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Preface

It is evident that plate structural elements are widely used in various branches of engineering. In

industrial and civil engineering they serve as covers, working elements and parts of the various

foundations; in the machine building they are elements of technological design. The above-

mentioned construction members are intended to accommodate various static and dynamic

excitations, and their strength, resistance and technical stability require increasing engineer-

ing expectations. In real constructions the boundary conditions are usually of a complicated

character: free edge, clamping, elastic clamping, as well as various types of mixed bound-

ary conditions. Similar conditions may occur in constructing various supports of different and

mixed types. On the other hand, mixed boundary conditions may appear during the linkage of

design structural members with the a use of various laps as well as intermittent welding. Fur-

thermore, mixed boundary conditions may appear in supporting a plate beam on a nonsmooth

surface. Finally, computation of plates with slits and cracks in many cases may be reduced to

the computation of constructions with mixed boundary conditions. It should be emphasized

that the computational scheme of a construction can be changed in the exploitation time due

to the action of external loads (occurrence of corrosion and cracks, damage of part of a resis-

tance support, etc.). In this case one may also expect a mixed boundary support, which was

not predicted by the previous engineering analysis and design.

Nowadays, a wide spectrum of applications devoted to computations of the above-mentioned

engineering objects can be solved by FEM (Finite Element Method). In practice, any problem

can be solved via application of the appropriately chosen finite elements. However, it should

be emphasized that FEM also suffers from a few drawbacks: it is rather difficult to estimate the

validity of the FEM obtained results; in many cases instability in the vicinity of points occurs,

where boundary conditions undergo changes, etc. This is why from the point of view of theory

of plates and shells, as well as engineering practice, analytical approximate methods still play

an important role in the study of a wide class of constructions with mixed boundary condi-

tions. It seems that among analytical approaches, the asymptotic ones are most appropriate

and successful in solving the problems discussed above.

It has recently been observed that asymptotic approaches again attract a big attention ofmany

scientists in spite of the big development of numerical techniques [1]. The reason is mainly

motivated by the intuition development of a researcher/engineer through asymptotic analysis.

Even in a case where we are interested only in numerical solutions, a priori asymptotical

analysis allows us to choose the most suitable numerical method and sheds light on usually

disordered and largely numerically obtained material.
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x Preface

Moreover asymptotic analysis is extremely useful in providing the external value of parame-

ters, where direct numerical computationmeets serious difficulties in obtaining reliable results.

This aspect of asymptotic methods has been well illustrated by the English scientist D.G.

Crighton [2]: “Design of computational or experimental schemes without the guidance of
asymptotic information is wasteful at best, dangerous at worst, because of possible failure to
identify crucial (stiff) features of the process and their localization in coordinate and parame-
ter space. Moreover, all experience suggests that asymptotic solutions are useful numerically
far beyond their nominal range of validity, and can often be used directly, at least at a prelim-
inary product designs stage, for example, saving the need for accurate computation until the
final design stage where many variables have been restricted to narrow ranges.”
Since asymptotic methods play a key role in our book, the first part (Chapter 1) has been

devoted to their description. We mainly rely on examples and avoid unnecessary generaliza-

tions. We have aimed to keep the book self-organized and discrete. In other words, the material

in this book should be sufficient for the reader without need for supplementary material. In

particular, we have focused on asymptotic approaches, which are either not well known or not

well reported, such as the method of summation and construction of asymptotically equivalent

functions, methods of small and large delta, homotopy perturbations method, etc.

Let us look briefly at the latter mentioned approach, which has recently been very popular.

Its main idea is as follows. We introduce the parameter 𝜀 into either differential equations

or boundary conditions in such a way that for 𝜀 = 0 we obtain the boundary value problem

allowing us to find a simple solution, whereas for 𝜀 = 1 it gives the input boundary value

problem. In the next step we apply the splitting method regarding 𝜀, and in the finally obtained

solution we put 𝜀 = 1. In other words, we apply a certain homotopic transformation. It is clear

that this approach is not new, since it has already been successively applied by H. Poincaré

[3] and A.M. Liapunov [4]. However, it has rarely been applied for many years because the

obtained series are divergent in the majority of cases. This is why the homotopy perturbation

method is supplemented by the effective summation method of the yielded series.

In particular, in order to solve this problem the application of the Padé approximation has

been proposed in reference [5], which has been further developed in [6], [7], [8]. Themethod of

boundary conditions perturbation also stands in the forefront of novel asymptotic development

trends.

The second part of this book is devoted to application of the latter method to solve various

problems of the theory of plates with mixed boundary conditions. Both free and forced vibra-

tions of plates are studied, as well as their stress states and stability problems. One of the

important benefits is that the results obtained are presented in simple analytical forms, and

they can be directly used in engineering practice.

Furthermore, as we show, our analytical results possess high accuracy, since they have been

compared either with known analytical or with numerical solutions.

Many of the results included this book have been obtained with the help of our col-

leagues, R.G. Barantsev, W.T. van Horssen, L.V. Kurpa, L.I. Manevitch, Yu.V. Mikhlin,

V.O. Olevs’kyy, A.V. Pichugin, V.N. Pilipchuk, G.A. Starushenko, S. Tokarzewski, H.

Topol, A. Vakakis, D. Weichert and we warmly acknowledge their input through numerous

discussions and ideas exchanged at many conferences, meetings, congresses, symposia, etc.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Preface xi

J. Awrejcewicz acknowledges a financial support by the National Science Centre of Poland

under the grant MAESTRO 2, No. 2012/04/A/ST8/00738, for years 2013-2016.

Aachen, Dnipropetrovs’k, Lodz, Moscow, 2013 Authors

References

[1] Bauer S.M., Filippov S.B., Smirnov A.L., Tovstik P.E.: Asymptotic methods in mechanics with applications

to thin shells and plates. Asymptotic Methods in Mechanics. CRM Proc. Lect. Notes, 3, 3–140 (1994).

[2] Crighton D.G.: Asymptotics –an indispensable complement to thought, computation and experiment in

applied mathematical modelling. Seventh European Conf. on Mathematics in Industry. Eds. Fasano A., Prim-

icerio M.B. Stuttgart: G.Teubner, 3–19 (1994).

[3] Poincaré H.: New Methods in Celestial Mechanics. Ed. and introd. D.L. Goroff. Woodbury, AIP, 1993.

[4] Liapunov A.M.: Stability of Motion. Academic Press, New York, 1966.

[5] Andrianov I.V., Ivankov A.O.: Application of the Padé approximant in the method of introducing a parameter

when investigating biharmonic equations with complex boundary conditions.USSRComp.Math. Math. Phys.,
27(1), 193–7 (1987).

[6] Andrianov I.V., Gristchak V.Z., Ivankov A.O.: New asymptotic method for the natural, free and forced oscil-

lations of rectangular plates with mixed boundary conditions. Technische Mechanik, 14(3/4), 185–93 (1994).
[7] Andrianov I.V., Ivankov A.O.: New asymptotic method for solving of mixed boundary value problem. Inter-

national Series of Numerical Mathematics, 106, 39–45 (1992).
[8] Andrianov I.V., Ivankov A.O.: On the solution of plate bending mixed problems using modified technique of

boundary conditions perturbation. ZAMM, 73(2), 120–2 (1993).

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



List of Abbreviations

ADM Adomian decomposition method

AEF asymptotically equivalent function

BC(s) boundary condition(s)

BVP(s) boundary value problem(s)

DE(s) differential equation(s)

FEM finite element method

HPM homotopy perturbation method

l.h.s. left hand side

LAE(s) linear algebraic equation(s)

ODE(s) ordinary differential equation(s)

PA Padé approximants

PDE(s) partial differential equation(s)

PS perturbation series

r.h.s. right hand side

SSS stress-strain state

TPPA two-point Padé approximants

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1
Asymptotic Approaches

Asymptotic analysis is a constantly growing branch of mathematics which influences the
development of various pure and applied sciences. The famous mathematicians Friedrichs
[109] and Segel [217] said that an asymptotic description is not only a suitable instrument
for the mathematical analysis of nature but that it also has an additional deeper intrinsic mean-
ing, and that the asymptotic approach is more than just a mathematical technique; it plays
a rather fundamental role in science. And here it appears that the many existing asymptotic
methods comprise a set of approaches that in some way belong rather to art than to science.
Kruskal [151] even introduced the special term “asymptotology” and defined it as the art of
handling problems of mathematics in extreme or limiting cases. Here it should be noted that he
called for a formalization of the accumulated experience to convert the art of asymptotology
into a science of asymptotology.
Asymptotic methods for solving mechanical and physical problems have been developed by

many authors. We can mentioned excellent monographs by Eckhaus [96], [97], Hinch [133],
Holms [134], Kevorkian and Cole [147], Lin and Segel [162], Miller [188], Nayfeh [62], [63],
Olver [197], O’Malley [198], Van Dyke [244], [246], Verhulst [248], Wasov [90] and many
others [15], [20], [34], [71], [72], [110], [119], [161], [169], [173]-[175], [216], [222], [223],
[250], [251]. The main feature of the present book can be formulated as follows: it deals with
new trends and applications of asymptotic approaches in the fields of Nonlinear Mechanics
and Mechanics of Solids. It illuminates developments in the field of asymptotic mathematics
from different viewpoints, reflecting the field’s multidisciplinaiy nature. The choice of topics
reflects the authors’ own research experience and participation in applications. The authors
have paid special attention to examples and discussions of results, and have tried to avoid
burying the central ideas in formalism, notations, and technical details.

1.1 Asymptotic Series and Approximations

1.1.1 Asymptotic Series

As has been mentioned by Dingle [92], theory of asymptotic series has just recently made
remarkable progress. It was achieved through the seminal observation that application of

Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions, First Edition.
Igor V. Andrianov, Jan Awrejcewicz, Vladislav V. Danishevs’kyy, Andrey O. Ivankov.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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2 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

asymptotic series is tightly linked with the choice of a summation procedure. A second

natural question regarding the method of series summation emerges. It is widely known

that only in rare cases does a simple summation of the series terms lead to satisfactory and

reliable results. Even in the case of convergent series, many problems occur, which increase

essentially in the case of a study of divergent series [64]. In order to clarify the problems

mentioned so far, let us consider the general form of an asymptotic series widely used in

physics and mechanics [65]:
∞∑
n=1

Mn

(
𝜀

𝜀0

)n

Γ(n + a), (1.1)

where a denotes an integer, and Γ is a Gamma function (see [2], Chapter 6).

The quantity 𝜀0 is often referred to as a singulant, and Mn denotes a modifying factor. The

sequence Mn tends to a constant for n → ∞ and yields information on the slowly changed

series part, whereas the constant 𝜀0 is associated with the first singular point of the initially

studied either integral or differential equation linked to the series (1.1).

In what follows we recall the classical definition: a power type series is the asymptotic series

regarding the function f (𝜀), if for a fixed N and essentially small 𝜀 > 0, the following relation

holds ||||||f (x) −
N∑
j=0

aj𝜀
j
|||||| ∼ O(𝜀N+1),

where the symbol O(𝜀N+1) denotes the accuracy order of 𝜀N+1 (see Section 1.2).

In other words we study the interval for 𝜀 → 0, N = N0.

Although series (1.1) is divergent for 𝜀 ≠ 0, its first terms vanish exponentially fast for

𝜀 ≪ 𝜀0. This underscores an important property of asymptotic series, related to a game

between decaying terms and factorial increase of coefficients. An optimal accuracy is

achieved if one takes a smallest term of the series, and then the corresponding error achieves

exp(−𝛼∕𝜀), where 𝛼 > 0 is the constant, and 𝜀 is the small/perturbation parameter. Therefore,

a truncation of the series up to its smallest term yields the exponentially small error with

respect to the initial value problem. On the other hand, sometimes it is important to include

the above-mentioned exponentially small terms from a computational point of view, since it

leads to improvement of the real accuracy of an asymptotic solution [52], [53], [64], [65],

[226], [230].

Let us consider the following Stieltjes function (see [65]):

S(𝜀) = ∫
∞

0

exp(−t)
1 + 𝜀t

dt. (1.2)

Postulating the approximation

1

1 + 𝜀t
=

N∑
j=0

(−𝜀t)j + (−𝜀t)N+1

1 + 𝜀t
, (1.3)

and putting series (1.3) into integral (1.2) we get

S(𝜀) =
N∑
j=0

(−𝜀j)∫
∞

0

tj exp(−t)dt + EN(𝜀), (1.4)
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Asymptotic Approaches 3

where

EN(𝜀) = ∫
∞

0

exp(−t)(−𝜀t)N+1

1 + 𝜀t
dt. (1.5)

Computation of integrals in Equation (1.4) using integration by parts yields

S(𝜀) =
N∑
j=0

(−1)jj!𝜀j + EN(𝜀).

If N tends to infinity, then we get a divergent series. It is clear, since the under integral

functions have a simple pole in the point t = −1∕𝜀, therefore series (1.3) is valid only for|t| < 1∕𝜀. The obtained results cannot be applied in the whole interval 0 ≤ t < ∞.

Let us estimate an order of divergence by splitting the function S(𝜀) into two parts, i.e.

S(𝜀) = S1(𝜀) + S2(𝜀) = ∫
1∕𝜀

0

exp(−t)
1 + 𝜀t

dt + ∫
∞

1∕𝜀

exp(−t)
1 + 𝜀t

dt.

Since 1∕(1 + 𝜀t) ≤ 1∕2 for t > 1∕𝜀, the following estimation is obtained: S2(𝜀) <
0.5 exp(−1∕𝜀).
Therefore, the exponential decay of the error is observed for decreasing 𝜀, which is a typical

property of an asymptotic series.

Let us now estimate an optimal number of series terms. This corresponds to the situation in

which the term tN+1 exp(−t) in Equation (1.4) is a minimal one, which holds for t = 1∕(N + 1).
For t ≥ 1∕𝜀 we observe the divergence, and this yields the following estimation: N = [1∕𝜀],
where [… ] denotes an integer part of the number. The optimally truncated series is called the

super-asymptotic one [65], whereas the hyperasymptotic series [52], [53] refers to the series

with the accuracy barrier overcome. It means that after the truncation procedure one needs

novel ideas to increase accuracy of the obtained results. Problems regarding a summation of

divergent series are discussed in Chapters 1.3–1.5.

One may, for instance, transform the series part

S(𝜀) ≈
2N∑
j=0

(−1)jj!𝜀j (1.6)

into the PA, i.e. into a rational function of the form

S(𝜀) ≈
1 +

∑N
j=1 𝛼j𝜀

j

1 +
∑N

i=1 𝛽i𝜀
i
, (1.7)

where constants 𝛼j, 𝛽i are chosen in a such a way that first 2N + 1 terms of the MacLaurin

series (1.7) coincide with the coefficients of series (1.6). It has been proved that a sequence

of PA (1.7) is convergent into a Stieltjes integral, and the error related to estimation of S(𝜀)
decreases proportionally to exp(−4

√
N∕𝜀).

The definition of an asymptotic series indicates a way of numerical validation of an asymp-

totic series [62]. Let us for instance assume that the solution Ua(𝜀) is the asymptotic of the

exact solution UT (𝜀), i.e.
E = UT (𝜀) − Ua(𝜀) = K𝜀𝛼.
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4 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

One may take as UT a numerical solution. In order to define 𝛼, usually graphs of the depen-

dence lnE versus ln 𝜀 for different values of 𝜀 are constructed. The associated relations should

be closed to linear ones, whereas the constant 𝛼 can be defined using the method of least

squares. However, for large 𝜀 the asymptotic property of the solution is not clearly exhibited,

whereas for small 𝜀 values it is difficult to get a reliable numerical solution. Let us study an

example of the following integral

I(𝜀) = 𝜀e𝜀 ∫
∞

𝜀

e−t

t
dt

for large values of 𝜀. Although the infinite series

I(𝜀) =
∞∑
n=0

(−1)nn!
𝜀n

is divergent for all values of 𝜀, series parts

IM(𝜀) =
M∑
n=0

(−1)nn!
𝜀n

(1.8)

are asymptotically equivalent up to the order of O(𝜀−M) with the error of O(𝜀−M−1) for x →
∞. In Figure 1.1 the dependence logEM(𝜀) vs. log 𝜀, where EM(𝜀) = I(𝜀) − IM(𝜀), is reported
(curves going down correspond to decreasing values of M = 1,… , 5).

It is clear that curve slopes are different. However, results reported in Table 1.1 of the least

square method fully prove the high accuracy of the method applied.

Let us briefly recall the method devoted to finding asymptotic series, where the function

values are known in a few points. Let a numerical solution be known for some values of the

parameter 𝜀: f (𝜀1), f (𝜀2), f (𝜀3). If we know a priori that the solution is of an asymptotic-type,

10−2

10−4

10−6

10−8

10−10

10−12

10−14

5 10 50 100

log EM (ε)

log ε

Figure 1.1 Asymptotic properties of partial sums of (1.8)
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Asymptotic Approaches 5

Table 1.1 Slope coefficient logEM(𝜀) as the function of log 𝜀 defined via the least
square method

EM(𝜀) 𝜀 ∈ [5, 50] 𝜀 ∈ [50, 200] 𝜀 ∈ [200, 500] slope

1 −1.861 −1.972 −1.991 −2.0
2 −2.823 −2.963 −2.988 −3.0
3 −3.789 −3.954 −3.985 −4.0
4 −4.758 −4.945 −4.981 −5.0
5 −5.729 −5.937 −5.999 −6.0

and its general properties are known (for instance it is known that the series corresponds only
to integer values of 𝜀), then the following approximation holds

f (𝜀i) =
3∑
i=0

𝜀iai,

and the coefficients ai can be easily identified. The latter approach can be applied in the fol-
lowing briefly addressed case. In many cases it is difficult to obtain a solution regarding small
values of 𝜀, whereas it is easy to find it for 𝜀 of order 1. Furthermore, assume that we know a
priori the solution asymptotic for 𝜀 → 0, but it is difficult or unnecessary to define it analyti-
cally. In this case the earlier presented method can be applied directly.

1.1.2 Asymptotic Symbols and Nomenclatures

In this section we introduce basic symbols and a nomenclature of the asymptotic analysis
considering the function f (x) for x → x0. In the asymptotic approach we focus on monitoring
the function f (x) behavior for x = x0. Namely, we are interested in finding another arbitrary
function 𝜑(x) being simpler than the original (exact) one, which follows f (x) for x → x0 with
increasing accuracy. In order to compare both functions, a notion of the order of a variable
quantity is introduced accompanied by the corresponding relations and symbols.
We say that the function f (x) is of order 𝜑(x) for x → x0, or equivalently

f (x) = O(𝜑(0)) for x → x0,

if there is a number A, such that in a certain neighborhood Δ of the point x0 we have |f (x)| ≤
A|𝜑(x)|.
Besides, we say that f (x) is the quantity of an order less than 𝜑(x) for x → x0, or equivalently

f (x) = o(𝜑(0)) for x → x0,

if for an arbitrary 𝜀 > 0 we find a certain neighborhood Δ of the point x0, where |f (x)| ≤
𝜀|𝜑(x)|.
In the first case the ratio |f (x)|∕|𝜑(x)| is bounded in Δ, whereas in the second case it tends

to zero for x → x0. For example, sin x = O(1) for x → ∞; ln x = o(x𝛼) for an arbitrary 𝛼 > 0
for x → ∞.
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6 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Symbols O(… ) and o(… ) are often called Landau’s symbols (see [62], [63]). It should

be emphasized that Edmund Landau introduced these symbols in 1909, whereas Paul Gustav

Heinrich Bachman had already done so in 1894. Sometimes it worthwhile to apply additional

symbols introducing other ordering relations. Namely, if f (x) = O(𝜑(x)), but f (x) ≠ o(𝜑(x))
for x → x0, then the following notation holds f (x) = Õ(𝜑(x)) for x → x0, where the symbol

Õ(𝜑(x)) is called the symbol of the exact order (note that in some cases also the following

symbol is applied Oe(𝜑(x)). If f (x) = O(𝜑(x)), 𝜑(x) = O(f (x)) for x → x0, (it means that f (x)
asymptotically equals to 𝜑(x) for x → x0), which is abbreviated by the notation f (x) ≍ 𝜑(x)
for x → x0. Recall that in some cases the symbol ≍ is used. Asymptotic relations give rights

for the existence of the numbers a > 0 and A > 0, where in the vicinity of the point x0 the

following approximation holds: a|𝜑(x)| ≤ |f (x)| ≤ A|𝜑(x)|.
Symbols Õ and ≍ might be expressed by O, o and are used only for a brief notation. One

may distinguish the following steps while constructing an asymptotic approximation. In the

beginning high (low) order estimations are constructed of the type f (x) = O(𝜑(x)). Usually
this first approximation is overestimated, i.e. we have f (x) = O(𝜑(x)).
In order to improve this first approximation the following exact order is applied f (x) =

Õ(𝜑0(x)), and the following asymptotic approximation is achieved f (x) ∼ a0𝜑0(x). Carrying
out this kind of a cycle, we may get the asymptotic chain f (x) − a0𝜑0(x) ∼ a1𝜑1(x), and go fur-
ther with the introduced analysis. We say that the sequence {𝜑n(x)}, n = 0, 1,… for x → x0
is an asymptotic one, if 𝜑n+1(x) = o(𝜑n(x)). For instance, the following sequence {xn} is an

asymptotic one for x → 0.

A series
∑∞

n=0 an𝜑n(x) with constant coefficients is called an asymptotic one, if {𝜑n(x)} is

an asymptotic sequence. We say that f (x) has an asymptotic series with respect to the sequence

{𝜑n(x)}, or equivalently

f (x) ∼
N∑
n=0

an𝜑n(x), N = 0, 1, 2,… , (1.9)

if

f (x) =
m∑
n=0

an𝜑n(x) + o(𝜑m(x)), m = 0, 1, 2,… , N. (1.10)

Let us investigate the uniqueness of the asymptotic series. Let the function f (x) for x → x0 be
developed into a series with respect to the asymptotic sequence {𝜑n(x)}, f (x) ∼

∑∞
n=0 an𝜑n(x).

Then the coefficients an are defined uniquely via the following formula

an = lim
x→x0

[
f (x) −

n−1∑
k=0

ak𝜑k(x)

]
𝜑−1
n (x).

Observe that the same function f (x) can be developed with respect to another sequence 𝜒n(x),
for instance

1

1 − x
∼

∞∑
n=0

xn for x → 0; 1

1 − x
∼

∞∑
n=0

(1 + x)x2n for x → 0.
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Asymptotic Approaches 7

On the other hand, one asymptotic series may correspond to a few functions, for instance

1 + e−1∕x

1 − x
∼

∞∑
n=0

xn for x → 0.

In other words an asymptotic series represents a class of asymptotically equivalent functions.

The latter property can be applied directly in many cases (see Chapter 1.5).

Asymptotic expansion of functions f (x) and g(x) for x → x0 regarding the sequence {𝜑n(x)}
follows

f (x) ∼
∞∑
n=0

an𝜑n(x), g(x) ∼
∞∑
n=0

bn𝜑n(x),

and the following property holds

𝛼f (x) + 𝛽g(x) ∼
∞∑
n=0

(𝛼an + 𝛽bn)𝜑n(x).

In general, a direct multiplication of the series {𝜑n(x) ⋅ 𝜑m(x)} (m, n = 0, 1,…) is not

allowed, since they sometimes cannot be ordered into an asymptotic sequence. However, it

can be done, for instance, in the case 𝜑n(x) = xn. Power series allow division if b0 ≠ 0.

Finding logarithms is generally allowed. For instance, let us consider the function f (x) =
(
√
x ln x + 2x)ex, for which the following relation holds

f (x) = [2x + o(x)]ex for x → ∞. (1.11)

Let g(x) = ln[f (x)], then according to (1.11), we have

g(x) = x + ln[2x + o(x)] = x + ln x + ln 2 + o(1) ∼ x + o(x) for x → ∞.

Raising g(x) to a power we find f (x) ∼ ex for x → ∞. Note that the multiplier 2x is lost. The
reason is that the carried out involution in series approximation of g(x) does not include terms

ln x and ln 2 acting on the main term of the asymptotic of f (x), and only the quantities of order
o(1) do not change the coefficient, since exp {o(1)} ∼ 1.

The power form asymptotic series

f (x) ∼
∞∑
n=2

anx
−n for x → ∞,

may be integrated step by step. Differentiation of asymptotic series are not allowed in general.

For example, the function

f (x) = e−1∕x sin(e−1∕x)

possesses the following singular power form series

f (x) ∼ 0 ⋅ 1 + 0 ⋅ x + 0 ⋅ x2 + … ,
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8 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

whereas the associated derivative of the function f (x) does not allow a power type series devel-
opment. If the function f (x) and its continuous derivative f ′(x) for x ≥ d > 0 possess a power
type asymptotic series for x → ∞, then this derivative can be obtained via step by step differ-
entiation of the series terms of the function f (x).
Let us emphasize that the majority of errors regarding the application of asymptotic meth-

ods occur through incorrect change of orders of limiting transitions and differentiations (see
[244]). This remark is followed by an example. Let the method of Bubnov-Galerkin be applied
for a thin-walled problem. The following natural question arises: How many terms N should
remain in order to keep a reliable solution? N parameter should be linked with 𝛼 parameter

characterizing thinness of the studied construction (L∕
√
F for a beam, R∕h for a shell, etc.).

However, in general
lim
N→∞

lim
𝛼→0

(… ) ≠ lim
𝛼→0

lim
N→∞

(… ).

Additional information regarding the state-of-art of the asymptotic series can be found in
[23], [25], [39], [96], [97], [133], [62], [63], [244], [246].

1.2 Some Nonstandard Perturbation Procedures

1.2.1 Choice of Small Parameters

The choice of an asymptotic method and the introduction of small dimensionless parameters
to an investigated system is very often the most significant and informal part of the analytical
study of physical problems. This should be carried out with the help of experience and intu-
ition, analysis of the physical nature of the problem, as well as with the use of experimental and
numerical results. It is often dictated by physical considerations, which are evidently shown
through dimensionless and scaling procedures. However, it seems to be sometimes advanta-
geous to use an initial approximation guess although this is not obvious, andmay perhaps seem
even strange at first glance. To illustrate this, consider a simple example [42], i.e. an algebraic
equation of the form

x5 + x = 1. (1.12)

We seek a real root of Equation (1.12), the exact value of which can be determined numer-
ically: x = 0.75487767…. A small parameter 𝜀 is not included explicitly in Equation (1.12).
Consider various possibilities of introducing a parameter 𝜀 into Equation (1.12).

1. We introduce a small parameter 𝜀 as the multiplier to a nonlinear term in Equation (1.12)

𝜀x5 + x = 1, (1.13)

and present x as a series of 𝜀, i.e.

x = a0 + a1𝜀 + a2𝜀
2 +… . (1.14)

Substituting series (1.14) into Equation (1.13), and equating terms of equal powers, we
obtain

a0 = 1, a1 = −1, a2 = 5, a3 = −35, a4 = 285, a5 = −2530, a6 = 23751.
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Asymptotic Approaches 9

These values can be predicted by a closed expression for the coefficients an:

an =
(−1)n(5n)!
n!(4n + 1)!

.

The radius R of convergence of series (1.14) is R = 44

55
= 0.08192. Consequently, for 𝜀 = 1

series (1.14) diverges very fast, so the sum of the first six terms is 21476. The situation can
be corrected by the method of PA. Constructing a PA (see Chapter 1.4) with three terms
in the numerator and denominator and calculating it with 𝜀 = 1, we obtain the value of the
root x = 0.76369 (the error in comparison to the exact value is 1.2%).

2. We now introduce a small parameter 𝜀 as multiplier to the linear term in Equation (1.12)

x5 + 𝜀x = 1. (1.15)

Presenting the solution of Equation (1.15) in the form

x(𝜀) = b0 + b1𝜀 + b2𝜀
2 +… , (1.16)

and after applying the standard procedure of perturbation method, we get

b0 = 1, b1 = −1, b2 = −1 1

25
, a3 = −1 1

125
, b4 = 0,

b5 =
21

15625
, b6 =

78

78125
.

In this case we can also construct a general expression for the coefficients

bn = −
Γ[(4n − 1)∕5]
5Γ[(4 − n)∕5]n!

,

and determine the radius of convergence of the series (1.15): R = 5

4(4∕5)
= 1.64938…. The

value of x(1), taking into account the first six terms of the series (1.16), deviates from the
exact by 0.07%.

3. Now, let us introduce a “small parameter” 𝛿 in the exponent

x1+𝛿 + x = 1, (1.17)

and let us present x in the form

x = c0 + c1𝛿 + c2𝛿
2 +… . (1.18)

In addition, we use the expansion:

x1+𝛿 = x(1 + 𝛿 ln |x| +…).

Coefficients of series (1.18) are determined easily, i.e. they read:

c0 = 0.5, c1 = 0.25 ln 2, c2 = −0.125 ln 2, … .

