaged Lambertian object, again a well-known fact.
However, normalizing by the measured intensity yields

Eλ(λ, x)

E(λ, x)
= mb(x)

mb(x)s(λ, x)

∂s(λ, x)

∂λ
, (6.17)

= 1

s(λ, x)

∂s(λ, x)

∂λ
. (6.18)

Now, the right-hand side expresses that the photometry of Eλ normalized by
E only depends on the surface albedo s, hence on the body reflectance, as the
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6 Derivative-Based Photometric Invariance

geometry term mb is canceled out in the expression. The left-hand side expresses
the measurements that need to be combined to yield the invariant, being the first-
order spectral derivative Eλ, the yellow–blue opponent color channel, divided by
the intensity E to yield the invariant. For pixel-based invariance, these properties
are evaluated per pixel. For the Gaussian color model, these properties can be
evaluated after smoothing of the channels E and Eλ (and Eλλ), as the opponent
color channels are decorrelated, as a result of which the Gaussian smoothing does
not introduce color blending artifacts. We denote the resulting invariant by Cλ

Cλ = Eλ

E
, (6.19)

which is calculated by pixelwise division of the yellow–blue smoothed opponent
channel Eλ by the smoothed intensity channel E.

The second-order spectral derivative of the simplified Lambertian model yields
a similar expression as Equation 6.15,

Eλλ(λ, x) = ∂2

∂λ2

{
mb(x)s(λ, x)

}
, (6.20)

= mb(x)
∂2s(λ, x)

∂λ2
. (6.21)

Hence, for the reddish–green opponent channel, representing the second-order
derivative of wavelength, we can derive a similar normalization expression,

Eλλ(λ, x)

E(λ, x)
= mb(x)

mb(x)s(λ, x)

∂2s(λ, x)

∂λ2
(6.22)

= 1

s(λ, x)

∂2s(λ, x)

∂λ2
. (6.23)

Again, the geometry term mb is canceled out. Hence, under our simplified
Lambertian reflectance model, the normalized reddish–green channel depends
only on the surface reflectance function, resulting in

Cλλ = Eλλ

E
, (6.24)

So far we introduced a framework of spatiospectral derivatives and showed their
applicability by deriving an invariant expression for the simplified Lambertian
color model of Equation 6.12. Now that we understand the underlying principles,
we can elaborate on our simplified Lambertian model. Extending the reflection
model to include local intensity variation

E(λ, x) = i(x)mb(x)s(λ, x), (6.25)
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6.1 Full Photometric Invariants

the local intensity term i(x) models a nonuniform illumination intensity and
intensity variations due to, for example, shadows. As the model does not essentially
differ from the original model, the intensity fluctuation i can be absorbed in
the local geometry term mb without any consequences for the derived invariant
expression Cλ and Cλλ. Hence, the C invariant disregards any changes in intensity,
for example, due to shadow, shading, local illumination variation, or any other
fluctuations affecting the intensity.

Once we have a lowest order invariant, any higher order derivative of that
expression inherits the same invariant properties. Hence, by taking higher order
derivatives, we can produce a hierarchy of differential invariants of arbitrarily
large order n. The lowest order invariant is referred to as the fundamental invariant.
For example, spatial derivatives of Cλ and Cλλ are given by

Cλx = EλxE − EλEx

E2
, (6.26)

Cλλx = EλλxE − EλλEx

E2
. (6.27)

Now, the invariant edge strength C2
w can be obtained by taking the squared sum

of the invariant derivatives Cλx, Cλy, Cλλx, and Cλλy

Cw =
√

C2
λx + C2

λy + C2
λλx + C2

λλy, (6.28)

which yields the gradient magnitude independent of local intensity changes.
Hence, this edge detector is invariant to shadow and shading. Figure 6.7 illustrates
the C invariant.

A further extension of the simplified Lambertian reflection model is to include
a colored illuminant. Originally, in Equation 6.12, we assumed white light by
the strict assumption e(λ, x) = c. We relaxed the assumption by allowing spatial
intensity fluctuations and introduced a spatial fluctuation term i(x). Now, we
further relax our model by allowing a colored light source, leading to a term

Figure 6.7 Examples of the normalized colors Cλ denoting the first spectral derivative, Cλλ denoting

the second spectral derivative, and the gradient magnitudes Cw . Note that intensity edges are being

suppressed, whereas highlights are still present.
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6 Derivative-Based Photometric Invariance

e(λ)i(x), which models both the spectrum of the light source and the spatial
fluctuation over the intensity

E(λ, x) = e(λ)i(x)s(λ, x), (6.29)

where, for simplicity of notation, we absorbed the geometry term mb(x) into the
spatial fluctuation i(x). The extended Lambertian reflection model allows us to
derive invariants independent of the illumination. Note that a spectral or a spatial
derivative will act on either e (the spectral derivative) or i (the spatial derivative)
while regarding the other as constant. Both derivatives will act on s. Hence, by
taking a second-order derivative, we might be able to cancel the variation by light
source and geometry.

Let us start with the first-order spectral derivative of the extended Lambertian
reflection model, yielding

Eλ(λ, x) = ∂

∂λ
{e(λ)i(x)s(λ, x)} , (6.30)

= i(x)
∂e(λ)s(λ, x)

∂λ
, (6.31)

= i(x)s(λ, x)
∂e(λ)

∂λ
+ i(x)e(λ)

∂s(λ, x)

∂λ
. (6.32)

Here we see the full power of derivative-based invariance, as the chain rule of
differentiation separates the influence of each individual factor in our model.
Hence, normalization of the spectral derivative Eλ to the intensity E gives

Eλ(λ, x)

E(λ, x)
= 1

e(λ)

∂e(λ)

∂λ
+ 1

s(λ, x)

∂s(λ, x)

∂λ
. (6.33)

Now, the results are composed of a term depending on λ only, being the influence
of the spectrum of the light source, and a term depending on both λ and x, being
related to the body reflectance. After partial differentiation to x,

∂

∂x

{
Eλ(λ, x)

E(λ, x)

}
= ∂

∂x

{
1

s(λ, x)

∂s(λ, x)

∂λ

}
, (6.34)

only the term depending on λ has vanished, and the result depends on the object
albedo only. Hence,

Nλx = ∂

∂x

{
Eλ(λ, x)

E(λ, x

}
, (6.35)

= EλxE − EλEx

E2
, (6.36)
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6.1 Full Photometric Invariants

is invariant for local intensity changes and for the color of the light source under
Lambertian reflection. The second-order spectral derivative in this case is obtained
by further differentiation to λ,

Nλλx = EλλxE2 − EλλExE − 2EλxEλE + 2E2
λEx

E3
. (6.37)

One observation here is that color constancy apparently can only be achieved by
considering a comparison between local pixel values, here implemented by edge
detection through the Gaussian derivative filter. If one compares the derivatives of
the invariants C with the above-derived expressions for N , indeed, Cλx is identical
to Nλx. Hence, one can expect to already achieve some independence of the light
source spectrum when using the C invariant edge detectors. The invariant edge
magnitude Nw can be obtained by

Nw =
√

N2
λx + N2

λy + N2
λλx + N2

λλy, (6.38)

which yields the gradient magnitude independent of local intensity changes and
the color of the light source. Hence, this edge detector is color constant and
invariant to shadow and shading.

Note that the above-derived expressions for reflection of light for the Lambertian
model are also valid for the case of light transmission under the Beer–Lambert
law. Recalling the law in Equation 3.24, and including our assumption above of a
colored light source, we obtain

E(λ, x) = e(λ)i(x) exp (−d(x)c(x)α(λ, x))) , (6.39)

= e(λ)i(x)t(λ, x), (6.40)

where t represents the total extinction coefficient. Note the resemblance with
Equation 6.29. Hence, the expressions derived above are also valid for transparent
materials under the Beer–Lambert law. The N invariant, in that case, is robust for
a change in local illumination intensity and for illumination color. The property
is illustrated in Figure 6.8.

6.1.5 Differential Invariants for the Dichromatic Reflection
Model

We continue our analysis of differential invariants and now turn to the dichromatic
reflection model of Section 3.2. Consider the simplified dichromatic reflection
model,

E(λ, x) = mb(x)cb(λ, x) + mi(x), (6.41)
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6 Derivative-Based Photometric Invariance

Figure 6.8 Example of the color constant gradient magnitude Nw applied to transmissive light

microscopy with an epithelial tissue section under a halogen light source operating at 3400 K and

2500 K. The resulting edges are independent of the color differences induced by the change in

illumination color.

where we assume a neutral interface causing specular reflections to directly
reflect the spectrum of the light source reduced by a scalar factor mi. Hence, the
model describes colored surface reflection through the term cb, shading through
the term mb, highlights through the term mi, and shadow and (local) intensity
changes hidden in both geometrical terms mb and mi. Note that the geometrical
terms are independent of wavelength. Hence, partial differentiation with respect
to wavelength yields

Eλ(λ, x) = ∂

∂λ

{
mb(x)cb(λ, x)

}
, (6.42)
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6.1 Full Photometric Invariants

= mb(x)
∂cb(λ, x)

∂λ
. (6.43)

The result depends on the geometry term mb and the Lambertian reflectance
component of the object cb. Invariance can now be obtained by differentiating
again,

Eλλ(λ, x) = ∂2

∂λ2

{
mb(x)cb(λ, x)

}
, (6.44)

= mb(x)
∂2cb(λ, x)

∂λ2
, (6.45)

after which we normalize them,

Eλλ(λ, x)

Eλ(λ, x)
=

∂cb(λ, x)

∂λ

∂2cb(λ, x)

∂λ2

. (6.46)

Hence, the ratio of Eλ and Eλλ is invariant to highlights, shading, and shadows
and yields the invariant H

H = arctan

{
Eλ

Eλλ

}
, (6.47)

where the arctan is introduced because of the interpretation below and for
numerical stability.

To interpret H , consider the local Taylor expansion at λ0 truncated at second
order,

E(λ0 + �λ) ≈ E(λ0) + �λEλ(λ0) + 1

2
�λ2Eλλ(λ0). (6.48)

The function extremum of Eλ(λ0 + �λ) is at �λ for which the first-order
derivative is zero

d

dλ

{
E(λ0 + �λ)

} = Eλ(λ0) + �λEλλ(λ0) = 0. (6.49)

Hence, for �λ near the origin λ0

�λmax = − Eλ(λ0)

Eλλ(λ0)
. (6.50)

In conclusion, the property H is related to the hue (i.e., arctan
(
λmax

)
) of the

material. For Eλλ(λ0) < 0 the result is at a maximum and describes a band-pass
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6 Derivative-Based Photometric Invariance

(prism) color, whereas for Eλλ(λ0)> 0 the result is at a minimum and indicates a
band-stop (slit) color.

The gradient magnitude of the H invariant is obtained by spatial differentiation

Hx =
√

EλλEλx − EλEλλx

E2
λ + E2

λλ

, (6.51)

which results in the gradient magnitude

Hw =
√

H2
x + H2

y . (6.52)

Beside the hue-related H , an expression for saturation S can be derived:

S = 1

E

√
E2

λ + E2
λλ. (6.53)

Note that saturation S is independent of local intensity changes, shadow, and
shading, but not for highlights. This by now can be easily derived by the reader.
The hue and saturation invariants are illustrated in Figure 6.9.

Figure 6.9 Example of the invariants associated with H. (a) Example image, (b) H, (c) the derived

expression S, and (d) gradient magnitude Hw . Intensity changes and highlights are suppressed in the

H and Hw image. The S image shows a low purity at color borders, due to mixing of colors on two sides

of the border. For all pictures, σ�x = 1 pixel and the image size is 256 × 256.

Common expressions for hue are known to be noise sensitive. In the Gaussian
derivative framework, the Gaussian smoothing offers a trade-off between noise
and detail sensitivity. The influence of noise on hue gradient magnitude Hw for
various σ�x is shown in Figure 6.10. The influence of noise on hue edge detection
is drastically reduced for larger observational scale σ�x.

6.1.6 Summary of Full Color Invariants

Various sets of invariants have been derived in this chapter. The invariant sets
may be ordered by broadness of invariance, where broader sets allow ignorance of
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6.1 Full Photometric Invariants

a larger set of disturbing factors than tighter sets (Fig. 6.11). The set of disturbing
factors is summarized in Table 6.1.

Figure 6.10 The influence of white additive noise on gradient magnitude Hw . Independent Gaussian

zero-mean noise is added to each of the RGB channels, SNR = 5, and Hw is determined for σ�x = 1,

σ�x = 2, and σ�x = 4 pixels. Note the noise robustness of the hue gradient Hw for larger σ�x .

Figure 6.11 Examples of the total color edge strength measures. Ew is shown, which is not invariant.

Note that this image shows intensity, color, and highlight boundaries. Further, Cw and Nw invariant

for shading, and finally, Hw invariant for shading and highlights are shown. The effect of intensity and

highlights on the different invariants are in accordance with Table 6.1.

Table 6.1 Summary of the various color invariant sets and their invariance to specific

imaging conditions.

Viewing surface Illumination Illumination Illumination

direction orientation Highlights direction intensity color

H + + + + + –

N + + – + + +
C + + – + + –

E – – – – – –

Invariance is denoted by +, whereas sensitivity to the imaging condition is indicated by –. Note that the

reflected spectral energy distribution E is sensitive to all the conditions cited.

The table offers the solution of using the narrowest set of invariants for known
imaging conditions, since H ⊂ N ⊂ C ⊂ E. In the case that recording circum-
stances are unknown, the table offers a broad to narrow hierarchy. Hence, an
incremental strategy of invariant feature extraction may be applied. Combination
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6 Derivative-Based Photometric Invariance

of invariants open up the way to edge type classification as suggested in Refer-
ence 65. The vanishing of edges for certain invariants indicate if their cause is
shading, specular reflectance, or material boundaries.

6.1.7 Geometrical Color Invariants in Two Dimensions

So far, we have established color invariant descriptors, based on differentials in
the spectral and the spatial domain in one spatial dimension. When applied in two
dimensions, the result depends on the orientation of the image content. In order
to obtain meaningful image descriptions it is crucial to derive descriptors that
are invariant with respect to translation, rotation, and scaling. For the gray-value
luminance L, geometrical invariants are well established [66]. Translation and
scale invariance is obtained by examining the (Gaussian) scale-space, which is a
natural representation for investigating the scaling behavior of image features [60].
Florack et al. [66] extend the Gaussian scale-space with rotation invariance, by
considering in a systematic manner local gauge coordinates. The coordinate axis
w and v are aligned to the gradient and isophote tangents directions, respectively.
Hence, the first-order gradient gauge invariant is the magnitude of the luminance
gradient

Lw =
√

L2
x + L2

y . (6.54)

Note that the first-order isophote gauge invariant is zero by definition. The
second-order invariants are given by

Lvv = L2
xLyy − 2LxLyLxy + L2

yLxx

L2
w

, (6.55)

related to isophote curvature,

Lvw = LxLy

(
Lyy − Lxx

) − (
L2

x − L2
y

)
Lxy

L2
w

, (6.56)

to flow-line curvature, and

Lww = L2
xLxx + 2LxLyLxy + L2

yLyy

L2
w

, (6.57)

to isophote density. These spatial results may be combined with the color invariants
established before, by straightforward substitution of the spatial derivatives of L
above by the derivatives of the respective color invariants. See Reference 67 for
further details.
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6.2 Quasi-Invariants

6.2 Quasi-Invariants

A straightforward extension of photometric invariance theory to the differential
structure of images would be to transfer the image into photometric invariant
representations (Chapter 4), such as normalized RGB or the hue representation,
and subsequently apply derivatives to these representations to obtain photometric
invariant derivatives. This is only successful to a limited degree. The main
problem is caused by the nonlinear transformations, which are applied to compute
the photometric invariant representations. The nonlinearities result in instabilities
of the photometric invariant representation (typically in the dark, or achromatic
regions). As a consequence, derivatives based on this representation inherit the
instabilities. This observation is the starting point of this chapter where we derive
a set of photometric invariant image derivatives called quasi-invariants. This set
of derivatives is based on linear operations only and therefore does not suffer from
the aforementioned problems. The theory of quasi-invariants is closely related to
the theory of color subspaces of Zickler et al. [68].

A drawback of the quasi-invariants is that, as discussed in the introduction of
this chapter, they are only appropriate for feature detection but not for feature
description. However, an advantage of the quasi-invariants is that they are more
stable and have a higher discriminative power than detectors based on full
photometric variants. In the case of edge detection this means that the quasi-
invariant edge detector obtains better edge localization and is able to detect more
color transitions.

6.2.1 Edges in the Dichromatic Reflection Model

Recall from Section 3.2 that the dichromatic reflection model divides the reflection
in the body (object color) and surface reflection (specularities or highlights)
component for optically inhomogeneous materials. If we assume that shadows
are not significantly colored, a known illuminant, ci = (α, β, γ )T , and neutral
interface reflection, the RGB vector, f = (R, G, B)T , can be seen as a weighted
summation of two vectors (Eq. 3.9):

f (x) = e (x)
(
mb (x) cb (x) + mi (x) ci (x)

)
, (6.58)

in which cb is the color of the body reflectance, ci the color of the surface
reflectance, and mb and mi are scalars representing the corresponding magnitudes
of body and surface reflection. Here we introduce the parameter e (x) to describe
the variations of the intensity of the light source as a function of the spatial
coordinate x.

From the dichromatic reflection model, photometric invariants can be derived
(e.g., normalized RGB, hue). These invariants have the disadvantage that they are
unstable; normalized RGB is unstable near zero intensity and hue is undefined on
the black–white axis (Section 4.5).
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6 Derivative-Based Photometric Invariance

The instabilities can be avoided by analyzing the RGB values in the RGB
histogram [28, 29]. Instead of looking at the zeroth-order structure (the RGB
values), we focus here on the first-order structure of the image (the edges of
the image). A straightforward extension of the photometric invariance theory to
first-order filters can be obtained by taking the derivative of invariant zero-order
representations (e.g., hue). However, these filters would inherit the undesired
instabilities of the photometric invariants. Quasi-invariant derivatives are an
alternative way to arrive at photometric invariant derivatives.

The spatial derivative of the dichromatic reflection model (Eq. 6.58) yields the
following equation for the photometric derivative structure of images:

fx = embcb
x + (

exmb + emb
x

)
cb + (

emi
x + exmi) ci. (6.59)

Here, the subscript indicates spatial differentiation. Since we assume a known
illuminant and neutral interface reflection, ci is independent of x. The derivative
in Equation 6.59 is a summation of three weighted vectors, successively caused
by body reflectance, shadow-shading, and specular change.

It is interesting to investigate Equation 6.59 in more detail. The color derivative
of an image is formed by three parts. It turns out that we can actually predict the
direction of the three parts of f̂x if we know the RGB value (f̂). To do so, we first
have a look at the second part, which causes the shadow-shading changes. We see
that (in the absence of interface reflection) the direction is given by cb, which coin-
cides with the direction of f̂ = 1√

R2+G2+B2
(R, G, B)T . The hat is used to denote unit

vectors. We call this direction the shadow-shading direction because all shadow-
shading variations are in this direction. A slice of the vector field of shadow-
shading directions in the RGB cube is given in Figure 6.12a. The shadow-shading
itself consists of two scalars representing two different physical phenomena. First,
exmb indicates a change in intensity, which corresponds to a shadow edge. And
emb

x is a change in the geometry coefficient, which represents a shading edge.
Next, we consider the third part of Equation 6.59, which is the specular direction

ci in which changes of the specular geometry coefficient mi
x occur. In Figure 6.12b,

R G R
G G

R

B B B
i

(a) (b) (c)

bĉ ĉ b̂

Figure 6.12 (a) Shadow-shading direction ĉ
b
, (b) specular direction ĉ

i
, and (c) hue direction b̂.

Source: Reprinted with permission, © 2005 IEEE.

102

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6.2 Quasi-Invariants

ci is depicted for the case of a white light source for which ĉi = 1√
3
(1, 1, 1)T .

The specular direction is multiplied by two factors. First, emi
x is a change of the

geometric coefficient caused by changes in the angles between viewpoint, object,
and light source. Second, the term exmi represents a shadow edge on top of a
specular reflection.

The direction of the first part of Equation 6.59, which describes material
transitions, is unknown. However, having the direction of two of the causes of an
edge, we are able to construct a third direction, which is perpendicular to these
two vectors (Fig. 6.12c). This direction, named the hue direction b̂, is computed
by the outer product

b̂ = f̂ × ĉi∣∣∣f̂ × ĉi
∣∣∣ . (6.60)

If f̂ and ĉi are parallel, we define b̂ to be the zero vector. Note that the hue
direction is not equal to the direction in which changes of the body reflectance
occur, ĉb

x . However, because it is perpendicular to the two other causes of an
edge, we know that changes in the hue direction can only be attributed to a body
reflectance change.

In conclusion, there are three causes for an edge in an image: a hue, a
shadow-shading, and a specular change. We indicated three directions: the
shadow-shading direction, the specular direction, and the hue direction. The
quasi-invariant derivatives can now be constructed by projecting the image
derivative fx onto these directions.

6.2.2 Photometric Variants and Quasi-Invariants

To construct the quasi-invariants the derivative of an image, fx = (Rx, Gx, Bx)
T ,

is projected on the three directions found in the previous section. We call these
projections variants in case they vary with a physical cause, and we call them
quasi-invariants in case they do not respond to the physical cause, for example,
the projection of the derivative on the shadow-shading direction results in the
shadow-shading variant. The projection of the derivative on the hue direction
results in a shadow-shading-specular quasi-invariant because the hue direction is
perpendicular to changes of these events. Summing the variant and quasi-invariant
results in the image derivative fx. Hence, a variant can be computed by subtracting
the quasi-invariant from the image derivative, and vice versa.

The projection of the derivative on the shadow-shading direction is called the
shadow-shading variant and is defined as

Sx =
(

fx · f̂
)

f̂. (6.61)

The dot indicates the vector inner product. The second f̂ indicates the direction
of the variant. The shadow-shading variant is the part of the derivative that
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6 Derivative-Based Photometric Invariance

(a) (b) (c) (d)

Figure 6.13 Various derivatives applied to Figure 6.15a: (a) color gradient (fx), (b) shadow-shading

quasi-invariant (Sc
x), (c) the specular quasi-invariant (Oc

x), and (d) the specular-shadow-shading

quasi-invariant (Hc
x).

could be caused by shadow or shading. Owing to correlation of the hue and
specular direction with the shadow-shading direction, part of Sx might be caused
by changes in hue or specular reflection.

What remains after subtraction of the variant is called the shadow-shading
quasi-invariant, indicated by superscript c:

Sc
x = fx − Sx. (6.62)

The quasi-invariant Sc
x consists of that part of the derivative which is not caused

by shadow-shading edges (Fig. 6.13b), hence it only contains specular and hue
edges.

The same reasoning can be applied to the specular direction and results in the
specular variant and the specular quasi-invariant:

Ox = (
fx · ĉi

)
ĉi ,

Oc
x = fx − Ox.

(6.63)

The specular quasi-invariant is insensitive to highlight edges (Fig. 6.13c).
Finally, we can construct the shadow-shading-specular variant and quasi-

invariant by projecting the derivative on the hue direction:

Hc
x =

(
fx · b̂

)
b̂ ,

Hx = fx − Hc
x.

(6.64)

Hc
x does not contain specular or shadow-shading edges (Fig. 6.13d).

6.2.3 Relations of Quasi-Invariants with Full Invariants

This section investigates the relation between quasi-invariants and full invariants.
It turns out that there exists a geometrical relation in RGB space between the two.
This relationship sheds light on the stability and noise robustness of quasi- and
full invariants.
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6.2 Quasi-Invariants

An orthogonal transformation that has the shadow-shading direction as one
of its components is the spherical coordinate transformation. Transforming the
RGB color space results in the spherical color space or rθϕ-color space. The
transformations are

r = √
R2 + G2 + B2 = |f| ,

θ = arctan(G
R ),

ϕ = arcsin

( √
R2 + G2

√
R2 + G2 + B2

)
.

(6.65)

Since r is pointing in the shadow-shading direction, its derivative corresponds to
Sx:

rx = RRx + GGx + BBx√
R2 + G2 + B2

= fx · f̂ = ∣∣Sx

∣∣ . (6.66)

The quasi-invariant Sc
x is the derivative energy in the plane perpendicular to the

shadow-shading direction. The derivative in the θϕ-plane is given by

∣∣Sc
x

∣∣ =
√(

rϕx

)2 + (
r sin ϕθx

)2
,

= r
√(

ϕx

)2 + (
sin ϕθx

)2
.

(6.67)

To conserve the metric of RGB space the angular derivatives are multiplied
by their corresponding scale factors, which follow from the spherical transfor-
mation. For matte surfaces both θ and ϕ are independent of mb (substitution
of Eq. 6.58 in Eq. 6.65). Hence, the part under the root is a shadow-shading
invariant.

By means of the spherical coordinate transformation a relation between the
quasi-invariant and the full invariant is found. The difference between the quasi-

invariant
∣∣Sc

x

∣∣ and full invariant sx =
√(

ϕx

)2 + (
sin ϕθx

)2
is the multiplication

with r, which is the L2 norm for the intensity (Eq. 6.65). In geometrical terms,
the derivative vector that remains after subtraction of the part in the shadow-
shading direction is not projected on the sphere to produce an invariant. This
projection introduces the instability of the full shadow-shading invariants for low
intensities

lim
r→0

sx does not exist

lim
r→0

∣∣Sc
x

∣∣ = 0.
(6.68)

The first limit follows from the nonexistence of the limit for both ϕx and θx
at zero. The second limit can be concluded from lim

r→0
rϕx = 0 and lim

r→0
rθx = 0.

Concluding, the multiplication of the full invariant with |f| resolves the instability.
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6 Derivative-Based Photometric Invariance

(a) (b) (c) (d) (e) (f)

Figure 6.14 (a) Red–blue edge with a decreasing intensity of the blue patch going in the upward

direction. Responses of (b) normalized RGB derivative and (c) shadow-shading quasi-invariant (Sc
x).

(d) Red–blue edge with decreasing saturation going in the upward direction. Responses of (e) hue

derivative (hx) and (f) specular-shadow-shading quasi-invariant (Hc
x).

Hence, the quasi-invariant remains stable in low intensity regions, whereas the
full invariant is unstable in these regions.

An example of the responses for the shadow-shading invariant and quasi-
invariant is given in Figure 6.14. In Figure 6.14a, synthetic image of a red–blue
edge is depicted. The blue intensity decreases along the y-axis. Gaussian uncor-
related noise is added to the RGB channels. In Figure 6.14b, the normalized
RGB response is depicted and the instability of low intensities is clearly visible.
For the shadow-shading quasi-invariant (Fig. 6.14c), no instability occurs and
the response just diminishes at low intensities. Note that the instable region is
particularly inconvenient because shadow-shading edges tend to produce low
intensity areas.

The orthonormal transformation which accompanies the specular variant is
known as the opponent color space. For a known illuminant ci = (α, β, γ )T it is
given by

o1 = βR − αG√
α2 + β2

,

o2 = αγ R + βγ G − (α2 + β2)B√(
α2 + β2 + γ 2

) (
α2 + β2

) , (6.69)

o3 = αR + βG + γ B√
α2 + β2 + γ 2

.

The relations with the variant and its complement are
∣∣Ox

∣∣ = o3x and
∣∣Oc

x

∣∣ =√
o12

x + o22
x .

As discussed in Section 6.2.2 the shadow-shading-specular quasi-invariant is
both perpendicular to the shadow-shading direction and the specular direction.
An orthogonal transformation that satisfies this constraint is the hue saturation
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6.2 Quasi-Invariants

intensity transformation. It is actually a polar transformation on the opponent
color axis o1 and o2.

h = arctan

(
o1

o2

)
,

s =
√

o12 + o22, (6.70)

i = o3.

The changes of h occur in the hue direction, hence the derivative in the hue
direction is equal to the shadow-shading-specular quasi-invariant,

∣∣Hc
x

∣∣ = s · hx. (6.71)

The multiplication with the scale factor s follows from the fact that for polar
transformations, the angular derivative is multiplied by the radius.

The hue, h, is a well-known full shadow-shading-specular invariant. Equation
6.71 provides a link between the derivative of the full invariant, hx and the
quasi-invariant

∣∣Hc
x

∣∣. A drawback of hue is that it is undefined for points on
the black–white axis, that is, for small s. Therefore, the derivative of hue is
unbounded. In Section 6.2.2, we derived the quasi-invariant as a linear projection
of the spatial derivative. For these projections, it holds that 0 <

∣∣Hc
x

∣∣ <
∣∣fx

∣∣,
and hence the shadow-shading specular quasi-invariant is bounded. It should
be mentioned that small changes round the gray axis result in large changes
of the direction or ‘color’ of the derivative, for example, from blue to red, in
both the quasi-invariant and the full invariant. However, the advantage of the
quasi-invariant is that the norm remains bounded for these cases. For example,
in Figure 6.14d a red–blue edge is depicted. The blue patch becomes more
achromatic along the y-axis. The instability for gray values is clearly visible in
Figure 6.14e, whereas in Figure 6.14f, the response of the quasi-invariant remains
stable.

Full invariants possess strong photometric invariance meaning that they
are invariant with respect to a physical photometric parameter, for instance,
the geometric term mb in the case of normalized RGB. Hence, the first-order
derivative response of such invariants does not contain any shadow-shading
variation. Our approach determines the direction in the RGB cube in which
shadow-shading edges exhibit themselves. This direction is then used to
compute the quasi-derivative, which shares with full invariants the property
that shadow-shading edges are ignored. However, the quasi-invariants are not
invariant with respect to mb. For the shadow-shading quasi-invariant, subtraction
from Equation 6.59 of the part in the shadow-shading direction cb results in

fx = emb (
cb

x − cb
x · ĉb) , (6.72)
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6 Derivative-Based Photometric Invariance

which is clearly not invariant for mb and e. Therefore, quasi-invariants are said
to only possess weak photometric invariance. In a similar way the specular-
shadow-shading quasi-invariant can also be proved to be dependent on mb

and e.
The fact that quasi-invariant only possess weak photometric invariance means

that they are dependent on mb and e, which limits their applicability. They
cannot be used for feature description where edge responses are compared under
different circumstances, such as content-based image retrieval. However, they can
be used for applications that are based on feature detection, such as shadow-edge-
insensitive image segmentation, shadow-shading-specular independent corner
detection, and edge classification.

A major advantage of the quasi-invariants is that their response to noise is
independent of the signal. In the case of additive uniform noise, the noise in the
quasi-invariants is also additive and uniform since it is a linear projection of the
derivative of the image. This means that the noise distortion is constant over the
image. We have seen that full invariants differ from the quasi-invariants by scaling
with a signal-dependent factor (the intensity or saturation), and hence their noise
response is also signal dependent. Typically, the shadow-shading full invariant
exhibits high noise distortion around low intensities, while the shadow-shading-
specular full invariant has high noise dependency for points around the achromatic
axis. This is shown in Figure 6.14. The uneven levels of noise throughout an
image hinder further processing for the full invariants.

A second advantage of photometric variants and quasi-invariants is that they
are expressed in the same units (i.e., being projections of the derivative, they are
expressed in RGB value per pixel). This allows for a quantitative comparison
of their responses. An example is given in Figure 6.15. Responses along two
lines in the image are enlarged in Figure 6.15c and Figure 6.15d. The line
in Figure 6.15c crosses two object edges and several specular edges. It shows
nicely that the specular variant almost perfectly follows the total derivative
energy for the specular edges in the middle of the line. In Figure 6.15d a line is
depicted that crosses two object edges and three shadow-shading edges. Again,
the shadow-shading variant follows the gradient for the three shading edges. A
simple classification scheme results in Figure 6.15b. Note that full invariants
cannot be compared quantitatively because they have different units.

6.2.4 Localization and Discriminative Power of Full
and Quasi-Invariants

In this subsection, we compare the performance of quasi-invariants with that of
full invariants on the task of edge detection. We compare both approaches based
on edge displacement and discriminative power.

In order to investigate the discriminative power and edge displacement of
the proposed invariants, edge detection between 1012 different colors of the

108

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6.2 Quasi-Invariants
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Figure 6.15 (a) Input image with two superimposed dotted lines, which are plotted in (c) (d). (b) Edge

classification result, with white object edges, black shadow edges, and light gray specular edges. (c),

(d) The derivative strength along lines indicated in (a). Source: Reprinted with permission, © 2005

IEEE.

PANTONE color system is examined (Fig. 6.16). The PANTONE colors span a
convex, nontriangular set in chromaticity space, hence they may be considered as
a mixture of various inks. The set is representative for natural surface reflection
spectra, since most reflection functions may be modeled by a linear five- to
seven-parameter model [69]. The colors are uniformly distributed in color space.
The 1012 PANTONE colors are recorded by an RGB camera (Sony DXC-
930P), under a 5200 K daylight simulator (Little Light, Grigull, Jungingen,
Germany).

In this experiment, we combine two PANTONE patches into a single image
and perform edge detection. We evaluate the quality of the edge detection by
measuring edge displacement and discriminative power. The discriminative power
is the number of edges that can be differed; with increasing photometric invariance
this is expected to drop. Edge detection is performed between the 1012 different
colors from the PANTONE [70] color system. The patches from PANTONE are
reduced to one RGB value by a large Gaussian averaging operation. Every one of
the 1012 different RGB values is combined with all other RGB values, resulting
in a total of N = 1012 ∗ 1011/2 = 511566 edges of M = 32 pixels length. The

PANTONE is a trademark of Pantone, Inc.

We use the PANTONE edition 1992-1993, Groupe BASF, Paris, France.
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6 Derivative-Based Photometric Invariance

Figure 6.16 Examples of PANTONE colors, which are applied to compute the discriminative power of

the various photometric invariants.

edge position is determined by computing the maximum response path of the
derivative energy in a region of 20 pixels around the actual edge. This results in
an edge estimation, which is compared with the actual edge. We define two error
measures. First is the average displacement �:

� =

∑
{xi,j;|xi,j−x0|> 0.5}

∣∣xi,j − x0

∣∣
N · M

, (6.73)

in which xi,j is the jth edge pixel of the ith edge. Because the actual edge is located
between two pixels, displacements equal to half a pixel are considered as a perfect
match. The second error measure is the percentage of missed edges, ε. An edge
is classified missed when the variation over one edge:

var(i) = 1

M

M∑
j=1

∣∣∣∣∣xi,j − 1

M

∑
k

xi,k

∣∣∣∣∣ , (6.74)

is larger than 1 pixel. For the Gaussian derivative, a scale σ = 1 is chosen. The
experiments are performed with uncorrelated Gaussian noise of standard deviation
5, and 20.
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6.3 Summary

The results are shown in Table 6.2. The standard image derivative fx shows
very small edge displacement and is able to discriminate most color patches. This
is not surprising since the PANTONE colors are made to look different. Looking
at the results of the invariants we see two observations that could be expected

Table 6.2 The displacement, �, and the percentage of missed edges, ε, for six different

edge detectors.

Noise → 5 20

Detector ↓ Invariance � ε � ε

fx — 0.003 0.1% 0.07 2.4%

Sc
x s 0.04 1.1% 0.38 11.7%

C S 0.20 2.5% 1.34 25.9%

Hc
x s & h 0.29 6.5% 0.86 25.2%

H S & H 0.77 11.5% 2.03 39.2%

N I 0.23 2.7% 1.50 28.9%

Gaussian noise of standard deviation 5, and 20, was added. For each edge detector the photometric

invariance is given: s indicates shadow-shading invariance, h indicates specular invariance, and i indicates

illuminant invariance. Capitals are used to indicate full invariance.

theoretically. First, we can see that adding invariance lowers the discriminative
power and increases the edge displacement. For example, a photometric shadow-
shading invariant edge detector cannot distinguish between patches that could be
caused by the same material reflectance but with a different intensity. Second,
quasi-invariants outperform full invariants on edge detection. In comparison with
full invariants, they have about half the edge displacement and miss around
half the number of edges. This is also expected, because quasi-invariants do
not have the nonlinear instabilities of full invariants. Therefore, in case of
feature detection it is advisable to apply quasi-invariants. However, feature
description requires full photometric invariance as we also show in more detail in
Chapter 14.

6.3 Summary

In this chapter we have discussed how to extend photometric invariance theory to
the differential structure of images. We have outlined two approaches based on
full and quasi-invariance.

The full invariants are derived from differential calculus, aiming to cancel
unwanted factors in the photometric model. By applying the Gaussian mea-
surement framework, the derived theoretical invariants are converted into image
features. These features are obtained by the appropriate combinations of Gaussian
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6 Derivative-Based Photometric Invariance

smoothing and derivative filters, which are applied to the opponent color channels.
We have given examples and derivations of full invariants for the Lambertian and
dichromatic reflectance model.

The quasi-invariants are derived from the dichromatic reflection model and
have been proved to differ from full photometric invariants by a local normal-
ization factor. These quasi-invariants do not have the inherent instabilities of
full photometric invariants, and from theoretical and experimental results it is
shown that quasi-invariants have better noise characteristics and discriminative
power and introduce less edge displacement than full photometric invariants for
the task of feature detection. The lack of full photometric invariance limits the
applicability of quasi-invariants, and therefore quasi-invariants cannot be used for
feature extraction.
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7
7 Photometric Invariance

by Machine Learning

With contributions by José M. Àlvarez and Antonio M. López

As shown in the previous chapters, the choice of a color model is of great impor-
tance for many computer vision algorithms, as the chosen color model induces
the equivalence classes to the actual algorithms. As there are many color models
available, the inherent difficulty is how to automatically select a single color model
or, alternatively, a weighted subset of color models producing the best result for a
particular task. The subsequent hurdle is how to obtain a proper fusion scheme for
the algorithms so that the results are combined in a proper setting. In the previous
chapters, physical reflection models (e.g., Lambertian or dichromatic reflectance)
are used to derive color invariant models. However, this approach may be too
restricted to model real-world scenes in which different reflectance mechanisms
can hold simultaneously. Instead of modeling the world by a single reflection
model, we now focus on how color invariance can be obtained by machine learning.

The learning process is based on the selection of positive examples (e.g.,
colored image patches of a certain object to be recognized) to obtain color
invariant ensembles. Of course, the training examples should include a broad
range of pixel values capturing all possible imaging conditions under which the
object can be captured. Using these training samples, the aim is to arrive at color

Portions reprinted, with kind permission from Springer Science+Business Media B.V., from ‘‘Learning
Photometric Invariance for Object Detection,’’ by José M. Álvarez, Theo Gevers and Antonio
M. López, in International Journal of Computer Vision, Volume 90 (1), pp 45–61, March 2010 ©
2010 Springer.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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7 Photometric Invariance by Machine Learning

ensembles that yield a proper balance between invariance (repeatability) and
discriminative power (distinctiveness).

In this chapter, a learning approach that minimizes the estimation error is
presented. The method is also suited to deal with sequential data. A weighting
scheme is used to incorporate the dynamics of observations over time. The
ensemble is periodically updated considering the new data and its temporal order.
The chapter is organized as follows. First, the learning-based fusion scheme is
discussed. Then, the evolution of data over time is included. Finally, the approach
is applied to two applications: facial skin detection and road detection (RD). More
information can be found in Reference 71.

7.1 Learning from Diversified Ensembles

In machine learning, combining multiple classifiers that consider the differences
between their components is a powerful technique to improve the performance of
single classifiers [72–74]. The measure of disagreement between components is
referred to as diversity. A promising subset of combining strategies are those using
diversity in the process of generating the ensemble [74]. For instance, Melville
and Mooney [75] consider diversity as being the disagreement of an ensemble
member with the ensemble’s prediction. Jacobs [76] proposes a minimum variance
estimator where the estimated aggregate has a variance at most as large as the
variance of any of the input features. Stokman and Gevers [77] use the Markowitz
diversification criterion [78] in the process of defining the ensemble. The method
assumes that each descriptor can be characterized by an unimodal distribution
and computes the best combination that provides maximal feature discrimination.
However, in practice, the distribution of the training data is often not unimodal,
leading to estimation errors that are maximized by the quadratic optimization
technique used to compute the ensemble [79].

For a given combination strategy, proper selection of its components is
important to improve the performance of the strategy. The ideal situation would
be a set of classifiers with uncorrelated errors. Then, these classifiers could be
combined to minimize the effect of these failures. In fact, the combination of a
set of similar classifiers will not outperform the individual members [74]. The
improvement that can be obtained by selecting appropriate classifiers can even be
larger when the method uses a learning step to adapt to the specific classification
problem (e.g., boosting, bagging and random forests). To facilitate the learning
procedure, systems use training data corresponding to the object to be recognized
(i.e., positive examples) and, for instance, background (i.e., negative examples).
Systems using only positive data within the training step are more desirable since
obtaining a comprehensive representation of negatives or unknown universe is
often unfeasible. In addition, if negative data is not chosen properly, this may lead
to a lower classification accuracy [80].

Therefore, the learning phase is based only on positive examples. The aim is
to model a homogeneously colored image region (object) recorded under varying
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7.1 Learning from Diversified Ensembles

imaging conditions (views) by combining different color models (observations).
At each view, the image region contains multiple pixels (samples of an obser-
vation). Then, the color of the region is modeled using a single value (expected
color E[ξO]) with small deviations from this value (σO) by

O = E[ξO] ± σO. (7.1)

Definitions are given in Table 7.1 and the modeling process is illustrated in
Figure 7.1.

Table 7.1 Definitions and correspondence between symbols and color-related terms.

Definitions

Abstract Terms Color Terms

Object O Homogeneously colored image region.

View Image region recorded under a different imaging

condition (i.e., illumination, shading)

Object representation ξi Expected value using the ith color model

independent of the imaging conditions

Observation ξ̃ij Expected value using the ith color model for the jth

view

Samples of observation ξijl Pixel values used to estimate the ith color model

data distribution for the jth view

Color to be
modeled

Different views
of the object

Data distribution
of color planes

1. Contribution of each
   color plane (weights)

2. Color model:

Multiview
combination

E [xO]

sO

x∼
N1

x∼
N2 x∼

22
x∼

12

x∼
1K
x∼

2K

x∼
NK

x∼
11

x∼
21
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Figure 7.1 The color of an image region is modeled combining the information of different

color models from different views.
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7 Photometric Invariance by Machine Learning

To build the model, it is assumed that L different samples of N different
observations for K views of the object are available (ξijl, i ∈ [1, 2, . . . , N], j ∈
[1, 2, . . . , K], l ∈ [1, 2, . . . , L]). These samples correspond, for example, to the
same object imaged under varying imaging conditions (e.g., shading, highlights,
and illumination) generating variations of the observations other than device-
dependent recording noise. Multiple samples of each observation are provided
to reduce the influence of noise. A set of N orthogonal and nonredundant
representations of the object is estimated (ξ1, . . . , ξN ) and the object is modeled
by a weighted linear combination of the representative (expected) values of each
observation E[ξi]:

E[ξO] =
N∑

i=1

wiE[ξi], (7.2)

where w = [w1, . . . , wN ] is the contribution of each observation to the final
combination. Further, the standard deviation of the object patch is given by

σ 2
O = E[(E[ξO] − E[ξO])2]

= E

⎡
⎣(

N∑
i=1

wiE[ξi] −
N∑

i=1

wiE[ξi]

)2
⎤
⎦

= E

⎡
⎣(

N∑
i=1

wi(E[ξi] − E[ξi])

)2
⎤
⎦

= E

⎡
⎢⎣

⎛
⎝ N∑

i,j=1

wiwj(E[ξi] − E[ξi])(E[ξj] − E[ξj])

⎞
⎠

2
⎤
⎥⎦

=
N∑

i,j=1

wiwjσij

= w�wT , (7.3)

where � is the covariance matrix representing the existing relations between
observations when the viewing conditions are changing.

To estimate the representative (expected) values of each observation E[ξi],
a multiview framework is taken. This framework characterizes the information
available from each observation using two different stages. First, the central value
of each observation for each view (ξij) is computed using the data distribution
of the samples available (ξijl). In particular, the mode of the samples available
for the jth view of the ith observation (ξ̃ij) is used. Using this central value, the
algorithm minimizes the influence of skewed distributions, thus minimizing the
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7.1 Learning from Diversified Ensembles

estimation error. Second, the expected value of an observation given the values of
different views E[ξi] is estimated assuming that each available view has the same
probability of appearing. In particular, the mean value of central values for each
view is considered as follows:

E[ξi] = 1

K

K∑
j=1

ξ̃ij. (7.4)

What remains is the estimation of wi. A proper combination of observations
leads to a model for which the expected value of an object (E[ξO]) is close to
a reference value (E[ξOR

]) and for which its variance is minimized. In this way,
the combination reduces the deviations from the expected value due to varying
viewing conditions. This reference value is, for example, the value which is
obtained when ideal acquisition conditions are obtained. Hence, computing wi
can be posed as an optimization problem formulated as follows:

minimize
N∑

i,j=1

wiwjσij (7.5)

subject to E[ξO] ≥ E[ξOR
],

N∑
i=1

wi = 1, (7.6)

with the constraint that the total contribution of observations must sum up to 1.
Quadratic optimization techniques [81] can be applied to solve Equation 7.5

and provide a set of optimum solutions (efficient ensembles) called the efficient
frontier [79]. That is, the efficient frontier contains different values of E[ξO]
and associated weights that minimize the corresponding σO. However, quadratic
optimization techniques tend to select components with attractive characteristics.
In this way, components with lesser appealing features are not selected. This is
the case when the estimation error is likely to be maximal [79, 82]. Therefore,
in order to deal with the estimation error and improve the diversity of the
ensemble, a resampling technique is adopted. This resampling technique uses a
Monte Carlo simulation to obtain a set of efficient ensembles called resampled
frontier [83]. Ensembles lying on this resampled frontier are composed of
weight vectors obtained as the average of the efficient frontiers given a certain
expected value. The performance of resampled efficient ensembles is better
than the performance of those ensembles obtained using quadratic optimization
techniques [82, 84].

Finally, the most appropriate ensemble is selected from the set of ensembles
lying on the efficient frontier using the Sharpe ratio (SR) [85]. This ratio is a single
statistical performance measure of variance-adjusted expected return defined as
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7 Photometric Invariance by Machine Learning

SR = E[ξO]

σO
. (7.7)

The highest SR corresponds to the ensemble in the frontier obtaining the best
performance. If a benchmark ensemble ξR exists, the performance of an ensemble
in the frontier (Pe) is computed as follows:

Pe = 1

(|E[ξO] − ξR|)σO
, (7.8)

where the highest performance corresponds to the most appropriated ensemble.
The above computation of weights and the ensemble selection method are

summarized as follows:

1. Estimate the efficient frontier using the training data and quadratic pro-
gramming techniques. This frontier is composed of ensembles varying from
minimum variance to the maximum expected value ensembles. Divide the
difference between the minimum and maximum return in m ranks.

2. Estimate the covariance matrix, �, and expected values, E[ξi], of the training
data,

E[ξi] = 1

K

K∑
j=1

ξ̃ij, (7.9)

� = (σi,j), (7.10)

where K is the number of views.

3. Resample, using the training inputs in step 2, taking D draws for the input
multivariate distribution. The number of draws D reflects the degree of
uncertainty in the training data. Compute a new covariance matrix from
the sampled series. The estimation error will result in different covariance
matrices and mean vector from those in step 2.

4. Compute the efficient frontier for the inputs derived in step 3. Calculate the
optimal ensemble weights for m equally distributed points along the frontier.

5. Repeat step 3 and step 4 P times. Calculate the averaged ensemble weights
for each observation,

wresampled
i = 1

P

P∑
im=1

wim, (7.11)

where wim denotes the weight vector for the mth ensemble along the frontier
for the ith observation.
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7.2 Temporal Ensemble Learning

6. Evaluate the frontier of averaged ensembles by the variance–covariance
matrix from the original training data to obtain the resampled frontier.

7. Select the ensemble from the frontier that exhibits the highest performance
Equation (7.7 or Equation 7.8 as required).

7.2 Temporal Ensemble Learning

In this section, the model is extended to also take into account the evolution of
observations over time (e.g., from still images to videos). The key idea is to include
temporal information in the estimation of the parameters E[ξ1], . . . , E[ξN ] and �.
These parameters are computed considering that each view of a given observation
provides the same information to the final ensemble. However, because of the
dynamic nature of data sequences, local observations should be taken into account
more prominently than distant ones. In this way, the modification of the algorithm
consists of using time series analysis to predict the expected values of observations
rather than considering simple averages over views.

To express the dynamic structure of the data (observations and ensembles), a
weighting process is used. Further, the dynamic structure of the variance within
observations is also considered. There are two models to deal with these kinds
of variations: exponentially weighted moving average (EWMA) and generalized
autoregressive conditionally heteroscedastic (GARCH). Both models assume that
serial correlation is present in the dynamics of the observations. As a result, both
models assign higher weights to recent values than to the older ones. In this
chapter, the EWMA model is used mainly due to its simplicity (less parameters
to estimate) and the ability to cope with changes in the standard deviation of the
incoming data [86, 87].

EWMA uses a decay factor that weighs the change of each past observation.
More recent observations receive higher weights than older ones. Using EWMA,
the input parameters of the optimization process are derived as follows:

E[ξi] = 1∑K
j=1 λj−1

K∑
j=1

λj−1ξ̃ij, (7.12)

� = (σnm) = (1 − λ)

K∑
j=1

λj−1(ξ̃nj − E[ξn])( ˜ξmj − E[ξm]), (7.13)

where λ is the decay factor. This factor determines both the degree of weighting of
recent observations and the speed with which the volatility measure will return to
a lower level after a large return. A lower decay gives a higher weighting to recent
values. K is the number of past observations unlike in the previous section where
K was the number of different views available for each observation. Parameter K
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7 Photometric Invariance by Machine Learning

can be set to infinity since the weighting procedure will rapidly reduce to zero for
distant observations. Since 0 < λ < 1, λn −→ 0 when n −→ ∞, the model will
eventually place a zero weight on observations far in the past.

7.3 Learning Color Invariants for Region Detection

In this section, the method is applied to color-based region detection. In other
words, the detection of object patches in images is recorded under varying
imaging conditions using a set of color models composed of both color variant
and invariant models. The goal is to derive color invariance by learning from
color models to obtain diversified color invariant ensembles.

Every possible transformed color model is considered as an observation of
the same object (color region) and each view corresponds to a different imaging
condition such as lighting, viewing, and illumination variations. Further, each pixel
within the region corresponds to different sampling values of the observation.
Hence, the proper interpretation of the algorithm is as follows: O is the data
distribution of the final combination of color (invariant) planes/models and E[ξO]
and σO its central value and variance respectively. E[ξi] is the expected value
of the ith color (invariant) plane estimated using the multiview procedure. That
is, considering first the data distribution from pixels of each view and then the
average value of the views. Finally, wi denotes the contribution of the ith color
model to the final ensemble.

During training (i.e., estimating E[ξO], σO and wi), the following steps are
performed:

■ Select a set of training images containing the object to be detected, imaged
under different acquisition conditions (e.g., varying illumination).

■ Select a region of interest for each training image (ith) and for each color
model (jth) estimate ξ̃ij using the data distribution of pixels in the training
region.

■ Estimate the correlation matrix � of these values. This matrix contains
information regarding the relative variations of each color model when the
acquisition conditions vary.

■ Estimate the weights w using the Monte Carlo method considering the
central value of each color model for each view and the covariance matrix
as input data.

■ Compute E[ξO] and σO using Equations 7.2 and 7.3, respectively.

■ Finally, compute the SNRO ratio of the model as follows:

SNRO = E[ξO]

σO
. (7.14)
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7.3 Learning Color Invariants for Region Detection

Then, during classification, the following steps are performed:

■ Convert the image into the color models (the same as during training) and
apply the weights w obtained in the training phase to combine them. This
leads to a gray-level image.

■ Estimate the signal-to-noise ratio, SNR, by dividing, at each pixel, the
local mean value by the local standard deviation. The SNR is estimated
using a rectangular region (M × N pixels) at each pixel.

■ Compute the error between the SNRO and the local SNR for each pixel.
The lower the error, the more similar the colors are.

■ Threshold the error image e to obtain the final binary mask C:

C(x, y) =
{

1 if e(x, y) < T

0 otherwise.
(7.15)

The appropriate value of T is obtained using automatic thresholding
techniques such as the isodata method [88].

Finally, if temporal adaptation is required, the following steps are performed:

■ Use the classification procedure to classify pixels in the first image.

■ Use the current result to estimate the central value of each color model for
that frame. Add these central values to the historical data.

■ Estimate input parameters to the optimization process (� and
E[ξ1], . . . , E[ξN ]) using the EWMA process outlined in Section 7.2.

■ Select the optimal ensemble from the frontier considering the same SNR
and reference as in the initial training stage.

■ Use the new ensemble to process the incoming image.