The radius of convergence is equal to 1 in this case. Using PA with three terms in the
numerator and denominator, if 𝜀 = 1, we find x = 0.75448, which only deviates from the
exact result by 0.05%. Calculating ci for i = 0, 1,… , 12 and constructing PA with six terms
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10 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

in the numerator and denominator, we find x = 0.75487654 (0.00015% error). The method
is called “the method of small delta” (see Section 1.2.3) [42], [43].

4. We now assume the exponent to be a large parameter. Consider the equation

xn + x = 1. (1.19)

Assuming n→ ∞ (the method of large 𝛿, see Section 1.2.4), we present the desired solution
in the form

x =
[
1

n
(1 + x1 + x2 +…)

]1∕n
, (1.20)

where 1 > x1 > x2 >… .

Substituting the Ansatz (1.20) in Equation (1.19), and taking into account that

n1∕n = 1 + 1

n
ln n +… , x1∕n = 1 + 1

n
ln(1 + x1 + x2 +…) +… ,

one obtains the following hierarchy with increasing accuracy

x ≈
(
ln n
n

)1∕n
, (1.21)

x ≈
(
ln n − ln ln n

n

)1∕n
, (1.22)

… .

For n = 2 formula (1.21) gives x = 0.58871; the error compared to the exact solution

(0.5(
√
5 − 1) ≈ 0.618034) is 4.7%. When n = 5 from (1.21) we obtain x = 0.79715 (from

numerical solution one obtains x = 0.75488; error of (1.21) 5.6%). Equation (1.22) for
n = 5 gives x = 0.74318 (error 1.5%). Thus, even the first terms of the large 𝛿 asymptotics
give excellent results.
Hence, in this case the method of large delta already provides good accuracy even for

low orders of the perturbation method. Approximations (1.21), (1.22) illustrate an example
of nonpower type asymptotics.

In particular, thanks to A.V. Pichugin, the obtained solution can be improved using the
Lambert functions W(z), which is governed by the following equation [87]

z = W(z)eW(z).

Then, the solution to our problem has the form

x ≈
[
1 + C
n

W
( n
1 + C

)]1∕n
, where C = 1

2n
ln

(
W(n)
n

)
.

Note that for n = 5 the above formula yields x = 0.75443 (error 0.06%).

1.2.2 Homotopy Perturbation Method

In recent years the so-called homotopy perturbation method (HPM) has received much atten-
tion [1], [43], [130], [44], [132], [157], [158] (the term “method of artificial small parameters”
is also used). Its essence is as follows. In the equations or BCs the parameter 𝜀 is intro-
duced so that for 𝜀 = 0 one obtains a BVP which admits a simple solution, and for 𝜀 = 1
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Asymptotic Approaches 11

one obtains the governing BVP. Then the perturbation method regarding 𝜀 is applied and we

put 𝜀 = 1 in the final formula. Apparently, this approach is not new and has already been used

in references [115], [159] and [207]. However, the above term, emphasizing the continuous

transition from the initial value 𝜀 = 0 to the value of 𝜀 = 1 (homotopy deformation), seems to

be most adequate. Let us analyze an example of the homotopy perturbation parameter method

using an approach taken from reference [8], [9]. The occurence of internal resonance between

modes belongs to a special feature of nonlinear systems with distributed parameters. This is

why in many cases the neglect of higher modes can lead to significant errors. The follow-

ing approach describes the asymptotic method of solving problems of nonlinear vibrations of

systems with distributed parameters, allowing us to broadly take into account all modes. The

vibrations of a square membrane lying on a nonlinear elastic foundation can be governed by

the following PDE:
𝜕2𝑤

𝜕x2
+ 𝜕2𝑤

𝜕y2
− 𝜕2𝑤

𝜕t2
− c𝑤 − 𝜀𝑤3 = 0, (1.23)

where 𝜀 is the dimensionless small parameter (𝜀 ≪ 1).

The BCs are as follows

𝑤|x=0,L = 𝑤|y=0,L = 0. (1.24)

The desired periodic solution must satisfy the periodicity conditions of the form

𝑤(t) = 𝑤(t + T), (1.25)

where T = 2𝜋

𝜔
is the period, and Ω is the natural frequency of vibrations. We seek the natural

frequencies corresponding to these forms of natural vibration frequencies at which the linear

case (𝜀 = 0) is realized by one half-wave in each direction x and y. We introduce the transfor-

mation of time

𝜏 = 𝜔t. (1.26)

The solution is sought in the form of power series

𝑤 =𝑤0 + 𝜀𝑤1 + 𝜀2𝑤2 +… , (1.27)

𝜔 = 𝜔0 + 𝜀𝜔1 + 𝜀2𝜔2 +… . (1.28)

Substituting Ansatzes (1.27), (1.28) to Equations (1.23)–(1.25), and equating terms of equal

powers, we obtain the following recurrent sequence of linear BVPs:

𝜕2𝑤0

𝜕x2
+

𝜕2𝑤0

𝜕y2
− 𝜔2

0

𝜕2𝑤0

𝜕𝜏2
− c𝑤0 = 0, (1.29)

𝜕2𝑤1

𝜕x2
+

𝜕2𝑤1

𝜕y2
− 𝜔2

1

𝜕2𝑤1

𝜕𝜏2
− c𝑤1 = 2𝜔0𝜔1

𝜕2𝑤0

𝜕𝜏2
+𝑤3

0
, (1.30)

…

The BCs (1.24) and periodicity conditions (1.25) take the following form for i = 1, 2,…:

𝑤i|x=0,L = 𝑤i|y=0,L = 0, (1.31)

𝑤i(𝜏) = 𝑤i(𝜏 + 2𝜋). (1.32)
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12 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

The solution to Equation (1.29) is as follows:

𝑤0,0 =
∞∑
m=1

∞∑
m=1

Am,n sin

(
𝜔m,n

𝜔0

𝜏

)
sin

(
𝜋m
L
x
)
sin

(
𝜋n
L
y
)
, (1.33)

where 𝜔m,n =
√

𝜋2 (m2+n2)
L

+ c, m, n = 1, 2, 3,…, and A1,1 is the amplitude of the funda-

mental tone of vibrations; Am,n, m, n = 1, 2, 3…, (m, n) ≠ (1, 1) is the amplitude of the sub-
sequent modes; 𝜔m,n are the natural frequencies of the counterpart linear system, 𝜔0 = 𝜔1,1.
Next approximation results in solving the BVP (1.30)–(1.32). To prevent the appearance of

secular terms in the right hand side of Equation (1.30), the coefficients standing by the terms
of the form

sin

(
𝜔m,n

𝜔0

𝜏

)
sin

(
𝜋m
L
x
)
sin

(
𝜋n
L
y
)
, m, n = 1, 2, 3,…

should be compared with zero.
These conditions lead to the following infinite system of nonlinear algebraic equations:

2Am,n𝜔1

𝛽2𝜔0

(𝜔m,n)2 =
∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

∞∑
p=1

∞∑
s=1

C(ijklps)
m,n Ai, jAk,lAp,s, (1.34)

where m, n = 1, 2, 3,….
Coefficients are found by substituting Ansatz (1.33) into the right hand side of

Equation (1.30) and carrying out the relevant simplifications. System (1.34) can be
solved by reduction. However, a sufficiently large number of equations produces significant
computational difficulties. In addition, this approach does not take into account the influence
of higher modes of vibrations. Therefore, in order to omit the above-mentioned difficulties
we use further the HPM.
On the right side of each (m, n)-th equation of system (1.34) we introduce the parameter

𝜇 associated with those members of Ai, jAk,lAp,s, for which the following condition is valid:
(i > m) ∪ (k > m) ∪ (p > m) ∪ (j > n) ∪ (l > n) ∪ (s > n). Thus, for 𝜇 = 0 system (1.34) takes
the “triangular” form, and for 𝜇 = 1 it returns to its original form. Next, we seek a solution in
the form of the following series:

𝜔1 = 𝜔(0) + 𝜇𝜔(1) + 𝜇2𝜔(2) +… , (1.35)

Am,n = A(0)
m,n + 𝜇A(1)

m,n + 𝜇2A(2)
m,n +… , (1.36)

where m, n = 1, 2, 3,… , (m, n) ≠ (1, 1).
In the so-far obtained solution we put 𝜇 = 1.
This approach allows us to keep any number of equations in system (1.34). Below we limit

ourselves to the first two terms in expansions (1.35), (1.36). We analyze the solutions and note
that in this problem the parameter c plays the role of a bifurcation parameter. In general, for
c ≠ 0, c ∼ 1, the system (1.34) admits the following solution:

Ai, j, i, j = 1, 2, 3,… , (i, j) ≠ (m, n),

𝜔1 =
27

128

A2
m,n𝜔0

𝜔m,n2
, m, n = 1, 2, 3,… .
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Asymptotic Approaches 13

Amplitude-frequency response is given by the following formula

Ωm,n = 𝜔m,n + 0.2109375
A2
m,n

𝜔m,n
𝜀 +… .

It is of particular interest to the case when the linear component of the restoring force is
zero (c = 0), and the phenomenon of internal resonance between modes of vibrations occurs.
Solving system (1.34) by the method described so far we find

Am, n = 0, m, n = 1, 2, 3,… , (m, n) ≠ (1, 1), (m, n) ≠ (2i − 1, 2i − 1), i = 1, 2, 3… ,

A3,3 = −4.5662 ⋅ 10−3A1,1, A5,5 = 2.1139 ⋅ 10−5A1,1,… , 𝜔1 = 0.211048A2
1,1
∕𝜔0.

If vibrations are excited by the mode (1, 1) all odd modes (3, 3), (5, 5) etc. are also real-
ized. However, if the vibrations are excited by one of the higher modes, the result of energy
redistribution of modes appear at lower orders until the fundamental mode (1, 1).

1.2.3 Method of Small Delta

In references [42], [43] the effective method of small 𝛿 has been proposed, which we are going
to explain through a few examples. Let us construct a periodic solution to the following Cauchy
problem

xtt + x3 = 0, (1.37)

x(0) = 1, xt(0) = 0. (1.38)

We introduce a homotopy parameter 𝛿 in Equation (1.37), and hence

xtt + x1+2𝛿 = 0. (1.39)

At the final expression one should put 𝛿 = 1, but in the process of solving we assume 𝛿 ≪ 1.
Then

x2𝛿 = 1 + 𝛿 ln x2 + 0.5𝛿2(ln x2)2 +… . (1.40)

We assume a solution to Equation (1.37) in the form

x =
∞∑
k=0

𝛿kxk, (1.41)

and carry out the change of independent variable

t = 𝜏

𝜔
, (1.42)

where 𝜔2 = 1 + 𝛼1𝛿 + 𝛼2𝛿
2 +….

The constants 𝛼i (i = 1, 2,…) are determined during solution process. After substituting
Ansatzes (1.40)–(1.42) in Equation (1.39), and splitting with respect to 𝛿, the following recur-
rent sequence of Cauchy problems is obtained

x0𝜏𝜏 + x0 = 0, (1.43)

x0(0) = 1, x0𝜏 (0) = 0; (1.44)
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14 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

x1𝜏𝜏 + x1 = −x0 ln(x20) − 𝛼1x0𝜏𝜏 , (1.45)

x1(0) = x1𝜏 = 0; (1.46)

x2𝜏𝜏 + x2 = −x1 ln(x21) − 2x1 − x0(ln(x20))
2 − 𝛼2x0𝜏𝜏 − 𝛼1x1𝜏𝜏 ; (1.47)

x1(0) = x1𝜏 = 0; (1.48)

… .

A Cauchy problem regarding zero order approximation (1.43), (1.44) has the following

solution.

x0 = cos 𝜏.

In the first approximation, one obtains

x1𝜏𝜏 + x1 = − cos 𝜏 ln(cos2𝜏) + 𝛼1 cos 𝜏 ≡ L0.

The condition of absence of secular terms in the solution of this equation can be written as

follows
𝜋∕2

∫
0

L0 cos t dt = 0,

and it allows us to determine the constant 𝛼1 = 1 − 2 ln 2.

The period of vibration can be written as

T = 2𝜋[1 + 𝛿(ln 2 − 0.5)].

For 𝛿 = 1, we have T = 6.8070, while the exact value is T = 7.4164 (the error introduced by

the approximate solution is 8.2%). A solution to the Cauchy problem of the next approximation

(1.47), (1.48) gives the period value practically coinciding with the exact one (T = 7.4111).

We now consider the wave equation

utt = uxx, (1.49)

with nonlinear BCs of the form

u(0, t) = 0, (1.50)

ux(1, t) + u(1, t) + u3(1, t) = 0. (1.51)

We introduce the parameter 𝛿 into Equation (1.51) as follows

ux(1, t) + u(1, t) + u1+2𝛿(1, t) = 0. (1.52)

In the final expression we put 𝛿 = 1, but in the asymptotical process we assume 𝛿 ≪ 1.

We have

u3 ≡ u1+2𝛿 = u

[
1 + 𝛿 ln u2 + 𝛿2

2

(
ln u2

)2 +…
]
. (1.53)
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Asymptotic Approaches 15

We assume the solution to Equation (1.49) to be in the form

u =
∞∑
k=0

𝛿kuk. (1.54)

After substituting Ansatzes (1.54), (1.52) into Equations (1.49), (1.50), (1.52), and after

splitting regarding the parameter 𝛿, we obtain the following recurrent sequence of BVPs:

u0𝜏𝜏 = u0xx; (1.55)

at x = 0, u0 = 0; (1.56)

at x = 1, u0x + 2u0 = 0; (1.57)

u0𝜏𝜏 = u0xx −
1∑
p=0

𝛼i−pup𝜏𝜏 ; (1.58)

at x = 0, u1 = 0; (1.59)

at x = 1, u1x + 2u1 = −u0 ln u20; (1.60)

u0𝜏𝜏 = u0xx −
2∑
p=0

𝛼i−pup𝜏𝜏 ; (1.61)

at x = 0, u2 = 0; (1.62)

at x = 1, u2x + 2u2 = −u1 ln u20 − 2u1 − 0.5u0 (ln u20)
2; (1.63)

… ,

where 𝛼0 = 0.

The solution of the BVP of the zero order approximation (1.55)–(1.57) can be written as

u0 = A sin(𝜔0x) sin(𝜔0𝜏), (1.64)

where the frequency 𝜔0 is determined from the transcendental equation

𝜔0 = 2 tan𝜔0. (1.65)

The first few nonzero values of 𝜔 are given in Table 1.2.

When k → ∞, we have the asymptotics: 𝜔(k) → 0.5𝜋(2k + 1).

Table 1.2 First few roots of transcendental equation (1.65)

𝜔
(1)
0

𝜔
(2)
0

𝜔
(3)
0

𝜔
(4)
0

𝜔
(5)
0

𝜔
(6)
0

𝜔
(7)
0

𝜔
(8)
0

𝜔
(9)
0

𝜔
(10)
0

2.289 5.087 8.096 11.173 14.276 17.393 20.518 23.646 26.778 29.912
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16 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

BVP problem of the first approximation is as follows:

u1xx − u1𝜏𝜏 = 𝛼1A𝜔
2
0
sin(𝜔0x) sin(𝜔0𝜏), (1.66)

at x = 0, u1 = 0, (1.67)

at x = 1, u1x + 2u1 = A1 sin(𝜔0𝜏)[ln(A2sin2𝜔0) + ln sin2(𝜔0𝜏)], (1.68)

where A1 = −A sin𝜔0.
The particular solution to Equation (1.66) satisfying the BC (1.67) has the form

u(1)
1

= −0.5𝛼1A𝜔0x cos(𝜔0x) sin(𝜔0𝜏). (1.69)

We choose the constant 𝛼1 in such a way that it compensates the secular term on the r.h.s. of
Equation (1.68)

𝛼1 =
2R1

𝜔0(6 + 𝜔2
0
)
,

where R1 = ln(0.25eA2sin2𝜔0).
Nonsecular harmonics on the r. h. s. of Equation (1.68) yield the solution

u(2)
1

= 4A1

∞∑
k=2

Tk sin(𝜔0kx) sin(𝜔0k𝜏)
1

k2 − 1
, (1.70)

where Tk = 1∕[k𝜔0 cos(k𝜔0) + 2 sin(k𝜔0)].
The complete solution of the first approximation has the form

u1 = u(1)
1

+ u(2)
1
.

Assuming 𝛿 = 1, we obtain the solution of Equations (1.49)–(1.51).
Let us now consider the Schrödinger equation

Ψxx − x2NΨ + EΨ= 0, (1.71)

Ψ(±∞) = 0. (1.72)

Here Ψ is the wave function; E is the energy and plays the role of an eigenvalue.
It is shown that the eigenvalue problem (1.71)–(1.72) has a discrete countable spectrum En,

n = 0, 1, 2,… [228]. For N = 2 the eigenvalue problem (1.71), (1.72) has an exact solution.
Now let N differ slightly from 2, i.e.

Ψxx − x2+2𝛿Ψ + EΨ = 0. (1.73)

We assume the expansion
x2𝛿 = 1 + 𝛿 ln(x2) +… ,

and we will search for the eigenfunction Ψ and the eigenvalue E in the form of the following
series

Ψ = Ψ0 + 𝛿Ψ + 𝛿2Ψ2 +… , (1.74)

E = E0 + 𝛿E + 𝛿2E2 +… . (1.75)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Asymptotic Approaches 17

As a result, after the asymptotic splitting, we obtain the following hierarchy of recursive

sequence of eigenvalue problems

Ψ0xx − x2Ψ0 + E0Ψ0 = 0, (1.76)

Ψ1xx − x2Ψ1 + E0Ψ1 + E1Ψ0 = x2Ψ0 ln(x2), (1.77)

… ,

|Ψi| → 0 at |x| → ∞, i = 1, 2, 3,… . (1.78)

The solution to the eigenvalue problem (1.76), (1.78) has the form

E(n)
0

= 2n + 1, Ψ(n)
0

= e−x
2∕2Hn(x), n = 1, 2, 3,… ,

where Hn(x) is the Struve function ([2], Chapter 12).

From the eigenvalue problem (1.77), (1.78) we find

E(n)
1

=

∞∫
−∞

x2e−x
2
H2
n(x) ln(x2) dx√

𝜋 2nn!
.

For n = 0 one obtains H0(x) = 1, and

∞

∫
−∞

x2 ln xe−x
2
dx =

√
𝜋

8
(2 − 2 ln 2 − C),

where C = 0.577215… is the Euler constant. Hence

E(0)
0

= 1 + 1

16
(2 − 2 ln 2 − C)𝛿 +… . (1.79)

1.2.4 Method of Large Delta

An alternative method of small delta is the method of large delta, which we demonstrate using

as an example the following nonlinear equation

xtt + xn = 0, n = 3, 5, 7,… . (1.80)

This equation can be integrated with the functions Cs and Sn, introduced by Liapunov in

[159] (inversions of incomplete beta functions, see also [219]). Note that much later the same

(up to normalization) function have been proposed by Rosenberg, who called them Ateb-

functions [213], [214]. However, working with these objects is inconvenient, and therefore the

problem arises of finding the approximate analytical solution to Equation (1.80) in expressed

through elementary functions. We construct asymptotics of periodic solutions of Equation

(1.80) at n→ ∞. Let the initial conditions for Equation (1.80) be

x(0) = 0, ẋ(0) = 1. (1.81)
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18 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

The first integral of the Cauchy problem (1.80), (1.81) can be written as follows(
dx
dt

)2

= 1 − 2xn+1

n + 1
. (1.82)

The replacement of x = 𝜆−𝜆∕2, 𝜆 = 2∕(n + 1), and integration gives us a solution in the fol-

lowing implicit form

𝜆𝜆∕2t =
0≤𝜉≤1

∫
0

d𝜉√
1 − 𝜉2∕𝜆

.

After replacing 𝜉 = sin𝜆𝜃 this implicit solution is transformed into an expression that con-

tains a small parameter in the exponent of the integrand, namely we have

𝜆𝜆∕2t = 𝜆

0≤𝜃≤𝜋∕2

∫
0

sin−1+𝜆𝜃d𝜃.

We now consider the integrand separately:

sin−1+𝜆𝜃 = 𝜃−1+𝜆
(

𝜃

sin 𝜃

)
= 𝜃−1+𝜆

[
𝜃

sin 𝜃
− 𝜆 ln

𝜃

sin 𝜃
+…

]
.

Expanding this function into a Maclaurin series, one obtains

sin−1+𝜆𝜃 = 𝜃−1+𝜆 + 𝜃−1+𝜆

3
+ · · · + O(𝜆).

The first term of this expression makes the main contribution, so in the first approximation

we can suppose

𝜆𝜆∕2t ≈ 𝜃𝜆, i.e. 𝜃 ≈ 𝜆1∕2t1∕𝜆.

In the original variables one obtains

x ≈ 𝜆−𝜆∕2sin𝜆
(
𝜆1∕2t1∕𝜆

)
. (1.83)

The solution (1.83) should be used on a quarter-period, which yields

T = 4
(

𝜋

2𝜆1∕2

)𝜆

. (1.84)

Let us analyze the solution (1.83), (1.84). At n = 1 one obtains the exact values x = sin t,
T = 2𝜋, whereas for n → ∞ one obtains T → 4. Expanding the r.h.s. of Equation (1.83) into

a series of t, and restricting our considerations to the first term only, we obtain a nonsmooth

solution [67]. We estimate the error of the solution (1.84). For this purpose we use the

expression

𝜆

𝜋∕2

∫
0

sin−1+𝜆 d𝜃 = 0.5𝜆B(0.5𝜆, 0.5) ≡ A1, (1.85)

where B(… ,…) is the beta function ([2], Chapter 6).
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Asymptotic Approaches 19

Table 1.3 Comparison of exact and approximate solutions

n 1 3 5 … ∞

A1 𝜋2 1.30 1.20 … 1
A2 𝜋2 1.25 1.16 … 1
Δ,% 0 5 3 … ∼ 0

The approximate value of the integral on the l.h.s. of Equation (1.83) is calculated as follows:
A2 = (𝜋∕2)𝜆 . Numerical comparison of the values A1, A2 and error estimation Δ is given in
Table 1.3.
Thus, the first approximation of the asymptotics for n→ ∞ already gives quite acceptable

accuracy for practical purposes, even for not very large values of n. Note that expression (1.83)
gives an approximation of incomplete beta function ([2], Chapter 6) from n = 1 (sinus func-
tion) to n = ∞ (linear function).

1.2.5 Application of Distributions

Asymptotic methods are based, generally speaking, on the use of Taylor series. In this con-
nection the question arises: what to do with functions of the form exp(−𝜀−1x), which cannot
be expanded into a Taylor series for 𝜀 → 0 via smooth functions [202]. The way out lies in the
transition to the following distribution [100]:

H(x) exp(−𝜀−1x) =
∞∑
n=0

(−1)n𝜀n+1𝛿(n)(x), (1.86)

where 𝛿(x) is the Dirac delta function, representing the derivative of the Heaviside function
H(x); 𝛿(n)(x), n = 1, 2,… are the derivatives of the delta function.
We show how formally the formula (1.86) can be obtained. Applying the Laplace transform

to function exp(−𝜀−1x), one obtains:
∞

∫
0

exp(−𝜀−1x) dx = 𝜀

𝜀p + 1
.

Expanding the r.h.s. of this equation into aMaclaurin series of 𝜀, and then calculating inverse
transform term by term, one obtains expansion (1.86). Thus, we again use the Taylor series,
but now in the dual space.
Here is another interesting feature of the approach using distributions: a singular perturbated

problem can be regarded as a regular perturbated one [100]. Suppose, for example, we deal
with the ODE:

𝜀y′ + y = 0 x > 0, y = 1 at x = 0.

This is a singularly perturbated problem: for 𝜀 = 0 one obtains a smooth solution y = 0,
which does not satisfy the given initial condition. However, one can seek a solution in the
form of a nonsmooth function. Namely, assuming z(x) = H(x)y(x), one obtains

𝜀z′ = −z + 𝜀𝛿(x). (1.87)
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20 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

A solution of Equation (1.87) is sought in the following series form

z =
∞∑
n=0

zn𝜀
n.

As a result one obtains

z0 = 0, z1 = 𝛿(x), zn+1 = (−1)n𝛿(n), n = 1, 2,… . (1.88)

Note that expressions (1.88) allow us to reach smooth functions. To do this, it is possible to

apply the Laplace transform, then the PA in the dual space, and then one may calculate inverse

Laplace transforms.

We show other application of the asymptotic method using distribution [21]. Consider the

equation of the membrane, reinforced with fibers of small but finite width 𝜀. The governing

PDE is

[1 + 2𝜀Φ0(y)]uxx + uyy = 0, (1.89)

where

Φ0(y) =
∞∑

k=−∞
[H(y + kb − 𝜀) + H(y − kb + 𝜀)].

Let us expand the function Φ0(y) in a series of 𝜀. Applying the two-sided Laplace transform
[241], one obtains

Φ(p, 𝜀) =
∞

∫
−∞

e−p|y|Φ(y, 𝜀) dy.

Expanding the functionΦ(p, 𝜀) in a series of 𝜀, and performing the inverse Laplace transform,

we obtain

Φ0(y) = 2𝜀Φ(y) + 2𝜀
∑

k=1,3,5,…
𝜀nΦ(n)(y), (1.90)

where Φ(y) =
∞∑

k=−∞
𝛿(y − kb).

Now, let us consider a solution to Equation (1.89) in the form

u = u0 + 𝜀u1 + 𝜀2u2 +… . (1.91)

Substituting Ansatzes (1.90), (1.91) into Equation (1.89), and splitting the resulting equation

with respect to 𝜀, we arrive at the recursive sequence of BVPs:

[1 + 2𝜀Φ(y)]u0xx + u0yy = 0, (1.92)

[1 + 2𝜀Φ(y)]u1xx + u1yy = −𝜀u0xxΦy(y), (1.93)

…

Thus, in the zero approximation, we obtain the problem with one-dimensional fibers (1.92),

and the influence of the width of fibers is taken into account in the first approximation (1.93).
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Asymptotic Approaches 21

1.3 Summation of Asymptotic Series

1.3.1 Analysis of Power Series

Here we follow [133], [242], [243], [245].

We assume that one obtains the following series as the result of an asymptotic study:

f (𝜀) ∼
∞∑
n=0

Cn𝜀
n for 𝜀 → 0. (1.94)

As it is known, the radius of convergence 𝜀0 of series (1.94) is determined by the distance to

the nearest singularity of the function f (𝜀) on the complex plane, and can be found using the

following Cauchy-Hadamard formula:

1

𝜀0
= lim

n→∞
|Cn|1∕n.

If the nearest singularity lies on the positive real axis, then the coefficients Cn usually have

one and the same algebraic sign, for example

1

1 − 𝜀
∼ 1 + 𝜀 + 𝜀2 + 𝜀3 +… .

If the nearest singularity is located on the negative axis, the algebraic signs of the coefficients

Cn are usually alternated, for example

1

1 + 𝜀
∼ 1 − 𝜀 + 𝜀2 − 𝜀3 +… .

The pattern of signs is usually set pretty quickly. If there are several features of the same

radius, which could happen to a real function with complex singularities necessarily occurring

in complex conjugate pairs, then the rule of alternation of signs may be more complex, such as

1 + 𝜀

1 + 𝜀2
∼ 1 + 𝜀 − 𝜀2 − 𝜀3 + 𝜀4 + 𝜀5 − 𝜀6 − 𝜀7… .

Here we have a pattern of signs + + −−. To define 𝜀0 it may be useful to apply the so-

called Domb-Sykes plot [133], [242], [243], [245]. Let the function f have one of the nearest
singularities at a point 𝜀 = ±𝜀0 with an index of 𝛼, i.e.

f (𝜀) ∼

{
(𝜀0 ± 𝜀)𝛼 for 𝛼 ≠ 0, 1, 2,… ,

(𝜀0 ± 𝜀)𝛼 ln(𝜀0 ± 𝜀) for 𝛼 = 0, 1, 2,… ,

then we get
Cn
Cn−1

∼ ± 1

𝜀0

(
1 − 1 + 𝛼

n

)
n.

Constructing a graph of Cn∕Cn−1 on the vertical axis and 1∕n on the horizontal axis, one

obtains the radius of convergence (as the reciprocal of the intercepts on the axis Cn∕Cn−1),
and then, knowing the slope, the required singularity. Figure 1.2 shows the numerical results
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22 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions
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n=7

n=2

Cn

Cn−1

Figure 1.2 The Domb-Sykes plot for f (𝜀) = 𝜀(1 + 𝜀)(1 + 2𝜀)−1∕2

for the function

f (𝜀) = 𝜀(1 + 𝜀)(1 + 2𝜀)−1∕2 ∼

𝜀 − 𝜀2 + 3

2
𝜀3 − 3

2
𝜀4 + 27

8
𝜀5 − 51

8
𝜀6 + 191

16
𝜀7 − 359

16
𝜀8 +… , (1.95)

starting with n = 7 points arranged in a linear relationship.

If 𝜀0 or 𝛼 are known from physical considerations, they can be used for the construction of the

Domb-Sykes plot. If several singularities have the same convergence radius, so that the signs of

the coefficients oscillate, oneway is to try to construct a dependence on the value (Cn∕Cn−1)1∕2.
If the radius of convergence tends to infinity and Cn∕Cn−1 ∼ k∕n, then the analyzed function

has a factor exp(k𝜀), whereCn∕Cn−1 ∼ k∕n1∕p has a factor exp(𝜀p). If the radius of convergence
tends to zero, then the analyzed function has an essential singularity and asymptotic expansion

diverges. If the coefficients behave like Cn−1∕Cn ∼ 1∕(kn), then we can write Cn ∼ Cknn!,
where C is a constant.

Knowledge of singular solutions can eliminate them from the perturbation series and thus

its convergence can be significantly improved. We describe some techniques for removing

singularities. If the singularity lies on the positive real axis, then it oftenmeans that the function

f (𝜀) is multivalued, and that there is a maximum attainable point 𝜀 = 𝜀0. Then, the inverse of

the original function 𝜀 = 𝜀(f ) can be single valued. For example, consider the function

f (𝜀) = arcsin 𝜀 = 𝜀 + 1

6
𝜀3 + 3

40
𝜀5 + 5

112
𝜀7 +… , (1.96)

and the inverse of this function is

𝜀 ∼ f − 1

6
f 3 + 1

1
20f 5 − 1

5040
f 7 +… . (1.97)

Numerical results are shown in Figure 1.3, where the solid curve denotes the function

arcsin 𝜀, the dotted and dashed curve shows the n-term expansions (1.96) and k-terms

expansions (1.97) for different numbers of terms. It is evident that the expansion (1.97)

achieves a good approximation of the second branch of the original function.
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Asymptotic Approaches 23

3
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f

1

0
0.0 0.5 1.0

ε
1.5

k=4 k=3

k=2

n=4

n=3

n=2

n=1

Figure 1.3 Application of the inversion method of a power series

If

f ∼ A(𝜀0 − 𝜀)𝛼 for 𝜀 → 𝜀0, 0 < 𝛼 < 1,

the transition to the function f 1∕𝛼 removes the singularity.

Consider the following function

f (𝜀) = e−𝜀∕2
√
1 + 2𝜀 ∼ 1 + 1

2
𝜀 − 7

8
𝜀2 + 41

48
𝜀3 − 367

384
𝜀4 + 4849

3840
𝜀5 +… . (1.98)

The radius of convergence of this expansion is equal to 1∕2, while the radius of convergence
of functions

f 2 ∼ 1 + 𝜀 − 3

2
𝜀2 + 5

6
𝜀3 − 7

24
𝜀4 + 3

40
𝜀5 +… . (1.99)

is infinite.

Numerical results are shown in Figure 1.4, where the solid curve denotes the function f (𝜀) =
e−𝜀∕2

√
1 + 2𝜀, the dotted and dashed curve show the n-term expansions (1.98) and the square

roots of k-term expansions (1.99), respectively.

In addition, knowing the singularity, one can construct a new function fM(𝜀) (multiplicative

extraction rule)

f (𝜀) = (𝜀0 − 𝜀)𝛼fM(𝜀),

or fA(𝜀) (additive extraction rule)

f (𝜀) = A(𝜀0 − 𝜀)𝛼fA(𝜀).

The functions fM(𝜀) and fA(𝜀) should not contain singularities at 𝜀0. In many cases, one can

effectively use the conformal transformation of the PS [145], a fairly complete catalog of which

is given in [52]. In particular, it sometimes turns out to be a successful Euler transformation

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

n=4
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n=1
k=1

k=5

k=2n=5

0.0 0.5
ε

1.0 1.5

1.5

1.0f

0.5

Figure 1.4 Functions, expansions and square roots (see text)

[38], [39], [242], [243], [244], [245] based on the introduction of a new variable

�̃� = 𝜀

1 − 𝜀∕𝜀0
. (1.100)

Recasting the function f in terms of �̃�, f ∼
∑
dn�̃�

n has the singularity pushed out at the
point �̃� = ∞. For example, the function (1.95) is singular at the 𝜀 = −1∕2, which can be
eliminated with the Euler transformation �̃� = 𝜀∕(1 + 2𝜀). The expansion of the function (1.95)
in terms of �̃� is

f (�̃�) ∼ 1 + 1

2
�̃� + 1

8
�̃�2 − 31

48
�̃�3 − 895

384
�̃�4 − 22591

3840
�̃�5 +… . (1.101)

Some numerical results are shown in Figure 1.5, where dotted and dashed curves show the
n-term expansions (1.95) and k-terms in the expansion (1.101).
A natural generalization of Euler transformation is

�̃� = 𝜀

(1 − 𝜀∕𝜀0)𝛼
,

where 𝛼 is the real number.

1.3.2 Padé Approximants and Continued Fractions

The coefficients of the Taylor series in the aggregate have a lot more information about the
values of features than its partial sums. It is only necessary to be able to retrieve it, and some of
the ways to do this is to construct a Padé approximation [244]. Padé approximation (PA) allow
us to implement among the most salient natural transformation of power series in a fractional
rational function. Let us define a PA following [29], [18]. Suppose we have power series

f (𝜀) =
∞∑
i=1

ci𝜀
i. (1.102)
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Asymptotic Approaches 25
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Figure 1.5 Illustration of Euler transformation

Its PA can be written as the following expression

f[n∕m](𝜀) =
a0 + a1𝜀 + · · · + an𝜀

n

1 + b1𝜀 + · · · + bm𝜀m
, (1.103)

whose coefficients are determined from the condition

(1 + b1𝜀 + · · · + bm𝜀
m)(c0 + c1𝜀 + c2𝜀

2 +…) =

a0 + a1𝜀 + · · · + an𝜀
n + O(𝜀m+n+1). (1.104)

Equating coefficients of the same powers 𝜀, one obtains a system of LAEs

bmcn−m+1 + bm−1cn−m+2 + cn+1 = 0;
bmcn−m+2 + bm−1cn−m+3 + cn+2 = 0;

⋮ ⋮ ⋮ = ⋮
bmcn + bm−1cn+1 + cn+m = 0,

(1.105)

where cj = 0 for j < 0.
The coefficients ai can now be obtained from Equation (1.104) by comparing coefficients

standing by the same powers 𝜀:

a0 = c0;
a1 = c1 + b1c0;
⋮ ⋮

an = cn +
p∑
i=1

bicn−i,

(1.106)

where p = min(n,m).
Equations (1.104), (1.105) are called Padé equations. In the case where the system (1.105)

is solvable, one can obtain the Padé coefficients of the numerator and denominator of the PA.
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26 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Table 1.4 Padé table

n 0 1 2 …m

0 f[0∕0](𝜀) f[1∕0](𝜀) f[2∕0](𝜀) …
1 f[0∕1](𝜀) f[1∕1](𝜀) f[2∕1](𝜀) …
2 f[0∕2](𝜀) f[1∕2](𝜀) f[2∕2](𝜀) …
… … … … …

Functions f[n∕m](𝜀) at different values of n and m form a set which is usually written in the
form of a table, called the Padé table (Table 1.4). The terms of the first row of the Padé table
correspond to the finite sums of theMaclaurin series. In case of n = m one obtains the diagonal
PA, themost common in practice. Note that the Padé table can have gaps for those indices n, m,
for which the PA does not exist.
We note some properties of the PA (see [5], [7], [29], [18], [231] for more details).

1. If the PA at the chosen m and n exists, then it is unique.
2. If the PA sequence converges to a function, the roots of its denominator tend to the poles

of the function. This allows for a sufficiently large number of terms to determine the pole,
and then to perform an analytical continuation.

3. The PA has meromorphic continuation regarding a given power series functions.
4. The PA on the inverse function is treated as the PA function inverse itself. This property is

called duality and more exactly formulated as follows. Let

q(𝜀) = f−1(𝜀) and f (0) ≠ 0, then q[n∕m](𝜀) = f−1[n∕m](𝜀), (1.107)

provided that one of these approximations exists.
5. Diagonal PA are invariant under fractional linear transformations of the argument. Suppose

that the function is given by their expansion (1.102). Consider the linear fractional trans-
formation that preserves the originW = (a𝜀)∕(1 + b𝜀), and the function q(W) = f (𝜀). Then
q[n∕n], provided that one of these approximations exist. In particular, the diagonal PA is
invariant concerning the Euler transformation (1.100).

6. Diagonal PA are invariant under fractional linear transformations of functions. Let us
analyse a function (1.102). Let

q(𝜀) =
a + bf (𝜀)
c + df (𝜀)

.

If c + df (𝜀) ≠ 0, then

q[n∕n](𝜀) =
a + bf[n∕n](𝜀)
c + df[n∕n](𝜀)

,

provided that there is f[n∕n](𝜀). Because of this property infinite values of PA can be
considered on a par with the end.

7. The PA can get the upper and lower bounds for f[n∕n](𝜀). For the diagonal PA one has the
estimate

f[n∕n−1](𝜀) ≤ f[n∕n](𝜀) ≤ f[n∕n+1](𝜀). (1.108)

Typically, this estimate is valid for the function itself, i.e. f[n∕n](𝜀) in Equation (1.108) can
be replaced by f (𝜀) .
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Asymptotic Approaches 27

8. Diagonal and close to it a sequence of PA often possess the property of autocorrection

[163]–[166]. It consists of the following. To determine the coefficients of the numerator

and denominator of PA one has to solve systems of LAE. This is an ill-posed procedure,

so the coefficients of PA can be determined with large errors. However, these errors are in

a certain sense of self-consistency, the PA can approximate the searching function with a

higher accuracy. This is a radical difference between the PA and the Taylor series.

Autocorrection property is verified for a number of special functions. At the same time,

even for elliptic functions the so-called Froissart doublets phenomenon arises, consisting of

closely spaced zeros and poles to each other (but different and obviously irreducible) in the

PA. This phenomenon is not of a numerical nature, but due to the nature of the elliptic function

[232]. Thus, in general, having no information about the location of the poles of the PA, but

relying solely on the PA (computed exactly), one cannot say that a good approximation for the

approximated function is found.

To overcome these defects several methods are suggested, and in particular the smoothing

method [35]. Its essence is that instead of the usual-term diagonal PA for complex functions

f[n∕n](𝜀) = pn(𝜀)∕qn(𝜀) the following expression is used

f[n∕n](𝜀) =
qn(𝜀)pn(𝜀) + qn−1(𝜀)pn−1(𝜀)

qn(𝜀)qn(𝜀) + qn−1(𝜀)qn−1(𝜀)
,

where f denotes complex conjugation of f .
Now consider the question: in what sense can the available mathematical results on the

convergence of the PA facilitate the solution of practical problems? Gonchar’s theorem [120]

states: if none of the diagonal PA f[n∕n](𝜀) has poles in the circle of radius R, then the sequence
f[n∕n](𝜀) is uniformly convergent in the circle to the original function f (𝜀). Moreover, the

absence of poles of the sequence of the f[n∕n](𝜀) in a circle of radius R must be original and

confirm convergence of the Taylor series in the circle. Since for the diagonal PA invariant

under fractional linear maps we have 𝜀 → (𝜀)∕(a𝜀 + b), the theorem is true for any open circle

containing the point of splitting, and for any area, which is the union of these circles. The fol-

lowing theorem holds [87]: suppose the sequence of diagonal PA of the function𝑤(𝜀), which is
holomorphic in the unit disc and has no poles outside this circle. Then this sequence converges

uniformly to 𝑤(𝜀) in the disc |z| < r0, where 0.583R < r0 < 0.584R. A significant drawback

in practice is the need to check all diagonal PA.

How can we use these results? Suppose that there are a few terms of the perturbation series

and someone wants to estimate its radius of convergence R. Consider the interval [0, 𝜀0], where
the truncated PS and the diagonal PA of the maximal possible order differ by no more than

5%. If none of the previous diagonal PA has poles in a circle of radius 𝜀0, then it is a high level

of confidence to assert that R ≥ 𝜀0 [9].

The procedure of constructing the PA is much less labor-intensive than the construction of

higher approximations of the PS. The PA is not limited to power series, but to the series of

orthogonal polynomials. PA is locally the best rational approximation of a given power series.

They are constructed directly on its odds and allow the efficient analytic continuation of the

series outside its circle of convergence, and their poles in a certain sense localize the singular

points (including the poles and their multiplicities) of the continuation function at the corre-

sponding region of convergence and on its boundary. This PA is fundamentally different from
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28 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

rational approximations to (fully or partially) fixed poles, including those from the polynomial

approximation, in which case all the poles are fixed in one, infinity, the point. Currently, the

PA method is one of the most promising nonlinear methods of summation of power series and

the localization of its singular points. This includes the reason why the theory of the PA turned

into a completely independent section of approximation theory, and these approximations have

found a variety of applications both directly in the theory of rational approximations, and in

perturbation theory. Thus, the main advantages of PA compared with the Taylor series are

as follows:

1. Typically, the rate of convergence of rational approximations greatly exceeds the rate of

convergence of polynomial approximation. For example, the function e𝜀 in the circle of

convergence approximated by rational polynomials Pn(𝜀)∕Qn(𝜀) is 4n times better than an

algebraic polynomial of degree 2n. More tangible it is a property for functions of limited

smoothness. Thus, the function |𝜀| on the interval [−1, 1] cannot be approximated by alge-

braic polynomials, so that the order of approximation was better than 1∕n, where n is the

degree of polynomial. PA gives the rate of convergence ∼ exp(−
√
2n).

2. Typically, the radius of convergence of rational approximation is large compared with

power series. Thus, for the function arctan(x) Taylor polynomials converge only if |𝜀| ≤ 1,

and PA - everywhere in C∖((−i∞,−i] ∪ [i, i∞)).
3. PA can establish the position of singularities of the function.

Similarly, the PA method is a method of continued fractions [136]. There are several types

of continued fractions. The regular C-fraction has the form of an infinite sequence, in which

the N-th term can be written as follows

fN(𝜀) = a +
c0

1 +
c1𝜀

1 +
c2𝜀

1+
⋮
cN+1𝜀

1 + cN𝜀

.

(1.109)

The coefficients ci are obtained after the decomposition of expression (1.109) into a

Maclaurin series, and then equating the coefficients of equal powers of 𝜀. When a = 0 one

obtains the fraction of Stieltjes or S-fraction. For the function of Stieltjes

S(𝜀) =
∞

∫
0

exp(−t)
1 + 𝜀t

dt,

the coefficients of expansion (1.109) have the form: a = 0, c0 = 1, c2n−1 = c2n = n, n ≥ 1.

Description of the so-called J-, T-, P-, R-, g-fractions, algorithms for their construction and

the range of applicability are described in detail in [136].

Continued fractions are a special case of continuous functional approximation [44]. This is

the sequence in which the (n + 1)-th term cn(𝜀) has the form n-th iteration of a function F(𝜀).
For the Taylor series one obtains F(𝜀) = 1 + 𝜀, for the continuous fraction F(𝜀) = 1∕(1 + 𝜀).
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Asymptotic Approaches 29

If F(𝜀) = exp(𝜀) one obtains a continuous exponential approximation

cn(𝜀) = a0 exp{a1𝜀 exp[a2𝜀… exp(an𝜀)]},

for F(𝜀) =
√
1 + 𝜀

cn(𝜀) = a0

√
1 + a1𝜀

√
1 + a2𝜀

√
1 +…an−1𝜀

√
1 + an𝜀,

for F(𝜀) = ln 1 + 𝜀

cn(𝜀) = a0 ln{a1𝜀 ln[a2𝜀… ln(an𝜀)]}.

In some cases, such approximations can converge significantly faster than power series.

As an example, we take a solution of the transcendental equation

x = 𝜀 ln x

for large values of 𝜀 (see [23])

x0 = 𝜀 ln 𝜀; x1 = 𝜀 ln(𝜀 ln 𝜀); x2 = 𝜀 ln[𝜀 ln(𝜀 ln 𝜀)];… .

1.4 Some Applications of PA

1.4.1 Accelerating Convergence of Iterative Processes

The efficiency of PA or other methods of summation depends largely on the availability of

higher approximations of the asymptotic process. Sometimes they can be obtained by using

computer algorithms [188], but in general this problem remains an open one. Iterative methods

are significantly easier to be implemented. As a result of an iterative procedure a sequence of

Sn is obtained. Suppose that it converges and has a limit value. We introduce the parameter a
defined by the ratio

a = lim
n→∞

Sn+1 − Sn
Sn − S

.

It is called superlinear convergence, if a = 0, a linear for a < 1 and logarithmic at a = 1.

The biggest issues are, of course, logarithmically convergent sequences. Very often linearly

convergent sequences may also cause a problem. Therefore, it is often necessary to improve

the convergence. One method of improving the convergence is to move to a new sequence Tn
with the aid of a transformation so that

lim
n→∞

Tn − Sn
Sn − S

= 0.

In such cases we say that the sequence Tn converges faster than sequence Sn. There are linear
and nonlinear methods to improve convergence. Linear methods are described by formulas

Tn =
∑

aniSi, n = 0, 1, 2,… ,

where the coefficients ani do not depend on the terms of the sequence Sn.
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30 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Since linear methods improve the convergence of a restricted class of sequences, currently

nonlinear methods belong to the most popular ones. Among them the Aitken method [18]

stands out for its easiness, which is described by the formula

Tn = Sn −
(Sn+1 − Sn)(Sn − Sn−1)
Sn+1 − 2Sn + Sn−1

, n = 0, 1, 2,… . (1.110)

The Aitken method accelerates the convergence of all linear and many of logarithmically

convergent sequences. It is very easy to calculate, and in some cases it can be applied

iteratively. A natural generalization of the Aitken transformation is the Shanks transformation

[224] of the form

Tshp =
D(1)
kp

D(1)
kp

, (1.111)

where

D(1)
kp =

|||||||||
Sp−k Sp−k+1 … Sp
ΔSp−k ΔSp−k+1 … ΔSp
… … … …

ΔSp−1 ΔSp … ΔSp+k−1

|||||||||
,

D(2)
kp =

||||||||
1 1 … 1

ΔSp−k ΔSp−k+1 … ΔSp
… … … …

ΔSp−1 ΔSp … ΔSp+k−1

|||||||| ,
ΔSk = Sk+1 − Sk.

Equation (1.111) is called the Shanks transformation of the order k of the sequences Sk to the
sequence Sk. For k = 1 one obtains the Aitken transform (1.110). Shanks method requires the

calculation of determinants, which is not always easy. One can also use the Wynn algorithm,

which is described by the formulas

T (n)
−1 = 0, T (n)

0
= Sn, T (n)

k+1 = T (n+1)
k+1 + 1

T (n+1)
k − T (n)

k

. (1.112)

The Wynn algorithm is related to the transformation of Shanks (1.111) in the following way

T (n)
2k = T (sh)

k (Sn), T (n)
2k+1 =

1

T (sh)
k

(ΔSn).

The Wynn algorithm is a quadratic convergent method for solving systems of nonlinear

equations [68], [74], [114]. There are many other techniques for accelerating sequences’

convergence. One can use them consistently, for example, to convert the original sequence

into a linearly convergent one, and then apply the method of Aitken. One can also use different

methods to improve convergence, at each stage by comparing the obtained results [67]. All

the described methods have a close relationship with the PA. The Aitken method corresponds

to the PA [n∕1], the Shanks method to the PA [p∕k], and for the method of Wynn one obtains

T (n)
2k = [n + k∕k].
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Asymptotic Approaches 31

1.4.2 Removing Singularities and Reducing the Gibbs-Wilbraham Effect

Consider the problem of uniform plane flow of an incompressible inviscid fluid streamlines a

thin elliptic airfoil (|x| ≤ 1, |y| ≤ 𝜀, 𝜀 ≪ 1). The expression for the relative velocity q∗ of the
flow follows [244]:

q∗ =
q

V
= (1 + 𝜀)

√
1 − x2√

1 − x2(1 + 𝜀2)
, (1.113)

where V is the free-stream speed.

The splitting of the r.h.s. of Equation (1.113) in a series of 𝜀 can be expressed as

q∗(x, 𝜀) = 1 + 𝜀 − 1

2
𝜀2

x2

1 − x2
− 1

2
𝜀3

x2

1 − x2
+… . (1.114)

This expression diverges at x = 1. No wonder it is not: the expansion (1.114) is obtained as

a result of the limiting process lim
𝜀→0

q(x, 𝜀), x > 1, and to get the value of q(1, 𝜀), it is necessary
to perform the limit as lim

x→1
q(x, 𝜀) for 𝜀 > 0. Divergence of series (1.114), when x = 1 indicates

that the limit processes cannot be interchanged. Now, let us apply PA to the r.h.s. of Equation

(1.114) and then pass to the limit x → 1. After trying various options, we conclude that the

best result is given by the PA

q∗(x, 𝜀) = (1 − x2)(1 + 𝜀)
1 − x2

. (1.115)

Numerical results for 𝜀 = 0.5 are shown in Figure 1.6, where the dashed curve denotes the

solution (1.114), curves 1 and 2 the exact solution (1.115) and the PA (1.115), respectively. It

is seen that the use of PA significantly improves the accuracy of the approximate solution.

PA can be also successfully applied for suppression of the Gibbs-Wilbraham effect (see

discussion in references [36], [69], [95], [196], [218]). Consider, for example, the function

signx of the form

sign x =

{
−1, −𝜋 < x < 0,

1, 0 < x < 𝜋.

q*

1.2 2

1

0.8

0.4

1 0.8 0.6 0.4 X
0

Figure 1.6 Removing singularities by the PA
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32 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Its Fourier series expansion has the form

sign x = 4

𝜋

∞∑
j=0

sin(2j + 1)x
2j + 1

. (1.116)

Direct summation of series (1.116) leads to the Gibbs-Wilbraham effect in the neighborhood

of x = 0, while the defect of convergence reaches 18%, i.e. instead of 1 one obtains the value

of 1.1789797…. Diagonal PA for series (1.116) can be written as follows

sign x[N∕N] =

[(N−1∕2)]∑
j=0

q2j+1 sin((2j + 1)x)

1 +
[(N∕2)]∑
j=0

s2j cos(2jx)]
, (1.117)

where

q2j+1 = 4

𝜋
(2j + 1)

[
1

(2j + 1)2
+

[N∕2]∑
i=1

s2i
(2j + 1)2 − (2i)2

]
,

s2i = 2(−1)i (N!)4(2N + 2i)!(2N − 2i)!
(N − 1)!(N + 1)!(N − 2i)!(N + 2i)![(2N)!]2

.

Numerical studies show that the Gibbs-Wilbraham effect for PA (1.117) does not exceed 2%
[196].

1.4.3 Localized Solutions

We consider the stationary Schrödinger equation

∇2(x, y) − u(x, y) + u3(x, y) = 0. (1.118)

We seek the real, localized axisymmetric solutions of the Equation (1.118). In polar coordi-

nates (𝜉, 𝜃) we construct a solution 𝜑(𝜉), which does not depend on 𝜃. As a result, we obtain

the following BVP

𝜑′′(𝜉) + 1

𝜉
𝜑′(𝜉) − 𝜑(𝜉) + 𝜑3(𝜉) = 0, (1.119)

𝜑(x) = 0, (1.120)

lim
𝜉→∞

𝜑(𝜉) = 0. (1.121)

BVP (1.119)–(1.121) can be regarded as an eigenvalue problem, and the role of an eigen-

value is unknown quantity A = 𝜑(0). This problem plays an important role in nonlinear optics,

quantum field theory, and theory of magnetic media. As shown in [191], BVP (1.119)–(1.121)

has a countable set of “eigenvalues” An, the solution 𝜑(𝜉,An) has exactly n zeros, and the solu-
tion 𝜑(𝜉,A0) has no zeros and decreases monotonically on 𝜉. That is the last solution, which

is the most interesting from the standpoint of physical applications, and we will focus on

obtaining it.
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Asymptotic Approaches 33

The problem of computing the decaying solutions of BVP (1.119)–(1.121) is identical to

the problem of computing homoclinic orbits in the 3D phase space for the nonlinear oscillator,

or equivalently, for computing the initial conditions for these orbits (see [99]).

Since the solutions sought are expected to be analytical functions of 𝜉, they can be expressed

in the Maclaurin series about 𝜉 = 0:

𝜑(𝜉) = A0 +
∞∑
j=1

C2j𝜉
2j. (1.122)

Substituting Ansatz (1.122) into Equation (1.119), producing a splitting of the powers of the

𝜉 and solving the relevant equations, one obtains [99]

C2 = 0.25A0(1 − A2
0
); C4 = 0.25C2C̃; C6 =

C4

6
−

3A2
0
C̃2

16
;

C8 =
1

64
(C̃C6 − 6A0C2C4 − C3

2
);

C10 = −0.01(C̃C8 + 6A0C2C6 + 3A0C
2
4
+ 3C2

2
C4);

C12 = − 1

144
(−C̃C10 + 6A0C2C8 + 6A0C4C6 + 3C2c

2
4
),

where C̃ = 1 − 3A2
0
.

Then we construct PA for the truncated series (1.122) of the form

𝜑(𝜉) =
A0 +

N∑
j=0

a2j𝜉
2j

1 +
N∑
k=1

b2j𝜉2k
. (1.123)

All coefficients in Equation (1.123) can be parameterized in terms of A0, a2j = a2j(A0),
b2j = b2j(A0), and the PA becomes a one-parameter family of analytical approximations of

the searching solution. Then, we compute the value of A0 for which PA (1.123) decays to zero

as 𝜉 tends to infinity. It gives us conditions

a2j(A0) = 0, b2j(A0) ≠ 0. (1.124)

One can compute the PA (1.123), then imposing the condition (1.124), the following

convergent values of A0 for varying orders 2N is obtained

N 1 2 3 4

A0 ±
√
3 ±2.20701 ±2.21121 ±2.21200

The numerical solution gives A0 ≈ ±2.206208, the difference between numerical and

analytical solutions for N = 4 is 0.26%.
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34 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

1.4.4 Hermite-Padé Approximations and Bifurcation Problem

PA can successfully work with functions having poles. However, it often becomes necessary
to explore functions with branch points, and construct all their branches. In that case, one can
use Hermite-Padé approximations [94], [220], [221]. Suppose it comes to a function with the
expansion

f (𝜀) =
∞∑
n=1

un𝜀
n, (1.125)

and we managed to find the first few coefficients of this series

fN(𝜀) =
N∑
n=1

un𝜀
n.

If it is known that this function has a branch point, we can try to transform the original series
(1.125) in an implicit function

F(𝜀, f ) = 0

and determine all required branches of it.
For this purpose we construct a polynomial Fp(𝜀, f ) of degree p ≥ 2

Fp(𝜀, f ) =
p∑

m=1

m∑
k=0

Cm−k,k𝜀
m−kf k.

It was assumed C0.1 = 1, and the remaining coefficients must be determined from the
condition

Fp(𝜀, fN(𝜀)) = O(𝜀N+1) at 𝜀 → 0. (1.126)

Polynomial Fp contains 0.5(p2 + 3p − 2) unknowns, the condition (1.126) yields N linear

algebraic equations, and hence, N = 0.5(p2 + 3p − 2). Once the polynomial Fp is found, one
can easily find p branches of the solution from the equation

Fp = 0.

For the analysis of bifurcations of these solutions one can use Newton’s polygon [237]. If a
priori information about the searching function is known, it can be taken into account for
constructing the polynomial Fp.

1.4.5 Estimates of Effective Characteristics of Composite Materials

We consider a macroscopically isotropic 2D composite material consisting of a matrix with
inclusions. The aim is to determine the effective conductivity q from the known matrix (q1)
and inclusions (q2) conductivities and the volume fraction (𝜑). As shown in [234], if we take
𝜀 = (q2∕q1) − 1 as a small parameter value, the required effective conductivity can be written
as follows q

q1
= 1 + 𝜑𝜀 − 0.5𝜑(1 − 𝜑)𝜀2 + O(𝜀3). (1.127)

Using the first two terms of expansion (1.127), one obtains

1

1 + 𝜑𝜀
≤ q

q1
≤ 1 + 𝜑𝜀,
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Asymptotic Approaches 35

hence the Wiener bounds follow(
1 − 𝜑

q1
+ 𝜑

q2

)−1
≤ q ≤ (1 − 𝜑)q1 + 𝜑q2.

Three terms of the expansion (1.127) give a well-known Hashin-Shtrikman lower bound,

originally based on variational principles

q1 +
𝜑

1

q2−q1
+ 1−𝜑

2q1

≤ q, (1.128)

while q2 > q1; for q2 < q1 the inequalities in Equation (1.128) should be changed to the

opposite.

Replacement q2 ↔ q1, 𝜑 ↔ 1 − 𝜑 gives an upper Hashin-Shtrikman bound

q ≤ q2 +
1 − 𝜑

1

q1−q2
+ 𝜑

2q2

. (1.129)

The first three terms in the expansion (1.127) do not depend on the specific geometry of the

inclusions, so the estimates (1.128), (1.129) are the most common ones. Specifying the type of

inclusions, we can construct the following terms in the expansion and using the PA or continued

fractions, to get narrower and narrower bounds for the unknown effective conductivity.