To provide robustness against confounding imaging conditions (e.g.,
illumination, shading, highlights, and interreflections), different color models
exhibiting different photometric invariance properties have been discussed
in the previous chapters. For instance, for the dichromatic reflection model,
normalized color rgb is to a large extent invariant to a change in camera
viewpoint, object position, and the direction and intensity of the incident
light. See Table 7.3 for an overview of color models and their invariance
properties. In addition to the models described in previous chapters, the
illumination invariant (�) proposed in Reference 89 is included. This color
invariant requires a calibration parameter, the invariant direction which
is an intrinsic parameter of the camera. Currently, this invariant direction
can be found either by following the calibration procedure outlined in
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7 Photometric Invariance by Machine Learning

Table 7.2 Derivation of opponent color space, normalized rgb, HSV and CIELab color

spaces from RGB values.

Opponent Color Space

⎛
⎜⎜⎝

O1

O2

O3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

−1√
2

0

1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝R

G

B

⎞
⎟⎠

Normalized rgb

r = R

R + G + B

g = G

R + G + B

b = B

R + G + B

HSV

⎛
⎜⎝ V

V1

V2

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

3

1

3

1

3
−1√

6

−1√
6

2√
6

1√
6

−2√
6

1√
6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝R

G

B

⎞
⎟⎠

H = arctan
V2

V1

S =
√

V 2
1 + V 2

2

CIE Lab

⎛
⎜⎝X

Y

Z

⎞
⎟⎠ =

⎛
⎜⎝0.490 0.310 0.200

0.177 0.812 0.011

0.000 0.010 0.990

⎞
⎟⎠

⎛
⎜⎝R

G

B

⎞
⎟⎠

L = 116

(
Y

Y0

)
− 16

a = 500

[(
X

X0

)
−

(
Y

Y0

)]

b = 200

[(
Y

Y0

)
−

(
Z

Z0

)]

X0, Y0, and Z0 are the coordinates of a

reference white point.

Table 7.3 Invariance of color models (derived in Table 7.2) for different types of lighting

variations, that is, light intensity (LI) or light color (LC) change and/or shift [92].

Taxonomy of LI LI LI change LC LC change

color spaces change shift and shift change and shift

RGB − − − − −
O1,O2 − + − − −
O3, Intensity, L − − − − −
Saturation (S) − + + − −
Hue (H) + + + − −
r, g, a, b + − − − −
� + + + + +

Invariance is indicated with ‘+’ and lack of invariance with ‘−’.

Reference 89 or by using a procedure that determines the invariant direction from
a single image [90] or from a set of images [91]. The former consists in acquiring
images of a Macbeth color checker under different daytime illuminations and then
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7.3 Learning Color Invariants for Region Detection

obtaining the invariant direction by analyzing the log chromaticity plot generated
from these images. The latter considers the entropy of a single image to compute
the invariant direction. Then, the method consists in generating invariant images
using all the possible invariant directions within a range. The optimum direction
is the one minimizing the entropy of its corresponding illumination-invariant
image [90].

Considering all the color models in Table 7.3, a set is obtained of both
color variants and invariants to achieve both distinctiveness and repeatability,
respectively. The next step is to obtain a nonredundant subset. The covariance
matrix � provides information about correlation between color models. This
analysis can be done using principal component analysis (PCA) [93]. Then,
correlation between color models is represented by the loadings of each color
model (Fig. 7.2). The input data to PCA is the matrix containing the expected
values for each view of each color model (ξij). The closer two points are in
the loading space, the more correlated they are (and their corresponding color
models). The number of principal components depends on the data and the amount
of variation. The selection of color models that represent each cluster (e.g., S
or b in Figure 7.2) is computed by the Hartigan’s test for unimodality [94]. In
this way, an orthogonal (variant/invariant) and nonredundant (decorrelated) color
model subset is obtained.
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Figure 7.2 PCA is

used to reduce

redundancy within

the training data.

The analysis is

done using the

loadings plot of

each color model.

This example

corresponds to the

training set from the

face database.
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7 Photometric Invariance by Machine Learning

7.4 Experiments

In this section, the algorithm is applied to two different databases: (1) the Caltech
Face database [95] and (2) a road sequence taken by an onboard camera. The
first application is to detect facial skin in the Caltech image dataset. The other
one is to detect roads under uncontrolled imaging conditions. We used 13 color
models (�, R, G, B, r, g, O1, O2, L, a, b, S, V ). The third opponent color O3 is
excluded since it provides intensity information that is already provided by V .
Further, the hue component H from the HSV color space is excluded because
of its instability being close to the achromatic axis [96]. Further, the calibration
required to compute � is done using the approach proposed in Reference 91.
Finally, the reference white point for deriving CIELab color space is set to the
D65 white point (X0 = 0.9505, Y0 = 1.0000, Z0 = 1.0888) [25].

7.4.1 Error Measures

Quantitative evaluations are provided using pixel-based measures; see Table 7.4,
from which the following error measures are computed: quality, detection accu-
racy, detection rate, and effectiveness (see Table 7.5. Each of these measures
provides a different insight into the performance of a method. Quality takes

Table 7.4 The contingency table.

Ground Truth

Contingency table Nontarget Target

Detection Nontarget TN FN

Result Target FP TP

Algorithms are evaluated based on the number of pixels correctly and incorrectly classified.

Table 7.5 Pixel-wise measures used to evaluate the

performance of different algorithms.

Pixel-wise measure Definition

Quality (ĝ) ĝ = TP

TP + FP + FN

Detection accuracy (DA) DA = TP

TP + FP

Detection rate (DR) DR = TP

TP + FN

Effectiveness (F) F = 2DADR

DA + DR

These measures are defined using the entries of the contingency table

(Table 7.4.)
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7.4 Experiments

into account the completeness of the extracted data as well as its correctness.
Detection accuracy, also known as precision, is the probability that the result is
valid. Detection rate, or recall, is the probability that the ground truth data is
detected. Effectiveness is a single measure that trades off the detection accuracy
versus detection rate. Further, the performance of our method is compared, on
each dataset, to existing algorithms. Pair-wise comparisons between algorithms
are computed by the Wilcoxon statistical significance test [97].

7.4.2 Skin Detection: Still Images

To detect skin pixels of faces, the Frontal Face Image Database of Caltech is used.
This image dataset contains 450 face images taken from 27 different persons
under different lighting, expressions and backgrounds. The appearance of the face
in these images is clearly influenced by different illumination, shading, skin tone,
and so on (Fig. 7.3). Ground truth is generated by manually segmenting all the
images in the database. The training set is obtained by manually selecting 100
different patches from 100 different (randomly chosen) images. The unimodality
test is used to discard inappropriate patches. Finally, 58 patches are used for
training, representing 1% of the total of facial pixels in the database. Note that
the covariance matrix (�) encapsulates variations not only in the illumination
conditions but also in the appearance of the object (i.e., skin tone variations) since
different instances of the same object class are considered at the same time. The
color model set is computed using the procedure described in Section 7.3. The set
of weights obtained are listed in Table 7.6.

Figure 7.3 Example images from The Frontal Face Image Database of Caltech [95].
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7 Photometric Invariance by Machine Learning

Table 7.6 Set of weights obtained for the experiments.

� R G B r g O1 O2 L a b S V

Skin −0.017 — — — — 0.022 — 0.013 0.176 0.652 0.154 — —

Road 0.929 — — — 0.157 0.342 0.266 −0.024 — −0.356 −0.082 −0.452 0.220

‘—’ corresponds to an unselected color model by the PCA procedure.

These weights reveal a dominance in a and b reflecting pale reddish color
(i.e., skin). Example results are shown in Figure 7.4. For each original image
(Fig. 7.4a) the weighted combination (Fig. 7.4b) and the skin data distribution
(Fig. 7.4c) are provided. Further, all the skin pixels in the database are collected
and the distribution of values of different color models is shown in Figure 7.5. For
comparison, only one color model from each group in Table 7.3 is considered. As
shown, the learning method leads to a unimodal distribution of pixels despite light
color and skin tone variations. That is, lighting variations are compensated when
color models are properly combined. Note that pixel values for other color models
are not normally distributed, leading to erroneous mean and standard deviation
values.

The performance of the method is compared to six other skin detection
algorithms. Three of them use fixed boundaries in RGB [98], CbCr [99] and
HS [100] color spaces. The fourth is a statistical approach using a mixture of
Gaussians in RGB space. Note that these methods are particularly designed and
fine-tuned to detect skin. The other two methods correspond to the (more generic)
fusion schemes proposed by Jacobs [76] and Stokman and Gevers [77]. The same
training set is used to train the different detection schemes. A summary of the
results is listed in Table 7.7. Further, the results of the Wilcoxon test are shown
in Table 7.8. The following conclusions can be derived from these results. First,
the learning algorithm outperforms the others in terms of overall performance
(quality and effectiveness) except for the RGB-based method. Nevertheless, the
RGB-based, HS and RGB statistical method provides a better detection rate. This
means that these methods provide higher invariance to skin-class variability at the
expense of having low discriminative power. The learning method outperforms all
the others, including the RGB-based method, in terms of detection accuracy. That
is, the ratio, between skin pixels that are correctly classified and the number of
skin pixels retrieved provided by our method, is higher. This is due to the resulting
distribution of skin pixel values (Fig. 7.5). However, the overall performance
of the method is lower than the RGB method because of the high variability in
both skin appearance and lighting variations. This yields a data distribution in
each view that is not unimodal except for very small patches of skin. Further,
unobserved lighting conditions and user appearance (during training) shift the
skin distribution (Fig. 7.4c) reducing the performance. Furthermore, although the
RGB-based method fails in the presence of low intensity (due to illumination and
shadows) there are only a few instances of this type, that is, only 3% of images
in the image dataset showing severe intensity and shadow changes.
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7.4 Experiments
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Figure 7.4 Generic skin detection results (second skin experiment). (a) Original image, (b) weighted

combination of color models, (c) distribution of skin pixel values in the image, (d) skin detection results.

Source: Reprinted with permission, © 2010 Springer.
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7 Photometric Invariance by Machine Learning
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Figure 7.5 Distri-

bution of all skin

pixel values in the

data set for

different color

models. Mean

and standard

deviation for each

channel are listed

in the legend.

Source: Reprinted

with permission,

© 2010 Springer.

Table 7.7 Performance of different detection algorithms on Caltech face database.

Detection Detection

ĝ accuracy rate F

RGB-based method [98, 101] 0.640 ± 0.19 0.694 ± 0.20 0.884 ± 0.17 0.761 ± 0.17
CbCr-based method [99] 0.259 ± 0.18 0.309 ± 0.21 0.548 ± 0.31 0.379 ± 0.23

HS-based method [100] 0.443 ± 0.21 0.514 ± 0.21 0.807 ± 0.28 0.585 ± 0.21

RGB Statistical [102] 0.510 ± 0.23 0.635 ± 0.23 0.723 ± 0.28 0.643 ± 0.22

Minimum variance [76] 0.189 ± 0.03 0.195 ± 0.03 0.190 ± 0.02 0.318 ± 0.05

Single-view fusion [77] 0.314 ± 0.24 0.365 ± 0.26 0.636 ± 0.34 0.430 ± 0.27

Multiviewa 0.410 ± 0.23 0.703 ± 0.18 0.497 ± 0.20 0.550 ± 0.15

Multiview (our method) 0.589 ± 0.18 0.756 ± 0.22 0.718 ± 0.11 0.713 ± 0.17

aBold values indicate maximum performance. Without color model selection.

Table 7.8 Wilcoxon test for the road detection experiment.
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aWilcoxon Test for the Skin Detection Experiment.

128

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7.4 Experiments

7.4.3 Road Detection in Video Sequences

The other application discussed in this chapter is RD. To detect roads in video,
a sequence of more than 800 images is considered to analyze the dynamic nature
of observations. This video sequence is recorded using an onboard camera. The
aim is to detect the (not occluded) road in front of a moving vehicle using a
color camera. The images used include different backgrounds, the occurrence of
occluding and cluttered objects (vehicles), and different road appearances under
varying illumination changes.

The training set consists of 15 different road patches that are manually selected
from 15 different (randomly) selected images. The selection process avoids
successive image indexes. These patches contain different illumination (i.e.,
shadows and highlights) and they represent less than 0.053% of the total amount
of road pixels within the sequence. The selection of the most suitable color
models is executed by the PCA procedure described in Section 7.3. The obtained
weights for the ensemble are listed in Table 7.6 and shows a dominant weight for
the invariant color model corresponding to an achromatic surface independent of
illumination changes (e.g., sun casts and shadows), that is, roads.

Furthermore, the sequential nature of the data is also considered. Thus, once
the optimal ensemble for the road is computed, it is adapted considering only
images close in time. That is, the procedure described in Section 7.2 is used
to estimate the input parameters (E[ξ1], . . . , E[ξN ] and �) to the optimization
process. To estimate them, a temporal buffer is used considering the central value
of the detected road in each frame for each selected color model (Fig. 7.6). Hence,
the assumption is that the correlation between color models holds over time.
To avoid possible outliers (false positives in the current result), robust statistics
are used. The decay factor λ (Eq. 7.12) is empirically fixed to 0.5. Then, the
optimal ensemble is recomputed at each frame considering these new values of
E[ξ1], . . . , E[ξN ] and �.

To evaluate the improvement in performance when temporal information is
taken into account, the error between the expected value of the road and the current
value for two different updating techniques is considered (Fig. 7.7). The updating
techniques are sample and hold, and EWMA. The former uses a fixed optimal
ensemble estimated using training samples over all the image sequences. The
latter uses a decay factor (λ = 0.5) to update the optimal ensemble accordingly to
new data available. As shown in Figure 7.7, the error is significantly lower when
the ensemble is updated over time. That is, if the ensemble is adapted considering
new data available, then the road data distribution is modified accordingly to
the new lighting conditions, leading to more accurate results. However, using a
fixed ensemble (sample and hold), the variations due to unobserved (not in the
training set) lighting conditions or road appearances lead to shifted road data
distributions. Further, the analysis of the tracking error (ψ) and historical SR
(Sh) for both methods (Table 7.9) suggests that the adaptive method has better
performance in terms of following the road central value over all the images in
the database.
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7 Photometric Invariance by Machine Learning
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Figure 7.6 Central values of observations are estimated using robust statistics on results at each

frame. These values are used to recompute the optimal ensemble.
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Figure 7.7 Comparison between errors in the expected road value at each frame. For clarity reasons

1 in every 100 frames are selected from the original video sequence). The error is higher when

unobserved lighting conditions appear. Source: Reprinted with permission, © 2010 Springer.

130

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7.4 Experiments

Table 7.9 Tracking error (ψ ) and historical sr (sh) for the

road experiment.

ψ Sh

Sample and hold 0.002212 0.001

EWMA (λ = 0.5) 0.000257 8.331

The bold values indicate the maximum performance.

The lower the ψ the better the performance, whereas the higher Sh the

better the performance.

Furthermore, the video sequence is processed using three other methods. The
first algorithm is the HSI RD algorithm proposed in Reference 103 and used in
Reference 104. The HSI color space is used to process generic outdoor scenes
under varying illumination [105, 106]. The second algorithm is the illuminant-
invariant algorithm presented in Reference 91. The third algorithm is based on
2D histograms in rg space [107]. Further, the two fusion methods proposed in
References 76 and [77] are considered. Finally, three different instances of the
learning method are considered: sample and hold without color model selection,
sample and hold method using color model selection, and over time adaptive
method using color model selection. Note that the HSI and illuminant-invariant
algorithms are based on a frame-by-frame procedure. Further, these algorithms
require various parameter settings. For fair comparison, a brute force approach is
applied. In this way, a set of images is processed and evaluated using all possible
values within the range of each parameter. The optimal set of parameter values
is the one that maximizes the average performance. All algorithms (that need
training) are trained using the same road pixels. Finally, all these state-of-the-art
algorithms consider that the lowest part of the image corresponds to the road
and that it is about 4 m away from the vehicle. Under this consideration, only
detected results that are connected with a set of seeds placed at the bottom part
of the image are retrieved as road pixels. The same set of seeds is used for all the
methods.

The performance of all algorithms is outlined in Table 7.10. Various detection
results of the learning method using temporal adaptation are shown in Figure 7.8.
Further, the results of the Wilcoxon test are shown in Table 7.11. From the results,
it can be concluded that when the learning method is adapted over time it performs
significantly better than the others except for the detection accuracy for the HSI
method and the nonadapted method. Results provided by the learning method
are slightly overdetected compared to those provided by these two methods.
However, regarding the overall performance (quality and effectiveness), the
learning method performs best. This means that the learning algorithm achieves
a higher trade-off between invariance (detection rate) and discriminative power
(detection accuracy).
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7 Photometric Invariance by Machine Learning

Table 7.10 Performance of different detection algorithms on road database.

Detection Detection

ĝ accuracy rate F

HSI-based RD [103] 0.673 ± 0.12 0.927 ± 0.12 0.729 ± 0.15 0.798 ± 0.09

Invariant RD [91] 0.798 ± 0.13 0.901 ± 0.15 0.866 ± 0.10 0.870 ± 0.10

rg model based [107] 0.272 ± 0.19 0.770 ± 0.23 0.410 ± 0.34 0.391 ± 0.29

Minimum variance [76] 0.137 ± 0.22 0.237 ± 0.30 0.193 ± 0.31 0.187 ± 0.28

Single-view fusion [77] 0.680 ± 0.14 0.936 ± 0.02 0.716 ± 0.15 0.801 ± 0.10

Multiview (our method)a 0.801 ± 0.36 0.714 ± 0.10 0.826 ± 0.05 0.746 ± 0.07

Multiview (our method)b 0.810 ± 0.09 0.976 ± 0.04 0.828 ± 0.09 0.893 ± 0.05

Multiview (our method)c 0.915 ± 0.06 0.963 ± 0.05 0.949 ± 0.05 0.954 ± 0.03

Bold values indicate the maximum performance.
aWithout color model selection.
bWithout temporal adaptation.
cWith temporal adaptation.

Table 7.11 Wilcoxon test for the skin detection experiment.
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Positive values indicate that the learning method performs significantly better. Negative values indicate that

the method does not outperform the others. Bold values indicate when the learning method outperforms

the others.
aWithout color model selection.
bWithout temporal adaptation.

The results reveal that the method produces false negatives (undetected road
pixels) when highlights or lane markings are present. Further, the algorithm takes
a few images to recover when an abundance of false positives are present. Hence,
when the input data to estimate the ensemble is biased then the performance drops.
This could be improved by adding more constraints (such as unimodality test) to the
new data available. Furthermore, the performance may be improved by clustering
detected road pixels to distinguish different lighting conditions in the same frame.
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7.4 Experiments

Figure 7.8 Results of the learning algorithm to detect roads. Source: Reprinted with permission, ©
2010 Springer.
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7 Photometric Invariance by Machine Learning

7.5 Summary

In this chapter, photometric invariance has been derived by learning from
color models to obtain diversified color invariant ensembles using only positive
examples. A method for combining color models is discussed to provide a
multiview approach to minimize the estimation error. In this way, the method
is robust to data uncertainty and produces properly diversified color invariant
ensembles. Further, the learning method is extended to deal with temporal data
by predicting the evolution of observations over time.
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PART III

COLOR CONSTANCY
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8
8 Illuminant Estimation and

Chromatic Adaptation

Explicitly correcting an image for the color of the light source, producing a
transformed version of the input image, is called color constancy. Human vision
has the natural tendency to correct for the effects of the color of the light
source, [108–111], but the mechanism involved with this ability is not yet fully
understood. Early work by Land and McCann [13, 14, 112] resulted in the retinex
theory. This theory posited that both the retina and the cortex are involved in the
processing. Many computational models are derived on the basis of this perceptual
theory, [113–115]. However, computational models can still not fully explain the
observed color constancy of human observers. Kraft and Brainard [116] tested the
ability of several computational theories to account for human color constancy,
but found that each theory leaves considerable residual constancy. In other words,
without the specific cues corresponding to the computational models, humans are
still, to some extent, color constant [116]. Alternatively, observations on human
color constancy cannot be readily applied to computational models either: Golz
and Macleod [117, 118] showed that chromatic scene statistics influence the
accuracy of human color constancy, but when mapped to computational models,
the influence was found to be very weak at best [119]. Recent advances that are
not pursued further in this book include the suggestion from computational color
constancy that the optimal approach for specific images is based on the statistics
of the scene [120, 121], and the suggestion from human color constancy that color
memory, possibly in addition to contextual clues, could play an important role
[122–125].

Although it would be interesting to bring the recent advances in human color
constancy closer to the computational level, or to map the computational advances

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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8 Illuminant Estimation and Chromatic Adaptation

onto human explanations, the focus in this part is on computational color constancy
algorithms rather than perceptual plausible models. Consider, for example, the
images in Figure 8.1. These images show the effects that different light sources
can have on the perception of a scene. The goal of computational color constancy
algorithms is to apply a correction to the target images so that they are identical
to the canonical image (i.e., the image that is taken under a neutral or white light
source).

Blueish light source Yellowish light source Reddish light source Neutral light source

Figure 8.1 An illustration of the effects of different light sources on the measured image. In these

images, the only variable is the color of the light source. The purpose of computational color constancy

algorithms is to correct these images so that they visually appear to be the same. Source: Images

rendered using data taken from Reference 126.

The approach that is typically used for color constancy, and is also followed
in this part, is outlined in Figure 8.2. For an input image that is recorded under
unknown illumination, the chromaticity of the light source is estimated. Then, in
the second step, this chromaticity is used to transform the input image so that
it appears to be taken under a canonical light source. Finally, the output image,
which is free of any deviations caused by the color of the light source, is returned.
The methods discussed in this part are involved with the first step (illuminant
estimation). The second step is called chromatic adaptation, and is described in
brief in Section 8.2, but is not further explored here. Note that all illuminant
estimation algorithms discussed in Chapters 9–11 are based on the assumption
that the illuminant is spatially uniform, that is, it is assumed that the chromaticity
of the light source is the same in every location of the image. Although it is easy to

1. Estimate
light source

2. Transform image
(using estimated

light source)

Output image
(under canonical

light source)

Test image
(under unknown

light source)

Figure 8.2 In the first step, the illuminant of an input image that is recorded under unknown illumination

is estimated. Then, in the second step, this illuminant is used to correct the input image to generate an

output image.
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8.1 Illuminant Estimation

think of scenarios where this assumption is violated, for example, indoor images
depicting multiple rooms with spectrally different light sources, or outdoor images
showing parts of the scene in shadow and other parts in bright sunlight, the bulk
of the images meets the single light source assumption. Relatively few methods
that are able to deal with multiple light sources have been proposed. For instance,
Finlayson et al. [127] and Barnard et al. [128] propose a retinex-based approach
that explicitly assumes that surfaces that are illuminated by multiple light sources
exist in the scene. Another retinex-based approach [129] uses stereo images to
derive 3D information on the surfaces that are present in the images, to be able
to distinguish material transitions from local light color changes, but the stereo
information is often not available and is not trivial to obtain. Ebner [130] also
proposed a method that is based on the assumption that the illuminant transition
is smooth. This method uses the local space average color for local estimation of
the illuminant by convolving the image with a kernel function (e.g., a Gaussian
or exponential kernel). Finally, in Reference 131, human interaction is employed
to specify locations in images that are illuminated by different light sources. All
these methods are based on the assumption that the illuminant color smoothly
varies from one color into the other. Although this line of research is interesting,
it is not pursued further in this part.

8.1 Illuminant Estimation

Recall from Chapter 3 that under the assumption of Lambertian reflectance, the
images values of an image fRGB = (R, G, B)T depend on the color of the light
source e(λ), the surface reflectance properties s(λ, x) and the camera sensitivity
function ρc(c ∈ {R, G, B}):

f c(x) = mb(x)

∫
ω

e(λ)ρc(λ)s(λ, x)dλ, (8.1)

where ω is the visible spectrum, λ is the wavelength of the light, x is the spatial
coordinate, and mb is the Lambertian shading term that contributes to the overall
light reflected at location x. Illuminant spectra, camera sensitivity functions, and
surface reflectance functions are usually given by m discrete samples within the
visible spectrum ω. Hence, the continuous Equation 8.1 is often replaced by the
digital form:

f c(x) = mb(x)

m∑
i=1

e(λi)ρ
c(λi)s(λi, x)�λ, (8.2)

where λi are the sample points and �λ is the sample width.
In order to create a more realistic model while still adhering to the simple

assumptions of the Lambertian reflectance model, Shafer [26] proposes to add a
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8 Illuminant Estimation and Chromatic Adaptation

‘‘diffuse’’ light term. The diffuse light is considered to have low intensity and to
be coming from all directions in an equal amount:

f c(x) =
∫

ω

e(λ)ρc(λ)s(λ, x)dλ +
∫

ω

a(λ)ρc(λ), (8.3)

where a(λ) is the term that models the diffuse light. Using this equation, objects
under daylight can be modeled more accurately, since daylight consists of both
a point source (the sun) and diffuse light coming from the sky. However, the
assumption that diffuse light is equal in all directions does not often hold in
practice. A more realistic approximation is to consider the diffuse light to be
dependent on the position in the image, according to

f c(x) =
∫

ω

e(λ)ρc(λ)s(λ, x)dλ +
∫

ω

a(λ, x)ρc(λ), (8.4)

where we assume the dependence of the position to be low-frequent, which is
indicated by the overline.

Typically, illuminant estimation is involved with estimating the illuminant
using Equation 8.1. Only a few methods are based on Equation 8.4, and these
are discussed in Chapter 10. However, even assuming the simplified version of
image formation as given by Equation 8.1, the problem of illuminant estimation
remains difficult to solve. As can be seen in this equation, the image values f are
dependent on the intrinsic surface properties s as well as the spectrum of the scene
illuminant. When either of the two changes, so do the image values, while in fact
we only want to observe a change in image values when the surface properties
change. For instance, in fundamental computer vision tasks such as image and
scene segmentation, and object recognition and tracking, changing illumination
could cause major difficulties if it is not properly taken into account. Further,
color constancy is a fundamental process in the formation of images using a
digital camera: if image colors are not suitably color corrected during capturing
of the digital images, the image will not match the photographer’s observation
of the scene. Hence, in order to obtain a stable digital reproduction of a scene,
it is important to dismiss the effects of the light source as much as possible. To
still maintain a natural representation of the scene, the effects of the colored light
source are usually replaced by a canonical light source, that is, a white or neutral
light source.

Note that if an image consists of n different surfaces, then using Equation 8.2
results in 3n knowns: one known value for every color channel and for every
surface (assuming an image is composed of three color channels, for example,
red R, green G, and blue B). From these known image values, we want to recover
the n true surface reflectance properties as well as the single illuminant. However,
since the illuminant, surfaces, and camera sensitivity function are given by m
discrete samples, the number of parameters to solve for totals m(n + 1). When
assuming m ≥ 3, it becomes clear that the number of knowns is outnumbered by
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8.2 Chromatic Adaptation

the number of unknowns: 3n < m(n + 1), regardless of the number of different
surfaces in an image. Even when we assume that the digital spectrum of light
source does not fully need to be recovered (but rather the representation of
the image under a neutral light source using chromatic adaptation techniques
described in the next section), the number of unknowns (3n + 3) still outnumbers
the number of knowns. Hence, it becomes obvious that illuminant estimation is
an underconstrained problem that cannot be solved without further assumptions.

8.2 Chromatic Adaptation

After the color of the light source is estimated, the image has to be transformed.
This transformation will change the appearance of all colors, so that the image
appears to be recorded under a white light source (e.g., D65). This can be achieved
by chromatic adaptation, [132]. Most adaptation transforms are modeled using a
linear scaling of the cone responses, and the simplest form independently scales
the three color channel [33]:

⎛
⎝Rc

Gc
Bc

⎞
⎠ =

⎛
⎝dR 0 0

0 dG 0
0 0 dB

⎞
⎠

⎛
⎝Re

Ge
Be

⎞
⎠ , (8.5)

where di = ei√
3·(e2

R+e2
G+e2

B)
, i ∈ {R, G, B}. Even though this model is merely an

approximation of illuminant change and might not accurately be able to model
photometric changes due to disturbing effects such as highlights and interreflec-
tions, it is widely accepted as the color correction model [133, 134, 50] and it
underpins many color constancy algorithms described in the subsequent chapters.

A more accurate representation would be to first sharpen the cone responses
before transformation, for example, Bradford transform [135] or CMCCAT2000
[136]. The latter is defined as

⎛
⎝Xc

Yc
Zc

⎞
⎠ = M−1

CMC

⎛
⎝dX 0 0

0 dY 0
0 0 dZ

⎞
⎠ MCMC

⎛
⎝Xe

Ye
Ze

⎞
⎠ , (8.6)

where dX , dY and dZ are computed from the tristimulus values of the true and
the white illuminants, by multiplying the corresponding XYZ vectors with MCMC .
The matrix MCMC is given by Li et al. [136]:

MCMC =
⎛
⎝ 0.7982 0.3389 −0.1371

−0.5918 1.5512 0.0406
0.0008 0.0239 0.9753

⎞
⎠ . (8.7)
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8 Illuminant Estimation and Chromatic Adaptation

Note that this transform is defined for tristimulus values XYZ, so an RGB image
will have to be converted to XYZ before applying this transform, and back to RGB
after the transform.

As stated earlier, under some conditions the diagonal model is too strict. Such
situations can be troublesome for color constancy algorithms based on this model.
To overcome this, Finlayson et al. [34] accounted for this shortcoming by adding
an offset term to the diagonal model, resulting in the diagonal-offset model:

⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ +

⎛
⎝o1

o2
o3

⎞
⎠ . (8.8)

Deviations from the diagonal model are reflected in the offset term (o1, o2, o3)
T .

Ideally, this term will be zero, which is the case when the diagonal model is valid.
Interestingly, by means of the offset, the diagonal model also takes diffuse

lighting into account as approximated by Equation 8.3. To obtain position-
dependent diffuse lighting of Equation 8.4, the following model called local-
diagonal-offset model can be used:

⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ +

⎛
⎝ o1 (x)

o2 (x)

o3 (x)

⎞
⎠ . (8.9)

This model is more robust against deviations from the diagonal model (e.g.,
saturated colors), diffuse light (assuming the dependence of the position is low-
frequent) and veiling illumination. Methods using this modified version of the
diagonal model are described in Chapter 10.
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9
9 Color Constancy Using

Low-level Features

The first type of illuminant estimation algorithms discussed in this book are static
methods, or methods that are applied to input images with a fixed parameter
setting. Two subtypes are distinguished: a) methods that are based on low-level
statistics and b) methods that are based on the physics-based dichromatic reflection
model.

9.1 General Gray-World

The best-known and most often used assumption of this type is the gray-world
assumption [137]: the average reflectance in a scene under a neutral light source
is achromatic. In the original work, the hypothesis is used to derive that the
average reflectance for short-wave, middle-wave and long-wave regions is equal,
but a stronger definition of achromatic reflectance of a scene is often employed
([139, 138]):

∫
s(λ, x)dx∫

dx
= g(λ) = k, (9.1)

which avoids making further assumptions. The constant k is between 0 for no
reflectance (black) and 1 for total reflectance (white) of the incident light, and
the integral is over the domain of the scene. For such a scene with achromatic

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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9 Color Constancy Using Low-level Features

reflectance, it holds that the reflected color is equal to the color of the light source,
since ∫

f c(x)dx∫
dx

= 1∫
dx

∫∫
ω

e(λ)s(λ, x)ρc(λ)dλdx, (9.2)

=
∫

ω

e(λ)ρc(λ)

(∫
s(λ, x)dx∫

dx

)
dλ, (9.3)

= k

∫
ω

e(λ)ρc(λ)dλ = kec, (9.4)

where the theorem of Fubini is used to exchange the order of integration. The
normalized light source color is computed with ê = (ê

R
, ê

G
, ê

B
)T = ke/|ke|.

Alternatively, instead of computing the average color of all pixels, it has
been shown that segmenting the image and computing the average color of all
segments may improve the performance of the gray-world algorithm [140, 141].
This preprocessing step can lead to improved results because the gray-world is
sensitive to large uniformly colored surfaces, as this often leads to scenes where the
underlying assumption fails. Segmenting the image before computing the scene
average color will reduce the effects of these large uniformly colored patches.
Related methods attempt to identify the intrinsic gray surfaces in an image, that is,
they attempt to find the surfaces under a colored light source that would appear gray
if rendered under a white light source [142–144]. When accurately recovered,
these surfaces contain a strong clue for the estimation of the light source. Finally,
van de Weijer et al. [145] proposed a method using similar principles, based on
a hypothesis they call the green-grass hypothesis: the average reflectance of a
semantic class in an image is equal to the average reflectance of the semantic
topic in the database. This hypothesis is captured by the following equation:∑

x∈Ts

f (x) = k diag
(
ds) es, (9.5)

ds =
∑
x∈Ds

F (x), (9.6)

where Ts is the set of indexes to pixels in image f assigned to semantic topic s, F
is the collection of all pixels in the training data set, Ds are the indexes to all pixels
in the training data set assigned to semantic topic s, and es is the estimate of the
illuminant color based on topic s. Pixels in any input image are first classified to
either of the semantic classes considered in the training set. Then, using Equation
9.5 an illuminant hypothesis is cast. Finally, using the semantic likelihood of the
classified regions, the hypotheses are combined into one final estimate (e.g., by
selecting the hypothesis with the highest probability according to the likelihood
of the semantic content).

Another well-known assumption is the white-patch assumption [14]: the maxi-
mum response in the RGB channels is caused by a perfect reflectance. A surface
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9.1 General Gray-World

with perfect reflectance properties will reflect the full range of light that it cap-
tures. Consequently, the color of this perfect reflectance is exactly the color of
the light source. In practice, the assumption of perfect reflectance is alleviated by
considering the color channels separately, resulting in the max-RGB algorithm.
This method estimates the illuminant by computing the maximum response in the
separate color channels:

max
x

f c(x) = kec. (9.7)

It should be noted that the max-RGB method does not require the maxima of the
separate channels to be on the same location. An illustration of this can be seen
in Figure 9.1. The maxima of the three color channels of the image with the ball
happen to coincide and correspond to a white patch. However, the maxima of
the three color channels of the image with the papers come from three different
pixels. Since the names max-RGB and white-patch are both often used to denote
the same algorithm, this observation can be confusing and should be taken into
account when working with this algorithm.

Related algorithms apply some sort of smoothing to the image, before the
illuminant estimation [130, 146]. This preprocessing step has similar effects on

O3 O3

O1

O1O2

O2

200

−40 −40

−40
40

40

40

40

Figure 9.1 Two illustrations of the max-RGB method. The image with the papers shows that

the maximum responses in the three color channels do not have to correspond to a white

patch nor do they even have to correspond to the same pixel. Source: The top images are

taken from Reference 44.
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9 Color Constancy Using Low-level Features

the performance of the white-patch algorithm as segmentation on the gray-world.
In this case, the effect of noisy pixels (with an accidental high intensity) is reduced,
improving the accuracy of the white-patch method. An additional advantage of the
local space average color [130] (LSAC) method is that it can provide a pixel-wise
illuminant estimate. Consequently, it does not require the image to be captured
under a spectrally uniform light source. An analysis of the max-RGB algorithm is
presented in References 147, 148, where it is shown that the dynamic range of an
image, in addition to the preprocessing strategy, can have a significant influence
on the performance of this method.

In Reference 138, the white-patch and the gray-world algorithms are shown to
be special instantiations of the more general Minkowski framework:

Lc(p) =
(∫

(f c)p(x)dx∫
dx

) 1
p

= kec. (9.8)

Substituting p = 1 in Equation 9.8 is equivalent to computing the average of f(x),
that is, L(1) = (LR

(1),LG(1),LB(1))T equals the gray-world algorithm. When
p = ∞, Equation 9.8 results in computing the maximum of f(x), that is, L(∞)

equals the white-patch algorithm. In general, to arrive at a proper value, p is tuned
for the data set at hand. Hence, the optimal value of this parameter may vary for
different data sets.

As a final extension of the gray-world algorithm, local averaging is considered.
The norm computation as given by Equation 9.8 is a global averaging operation,
which ignores the important local correlation between pixels. This local correlation
can be used to reduce the influence of noise. Local smoothing as a preprocessing
step was proved to be beneficial for color constancy algorithms, as discussed in
Barnard’s study [141]. To exploit this local correlation, a local smoothing with a
Gaussian filter, Gσ is introduced [146], with standard deviation σ :

(∫
(f c)p(x)dx∫

dx

) 1
p

= kec. (9.9)

9.2 Gray-Edge

The assumptions of the above color constancy methods are based on the distribu-
tion of colors (i.e., pixel values) that are present in an image. The incorporation
of higher order image statistics (in the form of image derivatives) is proposed
in Reference 139, resulting in the gray-edge hypothesis: The average of the
reflectance differences in a scene is achromatic:

∫ |sσ
x (λ, x)dx∫

dx
= g(λ) = k. (9.10)
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9.2 Gray-Edge

The subscript x indicates the spatial derivative at scale σ . With the gray-edge
assumption, the light source color can be computed from the average color
derivative in the image given by

∫
(f c)x(x)dx∫

dx
= 1∫

dx

∫∫
ω

e(λ)sx(λ, x)ρc(λ)dλdx, (9.11)

=
∫

ω

e(λ)ρc(λ)

(∫
sx(λ, x)dx∫

dx

)
dλ, (9.12)

= k

∫
ω

e(λ)ρc(λ)dλ = kec, (9.13)

where |(f c)x(x)| = |Cx(x)| and C = {R, G, B}. The gray-edge hypothesis origi-
nates from the observation that the color derivative distribution of images forms a
relatively regular, ellipsoid-like shape, of which the long axis coincides with the
light source [149]. In Figure 9.2, the color derivative distribution is depicted for
three images. The color derivatives are rotated to the opponent color spaces as
follows:

O1x = Rx − Gx√
2

, (9.14)

O2x = Rx + Gx − 2Bx√
6

, (9.15)

O1
O2

O3

30

25

20

15

10

5

30
25

20 15
10

5

10
5

15
20

25
30

O1
O2

O3

30

25

20

15

10

5

30
25

20
15

10
5

10
5

15
20

25
30

O1

O2

O3

30

25

20

15

10

5

30
25 20

15 10 5

20

10

30

Figure 9.2 Three acquisitions of the same scene under different light sources [44]. On the bottom row,

the color derivative distributions are shown, where the axes are the opponent color derivatives and the

surfaces indicate derivative values with equal occurrence and darker surfaces indicating a more dense

distribution. Note the shift in the orientation of the distribution of the derivatives with the changing of

the light source. Source: Reprinted with permission, © 2007 IEEE.
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9 Color Constancy Using Low-level Features

O3x = Rx + Gx + Bx√
3

. (9.16)

In the opponent color space, O3 coincides with the white light direction. For
the scene rendered under white light (the leftmost image), the distribution of the
derivatives is centered along the O3 axis, that is, the white-light axis. Once the
color of the light source is changed, as in the images in the center and the right,
the distribution of the color derivatives no longer coincides with the white-light
axis. In other words, color constancy based on the gray-edge assumption can
be interpreted as skewing the color derivative distribution such that the average
derivative is in the O3 orientation.

Similar to the gray-world-based color constancy methods, the gray-edge hypoth-
esis can be adapted to incorporate the Minkowski norm:

(∫ |(f c)σx (x)|pdx∫
dx

) 1
p

= kec. (9.17)

Color constancy based on this equation assumes that the pth Minkowski norm
of the derivative of the reflectance in a scene is achromatic. Two special cases
are distinguished. For p = 1, the illuminant is derived by a normal averaging
operation over the derivatives of the channels. For p = ∞, the illuminant is
computed from the maximum derivative in the scene. The resemblance between
the color constancy derivations from the gray-world and the gray-edge hypothesis
is apparent. Both methods can be combined in a single framework of color
constancy methods based on low-level features derived from the following
general hypothesis:

(∫ ∣∣∣∣∂
n(f c)σ (x)

∂xn

∣∣∣∣
p

dx

) 1
p

= k(ec)n,p,σ . (9.18)

The division by
∫

dx has been incorporated into the constant k. Next to the
already discussed hypotheses (gray-world, max-RGB, Minkowski norm and the
gray-edge), it is obvious that this framework also includes higher order based
color constancy. Higher order derivatives have correspondences with the center-
surround mechanisms of the human eyes for color constancy such as exploited in
the well-known center-surround retinex algorithm, eg., [113, 150]. The influence
of the color intensities could be weighted according to their distance to the center
of the receptive field generally calculated by a difference of Gaussian function.

The illuminant estimation of Equation 9.18 describes a framework for low-
level-based illuminant estimation. This framework produces different estimations
for the illuminant color based on three variables:

1. The order, n, of the image structure is the parameter determining if the
method is a gray-world or a gray-edge algorithm. The gray-world methods
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9.2 Gray-Edge

are based on the RGB values, whereas the gray-edge methods are based
on the spatial derivatives of order n. Usually, higher-order-based color
constancy methods up to order n = 2 are investigated.

2. The Minkowski-norm p that determines the relative weights of the
multiple measurements from which the final illuminant is estimated. A
high Minkowski norm emphasizes larger measurements, whereas a low
Minkowski norm equally distributes weights among the measurements.

3. The scale of the local measurements as denoted by σ . For first or higher order
estimation, this local scale is combined with the differentiation operation
computed with a Gaussian derivative. For zero-order gray-world methods,
this local scale is imposed by a Gaussian smoothing operation.

An overview of the instantiations of the illuminant estimation given by the
framework of Equation 9.18, which are usually considered, are given in Table 9.1.

Table 9.1 Overview of the different illuminant estimation methods together with their

hypotheses. These illuminant estimations are all instantiations of equation 9.18.

Name Symbol Equation Hypothesis

Gray-world e0,1,0
(∫

f c(x)dx
) = kec The average reflectance in a

scene is achromatic

Max-RGB e0,∞,0
(∫ |f c(x)|∞dx

) 1∞ = kec The maximum reflectance in a

scene is achromatic

Shades of gray e0,p,0
(∫ |f c(x)|pdx

) 1
p = kec The pth Minkowski norm of a

scene is achromatic

General

gray-world

e0,p,σ
(∫ |(f c)σ (x)|pdx

) 1
p = kec The pth Minkowski norm is

achromatic after local

smoothing

Gray-edge e1,p,σ
(∫ |(f c)σx (x)|pdx

) 1
p = kec The pth Minkowski norm of the

image derivative is

achromatic

Max edge e1,∞,σ
(∫ |(f c)σx (x)|∞dx

) 1∞ = kec The maximum reflectance

difference in a scene is

achromatic

Second-order

gray-edge

e2,p,σ
(∫ |(f c)σxx(x)|pdx

) 1
p = kec The pth Minkowski norm of the

Second-order derivative is

achromatic

An advantage of the color constancy methods based on Equation 9.1 is that
they are all based on low computational demanding operations. In fact, the pth
Minkowski norm of (smoothed) RGB values or derivatives can be computed
extremely fast (even real time on dedicated hardware). Furthermore, the method
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9 Color Constancy Using Low-level Features

does not require an image database taken under a known light source for
calibration as is necessary for more complex color constancy such as discussed in
the subsequent chapters.

After the gray-edge method was introduced, several extensions followed. First,
the gray-edge was enhanced with an illuminant constraint by Chen et al. [151].
Further, Chakrabarti et al. [152] explicitly modeled the spatial dependencies
between pixels. The advantage of this approach compared to the gray-edge is
that it is able to learn the dependencies between pixels in an efficient way,
but the training phase does rely on an extensive database of images. Finally,
Gijsenij et al. [153] noted that different types of edges might contain various
amounts of information. They extended the gray-edge method to incorporate a
general weighting scheme (assigning higher weights to certain edges), resulting
in the weighted gray-edge. Physics-based weighting schemes are proposed,
concluding that specular edges are favored for the estimation of the illuminant.
The introduction of these weighting schemes resulted in more accurate illuminant
estimates, but at the cost of complexity (both in computation and implementation).

9.3 Physics-Based Methods

Most methods are based on the simpler Lambertian model following Equation
3.23, but some methods adopt the dichromatic reflection model of image formation,
following Equation 3.21. These methods use information about the physical
interaction between the light source and the objects in a scene, and are called
physics-based methods. These approaches exploit the dichromatic model to
constrain the illuminants. The underlying assumption is that all pixels of one
surface fall on a plane in the RGB color space. If multiples of such planes are
found, corresponding to various different surfaces, then the color of the light
source is estimated using the intersection of those planes. Various approaches
that use specularities or highlights [154–157] have been proposed. The principle
behind such methods is that if pixels are found where the body reflectance factor
mb in Equation 3.21 is (close to) zero, then the color of these pixels are similar
or identical to the color of the light source. However, all these methods suffer
from some disadvantages: retrieving the specular reflections is challenging and
color clipping can occur. The latter effectively eliminates the usability of specular
pixels (which are more likely to be clipped than other pixels).

A different physics-based method is proposed by Finlayson and Schaefer [158].
This method uses the dichromatic reflection model to project the pixels of a single
surface into chromaticity space. Then, the set of possible light sources is modeled
by using the planckian locus of black-body radiators. This planckian locus is
intersected with the dichromatic line of the surface to recover the color of the
light source. This method, in theory, allows for the estimation of the illuminant
even when there is only one surface present in the scene. However, it does require
all pixels in the image to be segmented, so that all unique surfaces are identified.
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9.4 Summary

Alternatively, the colors in an image can be described using a multilinear model
consisting of several planes simultaneously oriented around an axis defined by
the illuminant [159, 160]. This eliminates the problem of presegmentation, but
does rely on the observation that a representative color of any given material can
be identified. In Reference 161, these requirements are relaxed, resulting in a two
Hough transform voting procedure.

9.4 Summary

Color constancy methods discussed in this chapter are methods based on low-
level information. These methods are not dependent on training data and the
parameters are not dependent on the input image, and are therefore called static.
Advantages of such methods are a simple implementation (often, merely a few
lines of code are required) and fast execution. Further, the accuracy of the
estimations can be quite high, provided the parameters are selected appropriately.
This last requirement is also one of the biggest weaknesses of such methods, since
inaccurate parameter selection can severely reduce the performance. Moreover,
the selection of the optimal parameters is quite opaque, especially without prior
knowledge of the input data. The physics-based methods discussed suffer less
from parameter selection than the framework presented in Equation 9.18, but are
also less accurate (even for properly selected parameters).
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10
10 Color Constancy Using

Gamut-Based Methods

The gamut mapping algorithm was introduced by Forsyth [162]. It is based on the
assumption that in real-world images, for a given illuminant, one observes only a
limited number of colors. Consequently, any variations in the colors of an image
(i.e., colors that are different from the colors that can be observed under a given
illuminant) are caused by a deviation in the color of the light source. This limited
set of colors that can occur under a given illuminant is called the canonical gamut
C, and it is found in a training phase by observing as many surfaces under one
known light source (called the canonical illuminant) as possible.

The flow of the gamut mapping is illustrated in Figure 10.1. In general, a
gamut mapping algorithm takes as input an image taken under an unknown light
source (i.e., an image of which the illuminant is to be estimated), along with the
precomputed canonical gamut (see steps 1 and 2 in Fig. 10.1). The precomputed
canonical gamut is obtained by aggregating all colors of the training images
into one gamut. The training images are acquired under the same illuminant
or corrected so that they appear to be acquired under the same illuminant. The
combined set of training colors is called canonical gamut. Next, the algorithm
consists of three important steps:

1. Estimate the gamut of the unknown light source by assuming that the colors
in the input image are representative of the gamut of the unknown light
source. So, all colors of the input image are collected in the input gamut I.
The gamut of the input image is used as a feature in Figure 10.1.

Portions reprinted, with kind permission from Springer Science + Business Media B.V., from
‘‘Generalized Gamut Mapping Using Image Derivative Structures for Color Constancy’’, by A.
Gijsenij, Th. Gevers and J. van de Weijer, in International Journal of Computer Vision, Vol. 86(2–3),
pp 140–151, 2010 © 2008 Springer.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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10 Color Constancy Using Gamut-Based Methods
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Figure 10.1 Overview of gamut-based algorithms. The training phase consists of learning a model

given the features of a wide variety of input images (step 1), resulting in the canonical gamut (step

2). The testing protocol consists of applying the learned model to the computed features of the input

image (steps 3 and 4). Finally, one illuminant estimate is selected from the feasible set of illuminants

(step 5) and this estimate is used to correct the input image.

2. Determine the set of feasible mappings M, that is, all mappings that can
be applied to the gamut of the input image and that result in a gamut that
lies completely within the canonical gamut. Under the assumption of the
diagonal mapping, a unique mapping that converts the gamut of the unknown
light source to the canonical gamut exists. However, since the gamut of the
unknown light source is simply estimated by using the gamut of one input
image, in practice several mappings are obtained. Every mapping i in the
set M should take the input gamut completely inside the canonical gamut:

MiI ∈ C. (10.1)

This corresponds to step 4 in Figure 10.1, where the learned model (e.g., the
canonical gamut) together with the input features (e.g., the input gamut) are
used to derive an estimate of the color of the light source.

3. Apply an estimator to select one mapping from the set of feasible mappings
(step 5 in Fig. 10.1). The selected mapping can be applied to the canonical
illuminant to obtain an estimate of the unknown illuminant. The original
method [162] used the heuristic that the mapping resulting in the most
colorful scene, that is, the diagonal matrix with the largest trace, is the most
suitable one. Simple alternatives are the average of the feasible set or a
weighted average [163].

These are the basic steps of gamut mapping algorithms. Several extensions
have been proposed. Difficulties in implementation are addressed in References
164, 165, where it is shown that the gamut mapping algorithm can also be
computed in chromaticity space (R

B , G
B ). The main advantage of working in
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10 Color Constancy Using Gamut-Based Methods

chromaticity space is the lower complexity of the problem. The 2D approach is
easier to visualize and the implementation in 2D is less complex. However, the
performance of this 2D approach is slightly lower than the performance of the
3D approach. This is related to the perspective distortion of the possible set of
illuminants (the set of feasible mappings, step 4 in Fig. 10.1) that is caused by
the conversion of the original image to 2D-chromaticity values. To solve this
problem, Finlayson and Hordley [165, 166] proposed to map the 2D feasible
set back to three dimensions before selecting the most appropriate mapping.
This corresponds to a slightly modified step 4 in Figure 10.1. Alternatives to
address the difficulties in implementation are proposed in References 167 and
168. In Reference 167, an efficient implementation is introduced using convex
programming. This implementation reformulates the problem as a set of linear
equations, which is shown to result in a performance similar to the original
method. Finally, in Reference 168 a simpler version of the gamut mapping is
proposed using a cube rather than the full convex hull of the pixel values. This
implementation not only has the advantage of simple implementation but it can
also be tuned to optimize the maximum error over a set of images rather than the
mean or median error.

Another extension of the gamut mapping algorithm deals with dependency on
the diagonal model. One of the disadvantages of the original method is that a null
solution can occur if the diagonal model fails. In other words, if the diagonal model
does not fit the input data accurately, then it is possible that no feasible mapping
that maps the input data into the canonical gamut with one single transform can
be found. This results in an empty solution set. One heuristic approach to avoid
such situations is to incrementally augment the input gamut until a nonempty
feasible set is found [141, 169]. Another heuristic approach is to extend the size
of the canonical gamut. Finlayson [164] increases the canonical gamut by 5%,
while Barnard [163] systematically enlarges the canonical gamut by learning this
gamut not only with surfaces that are illuminated by the canonical light source but
also with surfaces that are captured under different light sources that are mapped
to the canonical illuminant using the diagonal model. Hence, a possible failure
of the diagonal model is captured by augmenting the canonical gamut. Another
strategy is to simulate specularities during computation of the canonical gamut,
potentially increasing the performance of the gamut mapping method even in
situations where there is no null solution [170, 171]. Alternatively, to avoid this
null solution, an extension of the diagonal model called diagonal-offset model is
proposed [34]. This model allows for translation of the input colors in addition
to the regular linear transformation, effectively introducing some slack into the
model. All these modifications are implemented in step 5 of Figure 10.1.

Finally, an interesting extension is proposed by Finlayson et al. [172] and
it is called the gamut-constrained illuminant estimation. In essence, it is also
designed to avoid the null solution that occurs when the diagonal model fails. This
method effectively reduces the problem of illuminant estimation to illuminant
classification, by considering only a limited number of possible light sources. One
canonical gamut is learned for every possible light source. Then, the unknown

154

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10.1 Gamut Mapping Using Derivative Structures

illuminant of the input image is estimated by matching the input gamut to each of
the canonical gamuts, selecting the best match as the final estimate. This approach
makes it possible to intrinsically add prior knowledge to the system by limiting the
possible light sources. When no prior knowledge is available, a generic solution
can be supplied by modeling a variety of real-world and synthesized light sources.

10.1 Gamut Mapping Using Derivative Structures

As discussed above, gamut mapping is based on the assumption that only a limited
set of colors is observed under a certain illuminant. Multiple phenomena in nature
(e.g., blurring) and imaging conditions (e.g., scaling) can cause the mixture of
colors. Therefore, if two colors are observed under a certain illuminant, then all
colors in between can also be observed under this illuminant, since the set of all
possible colors that can be seen under a certain illuminant form a convex hull
(i.e., gamut). In Reference 173, the gamut theory is extended by proving that the
above is not only true for image values but also for every linear combination of
image values. Hence, the correct estimate of an illuminant will also map every
gamut that is constructed by a linear combination of image values back into the
canonical gamut constructed with the same linear operation.