1.4.6 Continualization

We study a chain of n + 2material points with the samemassesm, located in equilibrium states

in the points of the axis x with coordinates jh(j = 0, 1,… , n, n + 1) and suspended by elastic

couplings of stiffness c (Figure 1.7) [8].
According to Hooke’s law the elastic force acting on the j-th mass is as follows

𝜎j(t) = c[yj+1(t) − yj(t)] − c[yj(t) − yj−1(t)] = c[yj−1(t) − 2yj(t) + yj+1(t)],

where j = 1, 2,… , n and yj(t) is the displacement of the j-th material point from its static equi-

librium position.

Applying Newton’s second law one obtains the following system of ODEs governing chain

dynamics

m𝜎jtt(t) = c(𝜎j+1 − 2𝜎j + 𝜎j−1), j = 1, 2,… , n. (1.130)

Let us suppose the following BCs

𝜎0(t) = 𝜎n+1(t) = 0. (1.131)

0 1 2 n-1 n+1n

y

h

Figure 1.7 A chain of elastically coupled masses
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36 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

For large values of n usually continuum approximation of discrete problem is applied. In our
case it takes the form of

m𝜎tt(x, t) = ch2𝜎xx(x, t), (1.132)

𝜎(0, t) = 𝜎(𝓁, t) = 0. (1.133)

Formally, one can rewrite Equation (1.130) as a pseudo-differential equation:

m
𝜕2𝜎

𝜕t2
+ 4csin2

(
− ih
2

𝜕

𝜕x

)
𝜎 = 0. (1.134)

The pseudo-differential operator can be split into the Mclaurin series as follows

sin2
(
− ih
2

𝜕

𝜕x

)
= −1

2

∑
k=1

h2k

(2k)!
𝜕2k

𝜕x2k

= −h
2

4

𝜕2

𝜕x2

(
1 + h2

12

𝜕2

𝜕x2
+ h4

360

𝜕4

𝜕x4
+ h6

10080

𝜕6

𝜕x6

)
. (1.135)

Retaining only the first term in the last line of Equation (1.135), one obtains a continuum
approximation (1.132). Keeping the first three terms in Equation (1.135), the following model
is obtained

m
𝜕2𝜎

𝜕t2
= ch2

(
𝜕2

𝜕x2
+ h2

12

𝜕4

𝜕x4
+ h4

360

𝜕6

𝜕x6

)
. (1.136)

In the case of periodic BCs for a discrete chain one obtains the following BCs for
Equation (1.136):

𝜎 = 𝜎xx = 𝜎xxxx = 0 for x = 0,𝓁. (1.137)

BVP (1.136), (1.137) is of the 6th order in spatial variables. Using PAwe can obtain a modified
continuum approximation of the 2nd order. If only two terms are left in the r.h.s. of Equation
(1.135), then the PA can be cast into the following form

𝜕2

𝜕x2
+ h2

12

𝜕4

𝜕x4
≈

𝜕2

𝜕x2

1 − h2

12

𝜕2

𝜕x2

.

For justification of this procedure Fourier or Laplace transforms can be used.
The corresponding so-called quasi-continuum model reads

m

(
1 − h2

12

𝜕2

𝜕x2

)
𝜎tt − ch2𝜎xx = 0. (1.138)

The BCs for Equation (1.138) have the form (1.133).

1.4.7 Rational Interpolation

In this subsection we follow [108]. A simple way to approximate a function is to choose a
sequence of points

a = x0 < x1 < x2 · · · < xn = b,
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Asymptotic Approaches 37

and to construct the interpolating polynomial pn(x)

pn(xi) = f (xi), i = 0, 1, 2,… , n.

However, as is well-known pn(x)may not be a good approximation to f , and for large n≫ 1

it can exhibit wild oscillations. If we are free to choose the distribution of the interpolation

points xi, one remedy is to cluster them near the end-points of the interval [a, b], for example

using various kinds of Chebyshev points.

A very popular alternative nowadays is to use splines (piecewise polynomials), which

have become a standard tool for many kinds of interpolation and approximation algorithms,

and for geometric modeling. However, it has been known for a long time that the use of

rational functions can also lead to much better approximations than ordinary polynomials. In

fact, both polynomial and rational interpolation, can exhibit exponential convergence when

approximating analytic functions.

In “classical” rational interpolation, one chooses someM andN such thatM + N = n and fits
a rational function of the form pM∕qN to the values f (xi), where pM and qN are polynomials of

degreesM and N, respectively. If n is even, it is typical to setM + N = n∕2, and some authors

have reported excellent results. The main drawback, though, is that there is no control over the

occurrence of poles in the interval of interpolation.

In reference [51] it has been suggested that it might be possible to avoid poles by using

rational functions of higher degree. Authors considered algorithms, which fit rational func-

tions, whose numerator and denominator degrees can both be as high as n. This is a convenient
class of rational interpolants because such an interpolant can be written in so-called barycentric

form

r(x) =

n∑
i=0

𝜆i

x−xi
f (xi)

n∑
i=0

𝜆i

x−xi
f (xi)

for some real values 𝜆i. Thus, it suffices to choose the weights 𝜆i in order to specify r, and
the idea is to search for weights, which give interpolants r that have no poles and preferably

good approximation properties. Various approaches are described in [108], in particular, one

can choose 𝜆i = (−1)i, i = 0, 1, 2,… , n.

1.4.8 Some Other Applications

PA is widely used for the construction of solitons and other localized solutions of nonlinear

problems, even in connection with the appeared term “padeon” (see [155], [156] for more

details).

As a simple model, we consider the nonlinear BVP

y′′ − y + 2y3 = 0, (1.139)

y(0) = 1, y(∞) = 0, (1.140)

that has an exact localized solution

y = cosh−1(x). (1.141)
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38 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Quasilinear asymptotics give a solution in the following form

y = Ce−x(1 − 0.25C2e−2x + 0.0625C4e−4x +…), C = const. (1.142)

It is easy to verify that with reconstructing the truncated series (1.142) in the PA, and with

determining the constant C from the BCs (1.140), we arrive at the exact solution (1.141).

It is interesting also to use the PA to problems with the phenomenon of “blow-up”, when the

solution goes to infinity at a finite value of the argument. For example, the Cauchy problem

dx
dt

= 𝛼x + 𝜀x2, x(0) = 1, 0 < 𝜀 ≪ 𝛼 ≪ 1, (1.143)

has the exact solution

x(t) =
𝛼 exp(𝛼t)

𝛼 + 𝜀 − 𝜀 exp(𝛼t)
, (1.144)

which tends to infinity for t → ln[(𝛼 + 𝜀)∕𝜀].
Regular asymptotic expansion

x(t) ∼ exp(𝛼t) − 𝜀𝛼−1 exp(𝛼t)[1 − exp(𝛼t)] +…

cannot describe this phenomenon, but the use of the PA gives the exact solution (1.144).

PA allows us to expand the scope of the known approximate methods. For example, in the

method of harmonic balance the representation of the solution of a rational function of the type

x(t) =

N∑
n=0

{An cos[(2n + 1)𝜔t] + Bn sin[(2n + 1)𝜔t]}

1 +
N∑
n=0

{Cm cos(2m𝜔t) + Dm sin(2m𝜔t)}

substantially increases the accuracy of approximation [128], [187].

PA can be used effectively to solve ill-posed problems. This could include reconstruction of

functions in the presence of noise ([116]–[118]), various problems of dehomogenization (i.e.,

determining the components of a composite material on its homogenized characteristics) [81],

etc.Wemust also mention 2D PA being illustrated and discussed in [86]. For other applications

of PA see [22], [26], [27], [33], [40], [41], [45], [54], [82], [83], [85], [89], [90], [98], [102],

[125], [126], [127], [135], [172], [177], [190], [249].

1.5 Matching of Limiting Asymptotic Expansions

1.5.1 Method of Asymptotically Equivalent Functions for Inversion
of Laplace Transform

This method was originally proposed by Slepyan and Yakovlev for the treatment of integral

transformations. Here is a description of this method, following [229]. Suppose that the

Laplace transform of a function of a real variable f (t) is

F(s) = ∫
∞

0

f (t)e−st ds.
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Asymptotic Approaches 39

In order to obtain an approximate expression for the inverse transform, it is necessary to

clarify the behavior of the transform in vicinity of the points s = 0 and s = ∞, and to determine

the nature and location of its singular points, as well as whether they lie on the exact boundary

of the regularity or near it. Then the transform F(s) is replaced by the function F0(s), allowing
the exact inversion and satisfying the following conditions:

1. Functions F0(s) and F(s) are asymptotically equivalent at s→ ∞ and s→ 0, i.e.

F0(s) ∼ F(s) at s→ 0 and s→ ∞.

2. Singular points of the functions F0(s) and F(s), located on the exact boundary of the regu-

larity, coincide.

Free parameters of the functionF0(s) are chosen in such a way that they satisfy the conditions
of the approximation of F(s) in the sense of minimum relative error for all real values s ≥ 0:

min

{
max

||||F0(s, 𝛼1, 𝛼2,… , 𝛼k)
F(s)

− 1
||||
}

. (1.145)

Condition (1.145) is achieved by variation of free parameters 𝛼i. Often the implementation

of equalities

∫
∞

0

F0(s) ds = ∫
∞

0

F(s) ds

or F′
0
∼ F′

0
at s→ 0 leads to a rather precise fulfillment of requirements (1.145).

Constructed in such a way function is called asymptotically equivalent function (AEF).

Here is an example of constructing AEF. Find the inverse transform if the Laplace transform

is given by the modified Bessel function [2], Chapter 9:

K0(s) = − ln(s∕2)I0(s) +
∞∑
k=0

s2k

22k(k!)2
Ψ(k + 1) (1.146)

where Ψ(z) is the psi (digamma) function [2], Chapter 6.

For pure imaginary values of the argument s(s = iy; 0 < |y| < ∞) function K0(s) has no
singular points. Consequently, we can restrict the study of its behavior for s→ 0 and s→ ∞.

The corresponding asymptotic expressions are [2], Chapter 9:

K0(s) = −
[
ln
s
2
+ 𝛾

]
+ O(s), s→ 0,

(1.147)

K0(s) =
√

𝜋

2s
e−s

[
1 + O

(
1

s

)]
, s→ ∞,

where 𝛾 is the Euler’s constant (𝛾 = 1.781…)[] (note the typo in the first formula (1.147)

in [229]).

The analyzed Laplace transform has a branch point of the logarithmic type, branch point

of an algebraic type, and an essential singularity. These singular points need to be stored in

the structure of the zero approximation. The most simple way to obtain such a structure is to

combine of two asymptotic representations (1.147), so that they mutually do not distort each
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40 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

other and contain free parameters, which could be disposed of in the future. As a result, we
arrive at the zeroth order approximation

F0(s) = e−s
[
ln
s + 𝛼

s
+

√
𝜋

2

1√
s + 𝛽

]
, (1.148)

where 𝛼 and 𝛽 are the free parameters.
It is easy to see that expression (1.148) has the correct asymptotic behavior s→ ∞. The

free parameters are determined from the condition of coincidence of the asymptotics of the
functions K0(s) and F0(s) for s→ 0, and the equality of integrals

∫
∞

0

F0(s) ds = ∫
∞

0

K0(s) ds.

As a result of calculations one obtains a system of transcendental equations

ln 𝛼 +
√

𝜋

2𝛽
= ln 2 − 𝛾,

ln 𝛼 − e𝛼Ei(−𝛼) + 𝛾 + 𝜋√
2
e𝛽[1 − erf(

√
2)] = 𝜋

2
,

where Ei(…) is the the sine integral [2], Chapter 7. erf(…) is the error function [2] (note typo
in these formulas in [229]).
Solving the prescription system numerically, one finds 𝛼 = 0.3192, 𝛽 = 0.9927.
Then the approximate inverse transform can be written as follows:

f0(t) =

{
1 − exp[−𝛼(t − 1)]

t − 1
+

exp[−𝛽(t − 1)]√
2(t − 1)

}
H(t − 1). (1.149)

The exact expression for the function f (t) is

f (t) = 1√
t2 − 1

H(t − 1). (1.150)

Comparison of exact (1.150) (solid curve) and approximate (1.149) (dotted curve with
circles) inversions is shown in Figure 1.8. As can be seen, a satisfactory result is obtained
even in the zero approximation.

5

4

3
f(t)

2

1

0
0 1 2 3 4 5

t

6 7 8 9 10

Figure 1.8 Comparison of the exact Laplace transform inversion with the treatment by the method
of AEFs
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Asymptotic Approaches 41

Analogously, one can construct AEFs for inverse sine and cosine Fourier transforms, Hankel
and other integral transforms.

1.5.2 Two-Point PA

The analysis of numerous examples confirms usually implemented a sort of “complemen-
tarity principle”: if for 𝜀 → 0 one can construct a physically meaningful asymptotics, there
is a nontrivial asymptotics also for 𝜀 → ∞. The most difficult in terms of the asymptotic
approach is the intermediate case of 𝜀 ∼ 1. In this domain numerical methods typically work
well, however, if the task is to investigate the solution depending on the parameter 𝜀, then it is
inconvenient to use different solutions in different areas. Construction of an unified solution on
the basis of limiting asymptotics is not a trivial task, which can be summarized as follows: we
know the behavior of functions in zones I and III (Figure 1.9); we need to construct it in the zone
II. For this purpose one can use a two-point PA (TPPA). We give the definition following [30].
Let

F(𝜀) =
∞∑
i=0

ci𝜀
i at 𝜀 → 0, (1.151)

F(𝜀) =
∞∑
i=0

ci𝜀
−i at 𝜀 → ∞. (1.152)

Its TPPA is a rational function of the form

f[n∕m](𝜀) =
a0 + a1𝜀 + · · · + an𝜀

n

1 + b1𝜀 + · · · + bm𝜀m

with k ≤ m + n − 1 coefficients, which are determined from the condition

(1 + b1𝜀 + · · · + bm𝜀
m)(c0 + c1𝜀 + c2𝜀

2 +…) = a0 + a1𝜀 + · · · + an𝜀
n,

and the remaining m + n − k coefficients of a similar condition for 𝜀−1.
As an example of TPPA using for matching of limiting asymptotics, consider the solution of

the Van der Pol equation:
ẍ + 𝜀ẋ(x2 − 1) + x = 0.

0 ε

φ (ε) ε→0 ε→∞

I II III

Figure 1.9 Matching of asymptotic solutions
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42 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Asymptotic expressions of the oscillation period for small and large values of 𝜀 are [3],
[73], [133]:

T = 2𝜋

(
1 + 𝜀2

16
− 5𝜀4

3072

)
at 𝜀 → 0, (1.153)

T = 𝜀(3 − 2 ln 2) at 𝜀 → ∞. (1.154)

For constructing TPPAwe use the four conditions at 𝜀 → 0 and the two conditions at 𝜀 → ∞,
then

T(𝜀) =
a0 + a1𝜀 + a2𝜀

2 + a3𝜀
3

1 + b1𝜀 + b2𝜀2
, (1.155)

where

a0 = 2𝜋, a1 =
𝜋2(3 − 2 ln 2)

4(3 − 2 ln 2)2 − 𝜋2
, a2 =

𝜋(3 − 2 ln 2)2

2[4(3 − 2 ln 2)2 − 𝜋2]
,

a3 =
𝜋2(3 − 2 ln 2)

16[4(3 − 2 ln 2)2 − 𝜋2]
, b1 =

𝜋(3 − 2 ln 2)
2[4(3 − 2 ln 2)2 − 𝜋2]

,

b2 =
𝜋2

16[4(3 − 2 ln 2)2 − 𝜋2]
.

Table 1.5 shows the results of the comparison of numerical values of the period, given in [3],
[6] with the results calculated by formula (1.155).

Table 1.5 Comparison of numerical
results and calculations using the TPPA

𝜀 T numerical TPPA

1 6.66 6.61
2 7.63 7.37
3 8.86 8.40
4 10.20 9.55
5 11.61 10.81
6 13.06 12.15
7 14.54 13.54
8 16.04 14.96
9 17.55 16.42
10 19.08 17.89
20 34.68 33.30
30 50.54 49.13
40 66.50 65.10
50 82.51 81.14
60 98.54 97.20
70 114.60 113.29
80 130.67 129.40
90 146.75 145.49
100 162.84 161.61
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Asymptotic Approaches 43

Now we construct inverse Laplace transform with the TPPA. Let the original function be as
follows:

f (t) = (1 + t2)−0.5. (1.156)

Asymptotics of this function looks like

f (t) ≅

{
1 − 0.5t2 +… at t → 0,

t−1 +… at t → ∞.

TPPA in this case can be written as

f (t) = 1 + 0.5t
1 + 0.5t + 0.5t2

. (1.157)

Numerical results are shown in Figure 1.10. An approximate inversion (1.157) (upper curve)
agrees well with the original (1.156) (lower curve) for all values of the argument.
Other examples on the effective use of the TPPA are reported in references [6], [75],

[112], [258].

1.5.3 Other Methods of AEFs Construction

Unfortunately, the situations where both asymptotic limits have the form of power expansions
are rarely encountered in practice, so we have to resort to other methods of AEFs constructing.
Consider, for example, the following BVP

𝜀yxx − xy = 𝜀y, y(0) = 1, y(∞) = 0, 𝜀 ≪ 1. (1.158)

Solution for small values of x can be written as follows

y = 1 − a𝜉 + 1

6
𝜉3 + O(𝜉4), (1.159)

where 𝜉 = x𝜀−
1
3 , a is the arbitrary constant.

The solution for large values of x is constructed using the WKB method (see [62])

y = b𝜉−
1
4 exp

(
−2

3
𝜉

3
2

) [
1 − 5

48
𝜉
− 3

2 + O
(
𝜉−3

)]
, (1.160)

where b is an arbitrary constant.

0.8

0.6
f(t)

0.4

0.2

0
0 2 4

t

6 8

Figure 1.10 Exact and approximate Laplace transform inversions
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44 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Now we match these asymptotics. Because of the exponents occured in Equation (1.160),

using TPPA in the original form is not possible. Therefore, we construct AEF based on the

following considerations: for large values of the variable 𝜉 the exponent from Equation (1.160)

is taken into account in its original form, and for small values of the variable 𝜉 it is expanded

in a Maclaurin series. Constructed in this way AEF has the form

ya =
1 − a𝜉 + 2

3
𝜉

3
2 − 2

3
𝜉

5
2 + 32

5
a𝜉4

1 + 32

5

a
b
𝜉

17
4

exp
(
−2

3
𝜉

3
2

)
. (1.161)

The coefficients a and b in Equation (1.161) still remain undefined. For calculation of these

constants one can use some integral relations, for example, obtained from Equation (1.161)

by multiplying them with the weighting functions 1, x, x2,… , and further integration over the

interval [0,∞). In the end, such values of the constants are found

a =

3
√
3 Γ

(
2

3

)
Γ
(
2

3

) , b =

3
√
9 Γ

(
2

3

)
2
√
𝜋

. (1.162)

Numerical calculations show that the formula (1.161) with constants (1.162) approximates

the desired solution in the whole interval [0,∞) with an error not exceeding 1.5%.
When choosing the constants one can use other methods, in which case a lot depends on

the skill of the researcher. Of course, it is necessary to ensure the correct qualitative behavior

of AEFs, avoiding, for example zeros of the denominator, which do not correspond to the

problem. To do this, one can vary the number of terms in the asymptotics and the numerator

and denominator constructed uniformly suitable solutions. In general, the method of rational

AEF can be described as follows [176]. Let us assume that function f (z) has the following

asymptotics:

f (z) = F(z) at z→ ∞, (1.163)

and

f (z) =
∞∑
i=0

ciz
i at z→ 0. (1.164)

Then the AEF can be produced from the Equations (1.165), (1.166) as follows

f (z) ≈

m∑
i=0

𝛼i(z)zi

n∑
i=0

𝛽i(z)zi
at z→ 0, (1.165)

where 𝛼i, 𝛽i are considered not as constants but as some functions of z. Functions 𝛼i(z) and
𝛽i(z) are chosen in such a way that:

1. The expansion of AEF (1.165) in powers of z for z→ 0 matches the PS (1.164);

2. The asymptotic behavior of AEF (1.165) for z→ ∞ coincides with the function F(z)
(1.163).
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Asymptotic Approaches 45

In the construction of AEFs a priori qualitative information is very important. For example,
if from any considerations it is known that the unknown function is close to a power form,
you can use the method of Sommerfeld [144]. Its essence is to replace a segment of the power
series

f (x) = 1 + a1x + a2x
2 +… (1.166)

by the function
f (x) ≈ (1 + Ax)𝜇. (1.167)

Expanding expression (1.167) in a MacLaurin series and comparing coefficients of this
expansion with series (1.166), one obtains

A =
a2
1
− 2a2
a1

;𝜇 =
a2
1

a2
1
− 2a2

.

Numerical approaches also can be used for the construction of AEFs. For example, in
reference [137] a computational technique for matching limiting asymptotics is described.
Sometimes it is possible to construct the so called composite equations, which can be treated

as asymptotically equivalent equations. Let us emphasize, that the composite equations, due
to [244], can be obtained in result of synthesis of the limiting cases. The principal idea of the
method of the composite equations can be formulated in the following way [244]:

1. Identify the terms in the differential equations, whose neglect in the straightforward approx-
imation is responsible for the nonuniformity.

2. Approximate those terms in so far as possible while retaining their essential character in
the region of nonuniformity.

Let us dwell on the terminology. Here we use the term “asymptotically equivalent function”.
Other terms “reduced method of matched asymptotic expansions” [144], “quasifractional
approximants” [75], “mimic function” [113] are also used.

1.5.4 Example: Schrödinger Equation

For the Schrödinger equation (1.71) with BCs (1.72) we obtained previously a solution for the
exponent, little different from the two (1.79). In [56] the following asymptotic solutions for
N → ∞ are obtained:

E0(N) =
𝜋2

4
(2N)−

2
N+1Γ

( N
N + 1

)2

. (1.168)

Using Ansatzes (1.79) and (1.168), we construct AEF

E0(N) ∼
𝜋 + Γ

( N
N + 1

)2

4(2N + 𝛼)
2

N+1

, (1.169)

where 𝛼 = 𝜋2Γ(1.25) − 2 ≈ 6.946.
Numerical results are presented in Table 1.6. It is evident that formula (1.169) gives good

results for all the values of N.
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46 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Table 1.6 Comparison of numerical and analytical
results of the energy levels for the Schrödinger equation

N E0; numerical [56] Equation (1.169) Error,%

1 1.0000 1.0 0
2 1.0604 0.9974 5.9364
4 1.2258 1.17446 4.1882
10 1.5605 1.5398 1.33
50 1.1052 2.1035 0.079
200 2.3379 2.3376 0.006
500 2.4058 2.4058 ≈ 0
1500 2.4431 2.4431 ≈ 0
3500 2.4558 2.45558 ≈ 0

1.5.5 Example: AEFs in the Theory of Composites

Now let us consider an application of the method of AEFs for the calculation of the effective
heat conductivity of an infinite regular array of perfectly conducting spheres, embedded in a
matrix with unit conductivity. The following expansion for the effective conductivity ⟨k⟩ has
been reported in reference [215]

⟨k⟩ = 1 − 3c

−1 + c + a1c
10
3

1+a2c
11
3

1−a3c
7
3

+ a4c
14
3 + a5c6 + a6c

22
3 + O

(
c
25
3

) , (1.170)

where c is the volume fraction of inclusions. Herewe consider three types of space arrangement
of spheres, namely, the simple cubic (SC), body centered cubic (BCC) and face centered cubic
(FCC) arrays. The constants ai for these arrays are given in Table 1.7.
In the case of perfectly conducting large spheres (c→ cmax, where cmax is the maximum

volume fraction for a sphere) the problem can be solved by means of a reasonable physical
assumption that the heat flux occurs entirely in the region, where spheres are in a near contact.
Thus, the effective conductivity is determined in the asymptotic form for the flux between
two spheres, which is logarithmically singular in the width of a gap, justifying the assumption
[185]: ⟨k⟩ = −M1 ln 𝜒 −M2 + O(𝜒−1), (1.171)

where𝜒 = 1 − (c∕cmax)
1
3 is the dimensionless width of a gap between the neighboring spheres,

𝜒 → 0 for c→ cm,M1 = 0.5cmaxp, p is the number of contact points at the surface of a sphere;

Table 1.7 The constants a1,… , a6 in Equation (1.170)

a1 a2 a3 a4 a5 a6

SC array 1.305 0.231 0.405 0.0723 0.153 0.0105
BCC array 0.129 −0.413 0.764 0.257 0.0113 0.00562
FCC array 0.0753 0.697 −0.741 0.0420 0.0231 9.14 ⋅ 10−7
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Asymptotic Approaches 47

Table 1.8 The constantsM1, M2 and cmax

M1 M2 cmax

SC array 𝜋∕2 0.7 𝜋∕6
BCC array

√
3𝜋∕2 2.4

√
3𝜋∕8

FCC array 0
√
2𝜋 7.1

√
2𝜋∕6

M2 is a constant, depending on the type of space arrangement of spheres. The values of M1,

M2 and cmax for the three types of cubic arrays are given in Table 1.8.

On the basis of limiting solutions (1.170) and (1.171) we develop the AEF valid for all values

of the volume fraction of inclusions c ∈ [0, cmax]:

⟨k⟩ = P1(c) + P2c
m+1
3 + P3 ln 𝜒

Q(c)
. (1.172)

Here the functions P1(c), Q(c) and the constants P2, P3 are determined as follows:

Q(c) = 1 − c − a1c
10
3 , P1(c) =

m∑
i=0

𝛼1c
i
3 , P2 = 0 for n = 1,

P2 =
−[P1(cmax) + Q(cmax)M2]

c
m+1
3

max

for n = 2.

The AEF (1.172) takes into account leading terms of expansion (1.170) and leading terms

of expansion (1.171), and the corresponding coefficients follow

𝛼0 = 1, 𝛼3 = 2 −
Q(cmax)M1

3cmax

, 𝛼10 = 𝛼1 −
Q(cmax)M1

10c
10
3
max

,

𝛼j = −
Q(cmax)M1

jc
j
3
max

, j = 1, 2,… ,m − 1m, j ≠ 3, 10.

The increment ofm and n leads to the growth of the accuracy of the obtained solution (1.172).
Let us illustrate this dependence in the case of SC array. We calculated ⟨k⟩ for different values
ofm and n. In Figure 1.11 our analytical results are compared with experimental measurements

from [186] (black dots); details of these data can be found in [184]. Finally, we restrictm = 19

and n = 2 for all types of arrays, as they provide a satisfactory agreement with numerical datas

and a rather simple analytical form of the AEF (1.172).

Numerical results for the BCC and the FCC arrays are displayed in Figures 1.12 and 1.13,

respectively. For BBC array the obtained AEF (1.172) is compared with the experimental

results taken from [182] and [183]. For FCC array the experimental data are not available,

therefore we are comparing with the numerical results obtained by [183] using the Rayleigh

method. The agreement between the analytical solution (1.172) and the numerical results is

quite satisfactory.
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Figure 1.11 Effective conductivity ⟨k⟩∕km of the SC array vs. volume fraction of inclusions c
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Figure 1.12 Effective conductivity ⟨k⟩∕km of the BCC array vs. volume fraction of inclusions c
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Figure 1.13 Effective conductivity ⟨k⟩∕km of the FCC array vs. volume fraction of inclusions c
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Asymptotic Approaches 49

1.6 Dynamical Edge Effect Method

1.6.1 Linear Vibrations of a Rod

We introduce the method of dynamical edge effect using a problem possessing an exact

solution. We consider free vibrations of a rod of length L governed by the following PDE:

𝜕4𝑤

𝜕x4
+ a2

𝜕2𝑤

𝜕t2
= 0, a2 = 𝜌F

EI
. (1.173)

Consider two variants of the boundary conditions:

a) simple support

for x = 0,L 𝑤 = 0,
𝜕2𝑤

𝜕x2
= 0; (1.174)

b) rigid clamping

for x = 0,L 𝑤 = 0,
𝜕𝑤

𝜕x
= 0. (1.175)

Since we consider natural vibrations, the process of looking for function 𝑤(x, t) is assumed

in the following form

𝑤(x, t) = W(x) exp(i𝜔t).

The eigenfunction W(x) is yielded by the following equation

d4W
dx4

− a2𝜔2W = 0. (1.176)

Observe that for 𝜔2 → ∞ Equation (1.176) is reduced to trivial one, therefore an application

of the boundary functions or of the matched asymptotic series does not belong to easy tasks.

A solution to Equation (1.176) with BCs (1.174) follows

Wm = sin
(m𝜋
L
x
)
, m = 1, 2, 3,…; (1.177)

𝜔m = 1

a

(m𝜋
L

)2

. (1.178)

Onemay verify that the BVP (1.175), (1.176) does not allow us to obtain the solution (1.177).

However, if an eigenfunction rapidly oscillates with respect to x, i.e. we consider a sufficiently
high order vibration form, then we may expect that in this case a solution (1.177) holds for

an internal region located far from the boundaries (Figure 1.14). Even though the boundary

conditions are not satisfied, we may try to construct a solution compensating the occurred

errors on the BC and being rapidly decaying while approaching the internal region, and hence

the approximating formulas for eigenfunctions and frequencies can be derived.

We assume the following solution to Equation (1.176):

W0 = sin
𝜋(x − x0)

𝜆
, (1.179)
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50 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

2

1

0 𝓍

𝑤

Figure 1.14 Curve 1 depicts the rapidly oscillating state, whereas curve 2 presents a sum of the
fundamental state and dynamical edge effect

where x0, 𝜆 correspond to shift and length of the wave, respectively. Values of x0 and 𝜆 will

be estimated in the process of construction of the dynamical edge effect.

Vibration frequency

𝜔 = 1

a

(
𝜋

𝜆

)2

. (1.180)

Let us present Equation (1.176) in the following way [240]:(
d2

dx2
+ a𝜔

)(
d2

dx2
− a𝜔

)
W = 0. (1.181)

Therefore, its general solution has the following form

W = W1 +W2,

where functions W1 and W2 are general solutions of the equations

d2W1

dx2
+ a𝜔W1 = 0, (1.182)

d2W2

dx2
− a𝜔W2 = 0. (1.183)

When the eigenforms change rapidly (a𝜔 ≫ 1), the following estimations hold

dW1

dx
∼ a𝜔W1,

dW2

dx
∼ a𝜔W2.

Observe thatW1 represents rapidly oscillating function, whereasW2 presents a sum of expo-

nential functions with large exponents. Hence, here we deal rather with untypical situation,

since we do not have small and large real values of the routes of the characteristic equation,

which correspond to slow and fast changeable solution components. We deal here with split-

ting of two states, where one of them rapidly oscillates and the second is concentrated near
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Asymptotic Approaches 51

the boundaries. In other words the characteristic equation has real and imaginary roots of the
same moduli order.
In what follows we construct the edge effect described by Equation (1.183). Taking into

account Equation (1.180), the following relations for the edge effects located in neighborhood
of the edges x = 0 and x = L are obtained:

W1cr = C1 exp(−𝜋𝜆−1x),

W2cr = C2 exp[−𝜋𝜆−1(x − L)]. (1.184)

In order to define the eigenform and the associated frequency we need to find x0, 𝜆 and
arbitrary constants C1, C2 from the boundary conditions:

for x = 0 W0 +W1cr = 0,
d
dx

(W0 +W1cr) = 0; (1.185)

for x = L W0 +W2cr = 0,
d
dx

(W0 +W2cr) = 0. (1.186)

Substituting Equations (1.179) and (1.184) into Equation (1.185) and (1.186) one gets

C1 − sin
𝜋x0
𝜆

= 0, C1 − cos
𝜋x0
𝜆

= 0, (1.187)

C2 + sin

(
𝜋
L − x0

𝜆

)
= 0, C2 + cos

(
𝜋
L − x0

𝜆

)
= 0. (1.188)

Furthermore, we obtain

𝜆 = L
m + 0, 5

, m = 1, 2,…; x0 = 𝜆(0, 25 + n), n = 1, 2,… .

Finally, the formula for eigenfrequencies of a clamped rod is as follows:

𝜔m = 𝜋2 (m + 0, 5)2

aL2
, m = 1, 2,… . (1.189)

Formula (1.189) for fundamental frequency gives the error of 1%.
The method described so far has been proposed by Bolotin [58], [59]. On the other hand,

Keller and Rubinow [28], [146] have proposed the wave method for the Laplace equation. The
latter one has been generalized into biharmonic equation [76], and next the equivalence of both
Boltin’s and Keller-Rubinow methods have been proved [77], [78].

1.6.2 Nonlinear Vibrations of a Rod

In order to present the main ideas of this method for a nonlinear case, we use the Kirchhoff
equation:

EI
𝜕4𝑤

𝜕x4
− EF

2L

[
∫

L

0

(
𝜕𝑤

𝜕x

)2

dx

]
𝜕2𝑤

𝜕x2
+ 𝜌F

𝜕2𝑤

𝜕t2
= 0. (1.190)

Let the rod be elastically clamped, hence we have

for x = 0,L 𝑤 = 0,
𝜕2𝑤

𝜕x2
− c∗

𝜕𝑤

𝜕x
= 0, (1.191)

where c∗ = c∕(EI), and c is the coefficient of clamping.
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52 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Zero order solution is approximated by the following form

𝑤0 = A sin
𝜋(x − x0)

𝜆
𝜉(t). (1.192)

Substituting Equation (1.192) into Equation (1.190) we get

d2𝜉

dt2
+ 𝜔2(1 + 𝛾𝜉2)𝜉 = 0, (1.193)

where

𝜔2 = EI𝜌−1
(
𝜋

𝜆

)2

, 𝛾 = 0, 25(1 + 𝜆1)
(A
r

)2

,

r =
√
I∕F, 𝜆1 =

𝜆

2𝜋L
[sin

2𝜋(L − x0)
𝜆

+ sin
2𝜋x0
𝜆

].

Equation (1.193) with the initial condition

𝜉(0) = 1,
d𝜉(0)
dt

= 0 (1.194)

has the following solution

𝜉(t) = cn(𝜎t, k), 𝜎 = 𝜔
√
1 + 𝛾, (1.195)

where cn(… ,…) denotes Jacoby’s cosine function of period T equal to 4K; K =
∫ 𝜋∕2
0

(1 − k2sin2𝜑)−0,5d𝜑 is the full elliptic integral of the first kind with the modulus

k =
√
0, 5𝛾∕(1 + 𝛾) ([2], chapter 16).

The solution of our problem far from edges is

𝑤0 = W0(x)cn(𝜎t, k), (1.196)

where W0(x) = A sin(𝜋(x − x0))∕𝜆.
Solution (1.196) satisfies Equation (1.190) but it does not satisfy the BCs (1.191). In order

to construct states localized in the vicinity of edges, we assume the following solution

𝑤 = 𝑤0 +𝑤cr. (1.197)

Substituting Equation (1.197) into Equation (1.190) yields

𝜕4

𝜕x4
(𝑤0 +𝑤cr) − 0, 5(r2L)−1 𝜕2

𝜕x2
(𝑤0 +𝑤cr)∫

L

0

(
𝜕𝑤0

𝜕x
+

𝜕𝑤cr

𝜕x

)2

dx

+ 𝜌

EI
𝜕2

𝜕t2
(𝑤0 +𝑤cr) = 0. (1.198)

Observe that contrary to the earlier studied linear case, now functions𝑤0 and𝑤cr are coupled

due to nonlinearity of the problem. On the other hand, the fundamental state as well as the

edge effects differ strongly from the point of view of energy, since the latter one is localized

in a boundary layer of the rod edges [15]. In what follows we are going to estimate orders of

underintegral terms in Equation (1.198) with respect to L∕𝜆 ≫ 1:
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Asymptotic Approaches 53

∫
L

0

(
𝜕𝑤0

𝜕x

)2

dx ∼
(L
𝜆

)2

; ∫
L

0

𝜕𝑤0

𝜕x

𝜕𝑤cr

𝜕x
dx ∼ L

𝜆
;

∫
L

0

(
𝜕𝑤cr

𝜕x

)2

dx ∼ 1. (1.199)

Taking into account only the term (𝜋∕𝜆)2 in the first approximation in Equation (1.198), the
latter equation is recast to the following form

𝜕4𝑤0

𝜕x4
− 0, 5(r2L)−1

𝜕2𝑤0

𝜕x2 ∫
L

0

(
𝜕𝑤0

𝜕x

)2

dx + 𝜌

EI

𝜕2𝑤0

𝜕t2

+
𝜕4𝑤cr

𝜕x4
− 0, 5(r2L)−1

𝜕2𝑤cr

𝜕x2 ∫
L

0

(
𝜕𝑤0

𝜕x

)2

dx + 𝜌

EI

𝜕2𝑤cr

𝜕t2
= 0. (1.200)

Substituting Equation (1.196) into Equation (1.200) yields the following equation

𝜕4𝑤cr

𝜕x4
− Bcn2(𝜎t, k)

𝜕2𝑤cr

𝜕x2
+ 𝜌

EI

𝜕2𝑤cr

𝜕t2
= 0, (1.201)

where B = 𝛾(𝜋
𝜆
)2.

Note that although we deal with the linear equation (1.201) but with time dependent coef-
ficients. Since we cannot separate time and space dependent variables, we apply here Kan-
torovitch method [142]. Namely, we introduce the following approximation

𝑤cr(x, t) ≅ Wcr(x)cn(𝜎t, k). (1.202)

Substituting Equation (1.202) into Equation (1.201) and reducing time the following ODE
is obtained

d4Wcr

dx4
− B1

d2Wcr

dx2
−

(
𝜋

𝜆

)2
[(

𝜋

𝜆

)2

+ B1

]
Wcr = 0, (1.203)

where

B1 = A

(
2k2 − 1

2k2
+

√
1 − k2

2k arcsin k

)
. (1.204)

In relation (1.203) and further arcsin(… ,…) is understood in the sense of its main value.
The characteristic equation of (1.203) has four roots, and two purely imaginary roots can be

omitted here (they correspond to zero order solution). Real roots correspond to the following
solution

Wcr(x) = C1 exp

[
−
√(

𝜋

𝜆

)2

+ B1x

]
+ C2 exp

[√(
𝜋

𝜆

)2

+ B1x

]
.

If the interaction of the rod edges can be neglected, then the condition of decaying of the
boundary effect implies C2 = 0 yielded by x → ∞.
Satisfying the BC for x = 0 yields

W0 +Wcr = 0 ,
d2W0

dx2
+
d2Wcr

dx2
= c∗

(
dW0

dx
+
dWcr

dx

)
,
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54 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

which allows to find the constant C1:

C1 = A sin
𝜋x0
𝜆

,

x0 =
𝜆

𝜋
arctan

𝜋

𝜆

[(
2(𝜋∕𝜆)2 + B1

) /
c∗ +

√
(𝜋∕𝜆)2 + B1

] . (1.205)

Note that for c∗ → 0 and c∗ → ∞ formulas (1.204) yield also solution to the limiting cases
of both simply supported and clamped rod edges.
Proceeding in the analogous way one may also construct the dynamics edge effect localized

in the vicinity of x = L.
Forms of nonlinear rod vibrations can be separated into two groups with respect a symmetry

type. In the case of symmetry regarding the point x = L∕2, the condition
dW0

dx
= 0 for x = L∕2

implies
L − 2x0 = (2m + 1)𝜋, m = 1, 2,… . (1.206)

In the case of antisymmetric forms, the condition

W0 = 0 for x = L∕2

yields
L − 2x0 = 2n𝜋, n = 1, 2,… . (1.207)

Equations (1.206), (1.207) are reduced to the following one

L − 2x0 = m𝜋, m = 1, 2,… , (1.208)

where odd (even)m values correspond to symmetric (antisymmetric) forms with respect to the
point x = L∕2.
Therefore, constants 𝜆 and x0 are defined via Equations (1.204), (1.205) and (1.208).

1.6.3 Nonlinear Vibrations of a Rectangular Plate

We begin with Berger dynamic equation [76],[48]

D∇4𝑤 − T∇2𝑤 + 𝜌h
𝜕2

𝜕t2
𝑤 = 0, (1.209)

Th2ab = 6D∫
b

0 ∫
a

0

[(
𝜕𝑤

𝜕x

)2

+
(
𝜕𝑤

𝜕y

)2
]
dx dy. (1.210)

Let the plate be ridigly clamped along its contour

for x = 0, a 𝑤 = 𝜕𝑤

𝜕x
= 0, (1.211)

for y = 0, b 𝑤 = 𝜕𝑤

𝜕y
= 0. (1.212)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Asymptotic Approaches 55

The plate deflection follows

𝑤0(x, y, t) = A sin k1(x − x1) sin k2(y − y1)𝜉(t), (1.213)

where ki, x1, y1 are constant quantities to be defined.
Substituting Ansatz (1.213) into Equations (1.209), (1.210) and reducing the space vari-

ables we obtain Equation (1.193) regarding time-dependent function 𝜉(t) with the following
coefficients

𝜔2 = D(𝜌h)−1(k2
1
+ k2

2
)2,

𝛾 = 1, 5
(A
h

)2 k2
1
(a1 + 𝜆1)(a2 − 𝜆2) + k2

2
(a1 − 𝜆1)(a2 + 𝜆2)

a1a2(k21 + k2
2
)

,

𝜆1 = 0, 5k−1
1
[sin 2k1(x − x1)]|a0, 𝜆2 = 0, 5k−1

2
[sin 2k2(y − y1)]|b0.

A solution to this time-dependent equation takes the form (1.195) for initial conditions
(1.194).
Therefore, the following zero order solution is found

𝑤0 = A sin k1(x − x1) sin k2(y − y1)cn(𝜎t, k), (1.214)

being valid in the internal plate part located sufficiently far from the plate boundaries.
Let us now proceed to construction of dynamic edge effects localized in vicinity of the plate

contour. Substituting 𝑤 in the form of (1.197) into Equations (1.209), (1.210) yields

D∇4(𝑤0 +𝑤cr) − T∇2(𝑤0 +𝑤cr) + 𝜌h
𝜕2

𝜕t2
(𝑤0 +𝑤cr) = 0, (1.215)

Th2ab = 6D∫
b

0 ∫
a

0

[(
𝜕(𝑤0 +𝑤cr)

𝜕x

)2

+
(
𝜕(𝑤0 +𝑤cr)

𝜕y

)2
]
dx dy. (1.216)

Let us apply further the energy approach used in the case of a study of nonlinear vibrations
of the rod. We estimate an order of the quantities standing on the r.h.s. of Equation (1.216)
with respect to nondimensional parameters ak1 ∼ bk2 ≫ 1. The following relations hold:

∫
b

0 ∫
a

0

(
𝜕𝑤0

𝜕x

)2

dx dy ∼ a2k2
1
, ∫

b

0 ∫
a

0

(
𝜕𝑤0

𝜕y

)2

dx dy ∼ b2k2
2
,

∫
b

0 ∫
a

0

𝜕𝑤0

𝜕x

𝜕𝑤cr

𝜕x
dx dy ∼ ak1, ∫

b

0 ∫
a

0

𝜕𝑤0

𝜕y

𝜕𝑤cr

𝜕y
dx dy ∼ bk2, (1.217)

∫
b

0 ∫
a

0

(
𝜕𝑤cr

𝜕x

)2

dx dy ∼ 1, ∫
b

0 ∫
a

0

(
𝜕𝑤cr

𝜕y

)2

dx dy ∼ 1.

The given estimations imply that in relation (1.216) one may keep the solution components
of order a2k2

1
∼ b2k2

2
≫ 1. In the first approximation, which depends only on the fundamental

state, Equations (1.215), (1.216) are cast to the following form:

∇4𝑤cr − Bcn2(𝜎t, k)∇2𝑤cr + 𝜌hD−1 𝜕
2𝑤cr

𝜕t2
= 0, (1.218)

where B = 𝛾(k2
1
+ k2

2
).
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56 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

The linear PDE (1.218) with time-dependent coefficients serves for construction of four

dynamic edge effects regarding the plate edges x = 0, a and y = 0, b. We assume again that the

plate sides possess sufficient length that their interaction can be neglected.

Let us consider an edge effect localized in vicinity of the edge x = 0 (the remaining cases

can be solved in a similar way). We take

𝑤cr(x, y, t) = Φ(x, t) sin k2(y − y1),

and we obtain the following PDE

𝜕4Φ
𝜕x4

−
[
Bcn2(𝜎t, k) + 2k2

2

] 𝜕2Φ
𝜕x2

+ k2
2

[
Bcn2(𝜎t, k) + 2k2

2

]
Φ + 𝜌hD−1 𝜕

2Φ
𝜕t2

= 0. (1.219)

We apply Kantorovitch approach by assuming

Φ(x, t) ≅ 𝜑(x)cn(𝜎t, k).

Then, Equation (1.219) wields

d4𝜑

dx4
− (B1 + 2k2

2
)d

2𝜑

dx2
+

[
k2
2
(B1 + 2k2

2
) − (k2

1
+ k2

2
)(B1 + k2

1
+ k2

2
)
]
𝜑 = 0. (1.220)

where

B1 = B

[
2k2 − 1

2k2
+

√
1 − k2

2k arcsin k

]
.

Equation (1.220) is recast in the following equivalent form(
d2

dx2
+ k2

1

)(
d2

dx2
− k2

1
− 2k2

2
− B1

)
𝜑 = 0.

We neglect the first multiplier describing the fundamental state, and the second equation has

a solution associated with the edge effect

𝜑(x) = C1 exp

(
−
√
k2
1
+ 2k2

2
+ B1x

)
+ C2 exp

(√
k2
1
+ 2k2

2
+ B1x

)
.

Finally, the edge effect in the neighborhood of the plate edge x = 0 can be written in the

following form

𝑤
(1)
cr =

[
C1 exp

(
−
√
k2
1
+ 2k2

2
+ B1x

)
+ C2 exp

(√
k2
1
+ 2k2

2
+ B1x

)]
sin k2(y − y1)cn(𝜎t, k). (1.221)

Proceeding in analogous way, the edge effect in vicinity of the plate edge y = 0 is governed

by the following function

𝑤
(2)
cr =

[
C3 exp

(
−
√
k2
1
+ 2k2

2
+ B1y

)
+ C4 exp

(√
k2
1
+ 2k2

2
+ B1y

)]
sin k1(x − x1)cn(𝜎t, k). (1.222)
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Asymptotic Approaches 57

We express BCs (1.211), (1.212), taking into account Equation (1.197), in the following
form:

for x = 0 𝑤0 +𝑤
(1)
cr = 0,

𝜕

𝜕x

(
𝑤0 +𝑤

(1)
cr

)
= 0; (1.223)

for y = 0 𝑤0 +𝑤
(2)
cr = 0,

𝜕

𝜕y

(
𝑤0 +𝑤

(2)
cr

)
= 0. (1.224)

Conditions of decaging of the edge effects follow:

for x → ∞ 𝑤
(1)
cr → 0, (1.225)

for y→ ∞ 𝑤
(2)
cr → 0. (1.226)

Then satisfaction of Equations (1.225), (1.226) implies C2 = C4 = 0, and next from
Equations (1.223), (1.224) we get:

x1 = k−1
1

arctan
[
k1

(
k2
1
+ 2k2

2
+ B1

)−1∕2]
,

(1.227)

C1 = f k1
[
2
(
k2
1
+ k2

2

)
+ B1

]−1∕2;
y1 = k−1

2
arctan

[
k2

(
k2
1
+ 2k2

2
+ B1

)−1∕2]
,

(1.228)

C3 = f k2
[
2
(
k2
1
+ k2

2

)
+ B1

]−1∕2
.

Let us split forms of plate vibrations into two groups with respect to a symmetry type regard-
ing the lines x = 0, 5a, y = 0, 5b. In the case of symmetric form in both directions we have

𝜕𝑤0

𝜕x
= 0 for x = a∕2,

𝜕𝑤0

𝜕y
= 0 for y = b∕2.

which implies

k1(a − 2x1) = (2m + 1)𝜋, (1.229)

k2(b − 2y1) = (2n + 1)𝜋, m, n = 1, 2,… . (1.230)

Analogously, in the case of an antisymmetric form in both directions we have

𝑤0 = 0 for x = a∕2, 𝑤0 = 0 for y = b∕2.

Relations (1.229), (1.230) yield

k1(a − 2x1) = 2p𝜋, (1.231)

k2(b − 2y1) = 2q𝜋, p, q = 1, 2,… . (1.232)

Equations (1.229), (1.231) and (1.230), (1.234) can be cast into the following relations

k1(a − 2x1) = m𝜋, (1.233)

k2(b − 2y1) = n𝜋, m, n = 1, 2,… . (1.234)

It means that one may get all possible vibration forms through proper choice of m and n.
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58 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

1.6.4 Matching of Asymptotic and Variational Approaches

Asymptotic method of dynamical edge effect is generally devoted to determination of high

frequencies and associated forms, but it yields also correct results for low frequency spectrum

assuming that we deal with the kinematic boundary conditions. However, in the static problems

the accuracy of low frequencies estimation in the object contour decreases. Application of the

method described so far to estimate first fundamental frequency does not yield satisfactory

results.

However, there exists a prospective direction to increase the efficiency of the dynamical edge

effect method through matching it with one of the energetic approaches. The latter approaches

allow us not only to improve the accuracy of the results obtained, but also to extend its area of

application.

Let us consider the eigenvalue problem of a square (0 ≤ x, y ≤ a) of a plate simply supported

along its contour. The governing equation is obtained from Equation (1.209) putting N = 0.

The BCs have the following form:

𝑤xx + 𝜈𝑤yy = 0, 𝑤xxx − 2(1 − 𝜈)𝑤xyy = 0 for x = 0, a; (1.235)

𝑤yy + 𝜈𝑤xx = 0, 𝑤yyy − 2(1 − 𝜈)𝑤yxx = 0 for y = 0, a. (1.236)

In order to estimate the eigenfrequency the Rayleigh-Ritz method is applied [47], which

uses the principle of virtual displacements. According to this principle, the work of internal

and external forces acting on the plate on its virtual displacements is equal zero, which means

that

U + V + R = 0. (1.237)

Potential (U) and kinetic (V) energies of the plate are as follows

U = D
2 ∫

a

0 ∫
a

0

(𝑤2
xx +𝑤2

yy + 2𝜈𝑤2
xx𝑤

2
yy + 2(1 − 𝜈)𝑤2

xy)dx dy, (1.238)

V = 1

2 ∫
a

0 ∫
a

0

𝜌h𝑤2
t dx dy. (1.239)

In this case, the work of external forces R is equal zero. Assuming the plate deflection in the

following form

𝑤(x, y, t) = W(x, y) exp(i𝜔t),

Equation (1.237) yields the plate frequency

𝜆2 = 𝜔2a4
𝜌h
D

= a4
[
∫

a

0 ∫
a

0

(
W2
xx +W2

yy + 2𝜈W2
xxW

2
yy + 2(1 − 𝜈)W2

xy

)
dx dy

]
×[

∫
a

0 ∫
a

0

W2 dx dy

]−1
. (1.240)

Application of the dynamical edge effect method yields the following formula governing the

plate deflection

W(x, y) = W0(x, y) +W1(x) sin(𝛽2y + l2) +W2(y) sin(𝛽1x + l1),
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Asymptotic Approaches 59

where

W0(x) = sin(𝛽1x + l1) sin(𝛽2 + l2), (1.241)

W1(x) = C11 exp[𝛼1(x − a)] + C12 exp(−𝛼1x),

W2(x) = C21 exp[𝛼2(y − a)] + C22 exp(−𝛼2y). (1.242)

Taking into account the boundary conditions, wave numbers are defined through the follow-

ing system of transcendental equations:

𝛽ia = 2li + m𝜋, i = 1, 2, m = 0, 1, 2,… , (1.243)

where

li = arctan

⎡⎢⎢⎣
𝛽i

𝛼i

(
𝛽2i + (2 − 𝜈)𝛽2k

𝛽2i + 𝜈𝛽2k

)2⎤⎥⎥⎦ ,
𝛼i = (𝛽2i + 2𝛽2k )

1∕2, i = 1, 2, k = 1, 2, i ≠ k.

constants Cij in Equation (1.242) are defined as follows

Ci1 =
𝛼2i sin li

𝛼2i − 𝜈𝛽2k

, Ci2 =
𝛼2i sin(𝛽ia + li)

𝛼2i − 𝜈𝛽2k

, i = 1, 2, k = 1, 2, i ≠ k. (1.244)

Formula (1.240), taking into account Equations (1.241)–(1.244), allows to define the plate

frequency.

In Table 1.9 a comparison of the obtained nondimensional frequency 𝜆 of the square plate

being free along its contour for 𝜈 = 0.225 is reported (Rayleigh-Bolotin method (MRB) with

values obtained by Rayleigh-Ritz [121] as well as the traditional Bolotin asymptotic method

(AMB) are applied). We do not consider vibrations with respect to the cylindrical surface,

since in the latter case one may get the exact solution. This is why numbers corresponding to

the associated vibration forms are omitted in Table 1.9.

Results obtained via MRR of higher order approximations have the high order of accuracy

in the interval of lower eigenfrequencies. However, increasing the number of a vibration form

implies decrease of the obtained accuracy. Comparison of data obtained via different methods

shows that error of first frequency estimation through MRB (2.7%) is essentially less than that

using the traditional method of dynamical effect (13.6%). Increasing vibration form number

Table 1.9

Number of vibrations 𝜆, MRR[121] 𝜆, MRB Error, % 𝜆, AMB Error, %

1 14, 10 14, 48 2, 7 12, 41 13, 6
3 35, 96 36, 68 2, 0 34, 60 3, 9
5 65, 24 66, 33 1, 7 63, 44 2, 8
6 74, 45 75, 28 1, 1 73, 59 2, 5
7 109, 30 109, 10 0, 2 106, 30 2, 8
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60 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

both asymptotic solutions approach the exact value (MRB yield upper, whereas edge effect
lower bands estimation).
Consider now the problem of stability of a square clamped isotropic plate subjected to action

of uniformly distributed compressing load N0 applied to the middle plate surface. BCs are
governed by (1.211), (1.212) (b = a), and in Equation (1.209) one needs to substitute T by
−T0. We apply MRB in order to find the critical compressing load. In this case the kinetic
energy of the plate equals zero, whereas the work of active forces follows

R = −
T0
2 ∫

a

0 ∫
a

0

(𝑤2
x +𝑤2

y) dx dy.

Equation (1.237) yields the following nondimensional critical value of the force

P =
( a
𝜋

)2
[
∫

a

0 ∫
a

0

(
𝑤2
xx + 2𝑤2

xx𝑤
2
yy +𝑤2

yy

)
dx dy

] [
∫

a

0 ∫
a

0

(
𝑤2
x +𝑤2

y

)
dx dy

]−1
,

(1.245)
where P = T0a

2∕(D𝜋2).
A solution to the problem is taken in the form of (1.241). Due to the symmetry of the problem,

the wave numbers are detected from the following equation

𝛽a = 2 arctan [th(0, 5𝛽a)] + 𝜋.

The constants li,Ci are defined as follows

li = 0, 5(𝜋 − 𝛽a), Ci1 = Ci2 = − cos(0.5𝛽a)∕ch(0.5𝛽a), i = 1, 2.

This found solution is substituted into Equation (1.245), and then P is defined. The critical
compressing force obtained via MRR [253] is P = 5, 31. The computational error associated
with the AMB (MRB) application reaches the value of 18% (8%).
The approach described so far also allows us to apply the method of dynamical edge effect

for plates of either complicated forms (rectangular, circle [17], [18]) or design (for instance
ribbed plates [16]).

1.6.5 On the Normal Forms of Nonlinear Vibrations
of Continuous Systems

It is known that while investigating linear vibrations of discrete systems with finite number
of degrees of freedom a key role is played by normal vibrations. Kauderer [141] has shown
that also in a nonlinear system there exist solutions playing a similar role to that exhibited
by normal vibrations of linear systems. He called them main vibrations and proposed a way
of constructing their trajectories in a configuration state. Rosenberg [213], in order to define
normal forms of vibrations of nonlinear systems with a finite degrees of freedom, formulated
the problem in the configuration space in an approximate way and succeded in finding a few
classes of nonlinear systems having solutions exhibited by lines teajectories (see [168], [171],
[170], [239]). Attempts to generalize the introduced concepts into continuous systems are asso-
ciated with separation of finite and space variables ([57], [171], [225]), i.e. they rely on the
possibility of the following representation

U(x, t) = X(x)T(t).
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Asymptotic Approaches 61

It is clear that the latter approach can be validated only for some boundary conditions.
Applying a concept of the dynamical edge effect one may introduce the following definition.
We say that a function U(x, t) is called a normal form of nonlinear vibration of a continuous
system if

U(x, t) = X(x)T(t) + Y(x, t),

where T(t) stands for a periodic function, Y(x, t) is a quasi-periodic function, and Y(x, t) is
small in comparison to X(x)T(t) in a certain energetic norm. The latter condition can be either
verified by a priori or posteriori approach.

1.7 Continualization

1.7.1 Discrete and Continuum Models in Mechanics

In mechanics of continuum media we deal with continuous objects described by continuous
functions. Although this is reliable, it is a common article of faith that somehow the average
of the microsystems is exactly described by the equations of fluid mechanics, but no one has
proved this for a realistic model of the fine structure: the best proofs are for idealized models
of a rarefied monatomic gas ([208] p. 217). A transition from a real discrete nature to its
continuum model requires the introduction of a certain averaging. On the other hand, the key
factors of the theory of elasticity, stress, strain and the rest are formally defined as limits, by
considering arbitrarily small parts of the body, but are onlymeaningful as representing average
behavior over regions that are large in comparison to atoms ([208], p. 286). The usually applied
methods of averaging and homogenization are described in chapter 6. Since continualization of
discrete relations has its own peculiarities, we have decided to illustrate them in this chapter. It
is appropriate to introduce the reader to this matter using relatively simple examples, since the
construction of mechanics of a continuum medium using only “first principles” and applied so
far only to molecular theory belongs to more difficult branches of physics [260], [150], [152].
The average approach works reasonably well for the determination of global characteristics.