10.1.1 Diagonal-Offset Model

The original gamut mapping [162] is designed for scenes that are composed of
Lambertian reflectances. For such scenes, the diagonal model is often sufficient
to correct for the color of the light source. However, under more realistic
conditions, the diagonal model can be too strict, so the gamut mapping will find
no solution (this situation is called the null solution problem). This could be
caused by saturated colors, the presence of surfaces that were not represented in
the canonical gamut, or scattering in the lens (veiling illumination), for instance.
To overcome this, Finlayson et al. [34] proposed to use the diagonal-offset model
(Eq. 8.8), and described an alternate implementation for the gamut mapping using
this diagonal-offset model. The remainder of this chapter is based on Equations
8.8 and 8.9 for color correction of images.

10.1.2 Gamut Mapping of Linear Combinations of Pixel
Values

In Reference 162, it is shown that the image values form a gamut, and that the
transformations of the gamuts under illuminant changes follow the model given
in Equation 8.5. Further, in Section 10.1.1 it is shown that transformations of the
gamuts under illuminant changes can also be modeled by Equations 8.8 and 8.9.
Here we will look at the image gamuts that are formed by a linear combination of
image values.

Consider a set of image values:

F = {
f1, f2, . . . , fn

}
, (10.2)
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10 Color Constancy Using Gamut-Based Methods

where f = {R,G,B}, and an image feature g which is a linear combination of
image values g = wT F.

If we consider the von Kries Model, the relation between the image values of an
object taken under two different light sources is modeled by the diagonal model f
= Df ′. Then, for the feature g the following holds:

g = wT F = w1f1 + w2f2 + · · · + wnfn,

= w1Df′1 + w2Df′2 + · · · + wnDf′n,
(10.3)

= D
(
w1f′1 + w2f′2 + · · · + wnf′n

)
,

= D
(
wT F′) = Dg′,

proving that for measurements g also the diagonal models hold. The above is of
importance because it shows that gamut mapping can also be performed on all
measurements g that are a linear combination of the image values f .

Next, if we consider the diagonal-offset model given by f = Df ′+o then,

g = wT F = w1f1 + w2f2 + · · · + wnfn,

= w1

(
Df′1 + o

) + · · · + wn

(
Df′n + o

)
,

(10.4)

= D
(
wT F′) +

(
n∑

i=1

wi

)
o = Dg′ +

(
n∑

i=1

wi

)
o.

Hence, to estimate the illuminant change between g′ and g we have to estimate
both the diagonal matrix D and the offset o. However, in the special case that∑n

i=1 wi = 0, the offset term o cancels out.
A similar reasoning can be applied to the local-diagonal-offset model of

Equation 8.9. In this case, we have to ensure that all image values fn that are
linearly combined in g are taken from a local neighborhood where the offset o
can be considered constant. Hence, to perform gamut mapping under the local-
diagonal-offset model the linear combination g has to satisfy two restrictions: the
weights w should sum up to zero and the values fn should come from a local
neighborhood. Both these restrictions are satisfied by image derivative filters:
the sum over the weights of the filter is equal to zero, and since it is a filter
the values are taken from a local neighborhood. This makes image derivatives
especially attractive for gamut mapping since, contrary to zero-order image value
gamuts, they allow estimation of illuminant models under the more general
local-diagonal-offset model.

In Reference 173, the gamut mapping based on the statistical nature of images
in terms of their derivative structure is investigated. The derivative structure of
an image is described (in a complete sense) by means of the n-jet (see References
174 and 175). In Reference 173, gamuts up to the second-order structure are
considered, which is given by

{f, fx, fy, fxx, fxy, fyy}, (10.5)
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10.2 Combination of Gamut Mapping Algorithms

where the derivatives are computed for image f by a convolution with a Gaussian
at the scale of the derivative filter,

f ⊗ ∂

∂x
Gσ = ∂

∂x

(
f ⊗ Gσ

)
. (10.6)

Since these derivative filters are all linear filters, it follows from Equation 10.3
that the gamuts of the n-jet behave similarly under illuminant variations as a
normal zero-order gamut.

10.1.3 N-Jet Gamuts

The basic steps of the gamut mapping algorithm are identical when using derivative
(n-jet) images. However, when using derivatives, during the construction of the
gamuts (both the canonical gamut and the input gamut), the values that are
captured in the gamut are symmetric (e.g., if a transition from surface a to surface
b is present, then the transition from surface b to surface a should also be included
in the gamut). Further, note that the diagonal model can consist of strictly positive
elements only. For the pixel-based gamut mapping this restriction is imposed
naturally, but the first and second-order gamuts can contain negative as well as
positive values. Hence, during implementation one should make sure that the
diagonal mappings that are found contain strictly positive elements only. Further
note that the complexity of the algorithm based on pixel and derivative information
remains the same (and hence the difference in runtime can be neglected).

In Figure 10.2, a few examples of gamuts of the different n-jet images are
shown. From these images, it can be derived that the pixel-based gamut (i.e.,
the gamut of f), the edge-based gamuts (i.e., the gamuts of fx and fy), as well as
the gamuts using higher-order statistics (i.e., the gamuts of fxx, fxy and fyy) are
considerably different although they were computed from the same scene where
the only difference is a change in the color of the light source.

10.2 Combination of Gamut Mapping Algorithms

It is beneficial to incorporate additional information into illuminant estimation
[176]. This can either be done by means of supplemental algorithms [177, 178]
or by using higher order statistics in combination with pixel values [120]. In this
section, the goal is to exploit these two different ways of combining derivative-
based gamut mapping algorithms to provide additional information to estimate
the illuminant.

The use of additional information introduces two mutually exclusive oppor-
tunities to increase the performance. First, the uncertainty of the estimates of
the gamut mapping algorithm can be reduced. Second, the probability of finding
the correct illuminant estimate can be increased. In general, the gamut mapping
algorithm produces a set of illuminant estimates, called the feasible set. From this
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10 Color Constancy Using Gamut-Based Methods
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Figure 10.2 Examples of the gamuts of the different n-jet images for a scene taken under two different

light sources (images from Reference 44). What is shown is the gamut of the corresponding image,

using information that is present in either pixel values (f), edges (fx and fy ), or higher order statistics

(fxx , fxy and fyy ). Comparing the gamuts of the two images for one type of information (e.g., fx of image

(a) with fx of image (b)) clearly shows the discriminative power of the different n-jets.

feasible set, one final illuminant estimate is selected using some method. If the
size of the feasible set is large, then the possibility of selecting the wrong estimate
is relatively large, that is, the uncertainty of the final estimate is relatively high.
On the other hand, a smaller feasible set results in a lower probability that the
correct illuminant is contained inside this set. If multiple feasible sets, which are
all different from one another, can be found by using the different n-jet images,
then we can choose to either increase or decrease the size of the final feasible set.
Intuitively, a smaller feasible set results in a more accurate illuminant estimate
than a larger feasible set.

The first approach, proposed in Section 10.2.1, is by combining the feasible
sets obtained by the different algorithms. The second fusion method, described
in Section 10.2.2, considers the different gamut mapping algorithms as separate
algorithms and combines the final estimates of the algorithms.
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10.2 Combination of Gamut Mapping Algorithms

10.2.1 Combining Feasible Sets

Each gamut mapping algorithm produces a feasible set which contains all diagonal
mappings that map the gamut of the input image inside the canonical gamut.
Hence, the feasible set is a set of possible light sources. Since all gamut mapping
algorithms produce such a set, these sets can be used for the combination, instead
of selecting only one mapping per algorithm. Since each feasible set represents all
illuminant estimates that are considered possible, a natural approach of combining
the feasible sets is to consider only those estimates that are present in all feasible
sets, that is, an intersection of the feasible sets. Another approach of combining
the feasible sets is to consider every estimate that is present in all feasible sets,
that is, the union of the feasible sets:

M̂intersect =
⋂

i

Mi, (10.7)

M̂union =
⋃

i

Mi, (10.8)

where M̂intersect is the intersection of all feasible sets, M̂union is the union, and
Mi is the feasible set produced by algorithm i. Then, on these combined feasible
sets, an estimator is applied similar to step three of the gamut mapping algorithm.

10.2.2 Combining Algorithm Outputs

As a second possibility, the use of additional information is used in a later stage.
Several methods can be considered. Bianco et al. [177] propose a number of
alternatives, of which a regular average of the outputs is the simplest combination
strategy and the No-N-Max method is the most effective. The latter method is a
simple average of the outputs, excluding the N estimates that have the largest
distance from the other estimates, where N is an adjustable parameter. Let Dj
be the sum of the distances of the estimate of method j to all other considered
algorithms:

Dj =
n∑

i=1

d(ej, ei), (10.9)

where d(ek , ek) = 0. Then, all n estimates are ordered on the basis of their
corresponding D-value, that is, Di < Dj < Dk ⇒ ei < ej < ek . Finally, the No-
N-Max committee can be computed as

êNo-N-Max =
∑n−N

i=1 ei

n − N
, (10.10)

where it should be noted that ei is the ith estimate in the ranked list of illuminant
estimates. Further, ê is the result of the combination of the n algorithms, and N

159

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 Color Constancy Using Gamut-Based Methods

is the number of estimates that are excluded. Hence, N = 0 is equal to a simple
average of all estimates.

10.3 Summary

This chapter describes gamut-based methods. In addition to the traditional gamut
mapping, an extension that incorporates the differential nature of images is
described. The main advantages of gamut-based methods are the elegant under-
lying theory and the potential high accuracy. However, proper implementation
requires some effort and appropriate preprocessing can severely influence the
accuracy.
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11
11 Color Constancy Using

Machine Learning

The third type of algorithms estimates the illuminant using a model that is learned
on training data. Indeed, gamut-based methods in Chapter 10 can be considered
learning based too, but since this approach has been influential in color constancy
research it has been discussed separately.

Initial approaches using machine learning techniques are based on neural
networks [179]. The input to the neural network consists of a large binarized
chromaticity histogram of the input image, the output is two chromaticity values
of the estimated illuminant. Although this approach, when trained correctly, can
deliver accurate color constancy even when only a few distinct surfaces are present,
the training phase requires a large amount of training data. Similar approaches
apply support vector regression [180–182] or linear regression techniques such
as ridge regression and kernel regression [183–185] to the same type of input
data. Alternatively, thin-plate spline interpolation is proposed in Reference 186 to
interpolate the color of the light source over a nonuniformly sampled input space
(i.e., training images).

11.1 Probabilistic Approaches

Color-by-correlation [187] is generally considered to be a discrete implementation
of gamut mapping, but it is actually a more general framework that includes other

Portions reprinted, with permission, from ‘‘Color Constancy Using Natural Image Statistics and Scene
Semantics,’’ by A. Gijsenij and Th. Gevers, in IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 33 (4)© 2011 IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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11 Color Constancy Using Machine Learning

low-level statistics-based methods such as gray-world and white-patch as well.
The canonical gamut is replaced with a correlation matrix. The correlation matrix
for a known light source ei is computed by first partitioning the chromaticity
space into a finite number of cells, followed by computation of the probabilities
of occurrence of the coordinates under illuminant ei. One correlation matrix is
computed for every possible illuminant that is considered. Then, the information
that is obtained from the input image is matched to the information in the
correlation matrices to obtain a probability for every considered light source. The
probability of illuminant ei indicates the likelihood that the current input image
was captured under this light source. Finally, using these probabilities, one light
source is selected as scene illuminant, for example, using maximum likelihood
[187] or Kullback-Leibler divergence [188].

Other methods using low-level statistics are based on the Bayesian formulation.
Several approaches that model the variability of reflectance and light source as
random variables are proposed. The illuminant is then estimated from the posterior
distribution conditioned on the image intensity data [189–191]. However, the
assumptions of independent reflectance that is Gaussian distributed proved to be
too strong (unless learned for and applied to a specific application such as outdoor
object recognition [192]). Rosenberg et al. [193] replace these assumptions with
nonparametric models using the assumption that nearby pixels are correlated.
Further, Gehler et al. [194] show that competitive results to state of the art can be
obtained when precise priors for illumination and reflectance are used.

11.2 Combination Using Output Statistics

Despite the large variety of available methods, none of the color constancy
methods can be considered as universal. All algorithms are based on error-prone
assumptions or simplifications, and none of the methods can guarantee satisfactory
results for all images. To still be able to obtain good results on a full set of images
rather than on a subset of images, multiple algorithms can be combined to estimate
the illuminant. The first attempts at combining color constancy algorithms are
based on combining the output of multiple methods [177, 178, 195]. In Reference
195, three color constancy methods are combined using both linear (a weighted
average of the illuminant estimates) and nonlinear (a neural network based on the
estimates of the considered methods) fusion methods are considered. It is shown
that a weighted average, optimizing the weights in a least mean square sense,
results in the best performance, outperforming the individual methods that are
considered and nonlinear combination methods such as a multi-layer perceptron
neural network. If n algorithms are combined, then the weighted average is
defined as

e =
n∑

i=1

wiei, (11.1)
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11.3 Combination Using Natural Image Statistics

where
∑n

i=1 wi = 1. The average is just a special instance of the weighted average:
w1 = w2 = · · · = wn.

Other general statistics-based combination methods are evaluated in Reference
177. These strategies include the simple mean value of all estimates, the mean
value of the two closest estimates, and the mean value of all methods excluding
the N most remote estimates (i.e., excluding the estimates with the largest distance
to the other estimates, denoted No-N-Max). This latter strategy resulted in the
best performance, and is explained in Section 10.2.2.

In Reference 178, a statistics-based method is combined with a physics-based
method using a similar approach as the weighted average defined in Equation 11.1.
However, the outputs of the two algorithms used are somewhat different from the
output of a general color constancy algorithm. Both methods return likelihoods for
a predefined set of light sources, where each element represents the probability that
the corresponding illuminant is the illuminant that was used to create the current
image. After combining these probability vectors a posteriori, the illuminant with
the highest probability is selected as the final estimate. These results are more
accurate than using either of the two methods alone, but the combination method
is not as general as the committee proposed by Cardei and Funt [195], since
the outputs of the used color constancy methods have to adhere to a specific
(irregular) form.

11.3 Combination Using Natural Image Statistics

Instead of combining the output of multiple algorithms into a more accurate
estimate, a totally different strategy is proposed by Gijsenij and Gevers [120, 121].
They use the intrinsic properties of natural images to select the most appropriate
color constancy method for every input image. Their approach is based on the
observation that all color constancy methods, the methods discussed in Chapter 9,
in particular, are based on assumptions on the distribution of colors (edges) that
are present in an image. For instance, the gray-world algorithm assumes that the
average color in a scene taken under a neutral light source is achromatic, while
the gray-edge algorithm assumes that the average edge is achromatic. Further, in
Chapter 10, it was shown that the incorporation of spatial dependencies between
colors (e.g., edges) produce more constrained gamuts, improving the accuracy
of color constancy in general. This means that the set of possible adjacent color
values (i.e., color edges) in real-world images is more restricted than the set of
possible pixel values. Hence, the use of local spatial information will provide
more stable gamuts than pixel values to compute color constancy. Furthermore, a
higher accuracy is obtained when there is a large variety of edges in a scene (see
also [173]). The same observation is valid for the gray-world algorithm in terms
of the number of different surfaces [169, 196]. Hence, color constancy methods
are largely dependent on the distribution of colors and color edges in an image.
Natural image statistics can be used to describe these distributions.
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11 Color Constancy Using Machine Learning

11.3.1 Spatial Image Structures

Image structures are valuable identification cues in determining which type of
scene the image is taken from. In Reference 197, the authors show that the
power spectrum (distribution of edge responses) of an image is characteristic of
the type of scene. Further, in Reference 198, it is shown that this distribution
of edge responses can be modeled by a Weibull distribution. In the context
of scene classification, features derived from the power spectrum and Weibull
distributions have successfully been applied [198–200]. In Reference 121, the
focus is on modeling natural image statistics using the two-parameter integrated
Weibull distribution [198]:

w(x) = C exp

(
− 1

γ

∣∣∣∣ x

β

∣∣∣∣
γ )

, (11.2)

where x is the edge responses in a single color channel to the Gaussian derivative
filter, C is a normalization constant, β > 0 is the scale parameter of the distribution,
and γ > 0 is the shape parameter. The parameters of this distribution are indicative
of the edge statistics of an (natural) image. In fact, the contrast of the image is
indicated by β (i.e., the width of the distribution), and the grain size by γ (i.e.,
the peakedness of the distribution). Hence, a higher value for β indicates more
contrast, while a higher value for γ indicates a smaller grain size (more fine
textures).

To fit the Weibull distribution, edge responses are computed by a Gaussian
derivative filter. There exists a high correlation between the Weibull parameters
that are fitted through the distribution of edges for the first derivative, second
derivative, and third derivative. Hence, a single filter type, although measured in
different orientations, is sufficient to assess the spatial statistics of images [198].

In Figure 11.1, examples are shown of images with their corresponding edge
distributions that are approximated by a Weibull fit. The intensity channel is
chosen for ease of illustration because a six-dimensional edge distribution (i.e., β

and γ for each R, G and B channel) is hard to visualize. The edge distributions
and corresponding Weibull fits computed for separate color channels show
similar plots. The images are examples on which the different color constancy
algorithms using the corresponding type of information (i.e., pixel values, edges,
or second-order transitions) performs best (based on the angular error).

The relationship between the images in Figure 11.1 and their corresponding
color constancy algorithm becomes clear from the edge distributions that are
shown together with the images in Figure 11.1. Pixel-based algorithms (i.e.,
zeroth order) perform better than higher order methods (i.e., first and second
order) on images with only little texture. This reflects in an edge distribution that
is densely sampled around the origin, that is, many edges with little or zero energy.
Higher order methods require more edge information for an accurate illuminant
estimate, which is reflected in an edge distribution that is less sharply peaked.
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11.3 Combination Using Natural Image Statistics
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Figure 11.1 Examples of images that

can be considered to be characteristic of

the corresponding color constancy

algorithms, that is, the corresponding

color constancy algorithm will perform

best on these type of images. Below each

image, the distribution of edges in the

intensity channel is plotted. Source: The

images come from the data set published

in Reference 201.

11.3.2 Algorithm Selection

Using the Weibull distribution as parameterization of the edge distribution, several
characteristics are captured, such as the number of edges and the amount of texture
and contrast. Gijsenij and Gevers use this parameterization (i.e., β and γ ) to select
the most appropriate color constancy algorithm for a given image. This algorithm
aims at combining the estimates of several color constancy algorithms into a
single more accurate estimate. To be precise, let M be the set of algorithms that
are to be combined, where Mi denotes algorithm i. Further, the accuracy of the
estimate of algorithm i on image j (i.e., the performance of algorithm i on image
j) is denoted by εi(j). The algorithm consists of the following steps (see also
Fig. 11.2):
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11 Color Constancy Using Machine Learning
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Figure 11.2 Overview of the combination approach using natural image statistics. In the learning

phase, features are extracted from a set of training images. For each of the training images, the optimal

color constancy method is determined by applying several methods and evaluating the performance

using the ground truth (which should be available for the training images). Then, using the features

and the optimal color constancy methods, a classifier is learned. In the testing phase, the features

of the input image are used in combination with the learned classifier to determine the optimal color

constancy method. Finally, the selected color constancy method is applied to the input image, and the

input image is corrected accordingly.

■ First, the image statistics ω ∈ R
p×q for all images are computed, where p

is the number of features that are computed and q is the number of images,
that is, ωij is the ith feature of the jth image. For simplicity, the subscript i
is omitted, so ωj denotes the feature vector representing the image statistics
of the jth image. This step corresponds to block 1 in Figure 11.2.

■ Then, all images that are in the training set are labeled (step 2 in Fig.
11.2). The label yj of an image j is derived using the performance of the
algorithms on image j:

yj = arg min
i

{εi(j)}. (11.3)

■ Learn a classifier on the training data (see block 3 in Fig. 11.2). Although
any classifier could be used, the authors in Reference 121 use an MoG
classifier [202]. The likelihood of the observed image statistics ωj for
image j given color constancy algorithm yj is computed as a weighted sum
of k Gaussian distributions:

p(ωj|yj) =
k∑

m=1

αmG(ωj, μm, �m). (11.4)

Here, αm are positive weights of the Gaussian components (with mean
and variance defined as μm and �m, respectively) such that

∑k
m=1 αm = 1.

The parameters of the model are learned through training using the
expectation-maximization (EM) algorithm.
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11.4 Methods Using Semantic Information

■ Apply the learned (MoG) classifier on the test data, and assign to the
current image j the algorithm that maximized the posterior probability
(steps 4–6 in Fig. 11.2). The selection of the most appropriate color
constancy algorithm for the current image is done by computing the
maximum posterior probability of the classifier. The corresponding color
constancy algorithm is selected for the current image. The other algorithms
are ignored.

Weibull parameters can be computed for each R, G and B channel separately.
However, these color channels are highly correlated [203]. Therefore, the image is
first transformed to a decorrelated color space before computing these parameters.
To this end, in Reference 121 the opponent color space is used (see Section 4.2).
Instead of using Weibull parameterization, various other features are explored in
References 204–207 to predict the most appropriate algorithm for a given image.
The most notable differences between these approaches is in the extraction of the
features, that is, the first step of the algorithm.

11.4 Methods Using Semantic Information

Another type of approach using machine learning techniques attempts to estimate
the illuminant using some sort of semantic information.

11.4.1 Using Scene Categories

Gijsenij and Gevers [120, 121, 208] propose to dynamically determine which
color constancy algorithm should be used for a specific image, depending on
the scene category. They propose that scene semantics can steer the process of
color constancy. For instance, forest-like scenes show a similar edge distribution
(see Figs. 11.2 and 11.3). Next, the method discussed in the previous section
can be used to derive the best solving color constancy algorithm for such similar
scenes, for example, the first-order grey-edge method generally is best suited for
forest-like scenes.

Some categories have a larger variance in edge distribution than others. For
instance, most of the images of the category highway have a low value for β

and a low value for γ , indicating a low contrast and few edges. Images of the
category inside city, on the other hand, generally have a large variance. However,
even for this category, it can be observed that most images have lower values
for γ , while β can take on a wider variation of values. Figure 11.3 shows the
image statistics of four different scenes. Although there is some degree of overlap,
the plot does show that images of the same semantic category generally have
similar image statistics. Using this observation, a supervised selection of a color
constancy algorithm for images of the same scene category can be achieved. By
classifying an input image as one of these image categories (either supervised
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11 Color Constancy Using Machine Learning
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Figure 11.3 Scatter plots of the Weibull parameters based on O3 derived from images coming from

several categories (defined in Reference 209). From this plot, it can be seen that images from the

same scene category have similar Weibull parameters (although there is some degree of overlap).

Comparing these statistics to the statistics learned in Section 11.3 allows us to connect a specific color

constancy algorithm to particular semantic categories.

by user intervention or unsupervised by a scene-recognition system as in
[199–200, 210]), the corresponding color constancy algorithm can be applied
to the image to obtain a performance that is similar to the proposed automatic
selection algorithm.

From these observations, a supervised selection of a color constancy algorithm
for images from all scene categories can be achieved. By classifying an input
image as one of these image categories (either supervised by user intervention
or unsupervised by a scene-recognition system as in [199–200, 210]), the
corresponding color constancy algorithm can be applied to the image.

Another approach that uses scene categories is proposed by Bianco et al.
[211], which makes explicit use of an indoor-outdoor classifier. When an input
image is classified as an indoor image, they propose to use the shades-of-
grey method. Classifying an image as an outdoor image should result in the
second-order grey-edge method. In addition to these two classes, they propose
to use an ‘‘unsure’’ class for images that have low probabilities for either of
the two classes (indoor/outdoor). Such images are best solved by a general
purpose method, for which they use a weighted average of multiple estimates.
Instead of the arbitrary distinction between indoor and outdoor images, Lu et al.
[212–213] propose to use a stage classifier that distinguishes medium-level
semantic classes, called stages [214]. This results in a color constancy method
that explicitly uses 3D scene information for the estimation of the color of the
light source.
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11.4 Methods Using Semantic Information

11.4.2 Using High-Level Visual Information

Rather than classifying images into a specific class and applying different color
constancy methods depending on the corresponding class, van de Weijer et al.
[145] propose to select the best illuminant estimate out of a set of illuminant
hypotheses. Using prior knowledge about the world, possible illuminant estimates
are evaluated on the basis of the likelihood of semantic content. In other words,
the algorithm selects as final illuminant estimate the illuminant that will generate
the most plausible output image, for example, an output image with blue rather
than purple sky and green rather than reddish grass.

To be able to evaluate the likelihood of an illuminant hypothesis, a model has to
be created that computes the probability of an image to occur under a white light
source. For this purpose, images will be modeled as a mixture of semantic classes,
such as sky, grass, road, and building. Each class is described by a distribution
over visual words, which are described by three modalities—texture, color, and
position. As an example, consider an image with sky and grass. This image will
consist of visual words that are drawn from the distributions of sky and grass.
Given these visual words, we will attempt to infer what classes are present in
the image. Given the inferred classes and the visual words, the likelihood of the
image can be computed, which is called the semantic likelihood of the image.

A generative model called probabilistic latent semantic analysis [215] is used
in Reference 145. Images are modeled as a mixture of latent topics. The topics
are semantic classes in the image such as sky, grass, road, building, etc. They
are described by a distribution over visual words. As visual descriptors, 20 × 20
patches are extracted on a regular grid from the image. Each patch, or visual word,
is described by three modalities:

■ Texture, which is described with the SIFT descriptor [55].

■ Color, which is described by the Gaussian averaged RGB value over the
patch.

■ Position, which is described by imposing an 8 × 8 grid of regular cells on
the image.

Given a set of images F = {
f1, . . . , fN

}
each described in a visual vocabulary

V = {
v1, . . . , vM

}
, the words are taken to be generated by latent topics Z ={

z1, . . . , zK

}
. In the PLSA model, the conditional probability of a visual word v in

an image f and an illuminant e is given by

P (v| f, e) =
∑
ze∈Ze

P
(

v| ze)P
(

ze
∣∣ f

)
, (11.5)

where ze indicates that the topic distribution has been computed from a data set
that was taken under illuminant e. Similar to the approach of Verbeek and Triggs
[216], it is assumed that the three modalities are independent given the topics

P (v|z) = P
(
vT |z) P

(
vC|z) P

(
vP|z) , (11.6)
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11 Color Constancy Using Machine Learning

where vT , vC , and vP, are successively the texture, color, and position word. The
distributions P(z|f) and the various P(v|z)s are discrete, and can be estimated
using an EM algorithm [215].

The goal is to compute the chance that an image was taken under a white light
source, which, according to Bayes law, is proportional to

P (w|f) ∝ P (f|w) P (w) . (11.7)

If a uniform distribution over the illuminants p (w) is assumed, this can be
rewritten using Equation 11.5:

P (w|f) ∝ P (f|w) =
M∏

m=1

P
(
vm|f, w

)
, (11.8)

=
M∏

m=1

∑
zw∈Zw

P
(
vm|zw)

P
(
zw|f), (11.9)

where P
(
vm|zw

)
means that the visual word topic distributions are learned from

images taken under white light.
An overview of this approach is given in Figure 11.4. Given an input image

that is recorded under an unknown illuminant, first a set of illuminant hypotheses
is generated (step 1). Van de Weijer et al. [145] propose to use both bottom-up
and top-down approaches (steps 2 and 3). Then, each of these hypotheses is used
to correct the input image, and for each corrected image, the semantic likelihood
is computed using Equation 11.9 (step 4). Consider for the sake of simplicity
that texture descriptors do not change when the illuminant changes (in the final
implementation, the texture descriptors are recomputed for each illuminant).
When the illuminant color is varied (i.e., by applying one of the hypotheses to the
input image), the color word vC is changed and consequently P(vC|z), P(v|z), and
P(z|f) are changed. The semantic likelihood that is used to assess the probability of
the hypotheses is now given by the correspondence of P(vC|z) with the combined
distribution of P(vT |z)P(vP|z). This means that illuminants become more likely
when the color words they generate are in accordance with the texture and position
information (for instance, color words representing green are more likely together
with texture words describing grass, and a skylike texture in the top of the image
is more likely to be blue). In the depicted image in Figure 11.4, the method
estimates the illuminant to be reddish, since after correction for this light source
the image could be interpreted as green grass under a blue sky.

This approach is closely related to the work of Manduchi [217], who uses the
color similarity between a test image and labeled classes in one training image
taken under white light. These classes are not semantically meaningful, as they are
labeled ‘‘class I,’’ ‘‘class II,’’ etc. Using a Gaussian color distribution to describe
the classes, the color similarity is used to estimate the illuminant color of the test
image. Each pixel is assigned to a class and an illuminant to optimize the likelihood
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11.5 Summary
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Figure 11.4 Overview of the combination approach using high-level visual features. First, several

illuminant hypotheses are casted. This can be done using bottom-up and top-down approaches (as

the authors suggest in Reference 145) or by using any other approach. Then, using Equation 11.9,

the semantic likelihood of all hypotheses are computed. Finally, the most likely illuminant hypothesis is

selected as the final estimate and used to correct the input image.

of the image. The method has the advantage that multiple illuminants are allowed
within an image, but it is only demonstrated to succeed when a single training
image, similar to the test image, is available. This might be due to the limited
discriminative power of the class description, in which multimodality in color
space as well as texture as position information are disregarded. Finally, another
similar approach is proposed in Reference 218, where the term memory color
is used to refer to colors that are specifically associated with object categories.
These object-specific colors are used to refine the estimated illuminants.

11.5 Summary

Learning-based methods have the advantage over stand-alone methods that they
can be tuned toward specific data (such as indoor or outdoor images). This chapter
describes several methods that cannot operate without training phase. First,
methods that learn low-level statistics are described, such as regression techniques
and Bayesian approaches. Such approaches are often simple to implement, but the
output is often rather nonintuitive since the model that is learned is quite opaque.
After that, methods using higher level statistics and semantics are discussed.
Since such methods select appropriate color constancy methods given an input
image, they are more intuitive than other learning-based methods. Moreover, the
accuracy of such approaches has been proved to be state of the art. However, the
use of multiple single algorithms means that they are inherently slower than the
single algorithms themselves.
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12
12 Evaluation of Color Constancy

Methods

Evaluation of illuminant estimation algorithms requires images with a scene
illuminant that is known (ground truth). The general experimental setup is as
follows. First, part of the data is used for training, if the algorithm requires this.
Then, the color of the light source is estimated for every remaining image of the
database and compared to the ground truth. Various publicly available data sets
are discussed in Section 12.1. The comparison requires some similarity or distance
measure, discussed in Section 12.2. Alternative setups exist, depending on the
application. For instance, Funt et al. [219] describe an experiment to evaluate
the usefulness of color constancy algorithms as a preprocessing step in object
recognition. However, in this chapter, the intended application is correction of an
input image for the color of the light source, that is, white balancing.

12.1 Data Sets

Two types of data that are used to evaluated color constancy methods can
be distinguished: hyperspectral data and RGB images. Databases containing
hyperspectral data sets are often smaller (less images) and contain less variation

Portions reprinted, with permission, from ‘‘A perceptual analysis of distance measures for color
constancy,’’ by A. Gijsenij, Th. Gevers and M.P. Lucassen, in Journal of the Optical Society of
America A, Vol. 26 (10) © 2009 OSA.

Portions reprinted, with permission, from ‘‘Computational Color Constancy: Survey and Experi-
ments,’’ by A. Gijsenij, Th. Gevers and J. van de Weijer, in IEEE Transactions on Image Processing,
Vol. 20 (9) © 2011 IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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12.1 Data Sets

than data sets with RGB images. The main advantage of hyperspectral data is that
many different illuminants can be used to realistically render the same scene under
various light sources, and consequently a systematic evaluation of the methods
is possible. However, the simulation of illuminants generally does not include
real-world effects such as interreflections and nonuniformity. Consequently, the
evaluation of RGB images results in more realistic performance evaluations.
Ideally, both types of data should be used for a thorough evaluation of color
constancy methods [141, 169].

12.1.1 Hyperspectral Data

An often used hyperspectral database was composed by Barnard et al. [44].
This set consists of 1995 surface reflectance spectra and 287 illuminant spectra.
These reflectance and illuminant spectra can be used to generate an extensive
range of surfaces (i.e., RGB values), allowing for a systematic evaluation of
color constancy performance. Another database that is specifically useful for
the evaluation of the color constancy algorithm is created by Foster et al. [126,
220]. These two sets each contain eight natural scenes that can be converted into
an arbitrary number of images using various illuminant spectra (not provided).
Finally, a database by Parraga et al. [221] contains 29 hyperspectral images with
low resolution (256 × 256 pixels).

12.1.2 RGB Data

Databases with RGB images are more informative on the performance of the
algorithms under realistic circumstances. The first step toward realistic evaluation
of color constancy methods involves isolated compositions of objects that are
illuminated by 11 different light sources [44]. The 11 different lights include
three different fluorescent lights, four different incandescent lights, and four
incandescent lights combined with a blue filter, and are selected to span the
range of natural and man-made illuminants as best as possible. The complete
database contains 22 scenes with minimal specularities, 9 scenes with dielectric
specularities, 14 scenes with metallic specularities, and 6 scenes with at least
one fluorescent surface. Often, for illuminant estimation evaluation, a subset
of 31 scenes that only consists of the scenes with minimal and with dielectric
specularities is used. Even though these images encompass several different
illuminants and scenes, the variation of the images is limited.

A more varied database was compiled by Ciurea and Funt [201]. This data set
contains over 11,000 images, extracted from 2 hours of video recorded under a
large variety of imaging conditions (including indoor, outdoor, desert, cityscape,
and other settings). In total, the images are divided into 15 different clips taken at
different locations. The ground truth is acquired by attaching a gray sphere to the
camera, that is displayed in the bottom right corner of the image. Obviously, this
gray sphere should be masked during experiments to avoid biasing the algorithms.
Some examples of images that are in this data set are shown in Figure 12.1a.
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12 Evaluation of Color Constancy Methods

(b) Example images of color-checker-set

(a) Example images of SFU data set

Figure 12.1 Some examples of the two data sets that are used for the experiments. (a) SFU data set

(b) Color-checker set

The main disadvantage of this set is the correlation that exists between some of
the images. Since the images are extracted from video sequences, some images
are rather similar in content. This should especially be taken into account when
dividing the images into training and test sets. Another issue of this data set is that
an unknown postprocessing procedure is applied to the images by the camera,
including gamma correction and compression. A similar data set is recently
proposed in Reference 222. Although the number of images in this set (83 outdoor
images) is not comparable to the previous set, the images are not correlated and
are available in XYZ-format, and can be considered to be of better quality. Further,
an extension of the data set is proposed in Reference 223, where an additional
126 images with varying environments (e.g., forest, seaside, mountain snow, and
motorways) are introduced.

Gehler et al. [194] introduced a new database consisting of 568 images, both
indoor and outdoor. The ground truth of these images is obtained using a MacBeth
Color Checker that is placed in the scene. The main advantage of this database
is the quality of the images (which are free of correction), but the variation of
the images is not as large as the data set containing over 11,000 images. Some
examples of images that are in this data set are shown in Figure 12.1b. Finally,
Shi and Funt generated a set of 105 high dynamic range images [147, 148]. These
images use four color checkers to capture the ground truth and are constructed
from multiple exposures of the same scene.

12.1.3 Summary

A summary of available data sets is presented in Table 12.1. Generally, a
distinction can be made between real-world RGB images and images with
controlled illumination conditions. The latter type of data, including hyperspectral
images, should mainly be used to aid the development of new algorithms and
for the systematic analysis of methods. Conclusions about the performance with
respect to existing methods based on such data sets should be avoided as much
as possible, since it is relatively easy to tune any algorithm to obtain a high
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12.2 Performance Measures

Table 12.1 Summary of data sets with advantages and disadvantages.

Data Set Pros Cons

SFU hyperspectral set [44] Large variety Best-case assessment of

performance

(1995 surface spectra) Allows for systematic

evaluation

Foster et al. [126, 220] High quality hyperspectral

images

Limited amount of data

(8 + 8 images) Real-world natural scenes

Bristol set [221] Hyperspectral images Low quality images

(28 images) Real-world natural scenes

SFU set [44] Scenes with varying

characteristics

Laboratory setting

(223+98+149+59 images) Captured with calibrated

camera

Gray-ball SFU set [201] Largest set available Correlation exists between

images

(11,346 images) Large variety of images Images are postprocessed

Barcelona set [222] Uncorrelated images Few images

(83 + 126 images) High quality XYZ-data

available

Short time frame

Color checker set [194] High quality images Medium variety

(568 images) Uncorrected data

HDR images [147, 148] High dynamic range

images

Few images

(105 images) Uncorrected data

performance on such data sets. The real-world RGB images are more suited to
compare algorithms, as such data are probably the target data of the intended
application of most color constancy algorithms.

12.2 Performance Measures

Performance measures evaluate the performance of an illuminant estimation
algorithm by comparing the estimated illuminant to a ground truth, which is
known a priori. Since color constancy algorithms can only recover the color of
the light source up to a multiplicative constant (i.e., the intensity of the light
source is not estimated), distance measures compute the degree of resemblance in
normalized RGB:

r = R

R + G + B
, (12.1)
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12 Evaluation of Color Constancy Methods

g = G

R + G + B
, (12.2)

b = B

R + G + B
. (12.3)

Various distance measures can be derived. Gijsenij et al. [224] propose a
taxonomy of different measures for color constancy algorithms. They distinguish
between mathematics-based measures, perceptual measures, and color constancy-
specific measures.

12.2.1 Mathematical Distances

In color constancy research, two frequently used performance measures are
the Euclidean distance and the angular error, of which the latter is probably
more widely used. The angular error measures the angular distance between the
estimated illuminant ee and the ground truth eu, and is defined as

dangle(ee, eu) = cos−1
(

ee · eu

||ee|| · ||eu||
)

, (12.4)

where ee · eu is the dot product of the two illuminants and || · || is the Euclidean
norm of a vector.

The Euclidean distance deuc is actually a special instantiation of the more
general Minkowski family of distances, denoted dMink:

dMink(ee, eu) = (|re − ru|p + |ge − gu|p + |be − bu|p)
1
p , (12.5)

where p is the corresponding Minkowski norm. Three special cases are well-
known: the Manhattan distance (dman) for p = 1, the Euclidean distance (deuc) for
p = 2, and the Chebychev distance (dsup) for p = ∞.

12.2.2 Perceptual Distances

If the goal of color constancy algorithms is to obtain an output image that is
identical to a reference image, that is, an image of the same scene taken under
a canonical, often white, light source, then perceptual distance measures are an
obvious choice for evaluation. For this purpose, the estimated color of the light
source and the ground truth are first transformed into different (human vision)
color spaces, after which they are compared. In Reference 224, the distance is
measured in the (approximately) perceptually uniform color spaces CIELAB and
CIELUV [225]. More information on these color spaces is presented in Chapter
4. Further, in addition to the Euclidean distance between CIELAB colors, the
CIEDE2000 [226] is computed, since the metric is shown to be more uniform and
is considered to be state of the art in industrial applications. Finally, the authors
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12.2 Performance Measures

in Reference 224 propose a weighted Euclidean distance measure (denoted PED
for perceptual Euclidean distance), inspired by the nonuniformity of the spectral
sensitivity of the human eye:

PED(ee, eu) =
√

wR(re − ru)
2 + wG(ge − gu)

2 + wB(be − bu)
2, (12.6)

where wR + wG + wB = 1. This distance measure allows assigning higher weights
to deviations in one color channel, since a deviation in this specific color channel
might have a stronger effect on the perceived difference between two images than
a deviation in another channel.

12.2.3 Color Constancy Distances

Finally, two color-constancy-specific distances are discussed. The first is the color
constancy index (CCI) [108], also called Brunswik ratio [227], and is generally
used to measure perceptual color constancy [110, 126]. It is defined as the ratio
of the amount of adaptation that is obtained by a human observer versus no
adaptation at all:

CCI = b

a
, (12.7)

where b is defined as the distance from the estimated light source to the true
light source and a is defined as the distance from the true light source to a
white reference light. During evaluation, several different color spaces are used
to compute the values a and b.

The second is called the gamut intersection [224], which makes use of the
gamuts of the colors that can occur under a given light source. It is based on the
assumption underlying the gamut mapping algorithm, that is under a given light
source, only a limited number of colors are observed. The difference between the
full gamuts of two light sources is an indication of the difference between these
two light sources. For instance, if two light sources are identical, then the gamuts
of colors that can occur under these two light sources will coincide, while the
similarity of the gamuts will be smaller if the difference between the two light
sources is larger. The gamut intersection is measured as the fraction of colors that
occur under the estimated light source, with respect to the colors that occur under
the true, ground truth, light source.

dgamut(ee, eu) = vol(Ge ∩ Gu)

vol(Gu)
, (12.8)

where Gi is the gamut of all possible colors under illuminant i and vol(Gi) is
the volume of this gamut. The gamut Gi is computed by applying the diagonal
mapping, corresponding to light source i, to a canonical gamut.
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12 Evaluation of Color Constancy Methods

12.2.4 Perceptual Analysis

In most situations, for instance, when the application is to obtain an accurate
reproduction of the image under a white light source, the distance measure should
be an accurate reflection of the quality of the output image. In Reference 224, the
distance measures discussed above are analyzed with respect to this requirement.
For this purpose, several psychophysical experiments are performed, where human
subjects were shown four images on a calibrated LCD monitor (see Fig. 12.2).
The upper two images are identical reference images, representing the test scene.
The lower two correspond to the resulting output of two different color constancy
algorithms, applied to the original test scene (i.e., the scene under a certain colored
light source). Subjects are instructed to compare the color reproduction of each
of the lower images with the upper references. Both the global color impression
of the scene and the colors of local image details are to be addressed. Subjects
then indicated which of the two lower images has the best color reproduction.
Various different color constancy algorithms were tested, resulting in a ranking
based on the human observations. This ranking was then correlated against the
different distance measures (each distance measure can be used to generate
a ranking).

Figure 12.2 Screen capture of an experimental trial. Subjects indicate which of the two bottom images

(resulting from two different color constancy algorithms) is the best match to the upper reference image.

More details on the experimental setup can be found in Reference 224.
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12.2 Performance Measures

Table 12.2 Overview of the correlation coefficients ρ of several distance measures and

using several color spaces with respect to the subjective measure derived from human

observers.

ρ on Foster ρ on Gray-ball SFU

Measure data [126] data [201]

dangle 0.895 0.926

dman 0.893 0.930

deuc 0.890 0.928

dsup 0.817 0.906

deuc − L∗a∗b∗ 0.894 0.921

�E∗
00 − L∗a∗b∗ 0.896 0.916

deuc − L∗u∗v∗ 0.864 0.925

deuc − C + h 0.646 0.593

deuc − C 0.619 0.562

deuc − h 0.541 0.348

PEDproposed 0.960 0.957

CCI(dangle) 0.895 0.931

CCI(deuc,RGB) 0.893 0.929

CCI(deuc,L∗a∗b∗ ) 0.905 0.921

CCI(deuc,L∗u∗v∗ ) 0.880 0.927

dgamut 0.965 0.908

Subjects evaluate the quality of two different data sets. The first data set
consists of eight hyperspectral images [126], each rendered under four different
light sources. The second data set consists of 50 images from the Gray-ball SFU
set [201]. The correlation coefficients for various distance measures on both data
sets are shown in Table 12.2. It should be noted that the correlation coefficients
are relatively stable across data sets. Further, it is shown that the often used
angular error correlates reasonably well with the perceived quality of the output
images (in fact, the angular error is on par with perceptual distance measures such
as CIEDE2000). The main weakness of the angular error, however, is the fact
that the angular error ignores the direction of the error completely. For instance,
see the illustration in Figure 12.3, where compositions are shown of patches with

Figure 12.3 Illustration of the angular error. Shown are patches that have an angular deviation from

white of 1◦, 5◦, 10◦, and 20◦, respectively. Notice the variation in colors for patches with similar deviation

from a reference color (white).
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12 Evaluation of Color Constancy Methods

the same deviation from white (from left to right, the deviation from white is 1◦,
5◦, 10◦, and 20◦). Notice the variation in colors for patches that have a similar
deviation from a reference color (white). This indicates that two methods can
have similar angular errors on the same image, but result in completely different
output images. Obviously, this also is reflected in the perceived quality of the
output images.

In order to take the direction of the error into account, the authors of Reference
224 propose the perceptual Euclidean distance (or PED), with which higher
weights can be assigned to deviations in some color channels than others. An
exhaustive search on the weight space was performed, resulting in a weight
combination of (wR, wG, wB) = (0.26, 0.70, 0.04). The correlation of this distance
measure with the perceptual quality of the output images is significantly higher
than the angular error [224]. However, the optimal weight combination depends on
the data set that is used. This means a psychophysical experiment that uses a small
but representative subset of the complete data set to obtain the optimal weights is
needed. Using these optimal weights, more reliable inferences can be made about
the performance of color constancy algorithms. Without such psychophysical
experiments, the angular error is a decent choice for a distance measure.

Finally, the experiments in Reference 224 are used to introduce the notion of
perceptual significance. When comparing two algorithms, the errors of those two
algorithms on a set of images are compared. However, the fact that one algorithm
results in lower errors might not always justify the conclusion that one algorithm
is better than the other. The degree of difference also has to be taken into account.
One important question that should not be ignored is whether or not the obtained
improvement is noticeable to a human observer. In Reference 224, it was shown
that when using the angular error as distance measure, a relative improvement of at
least 5–6% should be obtained to be noticeable to a human observer. For instance,
if method A has an angular error of 10◦, then an improvement of at least 0.6◦ is
necessary; otherwise the improvement will not be visible to a human observer.

12.3 Experiments

When evaluating the performance of color constancy algorithms on a whole data
set instead of on a single image, the performances on all individual images need
to be summarized into a single statistic. This is often done by taking the mean,
root mean square, or median of, for instance, the angular errors of all images in
the data set. If the error measures are normally distributed, then the mean is the
most commonly used measure for describing the distribution and the root mean
square provides an estimate of the standard deviation. However, if the metric
is not normally distributed, for instance, if the distribution is heavily skewed or
contains many outliers, then the median is more appropriate for summarizing the
underlying distribution [228].
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12.3 Experiments

12.3.1 Comparing Algorithm Performance

From previous work, it is known that the angular error is not normally distributed
[196]. To test whether the perceptual Euclidean distance is normally distributed,
a similar experiment as in Reference 196 is conducted. In Figure 12.4, the errors
for the white-patch algorithm on the 11,000 images from the RGB images data
set [201] are plotted, from which it is clear that both the angular error and the
perceptual Euclidean distance are not normally distributed. The distributions of
both metrics have a high peak at lower error rates, and a fairly long tail. For such
distributions, it is known that the mean is a poor summary statistic, and hence,
previously, it was proposed to use the median to describe the central tendency
[196]. Alternatively, to provide more insight into the complete distribution of
errors, one can calculate boxplots or compute the trimean instead of the median.
Boxplots are used to visualize the underlying distributions of the error metric of
a given color constancy method, as an addition to a summarizing statistic. This
summarizing statistic can be the median, as proposed by Hordley and Finlayson
[196], or it can be the trimean, a statistic that is robust to outliers (the main
advantage of the median over a statistic such as the root mean square), but still
has attention to the extreme values in the distribution [229, 230]. The trimean can
be calculated as the weighted average of the first, second, and third quantile Q1,
Q2 and Q3, respectively:

TM = 0.25Q1 + 0.5Q2 + 0.25Q3. (12.9)

The second quantile Q2 is the median of the distribution, and the first and third
quantiles Q1 and Q3 are called hinges. In other words, the trimean can be described
as the average of the median and the midhinge.
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Figure 12.4 Distribution of estimated illuminant errors for the white-patch algorithm, obtained for a set

of over 11,000 images.
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12 Evaluation of Color Constancy Methods

12.3.2 Evaluation

Two data sets are used to evaluate various methods [231]. The two data sets
evaluated are the gray-ball SFU set and the color checker set (note that the data
used in this chapter is obtained from [232]). These sets are selected because
of their size (they are the two largest sets available to date), their nature (the
sets consist of real-world images in an unconstrained environment) and their
benchmark status (the gray-ball SFU set is widely used, the recent color checker
set has the potential to become widely used). For the exact details on the used
data sets, refer to [231].

All algorithms are trained using the same setup, based on cross-validation.
Training on the gray-ball SFU set is performed by dividing the data into 15
parts, where it is ensured that the correlated images (i.e., the images of the same
scene) are grouped in the same part. Next, the method is trained on 14 parts of
the data and tested on the remaining part. This procedure is repeated 15 times,
so every image is in the test set exactly once and all images from the same
scene will either be in the training set or in the test set at the same time. The
color checker set adopts a simpler threefold cross-validation. The three folds are
provided by the authors of the data set. This cross-validation-based procedure
is also adapted to learn the optimal parameter setting for the static algorithms
(optimizing p and σ ) and the gamut-based algorithms (optimizing the filter size
σ ). Further, the regression-based method is implemented using LIBSVM [233],
and is optimized for the number of bins of the binary histogram and for the
Support Vector Regression (SVR) parameters. Finally, all combination-based
methods are applied to a select set of static methods: using Equation 9.18 we
systematically generated nine methods using pixel values, eight methods using
first-order derivatives and seven methods using second-order derivatives. On the
basis of the details of the corresponding methods, the following strategies are
deployed. The No-N-Max combination method [177] is applied to a subset of
six methods (finding the optimal combination of six methods using the same
cross-validation-based procedure), the method using high level visual information
[145] is applied to the full set of methods (setting the number of semantic topics
to 30) and the method using natural image statistics [120, 121] is applied to
a subset of three methods (one pixel-based, one edge-based, and one second-
order derivative-based method, finding the optimal combination using the same
cross-validation procedure).

12.3.2.1 Gray-Ball SFU Set The results on the SFU set are shown in
Table 12.3. Some example results are shown in Figure 12.5. Pixel-based gamut
mapping performs similar to the gray-edge method, but judging from these
results, simple methods such as the white-patch and the gray-world are not
suited for this data set with the current preprocessing strategy. As expected,
combination-based methods outperform single algorithms, where the difference

182

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12.3 Experiments

Figure 12.5 Some example results of various methods applied to several test images. The angular

error is shown in the bottom right corner of the images. The methods used are, from left to right, perfect

color constancy using ground truth, gray-world, second-order gray-edge, inverse intensity chromaticity

space and using high level visual information.

Table 12.3 Performance of several methods on the linear gray-ball SFU set (11,346

images).

Best, Worst,

Method Mean μ Median Trimean 25% 25%

Do nothing 15.6◦ 14.0◦ 14.6◦ 2.1◦ 33.0◦

White-patch (e0,∞,0) 12.7◦ 10.5◦ 11.3◦ 2.5◦ 26.2◦

Gray-world (e0,1,0) 13.0◦ 11.0◦ 11.5◦ 3.1◦ 26.0◦

General gray-world (e0,p,σ ) 12.6◦ 11.1◦ 11.6◦ 3.8◦ 23.9◦

First-order gray-edge (e1,p,σ ) 11.1◦ 9.5◦ 9.8◦ 3.2◦ 21.7◦

Second-order gray-edge (e2,p,σ ) 11.2◦ 9.6◦ 10.0◦ 3.4◦ 21.7◦

Spatial Correlations (without

regression)

12.7◦ 10.8◦ 11.5◦ 2.4◦ 26.0◦

Spatial Correlations (with regression) 12.7◦ 5.3◦ 5.7◦ 1.2◦ 16.1◦

Using inverse intensity chromaticity

space

14.7◦ 11.0◦ 11.6◦ 3.2◦ 32.7◦

Pixel-based gamut mapping 11.8◦ 8.9◦ 10.0◦ 2.8◦ 24.9◦

Edge-based gamut mapping 13.7◦ 11.9◦ 12.3◦ 3.7◦ 26.9◦

Intersection: complete 1-jet 11.8◦ 8.9◦ 10.0◦ 2.8◦ 24.9◦

Regression (SVR) 13.1◦ 11.2◦ 11.8◦ 4.4◦ 25.0◦

Statistical combination (No-N-Max) 10.3◦ 8.2◦ 8.8◦ 2.7◦ 21.2◦

Using high level visual information 9.7◦ 7.7◦ 8.2◦ 2.3◦ 20.6◦

Using natural image statistics 9.9◦ 7.7◦ 8.3◦ 2.4◦ 20.8◦

between illuminant estimation using high level visual information and using
natural image statistics is negligible (i.e., not statistically significant).