As has been pointed out by Ulam ([236], p. 89, 90), the simplest problems involving an actual
infinity of particles in distribution ofmatter already appear in classical mechanics. A discussion
on these will permit us to introduce more general schemes which may possibly be useful in
future physical theories.
Strictly speaking, one has to consider a true infinity in the distribution of matter in all prob-

lems of the physics of continua. In the classical treatment, as usually given in textbooks of
hydrodynamics and field theory, this is, however, not really essential, and in most theories
serves merely as a convenient limiting model of finite systems enabling one to use the algo-
rithms of the calculus. The usual introduction of the continuum leaves much to be discussed
and examined critically. The derivation of the equations of motion for fluids, for example,
runs somewhat as follows. One images a very large number N of particles, say with equal
masses constituting a net approximating the continuum, which are to be studied. The forces
between these particles are assumed to be given, and one writes Lagrange equations for the
motion of N particles. The finite system of ODEs becomes in the limit N = ∞ one or several
partial DEs. The Newtonian laws of conservation of energy and momentum are seemingly
correctly formulated for the limiting case of the continuum. There appears at once, however,
at least a possible objection to the unrestricted validity of this formulation. For the very fact
that the limiting equations imply tacitly the continuity and differentiability of the functions

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



62 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

describing the motion of the continuum seems to impose various constraints on the possible
motions of the approximating finite systems. Indeed, at any stage of the limiting process, it
is quite conceivable for two neighboring particles to be moving in opposite directions with
a relative velocity which does not need to tend to zero as N becomes infinite, whereas the
continuity imposed on the solution of the limiting continuum excludes such a situation. There
are, therefore, constraints on the class of possible motions which are not explicitly recognized.
This means that a viscosity or other type of constraints must be introduced initially, singling
out “smooth” motions from the totality of all possible ones. In some cases, therefore, the usual
DEs of hydrodynamics may constitute a misleading description of the physical process.
On the other hand, nowadays development in technology and industry requires inclusion

of micro-structural effects, which may play a crucial role when the characteristic magnitude
of an excitation is of order of the characteristic size of the analyzed micro-structure object.
In particular, we mention here modeling of crystal, polymer and composite materials, nano-
materials, dynamics of cracks, description of hysteretic effects, mechanics of failures, fractals
theory of phase transition and theory of plasticity [24], [55], [66], [91], [93], [111], [150],
[199], [201], [203].
Micro-structural effects can be investigated within the frame of discrete models [152], how-

ever, even modern computers do not allow us to get reasonably validated results matched with
the reasonably low computational time. Therefore, continuum description of micro- and nano-
effects belongs to a challenging research topic. In addition, in many cases, one may apply
modeling of mixed discrete-continuum systems, where its one part is continuous and the other
is discrete.

1.7.2 Chain of Elastically Coupled Masses

Let us consider a simple example of a chain consisting of n + 2 particles of the same massesm
lying in the rest in the points of axis x with the coordinates jh (j = 0, 1,… , n, n + 1) and linked
by elastic couplings of stiffness c (Figure 1.7).
According to Hook’s law the elastic force acting on the j-th mass is as follows:

𝜎j(t) = c[yj+1(t) − yj(t)] − c[yj(t) − yj−1(t)]

= c[yj−1(t) − 2yj(t) + yj+1(t)], j = 1, 2,… , n,

where yj(t) is the displacement of j-th point with regard to the equilibrium position.
Applying Newton second law the following ODEs are derived

myjtt(t) = c[yj−1(t) − 2yj(t) + yj+1(t)], j = 1, 2,… , n. (1.246)

System (1.246) can be recast to the following form:

m𝜎jtt(t) = c(𝜎j+1 − 2𝜎j + 𝜎j−1), j = 1,… , n. (1.247)

Let the chain ends be fixed, then

y0(t) = yn+1(t) = 0. (1.248)

In general, the initial conditions have the following form

yj(t) = 𝜑
(0)
j , yjt(t) = 𝜑

(1)
j for t = 0. (1.249)
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Asymptotic Approaches 63

This model has been proposed by Newton in estimating sound velocity [70]. He assumed
that sound in air moves in the same way as an elastic wave moves along the masses chain.
Equation (1.247) has been studied by J. Bernoulli ([49], [205]) who considered the problem of
massless finite elastic string composed of particles of equal masses uniformily located along
the string.
As has been shown in [193], for an arbitrary solution to the problem (1.246), (1.248), (1.249)

the full chain energy is constant. Besides, the solutions to the problems so far stated are asymp-
totically stable in the Lyapunov sense.
A solution to the problem (1.246), (1.248), (1.249) can be expressed via elementary functions

with the help of a discrete variant of the method of variables separation. Therefore, normal
oscillation forms are constructed

yj(t) = CjT(t), j = 1,… , n,

where constants Cj present the solution to the eigenvalue problem:

−𝜆Cj = Cj+1 − 2Cj + Cj−1, j = 1,… , n, C0 = Cn+1 = 0, (1.250)

and the function T(t) satisfies the following equation

mTtt + c𝜆T = 0. (1.251)

Solution to the eigenvalue problem (1.250) takes the following form [193]:

Ck = A sin
k𝜋
n + 1

, 𝜆k = 4sin2
k𝜋

2(n + 1)
, k = 1, 2,… , n. (1.252)

We assume a solution to Equation (1.251) in the form T = A exp(i𝜔t). Relations (1.251),
(1.252) yield Lagrange formula for determination of frequencies 𝜔k of the discrete system:

𝜔k = 2

√
c
m

sin
k𝜋

2(n + 1)
, k = 1, 2,… , n. (1.253)

Since all values of 𝜆k are different, they are simple, and each of them is associated with one

eigenvalue for Ck(C
(k)
1
,C(k)

2
,… ,C(k)

n ):

Ck = cosec
k𝜋
n + 1

(
sin

k𝜋
n + 1

, sin
2k𝜋
n + 1

,… , sin
nk𝜋
n + 1

)
,

k = 1, 2,… , n. (1.254)

Eigenvectors are mutually orthogonal, and a square of the moduli of eigenvector follows:

|Ck|2 = n + 1

2
cosec2

k𝜋
n + 1

, k = 1, 2,… , n. (1.255)

Each eigenfrequency (1.253) is associated with the normal oscillations form:

y(k)j (t) = C(k)
j [Ak cos(𝜔kt) + Bk sin(𝜔kt)], k = 1, 2,… , n. (1.256)

A general solution to problem (1.247)–(1.249) is described by a sum of normal oscillations:

yj(t) =
n∑
k=1

C(k)
j [Ak cos(𝜔kt) + Bk sin(𝜔kt)], j = 1,… , n. (1.257)
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64 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Let us consider now the problem of masses chain movement, when a constant unit force acts
on particles with zero number. A solution to this system is described by Equation (1.247) with
the following boundary and initial conditions;

𝜎0(t) = 1, 𝜎n+1(t) = 0, (1.258)

𝜎j(t) = 𝜎jt(t) = 0 for t = 0. (1.259)

The nonhomogenous BVP (1.247), (1.258), (1.259) is transformed to the BVP with respect
to Equation (1.247) with the homogenous boundary and nonhomogenous initial condition via
the following relationship

𝜎j(t) = 1 −
jl

n + 1
+ 𝜎0j(t).

In order to find function 𝜎
(0)
j (t), we apply the normal form method:

𝜎
(k)
j (t) = C(k)

j [Ak cos(𝜔kt) + Bk sin(𝜔kt)], k = 1, 2,… , n.

As a result, the following exact solution of the problem (1.246), (1.258), (1.259) is obtained:

𝜎j(t) = 1 −
jl

n + 1
− 1

n + 1

n∑
k=1

sin
𝜋kj

n + 1
ctan

𝜋k
2(n + 1)

cos(𝜔kt),

j = 1, 2,… , n. (1.260)

1.7.3 Classical Continuum Approximation

For large values n we usually apply the continuum approximation of the discrete problem,
which in our case (Equations (1.247), (1.258), (1.259)) takes the following form:

m𝜎tt(x, t) = ch2𝜎xx(x, t), (1.261)

𝜎(0, t) = 1, 𝜎(l, t) = 0, (1.262)

𝜎(x, 0) = 𝜎t(x, 0) = 0, (1.263)

where l = (n + 1)h.
Having at hand a solution to the BVPs (1.261)–(1.263), one may transit to a solution of the

discrete medium according to the formulas

𝜎j(t) = 𝜎(jh, t), j = 0, 1,… , n, n + 1. (1.264)

Formally, this approximation can be obtained in the following way. Let us denote by D the
difference operator occurred in Equation (1.247):

m𝜎jtt(t) = cD𝜎(t). (1.265)

Using the operator exp(h 𝜕

𝜕x
) one gets [152]:

D = exp
(
h
𝜕

𝜕x

)
+ exp

(
−h 𝜕

𝜕x

)
− 2 = −4sin2

(
− ih
2

𝜕

𝜕x

)
. (1.266)

In what follows we explain the obtained relation. The Maclaurin formula for the infinitely
differentiated function F(x) takes the form

F(x + 1) =
[
1 + 𝜕

𝜕x
+ 1

2!

𝜕2

𝜕x2
+…

]
F(x) = exp

(
𝜕

𝜕x

)
F(x). (1.267)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Asymptotic Approaches 65

Expressions of the form exp(𝜕∕𝜕x) are called pseudo-differential operators. Using condi-

tions (1.265)–(1.267), we recast the system (1.247) in the form of pseudo-differential equation

[178]:

m
𝜕2𝜎

𝜕t2
+ 4csin2

(
− ih
2

𝜕

𝜕x

)
𝜎 = 0. (1.268)

Development of the pseudo-differential operator into the Maclaurin series yields:

sin2
(
− ih
2

𝜕

𝜕x

)
= −

(
h2

4

𝜕2

𝜕x2
+ h4

48

𝜕4

𝜕x4
+ h6

1 440

𝜕6

𝜕x6
+…

)
. (1.269)

Keeping only the first term in the series (1.269), we obtain a continuum approximation

(1.261). Application of the Maclaurin series requires a small difference in displacements of

the neighboring particles. Physically it means that we are investigating vibrations of a few par-

ticles located on the space period (see Figure 1.15), i.e. we proceed within the so-called long

wave approximation. Note that the vertical axis corresponds to displacements in direction x,
and we deal with the one-dimensional problem.

The continuum system (1.261) has the following infinite spectrum:

𝛼k = 𝜋

√
c
m

k
n + 1

, k = 1, 2,… . (1.270)

Although formulas (1.270) approximate reasonably good low frequencies of vibrations of

the discrete system (1.253), but the n-th frequency 𝛼k of continuum system differs from the n-th
frequency of discrete system 𝜔k more than 50%. Accuracy of approximation (1.270) can be

increased, but the following general conclusion follows. Frequencies of the continuum system

𝜔n+1, 𝜔n+2,… do not have any relations to those of the discrete system (see [200, chapter 20]).

Observe that L.I. Mandelsshtam criticized the described method [167]; however today it is

rigorously approved mathematically with the help of the Fourier transform [152].

1.7.4 “Splashes”

It is not difficult to derive the exact solution to problem (1.261)–(1.263) using the D’Alembert

method and operational calculus [154]:

𝜎(x, t) = H

(
nh arcsin

|||||sin
(

𝜋

2n

√
c
m
t

)||||| − x

)
, (1.271)

where H(…) stands for Heriside’s function.

𝓍

Figure 1.15 Solution form 𝜎 = 𝜎(x, t) in the fixed time instant t = const (points correspond to a
discrete system whereas solid curve represents a continuum system)
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66 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Table 1.10 Splashes

n 8 16 32 64 128 256 n → ∞

Pn 1, 7561 2, 0645 2, 3468 2, 6271 2, 9078 3, 1887 Pn → ∞

Formula (1.271) implies that for all time instants the following estimation holds

|𝜎(x, t)| ≤ 1. (1.272)

It is tempting to extend the estimation (1.272) into a discrete system [261] using relation

(1.264). However, numerical and analytical investigations [154], [193], [105], [106], [107]

have shown that one needs to include a difference between the global and local characteristics

of a discrete system. Investigation the low spectrum of a discrete systems allows for a smooth

transition into an averaged description. However, in the case of external excitations solutions

of discrete systems do not smoothly transit into the wave equation solutions for h→ 0 [178].

It has been numerically shown [154], [193], [105], [106], [107] that for certain particles in the

discrete chain the quantity Pj = |𝜎j(t)| can essentially overcome the bounded value 1 [105]

(see Table 1.10).

It is interesting to note that the magnitude of splashes does not depend on the parameterm∕c.
Amplitude of chain oscillations becomes arbitrary large with increase of N, but the system

energy is constant and does not depend on N. However we do not deal here with a paradox,

since oscillations amplitude is of order of the sum of 𝜎j(t), whereas the potential energy is of

the order of square of those quantities [193].

Amplitude of vibrations of a particle with the fixed number is bounded for N → ∞, but the

amplitude of vibrations of a particle with a certain number increases with the increase of N
and tends to infinity for N → ∞ in a way to that of lnN [193].

Note that a rigorous prove of the above observations is achieved assuming thatN + 1 is either

a simple number or a power of two. However, this result is of negligible meaning [193].

In the language of mechanics what we just said means that when analyzing the so-called

“local properties” of a one-dimensional continuous medium, one cannot treat the medium

as the limiting case of a linear chain of point masses, obtained when the number of points

increases without limit [154]. Physically, this phenomenon can be interpreted in a rather simple

way. Excited vibrations include both low and high harmonics, and the latter ones are defined

via the continuum approximation with relatively large errors.

It is tempting to construct an improved theory of continuum media including splash effects.

The mentioned theory should reasonably good describe harmonics of a solution with respect to

an arbitrary period associated with the problem. In mathematical sense, the problem is reduced

to that of approximation of nonlocal (difference) operator by the local (differential) one.

1.7.5 Envelope Continualization

It has been observed that asymptotics appear in pairs. Classical continuum approximation

yields reliable results with respect to low part of the spectrum of the finite chain of particles.
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Asymptotic Approaches 67

𝓍

Figure 1.16 Saw-tooth chain vibrations

𝓍

Figure 1.17 Envelope continualization

On the other hand, the maximum frequency of vibrations occurrs in the case of the saw-tooth

vibrations (Figure 1.16)

In this case 𝜎k = (−1)kΩ, and the equation yielding Ω has the following form

mΩtt + 4cΩ = 0.

In the case of oscillations close to a saw-tooth shape, one may use the so called short-wave

approximation (envelope continualization) [149] (Figure 1.17). A change of variables

𝜎k = (−1)kΩk (1.273)

allows us to transit from Equations (1.247), (1.258), (1.259) to the following BVP:

mΩktt + c(4Ωk + Ωk−1 − 2Ωk + Ωk+1) = 0, (1.274)

Ω0 = 1, Ωn+1 = 0, (1.275)

Ωk = Ωkt = 0 for t = 0, k = 0, 1,… , n + 1. (1.276)

Further, the following relation is used:

Ωk−1 − 2Ωk + Ωk+1 = −4sin2
(
− ih
2

𝜕

𝜕x

)
Ω =(

h2
𝜕2

𝜕x2
+ h4

12

𝜕4

𝜕x4
+ h6

320

𝜕6

𝜕x6
+…

)
Ω. (1.277)

Substituting Equation (1.277) into Equation (1.274) considering h2 as the small parameter,

and taking into account only terms of zero and first orders with respect to h2, we get

mΩtt + 4cΩ + ch2Ωxx = 0. (1.278)
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68 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

It is not difficult to derive the boundary and initial conditions to Equation (1.278):

Ω = 1 for x = 0, Ω = 0 for x = l,

Ω = Ωt = 0 for t = 0.

The approaches described so far (classical continualization and envelope continualization)
can be treated as a discrete model with reasonably good accuracy, and it exhibits two continual
approximations, i.e. for a chain and for an envelope.

1.7.6 Improvement Continuum Approximations

In what follows we discuss the problem of the improved continuum approximations. If in the
series (1.269) we keep three first terms, then the following equation is obtained:

m
𝜕2𝜎

𝜕t2
= ch2

(
𝜕2

𝜕x2
+ h2

12

𝜕4

𝜕x4
+ h4

360

𝜕6

𝜕x6

)
𝜎. (1.279)

The problem regarding boundary conditions of Equation (1.279) does not belong to triv-
ial ones (see the interesting discussion by Raman and Bohr regarding periodic conditions
for the chain [61]). One may define them only if we determine the chain movement for k =
−1,−2,−3, k = N + 2,N + 3,N + 4. In other words, the boundary is substituted by the bound-
ary domain [152]. In particular, in the case of periodic extension (simple support), we get

𝜎 = 𝜎xx = 𝜎xxxx = 0 for x = 0, l. (1.280)

If we take 𝜎k(t) = 0 for k = −1,−2,−3, k = N + 2,N + 3, N + 4, then BCs (1.280) refer to
clamping

𝜎 = 𝜎x = 𝜎xxx = 0 for x = 0, l.

Comparison of the n-th frequency of the continuum system (1.279), (1.280) with the corre-
sponding frequency of a discrete system exhibits the essential increase of accuracy (we have
2.1 instead of 2 in the exact solution, which yields the error of 5%). Note that the estimation of
the continuum approximation error with respect to maximal frequency of the discrete chains
is somehow conventional, but most simple.
In the general case, keeping in (1.269) N terms, one gets the so-called intermediate contin-

uum models [105]. It is assumed that for N = ∞ the exact input equation is obtained:

m
𝜕2𝜎

𝜕t2
= 2c

N∑
k=1

h2k

(2k)!
𝜕2k𝜎

𝜕x2k
. (1.281)

BCs for Equation (1.281) have the following form:

𝜕2k𝜎

𝜕x2k
= 0 for x = 0, l, k = 0, 1,… ,N − 1 (1.282)

or

𝜎 = 0,
𝜕2k−1𝜎

𝜕x2k−1
= 0 for x = 0, l, k = 1,… ,N − 1. (1.283)

The corresponding BVPs are correct (they are also stable during the numerical realization)
for odd N. In this case Equation (1.281) is of the hyperbolic type [106]. Application of the
intermediate continuum models allow us to determine the splash effects [105].
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Asymptotic Approaches 69

Observe that analogous ideas presented so far are used in the method of differential approx-
imations to estimate errors of difference systems [227].
Construction of intermediate continuum models is based on the development of the differ-

ence operator into the Taylor series. It seems that themore effective ones are continuummodels
relying on the Padé approximations, which are called quasi-continuum approximations [84],
[211], [212]. In order to approximate the operator (1.269) within the Padé algorithm, one may
also apply either Fourier or Laplace transforms. If one keeps only three first terms in the series
(1.269), then the Padé approximation follows

𝜕2

𝜕x2
+ h2

12

𝜕4

𝜕x4
≈

𝜕2

𝜕x2

1 − h2

12

𝜕2

𝜕x2

.

The corresponding quasi-continuum model takes the form

m

(
1 − h2

12

𝜕2

𝜕x2

)
𝜎tt − ch2𝜎xx = 0. (1.284)

BCs for Equation (1.284) have the following form

𝜎 = 0 for x = 0, l. (1.285)

Error estimation of the n-th frequency in comparison to the discrete chain is of the amount
of 16.5%. Equation (1.284) has lower dimension in comparison to approximation (1.279).
Now, having in hand both long- and short-wave asymptotes, one may apply two points Padé

approximation (see chapter 9.2). Let us construct two-point Padé approximation of differ-
ence operator, using the first term of series (1.269). Besides, we require that n-th frequency
of vibrations of the continuum system should coincide with the corresponding frequency of

the discrete system 𝜔n = 2
√
c∕m sin[n𝜋∕2(n + 1)]. For large values of n one may apply the

following approximation

𝛼n ≈ 2
√
c∕m. (1.286)

Continuum approximation is governed by the following equation

m

(
1 − a2h2

𝜕2

𝜕x2

)
𝜎tt − ch2𝜎xx = 0, (1.287)

with the BCs (1.285).
Frequencies of vibrations yielded by the BVP (1.287), (1.285) follow

𝛼k = 𝜋

√
c
m

k√
(n + 1)2 + 𝛼2k2

, k = 1, 2,… . (1.288)

Application of formula (1.286) yields a2 = 0, 25 − 𝜋−2. The largest error in estimation of the
eigenfrequencies is achieved for k = [0, 5(n + 1)] and does not overcome 3%. Approximation
(1.287) allows us to include the splash phenomenon.

1.7.7 Forced Oscillations

Let us begin with the classical continuum approximations. A solutions to the Equation (1.261)
is as follows

𝜎 = 1 − x
l
+ u(x, t),
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70 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

and functions u(x, t) are defined via the following formulas

m
𝜕2u
𝜕t2

= ch2
𝜕2u
𝜕x2

, (1.289)

u(0, t) = u(l, t) = 0, (1.290)

u(x, 0) = −1 + x
l
, ut(x, 0) = 0. (1.291)

A solution to the BVP (1.289)–(1.291) is found using the Fourier method, and has the fol-
lowing form

𝜎 = 1 − x
l
− 2

𝜋

∞∑
k=1

1

k
sin

(k𝜋x
l

)
cos(𝛼kt), (1.292)

where 𝛼k, k = 1, 2, 3,….
Formula (1.292) describes oscillations either of a string or a rod. If we are aimed on approx-

imation of the particle chain oscillations, then we keep only n first harmonics in the infinite
sum, since the remaining ones have no relations to the chain movements:

𝜎 = 1 − x
l
− 2

𝜋

n∑
k=1

1

k
sin

(k𝜋x
l

)
cos(𝛼kt). (1.293)

Observe that solution (1.260) and (1.293) differ from each other not only regarding frequen-
cies 𝛼k and𝜔k (formulas (1.253) and (1.270), respectively). In order to overcome this drawback
one may use either equations (1.279), (1.284) or (1.286). However, also the coefficients of the
series (1.292) and (1.293) understood as projections onto the normal oscillation forms at a dis-
crete and continuum system

1

n+1ctan
𝜋k

2(n+1) and
2

𝜋k
differ strongly for k ≫ 1. This phenomenon

appears due to the development into series regarding normal forms for a discrete system using
the summation of k from 1 to n, whereas integration with respect to x is carried out from 0 to
l in the case of a continuous system. One may improve the results using the Euler-Maclaurin
formulas [100], [101]:

n+1∑
k=0

f (k) = ∫
n+1

0

f (x)dx + 1

2
[f (0) + f (n + 1)] +

(1.294)

∞∑
j=1

(−1)j+1

j + 1
Bj

[
djf (n + 1)

dxj
−
djf (0)
dxj

]
.

Here Bi are Bernoulli numbers, where B0 = 1, B1 = −1∕2, B2 = 1∕6, B3 = 0.
One may also apply the following recurrence formula:

Bn = − 1

n + 1

n∑
k=1

Ck+1n+1Bn−k.

In order to introduce the development regarding normal forms of a discrete system, one may
apply formulas 4.4.2.6, 4.4.1.5 and 4.4.1.7 taken from handbook [209]

n+1∑
k=0

sin2
k𝜋j

n + 1
= n + 1

2
, (1.295)

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Asymptotic Approaches 71

n+1∑
k=0

(
1 −

j

n + 1

)
sin

k𝜋j

n + 1
= 1

n + 1
cotan

j𝜋

2(n + 1)
. (1.296)

The corresponding integrals follow

∫
n+1

0

sin2
𝜋jx

n + 1
dx = n + 1

2
, (1.297)

∫
n+1

0

(
1 − x

l

)
sin

𝜋jx

n + 1
dx = 2

𝜋j
. (1.298)

The values of sum (1.295) and integral (1.297) coincide. Applying the Euler-Mclaurin for-
mula one may get the value of the continuum projection more closer to the sum value (1.296):

n+1∑
k=0

(
1 −

j

n + 1

)
sin

k𝜋j

n + 1
=

∫
n+1

0

(
1 − x

l

)
sin

𝜋jx

n + 1
dx + 1

2
[sin 0 + sin(j𝜋)] −

j𝜋

6(n + 1)
cos 0 +… =

2

𝜋j

[
1 −

𝜋2j2

12(n + 1)2

]
. (1.299)

According to formula (1.299), one may construct a simple relation relatively well, approxi-
mating the sum (1.296) for arbitrary values of j from j = 1 to j = n.
For this purpose, the second term in the r.h.s. of Equation (1.299) should be substituted by

the following approximation

n+1∑
k=0

(
1 −

j

n + 1

)
sin

k𝜋j

n + 1
≈ 2

𝜋j

[
1 −

j2

(n + 1)2

]
.

1.8 Averaging and Homogenization

We begin with a terminology background. We understand by averaging the process applied to
nonlinear problems in mechanics, whereas homogenization deals with the averaging process
regardingDEswith quickly changing coefficients. In both approaches the same idea of splitting
of fast and slow solution components is applied (see Figure 1.18).

1.8.1 Averaging via Multiscale Method

One may apply different forms of averaging procedure beginning with the Van der Pol method
of slowly changeable amplitudes [63] up to the Hilbert transformation [238]. However, these
methods cannot be interpreted in a simple way. Namely, the following question appears: why
should the averaging with respect to fast time be carried out and why should the slow time t
be frozen as well as the function of t while applying averaging with respect to fast time? The
multiscale method allows us to clarify this averaging approach ([257], p. 130).
In what follows we apply the multiscales method. It should be noted that all of the asymp-

totic methods yield the same equation, which has been pointed out by N.N. Moiseev [189].
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72 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

𝓍

t

𝓍0(t)

𝓍(t)

0

Figure 1.18 Splitting of the input solution into a sum of slow (averaged) and fast changeable
components

The multiscale method presents the most regular approach to find higher order approxima-
tions. On the other hand, this method in many cases yields a solution in the form of convergent
series ([257], p. 144).
We begin with the Duffing equation with small nonlinearity:

ẍ + x + 𝜀x3 = 0, 𝜀 ≪ 1. (1.300)

Linear equation (𝜀 = 0) has the following general solution:

x0 = A cos t + B sin t, (1.301)

where A,B = const.
It is tempting to assume that for 0 < 𝜀 ≪ 1 a solution to Equation (1.300) can be presented

in the form (1.301), where A and B are functions slowly changed in time t.
According to the multiscale method two scales we introduced the slow time 𝜏 = 𝜀t keeping

notation t for the “fast time,” and hence

d
dt

= 𝜕

𝜕t
+ 𝜀

𝜕

𝜕𝜏
.

A solution x is presented in the following series form

x = x0(t, 𝜏) + 𝜀x1(t, 𝜏) +… ,

and we have

dx
dt

=
𝜕x0
𝜕t

+ 𝜀

(
𝜕x0
𝜕𝜏

+
𝜕x1
𝜕t

)
+… ,

d2x
dt2

=
𝜕2x0
𝜕t2

+ 𝜀

(
2
𝜕2x0
𝜕𝜏 𝜕t

+
𝜕2x1
𝜕t2

)
+… .

After splitting with respect to 𝜀, the following recurrent series is obtained

𝜕2x0
𝜕t2

+ x0 = 0, (1.302)

𝜕2x1
𝜕𝜏2

+ x1 = 2
𝜕2x0
𝜕𝜏 𝜕t

− x3
0
, (1.303)

...........................
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Asymptotic Approaches 73

A solution to Equation (1.302) can be written in the following form:

x0 = A(𝜏) cos t + B(𝜏) sin t. (1.304)

Equation (1.303) is cast to the form:

𝜕2x1
𝜕𝜏2

+ x1 = P(t, 𝜏) = 2
dA
d𝜏

sin t − 2
dB
d𝜏

cos t − (A cos t + B sin t)3. (1.305)

Lack of secular terms in solution to Equation (1.303) requires

∫
2𝜋

0

P(t, 𝜏) cos t dt = 0, ∫
2𝜋

0

P(t, 𝜏) sin t dt = 0. (1.306)

Condition (1.306) implies the following system of two first order ODEs with respect to
functions A(𝜏), B(𝜏):

dA
d𝜏

= 3

8
(A2 + B2)B, dB

d𝜏
= −3

8
(A2 + B2)A.

Analogously, one may derive a system of averaged equations if the zero order solution of
Equation (1.300) has the following form:

x = a(t) cos(t + 𝜃(𝜏)) (1.307)

under the condition
dx
dt

= −a(t) sin(t + 𝜃(𝜏)). (1.308)

Now functions a(t) and 𝜃(𝜏) have the meaning of an amplitude and phase of vibrations,
respectively.