183

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 Evaluation of Color Constancy Methods

12.3.2.2 Color Checker Set The results on this data set are shown in Table 12.4
and some example results are shown in Figure 12.6. On this data set, the edge-based
methods, that is, gray-edge, spatial correlations and edge-based gamut mapping,

Table 12.4 Performance of several methods on linear color checker.a

Best, Worst,

Method Mean μ Median Trimean 25% 25%

Do nothing 13.7◦ 13.6◦ 13.5◦ 10.4◦ 17.2◦

White-patch (e0,∞,0) 7.5◦ 5.7◦ 6.4◦ 1.5◦ 16.2◦

Gray-world (e0,1,0) 6.4◦ 6.3◦ 6.3◦ 2.3◦ 10.6◦

General gray-world (e0,p,σ ) 4.7◦ 3.5◦ 3.8◦ 1.0◦ 10.1◦

First-order gray-edge (e1,p,σ ) 5.4◦ 4.5◦ 4.8◦ 1.9◦ 10.0◦

Second-order gray-edge (e2,p,σ ) 5.1◦ 4.4◦ 4.6◦ 1.9◦ 10.0◦

Spatial correlations (without

regression)

5.9◦ 5.1◦ 5.4◦ 2.4◦ 10.8◦

Spatial correlations (with regression) 4.0◦ 3.1◦ 3.3◦ 1.1◦ 8.5◦

Using inverse intensity chromaticity

space

13.6◦ 13.6◦ 13.5◦ 9.5◦ 18.0◦

Pixel-based gamut mapping 4.1◦ 2.5◦ 3.0◦ 0.6◦ 10.3◦

Edge-based gamut mapping 6.7◦ 5.5◦ 5.8◦ 2.1◦ 13.7◦

Intersection: complete 1-jet 4.1◦ 2.5◦ 3.0◦ 0.6◦ 10.3◦

Bayesian 4.8◦ 3.5◦ 3.9◦ 1.3◦ 10.5◦

Regression (SVR) 8.1◦ 6.7◦ 7.2◦ 3.3◦ 14.9◦

Statistical combination (No-N-Max) 4.3◦ 3.4◦ 3.7◦ 1.4◦ 8.5◦

Using high level visual information 3.5◦ 2.5◦ 2.6◦ 0.8◦ 8.0◦

Using natural image statistics 4.2◦ 3.1◦ 3.5◦ 1.0◦ 9.2◦

aFive hundred and Sixty-eight images, taken from Reference 232.

Figure 12.6 Some example results of various methods applied to several test images. The angular

error is shown in the bottom right corner of the images. The methods used are, from left to right, perfect

color constancy using ground truth, white-patch, first-order gray-edge, pixel-based gamut mapping and

using natural image statistics.
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12.4 Summary

perform significantly worse than pixel-based methods such as gamut mapping
and general gray-world. However, it can be observed that the error on ‘‘difficult’’
images (i.e., images on which the method estimates an inaccurate illuminant, the
worst, 25% column) for both types of algorithms is similar. This indicates that
the performance of methods using low level information (either static algorithms
or learning-based methods) is bounded by the information that is present. Using
multiple algorithms is required to decrease the error of these ‘‘difficult’’ images,
as can be seen by the performance of combination-based methods. Even though
the increase in overall performance is not very high, methods using high level
visual information and natural image statistics are statistically similar to the
pixel-based gamut mapping, the largest improvement in accuracy is obtained on
these difficult images (the mean angular error on the worst 25% of the images
drops from 10.3◦ to 8.0◦ and 9.2◦, respectively). Hence, to arrive at a robust color
constancy algorithm that is able to accurately estimate the illuminant on any type
of image, it is necessary to combine several approaches.

12.4 Summary

In this chapter, several often used approaches to illuminant estimates are evaluated.
Further, in Chapters 9, 10, and 11, a wide range of methods is discussed.

Table 12.5 Summary of methods with advantages and disadvantages.

Method Section Pros Cons

Static (using low

level statistics)

Ch. 9.1, 9.2 Simple to implement

Accurate for adequate

parameters

Opaque parameter

selection

Inaccurate for inferior

parametersFast execution

Static

(physics-based)

Ch. 9.3 No training phase Difficult to implement

Fast execution Mediocre performance

Few parameters

Gamut-based Ch. 10 Elegant underlying theory Requires training data

Potentially high accuracy Difficult to implement

Requires proper

preprocessing

Learning-based

(using low level

statistics)

Ch. 11.1, 11.2 Tunable for specific data

set

Requires training data

Slow execution

Simple to implement

Learning-based

(using higher

level statistics)

Ch. 11.3 Potentially high accuracy Requires training data

Intuitive Inherently slower than

single methods

Difficult to implement

Learning-based

(using semantics)

Ch. 11.4 Potentially high accuracy Requires training data

Incorporates semantics Difficult to implement

Slow execution
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12 Evaluation of Color Constancy Methods

Criteria that are important for computational color constancy algorithms are the
requirement of training data, the accuracy of the estimation, the computational
runtime of the method, the transparency of the approach, the complexity of
the implementation, and the number of tunable parameters. A summary of the
discussed methods is presented in Table 12.5.

Methods using low level statistics as discussed in Sections 9.1 and 9.2 are not
dependent on training data and the parameters are not dependent on the input
data. Such methods are called static. Existing methods include the gray-world,
the white-patch and extensions to incorporate higher order statistics. Advantages
of such methods are a simple implementation (often, merely a few lines of code
are required) and fast execution. Further, the accuracy of the estimations can be
quite high, provided the parameters are selected appropriately. On the other hand,
inaccurate parameter selection can severely reduce the performance. Moreover,
the selection of the optimal parameters is quite opaque, especially without prior
knowledge on the input data. Physics-based methods discussed in Section 9.3
suffer less from the parameter selection, but are also less accurate (even for
properly selected parameters).

Chapter 10 describes gamut-based methods, including an extension to incor-
porate the differential nature of images. The main advantage of gamut-based
methods are the elegant underlying theory and the potential high accuracy. How-
ever, proper implementation requires some effort and appropriate preprocessing
can severely influence the accuracy.

Finally, Chapter 11 describes methods than cannot operate without training
phase. Sections 11.1 and 11.2 discuss methods that learn low level statistics, such
as regression techniques and Bayesian approaches. Advantages of such methods
are that they are (relatively) simple to implement and that they can be tuned
toward specific data (such as indoor or outdoor images). Disadvantages are that
the output is often rather nonintuitive since the model that is learned is quite
opaque. On the other hand, methods using higher level statistics and semantics,
as discussed in Sections 11.3 and 11.4, are often quite intuitive since it can be
predicted beforehand which method will be selected for a specific input image.
Moreover, the accuracy of such approaches has been proven to be state of the art.
However, the use of multiple single algorithms means they are inherently slower
than the single algorithms themselves.
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PART IV

COLOR FEATURE
EXTRACTION
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13
13 Color Feature Detection

With contributions by Arnold W. M. Smeulders and Andrew D.
Bagdanov

Differential-based features such as edges, corners, and salient points are widely
used in a variety of applications such as matching, object recognition, and object
tracking. Many applications are based on luminance-based features. In this chapter
we discuss algorithms for the detection of color features in images. As we will
see, this has several advantages over luminance-based features. First of all, we
can apply the photometric invariance theory discussed in Chapter 6, which allows
us to detect photometric invariant features. Secondly, color plays an important
role in attributing saliency to images.

From a mathematical viewpoint the extension from luminance to color signals
is an extension from scalar signals to vectorial signals. This change is accompa-
nied by several mathematical obstacles. Straightforward application of existing
luminance-based operators on the separate color channels, and subsequent combi-
nation of the results, often fails. For example, combining derivatives with a simple
addition of separate channels results in cancellation in the case of opposing vectors
[234, 235]. This is illustrated in Figure 13.1. For the blue-red and cyan-yellow
edge on the right of Figure 13.1a, the vectors in the red and blue channel point
in opposite directions and a summation could result in a zero-edge response,
while a prominent edge is clearly present. Also, for more complex local features,

Portions reprinted, with permission, from ‘‘Robust Photometric Invariant Features from the Color
Tensor,’’ by J. van de Weijer, Th. Gevers, and A.W.M. Smeulders, in Transactions of Image
Processing, volume 15(1), © 2006 IEEE, and from ‘‘Boosting Color Saliency in Image Feature
Detection,’’ in Transactions of Pattern Analysis and Machine Intelligence, volume 28(1), © 2006
IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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13 Color Feature Detection

(a) (b) (c) (d)

Figure 13.1 (a) Example image and (b) red channel, (c) green channel, and (d) blue channel of

example image. Superimposed are arrows indicating the directions of the gradients in the separate

channels and a circle indicating corner detections. Note that although only a single corner is detected

in the separate channels, the original color image has four corner points.

such as corners and T-junctions, the combination of the channels poses problems.
Applying a corner detector to the separate channels results in a single detected
corner in the blue channel. However, there is no evidence for the cross-points on
the border of the circle in any of the separate channels. As a result, a combination
of corner information from the separate channels will fail. In the first part of
the chapter we investigate how to combine the differential structure of the color
channels in a principled way.

The second part of the chapter is on the detection of salient color features in
images [149]. Throughout this chapter we use the term saliency to refer to events
in images that have higher information content. Here we use information content
in an information theoretical sense, from which we know that, for example, rare
events are more informative than frequent events. In Figure 13.2b, the color
gradient of an image containing a colorful bird on a dull background is depicted.
Surprisingly, for the image of the standard color gradient, the edges between the
bird and the background are dominated by the edges, which are caused by intensity
variations in the background. For human observers, the transition between the
bird and the background clearly pops out. In the second part of this chapter

(a) (b) (c)

Figure 13.2 (a) Input color image, (b) color gradient image, and (c) color-boosted image derivative.

The color gradient edges do not reflect the clear edge that is observed by humans between the

background and the colorful bird. The salient edges detected by the color-boosted algorithm coincide

with edges that are found important by humans.
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13.1 The Color Tensor

we look into color image statistics with the aim of finding the edges in images
that have the highest information content. The method, which will be explained,
is called color boosting. The result of this method is given in Figure 13.2c:
the important transitions between the bird and the background yield the most
prominent responses.

13.1 The Color Tensor

Here we discuss the usage of the color tensor for color feature computation. We
also look into how to combine the photometric invariance theory developed in
Chapter 6 with the differential-based-features presented in this chapter.

Let us first look into several desired properties of color features. First, the
features should target the photometric variation needed for their application. This
ensures that accidental physical events, such as shadows and specularities, do
not influence results. Second, features must be robust against noise and should
not contain instabilities. Especially for the full photometric invariant features
instabilities require caution. Third, the theory should be generally applicable to
ensure that it can be applied to the vast literature on features for luminance images.
We start from the observation that tensors are well suited to combine first-order
derivatives for color images. Then we will show how to combine tensor-based
features with photometric derivatives for photometric invariant feature detection
and extraction. Finally, we show that for feature extraction applications, for
which quasi-invariants are unsuited (see Chapter 6), an uncertainty measure that
robustifies feature extraction can be introduced.

As we saw in the start of this chapter, simply summing the differential structure
of various color channels may result in cancellation even when evident structure
exists in the image [234]. This is further illustrated in Figure 13.3. Rather than
adding the direction information (defined on [0, 2π〉) of the channels, it is more
appropriate to sum the orientation information (defined on [0, π〉). Such a method
is provided by tensor mathematics for which vectors in opposite directions
reinforce one another. Tensors describe the local orientation rather than the
direction. More precisely, the tensor of a vector and its 180◦ rotated counterpart
vector are equal. It is for that reason that we use the tensor as a basis for color
feature detection.

Given an image f , the structure tensor is given by Bigun et al. [236]:

G =
(

f 2
x

fxfy

fxfy f 2
y

)
, (13.1)

where the subscripts indicate spatial derivatives and the bar (.) indicates con-
volution with a Gaussian filter. Note that there are two scales involved in the
computation of the structure tensor: the scale at which the derivatives are com-
puted and the tensor scale that is the scale at which the spatial derivatives are
averaged. The structure tensor describes the local differential structure of images,
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13 Color Feature Detection

Tensor :

Vector:

Red Green

Two -channel
test-image

Rx +

+

+

+

Gx 0=

=

=

=
R2

x RxRy

R2
yRxRy G2

yGxGy

G2
x GxGy R2

x + G2
x 

R2
y + G2

y RxRy + GxGy

RxRy + GxGy

Figure 13.3 Example of edge detection in color images with two channels, R and G. In the case of a

simple vector summation, no edge is detected because of the cancellation of the derivatives, Rx and

Gx , in the red and green channels. Edge detection based on tensors will be successful because the

structure tensors code orientation rather than direction. The structure tensors of the red and green

channels reinforce each other and a clear edge is detected.

and is suited to finding features such as edges and corners [234, 237, 238]. For a
multichannel image f = (f 1, f 2, . . . , f n)T , the structure tensor is given by

G =
(

fx ·fx fx ·fy

fy ·fx fy ·fy

)
. (13.2)

In the case where f = (R, G, B), this yields the color tensor:

G =
(

R2
x + G2

x + B2
x RxRy + GxGy + BxBy

RxRy + GxGy + BxBy R2
y + G2

y + B2
y

)
. (13.3)

Later in this chapter we derive a certainty measure for photometric derivatives.
This measure can be used as a weight in the color tensor. For derivatives that
are accompanied by a weighting function, wx and wy, which appoint a weight to
every measurement fx and fy, the structure tensor is defined by

G =

⎛
⎜⎜⎜⎜⎝

w2
xfx · fx

w2
x

wxwyfx · fy

wxwy

wywxfy · fx

wywx

w2
yfy · fy

w2
y

⎞
⎟⎟⎟⎟⎠ . (13.4)
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13.1 The Color Tensor

The elements of the tensor are known to be invariant under rotation and translation
of the spatial axes. To prove the invariant, we use the fact that ∂

∂x Rf = Rfx, where
R is a rotation operator,

(
Rfx

)T
Rfy = fT

x RT Rfy = fT
x fy, (13.5)

where we have rewritten the inner product according to f · f = fT f.

13.1.1 Photometric Invariant Derivatives

A good motivation for using color images is that photometric information can
be exploited to understand the physical causes of features. For example, pixels
can be classified as being from the same color but having different intensities,
which is possibly caused by a shadow or a shading change in the image. Further,
pixel differences can also indicate specular reflection. For many applications it
is important to distinguish the scene incidental information from material edges.
When color images are converted to luminance this photometric information
is lost.

Photometric invariance in Equation 13.2 can be obtained by using invariant
derivatives to compute the structure tensor. In Chapter 6, we derived photometric
full- and quasi-invariants. Quasi-invariants differ from full invariants in that they
vary with respect to a physical parameter. We also saw that full invariants can
be computed from quasi-invariants by the normalization with a signal-dependent
scalar. The quasi-invariants have the advantage that they do not exhibit the
instabilities common to full photometric invariants. However, the applicability of
the quasi-invariants is restricted to photometric invariant feature detection. For
feature extraction full photometric invariance is desired.

We will briefly summarize the relevant results from Chapter 6 here. The
dichromatic model (see Chapter 3 for more details) divides the reflection in
the interface (specular) and body (diffuse) reflection component for optically
inhomogeneous materials according to

f = e(mb cb + mi ci), (13.6)

in which cb is the color of the body reflectance, ci the color of the interface
reflectance (i.e., specularities or highlights), mb and mi are scalars representing
the corresponding magnitudes of reflection, and e is the intensity of the light
source. For matte surfaces there is no interface reflection and the model further
simplifies to

f = emb cb. (13.7)

The photometric derivative structure of the image can be computed by computing
the spatial derivative of Equation 13.6:

fx = emb cb
x + (exmb + emb

x) cb + (
emi

x + exmi) ci. (13.8)
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13 Color Feature Detection

The spatial derivative is a summation of three weighted vectors, representing in
sequence body reflectance, shading-shadow and specular changes. From Equation
13.7, it follows that for matte surfaces the shadow-shading direction is parallel to
the RGB vector, f||cb. The specular direction follows from the assumption that
the color of the light source is known.

For matte surfaces (i.e., mi = 0), the projection of the spatial derivative on
the shadow-shading axis yields the shadow-shading variant containing all energy,
which could be explained by changes due to shadow and shading. Subtraction
of the shadow-shading variant Sx from the total derivative fx results in the
shadow-shading quasi-invariant:

Sx =
(

fx · f̂
)

f̂ =
(

emb
(

cb
x · f̂

)
+ (

exmb + emb
x

) ∣∣cb
∣∣) f̂,

Sc
x = fx − Sx = emb

(
cb

x −
(

cb
x · f̂

)
f̂
)

, (13.9)

which does not contain derivative energy caused by shadows and shading. The
hat,

(
.̂
)
, denotes unit vectors. The full shadow-shading invariant results from

normalizing the quasi-invariant Sc
x by the intensity magnitude |f|:

sx = Sc
x

|f| = emb

emb
∣∣cb

∣∣
(

cb
x − (

cb
x

) · f̂
)

, (13.10)

which is invariant for mb.
For the construction of the shadow-shading-specular quasi-invariant, we intro-

duce the hue direction that is perpendicular to the light source direction ĉi and the
shadow-shading direction f̂:

b̂ = f̂ × ĉi∣∣f × ci
∣∣ . (13.11)

Projection of the derivative, fx, on the hue direction results in the shadow-shading-
specular quasi-invariant:

Hc
x =

(
fx · b̂

)
b̂ = emb

(
cb

x · b̂
)

+ (
exmb + emb

x

) (
cb · b

)
. (13.12)

The second part of this equation is zero if we assume that shadow-shading
changes do not occur within a specularity, since then either (exmb + emb

x) = 0
or (cb · b) = (f · b) = 0. Subtraction of the quasi-invariant Hc

x from the spatial
derivative fx results in the shadow-shading-specular variant Hx:

Hx = fx − Hc
x. (13.13)

The full shadow-shading invariant is computed by dividing the quasi-invariant by
the saturation. The saturation is equal to the norm of the color vector, f, after the
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13.1 The Color Tensor

projection on the plane perpendicular to the light source direction (which is equal
to subtraction of the part in the light source direction). The final invariant is thus

hx = Hc
x∣∣∣f −

(
f · ĉi

)
ĉi

∣∣∣ = emb

emb
∣∣∣cb − (

cb · ĉi
)

ĉi
∣∣∣
(

cb
x · b̂

)
. (13.14)

The expression hx is invariant for both mi and mb.

13.1.2 Invariance to Color Coordinate Transformations

From a physical point of view, features that are invariant to rotation of the
coordinate axes make sense. This starting point has been applied in the design
of image geometry features, resulting in, for example, gradient and Laplace
operators [62]. For the design of physically meaningful color features not only
the invariance with respect to spatial coordinate changes is desired but also the
invariance with respect to rotations of the color coordinate systems. Features
based on different measurement devices that measure the same spectral space
should yield the same results.

For color images, values are represented in the RGB coordinate system. In
fact, the infinite-dimensional Hilbert space is sampled with three probes, which
results in the red, green, and blue channels (Fig. 13.4). For operations on the
color coordinate system to be physically meaningful they should be independent
of orthonormal transformation of the three axes in Hilbert space. An example of
an orthonormal color coordinate system is the opponent color space (Fig. 13.4b).
The opponent color space spans the same subspace as the subspace defined by the
RGB axes and hence both subspaces should yield the same features.

H

B

G

R

(a) (b)

B

O3

c^i

O1

O2

R

G

Figure 13.4 (a) The subspace of measured light in the Hilbert space of possible spectra. (b) The

RGB coordinate system and an alternative orthonormal color coordinate system which spans the same

subspace. Source: Reprinted with permission, © 2006 IEEE.
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13 Color Feature Detection

By projecting the local spatial derivative on three photometric axes in the RGB
cube we have derived the photometric quasi-invariants. These can be combined
with the structure tensor of Equation 13.2 for photometric quasi-invariant feature
detection. We would like these features to be independent of the accidental
choice of the color coordinate frame. As a consequence, a rotation of the color
coordinates should result in the same rotation of the quasi-invariant derivatives.
For example, for the shadow-shading quasi-variant Sx this can be proved by((

Rfx

)T
Rf̂

) (
Rf̂

)
=

(
fT
x RT Rf̂

) (
Rf̂

)
= R

(
fT
x f̂

)
f̂ = RSx, (13.15)

where R is the rotation operator. Similar proofs hold for the other photometric
variants and quasi-invariants. The invariance with respect to color coordinate
transformation of the shadow-shading full invariants follow from the fact that
|Rf| = |f|. For the shadow-shading-specular full invariant, the rotational invari-
ance is proved by the fact that the inner product between two vectors remains the
same under rotations, and therefore |Rf − (Rf · Rĉi)Rĉi| = |R(f − (f · ĉi)ĉi)|.
Since the elements of the structure tensor are also invariant for color coordi-
nate transformations (Eq. 13.5) the combination of the quasi-invariants and the
structure tensor into a quasi-invariant structure tensor is also invariant for color
coordinate transformations.

13.1.3 Robust Full Photometric Invariance

In Section 13.1.1, the quasi- and full invariant derivatives are described. The
quasi-invariants outperform the full invariants in terms of discriminative power
and are more robust to noise (Section 6.2.4). However, the quasi-invariants are
not suited for applications that require feature extraction. These applications
compare the photometric invariant values between various images and need
full photometric invariance (Table 13.1). A disadvantage of full photometric
invariants is that they are unstable in certain areas of the RGB cube. For example,
the invariants for shadow shading and specularities are unstable near the gray axis.
These instabilities greatly reduce the applicability of the invariant derivatives for
which a small deviation of the original pixel color value may result in a large
deviation of the invariant derivative. To counter this, we discuss a measure
that describes the uncertainty of the photometric invariant derivatives, thereby
allowing for robust full photometric invariant feature detection. Such uncertainty
measures could also be derived for the full invariants described in Section 6.1.

Table 13.1 Applicability of the different invariants for feature detection and extraction.

Detection Extraction

Quasi-invariant +++ -

Full invariant + +
Robust full invariant ++ ++
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13.1 The Color Tensor

(a) (b) (c) (d)

Figure 13.5 (a) Test image, (b) hue derivative, (c) saturation, and (d) quasi-invariant.

We first derive the uncertainty for the shadow-shading full invariant from its
relation to the quasi-invariant. We assume additive uncorrelated uniform Gaussian
noise. Owing to the high-pass nature of differentiation we can assume the noise of
the zero-order signal (|f|) to be negligible compared to the noise on the first-order
signal (Sc

x). In Section 13.1.1, the quasi-invariant has been derived by a linear
projection of the derivative fx on the plane perpendicular to the shadow-shading
direction. Therefore, uniform noise in fx will result in uniform noise in Sc

x. The
noise in the full invariant can be written as

s̃x = Sc
x + σ

|f| = Sc
x

|f| + σ

|f| . (13.16)

The uncertainty of the measurement of s̃x depends on the magnitude of |f|. For
small |f| the error increases proportionally. Therefore, it is better to weight the full
shadow-shading invariant with the function w = |f| to robustify the color tensor
based on the chromatic invariant.

For the shadow-shading-specular invariant, the weighting function should be
proportional to the saturation since

h̃x = Hc
x + σ

|s| = Hc
x

|s| + σ

|s| . (13.17)

Hence, w = |s| should be used as the weighting function of the hue derivative h̃x,
(Fig. 13.5). On locations where there is an edge, the saturation drops and with the
saturation the certainty of the hue measurement. The quasi-invariant (Fig. 13.5d),
which is equal to the weighted hue, is more stable than the full invariant derivative
because of the incorporation of the certainty in the measurements. With the
derived weighting function we can compute the robust photometric invariant
tensor (Eq. 13.4).

13.1.4 Color-Tensor-Based Features

In this section we show the generality of the method by summing features that
can be derived from the color tensor. In Sections 13.1.1 and 13.1.3 we described
how to compute invariant derivatives. Depending on the task at hand you should
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13 Color Feature Detection

use either quasi-invariants for detection or robust full invariants for extraction.
The features in this section will be derived for gx. By replacing the inner product
of gx with one of the following:{

fx · fx, Sc
x · Sc

x,
Sc

x · Sc
x

|f|2
, Hc

x · Hc
x,

Hc
x · Hc

x

|s|2

}
, (13.18)

the desired photometric invariant features are attained.
A number of features that can be derived from the structure tensor were

proposed by scientists who where designing features for oriented patterns [175].
Oriented patterns (e.g., fingerprint images) are defined as patterns with a dominant
orientation everywhere. For oriented patterns, other mathematics are needed than
for regular object images. The local structure of object images is described by a
step edge, whereas for oriented patterns the local structure is described as a set
of lines (roof edges). Lines generate opposing vectors on a small scale. Hence,
for geometric operations on oriented patterns, methods are needed for which
opposing vectors reinforce one another. This is the same problem as encountered
for all color images, where the opposing vector problem does not only occur for
oriented patterns but also for step edges for which the opposing vectors occur
in the different channels. Hence, similar equations were found in both fields.
Apart from orientation estimation, a number of other estimators were proposed by
oriented pattern research [236–240]. These operations are based on adaptations
of the structure tensor and can also be applied to the color structure tensor. We
will now look into several of these tensor-based features.

13.1.4.1 Eigenvalue-Based Features We start by describing features derived
from the eigenvalues of the tensor. Eigenvalue analysis of the tensor leads to two
eigenvalues that are defined by

λ1 = 1
2

(
gx ·gx + gy ·gy +

√(
gx ·gx − gy ·gy

)2 + (
2gx ·gy

)2
)

,

(13.19)

λ2 = 1
2

(
gx ·gx + gy ·gy −

√(
gx ·gx − gy ·gy

)2 + (
2gx ·gy

)2
)

.

The direction of λ1 indicates the prominent local orientation

θ = 1
2 arctan

(
2gx ·gy

gx ·gx − gy ·gy

)
. (13.20)

The λs can be combined to give the following local descriptors:

■ λ1 + λ2 describes the total local derivative energy.

■ λ1 is the derivative energy in the most prominent direction.
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13.1 The Color Tensor

(a) (b) (c) (d)

Figure 13.6 (a) Input image and Harris corner detector results based on (b) RGB gradient (fx),

(c) shadow-shading quasi-invariant (Sc
x), and (d) shadow-shading-specular quasi-invariant (Hc

x).

■ λ1 − λ2 describes the line energy [241]. The derivative energy in the
prominent orientation is corrected for the energy contributed by the
noise λ2.

■ λ2 describes the amount of derivative energy perpendicular to the promi-
nent local orientation that is used to select features for tracking [242].

13.1.4.2 Color Harris Detector An often applied feature detector is the Harris
corner detector [53]. The color Harris operator H can be written as a function of
the eigenvalues of the structure tensor:

Hf = gx ·gx gy ·gy − gx ·gy
2 − k

(
gx ·gx + gy ·gy

)2

(13.21)

= λ1λ2 − k
(
λ1 + λ2

)2
.

Corner detection results are given in Figure 13.6. As can be seen, the shadow-
shading quasi-invariant detector does not detect shadow-shading corners, whereas
the shadow-shading-specular quasi-invariant also ignores the specular corners.

13.1.4.3 Color Canny Edge Detection We illustrate the use of eigenvalue-
based features by adapting the Canny edge detection algorithm to allow for
vectorial input data. The algorithm consists of the following steps:

1. Compute the spatial derivatives, fx and combine them if desired into a
quasi-invariant (Eq. 13.9 or 13.12).

2. Compute the maximum eigenvalue (Eq. 13.19) and its orientation
(Eq. 13.20).

3. Apply nonmaximum suppression on λ1 in the prominent direction.

In Figure 13.7, the results of color Canny edge detection for several photometric
quasi-invariants are shown. The results show that the luminance-based Canny
(Fig. 13.7b), misses several edges that are correctly found by the RGB-based
method in Figure 13.7c. Also, the removal of spurious edges by photometric
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13 Color Feature Detection

(a) (b) (c) (d)

Figure 13.7 Canny edge detection based on successively (a) luminance derivative (b) RGB derivatives,

(c) the shadow-shading quasi-invariant, and (d) the shadow-shading-specular quasi-invariant.

invariance is demonstrated. In Figure 13.7d, the edge detection is robust to
shadow and shading changes and only detects material and specular edges. In
Figure 13.7e, only the material edges are depicted.

13.1.4.4 Color Symmetry Detectors The structure tensor of Equation 13.2 can
also be seen as a local projection of the derivative energy on two perpendicular
axes, namely, u1 = (1 0)T and u2 = (0 1)T ,

Gu1,u2 =
( (

Gx,yu1

) · (
Gx,yu1

) (
Gx,yu1

) · (
Gx,yu2

)(
Gx,yu1

) · (
Gx,yu2

) (
Gx,yu2

) · (
Gx,yu2

)
)

, (13.22)

in which Gx,y = (
gx gy

)
. From the Lie group of transformation several other

choices of perpendicular projections can be derived [237, 238]. They include
feature extraction for circle, spiral, and starlike structures.

The star and circle detector is given as an example. It is based on u1 =
1√

x2+y2
(x y)T , which coincides with the derivative of circular patterns and u2 =

1√
x2+y2

(−y x)T , which denotes the perpendicular vector field that coincides

with the derivative pattern of starlike patterns. These vectors can be used to
compute the adapted structure tensor with Equation 13.22. Only the elements on
the diagonal have nonzero entries and are equal to

H =
(

H11 H12
H21 H22

)
, (13.23)

where H12 = H21 = 0 and

H11 = x2

x2 + y2
gx ·gx + 2xy

x2 + y2
gx ·gy + y2

x2 + y2
gy ·gy (13.24)

H22 = x2

x2 + y2
gy ·gy − 2xy

x2 + y2
gx ·gy + y2

x2 + y2
gx ·gx. (13.25)
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13.1 The Color Tensor

(a) (b) (c)

Figure 13.8 (a) Input image, (b) the circularity coefficient C, and (c) the detected circles.

Here, λ1 describes the amount of derivative energy contributing to circular
structures and λ2 the derivative energy that describes a starlike structure. Similar
to the proof given in Equation 13.5, the elements of Equation 13.23 can be proved
to be invariant under transformations of the RGB space.

We apply the circle symmetry detector to an image containing Lego blocks
(Fig. 13.8). Because we know that the color within the blocks remains the same,
circle detection is done on the shadow-shading-specular variant, Hx (Eq. 13.13).
The shadow-shading-specular variant contains all the derivative energy except for
the energy that can only be caused by a material edge. With the shadow-shading-
specular variant the circular energy λ1 and the starlike energy λ2 are computed
according to Equation 13.23. Dividing the circular energy by the total energy
yields a descriptor of local circularity (Fig. 13.8b):

C = λ1

λ1 + λ2
. (13.26)

The superimposed maxima of C (Fig. 13.8c) gives a good estimation of the circle
centers.

13.1.4.5 Color Curvature Curvature is another feature that can be derived
from an adaptation of the structure tensor as proposed in Reference 240. The
fit between the local differential structure and a parabolic model function can be
written as a function of the curvature. Finding the optimum of this function yields
an estimation of the local curvature. For vector data, the equation for the curvature
is given by

κ =
w2gv ·gv − w2 ·gw ·gw −

√(
w2 ·gw ·gw − w2gv ·gv

)2 + 4w2 ·wgv ·gw
2

2w2 ·wgv ·gw

,

(13.27)

in which gv and gw are the derivatives in gauge coordinates.
The use of photometric invariant orientation and curvature estimation is

demonstrated on a circle detection example. Circular object recognition is difficult
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13 Color Feature Detection

(a) (b) (c)

Figure 13.9 (a) Detected circles based on luminance, (b) detected circles based on shadow-shading-

specular quasi-invariant, and (c) detected circles based on shadow-shading-specular quasi-invariant.

because of shadow, shading, and specular events that influence the feature
extraction. We apply the following algorithm for circle detection:

1. Compute the spatial derivatives, fx, and combine them if desired into a
quasi-invariant (Eq. 13.9 or 13.12).

2. Compute the local orientation with Equation 13.20 and curvature with
Equation 13.27.

3. Compute the Hough space [243], H(R, x0, y0), where R is the radius of the
circle and x0 and y0 indicate the center of the circle. The computation of the
orientation and curvature reduces the number of votes per pixel to 1. For
example, for a pixel at position x = (x1, y1),

R = 1
κ

,

x0 = x1 + 1
κ

cos θ , (13.28)

y0 = y1 + 1
κ

sin θ.

Every pixel votes with the derivative energy
√

fx ·fx.

4. Compute the maxima in the Hough space. These maxima indicate the circle
centers and their radii.

In Figure 13.9, the results of circle detection are given. The luminance-based circle
detection is corrupted by photometric variation in the image. Nine circles had to
be detected before the five balls were detected. For the shadow-shading-specular
quasi-invariant based method, the five most prominent peaks in the Hough space
coincide with reasonable estimates of the radii and center points of the circles. In
Figure 13.9c, an outdoor example with a shadow partially covering the objects is
given.

13.1.4.6 Color Optical Flow Optical flow can also be computed from the
structure tensor. This was originally proposed by Simoncelli [244] and has been
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13.1 The Color Tensor

extended to color in References [245, 246]. The vector of a multichannel point
over time stays constant [247, 248]:

dg

dt
= 0. (13.29)

Differentiating yields the following set of equations

Gx,y v + gt = 0, (13.30)

with v the optical flow. To solve the singularity problem and to robustify the
optical flow computation we follow Simoncelli et al. [244] and assume a constant
flow within a Gaussian window. Solving Equation 13.30 leads to the following
optical flow equation:

v = (Gx,y · Gx,y)
−1 Gx,y · g

t
= M−1b, (13.31)

with

M =
(

gx ·gx gx ·gy

gy ·gx gy ·gy

)
, (13.32)

and

b =
(

gx ·gt
gy ·gt

)
. (13.33)

The assumption of color optical flow based on RGB is that RGB pixel values
remain constant over time (Eq. 13.29). A change in brightness introduced because
of a shadow or a light source with fluctuating brightness such as the sun results in
a nonexistent optical flow. This problem can be overcome by assuming constant
chromaticity over time. For photometric invariant optical flow, full invariance
is necessary since optical flow estimation is based on comparing the (extracted)
edge response of multiple frames. Consequently, photometric invariant optical
flow can be attained by replacing the inner product of gx by one of the following:{

Sc
x · Sc

x

|f|2
,

Hc
x · Hc

x

|s|2

}
. (13.34)

An example of color optical flow in a real-world scene is given in Figure 13.10.
Multiple frames are taken from static objects while the light source position is
changed. This results in a violation of the brightness constraint by changing the
shading and moving the shadows. Since neither the camera nor the objects moved,
the ground truth optical flow is zero. The violation of the brightness constraint
disturbs the optical flow estimation based on RGB (Fig. 13.10b). The shadow-
shading invariant optical flow estimation is much less disturbed by the violation of
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13 Color Feature Detection

(a) (b) (c) (d)

Figure 13.10 (a) Frame 1 of object scene with filter size superimposed on it. (b) RGB gradient optical

flow, (c) shadow-shading invariant optical flow, and (d) robust shadow-shading invariant optical flow.

the brightness constraint (Fig. 13.10c). However, flow estimation is still unstable
around some of the edges. The robust shadow-shading invariant optical flow has
the best results and is only unstable in low-gradient areas (Fig. 13.10d).

13.1.5 Experiment: Robust Feature Point Detection
and Extraction

Here we compare full, quasi- and robust full invariants with respect to photometric
changes, stability of the invariants, and robustness to noise. Further, the ability of
invariants to detect and extract features is examined (see also Table 13.2). The
experiment is performed with the photometric invariant Harris corner detector
(Eq. 13.21) and is executed on the Soil-47 multiobject set [249], which consists
of 23 images (Fig. 13.11a).

First, the feature detection accuracy of the invariants is tested. For each
image and invariant, the 20 most prominent Harris points are extracted. Next,
uncorrelated Gaussian noise is added to the data, and Harris point detection is
computed 10 times per image. The percentage of points that do not correspond to
the Harris points in the noiseless case are given in Table 13.2. The Harris point
detector based on the quasi-invariant outperforms the alternatives. The instability
of the full invariant can be partially repaired by the robust full invariant; however,
for detection purposes the quasi-invariants remain the best choice.

(a) (b) (c)

Figure 13.11 (a) An example from the Soil-47 image. (b) Shadow-shading distortion with the shadow-

shading quasi-invariant Harris points superimposed. (c) Specular distortion and the shadow-shading-

specular Harris points superimposed.
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13.2 Color Saliency

Table 13.2 Percentage of falsely detected points and percentage of wrongly classified

points.a

Detection error % Extraction error %

Standard deviation noise 5 20 5 20

Shadow shading

Quasi-invariant 5.1 20.2 100 100

Full invariant 11.7 50.1 8.7 56.6

Robust full invariant 6.4 37.7 3.0 35.3

Shadow-shading-specular

Quasi-invariant 9.7 46.6 100 98.2

Full invariant 38.8 75.5 62.3 84.0

Robust full invariant 15.7 60.2 9.8 66.6

Underlined values indicate the lowest error.
aClassification is based on the extraction of invariant information. Uncorrelated Gaussian noise is added

with standard deviation 5 and 20.

Next, feature extraction for the invariants is tested. Again, the 20 most
prominent Harris points are detected in the noise-free image. For these points, the
photometric invariant derivative energy is extracted by

√
λ1 + λ2 − 2λn, where

λn is an estimation of the noise that contributes to the energy in both λ1 and λ2.
To imitate photometric variations of images we apply the following photometric
distortion to the images (compare with Eq. 13.6):

g (x) = α ( x)f ( x) + β (x)ci + η (x) , (13.35)

where α(x) is a smooth function resembling variation similar to shading and
shadow effects, β(x) is a smooth function which imitates specular reflections,
and η(x) is Gaussian noise. To test the shadow-shading extraction, α(x) is chosen
to vary between 0 and 1, and β(x) is 0. To test the shadow-shading-specular
invariants, α(x) was chosen constant at 0.7 and β(x) varied between 0 and 50.
After photometric distortion, the derivative energy is extracted at the same 20
points. The extraction is considered correct if the deviation of the derivative
energy between the distorted and the noise-free case is less then 10%. The results
are given in Table 13.2. Quasi-invariants, which are not suited for extraction, have
a 100% error. The full invariants have better results, but with decreasing signal-
to-noise ratio its performance drops drastically. In accordance with the theory in
Section 13.1.3 the robust full invariants successfully improve performance.

13.2 Color Saliency

Visual saliency is the quality that makes certain parts of a scene stand out from
their surroundings. Designing computational models for saliency is an active field
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13 Color Feature Detection

of research in computer vision [250]. It is known that color plays an important
role in attributing saliency [251]. In this section we investigate how to compute
salient color features.

Saliency is especially relevant for applications that are based on local feature-
based image representation. For these applications, it is important to select the
most salient local features. The more salient the local features, the better and more
compact the final image description. Indexing objects and object categories as a
collection of salient points has been successfully applied to several applications,
such as image matching, content-based retrieval, learning, and recognition [55,
252, 253].

Examples of salient points are local features in the image that exhibit geomet-
rical structure, such as T-junctions, corners, and symmetry points. Applications
based on salient points are generally composed of three phases: (i) a feature
detection phase locating the features, (ii) an extraction phase in which local
descriptions are extracted at the detected locations, and (iii) a matching phase
in which the extracted descriptors are matched against a database of descriptors.
Here we investigate how we can exploit color saliency in the detection phase.

An example of a salient feature detector is the Harris corner detector [53]. In
Figure 13.12, an example of the Harris detector based on several input signals
is given. When looking at the results of the luminance and RGB-based detector,

Figure 13.12 (a) Input image. The following images show, respectively, salient Harris points based

on luminance (b), RGB (c), and color boosting (d). For each detector, the 25 most salient points are

depicted. Only color-boosted detector finds points on the salient capes.
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13.2 Color Saliency

we see that they are almost identical. Apparently, the black and white changes
that dominate the luminance-based detector also dominate the RGB detector.
Both detectors fail to detect the color salient capes. In this section we develop
a technique called color boosting, which focuses on the most informative color
events in an image.

The color boosting technique is general in that it can be applied to existing
salient point detectors, which are based on image derivatives. In general, salient
point detectors are derived from a saliency map, which describes the saliency for
every location in the image. For a color image, salient points are the maxima of
the saliency map, which compares the derivative vectors in a neighborhood fixed
by scale σ ,

s = Hσ
(
fx, fy

)
, (13.36)

where H is the saliency function and the subscript indicates differentiation with
respect to the parameter. This type of saliency maps includes References [53,
235, 237, 239, 254]. The impact of a derivative vector on the outcome of the local
salience depends on its vector norm, |fx|. Hence, vectors with equal norm have
an equal impact on local saliency. Rather than deriving saliency from the vector
norm, the challenge is to adapt the saliency function in order that vectors with
equal color distinctiveness have an equal impact on the saliency function.

13.2.1 Color Distinctiveness

The effectiveness of salient point detection depends on the distinctiveness of the
extracted salient points. At the salient points’ positions, local neighborhoods are
extracted and described by local image descriptors. The distinctiveness of the
descriptor defines the conciseness of the representation and the discriminative
power of the salient points. The distinctiveness of interest points is measured by
their information content.

The information content of the local patch can be measured by looking at the
distinctiveness of the local color 1-jet descriptor

v = (
R G B Rx Gx Bx Ry Gy By

)T
. (13.37)

The information content of this color descriptor includes the information content
of more complex local color descriptors such as color differential invariant
descriptors, since these complex descriptors are computed from the elements of
Equation 13.37.

From information theory, it is known that the information content of an
event is dependent on its frequency or probability. Events that occur rarely are
more informative. The dependency of information content on its probability
is given by

I (v) = − log (p (v)) , (13.38)
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13 Color Feature Detection

where p(v) is the probability of the descriptor v. The information content of the
descriptor, given by Equation 13.37, is approximated by assuming independent
probabilities of the zeroth-order signal and the first- order derivatives:

p (v) = p (f) p
(
fx

)
p
(
fy

)
. (13.39)

To improve the information content of the salient point detector, defined by
Equation 13.36, the probability of the derivatives, p

(
fx

)
, should be small.

We can now restate our aim in a more precise manner. The aim is to find a
transformation g : �3 → �3, for which

p
(
fx

) = p
(
f′x

) ↔ ∣∣g (
fx

)∣∣ = ∣∣g (
f′x

)∣∣ . (13.40)

This implies that two vectors, fx and f ′
x, with equal information content have equal

impact on the saliency function. The transformation, attained by the function g,
is called color saliency boosting. Similar equations hold for p(fy). Once a color
boosting function g has been found, the color-boosted saliency can be computed
with

s = Hσ
(
g

(
fx

)
, g

(
fy

))
. (13.41)

The classic saliency of Equation 13.36 derives saliency from the orientations and
gradient strength of the derivatives in a local neighborhood. After color boosting,
the saliency is based on the orientations and the information content of these
derivatives. Gradient strength has been replaced by information content, thereby
better representing the aim of saliency detectors.

From Equation 13.40, the color boosting function g is found by analyzing the
probabilities of the derivatives. The channels of fx, {Rx, Gx, Bx}, are correlated
because of the physics of the world. Photometric events in the world, such as
shading and reflection of the light source in specularities, influence RGB values
in a well-defined manner. Before investigating the statistics of color derivatives,
the derivatives need to be transformed to a color space that is uncorrelated with
respect to these photometric events.

13.2.2 Physics-Based Decorrelation

Here we describe three color coordinate transformations which partition RGB-
space differently. The transformation are the same as the ones used to obtain
photometric invariance in 6.2. Here we use the same color transformations to
decorrelate the spatial derivative, fx, into axes that are photometrically variant and
photometrically invariant.

13.2.2.1 Spherical Color Spaces The spherical color transformation (Fig.
13.13a), is given by
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13.2 Color Saliency

⎛
⎝ θ

ϕ

r

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

arctan

(
G

R

)

arcsin

( √
R2 + G2

√
R2 + G2 + B2

)

r = √
R2 + G2 + B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13.42)

The spatial derivatives are transformed to the spherical coordinate system by

S
(
fx

) = fs
x =

⎛
⎝ r sin ϕ θx

rϕx
rx

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

GxR − RxG√
R2 + G2

RxRB + GxGB − Bx(R
2 + G2)√

R2 + G2
√

R2 + G2 + B2

RxR + GxG + BxB√
R2 + G2 + B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13.43)

The scale factors follow from the Jacobian of the transformation. They ensure
that the norm of the derivative remains constant under transformation, hence
|fx| = |fs

x|. In the spherical coordinate system, the derivative vector is a summation
of a shadow-shading variant part, Sx = (0, 0, rx)

T and a shadow-shading quasi-
invariant part, given by Sc

x = (r sin ϕθx, rϕx, 0)T .

13.2.2.2 Opponent Color Spaces The opponent color space (Fig. 13.13b) is
given by

⎛
⎝ o1

o2
o3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

R − G√
2

R + G − 2B√
6

R + G + B√
3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13.44)

G
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h
s

R

B

o1

o3

o2 G

B

R
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q

j

R

G

r

(a) (b) (c)

Figure 13.13 The spherical, opponent, and hue-saturation-intensity coordinate system.
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13 Color Feature Detection

For this, the transformation of the derivatives is as follows:

O
(
fx

) = fo
x =

⎛
⎝ o1x

o2x
o3x

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

(
Rx − Gx

)
1√
6

(
Rx + Gx − 2Bx

)
1√
3

(
Rx + Gx + Bx

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13.45)

The opponent color space decorrelates the derivative with respect to specular
changes. The derivative is divided into a specular variant part, Ox = (0, 0, o3x)

T ,
and a specular quasi-invariant part Oc

x = (o1x, o2x, 0)T .

13.2.2.3 Hue-Saturation-Intensity Color Spaces The hue-saturation-intensity
(Fig. 13.13c) is given by ⎛

⎝ h
s
i

⎞
⎠ =

⎛
⎝ arctan

(
o1
o2

)
√

o12 + o22

o3

⎞
⎠ . (13.46)

The transformation of the spatial derivatives into the hsi space decorrelates the
derivative with respect to specular, shadow, and shading variations,

H
(
fx

) = fh
x =

⎛
⎝ s hx

sx
ix

⎞
⎠ (13.47)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
R

(
Bx − Gx

) + G
(
Rx − Bx

) + B
(
Gx − Rx

))
√

2
(
R2 + G2 + B2 − RG − RB − GB

)
R

(
2Rx − Gx − Bx

) + G
(
2Gx − Rx − Bx

) + B
(
2Bx − Rx − Gx

)
√

6
(
R2 + G2 + B2 − RG − RB − GB

)
(
Rx + Gx + Bx

)
√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The shadow-shading-specular variant is given by Hx = (0, 0, ix)
T and the shadow-

shading-specular quasi-invariant by Hc
x = (shx, sx, 0)T .

Since the length of a vector is not changed by coordinate transformation, the
norm of the derivative remains the same in all three representations |fx| = |fc

x | =
|fo

x | = |fh
x |. For both the opponent color space and the hue-saturation-intensity

color space, the photometric variant direction is given by the L1 norm of the
intensity. For the spherical coordinate system, the variant is equal to the L2 norm
of the intensity.
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13.2 Color Saliency

The three color spaces that we discussed decorrelate the color spaces with
respect to various physical events. In the decorrelated color spaces, frequent
physical variations, such as intensity changes, will only influence the photometric
variant axes. We will examine the color derivative statistics in these decorrelated
color spaces.

13.2.3 Statistics of Color Images

As discussed in Section 13.2.1, the information content of a descriptor depends
on the probability of the derivatives. Here, we investigate the statistics of color
derivatives in the decorrelated color spaces. From the statistics we aim to find a
mathematical description of surfaces of equal probability, the so-called isosalient
surfaces since a description of these surfaces leads to the solution of Equation
13.40.

The statistics of color images are shown for the Corel database [255], which
consists of 40,000 images after the exclusion of black and white ones. In
Figure 13.14, the distributions of the first-order derivatives, fx, are given for
the various color coordinate systems. The isosalient surfaces show a remarkably
simple structure, approximately similar to an ellipsoid. For all three color spaces,
the third coordinate axis coincides with the axis of maximum variation (i.e., the
intensity). For the opponent and the spherical coordinate system, the first and
second coordinates are rotated, with rotation matrix Rφ , so that the first coordinate
coincides with the axis of minimum variation(

r sin ϕ̃ θ̃x, rϕ̃x

)T = Rφ
(
r sin ϕθx, rϕx

)T
,(

õ1x, õ2x

)T = Rφ
(
o1x, o2x

)T
.

(13.48)

The tilde indicates the color space transformation with the aligned axes. Similarly,
the aligned transformations are given by S̃(fx) = f s̃

x and Õ(fx) = f õ
x .
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Figure 13.14 The histograms of the distribution of the transformed derivatives of the Corel image

database in the (a) RGB coordinates, (b) the opponent coordinates, and (c) the spherical coordinates,

respectively. The three planes correspond to the isosalient surfaces, which contain (from dark to light),

respectively, 90%, 99%, 99.9% of the total number of pixels. Source: Reprinted with permission, ©
2006 IEEE.
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13 Color Feature Detection

After alignment of the axes, isosalient surfaces of the derivative histograms can
be approximated by ellipsoids:

(
αh1

x

)2 + (
βh2

x

)2 + (
γ h3

x

)2 = R2, (13.49)

where hx = h
(
fx

) = (
h1

x , h2
x , h3

x

)T
and h is one of the transformations

S̃, Õ, or H .
We can compute the parameters α, β, and γ , which describe the derivative

distribution from large data sets. Here, we show results for a subset of 1000
randomly chosen images from the Corel data set. We fit ellipses to the histogram
of the data set as follows. First, the axes of the opponent and the spherical
transformation are aligned by Equation 13.48. Next, the axes of the ellipsoid are
derived by fitting the isosaliency surface, which contains 99% of the pixels of
the histogram of the Corel data set. The results for the various transformations
are summarized in Table 13.3. The relation between the axes in the various color
spaces clearly confirms the dominance of the luminance axis in the RGB cube,
since γ , the multiplication-factor of the luminance axis, is much smaller than the
color-axes multiplication factors, α and β.

Table 13.3 The ellipsoid parameters for the corel data set computed for gaussian

derivatives with σ = 1.

fx f s̃
x f õ

x fh
x

α 0.577 0.851 0.850 0.858

β 0.577 0.515 0.524 0.509

γ 0.577 0.099 0.065 0.066

13.2.4 Boosting Color Saliency

We now return to our goal, that is, of incorporating color distinctiveness into
salient point detection. Or, mathematically, to find the transformation for which
vectors with equal information content have an equal impact on the saliency
function. In the previous section, we saw that derivatives of equal saliency form
an ellipsoid. Since Equation 13.49 is equal to

(
αh1

x

)2 + (
βh2

x

)2 + (
γ h3

x

)2 = ∣∣�h
(
fx

)∣∣2
, (13.50)

the following holds:

p
(
fx

) = p
(

f
′
x

)
↔ ∣∣�h

(
fx

)∣∣ =
∣∣∣�h

(
f

′
x

)∣∣∣ , (13.51)
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13.2 Color Saliency

(a) (b) (c) (d)

Figure 13.15 (a, c) Corel input images. (b, d) Results of Harris detector (red dots) and the Harris

detector with color boosting (yellow dots). The red dots mainly coincide with black and white events,

while the yellow dots are focused on colorful points.

where � is a 3 × 3 diagonal matrix with �11 = α, �22 = β, and �33 = γ . � is
restricted to �2

11 + �2
22 + �2

33 = 1. The desired saliency boosting function (Eq.
13.40) is obtained:

g
(
fx

) = �h
(
fx

)
. (13.52)

The oriented isosalient ellipsoids are transformed into spheres by a rotation of the
color axes followed by a rescaling of the axis. The vectors of equal saliency are
thereby transformed into vectors of equal length.

In Figure 13.15, results of the RGB-gradient-based and color-boosted Harris
detector are depicted. From a color information point of view, the RGB-gradient-
based method does a poor job. Most of the salient points have a black and white
local neighborhood, with a low color saliency. The salient points, after color
boosting, focus on more distinctive points. Color boosting can be applied to all
derivative-based detectors. In the introduction of this chapter we saw an example
of a color-boosted image gradient in Figure 13.2.

It should be noted that color boosting negatively influences the signal-to-noise
of the detector. Depending on the task at hand, distinctiveness may be less desired
than signal-to-noise. To balance both criteria, we introduce a parameter α, which
allows for choosing between best signal-to-noise characteristics, α = 0, and best
information content, α = 1:

gα
(
fx

) = α�h
(
fx

) + (1 − α) h
(
fx

)
. (13.53)

For α = 0, this is equal to color-gradient-based salient point detection.
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13 Color Feature Detection

13.2.5 Evaluation of Color Distinctiveness

For the evaluation of salient point detectors two criteria are considered to be
important: (i) distinctiveness, salient points should focus on events with a low
probability of occurrence; and (ii) repeatability, salient point detection should
be stable under the varying viewing conditions, such as geometrical changes
and photometric changes. Most salient point detectors are designed according
to these criteria [256]. In this and the following section, we look at how color
boosting influences distinctiveness and repeatability. We start by analyzing color
distinctiveness in this section.

We have chosen the Harris point detector (Section 13.1.4) to test color boosting.
In Reference 256, the Harris detector has already been shown to outperform other
detectors both on ‘shape’ distinctiveness and repeatability. It is computed with

Hσ
(
fx, fy

) = fx · fx fy · fy − fx · fy
2 − k

(
fx · fx + fy · fy

)2
, (13.54)

by substituting fx and fy by g
(
fx

)
and g

(
fy

)
.