Differentiating formula (1.307) regarding time t yields:

dx
dt

= −a sin(t + 𝜃) + da
dt

cos(t + 𝜃) − d𝜃
dt
a sin(t + 𝜃). (1.309)

Substituting Equation (1.309) into Equation (1.300) and using Equation (1.308), one gets:

da
dt

sin(t + 𝜃) + a
d𝜃
dt

cos(t + 𝜃) = 𝜀a3cos3(t + 𝜃). (1.310)

Solving Equations (1.309) and (1.310) with respect to
da
dt

and
d𝜃
dt
, one obtains:

da
dt

= 𝜀a3cos3(t + 𝜃) sin(t + 𝜃), (1.311)

d𝜃
dt

= 𝜀a2cos4(t + 𝜃). (1.312)

Since a and 𝜃 are slowly changed functions in time (𝜀 is small) then their changes within
the time T = 2𝜋, being a period of the right-hand sides, is small. Averaging of the r.h.s. of
Equations (1.311) and (1.312) on the interval [t, t + T], where the quantities a and 𝜃 appearing
in the right-hand sides of equations are assumed to be constant, yields

1

T ∫
T

0

cos3(t + 𝜃) sin(t + 𝜃)dt = 0,
1

2𝜋 ∫
2𝜋

0

cos4(t + 𝜃)dt = 3

8
.
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74 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

It further follows that

da
dt

= 0, (1.313)

d𝜃
dt

= 3

8
𝜀a2. (1.314)

Equation (1.313) implies that a is constant, whereas relation (1.314) yields 𝜃 = 3

8
𝜀a2

0
t + 𝜃0.

Hence, in the first order approximation we get

u = a0 cos
(
1 + 3

8
𝜀A2

0

)
t + O(𝜀).

It is clear that zero order solutions presented by expressions (1.304) and (1.307) are

equivalent.

Improvement term to the vibration frequency coincides with that obtained via other methods

(for instance via Lindstedt-Poincaré method).

Observe that not only linear equationsmay serve as a zero order approximation. For example,

in reference [79], nonlinear DEs are taken from the beginning (zero order approximation)

allowing to achieve final solutions in the form of elliptic functions. Although the procedure

is more complicated, but the nonlinear effects are taken already in the first equation of the

successive series of equations.

1.8.2 Frozing in Viscoelastic Problems

The viscoelastic problems are associated with the integro-differential equations. As a typical

example one may consider equation governing vibrations of the viscoelastic rectangular plate

taking into account geometric nonlinearity:

Γ(∇4𝑤) − Γ(N∇2𝑤) + 𝜌1𝑤tt = 0,

where Γ(𝜑) = 𝜑 + ∫ t
0
R(t − 𝜏)𝜑(𝜏)d𝜏, N = 6

abh2
∫ a
0
∫ b
0
(𝑤2

x +𝑤2
y)dx dy, 𝜌1 =

𝜌h
D
, and R stands

for the relaxation kernel.

If the plate is simply supported, then one may separate the variables, and applying

𝑤 = A(t) sin m𝜋x
a

sin
n𝜋y

b

the following nonlinear integro-differential equation regarding A(t) is obtained

B(m, n)Γ(A + 1, 5h−2A3) + 𝜌1Att = 0, (1.315)

where

B(m, n) = 𝜋4

[(m
a

)2

+
(n
b

)2
]2
.

Since an exact solution of Equation (1.315) cannot be achieved, therefore we are going to

simplify equationwith respect to the low frequencies. Let us beginwith a study of the following

integral

I(t) = ∫
t

0

A(𝜏)R(t − 𝜏)d𝜏. (1.316)
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Asymptotic Approaches 75

If the variable A(𝜏) slowly changes with respect to the change of the kernel relaxation
R(t − 𝜏), then one may introduce freezing for t = 𝜏 assuming that

I(t) ≈ A(t)I1(t),

where I1(t) = ∫ t
0
R(t − 𝜏)d𝜏.

The so far described approach is known as the method of freezing [103], [104]. Applying
this method to Equation (1.315) yields

B[1 + I1(t)](A + 1, 5h−2A3) + 𝜌1Att = 0. (1.317)

Note that Equation (1.317) is an ODE one with variable coefficients. Now we apply the
averaging to solve it. Assuming

I2(t) ≈ lim
T→∞

1

T ∫
T

0

I1(t)dt,

the following ODE with constant coefficients is obtained

B[1 + I2](A + 1, 5h−2A3) + 𝜌1Att = 0.

1.8.3 The WKB Method

The origin of this method requires further investigations [133]. However, we follow the tra-
ditional approach referring to Wentzel, Kramers and Brillouin. We consider the longitudinal
vibrations of a rod (0 ≤ x ≤ l)with nonconstant stiffness EF𝜑1(x) and density 𝜌F𝜑2(x), where
E,F, 𝜌 are constants [34], [235].
Input equation and BCs are as follows

EF
d
dx

[
𝜑1(x)

du
dx

]
+ 𝜌𝜑2(x)F𝜔2u = 0, (1.318)

u(0) = u(L) = 0. (1.319)

In the nondimensional variables, we get

d2u
d𝜉2

+ q(𝜉)du
d𝜉

+ q1(𝜉)𝜆2u = 0, (1.320)

where q(𝜉) =
𝜑′
1
(𝜉)

𝜑1(𝜉)
, q1(𝜉) =

𝜑2(𝜉)
𝜑1(𝜉)

, 𝜆2 = 𝜌𝜔2

EL2
, 𝜉 = x

L
.

Let us construct a solution with respect to high frequencies 𝜆2 ≫ 1. For this purpose we
apply the following change of variables

u = exp(𝜆𝜓(𝜉)). (1.321)

Substituting Ansatz (1.321) into Equations (1.320) one gets

𝜆2𝜓 ′2 + 𝜆𝜓 ′𝜓 ′′ + 𝜆q𝜓 ′ + q1𝜆
2 = 0. (1.322)

We are looking for a solution to Equation (1.322) in the series form with respect to 𝜆−1:

𝜓 = 𝜓0 + 𝜆−1𝜓1 + 𝜆−2𝜓2 +… ,
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76 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Terms of this series satisfy the following recurrent system of equations

𝜓 ′2
0
+ q1 = 0, (1.323)

2𝜓 ′
1
+ 𝜓 ′′

0
+ q = 0, (1.324)

………

Equation (1.323) yields

𝜓0 = ±i
√
q1(𝜏).

Approximating solution of Equation (1.318) follows

u ≈ C1 sin

(
∫

𝜉

0

√
q1(𝜏)d𝜏

)
+ C2 cos

(
∫

𝜉

0

√
q1(𝜏)d𝜏

)
.

BCs (1.319) imply

C2 = 0, sin

(
𝜆∫

1

0

√
q1(𝜏)d𝜏

)
= 0,

and hence

𝜆∫
1

0

√
q1(𝜏)d𝜏 = 𝜋n, n = 1, 2, 3,… .

Finally, the following formula allows us to find a frequency

𝜔 =
𝜋nL

√
E√

𝜌 ∫ 𝜉

0

√
q1(𝜏)d𝜏

.

In what follows we show other modification of theWKBmethod using the example of vibra-

tions of a rod with variable transversal crossection, governed by the following equation

d2

dx2

[
EI𝜑1(x)

d2𝑤
dx2

]
− 𝜌𝜑2(x)F𝜔2𝑤 = 0. (1.325)

We study the clamped rod faces, and hence

𝑤 = d𝑤
dx

= 0 for x = 0,L. (1.326)

The nondimensional form follows

𝜀4
d2

d𝜉2

[
𝜑1
d2𝑤
d𝜉2

]
− 𝜑2𝑤 = 0, (1.327)

𝑤 = d𝑤
d𝜉

= 0 for 𝜉 = 0, 1, (1.328)

where 𝜀4 = EI
𝜔2𝜌FL4

, 𝜉 = x
L
.

A solution to the Equation (1.327) is sought in the form

𝑤 = exp

(
𝜀−1 ∫

𝜉

0

𝜓(𝜏)d𝜏
)
[u0(𝜉) + 𝜀u1(𝜉) + 𝜀2u2(𝜉) +…]. (1.329)
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Asymptotic Approaches 77

Substituting the Ansatz (1.329) into Equation (1.327), after splitting with regard to 𝜀, the

following recurrent system of equations is obtained:

(𝜑1𝜓
4 − 𝜑2)u0 = 0, (1.330)

4𝜑1𝜓
3u′

0
+ 6𝜑1𝜓

2𝜓 ′u0 + 2𝜓3𝜑′
1
u0 = 0, (1.331)

………

Equation (1.330) gives the following solution:

𝜓1,2 = ±
(
𝜑2

𝜑1

)1∕4
, 𝜓1,2 = ±i

(
𝜑2

𝜑1

)1∕4
.

Equation (1.331) yields

u0(𝜉) =
1

𝜓3∕2𝜑
1∕2
1

.

General solution to Equation (1.327) has the following form (in the first order approxima-

tion):

𝑤 = C1 sin

(
𝜀−1 ∫

𝜉

0

𝜓(𝜏)d𝜏
)
u0(𝜉) + C2 cos

(
𝜀−1 ∫

𝜉

0

𝜓(𝜏)d𝜏
)
u0(𝜉) +

C3 exp(−𝜀−1𝜓(0)𝜉)u0(0) + C4 exp(−𝜀−1𝜓(1)(1 − 𝜉))u0(1). (1.332)

In expression (1.332), for quickly decaging components, the function u0(𝜉) is frozen on one
of the interval ends.

BCs (1.327) allow us to define the vibration frequency

𝜔 = 𝜋2(n + 0, 5)2
√

EI
𝜌FL4

[
∫

l

0

[
𝜑2(x)
𝜑1(x)

]1∕4
dx

]−2

, n = 1, 2, 3,… . (1.333)

Formula (1.333) for 𝜑1 = 𝜑2 = 1 coincides with Bolotin formula (4.1.17). In other words,

the WKB method generalizes the method of Bolotin into the problems with variable coeffi-

cients.

1.8.4 Method of Kuzmak-Whitham (Nonlinear WKB Method)

Efficient generalization of the averaging method for ODEs has been proposed by Kuzmak

[153] and for PDEs by Whitham [256]. According to the latter method, a quickly oscillating

solution to a PDE has the following form:

𝑤 = 𝑤0(𝜏, x, t) + 𝜀𝑤1(𝜏, x, t) +… , 𝜏 = 𝜀−1S(x, t). (1.334)

Functions 𝑤i(𝜏, x, t) are periodic with respect to 𝜏. The Kuzmak-Whitham method can be

treated as a variant of the multiscale method, where 𝜏 plays a role of a fast variable. Substi-

tuting Ansatz (1.334) into the input PDE, and after splitting with respect to 𝜀, the problem is

reduced to ODEs, where the first equation is nonlinear one, and the remaining equations are

linear and nonhomogenous. Solvability conditions of these equations are reduced to a system

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



78 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

of nonlinear PDEs yielding a phase S(x, t) and dependence of the functions being sought on
slow variables x, t. Therefore, the Kuzmak-Whitham method generalizes the WKB method
into a nonlinear case. We apply the method illustrated so far to construct simplified nonlinear
evolution equations of shallow shells, which yields Berger equation as the particular case (see
also [124]).
In what follows we consider the shallow shell with the curvatures R1 and R2 and dimensions

a and b. The governing nondimensional equations follow:

1

12(1 − 𝜈2)
𝜀2∇2�̃� − ∇kF̃ − 𝜀(F̃𝜉𝜉�̃�𝜂𝜂 − 2F̃𝜉𝜂�̃�𝜉𝜂 + F̃𝜂𝜂�̃�𝜉𝜉) + �̃�𝜏𝜏 = 0,

∇4F̃ + ∇k�̃� + 𝜀(�̃�𝜉𝜉�̃�𝜂𝜂 − �̃�2
𝜉𝜂
) = 0, (1.335)

F̃𝜂𝜂 =
1

1 − 𝜈2
[ũ𝜉 − 𝜀10�̃� + 0, 5𝜀�̃�2

𝜉
+ 𝜈(�̃�𝜂 − 𝜀20�̃� + 0.5𝜀�̃�2

𝜂)],

F̃𝜉𝜉 =
1

1 − 𝜈2
[�̃�𝜂 − 𝜀20�̃� + 0, 5𝜀�̃�2

𝜂 + 𝜈(ũ𝜉 − 𝜀10�̃� + 0.5𝜀�̃�2
𝜉
)], (1.336)

F̃𝜉𝜂 = − 1

2(1 + 𝜈)
(ũ𝜂 + �̃�𝜉 + 𝜀�̃�𝜉�̃�𝜂).

Here 𝜏 =
√

𝜌(1−𝜈2)
E

at, ∇k ≡ 𝜀20
𝜕2

𝜕𝜉2
+ 𝜀10

𝜕2

𝜕𝜂2
, 𝜀 = h

a
, 𝜀i0 =

a
Ri
, {𝜉, 𝜂} = 1

a
{x, y}, F̃ = F

Eha
,

{ũ, �̃�, �̃�} = 1

h
{u, 𝑣, 𝑤}, F is the Airy function.

Let us introduce the fast variable 𝜀𝛼𝜃(𝜉, 𝜂) (parameter 𝛼 < 0 will be further estimated), and
therefore

𝜕

𝜕𝜉
= 𝜕

𝜕𝜉
+ 𝜀𝛼𝜃𝜉

𝜕

𝜕𝜃
,

𝜕

𝜕𝜂
= 𝜕

𝜕𝜂
+ 𝜀𝛼𝜃𝜂

𝜕

𝜕𝜃
.

Displacement and Airy functions are being sought in the series forms of a slow and fast
components, where the latter ones treated as periodic regarding 𝜃 of a period T , follow:

F̃ = F0(𝜉, 𝜂, 𝜏) + 𝜀𝛽1F1(𝜉, 𝜂, 𝜀𝛼𝜃, 𝜏), �̃� = 𝑤0(𝜉, 𝜂, 𝜏) + 𝜀𝛽2𝑤1(𝜉, 𝜂, 𝜀𝛼𝜃, 𝜏),

ũ = u0(𝜉, 𝜂, 𝜏) + 𝜀𝛽3u1(𝜉, 𝜂, 𝜀𝛼𝜃, 𝜏), �̃� = 𝑣0(𝜉, 𝜂, 𝜏) + 𝜀𝛽4𝑣1(𝜉, 𝜂, 𝜀𝛼𝜃, 𝜏).

Let us also introduce parameters of asymptotic integrations 𝛾i and 𝛿 with the following
scaling:

F0 ∼ 𝜀𝛾1𝑤0, 𝑤0 ∼ 𝜀𝛾2 , u0 ∼ 𝜀𝛾3 , 𝑣0 ∼ 𝜀𝛾4 ,
𝜕

𝜕𝜏
(…) ∼ 𝜀𝛿(…).

We carry out the asymptotic analysis of systems (1.335), (1.336) assuming 𝜀10 ∼ 𝜀20 ∼ 1. As
a result, we obtain the following estimations for the parameters 𝛼, 𝛽i, 𝛾i, 𝛿: 𝛼 = −0, 5, 𝛽1 = 0,
𝛽2 < 0, 𝛽3 ≥ 0, 𝛽4 ≥ −0, 5, 𝛾1 = 1, 𝛾2 = 0, 𝛾3 > 0, 𝛾4 > 0, 𝛿 = 0.
The corresponding limiting system is

1

12(1 − 𝜈2)
𝑤1

𝜃𝜃𝜃𝜃
(𝜃2

𝜉
+ 𝜃2𝜂 ) − (𝜀20𝜃2𝜉 + 𝜀10𝜃

2
𝜂 )F1

𝜃𝜃
−

(F0
𝜉𝜉
𝜃2𝜂 + 2F0

𝜉𝜂
𝜃𝜉𝜃𝜂 + F0

𝜂𝜂𝜃
2
𝜉
)𝑤1

𝜃𝜃
+𝑤1

𝜏𝜏 = 0, (1.337)

F1
𝜃𝜃𝜃𝜃

(𝜃2
𝜉
+ 𝜃2𝜂 )2 − (𝜀20𝜃2𝜉 + 𝜀10𝜃

2
𝜂 )𝑤1

𝜃𝜃
= 0, (1.338)
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Asymptotic Approaches 79

𝜀−1F1
𝜃𝜃
𝜃𝜉𝜃𝜂 + F0

𝜂𝜂 =
1

2(1 − 𝜈2)
(𝑤1

𝜃
)2𝜃𝜉𝜃𝜂, (1.339)

𝜀−1F1
𝜃𝜃
𝜃𝜉𝜃𝜂 + F0

𝜉𝜉
= 1

2(1 − 𝜈2)
(𝑤1

𝜃
)2𝜃𝜉𝜃𝜂, (1.340)

𝜀−1F1
𝜃𝜃
𝜃𝜉𝜃𝜂 + F0

𝜉𝜂
= − 1

2(1 + 𝜈)
(𝑤1

𝜃
)2𝜃𝜉𝜃𝜂. (1.341)

Derivatives of F0 appeared on Equation (1.337) are defined via Equations (1.339)–(1.341)

after averagingwith respect to 𝜃. According to periodicity of functionF1
𝜃
, the following relation

holds:

∫
T

0

F1
𝜃𝜃
d𝜃 = 0.

Finally, we get

−(F0
𝜉𝜉
𝜃2𝜂 + 2F0

𝜉𝜂
𝜃𝜉𝜃𝜂 + F0

𝜂𝜂𝜃
2
𝜉
)𝑤1

𝜃𝜃
= 1

2(1 − 𝜈2) ∫
T

0

[(𝑤1
𝜃
)2(𝜃2

𝜉
+ 𝜃2𝜂 )2−

2𝑤1[𝜀10(𝜃2𝜉 + 𝜈𝜃2𝜂 ) + 𝜀20(𝜃𝜂 + 𝜃𝜉)]]d𝜃. (1.342)

Taking into account relation (1.342), the following simplified equations are obtained:

D
h
∇4𝑤 −

(
1

R2

𝜕2

𝜕x2
+ 1

R1

𝜕2

𝜕y2

)
F − E

ab(1 − 𝜈2)
×{

0.5∇2𝑤∫
b

a ∫
b

a

[
𝑤2
x +𝑤2

y

]
dx dy −𝑤xx ∫

a

0 ∫
b

0

(
𝜈

R1

+ 1

R2

)
𝑤 dy dx −

𝑤yy ∫
a

0 ∫
b

0

(
1

R1

+ 𝜈

R2

)
𝑤 dy dx

}
+ 𝜌𝑤tt = 0, (1.343)

D
h
∇4F −

(
1

R2

𝜕2

𝜕x2
+ 1

R1

𝜕2

𝜕y2

)
𝑤 = 0. (1.344)

Observe that for R1 → ∞, R2 → ∞ Equation (1.343) transits into Berger equation, and in

the one-dimensional case we obtain the Kirchhoff equation.

1.8.5 Differential Equations with Quickly Changing Coefficients

In what follows we introduce the homogenization method using the following simple 1D prob-

lem [46], [138], [139], [140], [148], [169]:

d
dx

[
a
( x
𝜀

) du
dx

]
= q(x), (1.345)

u = 0 for x = 0,L. (1.346)

Here a(x∕𝜀) is periodic with respect to x, and has the period 𝜀.
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80 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Variation of the r.h.s. of Equation (1.345) is small, but the coefficient a(x∕𝜀) changes quickly.
Therefore, one may apply the method of two scales, and introduce fast 𝜂 = x∕𝜀 and slow y = x
variables. Then, the derivative follows:

d
dx

= 𝜕

𝜕y
+ 𝜀−1

𝜕

𝜕𝜂
, (1.347)

and instead of the input ODE we get a PDE.

Its solution is assumed to have the following form:

u = u0(𝜂, y) + 𝜀u1(𝜂, y) +… , (1.348)

where u0, u1,… are periodic functions with respect to 𝜂 of period 1.

Substituting relations (1.347), (1.348) into input Equation (1.345) and BCs (1.346), and com-

paring the terms standing by the same powers of 𝜀, the following recurrent system of equations

is obtained

𝜕

𝜕𝜂

[
a(𝜂)

𝜕u0
𝜕𝜂

]
= 0, (1.349)

𝜕

𝜕𝜂

[
a(𝜂)

𝜕u0
𝜕y

]
+ a(𝜂)

𝜕2u0
𝜕y 𝜕𝜂

+ 𝜕

𝜕𝜂

[
a(𝜂)

𝜕u1
𝜕𝜂

]
= 0, (1.350)

𝜕

𝜕𝜂

[
a(𝜂)

𝜕u2
𝜕𝜂

]
+ a(𝜂)

𝜕2u0
𝜕y2

+ 𝜕

𝜕𝜂

[
a(𝜂)

𝜕u1
𝜕y

]
+ a(𝜂)

𝜕2u1
𝜕y 𝜕𝜂

= q(y), (1.351)

………

uj = 0 for y = 0,L, 𝜂 = 0,L∕𝜀, j = 1, 2, 3,… . (1.352)

Equation (1.349), according to periodicity of functions u0 with respect to 𝜂, yields u0 = u0(y).
It means that u0 stands for a certain averaged part of function u and does not depend on a fast
variable. In a series of physical problems, the existence of averaged part is already implied

from the problem statement, and hence the first term of series (1.348) can be treated as not

dependent on the fast variable. Equation (1.350) takes the following form

𝜕

𝜕𝜂

[
a(𝜂)

𝜕u1
𝜕𝜂

]
= −𝜕a(𝜂)

𝜕𝜂

du0
dy

. (1.353)

This equation is considered on the period (0 ≤ 𝜂 ≤ 1) and hence it is referred to as a cell or

local governing equation. Solution to one cell problem is essentially simpler in comparison to

the whole space solution. In this case we obtain

𝜕u1
𝜕𝜂

= −
𝜕u0
𝜕y

+
C(y)
a

. (1.354)

Periodicity conditions of the first improvement term to the homogenized solution u1|10 = 0

allows us to determine the constant C(y):

C = â
du0
dy

, â =
[
∫

1

0

a−1d𝜂

]−1
.
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Asymptotic Approaches 81

Excluding 𝜕u1∕𝜕𝜂 from (1.351) yields

𝜕

𝜕𝜂

(
a
𝜕u2
𝜕𝜂

)
+ 𝜕

𝜕𝜂

(
a
𝜕u1
𝜕y

)
+ â

d2u0
dy2

= q(y). (1.355)

Now, in order to withdraw slow components from Equation (1.355), we apply the homog-

enization procedure acting on each equation term by the averaging operator ∫ 1

0
(…)d𝜂. First

two terms, in result of averaging, are equal to zero due to the periodicity condition, and hence
Equation (1.355) takes the form

â
d2u0
dy2

= q(y). (1.356)

We apply the following BCs for Equation (1.356):

u0 = 0 for y = 0,L. (1.357)

In what follows we define the functions u1 from conditions (1.354) :

u1 =
du0
dy

(
â∫

1

0

a−1d𝜂 − 𝜂

)
, 0 ≤ 𝜂 ≤ 1.

Further, function u1 is periodically extended with respect to coordinates with the period of
1. The found value u1 does not satisfy, in general, BCs (1.346), and the associated errors are
of the order 𝜀. In order to remove them, the following problem is solved:

d
dx

[
a
( x
𝜀

) du
dx

]
= 0,

u|x=0 = A = u1|y=𝜂=0, u|x=l = B = u1|y=L, 𝜂=L∕𝜀.
Applying to this problem the homogenization approach again, the following first approxi-

mation is obtained:

â
d2u01
dy2

= 0, u01|y=0 = A, u01|y=L = B.

It is then tempting to apply the following solutions form:

u = u0(y) + 𝜀[u01(y) + 𝜀u02(y) + 𝜀2u03(y) +…]+

𝜀[u1(𝜂, y) + 𝜀u2(𝜂, y) + 𝜀2u3(𝜂, y) +…]. (1.358)

where ui(𝜂, y) are a function having averaged values with respect to a period equal to zero.
Let us consider one more example of the following nonlinear equation:

d
dx

[
a
( x
𝜀

) du
dx

]
+ b

( x
𝜀

)
u3 = q(x), (1.359)

u = 0 for x = 0,L. (1.360)

Introducing the fast and slow variables 𝜂 and y, and approximating the function u in the form
(1.348), the following recurrent relations are obtained:

𝜕

𝜕𝜂

[
a(𝜂)

𝜕u1
𝜕𝜂

]
+ da(𝜂)

d𝜂

du0
dy

= 0, (1.361)
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82 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

𝜕

𝜕𝜂

[
a(𝜂)

𝜕u2
𝜕𝜂

]
+ 𝜕

𝜕𝜂

[
a(𝜂)

𝜕u1
𝜕y

]
+

a(𝜂)
𝜕2u1
𝜕y 𝜕𝜂

+ a(𝜂)
d2u0
dy2

+ b(𝜂)u3
0
= q(y), (1.362)

……… …

u0 = 0 for y = 0, l,

u1 = 0 for y = 0, l, 𝜂 = 0,L∕𝜀, (1.363)

…………

Equation (1.361) coincides with Equation (1.350), and the local problem is not changed,

when new terms are added without a change of higher order derivatives. Using the solution

(1.354), the following homogenized equation is derived:

â
d2u0
dy2

+ b̂u3 = q(y), b̂ = ∫
1

0

b(𝜂)d𝜂. (1.364)

BCs for Equation (1.364) have the form (1.363). It should be emphasized that

u = u0 + O(𝜀), but
du
dx

=
du0
dy

+
𝜕u1
𝜕𝜂

+ O(𝜀).

In other words, although the solution u0 to the homogenized equation approximates the func-

tion uwith accuracy up to the terms of order 𝜀, in the relations for the derivative one has to keep

terms with u1. Their occurrence generates problems in the process of numerical computations

of the solution due to errors introduced by differentiations.

Let us now discuss the physical aspects of the coefficients of the homogenized Equation

(1.364). It is clear that both coefficients b and 1∕a are averaged. Sometimes averaging of the

stiffness is referred to as Voigt averaging [60], [252], whereas the averaging of compliance is

called Reuss averaging [60], [210]. These estimations present averaged arithmetic and aver-

aged harmonic characteristics of the matrices and inclusions for composites. For a wide range

of problems true values of the averaged coefficients of the homogenized Equation (1.364) ãij
are located in between the averaged coefficients of Voigt (aij) and Reuss (âij):

âij ≤ ãij ≤ aij. (1.365)

Estimation (1.365) is known as the Voigt-Reuss pitchfork or Hill pitchfork, although it has

been obtained first byWiener [259]. However, the interval estimated in thementioned pitchfork

is relatively large.

In Figure 1.19, as an example, results obtained via computation of the homogenized conduc-

tivity d of the composite material composed of the matrices and square inclusions are reported.

Input problem is governed by Laplace equations associated with a periodically nonhomoge-

nous medium.

A cell of periodicity presents a square of the side 1, whereas inclusions of the size 1∕3 are

located symmetrically with respect to the square center, whereas the ratio of conductivities of

thematrix and inclusion is denoted by d0. Dotted (dashed) curve corresponds toVoigt’s (Reuss)
estimation. Solid curve corresponds to results of homogenization using numerical solution to
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Asymptotic Approaches 83

d

d0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

10−4 10−2 102 1041
0.0

Figure 1.19 Results of homogenization of Laplace equation associated with a periodically nonho-
mogenous medium, with the Voigt (dot curve) and Reuss (dashed) curve estimation

the problem on a cell [32], [63]. Figure 5.1 gives insight into application of estimation (1.365)
with respect to practical problems.
Let us consider now the eigenvalue problem

d
dx

[
a
( x
𝜀

) du
dx

]
+ 𝜆u = 0,

(1.366)

u = 0 for x = 0,L.

We present the eigenform in the form of (1.358), and the eigenvalue 𝜆 is presented by the
series

𝜆 = 𝜆0 + 𝜀𝜆1 + 𝜀2𝜆2 +… . (1.367)

Substituting series (1.358), (1.367) into the input BVP (1.366) and taking into account for-
mulas for the derivative (1.347), the following recurrent set of equations is obtained

𝜕a
𝜕𝜂

du0
dy

+ 𝜕

𝜕𝜂

[
a
𝜕u1
𝜕𝜂

]
= 0, (1.368)

𝜕

𝜕𝜂

(
a
𝜕u2
𝜕𝜂

)
+ 𝜕

𝜕𝜂

(
a
𝜕u1
𝜕y

)
+

a
𝜕2u1
𝜕y 𝜕𝜂

+ 𝜕a
𝜕𝜂

du01
dy

+ a
d2u0
dy2

+ 𝜆0u0 = 0, (1.369)

𝜕

𝜕𝜂

(
a
𝜕u3
𝜕𝜂

)
+ 𝜕

𝜕𝜂

(
a
𝜕u2
𝜕𝜂

)
+ 𝜕a

𝜕𝜂

du02
dy

+

a
𝜕2u2
𝜕y 𝜕𝜂

+ a
d2u01
dy2

+ 𝜆1u0 + 𝜆0(u01 + u1) = 0, (1.370)
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84 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

… … … …

u0 = 0 for y = 0,L, (1.371)

u1 + u01 = 0 for 𝜂 = 0,L∕𝜀, (1.372)

… … … …

The yielded value 𝜕u1∕𝜕𝜂 by Equation (1.368) is substituted into Equation (1.369) and into
BCs (1.371), and after averaging the following BVP with respect to u0, 𝜆0 is defined:

â
d2u0
dy2

+ 𝜆0u0 = 0, u0 = 0 for y = 0,L.