The color distinctiveness of salient point detectors is described by the infor-
mation content of the descriptors extracted at the locations of the salient points.
From the combination of Equations 13.38 and 13.39, it follows that the total infor-
mation is computed by summing the information of the zeroth- and first-order
part, I(v) = I(f) + I(fx) + I(fy). The information content of the parts is computed
from histograms with

I (f) = −
∑

i

pi log
(
pi

)
, (13.55)

where pi are the probabilities of the bins of the histogram of f.
The results for 20 and 100 salient points per image are shown in Table 13.4.

Next to the absolute information content we have also computed the relative
information gain with respect to the information content of the color-gradient-
based Harris detector. For this purpose, the information content of a single image
is defined as

I = −
n∑

j=1

log
(
p
(
vj

))
, (13.56)

where j = 1, 2, . . . n and n is the number of salient points in the image. Here, p(vj)

is computed from the global histograms, which allows comparison of the results
per image. The information content change is considered substantial for a 5%
increase or decrease.
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13.2 Color Saliency

Table 13.4 The information content of salient point detectors.

20 points 100 points

Information Increase Decrease Information

Method content (%) (%) content Increase Decrease

fx 20.4 — — 20.0 — —

‖fx‖1 19.9 0 1.4 19.8 0 0.8

S̃c
x 22.2 45.5 10.1 20.4 9.1 17.7

f s̃
x 22.3 49.4 .6 20.8 13.1 1.3

Õc
x 22.6 51.4 12.9 20.5 12.0 34.2

f õ
x 23.2 62.6 0.0 21.4 21.5 0.9

Hc
x 21.0 21.7 43.4 19.0 1.8 77.4

fh
x 23.0 57.2 0.3 21.3 16.7 1.1

Random 14.4 0 99.8 14.4 0 100

Underlined values indicate the lowest error.
a(i) Measured in information content
b(ii) the percentage of images for which a substantial decrease (−5% ) or increase (+5% ) of the information

content occurs. The experiment is performed with both 20 and 100 salient points per image.

The highest information content is obtained with f õ
x , which is the color-

saliency-boosted version of opponent derivatives. Boosting results in an 7% to
13% increase of the information content compared to the color-gradient-based
detector. On the images of the Corel set, this resulted in a substantial increase
on 22% to 63% of the images. The advantage of color boosting diminishes when
increasing the number of salient points per image. This is caused by the limited
number of color clues in many of the images. It is also noteworthy to see how
small the difference is between luminance (‖fx‖1) and RGB-based (fx) Harris
detection. Since the intensity direction also dominates the RGB derivatives, using
the RGB gradient instead of luminance-based Harris detection only results in a
substantial increase in information content in 1% of the images.

13.2.6 Repeatability

We described two criteria for salient point detection, namely, distinctiveness
and repeatability. The color boosting algorithm is designed to focus on color
distinctiveness, while adopting the geometrical characteristics of the operator to
which it is applied. Let us have a closer look at how color boosting influences
repeatability. We identify two phenomena that influence the repeatability of g(fx).
Firstly, by boosting color saliency an anisotropic transformation is carried out. This
will reduce the signal-to-noise ratio negatively, which would negatively influence
the repeatability. Secondly, by boosting the photometric invariant directions more
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13 Color Feature Detection

than the photometric variant directions, we improve robustness with respect to
scene accidental changes (such as shadows) which improves repeatability. Let us
analyze these two effects in more detail.

13.2.6.1 Signal-to-Noise For isotropic uncorrelated noise, ε, the measured
derivative f̂x can be written as

f̂x = fx + ε, (13.57)

and after color saliency boosting

g
(

f̂x

)
= g

(
fx

) + �ε. (13.58)

Note that isotropic noise remains unchanged under the orthogonal curvilinear
transformations. Assume the worst case in which fx only has signal in the
photometric variant direction, then the noise can be written as∣∣g (

fx

)∣∣
|�ε| ≈ �33

∣∣fx

∣∣
�11 |ε| . (13.59)

Hence, the signal-to-noise ratio reduces by
�11
�33

, which will negatively influence
repeatability to geometrical and photometrical changes.

The loss of repeatability caused by color saliency boosting is examined by
adding uniform, uncorrelated Gaussian noise of σ = 10. This yields a good
indication of loss in signal-to-noise, which in turn will influence results of
repeatability under other variations, such as zooming, illumination changes, and
geometrical changes. Repeatability is measured by comparing the Harris points
detected in the noisy image to the points in the noise-free images. The results in
Table 13.5 correspond to the expectation made by Equation 13.59, namely, the
larger the difference between �11 and �33, the poorer the repeatability.

Table 13.5 The percentage of harris points that remain

detected after adding gaussian uncorrelated noise.

Method 20 points 100 points

fx 88 84

|fx|1 88 83

f s̃
x 62 54

f õ
x 51 41

fh
x 52 42

In Figure 13.16, the information content and repeatability as a function of
the color boosting, determined by the α-parameter, are given (Eq. 13.53). The
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13.2 Color Saliency
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Figure 13.16 The information

content (blue line) and the

repeatability (red line) as a function of

the amount of color saliency

boosting.

experiment is performed by applying color boosting to the opponent color space.
The results show that information content increases at the cost of stability.
Depending on the application, a choice should be made about the amount of color
saliency boosting.

13.2.6.2 Photometric Robustness The second phenomena that influences
repeatability is the gain in photometric robustness. By boosting color saliency, the
influence of the photometric variant direction diminishes, while the influence of
the quasi-invariant directions increases. As a consequence, the repeatability under
photometric changes, such as changing illumination and viewpoint, increases.

In Figure 13.17, the dependence of repeatability is tested on two image
sequences with changing illumination conditions [57]. The experiment was
performed by applying color boosting to the spherical color space, since changes
due to shadow-shading will be along the photometric variant direction of the
spherical system. For these experiments, two intertwining phenomena can be
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(a) (b) (c)

Figure 13.17 (a),(b) Two frames from two sequences with changing illumination conditions. (c)

Repeatability as a function of the amount of color saliency boosting for the two sequences. Dotted line

for the nuts sequence and the continuous line for the fruit basket sequence.

217

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



13 Color Feature Detection

observed: the improved photometric invariance and the deterioration of signal-to-
noise ratio with increasing α. For the nuts sequence, with very prominent shadows
and shading, the photometric invariance is dominant, while for the fruit basket the
gained photometric invariance only improves performance slightly for medium α

values. For total color saliency boosting α = 1, the loss of repeatability, due to
loss of signal-to-noise, is substantial.

13.2.7 Illustrations of Generality

Color saliency boosting can, in principle, be applied on all functions that can
be written as a function of the local derivatives. Also note that, in principle, the
boosting theory can also be applied to higher order derivatives of images. Here,
we show some additional examples. First, we apply saliency boosting to the focus
point detector [254]. The detector focuses on the center of locally symmetric
structures. In Figure 13.18b, the saliency map is shown. In Figure 13.18c, the
result after saliency boosting is depicted. Although focus point detection is already
an extension from luminance to color, black and white transition still dominate the
result. Only after boosting the color saliency, the less interesting black-and-white
structures in the image are ignored and most of the red Chinese signs are found.
Similar difference in performance is obtained by applying color boosting to the
linear symmetry detector [237]. This detector focuses on corner and junction-like
structures. The RGB-gradient-based method focuses mainly on black and white
events, while the more salient signboards are found only after color saliency
boosting.

As a final illustration we illustrate color saliency boosting to gradient-based
methods. In the third row of Figure 13.18, color boosting is applied to a gradient-
based segmentation algorithm [257]. The algorithm finds globally optimal regions
and boundaries. In Figure 13.18b and 13.18c, respectively, the RGB gradient
and the color-boosted gradient are depicted. While the RGB-gradient-based
segmentation is distracted by the many black and white events in the background,
the color-boosted segmentation finds the salient traffic signs.

13.3 Conclusions

In this chapter we have investigated several aspects of color features. First, we
discussed a framework to combine tensor-based features and the photometric
invariance theory. The tensor basis of these features ensures that opposing vectors
in different channels do not cancel out, but instead that they reinforce each
other. To overcome the instability caused by transformation to a photometric full
invariant, we introduce an uncertainty measure to accompany the full invariant.
This uncertainty measure is incorporated in the color tensor to generate robust
photometric invariant features.
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13.3 Conclusions

(a) (e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(b)

(c)

(d)

Figure 13.18 In sequence input image, RGB-gradient-based saliency map, color-boosted

saliency map, and the results with red dots (lines) for gradient-based method and yellow

dots (lines) for salient points after color saliency boosting. Results (a–d) for the focus points,

(e–h) for the symmetry points, and (i–l) for the global optimal regions and boundary method.
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13 Color Feature Detection

Second, color distinctiveness is explicitly incorporated in the design of salient
point detectors. The method, called color saliency boosting, can be incorporated
into existing detectors that are mostly focused on shape distinctiveness. Saliency
boosting is based on an analysis of the statistics of color image derivatives.
Isosalient derivatives form ellipsoids in the color derivative histograms. This
fact is exploited to adapt derivatives in such a way that equal saliency implies
equal impact on the saliency map. Experiments show that color saliency boosting
substantially increases the information content of the detected points.

220

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14
14 Color Feature Description

With contributions by Gertjan J. Burghouts

In the previous chapters, we have outlined the theory of invariant feature extraction
from color images. The advantage of the full invariants described in Chapter 6 is
that they capture intrinsic scenes or object properties, robust to various arbitrary
imaging conditions such as local illumination, shadows, and color of the light
source. Hence, these invariant features are well suited to characterize the image
content in the so-called image descriptors. In this chapter, we demonstrate the
appropriateness of such invariant color descriptors. Much of the methodology
described here is adopted from Burghouts and Geusebroek [258] and from van de
Sande et al. [259].

Many computer vision tasks depend heavily on local feature extraction and
matching. Object recognition is a typical case where local information is gathered
to obtain evidence for recognition of previously learned objects. Recently, much
emphasis has been placed on the detection and recognition of locally (weakly)
affine invariant regions [55, 57, 260–262]. The rationale here is that planar regions
transform according to well-known laws. Successful methods rely on fixing a local
coordinate system to a salient image region, resulting in an ellipse describing local
orientation and scale. After transforming the local region to its canonical form,
image descriptors should be well able to capture the invariant region appearance.
As pointed out by Mikolajczyk and Schmid [252], the detection of elliptic
regions varies covariantly with the image (weak perspective) transformation,

Portions reprinted, with permission, from ‘‘Performance Evaluation of Local Colour Invariants,’’ by
G.J. Burghouts and J.M. Geusebroek, in Computer Vision and Image Understanding, Volume 113 (1),
pp. 48–62, 2009 © 2009 Elsevier.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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14 Color Feature Description

while the normalized image pattern they cover and the image descriptors derived
from them are typically invariant to the geometric transformation. Recognition
performance is further enhanced by designing image descriptors to be photometric
invariant such that local intensity transformations due to shading and variation in
illumination have no or limited effect on the region description. State-of-the-art
methods in object recognition normalize average and standard deviation of the
intensity image [55, 252, 263]. Moreover, image measurements using a Gaussian
filter and its derivatives are becoming increasingly popular as a way of detecting
and characterizing image content in a geometric and photometric invariant way.
Gaussian filters have interesting properties from an image processing point of
view, among others, their robustness to noise [264], their rotational steerability
[265], and their applicability in multiscale settings [54]. Many of the intensity-
based descriptors proposed in the literature are based on Gaussian (derivative)
measurements [53, 57, 253, 266, 267].

We consider the extension to color-based descriptors as color has high dis-
criminative power. In many cases, objects can well be recognized merely by their
color characteristics [43, 46, 47, 268–270]. However, photometric invariance is
less trivial to achieve, as the accidental illumination and recording conditions
affect the observed colors in a complicated way. Photometric invariance has
been intensively studied for color features [46, 47, 50, 58, 164, 187]. The most
successful local image descriptor so far is Lowe’s SIFT descriptor [55]. The SIFT
descriptor encodes the distribution of Gaussian gradients within an image region.
The SIFT descriptor is a 128-bin histogram that summarizes local oriented gradi-
ents over 8 orientations and over 16 locations. This represents the spatial intensity
pattern very well, while being robust to small deformations and localization
errors. Nowadays, many modifications and improvements exist, among others,
PCA-SIFT [271], GLOH [57], fast approximate SIFT [272], and SURF [273].
These region-based descriptors have achieved a high degree of invariance to
overall illumination conditions for planar surfaces. Although designed to retrieve
identical object patches, SIFT-like features turn out to be quite successful in
bag-of-feature approaches to general scene and object categorization [274].

The important research question is whether color-based descriptors indeed
improve on their gray-based counterparts in practice. The answer depends on
the stability of the nonlinear combinations of Gaussian derivatives necessary to
achieve a similar level of invariance as implemented in gray-value descriptors.
For instance, the values of photometric invariants are distorted when the image is
JPEG compressed, as the compression distorts the pixel values and spatial layout
more for the color channels than for the intensity. Here we provide a study of
local color descriptors in comparison with gray-value descriptors.

For (affine) region detection, many well-performing methods exist [149, 252,
254, 275–278]. Hence, we will concentrate on descriptor performance of the
full photometric invariant derivatives, as well as their combination into color
SIFT descriptors. Furthermore, to enable a fair comparison between intensity-
based descriptors and color-based descriptors, we demand identical geometric
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14 Color Feature Description

invariance for both intensity-based and color-based features. This requirement is
conveniently fulfilled by the Gaussian derivative framework.

For the evaluation of local gray-value and color invariants, we adopt the
extensive methodology of Mikolajczyk and Schmid [57]. In this article, the
authors propose the evaluation of descriptor performance by matching regions
from one image to another image. Correct matches are determined using the
homography between the two images. From Reference 57, we adopt the measures
to evaluate discriminative power and invariance. Also, we adopt variety in
recording conditions, being changes of illumination intensity, of the camera
viewpoint, blurring of the image, and JPEG compression. We go beyond Reference
57 by extending this set with images recorded under different illumination colors
and illumination directions. These conditions induce a significant variation in the
image recording. For an illustration of images recorded under varying illumination
directions, see Figures 14.1–14.4.

Figure 14.1 An illustration of the diverse objects from the ALOI collection [198]. A random sample of

the objects in the collection is depicted.

We extend the number of images used in the evaluation framework [57]
to 26,000, representing 1000 objects recorded under 26 imaging conditions.
Moreover, we further decompose the evaluation framework in Reference 57 to
the level of local gray-value invariants on which common region descriptors are
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14 Color Feature Description

Figure 14.2 Example object from ALOI recorded under semihemispherical illumination, and images

recorded under an illuminant at decreasing altitude angles. See Reference [198] for details.

Figure 14.3 Example object from ALOI recorded under varying illumination color.

Figure 14.4 Example object from ALOI recorded under varying viewing angles.
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14.1 Gaussian Derivative-Based Descriptors

based. We measure the performance of photometric invariants for the detection
of color transitions only. Hence, we evaluate the performance of the Gaussian
gray-value and color invariant derivatives. Finally, we establish performance
criteria that are specific to color invariants, indicating the level of invariance with
respect to photometric variation, and evaluating the ability to distinguish between
various photometric effects.

14.1 Gaussian Derivative-Based Descriptors

We compare the local gray-value derivatives with the color invariant derivatives
from Chapter 6 based on three evaluation criteria:

■ Discriminative power. We establish the power of each invariant to dis-
criminate between image regions. Discriminative power is measured by
the quality of region matching, similar to Reference 57. The successful
matching strategy as proposed by Lowe [55] is based on the rationale
that for the recognition of an object it suffices to correctly match only
a few regions of that object. In our experimental framework, we push
this to the extreme and consider the matching of one region of an object
against a database of 1000 regions: one noisy realization of the same
object matched against 999 of other objects. Under noisy conditions we
consider image deformations caused by blurring, JPEG compression and
out-of-plane object rotation (viewpoint change), and photometric varia-
tion induced by changes in illumination direction and illumination color.
Precision and recall characteristics reflect the discriminative power of the
invariant under evaluation.

■ Invariance or robustness. As above, but now we establish the degradation
of the number of correct matches as a function of imaging condition or
image transformation that increasingly deteriorates, similar to Reference
279. As with discriminative power, the conditions we test are blurring,
JPEG compression, illumination direction, viewpoint change, and illumi-
nation color. The degradation in the recall reflects the constancy of the
invariant under examination.

■ Information content. We establish the power of each invariant to dis-
criminate between true color transitions while remaining constant under
nonobject-related transitions induced by shadow, shading, and highlights.
Hence, we assess simultaneously for each invariant its power to dis-
criminate between color transitions, and its invariance to photometric
distortions. Note that this is different from the the two experiments above,
as here we evaluate the property to discriminate between the variant and
invariant aspects in the photometric condition, in isolation of a possible
effect on recognition performance.
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14 Color Feature Description

We consider for 1000 objects from the ALOI database [67] the following
imaging conditions: JPEG Compression; blurring; and changes of the viewpoint,
illumination direction, and illumination color. Figure 14.5 illustrates the imaging
conditions for some of the objects.

(a)

(b)

Figure 14.5 Randomly selected objects from the ALOI collection (100 example objects) are depicted

in (a). Imaging and testing conditions are shown in (b): the reference image, blurring (σ = 2.8 pixels,

image size 192 × 144), JPEG compression (50% ), illumination direction change (to 30◦ altitude, from

the right), viewpoint change (30◦), illumination color change (3075K → 2175K).

(a) Example image (b) Ew (c) Ww (d) Cw (e) Hw

Figure 14.6 Photometric invariant gradients. Ew is not photometric invariant; Ww is invariant to

illumination intensity; Cw is invariant to shadow and shading; and Hw is invariant to shadow, shading,

and highlights.
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14.1 Gaussian Derivative-Based Descriptors

For each object image, we determine its regions. For consistency with the
literature, we determine Harris-affine regions [252]. As pointed out in Reference
57, to establish the correct matching of regions, one should either fix the camera
viewpoint or consider the homography limiting oneself to more or less flat scenes.
For 3D objects, the assertion of a flat scene fails. To overcome this problem,
we consider images that have been recorded with a fixed camera viewpoint.
However, the condition of viewpoint change has to be settled. Therefore, for
each object, we manually selected the single region inside the object that is
most consistent between the original and the image recorded under a viewpoint
change. We copied the region from the original to all the remaining imaging
conditions (see Fig. 14.7 for an example). Note that as we are dealing with
regions inside objects only, the black background does not affect the experiments.
Furthermore, trying to find 1 region from the 1000 selected regions could
be seen as searching the 1 region in an image of 1000 cluttered objects for
which all selected regions are visible. Together with the variation in image
transformations and imaging conditions a total of 26,000 regions are available.
The regions vary significantly in size and anisotropy (Fig. 14.7b and 14.7c).
The ground truth of regions is publicly available on the website of the ALOI
database [198].

(a)

1 2 3 4 5 6 7 8 9 10
0
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20
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Region anisotropy

%
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Region surface (pixels)

(b) (c)

%

Figure 14.7 (a) Image regions for the reference image, blurring, JPEG compression, illumination color

change, illumination direction change, and viewpoint change. For all imaging conditions except the

change of viewpoint, the camera is fixed, so the regions are set identical. For the camera viewpoint

change, we have manually selected the most stable region. Histogram of (b) the size of the region

surfaces, and (c) of the anisotropy (where anisotropy = 1 indicates isotropy).
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14 Color Feature Description

Next, we compute the invariants from each region. To be consistent with
the literature, we normalize the regions as in Reference 252. We consider two
experiments:

■ Single location computation In the first experiment, we compute the
invariant gradients from one location. We do so by computing them at
a fixed scale (i.e., one-third of the region size). For each region, we
determine the location in which the image gradient Ew is maximum. For
all copied regions (see for region extraction the description above), this
location is identical. From this location, we compute all invariants.

■ SIFT-based computation In the second experiment, we compute the SIFT
descriptor from the normalized region identical to Mikolayzcyk’s com-
putation [57], but with the gray-value gradient inside the SIFT descriptor
replaced by one of the invariant color gradients.

For the performance evaluation, we consider the following sets of invariant
gradients (Table 14.1). The extension ‘‘SIFT’’ to the name of the invariant impli-
cates SIFT-based computation; otherwise, single-location Gaussian invariants are
considered. Original SIFT is also included in the experiments and is equivalent to
W-gray-SIFT. We include the intensity gradient Ww in the H and C color-based
descriptors. Although this seems contradictory at first sight, the orthogonaliza-
tion of intensity and intensity-normalized color information proves effective in
matching.

Table 14.1 Grey-value and color invariants.

Color-SIFT

Invariant Gradients Property Equation name

E-gray {Ew} Not photometric invariant — —

E-color {Ew, Eλw, Eλλw} Not photometric invariant 6.9 —

W-gray {Ww} Invariant to local intensity

level

— (grey-) SIFT

W-color {Ww, Wλw, Wλλw} Invariant to local intensity

level

6.9 W-color- SIFT

C-color {Ww, Cλw, Cλλw} Invariant to local intensity

level, plus invariant to

shadow and shading

6.28 C-color-SIFT

H-color {Ww, Hw} Invariant to local intensity

level, plus invariant to

shadow and shading,

and highlights

6.52 H-color-SIFT

For fair comparison to the original SIFT descriptor, we reduce the dimen-
sionality of all color SIFT descriptors to 128 numbers using PCA reduction (the
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14.2 Discriminative Power

covariances have been determined over 200 example regions computed from the
reference images). Furthermore, we will evaluate the hue-based SIFT descriptor
of Abdel-Hakim and Farag [280], termed hue-color-SIFT , and the HSV-based
SIFT descriptor of Bosch and Zisserman [281], termed hsv-color-SIFT .

14.2 Discriminative Power

The objective of this experiment is to establish the distinctiveness of the invariants.
To that end, we match image regions computed from a distorted image to regions
computed from the reference images as in Reference 57. The discriminative power
is measured by determining the recall of the regions that are to be matched and
the precision of the matches:

Recall = #correct matches

#correspondences
, (14.1)

Precision = #correct matches

#correct matches + # false matches
. (14.2)

Here, recall indicates the number of correctly matched regions relative to the
ground truth of corresponding regions in the dataset. Precision indicates the
relative amount of correct matches in all the returned matches. The definition of
recall is specific to the problem of matching based on a ground truth of one-to-one
correspondences, and hence it deviates from the definition as used in information
retrieval. The aim in our experiment is to correctly match all regions (recall of
one) with ideally no mismatches (precision of one).

We consider the nearest-neighbor matching as employed in Reference 57.
Distances between values of photometric invariants are computed from the
Mahalanobis distance (the covariances have been determined over 200 examples
computed from reference images). Over various thresholds, the number of correct
and false matches are evaluated to obtain a recall versus precision curve. A good
descriptor would produce a small decay in this curve, reflecting the maintenance
of a high precision while matching more image regions.

We randomly draw a test set of regions and use 1000-fold cross-validation
to measure performance over our dataset. To end up with graphs that allow a
comparison between various levels of color invariance, we vary the number of
regions to match per experiment. The number of regions to which a single region is
compared is set to 20 for the invariants computed from one location. We consider a
successful distinction between 20 image points to be the minimal requirement of a
point-based descriptor. For the SIFT-based computation of invariants, we increase
this number, as the region-based description is more distinctive. The number of
regions to which one region is compared is between 100 or 500, depending on the
difficulty of the imaging condition. We consider a successful distinction between
100 regions to be the minimal requirement of a region-based descriptor. We
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14 Color Feature Description

consider a successful distinction between 500 regions to be sufficient for realistic
computer vision tasks; this is in line with the validation in References 57, 279.

The results of the SIFT region matching for invariant gradients are shown in
Figure 14.8. All photometric invariants are plotted using solid lines. All color-
based invariants are plotted using red lines, opposed to gray-value invariants that
are plotted in black lines.

Overall, all color invariants have better performance than gray-value-based
features. Gray-value derivatives E-gray and W-gray are outperformed by color-
based descriptors, except when illumination color is changed (Fig. 14.8e). In that
case, normalized intensity W-gray performs reasonably, but is still outperformed
by many color-based invariants, as expected.

The performance of H-color is a bit disappointing compared to the other
color invariants. Two effects play a role here. First, this descriptor misses one
color channel of information, and better discriminative power could be achieved
when adding a saturation channel. However, in that case one would, at best,
expect a performance similar to W-color. We will see a comparison later on
when establishing performance for the color SIFT descriptors. A second issue
affecting the H-color feature is the instabilities caused by the normalization in the
denominator of Equation 6.52. The expression becomes unstable for colors that
are unsaturated, and hence is grayish. Blurring by the Gaussian filter enhances
this effect, as color at boundaries—which we are evaluating in this setup—are
mixed. Hence, H-color seems unsuitable for region descriptors based on Gaussian
derivatives.

The effect of blurring, shown in Figure 14.8a, causes the image values to be
smoothed. Hence, details are lost, but no photometric variation is introduced.
The color gradient with no photometric invariant properties, E-color, performs
best. Besides the decay in performance due to additional blur, the graph clearly
illustrates the gain in discriminative power when using color information.

The compression of images by JPEG, shown in Figure 14.8b, causes the color
values to be distorted more than the intensity channel. Still, color information is
distinctive, as the color gradient that is invariant to the intensity level, W-color,
performs best. At the beginning of the recall-precision curves, one clearly sees
the advantage of orthogonalizing intensity and color information, as W-color,
C-color, and H-color perform significantly better than E-color, for which all
channels are correlated with intensity. In the latter case, all values of the SIFT
descriptor will be severely corrupted by the JPEG compression. For the invariant
color descriptors, the intensity channel will be relatively mildly corrupted by the
compression, whereas the color channels still add extra discriminative power.
Compression effects become more influential at the tail of the recall-precision
curves, where one sees H-color drop off quite early because of the instability
of the descriptor, followed by C-color. Although W-color had a slower start, it
ends up doing quite well because of the more stable calculation of the nonlinear
derivative combination.

For changes in the illumination direction (Fig. 14.8c), the main imaging effects
are darker and lighter image patches, and shadow and shading changes. However,
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14.2 Discriminative Power
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Figure 14.8 Discriminative power of

photometric invariant gradients.

(a) Blurring (σ = 1 pixel), 1 versus

20, (b) JPEG compression (50% ), 1

versus 20, (c) Illumination direction

(30◦), 1 versus 20, (d) viewpoint

change (30◦), 1 versus 20,

(e) illumination color (2100K), 1

versus 20.

231

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 Color Feature Description

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

(d)

P
re

ci
si

on

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
(e)

P
re

ci
si

on

E–gray

E–gray

W–gray

W–gray

Figure 14.8 (Continued)

for the small scale at which we measure the Gaussian derivative descriptors, we
expect intensity changes to dominate over shadow and shading edges. Shadow
and shading (geometry) edges are expected to become more important when
assessing SIFT-based descriptors, which capture information over a much larger
region. Hence, both color gradients that are invariant to intensity changes, W-color
and C-color, perform well. Clearly, the color invariant descriptors outperform
gray-value descriptors and noninvariant color descriptors.

The results of a change in viewpoint (Fig. 14.8d), clearly demonstrate the
advantage of adding color information. The patches, manually indicated to be
stable, merely contain a change in information content due to a projective
transformation and small errors in the affine region detection. Furthermore, the
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14.2 Discriminative Power

light field will be distributed somewhat differently over the image, causing
W-color and C-color to perform superior to gray-value descriptors, noninvariant
color descriptors, and the H-color descriptor.

For varying illumination color (Fig. 14.8e), obviously the color values become
distorted. The color gradient invariant to shadow, C-color, is very robust here.
Although C-color is based on color, its gradients are computed in such a way
that can be shown to be reasonably color constant [67]. Furthermore, one would
expect the gray-value descriptors not to be affected by illumination color changes.
However, a change in overall intensity is also present, making direct use of E-gray
infeasible. The intensity-normalized invariant W-gray performs reasonably, but
lacks the discriminative power that comes with the use of color.

Figure 14.9 shows the discriminative power of the invariants when they are
plugged into the SIFT descriptor. The figure has an identical organization as
Figure 14.8. The only exception in the experimental setup is that the number of
regions, to which a single region is matched, is increased. This number varies over
the imaging conditions, and is either 100 or 500, to obtain suitable resolution in the
performance graphs. Furthermore, note that two extra methods from the literature
have been added, the hue-color-SIFT descriptor [280] and the hsv-color-SIFT
descriptor [281].

Overall, the relative performance of SIFT-based computation of invariants
corresponds largely to the relative performance of invariants from single points.
Color-based SIFT invariant to shadow and shading effects, C-color-SIFT, per-
forms best.

Generally, the SIFT-based computation significantly improves the discrim-
inative power compared to single-point computation. Almost all color and
gray-value descriptors perform well under blurring (Fig. 14.9a), JPEG com-
pression (Fig. 14.9b), and illumination color changes (Fig. 14.9e). Note that
the C-color-SIFT descriptor performs equally well as the intensity-based SIFT
descriptor in the case of illumination color changes, implying a high degree of
color constancy for this descriptor.

Discriminative power drops when considering illumination direction or view-
point changes (Fig. 14.9a,b). These cases are much harder to distinguish using
a SIFT descriptor. In these cases, the gray-value-based SIFT is outperformed by
the color-based SIFT descriptors. In particular, the color-based SIFT invariant to
shadow and shading effects, C-color-SIFT, is very discriminative in these cases.
This can be explained by the large spatial area over which the SIFT descriptor
captures image structure. Hence, shadow and shading (object geometry) effects
are more likely to be captured by the SIFT descriptor, but the effects are cancelled
by the C invariant.

The shadow and highlight invariant H-color-SIFT is generally not very distinc-
tive compared to W-color-SIFT and C-color-SIFT. Lack of discriminative power
affects the performance of hue-color-SIFT, H-color-SIFT, and SIFT under blur-
ring. Furthermore, the hue-based descriptors, hue-color-SIFT, and H-color-SIFT
are affected by JPEG compression and by illumination color changes. The dis-
tinctiveness of hue-color-SIFT is generally much less than that of H-color-SIFT.
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Figure 14.9 Discriminative power of

photometric invariant gradients when

plugged into the SIFT descriptor. (a)

Blurring (σ = 1 pixel), 1 versus 500,

(b) JPEG compression (50% ), 1

versus 500, (c) Illumination direction

(30◦), 1 versus 100, (d) Viewpoint

change (30◦), 1 versus 100, (e)

Illumination color (2100K), 1 versus

500.
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14.3 Level of Invariance
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Figure 14.9 (Continued)

Hence, using the hue alone is not a distinctive region property. The distinctiveness
of hsv-color-SIFT is generally somewhat higher than that of H-color-SIFT. Thus,
the saturation s in the hsv color space is a distinctive property. However, the
distinctiveness of hsv-color-SIFT is generally less than that of W-color-SIFT and
C-color-SIFT because of Instability, as argued before.

14.3 Level of Invariance

The objective of this experiment is to establish the constancy of the invariants
against varying imaging conditions. Likewise [279], we measure the degradation
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14 Color Feature Description

of recall (Eq. 14.1) over increasingly hard imaging conditions. The experimental
setup is identical to that in the previous experiment.

The results of the region matching over increasingly hard imaging conditions is
shown in Figure 14.10. The organization of the figure is identical to Figures 14.8
and 14.9. The presented graphs are orthogonal to Figures 14.8 and 14.9, in that
now the amount of degradation is varied, at a fixed recall that corresponds to
the endpoint of the curves in Figures 14.8 and 14.9. Any decline in performance
indicates lack of constancy with respect to the tested condition. Ideally, the decline
would be zero (horizontal line), indicating perfect invariance to the set of imaging
conditions.

For image blurring (Fig. 14.10a) no significant imaging effects are observed.
Hence, all descriptors have equal performance with respect to constancy, although
initial discriminative power varies from a recall of 0.2 for gray-value derivatives
to more than 0.7 for color-based derivatives. For JPEG compression (Fig. 14.10b),
the gray-value invariants E-gray and W-gray are slightly more constant than the
color invariants, as the image intensity is less affected by JPEG compression than
the image chromaticity. For changes in the illumination direction (Fig. 14.10c)
due to the small scale of the derivative descriptors, the main imaging effect is
the change in region intensity. Hence, W-gray, W-color, C-color, and H-color are
very stable. For a viewpoint change (Fig. 14.10d), only marginal imaging effects
are observed. Hence, all measures perform equally well with respect to constancy.
For varying illumination color (Fig. 14.10e), besides the intensity-based measures
E-gray and W-gray, C-color is very invariant. This measure has theoretically been
shown to be reasonably color constant [67].

We repeat the invariance experiment, but now the invariants are plugged into
the SIFT descriptor. The results are shown in Figure 14.11.

Overall, most descriptors have performed well for blurring (Fig. 14.11a), JPEG
compression (Fig. 14.11b), and illumination color change (Fig.14.11e). Exceptions
again are the hue-based descriptors H-color-SIFT and hue-color-SIFT, which lack
discriminative power, and are more affected by these conditions. A change in
illumination direction or viewpoint is much harder for the SIFT descriptor to
deal with, even with the color invariance built in. Overall, the C-color-SIFT
seems the best choice, for which shadow and shading edges are discounted. This
descriptor has invariance comparable to the intensity-based SIFT descriptor, but
gains considerably in discriminative power.

14.4 Information Content

The objective of this final experiment is to establish the information content
of the photometric invariants. Information content refers to the ability of an
invariant to distinguish between color transitions and photometric events such as
shadow, shading, and highlights. Ideally, the invariant’s values covary with color
transitions and its value is constant to photometric events to which it is designed
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14.4 Information Content
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Figure 14.10 Invariance of

photometric invariant gradients

over increasingly hard imaging

conditions. (a) Blurring, 1 versus

20, (b) JPEG compression, 1

versus 20, (c) Illumination

direction, 1 versus 20, (d)

Viewpoint change, 1 versus 20,

(e)Illumination color, 1 versus 20.
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14 Color Feature Description
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Figure 14.10 (Continued)

to be invariant. We illustrate the information content of W-color and C-color
(Fig. 14.12). For the first object, new image edges are introduced by changing the
illumination direction in Figures 14.12b and 14.12c. Hence, the matching is better
with the shadow and shading invariant descriptor C-color-SIFT. Figures 14.12e
and 14.12f show an example where no shadow/shading invariance performs better.
Here, no new edges are introduced by the change in illumination direction, and only
the local intensity is affected because of the relatively large-scale shading effects.

To establish the information content, we measure the discriminative power and
invariance over individual image regions. Each image region is labeled whether
it contains a color transition, or a shadow, shading, or highlight transition. In this
way, the information content evaluates the invariant’s discriminative power and
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14.4 Information Content
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Figure 14.11 Invariance of

photometric invariant gradients

over increasingly hard imaging

conditions when plugged into the

SIFT descriptor. (a) Blurring, 1

versus 500, (b) JPEG

compression, 1 versus 500, (c)

Illumination direction, 1 versus 100,

(d) Viewpoint change, 1 versus

100, (e) Illumination color, 1 versus

500.

239

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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Figure 14.11 (Continued)

invariance over various photometric events. To that end, we construct a large
annotated dataset from images selected from the CURET dataset [282]. This
dataset contains tens of images within the order of hundreds of labeled image
points located at the various photometric events. The selected texture images
contain many edges, where we annotated for each image whether the texture
was generated mainly by either shadow/shading (sponge, cracker b, lambswool,
quarry tile, wood b, and rabbit fur) or highlight effects (aluminum foil, rug a, and
styrofoam). From these images, regions have been detected by applying a Harris
corner detector [53]. Figure 14.13a,b illustrates, for two fragments of texture
images, shadow/shading and highlight edges, respectively. In addition, we have
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14.4 Information Content

(a) Example image

(d) Example image (e) W-color SIFT (f) C-color SIFT

(b) W-color SIFT (c) C-color SIFT

Figure 14.12 Illustration of matching for two objects. One is better matched with C-color-

SIFT, the other with W-color-SIFT, respectively. Correct matches are shown in yellow, false

matches are shown in blue. Source: Reprinted with permission, © 2009 Elsevier.

(a) (b) (c)

Figure 14.13 Examples of the photometric events dataset. Detected points are given a label whether

the point is located on a (a) shadow/shading edge, (b) highlight edge, or (c) color edge.

collected image points located at color transitions. To that end, images have been
taken from PANTONE color patches [70] (see Fig. 14.13c for an illustration).
From the PANTONE patch combinations, we have selected the 100 combinations
that have the largest hue difference, that is, patches that reflect true changes in
object color rather than intensity or saturation differences.

We measure an invariant’s power to distinguish between color transitions
and disturbing photometric events by the Fisher criterion. From many color
transitions, we compute a first cloud of points; from transitions of a particular
disturbing photometric event, we compute a second point cloud. The Fisher
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14 Color Feature Description

criterion expresses the separation between the two clouds of points, termed {x1}
and {x2} respectively:

Information = |μ({x1}) − μ({x2})|2
σ 2({x1}) + σ 2({x2})

. (14.3)

14.4.1 Experimental Results

The values of photometric invariants to various photometric events are shown in
Figure 14.14. The plots show values relative to the total color edge strength W w.
We do so to express simultaneously the power of W w and of the shadow and
shading invariants Cw and Hw to distinguish between photometric events and true
color edges. As expected, the values of the invariants Cw and Hw are close to
zero for shadow/shading edges (note that values of the reference invariant W w are
indeed significant to shadow/shading edges). For shadow/shading disturbances, we
obtain information(Cw) = 2.6, and information(Hw) = 4.9. Thus, the invariant
Hw separates shadow/shading from object transitions much better than Cw.
Furthermore, the value of Hw is also low for highlights (Fig. 14.14b). However,
as expected, not all of the values are close to zero because of pixel saturations
at highlights. As a result, the invariance and the information content of Hw are

1s 2s

(a) (b)
3s 4s

Ww

1s 

2s 
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Cw

90% of shadow edges
Shadow edges
Color edges

1s 2s 3s 4s 
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90% of highlight edges
90% of shadow edges
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Color edges

Figure 14.14 Scatter plots of invariant values to photometric events. The figures depict (a) Cw versus

Ww and (b) Hw versus Ww . All invariants are sensitive to color edges. Cw and Hw are invariant to

shadow and shading, where Hw is additionally invariant to highlights. The horizontal lines describe

a 90% interval of the invariant values. This gives an indication of the invariant’s ability to distinguish

between values to color edges and to disturbing photometric events. Source: Reprinted with permission,

© 2009 Elsevier.
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14.5 Summary

somewhat lower for highlight disturbances than for shadow/shading disturbances,
information(Hw) = 2.9.

Overall, the photometric invariant H-color is more constant to shadow and
shading than C-color. Both perform well when separating color transitions from
shadow and shading transitions. The separation of color transitions and highlights
by H-color is harder because of saturated highlights. As a consequence, most of
the highlights are separated well, but some highlights are misclassified as color
transitions.

14.5 Summary

In this chapter, we have discussed color invariant descriptors for image description
and recognition. We evaluated the descriptive power of local derivative-based
color invariants and the descriptive power of color invariant SIFT descriptors. In
Chapter 16 we will show the application of these descriptors in image and video
retrieval.
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15
15 Color Image Segmentation

With contributions by Gertjan J. Burghouts

In this chapter, we consider the invariant assessment of color and texture in com-
bination with applications in image segmentation and material classification. For
texture segmentation, we consider the work on Gabor filters [283] and Gaussian
derivative filters as the most important [284, 285]. For the modeling of materials,
the mapping of image features onto a codebook of feature representatives receives
extensive treatment. For reason of generality and simplicity, filterbank outputs are
commonly used as features. These methods are often referred to as texton-based
methods [286, 287], or nowadays bag-of-word approaches. The combination of
color and texture has attracted attention in the recent literature. In Mirmehdi and
Petrou [288], color-textured images are roughly segmented based on a spatial color
model [289]. The assumption underlying their approach implies that texture can
be characterized by its color histogram over a region. The drawback here is that the
spatial structure of the texture is not considered since only first-order statistics, the
histogram, is taken into account. Thai et al. [290] propose measuring color–texture
by embedding the Gabor filters into an opponent color representation. The method
provides a useful structural representation for color–texture.

Portions reprinted, with permission, from ‘‘Adaptive Image Segmentation by Combining Photometric
Invariant Region and Edge Information,’’ by Th. Gevers, in IEEE Transactions on Pattern Analysis
and Machine Intelligence, Volume 24 (6), pp. 848–852, 2002 © 2002 IEEE; from ‘‘Color Texture
Measurement and Segmentation,’’ by M. A. Hoang, Jan-Mark Geusebroek, Arnold W. M. Smeulders,
in Signal Processing, vol. 85 (2), pp. 265–275, 2005 © 2005 Elsevier; and from ‘‘Material-Specific
Adaptation of Color Invariant Features,’’ by Gertjan J. Burghouts, Jan-Mark Geusebroek, in Pattern
Recognition Letters, vol. 30 (3), pp. 306–313, 2009 © 2009 Elsevier.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.
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15.1 Color Gabor Filtering

We show the extension of the Gaussian color model presented in Chapter
6 to the domain of texture by extending the Gaussian color into the spectral
Fourier domain, closely following the work presented by Hoang et al. [291].
By doing so, we extend the Gaussian framework with a family of color Gabor
filters, suitable to capture texture and color. Following the methodology outlined
in Chapter 6 to obtain full photometric invariant features, we arrive at texture
descriptors invariant under the Lambertian reflection model. Application of these
color–texture features in the area of image segmentation result in robust methods
for color and texture segmentation.

15.1 Color Gabor Filtering

Recall from Chapter 6 that a color image is observed by integrating over some
spatial extent and over a spectral bandwidth. Before observation, a color image
may be regarded as a three-dimensional energy density function E(x, y, λ), where
(x, y) denotes the spatial coordinate and λ denotes the wavelength. Observation of
the energy density E(x, y, λ) boils down to correlation of the incoming signal with
a Gaussian measurement probe G(x, y, λ). In Section 6.1 we have shown that three
Gaussian derivative functions over the visual spectrum are appropriate to measure
color. The Gaussian measurement function G(x, y, λ) estimates quantities of the
energy density E(x, y, λ).

In the case of texture, we are interested in the local spatial frequency char-
acteristics of E(x, y, λ). These properties are better investigated in the domain
of spatial frequency. Thus, it is appropriate to represent the joint color–texture
properties in a combined wavelength-Fourier domain E(u, v, λ), where λ remains
the wavelength of the light energy, and (u, v) denotes the spatial frequency.
Probing this Fourier domain with a Gaussian function now yields the appropri-
ate measurements to assess the image frequency content. The measurement of
the signal E(u, v, λ) at a given spatial frequency (u0, v0) and wavelength λ0 is
obtained by a 3D Gaussian probe centered at (u0, v0, λ0) at a frequency scale σf
and wavelength scale σλ,

M̂(u, v, λ) =
∫

E(u, v, λ)G(u − u0, v − v0, λ − λ0; σf , σλ) dλ. (15.1)

Frequency selection is achieved by tuning the parameters u0, v0, and σf , and
color information is captured by the Gaussian specified by λ0 and σλ. The central
wavelength λ0 and spectral bandwidth σλ is fixed, as detailed in Section 6.1.1.
However, the choice of the central frequencies (u0, v0) and frequency bandwidth
σf is free. Centring the Gaussian at the origin of the Fourier domain yields our
spatial Gaussian color model. Any other choice of (u0, v0) leads to the well-known
Gabor functions in the spatial domain, but is now calculated over each of the three
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15 Color Image Segmentation

Gaussian (opponent) color channels E(x, y), Eλ(x, y), and Eλλ(x, y),

Mλ(n) (x, y) = h(x, y) ∗ Êλ(n) (x, y), (15.2)

where

h(x, y) = 1

2πσ 2
s

e
− x2+y2

2σ2
s e2π j(Ux+Vy) (15.3)

is the 2D Gabor function at the radial center frequency F = √
U2 + V 2

(cycles/pixel) and the filter orientation tan(θ) = V/U , and j2 = −1. The Gabor
filters in 15.3) are illustrated in Figure 15.1.

Figure 15.1 Illustration of the color Gabor filter sets M, Mλ, and Mλλ for certain values of (u0, v0)

and σf .
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15.3 Color-Based Texture Segmentation

15.2 Invariant Gabor Filters Under Lambertian
Reflection

Within a single texture patch, the value of the Gabor filter response varies
proportionally to the local intensity of the texture. The darker region has a
response value smaller than the value of the brighter one. Therefore, illumination
intensity, shadow, and shading effects may compromise the segmentation process.
Hence, we aim to correct the effect of intensity variations on the Gabor filter
responses. Similar to the derivation of the invariant set C in Chapter 6, we may
directly extend the results to Gabor filtering, as all derivations are equivalent for
the Gabor filter with respect to the Gaussian filter. In that case, the expressions
for set C̃ (the tilde indicating frequency tuning by Gabor filters) become

C̃λ = Ẽλ

E
, (15.4)

which is the Gabor filtered yellow-blue opponent color channel, pixel-wise
normalized by the Gaussian smoothed intensity channel. Similarly,

C̃λλ = Ẽλλ

E
. (15.5)

These frequency responses are independent of the local intensity, shadow and
shading, assuming Lambertian reflection.

Besides the invariant C, the set N has been derived in Section 6.1.4. This set is
color constant, that is, invariant for the illumination color. For the case of Gabor
filtering, the expressions can be summarized as

Ñλ = ẼλE − EλẼ

E2
, (15.6)

Ñλλ =
˜EλλE2 − EλλẼE − 2ẼλEλE + 2E2

λẼ

E3
, (15.7)

where the high frequency filtering effect of the Gabor filters cancel the low
frequency effects of illumination variations. For further details, see Reference
291.

15.3 Color-Based Texture Segmentation

Here we combine the Gaussian color model with the Gabor filtering results to
illustrate combined color–texture segmentation. We employ a simple segmenta-
tion algorithm with a scheme similar to [292]. The overall scheme is depicted in
Figure 15.2.
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15 Color Image Segmentation

Input Color Image in Gaussian Color Model

Set of Gabor filters

Gaussian smoothing

Principle Component Analysis

K–means clustering and region merging

Segmented Image

Filtered Responses   rn(x,y)
(Magnitude Channels)

Smoothed Feature Images

Reduced Dimensionality
Feature Images

Figure 15.2 The

color–texture

segmentation

scheme. Source:

Reprinted with

permission, © 2005

Elsevier .

The magnitude of the Gabor filter responses emphasize texture regions, which
are in tune with the chosen frequencies of the filter. Methods for designing
an efficient set of Gabor filters can be found in References 292–294. In our
setup, we use 20 Gabor filters built from five scales σs = 4, 3.5, 2.95, 2.35,
1.75, corresponding to five center frequencies F = 0.05, 0.08, 0.14, 0.22, 0.33
(cycles/pixel) and four orientations θ = 0, ±π/4, π/2. These values of scale and
center frequency are calculated based on the method proposed by Manjunath in
Reference 294. We therefore obtain 60 filtered response images from which we
consider the magnitude, rn(x, y), n = 1, . . . , 60. Each image pixel (xi, yj) is now
represented by a 60-dimensional feature vector whose nth component is denoted
by rn(xi, yj). Pixels in one color–texture homogeneous region will form a cluster
in the feature space, which is compact and may be discriminated from clusters
corresponding to other regions.

The segmentation algorithm is based on clustering pixels using their associated
feature vectors. For preprocessing, every filtered magnitude image rn(x, y) is
smoothed by a Gaussian kernel to suppress the variation of the feature vectors
within the same color–texture region. Since the feature vectors are highly
correlated, we apply the principal components analysis (PCA) to reduce the feature
space dimensionality to only four principal dimensions. The four-dimensional
feature vectors are used as the input for clustering. The clustering algorithm has two
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15.4 Material Recognition Using Invariant Anisotropic Filtering

steps. The first step calculates ‘‘super-pixels’’ by k-means clustering with a high
number of k applied to the feature space. In a second step, a region merging method
is used to combine adjacent clusters, which are statistically similar (Fig. 15.2).

The region merging is done in an agglomerative manner where in each iteration
the two most similar regions are merged. We employ a region similarity measure
analogous to the one proposed in Reference 295. The similarity between regions
Ri and Rj is given by

Si,j = (μi − μj)
�[�i + �j]

−1(μi − μj), (15.8)

where μi, μj are the mean vectors and �i, �j are the covariance matrices computed
from feature vectors of regions Ri and Rj, respectively. Here, Si,j measures the
distance between two sets. If one of the two reduces to a single point, Si,j becomes
the Mahalanobis distance. The advantage of this measure is that the uncertainty
of the vectors μi and μj as expressed by their respective covariances �i,j is
taken into account. The two regions Ri and Rj are merged if the value of Si,j
is under a threshold. In our experiment, the similarity threshold t in the range
of [6 . . . 9] produces almost the same result for every test image. Therefore, we
fix the similarity threshold at t = 7.5 for all our experiments. Finally, a simple
postprocessing technique is utilized to remove small-sized isolated regions.

The segmentation results are illustrated in Figure 15.3. The input image is
created by collaging five subimages of natural and artificial color–texture. In this
image, two patches on top are chosen to be similar in texture but different in color.
The two patches on the left are chosen to be similar in color but different in texture.
The results in Figure 15.3 show that five regions are correctly discriminated when
using the presented measurement.

Segmentations of real images using the presented method are illustrated
in Figure 15.4. Furthermore, segmentation results obtained by using invariant
features are shown in Figure 15.5.

15.4 Material Recognition Using Invariant Anisotropic
Filtering

The appearance of materials change significantly under different imaging settings,
depending on the settings themselves [282] and also on the physical properties of
a material [296]. Hence, materials-specific image representations may improve on
the recognition performance, as they capture properties that are distinctive to the
material and are balanced with the variation of imaging settings. For instance, for
one material, the local intensity variation is a distinctive property, while the other
is distinguished best from other materials based on its color properties. Figure 15.6
depicts some materials from the ALOT dataset [297] and the testing conditions
(Fig. 15.7). The first and second materials are distinguished best when comparing
their colors, more specifically, the red channel. For the third and fourth materials,
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15 Color Image Segmentation

(a) (b) (c)

(d) (e) (f)

Figure 15.3 Illustration of color–texture segmentation. (a) Synthetic color–texture image with five

different regions. (b) The segmentation result using only color features. The original color image is

smoothed by a set of Gaussian filters at different scales as in Reference 288. Here, two regions

with identical color are merged. (c) Segmentation result using only gray-value texture. Note that the

regions with identical texture but different colors are merged. (d) The segmentation result using the

color–texture features without shadow invariance. The regions are correctly segmented, but affected

by shadow. (e) The segmentation result using the shadow invariant color–texture feature. In this case,

all regions are correctly segmented. (f) Postprocessing of the invariant segmentation result to remove

small isolated regions. Source: Reprinted with permission, © 2005 Elsevier .

the most discriminative feature is the amount of intensity edges, while the fifth
image in the first row and the second image in the third row are distinguished best
when comparing the information in the green channel. These examples illustrate
the advantage of material-specific representations.

Not only for material recognition [285, 298] and classification [299] but also
for object and scene classification [300] the mapping of image features onto a
codebook of feature representatives [274, 301] has received extensive treatment.
Commonly used features are the class of SIFT-based features [55, 57], see, for
example, Reference 263. Alternatively, filterbank outputs are in use as features.
Promising methods that use filterbanks to model object and scenes have been
proposed by Winn et al. [302] and by Shotton et al. [303].

Here we adapt the approach put forward by Varma and Zisserman [285] and
include color invariant properties in their proposed MR8 anisotropic filterbank,
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15.4 Material Recognition Using Invariant Anisotropic Filtering

Figure 15.4 Segmentation of a number of example images. Source: Reprinted with permission, ©
2005 Elsevier .
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15 Color Image Segmentation

Figure 15.5 Segmentations of example images using invariant features. Note that the backgrounds

with cast shadows are well segmented, that is, disregarding the cast shadows. Source: Reprinted with

permission, © 2005 Elsevier .

Figure 15.6 Example materials from the ALOT dataset [297].

Figure 15.7 Test images for the ALOT material depicted above on third row, first column.
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15.4 Material Recognition Using Invariant Anisotropic Filtering

(a) Intensity (MR8 – LINC[0] ≡ MR8)

(b) Opponent color 1 (MR8 – LINC[1])

(c) Opponent color 2 (MR8 – LINC[2])

Figure 15.8 MR8-LINC: a color invariant filterbank. The original MR8-filterbank (a, top row) is convolved

with each of the image’s opponent colors channels (a–c, upper rows), to yield 24 responses per pixel.

Each of the 24 filter outputs is normalized by the local intensity as is measured by a Gaussian kernel

of the same size of the MR8 filter (a–c, lower rows). The only MR8 filter that is not normalized is the

Gaussian kernel that measures intensity (otherwise it would yield a constant output). The normalization

achieves invariance to local intensity changes.

closely following [297]. The MR8 filterbank is shown in Figure 15.8a. Typically,
before the image is convolved with the MR8 filterbank, the image is normalized
to zero mean and unit variance, to achieve invariance to imaging conditions; see
Reference 285.

15.4.1 MR8-NC Filterbank

In a first modification of the MR8 filterbank to extend it to use color information, we
apply the filterbank to the image’s color channels directly. This is a straightforward
extension, which is also employed by Winn et al. [302], who have applied the MR8
filterbank to Lab color values. We largely follow Reference 302 here. However,
we restrain to a linear subspace of RGB and apply the filterbank to the three
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15 Color Image Segmentation

opponent color channels of the image, being the Gaussian color model presented
in Chapter 6. Opponent colors have the advantage that the color channels are
largely decorrelated.

We normalize each of the color channels Ê, Êλ and Êλλ to zero mean and unit
variance,

Ê′ = Ê − μÊ

σÊ

, Ê′
λ = Êλ − μÊλ

σÊλ

, Ê′
λλ = Êλλ − μÊλλ

σÊλλ

, (15.9)

where μÊ, σÊ denote the mean and standard deviation of the intensity channel,
respectively; μÊλ

, σÊλ
denote the mean and standard deviation of the blue-yellow

opponent color channel, respectively; and, equivalently, μÊλλ
, σÊλλ

denote the mean
and standard deviation of the green-red opponent color channel, respectively.

Next, each of the normalized color channels Ê′, Ê′
λ, and Ê′

λλ is convolved with
the MR8 filterbank, yielding 24 filter outputs per pixel. This first extension of the
MR8 filterbank is termed MR8 with normalized colors, or MR8-NC.

15.4.2 MR8-INC Filterbank

For the MR8-INC invariant filterbank, we normalize the color channels such that
they maintain more color information than is the case with MR8-NC. With MR8-
NC, the means of the yellow-blue and red-green channels are normalized to zero,
effectively discarding the actual chromaticity in the image and only considering
the variation. The color channels will be affected mainly by the lighting direction
relative to the object and to the camera [304], which are mostly characterized by
intensity fluctuations. Hence, we propose to normalize the three opponent color
channels only by the standard deviation of the intensity. Normalizing the intensity
channel by the standard deviation of intensity,

Ê′ = Ê − μÊ

σÊ

, (15.10)

sets the variance of this channel to unity. Here, μÊ and σÊ indicate the mean and
standard deviation of the intensity channel as before. Normalizing the yellow-blue
and red-green channels also by the intensity standard deviation,

Ê′
λ = Êλ

σÊ

, Ê′
λλ = Êλλ

σÊ

, (15.11)

yields a more stable response when the intensity variation fluctuates as a con-
sequence of lighting or viewpoint changes. At the same time, it maintains
information about the chromaticity in the image. Likewise MR8-NC, each of the
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15.4 Material Recognition Using Invariant Anisotropic Filtering

normalized color channels is convolved with the MR8 filterbank, yielding 24 filter
outputs per pixel. We refer to this filterbank as MR8 with intensity-normalized
colors, or MR8-INC.

15.4.3 MR8-LINC Filterbank

In a third modification, we modify the MR8-filterbank to achieve invariance to
local intensity changes by a local color normalization rather than a global one.
We follow closely the invariant Gaussian features outlined in Chapter 6.

For each pixel, we obtain the Gaussian filtered non-normalized opponent color
values using the MR8-filterbank, to obtain 24 filter outputs per pixel. Also, for
each pixel, we measure the local intensity with a Gaussian kernel at the same
scale as the MR8 filter under consideration. Per pixel, we normalize each output
of the MR8 filterbank by the local intensity as measured by that Gaussian filter,
yielding the transformed filter responses MR8′,

MR8′
(

Ê
)

= MR8(Ê)

Êσ
, MR8′

(
Êλ

)
= MR8(Êλ)

Êσ
,

MR8′
(

ˆEλλ

)
= MR8( ˆEλλ)

Êσ
, (15.12)

where MR8(.) indicates the successive application of a filter from the filterbank,
and Êσ represents the intensity image smoothed at the same spatial scale as the
filter of MR8 under consideration, see Figure 15.8. Obviously, the zeroth order
Gaussian filter from the MR8-filterbank is not normalized by the local intensity;
otherwise, its output would be constant. We refer to this color filterbank as MR8
with local intensity-normalized colors, or MR8-LINC.

15.4.4 MR8-SLINC Filterbank

Finally, we construct a shadow and shading invariant filterbank, termed MR8-
SLINC. Similar to MR8-LINC, the invariance is achieved locally. With MR8-
LINC, first the filterbank outputs are computed before normalization by the local
intensity. Alternatively, the color values Êλ(x, y) and Êλλ(x, y) can be normalized
locally first before filtering the thus obtained images,

MR8′
(

Ê
)

= MR8(Ê)

Êσ
, MR8′

(
Êλ

)
= MR8

(
Êλ

Ê

)
,

MR8′
(

ˆEλλ

)
= MR8

( ˆEλλ

Ê

)
. (15.13)
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15 Color Image Segmentation

Under Lambertian reflection, the normalization of color values by the local
intensity results in color values independent of the intensity distribution. Hence,
the filterbank outputs of MR8-SLINC are invariant to shadow and shading.

15.4.5 Summary of Filterbank Properties

Similar to MR8, the color-based filterbanks MR8-NC and MR8-INC involve a
global color normalization. In other words, the normalization is dependent on the
contents of the image. Hence, clutter will affect the normalization. This makes
the output of MR8-NC and MR8-INC scene dependent. In contrast, the local
normalizations that are employed in MR8-LINC and MR8-SLINC are not scene
dependent, but only locally dependent on the actual color values.

Furthermore, the filterbanks can be ordered by their degree of invariance.
MR8-SLINC is the most invariant, as its color channels aim to discard intensity
variation. MR8 and MR8-NC, respectively, are the intensity and color variations,
but they discard their mean and variance. MR8-LINC retains more of the intensity
and color variations, as it discards locally the variance due to intensity fluctuations.
Finally, MR8-INC is less invariant than MR8-LINC, as it discards only the global
variance due to intensity fluctuations.

15.5 Color Invariant Codebooks and Material-Specific
Adaptation

In this section, we consider the construction of color invariant codebooks from
the several filterbanks, and the methodology to apply the codebooks in a material-
specific setting. First, we formalize the color invariant filterbanks as follows: MR8-
X = { MR8-X , MR8-X [1], MR8-X [2]}, where X ∈ {NC, INC, LINC, SLINC}.
We learn one codebook for each color channel MR8-X [i], with i ∈ {0, 1, 2}. For
codebook construction, we follow the common scheme of learning textons by
k-means clustering of filterbank outputs [262, 285, 298, 305]. We consider a single
set of 20 images randomly drawn from the learning set of material images. Each is
filtered by one of the filterbanks MR8-X [i], and from each filtered image we store
10 cluster centers. As a result, for each filterbank MR8-X [i], we obtain a codebook
of 200 textons. For the filterbank MR8-X , we have obtained 3 codebooks of length
200. For fair comparison with the single-channel MR8 filterbank, the length of
the MR8 codebook is increased to 600 by storing 30 instead of 10 cluster centers
per learning image.

To represent an image in terms of codebooks, it is filtered by each of the
color channel filterbanks MR8-X [i] first, before mapping the filter outputs onto
the corresponding codebook and counting the most similar occurrences. For
each MR8-X [i], a histogram of length 200 is obtained; hence for MR8-X three
histograms are obtained. After concatenation of the histograms per color channel,
a histogram of length 600, which corresponds to the filterbank MR8-X is obtained.
The codebook representation is outlined in Figure 15.9.
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15.5 Color Invariant Codebooks and Material-Specific Adaptation

E

Eλλ

Eλ

codebook
LINC[0]

codebook
LINC[1]

codebook
LINC[2]

histogram
LINC[0]

histogram
LINC[1]

histogram
LINC[2]

MR8-
LINC[0]

MR8-
LINC[1]

MR8-
LINC[2]

histogram
MR8-LINC

Figure 15.9 Color codebook approach where the three color channels are separately filtered and

represented by a histogram. Subsequently, the histograms are combined into one. Source: Reprinted

with permission, © 2009 Elsevier .

The limitation of the color codebook representation as presented above is that
the discriminative power of the color channels is averaged by using a single
histogram comparison measure. For instance, the intensity information may be
less distinctive for a given material than is the color information. The averaging
of the information in the color channels may lead to incorrect classification of
materials. The misclassification of an image of the bluish material, mistakenly
considered to be more similar to the pink material, is illustrated in Figure 15.10a.

histogram
LINC[0]

histogram
LINC[1]

histogram
LINC[2]

histogram
MR8-LINC

histogram
LINC[0]

histogram
LINC[1]

histogram
LINC[2]

classifier
LINC[0]

classifier
LINC[1]

classifier
LINC[2]

combined
classifier

(a) (b)

Figure 15.10 Separation of two images of the same material from one image of another material.

The fixed representation in (a) is not able to distinguish correctly between the two, while the material-

specific representation is able to distinguish between the two (third color channel). Source: Reprinted

with permission, © 2009 Elsevier .

To overcome the limited resolving power of the direct combination of the
three color channels, we start with classification of a material at the level of
individual color channels and to give preference to a distinctive combination
thereof. Figure 15.10b illustrates that the bluish material is well separated from
the pink material using the information in the third color channel.

We propose to train one classifier per color channel per filterbank to discriminate
one material from all other materials. Hence, with I filterbanks, F1...I , and J color
channels, c1 . . . J , we obtain I × J classifiers. With N materials, each classifier
outputs N posterior probabilities. With this procedure, I × J × N values are
produced by the first classifier stage.

In the combination stage, one classifier is trained using the I × J × N values
obtained for each material image. This one versus all classifier learns per
material the discriminant function from the posterior probabilities assigned to
each material by the individual classifiers. As a result, the combined classifier
learns implicitly the filterbank and color channel that is most distinctive for
the specific material. To infer explicitly from the material-specific discriminant
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15 Color Image Segmentation

function that provides information which filterbank and color representation
combination is most distinctive for a given material, we determine for each
material which of the individual classifier’s outputs approximates the normal to
the discriminant function of the combining classifier best. This measure indicates
the importance of a particular filterbank for the classification of the given material.

15.6 Experiments

In the experiments, we evaluate the color filterbanks and their combination. We
take two datasets into account to cover a wide range of real-world materials
and imaging conditions under which they can be viewed. First, we consider the
well-known CURET dataset [282]. This dataset enables us to test the robustness
under varying imaging conditions, that is, changes of the illumination direction
and of the camera viewpoint. For color-based methods, a critical issue is whether
the method is robust to color transformations in the image as a consequence of
varying illumination color. Second, we consider the ALOT dataset [297] to also
include variations of the illumination color. In addition, this dataset contains more
color and 3D variation. Some of the materials that are included in the ALOT
dataset are illustrated in Figure 15.6, while some test images are shown in 15.7. In
total, we evaluate the filterbanks on 61 textures of the CURET dataset and on 200
textures of the ALOT dataset. In total, in the experiments we use 5,612 CURET
images and 7,200 ALOT images. For CURET, we use the same train, test, and
texton learn sets as in Reference 285; for ALOT the sets are publicly available on
the website of the ALOT database.

In the experiments, the number of textons is always set to 200 (as in Reference
285). For the individual and combined classifiers, we prefer, respectively, the
nearest mean classifier (Euclidean distance) and the linear Bayes-normal classifier,
as these are performing best.

15.6.1 Material Classification by Color Invariant Codebooks

We start the performance evaluation by establishing the classification accuracy
when randomly selecting the learning images. This experiment gives an indication
of the discriminative power and robustness of each of the color filterbanks. We
include the original MR8 as a baseline comparison. We consider the mean
and standard deviation of classification accuracy over 1000 repetitions (random
selections).

In Figure 15.11a and b the recognition results for the CURET and ALOT
datasets are shown, respectively. First, we discuss the results for the CURET
dataset. The filterbanks with most invariant properties, MR8, MR8-NC, and
MR8-SLINC filterbanks performance is degraded compared to the less invariant
MR8-INC and MR8-LINC filterbanks. MR8 performs somewhat better than
MR8-NC and MR8-SLINC, as the nearest mean classifier puts all emphasis on
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Figure 15.11 Accuracy of material recognition for various filterbanks with randomly selected

images of (a) the CURET dataset and (b) the ALOT dataset. The vertical bars indicate

standard deviation over 1000 repetitions.
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15 Color Image Segmentation

the intensity information. With MR8-NC and MR8-SLINC, the emphasis of the
nearest mean classifier is put on the color channels. The MR8-LINC filterbank
performs better than does MR8-INC, as it provides a better approximation of the
changing intensity effects by doing so locally.

As expected, for ALOT the performance of the filterbanks is different, as this
dataset contains more color and 3D variation. The severe 3D variations cause the
intensity to change in such a way that it cannot be approximated well globally. This
explains the low performance of the MR8-INC filterbank. At the same time, with
much more colorful materials, the global normalization of image colors makes
sense: local color variations in the image are now kept albeit relative to each
other. Also, the severe 3D variations across materials causes their appearance to
change significantly with different illumination. Keeping color variations, while
being very invariant, explains the good performance of the MR8-NC filterbank.
The MR8-INC and MR8-LINC filterbanks are less invariant, hence they perform
somewhat less than MR8-NC. The distinctive color information maintained by
MR8-INC and MR8-LINC explains their better performance compared to the
MR8 filterbank.

15.6.2 Color–Texture Segmentation of Material Images

Segmentation of images composed of various materials is a challenging problem.
Here we take a first step by considering the segmentation performance of

images consisting of two adjacent material textures. In this experiment, we
evaluate the sensitivity of the color-based filterbanks MR8, MR8-NC, MR8-INC,
and MR8-LINC to such cluttered images.

First, we randomly select one learning image for each texture. Second, we
simulate clutter by concatenating the learning image with a randomly selected
image of another texture. For the first cluttered test image, the percentage of
original versus clutter is 90% versus 10%. To simulate various degrees of clutter,
we increase the clutter percentage, up to 40% (note: with 50%, the segmentation
would become chance). The cluttered images are publicly available on the
website of the ALOT [297] database. For generalization purposes, we use the
texton dictionary from the previous experiment (i.e., we do not learn new textons
from cluttered images).

Figure 15.12 shows the results for increasingly cluttered images of the CURET
and ALOT datasets. The MR8-LINC filterbank performs significantly better than
the other filterbanks, MR8, MR8-NC, and MR8-INC, over various degrees of
clutter. The low performance of MR8, MR8-NC, and MR8-INC is due to the global
normalization schemes that they employ. A global normalization is distorted by
clutter, so the filterbank input is different when dealing with variations of clutter.
The local normalization employed in MR8-LINC is not distorted by clutter.
The small performance drop here is due to ambiguity in the images themselves
as a result of the cluttering. However, even with 40% clutter, the MR8-LINC
filterbank achieves a classification accuracy of 75.5% on the ALOT dataset, while
the runner-up (MR8-LINC) has an accuracy of 39.0% only.
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Figure 15.12 Accuracy of material recognition for various filterbanks with increasingly

cluttered images of (a) the CURET dataset and (b) the ALOT dataset.

261

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



15 Color Image Segmentation

The results of individual filterbanks are summarized as follows. From the
previous two experiments, we conclude that the Locally invariant MR8-LINC
and MR8-SLINC filterbanks are very robust to clutter and that they perform well
on different datasets. The MR8-LINC is performing best on the CURET dataset
(limited 3D variation), whereas MR8-SLINC performs second-best on the ALOT
dataset (severe 3D variation).

15.6.3 Material Classification by Adaptive Color Invariant
Codebooks

Since MR8-LINC and MR8-SLINC perform well but on different datasets, and
given that the datasets contain very different types of materials, we establish
in this experiment whether the tuning of each of the filterbanks to a particular
material is beneficial.

As expected, Figure 15.13a and c indicates that the classification accuracy is
increased by combining the MR8-LINC and MR8-SLINC filterbanks. While the
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Figure 15.13 Accuracy of material recognition for the best performing filterbanks and their combination

for the CURET dataset (a) and the ALOT dataset (c). Percentages indicate how often a particular

filterbank is most distinctive (b,d).
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15.7 Image Segmentation by Delaunay Triangulation

classification accuracy of MR8-LINC is almost saturated for the CURET dataset,
0.96, the combination achieves a marginal improvement, 2%. For the ALOT
dataset, the performance is increased from 0.35 to 0.42, achieving an improvement
of 19.8% .

Indeed, as laid down in Figure 15.13b and d, the most distinctive filterbank
per material varies significantly across the datasets, and also across the individual
materials. The CURET dataset contains many materials of which the structure is
similar. Hence, the intensity variation, although very discriminative (see previous
experiments), is not most discriminative. Rather, color information is most
discriminative, as the color channels of the filterbanks are often most distinctive.
The information in the filterbanks that are not invariant to shadow and shading,
MR8-LINC, is in 56% most distinctive. Most CURET materials are uni-colored,
hence the color information is distinctive. With unicolored materials, too much
information is lost when discarding shadow and shading variation. Hence, the
shadow and shading invariant filterbank MR8-SLINC is in a few cases, 27%,
most distinctive.

For the ALOT dataset, the performance improvement due to filterbank tuning
is significant. As this dataset contains more variation of the material properties,
and because more materials are included, the results generalize better. For ALOT
the most distinctive filterbanks corresponds to intensity information. This can
be explained from the fact that intensity variation rather than color variation
is the dominating factor in material appearance [296]. The information in the
filterbanks that are not invariant to shadow and shading, MR8-LINC, is in 28%
most distinctive. The shadow and shading invariant filterbank MR8-SLINC is
in 25% most distinctive. We conclude that MR8-LINC and MR8-SLINC are
discriminative for large but different sets of materials, respectively.

Finally, we stress that the recognition of materials from the ALOT dataset is
obviously a far-from-solved problem. Here, we have demonstrated the merit of
automatically tuning filterbanks with different invariant properties to individual
materials with different physical properties.

15.7 Image Segmentation by Delaunay Triangulation

The methods discussed so far are based on local properties, as can be estimated
by localized filters. Alternatively, a more regional segmentation can be devised
by integrating edge evidence over longer contours. In this section, an adaptive
image segmentation scheme is discussed employing the Delaunay triangulation
for image splitting. The tessellation grid of the Delaunay triangulation is adapted
to the structure of the image data by combining photometric invariant region
and edge information. To achieve robustness against imaging conditions (e.g.,
shading, shadows, illumination and highlights), photometric invariant similarity
measures and edge computation is used. We consider the Delaunay triangulation as
the geometric data structure for image segmentation. The Delaunay triangulation
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15 Color Image Segmentation

maximizes the minimum angle, minimizes the maximum circumscribing circle,
and minimizes the maximum smallest enclosing circle for each triangle.

The adaptive image segmentation method is as follows:

Initialization: Let Dj denote the incremental Delaunay triangulation after j
insertions of points in R2. Let dj

i be the ith triangle of the j triangulation.
Furthermore, consider the function g : R2 → R defining an image surface
g(x, y). gj

i(x, y) is a compact area of g, which is bounded by the vertices of
triangle dj

i . Because it is assumed that the image data points are limited to
a rectangular image domain, the image segmentation method starts with
the construction of the initial triangulation D0 consisting of two triangles
d0

i for i = 1, 2 whose vertices are the corners of g.

Splitting: After the construction of D0, the algorithm successively examines
triangles dj

i by computing the similarity predicate H(). The similarity
predicate is defined on gj

i denoting the underlying image data of triangle
dj

i . If the similarity predicate is false, edge pixels in gj
i are classified

topographically based on their local neighborhood by the difference
function D(). Then, the splitting function S() assigns a transition error to
every edge point. The goal is to adapt the image tessellation grid properly
to the underlying structure of the image data. As a consequence, the edge
point with the lowest transition error is taken and entered into Dj to
generate the next triangulation Dj+1. The splitting phase continues until
all triangles satisfy H().

Merging: Let Ri be a point set in R2 forming the ith polygon with
corresponding ri ⊂ R2, which is a compact area of the plane by merg-
ing triangular areas of the final Delaunay triangulation (DN ). In fact,
ri = gN

1 ∪ gN
2 ∪ . . . gN

n , where all n triangular image regions are adjacent.
The merging phase starts with the triangulation produced by the splitting
phase Ri = dN

i for all i. Function H() provides the criterion by which two
adjacent polygons are merged into one.

The algorithm is determined by functions H(), D() and S(). They are discussed
in the next section.

15.7.1 Homogeneity Based on Photometric Color Invariance

To provide robustness against imaging conditions (e.g., illumination, shading,
highlights, and inter-reflections), photometric color invariants are used, which
have been discussed in Section 4.4.1:

c1(R, G, B) = arctan

(
R

G

)
, (15.14)

c2(R, G, B) = arctan

(
R

B

)
, (15.15)
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15.7 Image Segmentation by Delaunay Triangulation

c3(R, G, B) = arctan

(
G

B

)
, (15.16)

where R, G, and B are the red, green, and blue channels of a color camera.
c1c2c3 is insensitive to a large extent to a change in camera viewpoint, object

pose, and for the direction and intensity of the incident light. Furthermore, when
shadows correspond to a change in intensity, which is often the case, c1c2c3 is
also insensitive to shadows. When shadows are strongly colored, c1c2c3 is not
shadow invariant.

Furthermore, we focus on (see Section 4.4.2)

l1(R, G, B) = |R − G|
|R − G| + |B − R| + |G − B| , (15.17)

l2(R, G, B) = |R − B|
|R − G| + |B − R| + |G − B| , (15.18)

l3(R, G, B) = |G − B|
|R − G| + |B − R| + |G − B| , (15.19)

also insensitive to highlights under the restriction of white illumination or a
white-balanced camera.

15.7.2 Homogeneity Based on a Similarity Predicate

We define region R to be homogeneous when the observed color invariant
values of the region can be approximated in the color invariant space by a
Gaussian distribution with mean and standard deviation due to noise. If the
standard deviation is below a predefined threshold, region R is considered to
be homogeneous. Again, the mean noise standard deviation σ̂ in the image is
estimated by applying a least-squares fit to a uniformly colored region (e.g.,
derived from a 5 × 5 mask). Then, the similarity predicate H(), returning a
Boolean value, is given by

H(R) =
{

true, if ε ≤ σ̂

false, otherwise
, (15.20)

where region R is considered to be homogeneous if the color invariant values of
R form a Gaussian distribution, which falls within the limit of the noise standard
deviation.

15.7.3 Difference Measure

In this section, the principled way is taken to compute gradients in vector images
as described by di Zenzo [234] and discussed in Chapter 13, which is summarized
as follows.
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15 Color Image Segmentation

Let �(x1, x2) : �2 → �m be a m-band image with components �i(x1, x2) :
�2 → � for i = 1, 2, . . . , m. For color images we have m = 3. Hence, at a
given image location the image value is a vector in �m. The difference at two
nearby points P = (x0

1, x0
2) and Q = (x1

1, x1
2) is given by �� = �(P) − �(Q).

Considering an infinitesimal displacement, the difference becomes the differential
d� = ∑2

i=1
∂�
∂xi

dxi and its squared norm is given by

d�2 =
2∑

i=1

2∑
k=1

∂�

∂xi

∂�

∂xk
dxidxk =

[
dx1
dx2

]T [
g11 g12
g21 g22

] [
dx1
dx2

]
, (15.21)

where gik := ∂�
∂xi

· ∂�
∂xk

and the extrema of the quadratic form are obtained in the
direction of the eigenvectors of the matrix [gik] and the values at these locations
correspond with the eigenvalues given by

λ± =
g11 + g22 ±

√
(g11 − g22)

2 + 4g2
12

2
, (15.22)

with corresponding eigenvectors given by (cos θ±, sin θ±), where θ+ =
1
2 arctan 2g12

g11−g22
and θ− = θ+ + π

2 . Hence, the direction of the minimal and
maximal changes at a given image location is expressed by the eigenvectors
θ− and θ+, respectively, and the corresponding magnitude is given by the
eigenvalues λ− and λ+, respectively. Note that λ− may be different than zero and
that the strength of a multivalued edge should be expressed by how λ+ compares
to λ−, for example, by subtraction λ+ − λ− as proposed by Sapiro and Ringach
[241].

Then, the color gradient for RGB is as follows:

∇CRGB =
√

λRGB+ − λRGB− , (15.23)

for λ± = gRGB
11 +gRGB

22 ±
√

(gRGB
11 −gRGB

22 )2+4(gRGB
12 )2

2 , where gRGB
11 = | ∂R

∂x |2 + | ∂G
∂x |2 + | ∂B

∂x |2,

gRGB
22 = | ∂R

∂y |2 + | ∂G
∂y |2 + | ∂B

∂y |2, gRGB
12 = ∂R

∂x
∂R
∂y + ∂G

∂x
∂G
∂y + ∂B

∂x
∂B
∂y , where the partial

derivatives are computed through Gaussian smoothed derivatives.
Then, the color invariant gradient (based on c1c2c3) for matte objects is given

by

∇Cc1c2c3
=

√
λ

c1c2c3+ − λ
c1c2c3− , (15.24)

for λ± = g
c1c2c3
11 +g

c1c2c3
22 ±

√
(g

c1c2c3
11 −g

c1c2c3
22 )2+4(g

c1c2c3
12 )2

2 , where gc1c2c3
11 = | ∂c1

∂x 5|2 +
| ∂c2

∂x |2 + | ∂c3
∂x |2, gc1c2c3

22 = | ∂c1
∂y |2 + | ∂c2

∂y |2 + | ∂c3
∂y |2, gc1c2c3

12 = ∂c1
∂x

∂c1
∂y + ∂c2

∂x
∂c2
∂y +

∂c3
∂x

∂c3
∂y .
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15.7 Image Segmentation by Delaunay Triangulation

In a similar way, we propose that the color invariant gradient (based on l1l2l3)
for shiny objects is given by

∇Cl1l2l3 =
√

λ
l1l2l3+ − λ

l1l2l3− , (15.25)

for λ± = g
l1 l2 l3
11 +g

l1 l2 l3
22 ±

√
(g

l1 l2 l3
11 −g

l1 l2 l3
22 )2+4(g

l1 l2 l3
12 )2

2 , where gl1l2l3
11 = | ∂l1

∂x |2 + | ∂l2
∂x |2 +

| ∂l3
∂x |2, gl1l2l3

22 = | ∂l1
∂y |2 + | ∂l2

∂y |2 + | ∂l3
∂y |2, gl1l2l3

12 = ∂l1
∂x

∂l1
∂y + ∂l2

∂x
∂l2
∂y + ∂l3

∂x
∂l3
∂y .

15.7.4 Segmentation Results

Figure 15.15a shows an image of several objects against a background consisting
of four squares. The size of the image is 256 × 256. The image has been
recorded by the SONY XC-003P and the Matrox Magic Color frame grabber.
The digitization was done in 8 bits per color. Two light sources of average
daylight color are used to illuminate the objects in the scene. The image is
clearly contaminated by shadows, shading, highlights, and inter-reflections. Inter-
reflections occur when an object receives the reflected light from other objects.
In 15.14a, edges are shown obtained from the RGB image with nonmaximum
suppression with σg = 1.0 used for the Gaussian-based fuzzy derivatives. Clearly,
edges are introduced by abrupt surface orientations, shadows, inter-Reflections,
and highlights. In contrast, computed edges for c1c2c3 and l1l2l3 defined by
∇Cc1c2c3

and ∇Cl1l2l3 , respectively, shown in Figure 15.14b and c, are insensitive
for shadows, surface orientation changes, and highlights (only for ∇Cl1l2l3 ).

To avoid edge grouping, to obtain proper region outlines with closed contours,
the l1l2l3 edge map is used as the input of the region-based segmentation method.
Again, in Figure 15.15a, the recorded color image is shown. The mean noise
standard deviation is estimated by applying a least-squares fit to a uniformly
colored region (5 × 5 mask). The measured mean noise standard deviation is

Figure 15.14 Edge maps of the various color models computed from the first recorded color image

shown in Figure 15.15a. (a) Edge map based on RGB gradient field ∇CRGB with nonmaximum

suppression. (b) Edge map based on c1c2c3 gradient field ∇Cc1c2c3
with nonmaximum suppression.

(c) Edge map based on l1l2l3 gradient field ∇Cl1 l2 l3
with nonmaximum suppression.
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15 Color Image Segmentation

(a) (b) (c)

Figure 15.15 (a) First recorded color image. (b) Splitting result based on Delaunay splitting. (c) The

final segmentation result of the region-based segmentation method. Source: Reprinted with permission,

© 2002 IEEE.

σ̂ = 3.1 and used as the threshold for the similarity predicate HC(). The splitting
result is shown in Figure 15.15b. The final segmentation result is shown in
Figure 15.15c. Despite the various radiometrical and geometrical variations
caused by the imaging process, region outlines correspond neatly to material
boundaries.

15.8 Summary

In this chapter, we have discussed schemes for image segmentation and material
recognition. The chapter extends the theory of Gaussian color measurement from
Chapter 6 to Gabor filtering, effective in texture segmentation and categorization.
Furthermore, we applied anisotropic invariant color filter banks to recognize
materials from single images. Finally, a more regional strategy has been demon-
strated, where color invariant information is integrated over contours in the image
by a Delaunay-based image triangulation. The latter method demonstrates global
analysis of color image edge content for segmentation, rather than the fully
localized filter bank approaches from the former approaches.
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16
16 Object and Scene Recognition

With contributions by Koen E. A. van de Sande and Cees G. M. Snoek

Image category recognition is important to access visual information on the level
of objects (buildings, cars, etc.) and scene types (outdoor, vegetation, etc.). In
general, systems for category recognition on images [300, 306–308] and video
[309, 310] use machine learning based on image descriptions to distinguish object
and scene categories. In Chapter 13, methods have been discussed to detect salient
points that are invariant to translation, rotation, and scale. Further, different
color descriptors are presented in Chapter 14. Because there are many different
descriptors, a structured overview is required of color invariant descriptors in the
context of image category recognition.

Therefore, this chapter gives an overview of the invariance properties and
the distinctiveness of the different color descriptors. The analytical invariance
properties of color descriptors are explored using a taxonomy based on invariance
properties with respect to photometric transformations, and evaluated experimen-
tally using two benchmarks from the image domain [311] and the video domain
[312]. The benchmarks are very different in nature: the image benchmark consists
of consumer photographs and the video benchmark consists of key frames from
broadcast news videos.

This chapter is organized as follows. In Section 16.1, the diagonal model is
revisited to provide a taxonomy of photometric invariance. Then, in Section 16.2,

Portions reprinted, with permission, from ‘‘Evaluating Color Descriptors for Object and Scene
Recognition,’’ by K.E.A. van de Sande, Th. Gevers and C.G.M. Snoek, in IEEE Transactions on
Pattern Analysis and Machine Intelligence, Volume 32 (9), pp. 1582–1596, 2010 © 2010 IEEE.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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16 Object and Scene Recognition

different color descriptors and their invariance properties are given. Then, the
color descriptors are applied in the context of object and scene classification.

16.1 Diagonal Model

In Chapter 3, the diagonal model has been introduced, which models the changes
of the camera responses under variations of the illuminant:

⎛
⎝

Rc
Gc
Bc

⎞
⎠ =

⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠

⎛
⎝

Ru
Gu
Bu

⎞
⎠ , (16.1)

and can be written as a brief notation as follows:

fc = Du,cfu, (16.2)

in which fu is the image taken under an unknown light source, fc is the same
image as it appears when it is taken under the canonical illuminant, and Du,c is a
diagonal matrix that maps colors taken under an unknown light source u to their
corresponding colors under the canonical illuminant c.

To include the diffuse light term, the diagonal model is extended with an offset
(o1, o2, o3), resulting in the diagonal-offset model:

⎛
⎝

Rc
Gc
Bc

⎞
⎠ =

⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠

⎛
⎝

Ru
Gu
Bu

⎞
⎠ +

⎛
⎝

o1
o2
o3

⎞
⎠ . (16.3)

On the basis of the diagonal model and the diagonal-offset model (Eq. 16.3), five
types of common changes in the image values f(x) can be categorized.

Firstly, for Equation 16.3, when the image values change by a constant factor
in all channels (a = b = c), then this is equal to a light intensity change:

⎛
⎝

Rc

Gc

Bc

⎞
⎠ =

⎛
⎝

a 0 0
0 a 0
0 0 a

⎞
⎠

⎛
⎝

Ru

Gu

Bu

⎞
⎠ . (16.4)

In addition to differences in the intensity of the light source, light intensity
changes also include (no-colored) shadows and shading. Hence, when a descriptor
is invariant to light intensity changes, it is scale invariant with respect to (light)
intensity.

Secondly, an equal shift in image intensity values in all channels, light intensity
shift, where (o1 = o2 = o3) and (a = b = c = 1) will yield:

⎛
⎝

Rc

Gc

Bc

⎞
⎠ =

⎛
⎝

Ru

Gu

Bu

⎞
⎠ +

⎛
⎝

o1
o1
o1

⎞
⎠ . (16.5)
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16.2 Color SIFT Descriptors

Light intensity shifts are due to diffuse lighting including scattering of a white
light source, object highlights (specular component of the surface) under a white
light source. When a descriptor is invariant to a light intensity shift, it is shift
invariant with respect to light intensity.

Thirdly, the above classes of changes can be combined to model both intensity
changes and shifts:

⎛
⎝

Rc

Gc

Bc

⎞
⎠ =

⎛
⎝

a 0 0
0 a 0
0 0 a

⎞
⎠

⎛
⎝

Ru

Gu

Bu

⎞
⎠ +

⎛
⎝

o1
o1
o1

⎞
⎠ , (16.6)

an image descriptor robust to these changes is scale invariant and shift invariant
with respect to light intensity.

Fourthly, in the full diagonal model (allowing a �= b �= c), the image channels
scale independently:

⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠

⎛
⎝

R
G
B

⎞
⎠ . (16.7)

This allows for light color changes in the image. Hence, this class of changes can
model a change in the illuminant color and light scattering, amongst others.

Finally, the full diagonal-offset model models arbitrary offsets (o1 �= o2 �= o3),
besides the light color changes (a �= b �= c) offered by the full diagonal model:

⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠

⎛
⎝

R
G
B

⎞
⎠ +

⎛
⎝

o1
o2
o3

⎞
⎠ . (16.8)

This type of change is called light color change and shift.
In conclusion, five types of common changes are identified on the basis of the

diagonal-offset model of illumination change, that is, variations to light intensity
changes, light intensity shifts, light intensity changes and shifts, and light color
changes and light color changes and shifts.

16.2 Color SIFT Descriptors

In this section, color descriptors are presented and their invariance properties are
summarized. As color descriptors based on histograms have been discussed in
the previous chapters, this section focuses on color descriptors based on SIFT.
See Table 16.1 for an overview of the descriptors and their invariance properties.
More information can be found in Reference 313.
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16.2 Color SIFT Descriptors

SIFT The SIFT descriptor proposed by Lowe [55] describes the local shape
of a region using gradient orientation histograms. The gradient of an image
is shift invariant: taking the derivative cancels out offsets (Section 16.1).
Under light intensity changes (scaling of the intensity channel) the gradient
direction and the relative gradient magnitude remain the same. Because
the SIFT descriptor is normalized, the gradient magnitude changes have
no effect on the final descriptor. The SIFT descriptor is not invariant to
illumination color changes because the intensity channel is a combination
of the R, G, and B channels. To compute SIFT descriptors, the version
described by Lowe [55] is used.

HSV-SIFT Bosch et al. [314] compute SIFT descriptors over all three
channels of the HSV color model. This gives 3 × 128 dimensions per
descriptor, 128 per channel. As stated earlier, the H color model is scale
invariant and shift invariant with respect to light intensity. However,
owing to the combination of the HSV channels, the complete descriptor
has no invariance properties. Further, the instability of the hue for low
saturation is not addressed here.

HueSIFT Van de Weijer et al. [149] introduce a concatenation of the hue
histogram with the SIFT descriptor. When compared to HSV–SIFT, the
usage of the weighed hue histogram addresses the instability of the hue
near the gray axis. Because the bins of the hue histogram are independent,
the periodicity of the hue channel for HueSIFT is addressed. Similar to
the hue histogram, the HueSIFT descriptor is scale invariant and shift
invariant.

OpponentSIFT OpponentSIFT describes all the channels in the opponent
color space using SIFT descriptors. The opponent color space has been
defined in Chapter 3 by Equations 3.48–3.50. The information in the O3
channel is equal to the intensity information, while the other channels
describe the color information in the image. These other channels do
contain some intensity information, but because of the normalization of
the SIFT descriptor they are invariant to changes in light intensity.

C-SIFT In the opponent color space, the O1 and O2 channels still contain some
intensity information. To add invariance to intensity changes, in Sections
6.1.4 and 14.1, the C-invariant has been discussed, which eliminates
the remaining intensity information from these channels. The C-SIFT
descriptor [258] uses the C-invariant, which can be intuitively seen as the
normalized opponent color space O1

O3
and O2

O3
. Because of the division by

intensity, the scaling in the diagonal model will cancel out, making C-SIFT
scale invariant with respect to light intensity. Owing to the definition of
the color space, the offset does not cancel out when taking the derivative:
it is not shift invariant.

rgSIFT For the rgSIFT descriptor, descriptors are added for the r and
g chromaticity components of the normalized RGB color model from
Equations 4.1–4.3, which is already scale invariant.
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16 Object and Scene Recognition

Transformed color SIFT For the transformed color SIFT, the same nor-
malization is applied to the RGB channels as for the transformed color
histogram. For every normalized channel, the SIFT descriptor is com-
puted. The descriptor is scale invariant, shift invariant and invariant to
light color changes and shift.

RGB-SIFT For the RGB-SIFT descriptor, SIFT descriptors are computed
for every RGB channel independently. An interesting property of this
descriptor is that its descriptor values are invariant to different photometric
transformations. Because the SIFT descriptor operates on derivatives only,
the subtraction of the means in the transformed color model is redundant,
as this offset is already cancelled out by taking derivatives. Similarly, the
division by the standard deviation is already implicitly performed by the
normalization of the vector length of SIFT descriptors.

16.3 Object and Scene Recognition

In this section, the distinctiveness of the color descriptors is assessed experi-
mentally through their discriminative power on two different datasets: an image
benchmark and a video benchmark.

16.3.1 Feature Extraction Pipelines

To empirically test the different color descriptors, the descriptors are computed at
scale-invariant points [55, 300]. See Figure 16.1 for an overview of the processing
pipeline. In the pipeline shown, scale-invariant points are obtained with the
Harris–Laplace point detector on the intensity channel. Other region detectors,
such as the dense sampling detector, maximally stable extremal regions [315] and
maximally stable color regions [316], can be plugged in. For the experiments, the
Harris–Laplace point detector is used because it has shown good performance for
category recognition [300]. This detector uses the Harris corner detector to find
potential scale-invariant points. It then selects a subset of these points for which

Image Harris–Laplae
detector

Histograms, ColorSIFT, ... Vector quantization

Bag-of-words modelColor descriptor computationPoint sampling strategy

Fixed-length
feature vector

0 1 2 3 4 5

1

Figure 16.1 The stages of the primary feature extraction pipeline used in this chapter. First, the

Harris–Laplace salient point detector is applied to the image. Then, for every point a color descriptor is

computed over the area around the point. All the color descriptors of an image are subsequently vector

quantized against a codebook of prototypical color descriptors. This results in a fixed-length feature

vector representing the image. Source: Reprinted with permission, © 2010 IEEE.
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16.3 Object and Scene Recognition

the Laplacian-of-Gaussians reaches a maximum over scale. The color descriptors
from Section 16.2 are computed over the area around the points. The size of this
area depends on the maximum scale of the Laplacian-of-Gaussians.

To obtain fixed-length feature vectors per image, the bag-of-words model
is used [262]. The bag-of-words model is also known as textons [298], object
parts [317] and codebooks [274, 318]. The bag-of-words model performs vector
quantization of the color descriptors in an image against a visual codebook.
A descriptor is assigned to the codebook element that is closest in Euclidean
space. To be independent of the total number of descriptors in an image, the
feature vector is normalized to sum to 1. The visual codebook is constructed by
applying k-means clustering to 200,000 randomly sampled descriptors from the
set of images available for training. In this chapter, visual codebooks with 4000
elements are used. After performing point sampling, color descriptor computation,
and vector quantization, an image is represented by a fixed-length feature vector.

16.3.2 Classification

The (support vector machine (SVM) classifier is used for image categorization.
The decision function of an SVM classifier for a test sample with feature vector
�F′ has the form

g(�F′) =
∑

�F∈trainset

α�Fy�Fk(�F, �F′) − β, (16.9)

where y�F is the class label of �F (−1 or +1), α�F is the learned weight of train
sample �F, β is a learned threshold and k(�F, �F′) is the value of a kernel function
based on the χ2 distance, which has shown good results in object recognition
[300]:

k(�F, �F′) = e− 1
D distχ2 (�F,�F′), (16.10)

where D is a scalar that normalizes the distances. We set D to the average χ2

distance between all elements of the train set.
The LibSVM implementation is used to train the classifier. As parameters for

the training phase, the weight of the positive class is set to #pos+#neg
#pos and the

weight of the negative class is set to #pos+#neg
#neg , with #pos the number of positive

instances in the train set and #neg the number of negative instances. The cost
parameter is optimized using threefold cross-validation with a parameter range of
2−4 through 24.

To use multiple features, instead of relying on a single feature, the kernel
function is extended in a weighted fashion for m features:

k({�F(1), ldots,�F(m)}, { �F′
(1), ldots, �F′

(m)})

= e
− 1∑m

j=1 wj

(∑m
j=1

wj
Dj

dist(�F(j), �F′
(j))

)
, (16.11)
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16 Object and Scene Recognition

with wj the weight of the jth feature, Dj the normalization factor for the jth feature,
and �F(j) the jth feature vector.

An example of the use of multiple features is the spatial pyramid [308]; it is
illustrated in Figure 16.2. When using the spatial pyramid, additional features are
extracted for specific parts of the image. For example, in a 2 × 2 subdivision of
the image, feature vectors are extracted for each image quarter with a weight of 1

4
for each quarter. Similarly, a 1 × 3 subdivision consisting of three horizontal bars,
which introduces three new features (each with a weight of 1

3 ). In this setting, the
feature vector for the entire image has a weight of 1.

Bag-of-words modelColor descriptor computationPoint sampling strategy

Figure 16.2 Examples of additional feature extraction pipelines used in this chapter, besides the

primary pipeline shown in Figure 16.1. The pipelines shown are examples of using a different point

sampling strategy or a spatial pyramid [308]. The spatial pyramid constructs feature vectors for specific

parts of the image. For every pipeline, first, a point sampling method is applied to the image. Then, for

every point a color descriptor is computed over the area around the point. All the color descriptors of

an image are subsequently vector quantized against a codebook of prototypical color descriptors. This

results in a fixed-length feature vector representing the image. Source: Reprinted with permission, ©
2010 IEEE.

16.3.3 Image Benchmark: PASCAL Visual Object Classes
Challenge

The PASCAL (Visual Object Classes ((VOC) Challenge [311] provides a yearly
benchmark for comparison of object classification systems. The PASCAL VOC
Challenge 2007 dataset contains nearly 10,000 images of 20 different object
categories, for example, bird, bottle, car, dining table, motorbike, and people. The
dataset is divided into a predefined train set (5011 images) and test set (4952
images).
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16.3 Object and Scene Recognition

16.3.4 Video Benchmark: Mediamill Challenge

The Mediamill Challenge by Snoek et al. [312] provides an annotated video
dataset, based on the training set of the NIST TRECVID 2005 benchmark [310].
Over this dataset, repeatable experiments have been defined. The experiments
decompose automatic category recognition into a number of components, for
which they provide a standard implementation. This provides an environment to
analyze which components affect the performance most.

The dataset of 86 hours is divided into a Challenge training set (70% of the
data or 30,993 shots) and a Challenge test set (30% of the data or 12,914 shots).
For every shot, the Challenge provides a single representative keyframe image.
So, the complete dataset consists of 43,907 images, one for every video shot. The
dataset consists of television news from November 2004 broadcast on six different
TV channels in three different languages: English, Chinese, and Arabic. On this
dataset, the 39 LSCOM-Lite categories [319] are employed. These include object
categories such as aircraft, animal, car, and faces, and scene categories such as
desert, mountain, sky, urban, and vegetation.

16.3.5 Evaluation Criteria

For our benchmark results, the average precision is taken as the performance
metric for determining the accuracy of ranked category recognition results. The
average precision is a single-valued measure that is proportional to the area
under a precision-recall curve. This value is the average of the precision over
all images/keyframes judged to be relevant. Hence, it combines both precision
and recall into a single performance value. For the PASCAL VOC Challenge
2007, the official standard is the 11-point interpolated average precision, and
for TRECVID, the official standard is the noninterpolated average precision.
The interpolated average precision is an approximation of the noninterpolated
average precision. As the difference between the two is generally very small, we
will follow the official standard for each dataset and refer to them as average
precision scores. When performing experiments over multiple object and scene
categories, the average precisions of the individual categories are aggregated.
This aggregation, mean average precision, is calculated by taking the mean of the
average precisions. As average precision depends on the number of correct object
and scene categories present in the test set, the mean average precision depends
on the dataset used.

To obtain an indication of significance, the bootstrap method [320, 321] is used
to estimate confidence intervals for mean average precision. In bootstrap, multiple
test sets TB are created by selecting images at random from the original test set
T , with replacement, until |T | = |TB|. This has the effect that some images are
replicated in TB, whereas other images may be absent. This process is repeated
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16 Object and Scene Recognition

1000 times to generate 1000 test sets, each obtained by sampling from the original
test set T . The statistical accuracy of the mean average precision score can then
be evaluated by looking at the standard deviation of the mean average precision
scores over the different bootstrap test sets.

16.4 Results

16.4.1 Image Benchmark: PASCAL VOC Challenge

From the results shown in Figure 16.3, it is observed that for object category
recognition the SIFT variants perform significantly better than color histograms
(see Reference 313 for a detailed explanation on these descriptors). Histograms
are not very distinctive when compared to SIFT-based descriptors: they contain
too little relevant information to be competitive with SIFT.

RGB

Opponent

Hue

rg

Transfromed color

Color moments

C
ol

or
 d

es
cr

ip
to

r

Color moment
invariants

SIFT

HSV -SIFT

HueSIFT

OpponentSIFT

C- SIFT

rgSIFT

RGB-SIFT

0.0 0.1 0.2

Mean average precision

0.3 0.4 0.5

Figure 16.3 Experiment 1: Descriptor performance on image benchmark. Evaluation of color

descriptors on an image benchmark, the PASCAL VOC Challenge 2007 [311], averaged over the

20 object categories. Error bars indicate the standard deviation in mean average precision, obtained

using bootstrap. The dashed lines indicate the lower bound of the C-SIFT confidence interval. Source:

Reprinted with permission, © 2010 IEEE.

For SIFT and the four best color SIFT descriptors from Figure 16.3 (Oppo-
nentSIFT, C-SIFT, rgSIFT, and RGB-SIFT), the results per object category are
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16.4 Results

shown in Figure 16.4. For bird, boat, horse, motorbike, person, potted plant,
and sheep, it can be observed that the descriptors that perform best have scale
invariance for light intensity (C-SIFT and rgSIFT). Of these two scale-invariant
descriptors, C-SIFT has the highest overall performance. The performance of
the OpponentSIFT descriptor, which is also shift invariant compared to C-SIFT,
indicates that only scale invariance, that is, invariance to light intensity changes,
is important for these object categories. RGB-SIFT includes additional invariance
against light intensity shifts and light color changes and shifts when compared
to C-SIFT. However, this additional invariance makes the descriptor less dis-
criminative for these object categories because a reduction in performance is
observed.

O
bj

ec
t c

at
eg

or
y

Mean

Sofa

Sheep

Potted plant

Person

Motorbike

Horse

Dog
Dining table

Cow
Chair

Cat
Car

Bus

Bottle

Boat

Bird

Bicycle

Aeroplane
SIFT
OpponentSIFT
C-SIFT
rgSIFT
RGB-SIFT

Train

TV/monitor

0.0 0.2 0.4

Average precision

0.6 0.8 1.0

Figure 16.4 Descriptor performance split out per category. Evaluation of color descrip-

tors on an image benchmark, the PASCAL VOC Challenge 2007, split out per object category.

SIFT and the best four color SIFT variants from Figure 16.3 are shown. Source: Reprinted

with permission, © 2010 IEEE.

In conclusion, C-SIFT is significantly better than all other descriptors except
rgSIFT (Fig. 16.3) on the image benchmark. The corresponding invariant property
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16 Object and Scene Recognition

of both of these descriptors is given by Equation 16.4. However, the difference
between the rgSIFT descriptor and OpponentSIFT, which corresponds to Equation
16.6, is not significant. Therefore, the best choice for this dataset is C-SIFT.

16.4.2 Video Benchmark: Mediamill Challenge

From the visual categorization results shown in Figure 16.5, the same overall
pattern as for the image benchmark is observed: SIFT and color SIFT vari-
ants perform significantly better than the other descriptors. The shift-invariant
OpponentSIFT has left C-SIFT behind and is now the only descriptor that is
significantly better than all other descriptors. An analysis on the individual object
and scene categories shows that the OpponentSIFT descriptor performs best for
building, meeting, mountain, office, outdoor, sky, studio, walking/running, and
weather news. All these concepts occur under a wide range of light intensities and
different amounts of diffuse lighting. Therefore, its invariance to light intensity
changes and shifts makes OpponentSIFT a good feature for these categories,
and explains why it is better than C-SIFT and rgSIFT for the video benchmark.
RGB-SIFT, with additional invariance to light color changes and shifts, does not
differ significantly from C-SIFT and rgSIFT. For some categories, there is a small

RGB
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Transfromed color
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Figure 16.5 Descriptor performance on video benchmark. Evaluation of color descriptors on a

video benchmark, the Mediamill Challenge [312], averaged over 39 object and scene categories.

Error bars indicate the standard deviation in mean average precision, obtained using bootstrap. The

dashed line indicates the lower bound of the OpponentSIFT confidence interval. Source: Reprinted

with permission, © 2010 IEEE.
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16.4 Results

performance gain, for others there is a small loss. This contrasts with the results
on the image benchmark, where a performance reduction was observed.

In conclusion, OpponentSIFT is significantly better than all other descriptors
on the video benchmark (Fig. 16.5). The corresponding invariant property is given
by Equation 16.6.

16.4.3 Comparison

So far, the performance of single descriptors has been analyzed. It is worth-
while to investigate combinations of several descriptors, since they are not
completely redundant. State-of-the-art results on the PASCAL VOC Chal-
lenge 2007 also employ combinations of several methods. Table 16.2 gives
an overview of combinations on this dataset. For example, the best entry in
the PASCAL VOC Challenge 2007, by Marszałek et al. [322], has achieved a
mean average precision of 0.594 using SIFT and HueSIFT descriptors, the spa-
tial pyramid [308], additional point sampling strategies besides Harris–Laplace
such as Laplacian point sampling and dense sampling, and a feature selection

Table 16.2 Combinations on image benchmark.a

Mean

Point Spatial average

Author sampling Descriptor pyramid precision

This chapter Harris–Laplace,

dense

sampling

SIFT 1 × 1 + 2 × 2 + 1 × 3 0.558

This chapter Harris–Laplace,

dense

sampling

C-SIFT 1 × 1 + 2 × 2 + 1 × 3 0.566

Marszałek

et al. [322]

Harris–Laplace,

dense

sampling,

Laplacian

SIFT, HueSIFT,

other

1 × 1+2 × 2+1 × 3 0.575

Marszałek

et al. [322]

Harris–Laplace,

dense

sampling,

Laplacian

SIFT, HueSIFT,

other; with

feature

selection

1 × 1 + 2 × 2 + 1 × 3 0.594

This chapter Harris–Laplace,

dense

sampling

SIFT, Oppo-

nentSIFT,

rgSIFT,

C-SIFT,

RGB-SIFT

1 × 1 + 2 × 2 + 1 × 3 0.605

aIn this table, combinations of descriptors on the image benchmark are compared to Marszałek et al. [322],

who obtains state-of-the-art results on this dataset. Adding color descriptors improves over intensity-based

SIFT alone by 8%.
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16 Object and Scene Recognition

scheme. When the feature selection scheme is excluded and simple flat fusion is
used, Marszałek reports a mean average precision of 0.575.

To illustrate the potential of the color descriptors from Table 16.1, a simple
fusion experiment has been performed with SIFT and the best four color SIFT
variants (Section 16.3.2 details how the combination is constructed). To be
comparable, a setting similar to Marszałek is used: both Harris–Laplace point
sampling and dense sampling are employed and the same spatial pyramid is used
(see Figure 16.1 for an overview of the feature extraction pipelines used). In
this setting, the best single-color descriptor achieves a mean average precision of
0.566. The combination gives a mean average precision of 0.605. This convincing
gain of 7% suggests that the color descriptors are not entirely redundant. Compared
to the intensity-based SIFT descriptor, the gain is 8%. Further gains should be
possible, if the descriptors with the right amount of invariance are fused, preferably
using an automatic selection strategy.

As shown in Table 16.3, similar gains are observed on the Mediamill Challenge:
mean average precision increases by 7% when combinations of color descriptors
are used, instead of intensity-based SIFT only. Relative to the best single-color
descriptor, an increase of 3% is observed. Furthermore, when the descriptors of
this chapter are compared to the baseline provided by the Mediamill Challenge,
there is a relative improvement of 104%.

Table 16.3 Combinations on video benchmark.a

Mean

Point Spatial average

Author sampling Descriptor pyramid precision

Snoek et al.

[312]

Grid Weibull [200] 1 × 1 0.250

This chapter Harris–Laplace,

dense

sampling

SIFT 1 × 1 + 2 × 2 + 1 × 3 0.476

This chapter Harris–Laplace,

dense

sampling

OpponentSIFT 1 × 1 + 2 × 2 + 1 × 3 0.494

This chapter Harris–Laplace,

dense

sampling

SIFT, Oppo-

nentSIFT,

rgSIFT,

C-SIFT,

RGB-SIFT

1 × 1 + 2 × 2 + 1 × 3 0.510

aIn this table, combinations of descriptors on the video benchmark are compared to the baseline set by

the Mediamill Challenge [312] for the 39 LSCOM-Lite categories [319]. Adding color descriptors improves

over intensity-based SIFT alone by 7%.

For reference, combinations of color descriptors from this chapter were sub-
mitted to the PASCAL VOC 2008 benchmark [323] and the TRECVID 2008
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16.5 Summary

evaluation campaign [310]. In both cases, top performance was achieved. The
color descriptors as presented in this chapter were the foundation of these
submissions. For additional details, see Tables 16.4 [324, 325] and 16.5 [326].

Table 16.4 PASCAL VOC 2008 evaluation: best overall performance.a

Mean

Point Spatial average

Author sampling Descriptor pyramid precision

This chapter

and Tahir

et al. [324]

Harris–Laplace,

dense

sampling

SIFT, Oppo-

nentSIFT,

rgSIFT,

C-SIFT,

RGB-SIFT

1 × 1 + 2 × 2 + 1 × 3 0.549

aIn this table, results of descriptor combinations from this chapter as submitted to the classification task of

the PASCAL VOC Challenge 2008 [323] are shown.

Table 16.5 NIST TRECVID 2008 evaluation: best overall performance.a

Inferred mean

Point Spatial average

Author sampling Descriptor pyramid precision

This chapter

and

Snoek et

al. [326]

Harris–Laplace,

dense

sampling

SIFT, Oppo-

nentSIFT,

rgSIFT,

C-SIFT,

RGB-SIFT

1x1+2x2+1x3 0.194

aIn this table, results of descriptor combinations from this chapter as submitted to the NIST TRECVID

2008 video benchmark [310] are shown.

16.5 Summary

From the results, it can be noticed that invariance to light color changes and
shifts is domain specific. For the image dataset, a significant reduction in
performance was observed, whereas for the video dataset there was no performance
difference. However, there are specific samples where invariance to light color
changes provides a benefit. The overall performance is not improved by light
color invariance, presumably because light color changes are quite rare in both
benchmarks because of the white balancing performed during data recording.

Overall, when choosing a single descriptor and no prior knowledge about the
dataset and object and scene categories is available, the best choice is Oppo-
nentSIFT. The corresponding invariance property is scale and shift invariance,
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16 Object and Scene Recognition

given by Equation 16.6. The second best is C-SIFT for which the correspond-
ing invariance property is scale invariance, given by Equation 16.4. Table 16.6
summarizes the recommendations for the datasets from this chapter and datasets
where no prior knowledge is available.

Table 16.6 Recommended color descriptors per dataset.a

PASCAL VOC 2007 Mediamill challenge Unknown data

1. C-SIFT 1. OpponentSIFT 1. OpponentSIFT

2. OpponentSIFT 2. RGB-SIFT 2. C-SIFT

3. RGB-SIFT 3. C-SIFT 3. RGB-SIFT

4. SIFT 4. SIFT 4. SIFT

aThe recommended choice of descriptors for different datasets: the PASCAL VOC 2007, Mediamill

Challenge and datasets where no prior knowledge about the lighting conditions or the object and scene

categories is available. Without such prior knowledge, OpponentSIFT is the best choice.

To obtain state-of-the-art performance on real-world datasets with large varia-
tions in lighting conditions, multiple color descriptors should be chosen, each one
with a different amount of invariance. As shown earlier, even a simple combina-
tion of color descriptors improves over the individual descriptors, suggesting that
they are not completely redundant. Results on the two categorization benchmarks
have shown that the choice of a single descriptor for all categories is suboptimal
(Fig. 16.4). While the addition of color improves category recognition by 8–10%
over intensity-based SIFT only, further gains should be possible if the descriptor
with the appropriate amount of invariance is selected per category, using either a
feature selection strategy or domain knowledge.
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17
17 Color Naming

With contributions by Robert Benavente, Maria Vanrell, Cordelia
Schmid, Ramon Baldrich, Jakob Verbeek, and Diane Larlus

Within a computer vision context, color naming is the action of assigning linguistic
color labels to pixels, regions, or objects in images. Humans use color names
routinely and seemingly without effort to describe the world around us. They
have been primarily studied in the fields of visual psychology, anthropology, and
linguistics [327]. Color names are, for example, used in the context of image
retrieval. A user might query an image search engine for ‘‘red cars’’. The system
recognizes the color name ‘‘red’’, and orders the retrieved results on ‘‘car’’ based
on their resemblance to the human usage of ‘‘red’’. Furthermore, knowledge of
visual attributes can be used to assist object recognition methods. For example,
for an image annotated with the text ‘‘Orange stapler on table’’, knowledge of the
color name orange would greatly simplify the task of discovering where (or what)
the stapler is. Color names are further applicable in automatic content labeling of
images, colorblind assistance, and linguistic human–computer interaction [328].

In this chapter, we first discuss the influential linguistic study on color names
by Berlin and Kay [329] in Section 17.1. In their work they define the concept of

Portions reprinted, with permission, from ‘‘Learning Color Names for Real-World Applications.’’,
by J. van de Weijer, Cordelia Schmid, Jakob Verbeek, Diane Larlus, in IEEE Transaction in Image
Processing, Volume 18 (7), © 2009 IEEE, and from ‘‘Parametric fuzzy sets for automatic color
naming,’’ R. Benavente, M. and Vanrell, and R. Baldrich, Journal of the Optical Society of America
A, Volume 25. (10).

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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17 Color Naming

basic color terms. As we will see, the basic color terms of the English language
are black, blue, brown, gray, green, orange, pink, purple, red, white, and yellow.
Next, we discuss two different approaches to computational color naming. The
main difference between the two methods is the data from which the methods
learn the color names. The first method, discussed in Section 17.2, is based on
calibrated data acquired from a psychophysical experiment. With calibrated we
mean that the color samples are presented in a controlled laboratory environment
on stable viewing conditions with a known illumination setting. The second
method, discussed in Section 17.3, is instead based on uncalibrated data obtained
from Google Image. These images are uncalibrated in the worst sense. They
have unknown camera settings, unknown illuminant, and unknown compression.
However, the advantage of uncalibrated data is that it is much easier to collect.
At the end of the chapter, in Section 17.4, we compare both computational
color-naming algorithms on both calibrated and uncalibrated data.

17.1 Basic Color Terms

Color naming, and all the semantic fields in general, have been involved for many
years in a discussion between two points of view in linguistics. On the one hand,
relativists support the idea that semantic categories are conditioned by experience
and culture, and, therefore, each language builds its own semantic structures in
a quite arbitrary form. On the other hand, universalists defend the existence of
semantic universals shared across languages. These linguistic universals would
be based on the human biology and directly linked to neurophysiological mech-
anisms. Color has been presented as a clear example of relativism since each
language has a different set of terms to describe color.

Although some works had investigated the use of color terms in English [330],
the anthropological study by Berlin and Kay [329] about color naming in different
languages was the starting point of many works about this topic in the subsequent
years.

Berlin and Kay studied the use of color names in speakers of a total of 98
different languages (20 experimentally and 78 through literature review). With
their work, Berlin and Kay wanted to support the hypothesis of semantic universals
by demonstrating the existence of a set of color categories shared across different
languages. To this end, they first defined the concept of ‘‘basic color term’’ by
setting the properties that any basic color term should fulfill. These properties are

■ It is monolexemic, that is, its meaning cannot be obtained from the meaning
of its parts.

■ It has a meaning that is not included in that of other color terms.

■ It can be applied to any type of objects.

288

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17.1 Basic Color Terms

■ It is psychologically salient, that is, it appears at the beginning of elicited
lists of color terms, it is consistently used along time by speakers and
across different speakers, and it is used by all the speakers of the language.

In addition, they defined a second set of properties for the terms that might be
doubtful according to the previous rules. These properties are

■ The doubtful form should have the same distributional potential as the
previously established basic terms.

■ Basic color terms should not be also the name of an object that has that
color.

■ Foreign words that have recently been incorporated to the language are
suspect.

■ If the monolexemic criterion is difficult to decide, the morphological
complexity can be used as a secondary criterion.

The work with informants from the different languages was divided in two
parts. In the first part, the list of basic color names in each informant’s language,
according to the previous rules, was verbally elicited. This part was done in the
absence of any color stimuli and using as little as possible of any other language.
In the second part, subjects were asked to perform two different tasks. First, they
had to indicate on the Munsell color array all the chips that they would name
under any condition with each of their basic terms, that is, the area of each color
category. Second, they had to point out the best example (focus) of each basic
color term in their language.

Data obtained from the 20 informants was completed with information from
published works in the other 78 languages. After the study of these data, Berlin
and Kay extracted three main conclusions from their work:

1. Existence of Basic Color Terms. They stated that color categories were not
arbitrary and randomly defined by each language. The foci of each basic
color category in different languages were all in a close region of the color
space. This finding led them to define the set of 11 basic color terms. These
terms for English are white, black, red, green, yellow, blue, brown, pink,
purple, orange and gray.

2. Evolutionary Order. Although languages can have different numbers of
basic color terms, they found that the order in which languages encoded
color terms in their temporal evolution was not random, but it followed a
fixed order that defined seven evolutionary stages:

Stage I: Terms for only white and black.

Stage II: A term for red is added.

Stage III: A term for either green or yellow (but not both) is added.
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17 Color Naming

Stage IV: A term for green or yellow (the one that was not added in the
previous stage) is added.

Stage V: A term for blue is added.

Stage VI: A term for brown is added.

Stage VII: Terms for pink, purple, orange and gray are added (in any order).

These sequences can be summarized with the expression:

[white, black] < [red] < [green, yellow] < [blue]

< [brown] < [pink, purple, orange, gray]

where symbol ‘<’ indicates temporal precedence, that is, for two categories
A and B, A < B means that A is present in the language before B, and order
between terms inside ‘[ ]’ depends on each language.

3. Correlation with Cultural Development. They noticed a high correlation of
color vocabulary of a language with technological and cultural evolution.
Languages from developed cultures were all in the last stage of color terms
evolution, while languages from isolated and low-developed cultures were
at lower stages of color vocabulary evolution.

Figure 17.1 shows the boundaries in the Munsell space of the 11 basic color
categories for English that were obtained by Berlin and Kay. This categorization
of the Munsell array has been used as a reference in later color-naming studies
that confirmed the Berlin and Kay results [331, 332]. Boundaries on the Munsell
array obtained by Sturges and Whitfield in their experiment [332] are shown in
Figure 17.2.

Although the findings of Berlin and Kay were widely accepted for years,
the debate about the existence of universals in color naming was reopened by
Roberson et al. [333, 334] in 2000. On their works, Roberson and her colleagues
defended that color categories were determined by language and, thus, boundaries
between color categories were arbitrarily set by each language.

Despite additional evidences for the universalist theory being presented [335],
an intermediate position between universalists and relativists has gained support

Figure 17.1 Categorization of the Munsell color array obtained by Berlin and Kay in their experiments

for English.

290

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17.2 Color Names from Calibrated Data

Figure 17.2 Categorization of the Munsell color array obtained in their experiment by Sturges and

Whitfield for English.

in the past years [336]. According to this new theory, the organization of the
color-naming systems in different languages is ruled by universal tendencies and,
therefore, color categories are not arbitrarily located in the color space. On the
other hand, the extension and boundaries of the categories are more language
dependent and more arbitrarily set by each language [337]. The explanation to
this point could be found on the shape of the color space, where some areas seem
to be more salient than others. Philipona and O’Regan [338] showed that some
properties of the human visual system could support the existence of such relevant
parts in the color space. Moreover, they showed that these areas coincide with the
location of the focal colors for red, green, blue and yellow, found by Berlin and
Kay. Hence, these salient parts of the color space would condition the formation
of the color categories to reach a final configuration in each language that tends
to be optimal in terms of information representation [339].

In this chapter, we discuss two approaches to computational color naming,
Which, starting from a set of basic color terms, will learn models to predict color
names in images. The experiments are based on English language color terms.
Although the debate about the universality of color categories is outside the scope
of this book, this issue may have some influence on how the presented models can
be applied in images. If universalists are right, these computational models are
equally valid in other languages. However, it is more probably that new models
should be relearned for each language, especially to correctly place the boundaries
between color names.

17.2 Color Names from Calibrated Data

In this section, we present a fuzzy color-naming model based on the use of
parametric membership functions whose advantages are discussed later in the
section.

Fuzzy set theory is a useful tool to model human decisions related to perceptual
processes and language. A theoretical fuzzy framework was already proposed by
Kay and McDaniel [340] in 1978. The basis of such a framework is to consider
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17 Color Naming

that any color stimulus has a membership value between 0 and 1 to each color
category.

The model defined in this framework will be fitted to data derived from psy-
chophysical experiments. These experiments are usually carried out in controlled
environments under stable viewing conditions, with a known illuminant and by
using samples with precisely measured reflectances. In such an environment, the
naming judgments obtained from the subjects in the experiments are isolated
from most other perceptual processes. By fitting a parametric model to data
from psychophysical experiments we provide a set of tunable parameters that
analytically define the shape of the fuzzy sets representing color categories.

Parametric models have been previously used to model color information [341],
and the suitability of such an approach can be summed up in the following points:

Inclusion of Prior Knowledge. Prior knowledge about the structure of the data
allows choosing the best model on each case. However, this could turn
into a disadvantage if a nonappropriate function for the model is selected.

Compact Categories. Each category is completely defined by a few param-
eters, and training data do not need to be stored after an initial fitting
process. This implies lower memory usage and lower computation when
the model is applied.

Meaningful Parameters. Each parameter has a meaning in terms of the
characterization of the data, which allows modifying and improving the
model by just adjusting the parameters.

Easy Analysis. As a consequence of the previous one, the model can be
analyzed and compared by studying the values of its parameters.

We have worked on the CIE L∗a∗b∗ color space since it is a quasi-perceptually
uniform color space where a good correlation between Euclidean distance between
color pairs and perceived color dissimilarity can be observed. It is likely that
other spaces could be suitable whenever one of the dimensions correlates with
color lightness and the other two with chromaticity components. In this section,
we denote any color point in such space as s = (I , c1, c2), where I is the lightness
and c1 and c2 are the chromaticity components of the color point.

Ideally, color memberships should be modeled by three-dimensional functions,
that is, functions defined R

3 → [0, 1], but unfortunately it is not easy to infer
precisely the way in which color naming data is distributed in the color space
and, hence, finding parametric functions that fit these data is a very complicated
task. For this reason, in this proposal the three-dimensional color space has been
sliced in a set of NL levels along the lightness axis (Fig. 17.3), obtaining a set
of chromaticity planes over which membership functions have been modeled by
two-dimensional functions. Therefore, any specific chromatic category will be
defined by a set of functions, each one depending on a lightness component, as it is
expressed later in Equation 17.12. Achromatic categories (black, gray and white)
will be given as the complementary function of the chromatic ones but weighted

292

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17.2 Color Names from Calibrated Data
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Figure 17.3 Sch-

eme of the model.

The color space

is divided in NL

levels along the

lightness axis.

by the membership function of each one of the three achromatic categories. To go
into the details of the approach we will first give the basis of the fuzzy framework
and afterwards we will pose the considerations on the function shapes for the
chromatic categories. Finally, the complementary achromatic categories will be
derived.

17.2.1 Fuzzy Color Naming

A fuzzy set is a set whose elements have a degree of membership [342]. In a more
formal way, a fuzzy set A is defined by a crisp set X , called the universal set, and
a membership function, μA, which maps elements of the universal set into the
[0,1] interval, that is, μA : X → [0, 1].

Fuzzy sets are a good tool to represent imprecise concepts expressed in natural
language. In color naming, we can consider that any color category, Ck , is a
fuzzy set with a membership function, μCk

, which assigns, to any color sample s
represented in a certain color space, that is, the universal set, a membership value
μCk

(s) within the [0, 1] interval. This value represents the certainty we have that
s belongs to category Ck , which is associated with the linguistic term tk .

In the context of color categorization with a fixed number of categories, we need
to impose the constraint that, for a given sample s, the sum of its memberships to
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17 Color Naming

the n categories must be the unity

n∑
k=1

μCk
(s) = 1 with μCk

(s) ∈ [0, 1], k = 1, . . . , n. (17.1)

In the rest of the section, this constraint is referred to as the unity-sum constraint.
Although this constraint does not hold in fuzzy set theory, it is interesting in
this case because it allows us to interpret the memberships of any sample as the
contributions of the considered categories to the final color sensation.

Hence, for any given color sample s it will be possible to compute a color
descriptor, CD, such as

CD(s) = [
μC1

(s), ..., μCn
(s)

]
, (17.2)

where each component of this n-dimensional vector describes the membership of
s to a specific color category.

The information contained in such a descriptor can be used by a decision
function, N(s), to assign the color name of the stimulus s. The most easy decision
rule we can derive is to choose the maximum from CD(s):

N(s) = tkmax
| kmax = arg max

k=1,...,n
{μCk

(s)}, (17.3)

where tk is the linguistic term associated with color category Ck .
In this case, the categories considered are the basic categories proposed by

Berlin and Kay, that is, n = 11 and the set of categories is

Ck ∈ {red, orange, brown, yellow, green, blue, purple, pink, black, gray, white},
(17.4)

17.2.2 Chromatic Categories

According to the fuzzy framework defined previously, any function we select to
model color categories must map values to the [0, 1] interval, that is, μCk

(s) ∈
[0, 1]. In addition, the observation of the membership values of psychophysical
data obtained from a color-naming experiment [343] made us hypothesize about a
set of necessary properties that membership functions for the chromatic categories
should fulfill:

■ Triangular Basis. Chromatic categories present a plateau, or an area with
no confusion about the color name, with a triangular shape and a principal
vertex shared by all the categories.

■ Different Slopes. For a given chromatic category, the slope of naming
certainty toward the neighboring categories can be different on each side
of the category (e.g., transition from blue to green can be different from
that from blue to purple).
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17.2 Color Names from Calibrated Data
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■ Central Notch. The transition from a chromatic category to the central
achromatic one has the form of a notch around the principal vertex.

In Figure 17.4, we show a scheme of the preceding conditions on a chromaticity
diagram where the samples of a color-naming experiment have been plotted.

Here we will define the membership function, the triple sigmoid with elliptical
center (TSE), as a two-dimensional function, TSE : R

2 → [0, 1]. Earlier works
considered other membership functions [344, 345]. The definition of the TSE
starts from the one-dimensional sigmoid function:

S1(x, β) = 1

1 + exp(−βx)
, (17.5)

where β controls the slope of the transition from 0 to 1.
This can be extended to a two-dimensional sigmoid function, S : R

2 → [0, 1],

S(p, β) = 1

1 + exp(−βuip)
, i = 1, 2 (17.6)

where p = (x, y)T is a point in the plane and vectors u1 = (1, 0) and u2 = (0, 1)

define the axis in which the function is oriented.
By adding a translation, t = (tx, ty), and a rotation, α, to the previous equation,

the function can adopt a wide set of shapes. In order to represent the formulation in
a compact matrix form, we use homogeneous coordinates [346]. Let us redefine p
to be a point in the plane expressed in homogeneous coordinates as p = (x, y, 1)T ,
and let us denote the vectors u1 = (1, 0, 0) and u2 = (0, 1, 0). We define S1 as
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17 Color Naming

a function oriented in axis x with rotation α with respect to axis y and S2 as a
function oriented in axis y with rotation α with respect to axis x:

Si(p, t, α, β) = 1

1 + exp(−βuiRαTtp)
, i = 1, 2 (17.7)

where Tt and Rα are a translation matrix and a rotation matrix, respectively:

Tt =
⎛
⎝

1 0 −tx
0 1 −ty
0 0 1

⎞
⎠ , Rα =

⎛
⎝

cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

⎞
⎠ (17.8)

By multiplying S1 and S2, we define the double-sigmoid (DS) function, which
fulfills the first two properties presented before:

DS(p, t, θDS) = S1(p, t, αy, βy)S2(p, t, αx, βx), (17.9)

where θDS = (αx, αy, βx, βy) is the set of parameters of the double-sigmoid
function. Figure 17.5a shows a plot of a two-dimensional sigmoid oriented in the
x-axis direction (S1 in Eq. 17.7). By multiplying two oriented sigmoid functions,
the double-sigmoid function DS is obtained (Fig. 17.5(b)).

To obtain the central notch shape needed to fulfill the third property, let us
define the elliptic-sigmoid (ES) function by including the ellipse equation in the
sigmoid formula:

ES(p, t, θES) = 1

1 + exp
{

− βe

[(u1RφTtp

ex

)2 + (u2RφTtp

ey

)2 − 1
]} , (17.10)
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Figure 17.5 Two-dimensional sigmoid functions. (a) S1: Sigmoid function oriented in axis

x direction (b) DS: The product of two differently oriented sigmoid functions generates a

plateau with some of the properties needed for the membership function.
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17.2 Color Names from Calibrated Data
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Figure 17.6 Elliptic-sigmoid function ES(p, t, θES). (a) ES for βe < 0 and (b) ES for βe > 0.

where θES = (ex, ey, φ, βe) is the set of parameters of the ES function, ex and ey
are the semiminor and semimajor axes, respectively, φ is the rotation angle of the
ellipse, and βe is the slope of the sigmoid curve that forms the ellipse boundary.
The function obtained is an elliptic plateau if βe is negative and an elliptic valley
if βe is positive. The surfaces obtained can be seen in Figure 17.6.

Finally, by multiplying the double-sigmoid by the ES with a positive βe, we
define the TSE as

TSE(p, θ) = DS(p, t, θDS)ES(p, t, θES), (17.11)

where θ = (t, θDS, θES) is the set of parameters of the TSE.
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Figure 17.7 Triple sigmoid with elliptical center (TSE).
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17 Color Naming

The TSE function defines a membership surface that fulfills the properties
defined at the beginning of Section 17.2.2. Figure 17.7 shows the form of the TSE
function.

Hence, once we have the analytic form of the chosen function, the membership
function for a chromatic category μCk

is given by

μCk
(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ1
Ck

= TSE(c1, c2, θ1
Ck

) if I ≤ I1,

μ2
Ck

= TSE(c1, c2, θ2
Ck

) if I1 < I ≤ I2,
...

...

μ
NL
Ck

= TSE(c1, c2, θNL
Ck

) if INL−1 < I ,

(17.12)

where s = (I , c1, c2) is a sample on the color space, NL is the number of
chromaticity planes, θ i

Ck
is the set of parameters of the category Ck on the ith

chromaticity plane, and Ii are the lightness values that divide the space in the NL
lightness levels.

By fitting the parameters of the functions, it is possible to obtain the variation
of the chromatic categories through the lightness levels. By doing this for all the
categories, it will be possible to obtain membership maps; that is, for a given
lightness level we have a membership value to each category for any color point
s = (I , c1, c2) of the level. Notice that since some categories exist only at certain
lightness levels (e.g., brown is defined only for low lightness values and yellow
only for high values), on each lightness level not all the categories will have
memberships different from zero for any point of the level. Figure 17.8 shows
an example of the membership map provided by the TSE functions for a given
lightness level, in which there exist six chromatic categories. The other two
chromatic categories in this example would have zero membership for any point
of the level.

17.2.3 Achromatic Categories

The three achromatic categories (black, gray and white) are first considered
as a unique category at each chromaticity plane. To ensure that the unity-sum
constraint is fulfilled (i.e., the sum of all memberships must be one) a global
achromatic membership, μA, is computed for each level as

μi
A(c1, c2) = 1 −

nc∑
k=1

μi
Ck

(c1, c2), (17.13)

where i is the chromaticity plane that contains the sample s = (I , c1, c2) and nc
is the number of chromatic categories (here, nc = 8). The differentiation among
the three achromatic categories must be done in terms of lightness. To model the
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17.2 Color Names from Calibrated Data
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Figure 17.8 TSE function fitted to the chromatic categories defined on a given lightness

level. In this case, only six categories have memberships different from zero.

fuzzy boundaries among these three categories we use one-dimensional sigmoid
functions along the lightness axis:

μAblack
(I , θblack) = 1

1 + exp[−βb(I − tb)]
, (17.14)

μAgray
(I , θgray) = 1

1 + exp[βb(I − tb)]

1

1 + exp[−βw(I − tw)]
, (17.15)

μAwhite
(I , θwhite) = 1

1 + exp[βw(I − tw)]
, (17.16)

where θblack = (tb, βb), θgray = (tb, βb, tw, βw), and θwhite = (tw, βw) are the set of
parameters for black, gray, and white, respectively.

Hence, the membership of the three achromatic categories on a given chro-
maticity plane is computed by weighting the global achromatic membership (Eq.
17.13) with the corresponding membership in the lightness dimension (Eqs. 17.14
and 17.16):

μCk
(s, θCk

) = μi
A(c1, c2)μACk

(I , θCk
), 9 ≤ k ≤ 11, Ii < I ≤ Ii+1, (17.17)

where i is the chromaticity plane in which the sample is included and the values of
k correspond to the achromatic categories (Eq. 17.4). In this way, we can assure
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17 Color Naming

that the unity-sum constraint is fulfilled on each specific chromaticity plane,

11∑
k=1

μCi
k
(s) = 1 i = 1, . . . , NL, (17.18)

where NL is the number of chromaticity planes in the model.

17.2.4 Fuzzy Sets Estimation

After defining the membership functions of the model, the next step is to fit their
parameters. To this end, we need a set of psychophysical data, D, composed of
a set of samples from the color space and their membership values to the 11
categories,

D = {< si, mi
1, . . . , mi

11 >}, i = 1, . . . , ns, (17.19)

where si is the ith sample of the learning set, ns is the number of samples in the
learning set, and mi

k is the membership value of the ith sample to the kth category.
Such data will be the knowledge basis for a fitting process to estimate the

model parameters taking into account the unity-sum constraint given in Equation
17.18. In this case, the model will be estimated for the CIE L∗a∗b∗ space since
it is a standard space with interesting properties. However, any other color space
with a lightness dimension and two chromatic dimensions would be suitable for
this purpose.

17.2.4.1 Learning Set The data set for the fitting process must be percep-
tually significant; that is, the judgments should be coherent with results from
psychophysical color-naming experiments and the samples should cover all the
color space.

To build a wide learning set, we have used the color-naming map proposed
by Seaborn et al. in [347]. This color map has been built by making some
considerations on the consensus areas of the Munsell color space provided by the
psychophysical data from the experiments of Sturges and Whitfield [332]. Using
such data and the fuzzy k-means algorithm this method allows us to derive the
memberships of any point in the Munsell space to the 11 basic color categories.

In this way, we have obtained the memberships of a wide sample set, and
afterwards we have converted this color sampling set to their corresponding CIE
L∗a∗b∗ representation. The data set was initially composed of the 1269 samples of
the Munsell Book of Color [348]. Their reflectances and CIE L∗a∗b∗ coordinates,
calculated by using the CIE D65 illuminant, are available at the web site of the
University of Joensuu in Finland [349]. This data set was extended with selected
samples to a total number of 1617 samples (see Reference 350 for more details
on how these extra samples were selected).

Hence, with such a data set we accomplish the perceptual significance required
for the learning set. First, by using Seaborn’s method, we include the results of the
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17.2 Color Names from Calibrated Data

psychophysical experiment of Sturges and Whitfield, and, in addition, it covers
an area of the color space that suffices for the fitting process.

17.2.4.2 Parameter Estimation Before starting with the fitting process, the
number of chromaticity planes and the values that define the lightness levels
(Eq. 17.12) must be set. These values depend on the learning set used and
must be chosen while taking into account the distribution of the samples from
the learning set. In this case, the number of planes that delivered best results
was found to be six, and the values Ii that define the levels were selected by
choosing some local minima in the histogram of samples along the lightness
axis: I1 = 31, I2 = 41, I3 = 51, I4 = 66, I5 = 76. However, if a more extensive
learning set were available, a higher number of levels would possibly deliver
better results.

For each chromaticity plane, the global goal of the fitting process is finding an
estimation of the parameters, θ̂ j, that minimizes the mean squared error between
the memberships from the learning set and the values provided by the model:

θ̂ j = arg min
θ j

1

ncp

ncp∑
i=1

nc∑
k=1

(μ
j
Ck

(si, θ
j
Ck

) − mi
k)

2, j = 1, . . . , NL, (17.20)

where θ̂ j = (θ̂
j
C1

, . . . , θ̂ j
Cnc

) is the estimation of the parameters of the model for the

chromatic categories on the jth chromaticity plane, θ
j
Ck

is the set of parameters
of the category Ck for the jth chromaticity plane, nc is the number of chromatic
categories, ncp is the number of samples of the chromaticity plane, μ

j
Ck

is the
membership function of the color category Ck for the jth chromaticity plane,
and mi

k is the membership value of the ith sample of the learning set to the kth
category.

The previous minimization is subject to the unity-sum constraint:

11∑
k=1

μ
j
Ck

(s, θ j
Ck

) = 1, ∀s = (I , c1, c2) | Ij−1 < I ≤ Ij, (17.21)

which is imposed to the fitting process through two assumptions. The first one
is related to the membership transition from chromatic categories to achromatic
categories:

Assumption 17.1. All the chromatic categories in a chromaticity plane share
the same ES function, which models the membership transition to the achromatic
categories. This means that all the chromatic categories share the set of estimated
parameters for ES:

θ
j
ESCp

= θ
j
ESCq

and tj
Cp

= tj
Cq

, ∀p, q ∈ {1, . . . , nc}, (17.22)

where nc is the number of chromatic categories.
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17 Color Naming

The second assumption refers to the membership transition between adjacent
chromatic categories:

Assumption 17.2. Each pair of neighboring categories, Cp and Cq, share the
parameters of slope and angle of the double-sigmoid function, which define their
boundary:

β
Cp
y = β

Cq
x and α

Cp
y = α

Cq
x − (

π

2
), (17.23)

where the superscripts indicate the category to which the parameters correspond.
These assumptions considerably reduce the number of parameters to be esti-

mated. Hence, for each chromaticity plane, we must estimate two parameters
for the translation, t = (tx, ty), four for the ES function, θES = (ex, ey, φ, βe), and
a maximum of 2 × nc for the DS functions, since the other two parameters of
θDS = (αx, αy, βx, βy) can be obtained from the neighboring category (Eq. 17.23).

All the minimizations to estimate the parameters are performed by using the
simplex search method proposed in Reference 351 (see Reference 350 for more
details about the parameters estimation process). After the fitting process, we
obtain the parameters that completely define the color-naming model and these
are summarized in Table 17.1.

The evaluation of the fitting process is done in terms of two measures. The first
one is the mean absolute error (MAEfit) between the learning set memberships
and the memberships obtained from the parametric membership functions:

MAEfit = 1

ns

1

11

ns∑
i=1

11∑
k=1

|mi
k − μCk

(si)|, (17.24)

where ns is the number of samples in the learning set, mi
k is the membership of

si to the kth category, and μCk
(si) is the parametric membership of si to the kth

category provided by the model.
The value of MAEfit is a measure of the accuracy of the model fitting to the

learning data set, and in this case the value obtained was of MAEfit = 0.0168.
This measure was also computed for a test data set of 3149 samples. To build
the test data set, the Munsell space was sampled at hues 1.25, 3.75, 6.25, and
8.75; values from 2.5 to 9.5 at steps of 1 unit; and chromas from 1 to the
maximum available with a step of 2 units. As in the case of the learning set, the
memberships of the test set that were considered the ground truth were computed
with Seaborn’s algorithm. The corresponding CIE L∗a∗b∗ values to apply the
parametric functions were computed with the Munsell Conversion software. The
value of MAEfit obtained was 0.0218, which confirms the accuracy of the fitting
that allows the model to provide membership values with very low error even for
samples that were not used in the fitting process.

The second measure evaluates the degree of fulfillment of the unity-sum
constraint. Considering as error the difference between the unity and the sum of
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17.2 Color Names from Calibrated Data

Table 17.1 Parameters of the triple sigmoid with elliptical center model.a,b

Achromatic axis

Black-Gray boundary tb = 28.28 βb = −0.71

Gray-White boundary tw = 79.65 βw = −0.31

Chromaticity Plane 1 Chromaticity Plane 2

ta = 0.42 ea = 5.89 βe = 9.84 ta = 0.23 ea = 6.46 βe = 6.03

tb = 0.25 eb = 7.47 φ = 2.32 tb = 0.66 eb = 7.87 φ = 17.59

αa αb βa βb αa αb βa βb

Red −2.24 −56.55 0.90 1.72 Red 2.21 −48.81 0.52 5.00

Brown 33.45 14.56 1.72 0.84 Brown 41.19 6.87 5.00 0.69

Green 104.56 134.59 0.84 1.95 Green 96.87 120.46 0.69 0.96

Blue 224.59 −147.15 1.95 1.01 Blue 210.46 −148.48 0.96 0.92

Purple −57.15 −92.24 1.01 0.90 Purple −58.48 −105.72 0.92 1.10

Pink −15.72 −87.79 1.10 0.52

Chromaticity Plane 3 Chromaticity Plane 4

ta = −0.12 ea = 5.38 βe = 6.81 ta = −0.47 ea = 5.99 βe = 7.76

tb = 0.52 eb = 6.98 φ = 19.58 tb = 1.02 eb = 7.51 φ = 23.92

αa αb βa βb αa αb βa βb

Red 13.57 −45.55 1.00 0.57 Red 26.70 −56.88 0.91 0.76

Orange 44.45 −28.76 0.57 0.52 Orange 33.12 −9.90 0.76 0.48

Brown 61.24 6.65 0.52 0.84 Yellow 80.10 5.63 0.48 0.73

Green 96.65 109.38 0.84 0.60 Green 95.63 108.14 0.73 0.64

Blue 199.38 −148.24 0.60 0.80 Blue 198.14 −148.59 0.64 0.76

Purple −58.24 −112.63 0.80 0.62 Purple −58.59 −123.68 0.76 5.00

Pink −22.63 −76.43 0.62 1.00 Pink −33.68 −63.30 5.00 0.91

Chromaticity Plane 5 Chromaticity Plane 6

ta = −0.57 ea = 5.37 βe = 100.00 ta = −1.26 ea = 6.04 βe = 100.00

tb = 1.16 eb = 6.90 φ = 24.75 tb = 1.81 eb = 7.39 φ = −1.19

αa αb βa βb αa αb βa βb

Orange 25.75 −15.85 2.00 0.84 Orange 25.74 −17.56 1.03 0.79

Yellow 74.15 12.27 0.84 0.86 Yellow 72.44 16.24 0.79 0.96

Green 102.27 98.57 0.86 0.74 Green 106.24 100.05 0.96 0.90

Blue 188.57 −150.83 0.74 0.47 Blue 190.05 −149.43 0.90 0.60

Purple −60.83 −122.55 0.47 1.74 Purple −59.43 −122.37 0.60 1.93

Pink −32.55 −64.25 1.74 2.00 Pink −32.37 −64.26 1.93 1.03

aAngles are expressed in degrees and subscripts x and y are changed to a and b, respectively, in order
bto make parameter interpretation easier, since parameters have been estimated for the CIE L∗a∗b∗
space.
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17 Color Naming

all the memberships at a point, pi, the measure is

MAEunitsum = 1

np

np∑
i=1

|1 −
11∑

k=1

μCk
(pi))|, (17.25)

where np is the number of points considered and μCk
is the membership function

of category Ck .
To compute this measure, we have sampled each one of the six chromaticity

planes with values from −80 to 80 at steps of 0.5 units on both a and b axis,
which means that np = 153600. The value obtained of MAEunitsum = 6.41e − 04
indicates that the model provides a great fulfillment of that constraint, making the
model consistent with the presented framework.

Hence, for any point of the CIE L∗a∗b∗ space we can compute the membership
to all the categories and, at each chromaticity plane, these values can be plotted
to generate a membership map. In Figure 17.9, we show the membership maps
of the six chromaticity planes considered with the membership surfaces labeled
with their corresponding color term.

17.3 Color Names from Uncalibrated Data

In the previous section, we saw an example where the mapping between RGB and
color names is inferred from a labeled set of color patches. Other examples of such
methods include References 352–356. In such methods, multiple test subjects are
asked to label hundreds of color chips within a well-defined experimental setup.
From this labeled set of color chips the mapping from RGB values to color names
is derived. The main difference of these methods from the one discussed in this
section is that they are all based on calibrated data. Color names from calibrated
data have been shown to be useful within the linguistic and color science fields.
However, when applied to real-world images, these methods were often found to
obtain unsatisfactory results. Color naming chips under ideal lighting on a color
neutral background greatly differ from the challenge of color-naming in images
coming from real-world applications without a neutral reference color and with
physical variations such as shading effects and different light sources.

In this section, we discuss a method for color naming in uncalibrated images.
More precisely, with uncalibrated images we refer to images that are taken under
varying illuminants, with interreflections, coming from unknown cameras, colored
shadows, compression artifacts, aberrations in acquisition, unknown camera and
camera settings, etc. The majority of the image data in computer vision belongs
to this category: even in the cases that camera information is available and the
images are uncompressed, the physical setting of the acquisition are often difficult
to recover, due to unknown illuminant colors, unidentified shadows, view-point
changes, and interreflections.
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17.3 Color Names from Uncalibrated Data
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Figure 17.9 Membership maps for the six chromaticity planes of the model plotted on the

chromaticity plane (ab-plane).

To infer what RGB values color names take on in real-world images, a large
data set of color name labeled images is required. One possible way to obtain such
a data set is by means of Google Image search. We retrieve 250 images for each of
the 11 basic color terms discussed in Section 17.1 (Figure 17.10). These images
contain a large variety of appearances of the queried color name. For example, the
query ‘‘red’’ will contain images with red objects, taken under varying physical
variations, such as different illuminants, shadows, and specularities. The images
are taken with different cameras and stored with various compression methods.
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17 Color Naming

Black Blue Brown Green Gray Orange Pink Purple Red White Yellow

Figure 17.10 Google-retrieved examples for color names. The red bounding boxes indicate false

positives. An image can be retrieved with various color names, such as the flower image that appears

in the red and the yellow set.

The large variety of this training set suits our goal of learning color names for
real-world images well, since we want to apply the color-naming method on
uncalibrated images taken under varying physical settings. Furthermore, a system
based on Google image has the advantage that it is flexible with respect to
variations in the color name set. Methods based on calibrated data are known to
be inflexible with respect to the set of color names, since adding for example new
color names such as beige, violet, or olive, would, in principle, imply redoing the
human labeling for all patches.

Retrieved images from Google search are known to contain many false positives.
To learn color names from such a noisy data set, we will discuss a method based
on probabilistic latent semantic analysis (PLSA), a generative model introduced
by Hofmann [215] for document analysis. In conclusion, by learning color names
from real-world images, we aim to derive color names that are applicable on
challenging real-world images typical for computer vision applications.

17.3.1 Color Name Data Sets

As discussed, Google Image is used to retrieve 250 images for each of the 11 color
names. For the actual search we added the term ‘‘color’’; hence, for red the query
is ‘‘red+color.’’ Examples for the 11 color names are given in Figure 17.10.
Almost 20 % of the images are false positives, that is, images that do not contain
the color of the query. We call such a data set weakly labeled since the image
labels are global, meaning that no information to which a particular region of
the image the label refers is available. Furthermore, in many cases only a small
portion, as little as a few percent of the pixels, represents the color label. Our goal
is to learn a color-naming system based on the raw results of Google image, that
is, we used both true and false positives.

The Google data set contains weakly labeled data, meaning that we only have
an image-wide label, indicating that a part of the pixels in the image can be
described by the color name of the label. To remove some of the pixels that
are not likely indicated by the image label, we remove the background from the
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17.3 Color Names from Uncalibrated Data

Google images by iteratively removing pixels that have the same color as the
border. Furthermore, since the color label often refers to an object in the center of
the image, we crop the image to be 70% of its original width and height.

The Google images will be represented by color histograms. We consider the
images from the Google data sets to be in sRGB format. Before computing the
color histograms, these images are gamma corrected with a correction factor
of 2.4. Although images might not be correctly white balanced, we do not
apply a color constancy algorithm, since color constancy was found to yield
unsatisfying results for these images. Furthermore, many Google images lack
color calibration information, and regularly break assumptions on which color
constancy algorithms are based. The images are converted to the L∗a∗b∗ color
space, which is a perceptually linear color space, ensuring that similar differences
between L∗a∗b∗ values are considered equally important color changes to humans.
This is a desired property because the uniform binning we apply for histogram
construction implicitly assumes a meaningful distance measure. To compute the
L∗a∗b∗ values we assume a D65 white light source.

17.3.2 Learning Color Names

Here we discuss a method to learn color names, which is based on latent
aspect models. Latent aspect models have received considerable interest in the
text analysis community as a tool to model documents as a mixture of several
semantic—but a priori unknown, and hence ‘‘latent’’—topics. Latent Dirichlet
allocation (LDA) [357] and PLSA [215] are perhaps the most well known among
such models.

Here we use the topics to represent the color names of pixels. Latent aspect
models are of interest to our problem since they naturally allow for multiple
topics in the same image, as is the case in the Google data set where each image
contains a number of colors. Pixels are represented by discretizing their L∗a∗b∗
values into a finite vocabulary by assigning each value by cubic interpolation to
a regular 10 × 20 × 20 grid in the L∗a∗b∗-space.1 An image (document) is then
represented by a histogram indicating how many pixels are assigned to each bin
(word).

We start by explaining the standard PLSA model, after which an adapted
version better suited to the problem of color naming is discussed. Given a set of
documents D = {d1, . . . , dN } each described in a vocabulary W = {w1, . . . , wM },
the words are taken to be generated by latent topics Z = {z1, . . . , zK}. In the PLSA
model, the conditional probability of a word w in a document d is given by

p (w| d) =
∑
z∈Z

p (w| z)p ( z| d) . (17.26)

1Because the L∗a∗b∗ space is perceptually uniform we discretize it into equal volume bins. Different
quantization levels per channel are chosen because of the different ranges: the intensity axis ranges
from 0 to 100, and the chromatic axes range from −100 to 100.
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17 Color Naming

Both distributions p(z|d) and p(w|z) are discrete multinomial distributions, and
can be estimated with an expectation-maximization (EM) algorithm [215] by
maximizing the log-likelihood function

L =
∑
d∈D

∑
w∈W

n (d, w) log p (d, w), (17.27)

where p(d, w) = p(d)p(w|d), and n(d, w) is the term frequency, containing the
word occurrences for every document.

The method in Equation 17.26 is called a generative model, since it provides
a model of how the observed data has been generated given hidden parameters
(the latent topics). The aim is to find the latent topics that best explain the
observed data. In the case of learning color names, we model the color values in
an image as being generated by the color names (topics). For example, the color
name red generates L∗a∗b∗ values according to p(w|t = red). These word-topic
distributions p(w|t) are shared between all images. The amount of the various
colors we see in an image is given by the mixing coefficients p(t|d), and these
are image specific. The aim of the learning process is to find the p(w|t) and p(t|d)

that best explain the observations p(w|d). As a consequence, colors that often
co-occur are more likely to be found in the same topic. For example, the label red
will not only co-occur with highly saturated reds but also with some pinkish-red
colors because of specularities on the red object, and dark reds caused by shadows
or shading. All the different appearances of the color name red are captured in
p(w|t = red).

In Figure 17.11, an overview of applying PLSA to the problem of color naming
is provided. The goal of the system is to find the color name distributions p(w|t).
First, the weakly labeled Google images are represented by their normalized
L∗a∗b∗ histograms. These histograms form the columns of the image-specific
word distribution p(w|d). Next, the PLSA algorithm aims to find the topics (color
names) that best explain the observed data. This process can be understood as a
matrix decomposition of p(w|d) into the word-topic distributions p(w|t) and the
document-specific mixing proportions p(t|d). The columns of p(w|t) contain the
information we are seeking, namely, the distributions of the color names over
L∗a∗b∗ values. In the remainder of this section, we discuss two adaptations to the
standard model.

17.3.2.1 Exploiting Image Labels The standard PLSA model cannot exploit
the labels of images. More precisely, the labels have no influence on the maximum
likelihood (Eq. 17.27). The topics are hoped to converge to the state where they
represent the desired color names. As is pointed out in Reference 358 in the
context of discovering object categories using LDA, this is rarely the case. To
overcome this shortcoming, we discuss an adapted model that does take into
account the label information.

The image labels can be used to define a prior distribution on the frequency of
topics (color names) in documents p(z|d). This prior will still allow each color to
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17.3 Color Names from Uncalibrated Data
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Figure 17.11 Overview of standard PLSA model for learning color names. See text for

explanation. Source: Reprinted with permission, © 2009 IEEE.

be used in each image, but the topic corresponding to the label of the image—here
obtained with Google—is a priori assumed to have a higher frequency than other
colors. Below, we use the shorthands p(w|z) = φz(w) and p(z|d) = θd(z).

The multinomial distribution p(z|d) is supposed to have been generated from
a Dirichlet distribution of parameter αld , where ld is the label of the document d.
The vector αld has length K (number of topics), where αld (z) = c ≥ 1 for z = ld ,
and αld (z) = 1 otherwise. By varying c we control the influence of the image
labels ld on the distributions p(z|d). The exact setting of c will be learned from
the validation data.

For an image d with label ld , the generative process thus reads:

1. Sample θd (distribution over topics) from the Dirichlet prior with parameter
αld .

2. For each pixel in the image

(a) Sample z (topic, color name) from a multinomial with parameter θd

(b) Sample w (word, pixel bin) from a multinomial with parameter φz

The distributions over words φz associated with the topics, together with the
image-specific distributions θd , have to be estimated from the training images.
This estimation is done using an EM algorithm. In the expectation step we evaluate
for each word (color bin) w and document (image) d

p(z|w, d) ∝ θd(z)φz(w). (17.28)

During the maximization step, we use the result of the expectation step together
with the normalized word document counts n(d, w) (frequency of word w in
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17 Color Naming

document d) to compute the maximum likelihood estimates of φz and θd as

φz(w) ∝
∑

d

n(d, w)p(z|w, d), (17.29)

θd(z) ∝ (αld (z) − 1) +
∑

w

n(d, w)p(z|w, d). (17.30)

Note that we obtain the EM algorithm for the standard PLSA model when
αld (z) = c = 1, which corresponds to a uniform Dirichlet prior over θd .

17.3.2.2 Enforcing Unimodality The second adaptation of the PLSA model
is based on prior knowledge of the probabilities p(z|w). Consider the color name
red: a particular region of the color space will have a high probability of red,
moving away from this region in the direction of other color names will decrease
the probability of red. Moving even further in this direction can only further
decrease the probability of red. This is caused by the unimodal nature of the
p(z|w) distributions. Next, we discuss an adaptation of the PLSA model to enforce
unimodality to the estimated p(z|w) distributions.

It is possible to obtain a unimodal version of a function by means of grayscale
reconstruction. The grayscale reconstruction of function p is obtained by iterating
geodesic grayscale dilations of a marker m under p until stability is reached
[359]. Consider the example given in Figure 17.12. In the example, we consider
two 1D topics p1 = p(z1|w) and p2 = p(z2|w). By iteratively applying a geodesic
dilation from the marker m1 under the mask function p1 we obtain the grayscale
reconstruction ρ1. The function ρ1 is by definition unimodal, since it only has
one maximum at the position of the marker m1. Similarly, we obtain a unimodal
version of p2 by a grayscale reconstruction of p2 from marker m2.

Something similar can be done for the color name distributions p(z|w). We can
compute a unimodal version ρmz

z (w) by performing a grayscale reconstruction
of p (z|w) from markers mz (finding a suitable position for the markers will
be explained below). To enforce unimodality, without assuming anything about
the shape of the distribution, we add the difference between the distributions

p(
w

)

p(
w

)

p1

p2

p2

w

p1

p1

p2

w

p(
w

)

p1

m1
m2

p2

w

Figure 17.12 Example of grayscale reconstruction. (a) Initial functions p1 = p(z1|w), p2 = p(z2|w), and

markers m1 and m2. (b) Grayscale reconstruction ρ1 of p1 from m1. (c) Grayscale reconstruction ρ2 of

p2 from m2. Since ρ1 is by definition a unimodal function, enforcing the difference between p1 and ρ1

to be small reduces the secondary modes of p1. Source: Reprinted with permission, © 2009 IEEE.
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17.3 Color Names from Uncalibrated Data

p(z|w) and their unimodal counterparts ρmz
z (z) as a regularization factor to the

log-likelihood function:

L =
∑
d∈D

∑
w∈W

n (d, w) log p (d, w) − γ
∑
z∈Z

∑
w∈W

(
p (z|w) − ρmz

z (w)
)2

. (17.31)

Adding the regularization factor in Equation 17.27 forces the functions p(z|w) to
be closer to ρmz

z (z). Since ρmz
z (z) is unimodal, this will suppress the secondary

modes in p(z|w), that is, the modes that it does not have in common with ρmz
z (z).

In the case of the color name distributions p(z|w), the gray reconstruction is
performed on the 3D spatial grid in L∗a∗b∗ space with a 26 connected structuring
element. The markers mz for each topic are computed by finding the local mode
starting from the center of mass of the distribution p(z|w). This was found to be
more reliable than using the global mode of the distribution. The regularization
functions ρmz

z , which depend on p(z|w), are updated at every iteration step of
the conjugate-gradient-based maximization procedure that is used to compute
the maximum likelihood estimates of φz(w). The computation of the maximum
likelihood estimate for θd(z) is not directly influenced by the regularization factor
and is still computed with Equation 17.30.

In conclusion, two improvements of the standard PLSA model have been
discussed. Firstly, the image labels are used to define a prior distribution on the
frequency of topics. Secondly, a regularization factor is added to the log likelihood
function, which suppresses the secondary modes in the p (z|w) distributions. The
two parameters, c and γ , which regularize the strength of the two adaptations, can
be learned from validation data.

17.3.3 Assigning Color Names in Test Images

Once we have estimated the distributions over words p(w|z) representing the
topics, we can use them to compute the probability of color names corresponding
to image pixels in test images. As the test images are not expected to have a single
dominant color, we do not use the label-based Dirichlet priors that are used when
estimating the topics. The probability of a color name given a pixel is given by

p(z|w) ∝ p(z)p(w|z), (17.32)

where the prior over the color names p(z) is taken to be uniform. The probability
over the color names for a region is computed by a simple summation over all
pixels in the region of the probabilities p(z|w), computed with Equation 17.32
using a uniform prior.

The impact of the two improvements to standard PLSA discussed in Section
17.3.2 is illustrated in Figure 17.13 (for more detailed analysis, see also [360]).
The image shows pixels of constant intensity, with varying hues in the angular
direction and varying saturation in the radial direction. On the right side of the
image a bar with varying intensity is included. Color names are expected to

311

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17 Color Naming

n = 25, c = ∝, g = 0 n = 200, c = ∝, g = 0 n = 200, c = 2, g = 200

(a) (b) (c) (d) (e)

n = 25, c = 5, g = 200

Figure 17.13 (a) A challenging synthetic image: the highly saturated RGB values at the border rarely

occur in natural images. (b–e) Results obtain with different settings for c, γ , and n the number of train

images per color name. The figure demonstrates that in the PLSA method, images (c) and (e), improve

results. Source: Reprinted with permission, © 2006 IEEE.

be relatively stable for constant hues, only for low saturation they change to an
achromatic color (i.e., in the center of the image). The only exception to this rule is
brown, which is low saturated orange. Hence, we expect the color names to form
a pielike partitioning with an achromatic color in the center, as in the parametric
model that was introduced in Section 17.2. Assigning color names based on
the empirical distribution (Fig. 17.13b) leads to many errors, especially in the
saturated regions. The extended method trained from only 25 images per color
name (Fig. 17.13c) obtains results much closer to what is expected. If we look
at the performance as a function of the number of training images from Google
Image, we see that the difference between the PLSA method with optimal c-γ
settings and the empirical distributions becomes smaller by increasing the number
of training images. However, the comparison shows that the extended method
obtains significantly better results, especially in saturated regions (Fig. 17.13d,e).

17.3.4 Flexibility Color Name Data Set

An advantage of learning color names from uncalibrated images, collected with
Google Image search, is that one can easily vary the set of color names. For the
parametric method described in Section 17.2, changing the set of color names
would mean that the psychophysical experiment needs to be repeated. Different
sets of color names have, for example, been proposed in the work of Mojsilovic
[355]. She asked a number of human test subjects to name the colors in a set of
images. In addition to the 11 basic color terms beige, violet and olive were also
mentioned.

In Figure 17.14, we show prototypes of the 11 basic color terms learned from
Google Images. The prototype wz of a color name is that color which has the
highest probability of occurring given the color name wz = argmaxw p(w|z). In
addition, we add a set of 11 extra color names, for which we retrieve 100 images
from Google Image each. Again, the images contain many false positives. Then
a single extra color name is added to the set of 11 basic color terms, and the
color distributions p(w|z) are recomputed, after which the prototype of the newly
added color name is derived. This process is repeated for the 11 new color names.
The results are depicted in the second row of Figure 17.14 and correspond to the
colors we expect to find.
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17.4 Experimental Results

Beige Gold Olive Crimson Indigo Violet Cyan Azure

Goluboi Siniy

White YellowRedPurplePinkOrangeGreenGrayBrownBlueBlack

Lavender Magenta Turquoise

Figure 17.14 First row: prototypes of the 11 basic color terms learned from Google Images based on

PLSA. Second row: prototypes of a varied set of color names learned from Google Images. Third row:

prototypes of the two Russian blues learned from Google Images. Source: Reprinted with permission,

© 2009 IEEE.

As a second example of flexibility of data acquisition we look into interlinguistic
differences in color naming. The Russian language is one that has 12 basic color
terms. The color term blue is split up into two color terms: goluboi ( ),
and siniy ( ). We ran the system on 30 images for both blues, returned by
Google Image. Results are given in Figure 17.14, and correspond with the fact
that goluboi is a light blue and siniy a dark blue. This example shows the Internet
as a potential source of data for the examination of linguistic differences in color
naming.

17.4 Experimental Results

In this section, we compare the two computational color naming methods discussed
in Sections 17.2 and 17.3. The most relevant difference between the two methods
is the training data on which they are based, either calibrated or uncalibrated. The
parametric method is based on color name labels given to colored patches, which
are taken in a highly controlled environment with known illumination, absence
of context, and a gray reference background. The second approach is based on
real-world images of objects within a context with unknown camera settings and
illumination. We will test the two methods both on calibrated and on uncalibrated
data. We will refer to the two methods as the parametric method and PLSA method.

Calibrated Color Naming Data First, we compare both methods on classifying
single patches that are presented under white illumination. We have applied both
color naming algorithms to the Munsell color array used in the World Color
Survey by Berlin and Kay [329]. The results are shown in Figure 17.15. The
results based on the parametric method are shown in Figure 17.15a and the results
obtained with the PLSA method are shown in Figure 17.15b. The color names
are similarly centered, and only on the borders there are some disagreements.
The main difference that we can observe is that all chromatic patches are named
by chromatic color names by the parametric method, whereas the PLSA method
names multiple chromatic patches with achromatic color names.
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17 Color Naming

1 10 20

(a)

(b)

30 40

Figure 17.15 (a) Color name categories on the Munsell color array obtained by parametric method.

(b) Color names obtained with the PLSA method. Note the differences in chromatic and achromatic

assignments. The colored lines indicate the boundaries of the 11 color categories. Source: Reprinted

with permission, © 2009 IEEE.

To quantitatively compare the two methods on calibrated patches, we compare
the outcome of the parametric and the PLSA method against the color name
observations from two works of reference: the study of Berlin and Kay [329]
and the experiments of Sturges and Whitfield [332] (Figs. 17.1 and 17.2). We
count the number of coincidences and dissimilarities between the predictions of
the models and their observations. The results are summarized in Table 17.2. We
see that the parametric model does significantly better than the PLSA model. This
is what we expected since the parametric model is designed to perform color
naming in calibrated circumstances. In addition, a comparison was made with the
categorization done by an English speaker presented by MacLaury in Reference
361. The results obtained by the English speaker show the variability of the
problem, since any individual subject judgments will normally differ from those
of a color-naming experiment, which are usually averaged from several subjects.
Notice that the performance of the PLSA model is similar to that of an individual
human observer, when compared to the averaged results from psychophysical
experiments

Uncalibrated Color Naming Data To test the computational color-naming
methods on uncalibrated data, a human-labeled set of object images is required.
For this purpose, we use a data set of images from the auction website Ebay [362].
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17.4 Experimental Results

Users labeled their objects with a description of the object in text, often including
a color name. The data set contains four categories of objects: cars, shoes, dresses,
and pottery (Fig. 17.16). For each object category, 121 images where collected,
12 for each color name. The final set is split in a test set of 440 images, and a
validation set of 88 images. The images contain several challenges. The reflection
properties of the objects differ from matt reflection of dresses to highly specular
surfaces of cars and pottery. Furthermore, it comprises both indoor and outdoor
scenes. For all images, a hand-segmentation of the object areas that correspond
to the color name is provided. The color-naming methods are compared on the
task of pixel-wise color name annotation of the Ebay images. All pixels within
the segmentation masks are assigned to their most likely color name. We report
the pixel annotation score, which is the percentage of correctly annotated pixels.

The results are given in Table 17.3. As can be seen, the PLSA method
outperforms the parametric method by about 6%. This was to be expected since
the PLSA method is learned from real-world Google Images, which look more
similar to the Ebay Images. On the other hand, the parametric method based on
calibrated data faces difficulties in the real-world where colors are not presented
on a color neutral background under a known white light source. Figure 17.17

Table 17.2 Comparison of different munsell categorizations to the results from

color-naming experiments of Berlin and Kay [329], and Sturges and Whitfield [332].

Berlin and Kay Data Sturges and Whitfield Data

Model Coincidences Errors % Errors Coincidences Errors % Errors

Parametric 193 17 8.10 111 0 0.00

PLSA 180 30 14.3 106 5 4.50

Human 182 28 13.33 107 4 3.60

Figure 17.16 Examples for the four classes of the Ebay data: green car, pink dress, yellow plate,

and orange shoes. For all images, masks with the area corresponding to the color name are hand

segmented.

315

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17 Color Naming

Figure 17.17 Two examples of pixel-wise color name annotation. The color names are represented

by their corresponding color. In the center image, the results of the parametric model are given, and in

the image on the right the results of the PLSA method.

Table 17.3 Pixel annotation score for the four classes in the ebay data seta.

Method Cars Shoes Dresses Pottery Overall

Parametric 56 72 68 61 64.7

PLSA 56 77 80 70 70.6

aThe fifth column provides average results over the four classes.

shows results on two real-world images. Both methods obtain similar results,
but one can see that especially in the achromatic regions they differ (ground
plane below the strawberry and the house). The parametric method assigns more
chromatic color names, whereas the PLSA method requires more saturated colors
before assigning chromatic color names. Another difference is seen in some parts
of the strawberry that are wrongly labeled as brown by the parametric model.
Since the psychophysical experiments are carried out in controlled conditions, the
parametric model is not able to include the different shades that a color can adopt
because of illumination effects. By contrast, the PLSA method labels correctly
most parts of the strawberry because learning from real-world images allows the
PLSA method to consider the different variations that any color can present.

17.5 Conclusions

In this chapter, we have discussed two approaches to computational color naming.
Firstly, we have discussed a method for learning color names from calibrated
data. The parametric fuzzy model for color naming is based on the definition of
the TSE as a membership function. The main advantage of the parametric model
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17.5 Conclusions

is that it allows to incorporate prior knowledge about the shapes of the color
name distributions. Secondly, we have seen a method to learn color names from
uncalibrated images collected from Google Image search. We have discussed a
PLSA-based learning to cope with the inherently noisy data retrieved from Google
Image search (the data contains many false positives). Learning color names from
image search engines has the additional advantage that the method can easily vary
the set of desired color names, something that is otherwise very costly.

Comparing the results of the two methods, we observed that the parametric
method obtains superior results on calibrated data, and that the PLSA method
outperforms the parametric model for real-world uncalibrated images. We use the
term uncalibrated to refer to all kinds of deviations from the perfect setting of
a single-color patch on a gray background. Hence, uncalibrated refers not only
to unknown camera setting and unknown illuminant but also to the presence
of physical events such as shadows and specularities. In the future, when color
image understanding has improved, with improved illuminant estimation, and
better object segmentations, the fact that the initial image is uncalibrated becomes
less relevant. In such a scenario where we will be able to automatically calibrate
uncalibrated data, the parametric models will become more important. The
robustness that we observe now in the PLSA model will then be a disadvantage
because it leads to reduced sensitivity. As a last remark, we would like to point
out that we have ignored the interactions between neighboring colors, which can
greatly influence the color sensation. With the usage of induction models, the
perceived color sensation can be predicted [363, 364]. Therefore, addition of such
models in color-naming algorithms is expected to improve results.
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18
18 Segmentation of Multispectral

Images

With contributions by Harro M. G. Stokman

Spectral information has become an important quality factor in many imaging
processes because of its high accuracy. Spectral imaging is used, for example, in
remote sensing, computer vision, and industrial applications. Spectral images can
be obtained, for example, by a CCD camera with narrow-band interference filters
[365]. Photometric invariance can be derived from multispectral images. In fact,
the techniques presented in the previous chapters can be used to detect regions
in multispectral images. To obtain robustness against noise, noise propagation
can be adopted as discussed in Chapter 4. More information can be found in
Reference 366.

In this chapter, methods are discussed to obtain photometric invariant region
detection. In Section 18.3, the effect of sensor noise is discussed. Region detection
is described in Section 18.4. In Section 18.5, the theoretical estimated uncertainty
in polar angular representation is compared empirically to the real uncertainty.
Experiments are carried out to evaluate the segmentation method, which are
discussed in Section 18.6.

Portions reprinted, with kind permission from Springer Science + Business Media B.V., from ‘‘Robust
Photometric Invariant Region Detection in Multispectral Images,’’ by Th. Gevers and H.M.G.
Stokman, in International Journal of Computer Vision, Volume 53 (2), pp 135–151, 2003 © 2003
Springer.

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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18.1 Reflection and Camera Models

18.1 Reflection and Camera Models

In this section, we discuss the camera and image formation model. On the basis
of the models, we examine cluster shapes drawn by uniformly colored objects in
multispectral color space.

18.1.1 Multispectral Imaging

We use the Imspector V7 spectrograph from Spectral Imaging Ltd. The spec-
trograph transforms the monochrome CCD camera to a line scanner: one axis
displays the spatial information, whereas along the other axis the visible wave-
length range is recorded generating an image h(x, λ) for each position (x, λ). The
Jain CV-M300 camera is used with 576 pixels along the optical axis. We use the
Imspector V7 spectrograph with shortest observable wavelength of 410 nm and
longest wavelength of 700 nm. The wavelength interval corresponds to 5 nm.

18.1.2 Camera and Image Formation Models

We use a linear camera model to describe the relation between input signal hi
and the output signal ci for the ith color channel at position �x as

ci(�x, λ) = γif
i(�x, λ) + d(�x), (18.1)

where d(�x) denotes the dark current independent of the wavelength and γi denotes
the camera gain for the ith color channel. For the moment, we ignore the dark
current for notational simplicity. For the same reason, the notation for the position
is left out.

The camera gain may further be refined as consisting of two terms

γi = γe · γw,i, (18.2)

where γe denotes the electronic gain and γw,i denotes the white-balancing gain.
For inhomogeneous, dielectric materials, the measured input signal hi of

Equation 18.1 is described by the dichromatic reflection model [26] (Chapter 3).
According to Equation 3.6, we obtain

f i(λ) = mb(�n, �s)
∫

λ

ρc(λ)e(λ)cb(λ)dλ + mi(�n, �s, �v)
∫

λ

ρc(λ)e(λ)cs(λ)dλ,

(18.3)

denoting the camera output (without the camera gain) for filter ρc with central
wavelength c. Further, cb(λ) and cs(λ) are the surface albedo and Fresnel
reflectance respectively, �n is the surface patch normal, �s is the direction of the
illumination source, and �v is the direction of the viewer. Geometric terms mb and
mi denote the geometric dependencies on �n, �s and �v. Finally, e(�x, λ) is the spectral
power distribution of the incident (ambient) light at the object surface at �x.
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18 Segmentation of Multispectral Images

18.1.3 White Balancing

According to Equation 18.3, a matte, white reference standard with constant
spectral response can be described by cb(λ) = 1 and mb(�n, �s) = 1. Furthermore,
assume that the camera is not white balanced so γw,i = 1, say, for all color channels
i. The measured sensor values are obtained substituting the body reflection of
Equation 18.3 in Equation 18.1 as

wi(λ) = γe

∫
λ

ρc(λ)e(λ)dλ, (18.4)

denoting the sensor response for the white matte reference standard. The gain
parameter γw,i of Equation 18.2 is adjusted, either by the white-balancing proce-
dure of the CCD camera or else manually, as

γw,i = 1

wi(λ)
. (18.5)

Then the output of a white-balanced camera system is as follows:

ci(λ) = γemb(�n, �s) ∫
λ
ρc(λ)e(λ)cb(λ)dλ

γe

∫
λ
ρc(λ)e(λ)dλ

+ γemi(�n, �s, �v) ∫
λ
ρc(λ)e(λ)cs(λ)dλ

γe

∫
λ
ρc(λ)e(λ)dλ

.

(18.6)

Considering the neutral interface reflection (NIR) model [26] (assuming that cs(λ)

has a nearly constant value independent of the wavelength), we obtain cs(λ) = cs.
Then the specular term of Equation 18.6 rewrites to

si(λ) = mi(�n, �s, �v)cs
∫
λ
ρc(λ)e(λ)dλ∫

λ
ρc(λ)e(λ)dλ

= mi(�n, �s, �v)cs, (18.7)

making the surface reflection term of Equation 18.3 independent of the spectral
distribution of the light source. Owing to the white-balancing operation and
the NIR assumption, the color channels ci(λ) produce equal output when an
achromatic object is imaged.

Further, in case of the Imspector V7 spectrograph, we have narrow band filters
ρ(λi), which can be modeled as a unit impulse that is shifted over i wavelengths:
the transmission at λi = δ and zero elsewhere. Note the subtle difference between
ρc(λ) and ρ(λc). ρc(λ) denotes a broad-band color filter (integrating over various
wavelengths) with central wavelength c. ρ(λc) denotes a narrow-band filter of
unit impulse at wavelength c. Then Equation 18.7 rewrites to

s(λi) = mi(�n, �s, �v)e(λi)c
s

e(λi)
= mi(�n, �s, �v)cs, (18.8)
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18.2 Photometric Invariant Distance Measures

again independent of λ and consequently invariant to the spectral distribution of
the light source. Further, assuming narrow-band filters, Equation 18.6 rewrites to

c(λi) = mb(�n, �s)e(λi)c
b(λi)

e(λi)
+ mi(�n, �s, �v)e(λi)c

s

e(λi)
= mb(�n, �s)cb(λi) + mi(�n, �s, �v)cs,

(18.9)

corresponding to the camera output at wavelength λi, making the whole dichro-
matic reflection model of Equation 18.3 independent of the spectral distribution
of the light source (i.e. color constancy). In vector notation, a spectrum is
denoted as

�c = mb(�n, �s)�cb + mi(�n, �s, �v)�cs. (18.10)

The vectors �n, �s, and �v are three-dimensional. The vectors �c, �cb, and �cs are N-
dimensional, with N the number of samples taken in the wavelength range.

18.2 Photometric Invariant Distance Measures

From Chapter 4, we know that uniformly colored matte objects draw unit-
constrained vectors (half rays) in (multispectral) color space due to changes in
the surface orientation, illumination intensity, and shading. In addition, because
of specularities, shiny objects draw half planes in multispectral space. Hence, for
photometric invariant region detection, the shape of the clusters can be modeled
as either a half ray or a half plane. In the next section, the angular representation
of spectra is discussed.

18.2.1 Distance between Chromaticity Polar Angles

Spectra can be transformed into polar coordinates. To define polar coordinate
descriptors, the origin O and a positive horizontal axis are fixed. Then each
N-dimensional point �P can be located by assigning to it polar coordinates (ρ, �θ)

where the one-dimensional term ρ gives the distance from O to �P and the
(N − 1)-dimensional term �θ gives the angles from the initial axis to �P.

A spectrum defined by Equation 18.9 is transformed to its polar coordinate
representation as

ρt = |�c|, (18.11)

θc(λi) = arctan

(
c(λi)

c(λN )

)
, 1 ≤ i ≤ N − 1 (18.12)

where ρt encodes the intensity of the spectrum and θc(λi) the chromaticity of the
spectrum. θc(λi) takes on values in the range 0 ≤ θc ≤ π

2 .
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18 Segmentation of Multispectral Images

For the analysis of photometric invariance indexMultispectral images!angular
representation of the chromaticity angular representation of spectra, substitution
of the body reflection term of Equation 18.9 in 18.12 gives

θc(λi) = arctan

(
mb(�n, �s)cb(λi)

mb(�n, �s)cb(λN )

)
= arctan

(
cb(λi)

cb(λN )

)
, (18.13)

independent of geometry term mb(�n, �s).
The quadratic distance, e, between any two M-dimensional vectors of angles

�θ1 and �θ2 is defined as follows:

e2(�θ1, �θ2) =
M∑

i=1

(
�(θ1i, θ2i)

)2
, 0 ≤ θ1i, θ2i < 2π. (18.14)

Here, θ1i denotes the ith of M angles for the first vector. The distance �(θi, θj)

takes values in the interval [0, 1] and is defined as follows:

�(θi, θj) = [(cos(θi) − cos(θj))
2 + (sin(θi) − sin(θj))

2]1/2. (18.15)

The angular difference � is indeed a distance because it satisfies the following
metric criteria:

■ �(θi, θj) ≥ 0 for all θi and θj,

■ �(θi, θj) = 0 if and only if θi = θj,

■ �(θi, θj) = �(θj, θi) for all θi and θj,

■ �(θi, θj) + �(θj, θk) ≥ �(θi, θk) for all θi, θj, and θk .

The proof of the first three conditions is trivial. To see the triangular inequality,
consider two angles θi, θj. Define

�θi = [ cos(θi) sin(θi) ]T , (18.16)

and define �θj in a similar manner. Since �(θi, θj) = d(�θi, �θj) where d denotes the
well-known Euclidean distance, the triangular inequality is proved.

Since chromaticity polar angles are independent of the geometry of the object,
as was shown in Equation 18.13, the distance between two chromaticity angles is
photometric invariant as well.

18.2.2 Distance between Hue Polar Angles

Consider an N-dimensional spectrum �c defined by Equation 18.9 transformed to
a different polar coordinate representation as follows:

ρs = 1 − min{c(λ1), . . . , c(λN )}, (18.17)
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18.2 Photometric Invariant Distance Measures

θh = α[ c(λi) − [1 − ρs], φ(i, N) ], (18.18)

where θh takes on values in the range 0 ≤ θh < 2π and where

φ(i, N) = i − 1

N − 1
· 4

3
π , (18.19)

and

α(wi, θi) = arctan

( ∑N
i=1 wi sin(θi)∑N
i=1 wi cos(θi)

)
. (18.20)

The function φ takes on values in the range 0 ≤ φ(i, N) ≤ 4
3π . The function α

takes on values in the range 0 ≤ α < 2π . The function denotes the weighted
average of a series of N angles θi with corresponding weight wi. The average
is computed by decomposing the angular value into a horizontal and vertical
component. The saturation of the spectrum is encoded by ρs. The angle θh can
be thought of as the hue obtained directly from multispectral data. The function
φ(i, N) assigns a hue angle to the ith of N spectral samples. The range from
0 . . . 4/3π is reserved for the colors ranging from red through green through
blue, so that the range from 4/3π . . . 2π represents the purplish colors. The
choice of 4/3π is somewhat arbitrary but can be defended by taking the hue
computation into account based on conventional red-green-blue colors where
a similar division is employed. For example, reconsider the definition of hue
according to Equation 3.62:

θ = arctan

( √
3(G − B)

(R − G) + (R − B)

)
. (18.21)

Equation 18.19 assigns hue-angle θh = 0 to the red channel, hue-angle θh =
2/3π to the green channel, and θh = 4/3π to the blue channel. Let ρs =
1 − min{R, G, B}, then the weights of Equation 18.20 are defined as w1 = R − ρs
for the red channel, w2 = G − ρs for the green channel, and w3 = B − ρs for the
blue channel. Substitution of these results into Equation 18.18 gives

θ = arctan

(
(R − ρs) sin(0) + (G − ρs) sin(2/3π) + (B − ρs) sin(4/3π)

(R − ρs) cos(0) + (G − ρs) cos(2/3π) + (B − ρs) cos(4/3π)

)
,

= arctan

(
1
2

√
3G − 1

2

√
3B

R − 1
2 G − 1

2 B

)
= arctan

( √
3(G − B)

(R − G) + (R − B)

)
, (18.22)

identical to Equation 18.21.
The polar coordinates are illustrated in Figure 18.1. The hue polar angle

θh is invariant to the geometry and specularities: For a multispectral camera
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18 Segmentation of Multispectral Images
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Figure 18.1 Polar coordinate

representation of a spectrum

depicted as a Euclidean map.

ρs encodes the saturation of

the spectrum and θh encodes

the hue. The hue polar angle

forms a unit half plane

emanating from the origin in

multispectral space. The hue

range from 0 . . . 4/3π is

reserved for the colors ranging

from red (700 nm) through

green (550 nm) to blue

(400 nm). The range from

4/3π . . . 2π (dashed part of the

hue circle) represents purplish

colors.

with narrow-band filters, consider substitution of Equation 18.9 in the term
c(λi) − [1 − ρs] of 18.18 as

c(λi) − [1 − ρs] = mb(�n, �s)[cb(λi)c
b(λρ)], (18.23)

where cb(λρ) = min{c(λ1), . . . , c(λN )}. This term is clearly independent of the
specularity term mi(�n, �s, �v). Moreover, the hue polar angle is independent of
shadows (i.e., assuming that the light in the shadow has the same spectral
characteristics as the light in the nonshadow area) and geometry as the substitution
of Equation 18.23 in Equation 18.18 gives

θh = arctan

( ∑N
i=1[cb(λi) − cb(λρ)] sin[φ(i, N)]∑N
i=1[cb(λi) − cb(λρ)] cos[φ(i, N)]

)
, (18.24)

independent of the geometric term mb(�n, �s). Similar arguments hold for the
white-balanced spectral sharpened RGB camera.

The distance between two hue polar angles θh,i, θh,j is computed as �(θh,i, θh,j)

where � is defined in Equation 18.15. Because the hue polar angle is independent
of the geometry of the object and independent of shadows and specularities,
the distance between two hue polar angles is therefore photometric invariant
as well.
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18.3 Error Propagation

18.2.3 Discussion

The distance between chromaticity angles, �(θc,i, θc,j), is a photometric invariant
for shadows (i.e., assuming that a shadow area has the same spectral characteristics
as the light source) and the geometry of objects. Similarly, the distance between
hue-angles, �(θh,i, θh,j), is a photometric invariant to shadows, the geometry, and
highlights (i.e., again assuming spectrally uniform illumination). These novel
invariant measures come at the expense of requiring white balancing.

18.3 Error Propagation

For noise propagation, we reconsider Section 4.5.1 where the result of the
measurement of a quantity u is properly stated as

û = ue ± σu, (18.25)

where ue is the best estimate for the quantity u and σu is the uncertainty or error
in the measurement of u. Suppose that u, . . . , w are measured with corresponding
uncertainties σu, . . . , σw, and the measured values are used to compute the function
q(u, . . . , w). If the uncertainties in u, . . . , w are independent, random and small,
then the estimated uncertainty in q̂ [42] is

σq =
√(

∂q

∂u
σu

)2

+ · · · +
(

∂q

∂w
σw

)2

. (18.26)

The uncertainty in q is never larger than the ordinary sum

σq ≤
∣∣∣∣∂q

∂u

∣∣∣∣ σu + · · ·
∣∣∣∣ ∂q

∂w

∣∣∣∣ σw. (18.27)

In fact, this equation is really the upper limit on the uncertainty as proved by
Taylor [42]. Therefore, whether or not the errors in u, . . . , w are dependent (or
normally distributed), the uncertainty in q will never exceed the right side of
Equation 18.27. Therefore, Equation 18.27 can be used for independent and
dependent errors and will be used in the following sections to propagate noise
through the polar angle representations of spectra.

18.3.1 Propagation of Uncertainties due to Photon Noise

Modern CCD cameras are sensitive enough to be able to count individual
photons. Photon noise arises from the fundamentally stochastical nature of photon
production. The probability distribution for counting ρ photons during t seconds
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18 Segmentation of Multispectral Images

is known to follow the Poisson distribution. The number of photons measured at
pixel x is given by its average as

ĥ(x) = ρt ± √
ρt. (18.28)

Let σd denote the dark current uncertainty. Incorporating σd and the uncertainty
of Equation 18.28 in Equation 18.1 gives

c(x) ± σc(x) = γ [ρt ± √
ρt] + [d(x) ± σd]. (18.29)

Our interest is in computing σc(x). Let the dark current variance be denoted as
var(d) = σ 2

d . Let the average image intensity measured over a homogeneously
colored patch be Î = γρt; then the associated variance var(Î) = γ 2ρt. We have
the linear relation between Î and var(Î) based on [367] as

var(Î) + var(d̂) = γ Î + var(d̂). (18.30)

Linear regression among some intensity-variance pairs gives a robust estimation
of the gain γ . It follows that the uncertainty in the number of photons measured
at an arbitrary pixel c(x) is given by

σ 2
c (x) = [γ · c(x)]2 + σ 2

d . (18.31)

18.3.2 Propagation of Uncertainty

As stated before, the Jain CV-M300 camera is used with 576 pixels along the
optical axis. We use the Imspector V7 spectrograph, from 410 nm to 700 nm, with
a wavelength interval of 5 nm. Then the number of spectral samples obtained is
59. In fact, these 59 samples are recorded (uniformly spaced) over the 576 pixels
along the optical axis. Therefore, the pixels at position (x, λ) of image h can be
averaged in spectral direction by a uniform filter depending on the number of
pixels. Let K ′ = round(576/59). If K ′ is odd, then the size of the filter K = K ′,
else K = K ′ − 1. The averaged spectral image h′ is

h′(x, λ) = 1

K

yλ+�K/2�∑
i=yλ−�K/2�

h(x, λi). (18.32)

The uncertainty in a pixel value is propagated to the uncertainty in polar angles
as follows. First, it is assumed that the pixel values in the spectral image
are dependent. Therefore, using Equation 18.27 instead of Equation 18.26, the
uncertainty due to the smoothing operation of Equation 18.32 reduces to

σ 2
h′(x, λ) = 1

K

yλ+�K/2�∑
i=yλ−�K/2�

σ 2
h (x, λi). (18.33)
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18.3 Error Propagation

From Equation 18.9, it follows that the uncertainty in the white-balanced camera
output is

σ 2
c′(x, λi) = c2(x, λi)σ

2
w(x, λi) + w2(x, λi)σ

2
c (x, λi)

w4(x, λi)
, (18.34)

where c′ denotes the white-balanced camera output and c denotes the observed
camera output. w denotes the output for the white matte reference standard.

For the general function q(u, v) = arctan(u/v), where the parameters u, v are
dependent and have associated uncertainties σu, σv, the uncertainty in output σq is
obtained using Equation 18.27 as

σq ≤
∣∣∣∣ vσu

u2 + v2

∣∣∣∣ +
∣∣∣∣ uσv

u2 + v2

∣∣∣∣ . (18.35)

The function is shown in Figure 18.2. Large uncertainties occur if u and v both
approach the value zero. The polar angles of Equation 18.12 are interdependent as
each angle is obtained by division through the same value θ(λN ). The uncertainty
in chromaticity polar angle of Equation 18.12 therefore follows straightforward
from Equation 18.35 by substituting u = c(λi), v = c(λN ), and where both σu and
σv are obtained from Equation 18.34.

To obtain an estimate of the uncertainty of the hue polar angle, consider the
term c(λi) − [1 − ρs] of Equation 18.18. The parameters c(λi) and ρs are assumed
independent because the reflectance factor c(λi) is assumed to be obtained
independent from the reflectance factor ρs = 1 − min{c(λ1), . . . , c(λN )}. Thus,
the resulting uncertainty is obtained using Equation 18.26 as

σ 2
c−[1−ρ](λi) = σ 2

c (λi) + σ 2
ρ . (18.36)
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Figure 18.2 Uncertainty in

the function arctan(u/v) as the

function of u and v. The
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set equal to one. Large
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and v approach the value

zero, indicating the instability

of the function around the

origin.
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18 Segmentation of Multispectral Images

The uncertainty for the hue polar angle of Equation 18.18 follows from Equation
18.20. The exact number generated by Equation 18.19 has no associated uncer-
tainty, and therefore sin[φ(i, N)] has no associated uncertainty. However, the
weights wi = c(λi) do have uncertainty σc(λi), again specified by Equation 18.34.
The individual terms wi sin(θi) are considered independent because the reflectance
factor wi = c(λi) is assumed to be obtained independent from the reflectance fac-
tor at wavelength wj = c(λj). Therefore, the uncertainty of the enumerator term
u = ∑

i wi sin(θi) is

σ 2
u =

∑
i

(σc(λi) · sin[φ(i, N)])2. (18.37)

A similar argument holds for the denominator term u = ∑
i wi cos(θi) yielding σv.

The uncertainty for Equation 18.20 is then obtained by straightforward substitution
of u, σu, and v, σv in Equation 18.35.

In summary, the uncertainty in the reflectance factors of a spectrum is deter-
mined in theory by converting a pixel color value into the number of photons
counted at that pixel. Under the assumption that counting photons follows a
Poisson distribution, the uncertainty associated with a pixel value is determined.
The obtained uncertainty is propagated to the uncertainty in the two polar angle
representations of the spectrum.

18.4 Photometric Invariant Region Detection
by Clustering

In Chapter 4, it was shown that uniformly colored objects of matte material draw
half rays in RGB and multispectral color space due to changes in the surface
orientation, illumination intensity, and shading. In Section 18.2, it was derived
that the distance from a spectrum to such half rays is a photometric invariant.
Furthermore, in Section 18.3, we derived for the ith spectrum �ci, i = 1, · · · , n
that the uncertainty �σi can be obtained using Equation 18.34. In this section, the
uncertainty of the polar angle representations will be incorporated into the image
segmentation scheme.

18.4.1 Robust K-Means Clustering

Let a multispectral image consist of spectra �ci, i = 1, . . . , n, with corresponding
uncertainties �σi. The well-known K-means clustering method [368] segments
the image by minimizing the squared error criterion. A clustering is a partition
[�v1, . . . , �vK] that assigns each spectrum to a single partition �vj, 1 ≤ j ≤ K. The
spectra assigned to �vj form the jth cluster. We assume that the number K is given.
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18.4 Photometric Invariant Region Detection by Clustering

We compute the cluster center as the weighted average [42]. If M spectra �ci
with corresponding uncertainties �σi, i = 1, . . . , M , are assigned to a cluster, then
the weighted average is computed as

�v =
∑M

i=1 �wi · �ci∑M
i=1 �wi

, (18.38)

where the weights are the inverse squares of the uncertainties

�wi = 1

�σi · �σi
. (18.39)

Since the weight attached to each measurement involves the square of the
corresponding uncertainty σi, any measurement that is much less precise than the
others contributes very much less to the final answer (Eq. 18.38). With �ci the
series of M spectra assigned to the j-th cluster, and with �vj the weighted average
of the spectra, the squared error for the j-th cluster is

e2
j =

M∑
i=1

(�ci − �vj) · (�ci − �vj), (18.40)

and the squared error for the clustering is

E2 =
K∑

i=1

e2
i . (18.41)

The objective of the K-means clustering method is to define, for given K, a
clustering that minimizes E2 by moving spectra from one cluster to another.

18.4.2 Photometric Invariant Segmentation

To obtain photometric invariant region detection, we cluster on K straight lines
from the origin. Assume that the N-dimensional spectrum �c is described by
Equation 18.10 with associated uncertainty �σc obtained from Equation 18.34. The
spectrum is transformed to chromaticity polar angles �θ by Equation 18.12 with
associated uncertainty �σθ obtained from Equation 18.35.

To cluster in polar angle space, the angular distance of Equation 18.14 replaces
Equation 18.40 and the weighted angular average of Equation 18.20 replaces
Equation 18.38. Given K clusters v, the spectrum is then assigned to the closest
cluster. In the next step of the clustering algorithm, new partitions are obtained
by moving spectra from one cluster to another. Kender [96] pointed out that color
space transforms are unstable for sensor input values near the singularity. As is
clear from Equation 18.35, the instability of the polar angle transformation is the
drawback of the polar angle representation of the spectrum. The instability is dealt
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18 Segmentation of Multispectral Images

with by updating the cluster by the weighted sum as defined by Equation 18.20,
where the weights wj are derived by Equation 18.39. In other words, transformed
polar angles with higher uncertainty contribute much less to the final estimate
of the cluster than polar angles with small uncertainty. It was shown that the
chromaticity polar angle representation is invariant to changes in the geometry of
a uniformly colored object. Therefore, clustering in chromaticity polar angle space
yields regions invariant to the geometry. In conclusion, using the uncertainties,
we obtain segmentation results invariant to photometric effects and robust against
noise.

To find homogeneously colored surfaces from glossy materials, we cluster in
the hue polar angle representation.

For shiny surfaces, the spectrum is transformed to the hue polar angle θh by
Equation 18.18 with associated uncertainty σθh

obtained from Equation 18.35.
Given K clusters, the distance from the cluster υj to the spectrum is derived
by Equation 18.14. The spectrum is then assigned to the closest cluster υi. The
instability of the polar angle transformation is again dealt with by updating the
cluster using the weighted sum (Eq. 18.20). In other words, transformed polar
angles with higher uncertainty contribute much less to the final estimate of the
cluster than polar angles with small uncertainty. In conclusion, it was shown
that the hue polar angle representation is invariant to changes in the geometry
and specularities. Therefore, clustering in hue polar angle space yields regions
invariant to the geometry and specularities. Using the weighted sum for the
updating of cluster centroids achieves robustness against noise.

18.5 Experiments

All multispectral images are grabbed using a Jain CV-M300 monochrome CCD
camera, Matrox Corona Frame-grabber, Navitar 7000 zoom lens, and Imspector
V7 spectrograph under 500 Watt halogen illumination. The RGB images are
grabbed using a Sony 3CCD color camera XC-003P and four Osram 18 Watt
‘‘Lumilux deLuxe daylight’’ fluorescent light sources.

To estimate the values of the electronic gain parameter γe (Eq. 18.2) and the
value of the dark current variance of Equation 18.30 for the monochrome camera,
19 images are taken of a white reference while varying the lens aperture such
that each image has a different intensity as shown in Figure 18.3. A line is fitted
through the intensity-variance data yielding an electronic gain of γ = 0.0069, and
dark current variance of σ 2

d = 0.87.
The RGB camera has a white-balancing option. The goal is therefore to establish

the overall value of the camera gain γi, where i ∈ {R, G, B}. To that end, 26 images
are taken of a white reference while repeating the procedure to obtain different
intensity images. The data are shown in Figure 18.4. Fitting three lines through a
common origin yields a camera gain of γR = 0.040, of γG = 0.014, of γB = 0.021
and dark current variance σ 2

d = 2.7.
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18.5 Experiments
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Figure 18.3 Visualization

of the fitted line

var(I) = γ I + var(d) for the

Jain monochrome camera.
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Figure 18.4 Visualization

of the fitted lines

var(Ii) = γi Ii + var(d),

where i ∈ {R, G, B} for the

Sony color camera.

Diamonds correspond to

the red color channel,

squares to green, and

circles to blue.

18.5.1 Propagation of Uncertainties in Transformed Spectra

Models were presented in (Eqs. 18.31, 18.33, and 18.34) to estimate uncertainties
resulting from sensor noise in a spectrum for white-balanced camera systems.
The goal of the experiment is to verify empirically the validity of the equations.
Therefore, five multispectral images are taken from uniformly colored sheets of
paper such that the entire spectral image exhibits one single color. The colors are
red, yellow, green, cyan, and blue.
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18 Segmentation of Multispectral Images

Using the gain parameters, the uncertainty in the white-balanced camera output
σ̂c(λ) can be estimated (Eq. 18.31). The estimated uncertainties are averaged for
each wavelength over the spatial range as

σ̂c(λ) = 1

M

M∑
i=1

σc(xi, λ), (18.42)

for M pixels along the one-dimensional spatial axis of the multispectral image.
The real uncertainty is derived from the standard deviation of reflectance factors
c(λ) over the spatial range as

σ 2(λ) = 1

M − 1

M∑
i=1

(
c(xi, λ) − c(λ)

)2
, (18.43)

where c(λ) denotes the average reflectance factor. The absolute difference
δ(σ̂ (λ), σ(λ)) between the real and estimated error is obtained as

δ(σ̂c(λ), σc(λ)) = |σ̂c(λ) − σc(λ)|, (18.44)

and then averaged over the wavelength range as

δ(σ̂ , σ) = 1

N

N∑
i=1

δ(σ̂c(λi), σc(λi)), (18.45)

where N denotes the number of samples taken in the wavelength range. Owing
to the low sensitivity of the CCD camera and low transmittance of the illuminant
at lower wavelengths, the uncertainty is greater at the lower wavelengths than
at higher wavelengths. The reflectance of a spectrum at a certain wavelength is
expressed as the reflectance factor c(λ) taking on values between 0 and 1. The
difference between the estimated and real uncertainty in the reflectance factor is
given in Table 18.1 and is approximately 0.01, corresponding to 1%. Therefore,

Table 18.1 Results differentiated for the estimated and real

uncertainties in reflectance factors after the white-balancing

operation for multispectral images of uniformly colored paper

as indicated.

Multispectral

Color δ(σ̂ (λ), σ(λ)) (Eq. 18.44), (Eq. 18.45)

Red 0.011 ± 0.011

Yellow 0.011 ± 0.011

Green 0.009 ± 0.011

Cyan 0.008 ± 0.011

Blue 0.006 ± 0.011
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18.5 Experiments

the table shows a very reasonable correspondence between the measured and real
uncertainty. This conclusion can be confirmed visually by examination of Figure
18.5.

The estimation of the uncertainty in the chromaticity and hue polar angles by
Equation 18.35 is verified empirically in a similar way. The average of a series
of M angular values θi, i = 1, . . . , M , with equal weights wi is computed using
Equation 18.20 and is denoted θ . The standard deviation is computed as

σθ = 1

N − 1

N∑
i=1

[
�(θ , θi)

]2
, 0 ≤ θ , θi < 2π (18.46)

where � is defined by Equation 18.15. Similarly, the difference �(σ̂θ (λ), σθ (λ))

between the real and estimated error between chromaticity angles at a certain
wavelength is obtained using Equation 18.15. The results are averaged over the
wavelength range as

δ(σ̂θ , σθ ) = 1

N

N∑
i=1

�(σ̂θ (λi), σθ (λi)). (18.47)

The results of the experiment are given in Table 18.2. The dimension of chromatic-
ity polar angles is the number of spectral samples minus one. The second column
of the table specifies the results for the spectrograph. The results are averaged over
58 chromaticity angles; therefore, the standard deviation is given as well. The third
column specifies the results for the RGB camera averaged over two chromaticity
angles. The chromaticity angles are in the range of 0–90◦, the difference between
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Figure 18.5 Yellow paper.

Experiment: Comparison of

the estimated uncertainty

(dashed line) versus the

real uncertainty (solid line)

of the reflection factors for

a yellow paper.
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18 Segmentation of Multispectral Images

Table 18.2 Results differentiated for the estimated and

measured uncertainties in chromaticity polar angles using

equation 18.47.

Multispectral RGB
Color δ(σ̂θ , σθ ) δ(σ̂θ , σθ )

Red 0.6 ± 0.8 1.26

Yellow 0.5 ± 0.7 0.01

Green 1.6 ± 2.4 0.36

Cyan 0.7 ± 0.7 0.11

Blue 0.9 ± 1.1 0.07

the estimated and real uncertainty is less than 1%. Consequently, there is a very
reasonable correspondence between the measured and real uncertainty. A more
detailed example is given in Figure 18.6 for the results for the yellow color.

Similarly, for the hue polar angle, the results are given in Table 18.3. The
hue angles are in the range of 0–360◦, the difference between the estimated
and real uncertainty is less than 1%. Consequently, there is a very reasonable
correspondence between the measured and real uncertainty.

18.5.2 Photometric Invariant Clustering

18.5.2.1 Multispectral Images Figure 18.7a shows a multispectral image of
a textile sample. The spectral information is on the vertical axis. The top of the
picture corresponds to 410 nm, the bottom to 700 nm. The left-hand side of the
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Figure 18.6 Yellow paper,

uncertainty in chromaticity

angle. The absolute

difference averaged over

the wavelength range is

0.5 ± 0.7◦.
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18.5 Experiments

(a) (b)

Figure 18.7 (a) A multispectral image of a textile sample. The spatial information is on the horizontal

axis and the spectral information is on the vertical axis. The top corresponds to 410 nm wavelength, the

bottom to 700 nm wavelength. The left-hand side of the image is colored homogeneously red and the

right-hand side is colored green. The structure of the textile is visible through the intensity fluctuations

occurring in the further homogeneous spectra. (b) The spectra of two plastic objects. The left-hand

side object is colored orange and the right-hand side object is green. The objects are smooth and

structureless, but reflect specularities showing up as the vertical bright streaks in the spectral image.

Furthermore, the intensity of the spectra gradually reduces toward the right-hand side of the image

because of a change in the surface orientation of the objects.

Table 18.3 Results differentiated for the estimated and

measured uncertainties in hue polar angles using equation

18.15.

Multispectral RGB
Color δ(σ̂θ , σθ ) δ(σ̂θ , σθ )

Red 0.7 1.1

Yellow 0.4 0.5

Green 2.1 1.8

Cyan 0.5 0.7

Blue 1.7 0.5

image is from homogeneously red colored textile, the right-hand side is colored
green. The structure of the textile is visible in intensity fluctuations occurring in
otherwise homogeneous spectra. The result of clustering in the chromaticity polar
angle space is shown in Figure 18.8. The figure shows how the spectra form half
rays because of the geometry changes of the structure of the textile. Fitting of
half rays through the chromaticity angle representation results in invariance for
shadows and surface orientation changes.

Figure 18.7b shows the spectra of two plastic objects. The left-hand side object
is colored orange, the right-hand side object is green. The objects are smooth and
structureless, but reflect specularities showing up as the vertical bright streaks in
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18 Segmentation of Multispectral Images
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Figure 18.8 Result of

clustering in the chromaticity

polar angle space for the

multispectral image shown in

Figure 18.7a. The result is

shown for the angle between

the 510 and 710 nm

wavelength. The spectra form

half rays because of the

geometry changes of the

structure of the textile. Fitting

of half rays through the

chromaticity angle

representation results in

invariance for shadows and

surface orientation changes.
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Figure 18.9 Result of

clustering in hue polar angle

space for the image shown in

Figure 18.7b. Clustering in hue

polar angle representation

results in independence to the

highlights and surface

orientation changes.
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18.5 Experiments

the spectral image. Furthermore, the intensity of the spectra gradually reduces
toward the right-hand side of the image because of a change in the surface
orientation of the objects.

The result of clustering in hue polar angle space is shown in Figure 18.9.
Clustering in hue polar angle representation results in independence to the
highlights and surface orientation changes..

18.5.2.2 RGB images Figure 18.10 shows an RGB image of several toys
against a background consisting of four squares. The upper left quadrant of the

(a) (b)

(c) (d)

Figure 18.10 Segmentation results for the K-means clustering method. (a) RGB image. (b) Cluster

model is a point, region detection is sensitive to intensity changes, shadows, geometry, highlights, and

color transitions. (c) Cluster model is a half ray, region detection is sensitive to highlights and color

transitions. (d) Cluster model is a triangularly shaped plane, region detection is sensitive only to color

transitions.

337

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 Segmentation of Multispectral Images

image consists of three uniformly painted matte cubes of wood. The upper right
quadrant contains two specular plastic donuts on top of each other. In the bottom
left quadrant, a red highlighted ball and a matte cube are shown, while the last
quadrant contains two matte cubes. Each individual object is painted uniformly
with a distinct color. The image is contaminated by noise, shadows, shading, and
specularities.

In Figure 18.10b, the segmentation result is shown obtained by the K-means
clustering method in RGB data. False regions are detected because of abrupt
surface orientations, shadows, inter-reflections, and highlights. In contrast, the
result of clustering in the chromaticity polar angle space is shown in Figure 18.10c.
Regions are detected insensitive to shadows and surface orientation changes but are
affected by highlights. The result of clustering in the hue polar angle space is shown
in Figure 18.10d. Here, computed region edges correspond to material boundaries
discounting the disturbing influences of surface orientation, illumination, shadows,
and highlights. The difference between Figure 18.10c,18.10d is the invariance of
the latter to the specularities reflected at the red ball.

18.6 Summary

We have discussed the detection of photometric invariant regions in multispectral
images robust against sensor noise. Therefore, different polar angle representations
of a spectrum are examined for invariance using the dichromatic reflection model.
These invariant representations take advantage of white balancing. On the basis
of camera sensitivity, the certainty is calculated and is associated with the polar
angular representations under the influence of noise. The expression is employed
by the segmentation technique to ensure robustness against sensor noise.
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Applications
color constancy, 143, 152, 161
feature detection, 189
feature extraction, 189
image retrieval, 221, 233, 282

color names, 313
image segmentation, 189, 244
object recognition, 221, 282
road detection, 129
skin detection, 132

Chromatic adaptation
Bradford transform, 141
CMCCAT2000 transform, 141

Color boosting, 212
photometric robustness, 217

Color constancy, 137
chromatic adaptation, 137–8, 141
color ratios, 69
computational, 138
diagonal offset model, 140
human, 137

chromatic adaptation, 20
ratios, 19

human color constancy, 18
illuminant estimation, 137–8, 140
Retinex, 137

Color constancy methods
Bayesian methods, 162

Color in Computer Vision: Fundamentals and Applications, First Edition.

Theo Gevers, Arjan Gijsenij, Joost van de Weijer, and Jan-Mark Geusebroek.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

color-by-correlation, 161
combination using output statistics,

162
gamut mapping, 152
gamut mapping combination,

157
gamut mapping using N-jet, 157
gamut-constrained illuminant

estimation, 154
gray-edge, 146, 148
gray-world, 143
max-RGB, 145
physics-based methods, 150
shades-of-gray, 146
using high-level visual information,

169
using natural image statistics, 163
using scene categories, 167
white-patch, 144

Color feature detection, 189
Color features, 82, 189

boosting, 212
color distinctiveness, 214
function, 208
repeatability, 215

Canny edge detection, 199
circle patterns, 201
color distinctiveness, 207
color Gabor filtering, 245

363

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Index

Color features (continued)
color tensor, 191–2
corner detection, 199
curvature detection, 201
edge detection, 74, 108
filterbanks, 253, 256
Harris affine, 227
Harris detector, 199, 204, 207, 216
Harris-Laplace, 284
illuminant invariant

edge detection, 73
optical flow, 202
oriented patterns, 198
star and spiral-like patterns, 200
structure tensor, 191

eigenvalue analysis, 198
weighted, 192, 197

symmetry detector, 200, 218
Color histograms, 61, 77

density estimation, 61
Color image descriptors, 82, 120, 221, 271

invariants, 229
C-SIFT, 225, 230
color ratios, 74
discriminative power, 236
H-SIFT, 230
histogram

O1O2, 273
RGB, 273
rg, 273
hue, 273
saturation, 273

HSV-SIFT, 229
information content, 236
SIFT, 222, 273

RGB, 273
rg, 273
C, 273
gray, 273
HSV, 273
hue, 273
opponent, 273

W-SIFT, 230
Color image formation, 26

diagonal, 272
diagonal model, 139, 141, 143
diagonal offset model, 142, 272
full diagonal, 273
highlights, 49, 52

light color change, 273
light color change and shift, 273
light intensity change, 272
light intensity change and shift, 273
light intensity shift, 272
linear model, 319
local diagonal offset model, 142
narrow-band filters, 71
shadows, 49, 82
specularities, 82
von Kries model, 141
white light assumption, 91
white-balanced, 320

Color invariance, 49, 196
blur, 74, 78
body and surface, 55
body reflectance, 53
by learning, 117, 120, 123, 132
coordinate transformations, 195
derivative-based, 81
derivatives, 193
diversified ensembles, 113
full-invariance, 82, 84
H, 97
histogram construction, 61
histograms, 58
illuminant, 71, 77
illumination, 120
irreducible color invariants, 54–5
lighting geometry, 72
multispectral images, 318
noise

estimation, 58
propagation, 58

noise propagation, 58
optical flow, 203
pixel transformation, 49
pixel-based, 49
quasi-invariance, 82, 101, 191, 193
quasi-invariants

shadow-shading, 103
spectral derivatives, 84

Color names, 287
basic color terms, 288
Berlin and Kay, 287
boundaries, 290
calibrated data, 291
evolutionary order, 289
fuzzy logics, 291
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parametric model, 291
PLSA, 307
properties, 288
psychophysical experiments, 292
relativist, 288
uncalibrated data, 304
universalist, 288

Color ratios
blur robustness, 74
color angles, 76
illuminant and object invariance, 73
illuminant invariance, 71
lighting geometry, 72
locally constant illumination, 72

Color saliency, 205
boosting, 207
saliency map, 207

Color spaces, 36
CIE standard, 37
HSI, 42, 210
HSL, 42
HSV, 42, 52
hue, 42
intensity, 51
Lab, 41
Luv, 41
normalized-rgb, 50
opponent color space, 40, 52, 88, 92,

106, 209
perceptually uniform, 41
RGB, 38
saturation, 43
spherical, 104, 208
XYZ, 36

Color vision, 13
assimilation, 21
center-surround, 17
chromatic aberration, 14
chromatic adaptation, 18
chromatic discrimination, 23
color deficiency, 23
color matching function, 36
confusion lines, 23
contrast, 21
contrast sensitivity, 22
dichromats, 23
L,M,S sensitivities, 15
LGN, 16
lightness, 20

luminous efficiency, 16
opponent cells, 17
receptive fields, 16
retina, 14
Retinex theory, 20
rods and cones, 14
spatial frequency, 22
spatial interactions, 20
stages, 14
trichromatic, 13
visual cortex, 16
von Kries adaptation, 20

Datasets
ALOI, 226
ALOT, 249
color constancy, 172

Barcelona set, 174
Bristol set, 173
Color-checker set, 174
Foster et al. set, 173
Grey-ball SFU set, 173
HDR Images, 174
SFU hyperspectral set, 173
SFU set, 173

Corel, 211
CURET, 258
Ebay, 314
Google data, 306
Mediamill, 279, 282
PANTONE, 109, 241
PASCAL VOC, 278–9
TRECVID, 279

Error propagation
polar angles, 326

Evaluation
color constancy

angular error, 176
color constancy index, 177
comparison, 182
perceptual significance, 180

Fisher criterion, 241
Focal colors, 291
Fuzzy sets, 300

Gabor filtering, 245
Gaussian color model , 84, 89–90

derivatives, 89

365

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Index

Gaussian color model (continued)
differential invariants, 90
Hering basis, 87
RGB camera, 88
spatial, 85

Hough transform, 202

Illumination, 65, 69
black body radiator, 26
candle light, 26
correlated color temperature, 26
diffuse light, 26, 140
direction, 51
fluorescent, 26
halogen, 26
intensity, 51
white, 53

Image classification, 271
Image retrieval, 61, 77, 271, 273

normalized average rank, 77
Image segmentation, 120

region based, 264
region detection, 120

road detection, 129
skin detection, 125, 132

texture, 247
Image understanding, 120

LDA, 308

Machine learning
classification scheme, 121
classifiers, 114
stages, 114

Material recognition, 249, 256
Michelson contrast, 72
Mondrians, 70
Monte Carlo simulation, 117
Multispectral images, 318

error propagation, 325
estimated uncertainty, 325

hue distance, 324
hue polar angles, 322
K-means clustering, 328
polar coordinates, 321

Munsell color array, 289

Noise estimation, 58, 61
Noise propagation, 58, 61

Object classification, 278
Object recognition, 61, 70, 77, 120, 132,

221, 271, 273
bag-of-words model, 277
color indexing, 70
material classification, 249, 263

Optical flow, 203

Photometric invariance, 49, 196
Photometric Invariance from Color

Ratios, 69
PLSA, 307

Reflection model
ambient light, 31
Beer-Lambert, 34, 95
canonical illuminant, 35
diagonal model, 34, 272
diagonal-offset transform, 35
dichromatic, 49, 140, 193

differential structure, 193
dichromatic reflection, 27, 29, 34, 101
Fresnel reflectance, 27, 33
interface reflectance, 27, 30, 33
Kubelka-Munk reflection, 32
Lambert’s law, 29
Lambertian, 28, 34, 36, 51, 53, 71, 90,

139
neutral interface reflectance, 30, 33
specularities, 31
surface albedo, 28
von Kries, 34

Region detection
texture, 247

Retinex, 137
Retinex theory, 70

Scale space theory, 85
Sharpe Ratio, 117
Spectrograph

Imspector V7, 320
Statistics of color images, 211

Taylor series, 59
Texture segmentation, 260
Trichromacy theory, 36

Video recognition, 279

Weibull, 164
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