Now, Equation (1.369) yields

𝜕u2
𝜕𝜂

= −
𝜕u1
𝜕y

−
du01
dy

+
C1(y)
a

.

Due to periodicity condition of the function u2 with respect to 𝜂, we get

C1 = â
du01
dy

+ â
𝜕û1
𝜕y

, for û1 = ∫
1

0

u1d𝜂.

Substituting the already found values u1, u2 into Equation (1.370), and applying the averag-
ing procedure, we obtain

â
d2u01
dy2

+ 𝜆0u01 + â
𝜕2û1
𝜕y2

+ 𝜆0û1 + 𝜆1u0 = 0. (1.373)

BC for Equations (1.373) are obtained from BCs (1.372), and they have the following form:

u01 = −û1 for y = 0,L. (1.374)

Improvement term to frequency 𝜆1 is defined via perturbation method, and then the slow

improving term to the homogenized solution u01 is yielded by a solution to the BVPs (1.373),
(1.374).

The approach described so far allows us to determine a solution in an arbitrary approxima-

tion regarding 𝜀. Its most attractive advantage is generality. Indeed, having found a solution to

a local problem, one may also define a solution to the input problem, as well as solve the eigen-

value problem. If one adds into the equation nonlinear terms in a way not disturbing higher

order derivatives, then a construction of homogenized relations can be carried out in the simi-

lar way. The local problem remains the same as in the linear case, as well as the higher order

approximations being linear. The whole nonlinearity is located in homogenized BVPs with

smooth coefficients, which can be easily solved either via numerical or variational methods.

1.8.6 Differential Equation with Periodically Discontinuous Coefficients

We consider an application of the homogenization method to solve problems of DEs with peri-

odically discontinuous coefficients. They are also known as problems with periodic barriers

[251]. As an example we consider deformation of a membrane reinforced by threads.
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Asymptotic Approaches 85

Equations of equilibrium in intervals kl < y1 < (k + 1)l are formulated as follows

𝜕2u

𝜕x2
1

+ 𝜕2u

𝜕y2
1

= Q(x1, y1). (1.375)

Condition of linking neighborhood parts, being also known as the matching of jump condi-

tions [251], have the following form

lim
y1→kl+0

u ≡ u+ = lim
y1→kl−0

u ≡ u−, k = 0,±1,±2,… ,(
𝜕u
𝜕y1

)+
−

(
𝜕u
𝜕y1

)−
= p

𝜕2u

𝜕x2
1

, (1.376)

where p is the parameter characterizing relative thread stiffness.

BCs for x1 = 0,H follow

u = 0. (1.377)

Let us assume, that an external load is periodic with respect to y1, and its period L is essen-

tially larger than the distance between threads. Then, one may apply homogenization approach

by taking 𝜀 = l∕L as the perturbation/small parameter. Introducing, instead of y1, fast (𝜂 =
y1∕l) and slow (y = y1∕L) variables yields

𝜕

𝜕y1
= 1

L

(
𝜕

𝜕y
+ 𝜀−1

𝜕

𝜕𝜂

)
. (1.378)

Function u is approximated by the series

u = u0(x, y) + 𝜀𝛼[u01(x, y) + u1(x, y, 𝜂)] +

𝜀𝛼1[u02(x, y) + u2(x, y, 𝜂)] +… , (1.379)

where 0 < 𝛼 < 𝛼1 <…, x = x1∕L.
Substituting Ansatz (1.379) into Equation (1.375) and into condition (1.376), and taking into

account the formula (1.378), we get

∇2u0 + 𝜀𝛼−2
𝜕2u1
𝜕𝜂2

+ 2𝜀𝛼−1
𝜕2u1
𝜕y 𝜕𝜂

+ 𝜀𝛼1−2
𝜕2u2
𝜕𝜂2

+

2𝜀𝛼1−1
𝜕2u2
𝜕y 𝜕𝜂

+ O(𝜀𝛼) = q(x, y), (1.380)

[u0 + 𝜀𝛼(u01 + u1) +…]+ = [u0 + 𝜀𝛼(u01 + u1) +…]−, (1.381)

𝜀𝛼−1
[(

𝜕u1
𝜕𝜂

)+
−

(
𝜕u1
𝜕𝜂

)−]
+ O(𝜀𝛼) = p1

[
𝜕2u0
𝜕x2

+ O(𝜀𝛼)
]
,

where q = L2Q, p1 = p∕L, ∇2u0 =
𝜕2u0
𝜕x2

+ 𝜕2u0
𝜕y2

, (…)± = lim
𝜂→k±0

u.

It should be emphasized that a majority of the works devoted to homogenization of periodic

systems, in particular those purely mathematical, are carried out using the following implicit

statements: the occurred system parameters are of the same order. However, in our case a way
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86 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

2

β

α0

2
1 3

6

7 5
4

98

Figure 1.20 Partition of the parameter quadrant plane into nine zones with different asymptotics

of construction of asymptotics essentially depends on the order of the relative thread stiffness
p1 in comparison to parameter 𝜀. In what follows we introduce the parameter 𝛽 characterizing
this order (p1 ∼ 𝜀𝛽) and we study a possible character of limiting systems depending on 𝛼, 𝛽.
Owing to Equation (1.380), the following different limiting system occurs for 0 < 𝛼 < 2,

𝛼 = 2 and 𝛼 > 2:

for 0 < 𝛼 < 2
𝜕2u1
𝜕𝜂2

= 0, (1.382)

for 𝛼 = 2 ∇2u0 +
𝜕2u1
𝜕𝜂2

= q, (1.383)

for 𝛼 > 2 ∇2u0 = q. (1.384)

Limiting relations are obtained from relation (1.381) for 𝜀 → 0, and they have the following
form

for 𝛽 < 𝛼 − 1
𝜕2u0
𝜕x2

= 0, (1.385)

for 𝛽 = 𝛼 − 1

(
𝜕u1
𝜕𝜂

)+
−

(
𝜕u1
𝜕𝜂

)−
= p1𝜀

1−𝛼 𝜕
2u0
𝜕x2

, (1.386)

for 𝛽 > 𝛼 − 1

(
𝜕u1
𝜕𝜂

)+
=

(
𝜕u1
𝜕𝜂

)−
. (1.387)

The quadrant plane of the parameters 𝛽 > 0, 𝛼 > 0 have nine different areas (Figure 1.20).
In what follows we are going to study them in some detail. Let 𝛽 < 𝛼 − 1, which means

physically that the threads are stiff. Equation (1.385) yields u0 = 0 and hence we cannot apply
the homogenization approach here. For zones 1–3, we have the following governing limiting
equation

𝜕2u1
𝜕𝜂2

= q. (1.388)
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Asymptotic Approaches 87

The case 𝛽 > 𝛼 − 1, corresponds to zones 4–6. Physically it means that we deal with weak

threads, and the limiting case is governed by (1.384).

Zones 7 and 8 are described by equations out of the physical meaning. A key role plays zone

9 (𝛼 = 2, 𝛽 = 1) associated with averaged thread stiffness. The limiting system is composed

of Equations (1.383), (1.386), and the transition conditions take the form

u+
1
= u−

1
, (1.389)(

𝜕u1
𝜕𝜂

)+
−

(
𝜕u1
𝜕𝜂

)−
= p2

𝜕2u0
𝜕x2

, (1.390)

where p2 = p∕l.
Equation (1.382) implies

u1 = 0, 5(q − ∇2u0)𝜂2 + C(x, y)𝜂 + C1(x, y).

Constant C1(x, y) is associated with the term u01, which is defined through homogenized

equation of the successive approximations. Conditions (1.389) yield

C(x, y) = −0, 5(q − ∇2u0) L. (1.391)

We have to satisfy one more condition (1.390), but there is a lack of constants. However,

condition (1.390) implies the looked for homogenization equation. Indeed, substituting the

found value u1 into Equation (1.390), we obtain

∇2u0 + p2
𝜕2u0
𝜕x2

= q. (1.392)

Equation (1.392) should be integrated taking into account the following BCs:

u0 = 0 for x = 0,H∕L.

Physically, a transition into Equation (1.392) is associated with a “smeared” of the threads

stiffness (transition into structurally-orthotropic theory). Finally, function u1 can be approxi-

mated in the following way:

u1 = 0.5p2
𝜕2u0
𝜕x2

𝜂(𝜂 − 1).

In general, BCs are not satisfied. Boundary error quickly changes with respect to 𝜂, and

yields occurrence of a boundary layer ub. We construct the latter through introduction of the

variable 𝜉 = x1∕l via the following series:

ub = 𝜀𝛾1ub1(x, y, 𝜉, 𝜂) + 𝜀𝛾2ub2(x, y, 𝜉, 𝜂) +… ,

where 0 < 𝛾1 < 𝛾2 <….

Equations yielding the function ub1 have the following form:

𝜕2ub1
𝜕𝜉2

+
𝜕2ub1
𝜕𝜂2

= 0,

ub1|𝜂=k = 0, k = 0,±1,… .
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88 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

BCs (we consider only one edge) for x = 𝜉 = 0 have the following form:

ub1 = −u1.

In order to construct boundary layer, one may apply the Kantorovitch method, taking ub1 in
the following form:

ub1 = Φ(𝜉)𝜂(𝜂 − 1).

and now the boundary conditions 𝜂 = 0, 1 are satified. Furthermore, the standard Kantorovitch
technique can be applied [142].
Let us now describemore rigorously the notion of fast and slow changes of the load. Function

f (𝜀, 𝜃) is called oscillating with velocity 𝜀−1 on the period 2𝜋, if [251]

0 < C1 ≤ ∫
2𝜋

0

| f (𝜀, 𝜃)|2d𝜃 ≤ C2 < ∞,
||||∫ 𝛼

0

f (𝜀, 𝜃)d𝜃
|||| ≤ C𝜀, 0 ≤ 𝛼 ≤ 2𝜋,

where C, C1, C2 are certain constants.

1.8.7 Periodically Perforated Domain

We consider the Poisson equation, which describes membrane deformation

∇2u = f (x, y) (1.393)

in the multi-connected domain Ω (Figure 1.21) [122], [123]. Small parameter 𝜀 character-
izes a ratio of the characteristics size of the repeated part (cell) and the characteristic domain
dimension.
On the boundary of holes Neuman BCs are given

𝜕u
𝜕ni

= 0 on 𝜕Ωi, (1.394)

where ni denotes an external normal to the contour of i-th hole.

Ω

∂Ωi

∂Ω

Ωi

1

2a

ε

Figure 1.21 Perforated medium
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Asymptotic Approaches 89

∂Ωi

Ωi

0,5

0,5

η

−0,5
a

−0,5

ξ

Figure 1.22 Periodically repeated cell

Membrane edges are clamped

u = 0 on 𝜕Ω. (1.395)

We introduce fast variables 𝜉 = x∕𝜀, 𝜂 = y∕𝜀. The solution is assumed to be of the form

u = u0(x, y) + 𝜀u1(x, y, 𝜉, 𝜂) + 𝜀2u2(x, y, 𝜉, 𝜂) +… , (1.396)

where uj ( j = 1, 2,…) are periodic functions with period 1 with respect to 𝜉, 𝜂.

Partial derivatives follow:

𝜕

𝜕x
= 𝜕

𝜕x
+ 𝜀−1

𝜕

𝜕𝜉
,

𝜕

𝜕y
= 𝜕

𝜕y
+ 𝜀−1

𝜕

𝜕𝜂
. (1.397)

A periodically repeated cell in fast variables is shown in Figure 1.22.

Substituting Ansatz (1.396) into BVP (1.393)–(1.395), and taking into account Equations

(1.397), the splitting procedure with respect to 𝜀 yields the following recurrent sequence of

the BVPs:

𝜕2u1
𝜕𝜉2

+
𝜕2u1
𝜕𝜂2

= 0 in Ωi, (1.398)

𝜕u1
𝜕k

+
𝜕u0
𝜕n

= 0 on 𝜕Ωi, (1.399)

𝜕2u0
𝜕x2

+
𝜕2u0
𝜕y2

+ 2

(
𝜕2u1
𝜕x 𝜕𝜉

+
𝜕2u1
𝜕y 𝜕𝜂

)
+

𝜕2u2
𝜕𝜉2

+
𝜕2u2
𝜕𝜂2

= f in Ωi, (1.400)

𝜕u2
𝜕k

+
𝜕u1
𝜕n

= 0 on 𝜕Ωi, (1.401)

…………

ui = 0, i = 0, 1, 2,… on 𝜕Ω. (1.402)

Here k denotes a normal to the hole contour in fast variables.
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90 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

We define the averaging operator in the following way:

Φ̃(x, y) = ∫ ∫
Ωi

Φ(x, y, 𝜉, 𝜂) d𝜉 d𝜂. (1.403)

After application of the averaging operator (1.256), Equation (1.400) yields(
𝜕2u0
𝜕x2

+
𝜕2u0
𝜕y2

)
(1 − 𝜋a2) + ∫ ∫

Ωi

(
𝜕2u1
𝜕x 𝜕𝜉

+
𝜕2u1
𝜕y 𝜕𝜂

)
d𝜉 d𝜂 =

(1 − 𝜋a2)f . (1.404)

Homogenized BC takes the following form

u0 = 0 on 𝜕Ω. (1.405)

Nowwe proceed to the problem on cell (1.398), (1.399) taking into account the condition of a
periodic continuation, i.e. conditions of equality of the function u1 and its first order derivatives
regarding the respective coordinates lying on contrary located cell sides are satisfied.
Reduction of the periodic problems to those of BVPs has been described, for instance in

monograph ([32], chapter 6). In both cases displacements on two contrary located external
cell boundaries as well as normal derivatives on two remaining sides are equal zero.
Assume that the opening diameter 2a is small in comparison to the cell dimensions. In the

first approximation u1 (u1 ≈ u(1)
1
), onemay transit into the infinite plane problem of the opening

𝜕2u(1)
1

𝜕𝜉2
+

𝜕2u(1)
1

𝜕𝜂2
= 0, (1.406)

𝜕u(1)
1

𝜕k
+

𝜕u0
𝜕n

= 0 on 𝜕Ωi, (1.407)

u(1)
1

→ 0 for 𝜉2 + 𝜂2 → ∞. (1.408)

In polar coordinates the BVP (1.406)–(1.408) can be cast into the following form

𝜕2u(1)
1

𝜕r2
+ 1

r

𝜕u(1)
1

𝜕r
+ 1

r2
𝜕2u(1)

1

𝜕𝜃2
= 0, (1.409)

𝜕u(1)
1

𝜕r

||||||r=a = −
𝜕u0
𝜕x

cos 𝜃 −
𝜕u0
𝜕y

sin 𝜃, (1.410)

u(1)
1

→ 0 for r → ∞. (1.411)

A solution to the BVP (1.409)–(1.411) is

u(1)
1

= a2

r

(
𝜕u0
𝜕x

cos 𝜃 +
𝜕u0
𝜕y

sin 𝜃

)
. (1.412)

Observe that functions u(1)
1

do not satisfy the periodicity conditions. In order to avoid

compensating the discipancy, we obtain in the second approximation (u1 ≈ u(1)
1

+ u(2)
1
) the

following BVP:

Δu(2)
1

= 0 in Ω∗
i ,

u(2)
1
(0, 5, 𝜂) − u(2)

1
(−0, 5, 𝜂) = u(1)

1
(−0, 5, 𝜂) − u(1)

1
(0, 5, 𝜂),
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Asymptotic Approaches 91

u(2)
1
(𝜉, 0, 5) − u(2)

1
(𝜉,−0, 5) = u(1)

1
(𝜉,−0, 5) − u(1)

1
(𝜉, 0, 5),

u(2)
1𝜉
(0, 5, 𝜂) − u(2)

1𝜉
(−0, 5, 𝜂) = u(1)

1𝜉
(−0, 5, 𝜂) − u(1)

1𝜉
(0, 5, 𝜂),

u(2)
1𝜂
(𝜉, 0, 5) − u(2)

1𝜂
(𝜉,−0, 5) = u(1)

1𝜂
(𝜉,−0, 5) − u(1)

1𝜂
(𝜉, 0, 5).

Let us present u(2)
1

in the form

u(2)
1

= u(12)
1

+ u(22)
1

, (1.413)

where functions u(12)
1

satisfy homogenous BCs with respect to 𝜉 and nonhomogenous ones

with respect to 𝜂. The function u(22)
1

can be obtained from u(12)
1

via change of the variables
(𝜉 ↔ 𝜂, x ↔ y).
The following BVP for u(12)

1
estimation is obtained:

Δu(12)
1

= 0 in Ω∗
i , (1.414)

u(12)
1

(0, 5, 𝜂) = u(12)
1

(−0, 5, 𝜂), u(12)
1𝜉

(0, 5, 𝜂) = u(12)
1𝜉

(−0, 5, 𝜂), (1.415)

u(12)
1

(𝜉, 0, 5) − u(12)
1

(𝜉,−0, 5) = u(1)
1
(𝜉,−0, 5) − u(1)

1
(𝜉, 0, 5),

(1.416)

u(12)
1𝜂

(𝜉, 0, 5) − u(12)
1𝜂

(𝜉,−0, 5) = u(1)
1𝜂
(𝜉,−0, 5) − u(1)

1𝜂
(𝜉, 0, 5).

A general solution to Equation (1.414) takes the following form:

u(12)
1

= A0 + B0𝜂 +
∞∑
n=1

[(Anch(2𝜋n𝜂) + Bnsh(2𝜋n𝜂)) cos(2𝜋n𝜉)+

(Cnch(2𝜋n𝜂) + Dnsh(2𝜋n𝜂)) sin(2𝜋n𝜉)], (1.417)

where An, Bn, Cn, Dn are arbitrary constants.
Let us present now BCs (1.416) in the following form:

u(12)
1

(𝜉, 0, 5) − u(12)
1

(𝜉,−0, 5) = −
𝜕u0
𝜕y

a2(𝜉2 + 0, 25)−1, (1.418)

u(12)
1𝜂

(𝜉, 0, 5) − u(12)
1𝜂

(𝜉,−0, 5) = 2
𝜕u0
𝜕x

a2𝜉(𝜉2 + 0, 25)−2. (1.419)

Developing r.h.s. of relations (1.418), (1.419) into Fourier series and substituting solution
(1.417) into Equations (1.418), (1.419), we obtain

An = Dn = 0, n = 0, 1,… ,B0 = −
𝜕u0
𝜕y

𝜋a2 =
𝜕u0
𝜕y

B∗
0
,

Bn = −
𝜕u0
𝜕y

2a2

sh𝜋n
[e−𝜋nImE1(𝜋n(i − 1)) − e𝜋nImE1(𝜋n(i + 1))] =

𝜕u0
𝜕y

B∗
n,

Cn = Bn including the change
𝜕u0
𝜕y

⇒
𝜕u0
𝜕x

, n = 0, 1, 2,… .
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92 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Here E1(…) denotes integral exponential function ([2], chapter 5), i =
√
−1.

Finally, we have

u(2)
1

=
𝜕u0
𝜕y

B∗
0
𝜂 +

∞∑
n=1

B∗
n

(
𝜕u0
𝜕y

sh(2𝜋n𝜂) cos(2𝜋n𝜉) +
𝜕u0
𝜕x

ch(2𝜋n𝜂) sin(2𝜋n𝜉)
)
.

Function u(22)
1

is constructed in the analogous way.

Substitution of formula u1 = u(1)
1

+ u(2)
1

into Equation (1.404) yields the following homoge-
nized equation:

q

(
𝜕2u0
𝜕x2

+
𝜕2u0
𝜕y2

)
= f , (1.420)

where

q = 1 − 𝜋a2 + 8𝜋2a4

1 − 𝜋a2
×

∞∑
n=1

n
sh𝜋n

(e−𝜋nImE1(𝜋n(i − 1)) − e𝜋nImE1(𝜋n(i + 1))). (1.421)

Series appeared in (1.421) is absolutely convergent with fastly decreasing terms |an+1∕an| →
exp(−𝜋).
Homogenized BC for Equation (1.420) takes the form of (1.405).
In what follows we briefly discuss a paradox reported by Bakhvalov and Eglit [31]. They

considered two following cases. In the first case homogenization has been carried out for a
medium with holes. In the second case a certain medium with inclusions has been homoge-
nized, and then in the homogenized relations the characteristics of inclusions have been set to
zero. The corresponding limiting systems have not coincided. However, r.h.s. of the studied
Poisson equations regarding inclusions have been homogenized with respect to the whole cell
area, whereas in the case of the medium with holes – only on the cell area without opening.
The discussed paradox can be simply omitted. The r.h.s. for openings should be homogenized
regarding the cell area without holes, whereas coefficients of the l.h.s. can be obtained via the
limiting transition applied to the problem on inclusions.

1.8.8 Waves in Periodically Nonhomogenous Media

The homogenization method for the problems on waves distribution in a periodically nonho-
mogeneous media is often defined via representation of its solution through a scalar product
of a periodic function and a certain modulated function. Mathematicians call this approach the
Floquet method [70], whereas among physicists it is known as the Bloch method [86], [143].
In what follows we recall how to find a solution to differential equation with periodic coef-

ficients. Consider the following Hill equation:

d2y(x)
dx2

− 𝜑(x)y(x) = 0,

where 𝜑(x) is the periodic function of period a.
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L1 L2
L1 + L2 = d

E1, 𝜌1 E2, 𝜌2

 𝒰1 𝓍

Figure 1.23 Scheme of 1D composite material

A particular solution to Hill equation, owing to the Floquet theorem [70], has the following

form

y1(x) = Φ(x) exp(i𝜇x),

where Φ(x) is a periodic function of period a, and 𝜇 is a complex characteristic exponent.

We demonstrate a use of the homogenization method via an example of the 1D lagered

composite (Figure 1.23) [80]. An equation governing motion of the neighborhood composite

parts follows:

Ekukxx − 𝜌kuktt = 0, k = 1, 2. (1.422)

On the contact boundaries the following conditions hold:

u1 = u2, E1u1x = E2u2x. (1.423)

In addition, the following quasi-periodicity conditions should be satisfied

uk(x + d, t) = uk(x, t) exp(ird), (1.424)

where k = 1, 2, r - wave number, r = 2𝜋∕L, L wave length.

The solution of the composite parts has the following form

uk(x, t) = Ak exp[i(pkx + 𝜔t)] + Bk exp[i(−pkx + 𝜔t)], (1.425)

where pk = 𝜔∕Ck, Ck =
√
Ek∕𝜌k, k = 1, 2.

Substituting Ansatz (1.425) into BCs (1.423), (1.424), one gets a system of four linear

homogenous algebraic equations regarding unknown coefficients Ak, Bk. Comparing to zero

the system determinant yields the following Equation [37], [206]

cos(rd) = cosΩ cos(Ωa) − b2 + 1

2b
sinΩ sin(Ωa), (1.426)

where Ω = 𝜔L1
C1

, a = L2C1
L1C2

, b =
√
E1𝜌1√
E2𝜌2

.

In Equation (1.426) parameter b presents a rotation of impedances of composite components,

whereas the parameter a stands for a time ratio associated with a wave transition.
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94 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Homogenized solution can be obtained from Equation (1.426) for small Ω and small wave

number rd (long-wave approximation), and it is assumed that parameters a and b are of order 1.
Developing the right- and left-hand sides of Equation (1.426) into a Maclaurin series, and

retaining only the first terms, we get

Ω = rd

[
(1 + a)2 + (b − 1)2a

b

]−1∕2
. (1.427)

In order to solve the transcendental Equations (1.426) one may apply perturbation method

different from the homogenization method. Let, for instance b = 1 + 𝜀, 𝜀 ≪ 1, then Equation

(1.426) can be cast into the form

cos(rd) = cos[Ω(1 + a)] − 𝜀1 sinΩ sin(Ωa), (1.428)

where 𝜀1 = 0, 5𝜀2∕(1 + 𝜀).
In zero order approximation we have

cos(rd) = cos[Ω(1 + a)],

and hence

Ω0 = (rd + 2𝜋k)∕(1 + a).

Representing further the solution of Equation (1.428) in the form

Ω = Ω0 + 𝜀1Ω1 +… ,

we get

Ω1 = −
sinΩ0 sin(Ω0a)
(1 + a) sin(rd)

.

In the case when neighborhood composite parts differ strongly with respect to stiffness, i.e.

b≪ 1, one may introduce a small parameter 𝜀2 = 1∕b, and hence Equation (1.426) can be

presented in the following form:

𝜀2 cos rd = 𝜀2 cosΩ cos(Ωa) − 1

2
(1 + 𝜀2

2
) sinΩ sin(Ωa). (1.429)

Possible simplification of Equation (1.429) may depend on an order of quantity a. If a ∼ 1,

then L1∕L2 ∼ 𝜀2 (length of one composite part is essentially less than the length of the second

one), then a solution to Equation (1.429) can be predicted in the following form:

Ω =
√
𝜀2Ω0 + 𝜀2Ω1 +… . (1.430)

Substituting series (1.430) into Equation (1.429) one gets (first approximation)

cos rd = 1 − 1

2𝜀2
sin(

√
𝜀2Ω0) sin(

√
𝜀2Ω0𝜏). (1.431)

Developing the r.h.s. of formula (1.431) into series regarding Ω0 and keeping terms of sec-

ond and fourth orders, one may approximate with relatively high accuracy a chain of two

periodically repeated masses coupled via the same springs [192].
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2
Computational Methods for
Plates and Beams with
Mixed Boundary Conditions

2.1 Introduction

2.1.1 Computational Methods of Plates with Mixed Boundary Conditions

A computation of static and dynamic behavior of plates can be reduced to that of integration

of biharmonic equations with various BCs [5], [39], [72], [78]–[82], [85]. It is also clear that

an exact solution to that problem may be obtained only in rare cases, when the occurred BCs

allow separating the spatial variables [75]–[77]. Otherwise, a problem under consideration

should be solved approximately, i.e. numerically in majority of the studied cases. Mostly, the

Rayleigh-Ritz, Kantorovich, Bubnov-Galerkin, and Trefftz approximation methods (or their

various modifications) are used. The mentioned methods have been successively applied for

many years to solve various practical problems. However, efficiency of variational approaches

goes down when one studies mixed BCs, since a proper choice of functions satisfying different

BCs on different parts of a supporting contour does not belong to easy tasks.

The Finite Element Method (FEM) is one of the most popular and efficient variants of the

Rayleigh-Ritz approach. It has been widely applied to real world problems in mechanical and

civil engineering and beyond. Nowadays we have a wide spectrum of various FEMs allowing

us to solve any practical problem. However, even this so deeply developed method possesses

its own drawbacks. Namely, it is rather difficult to estimate the error associated with FEM

application, in many cases a computational instability occurs in BCs; also the computational

process is usually time costly and is not directly oriented to the particular problem that is being

studied.

FEM allows us to solve some problems devoted to static and dynamic behavior of plates

with mixed BCs. However, the problem associated with the error estimation that has occurred

belongs to a separate one and requires an additional and separate study.

Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions, First Edition.
Igor V. Andrianov, Jan Awrejcewicz, Vladislav V. Danishevs’kyy, Andrey O. Ivankov.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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It should be emphasized that an interesting approximation method, devoted to computation

of plates with mixed BCs, has been proposed by V.A. Smirnov [72]. In this case a plate is

approximated via a set of coupled crossing beams. Moments on the simply supported beam

ends are equal to zero, whereas in the clamped beam parts the moment is unknown and is

defined by the method of forces. The problem has been studied in a matrix form. Vertical

displacements of beam on the contour equal zero. In the case of BCs change, a linear distribu-

tion of the boundary moment is assumed starting with zero (simple support) and ending on a

given value (clamping). This method has been also successively applied to solve the SSS and

eigenvalue problems of rectangular plates having mixed BCs of the form “clamping-simple

support.” However, in the case of another mixed BCs, a direct application of this method is

rather complicated. In addition, a direct application of this method to estimate the critical load

values regarding stability problems is still open.

There also exists the V.A. Rvachev R-function method [53]. The R-function method allows

us to calculate eigenfrequencies and eigenforms of either natural or forced plate vibrations,

the SSS, as well as buckling of a plate with arbitrary BCs. In spite of that, this method seems

not to be widely known to the western community.

Analysis of plates with complex boundary conditions can also be carried out by the method

proposed by V.V. Bolotin [11]–[15], [21]–[22], [23], [24], [34], [35], [50]. This method relies

on the introduction of two components of a solution being sought: one is associated with the

plate internal domain, whereas the second one plays the role of a correction term of a boundary

layer type being localized in the small plate contour neighborhood. However, an application

of this method is rather limited and can be only applied to dynamic problems. In the case of

stability problems this method yields rather high inaccuracy.

Mixed BVPs of plates can also be attacked through methods associated with the use of inte-

gral transformations. For instance, in the case of half-infinite plates with various variants of

mixed BCs Shvabyuk applied the method of infinite integral transformations to solve problems

related to SSS of plates; whereas problems of SSS and vibrations of half-infinite plates with

various variants of mixed BCs have been studied by Zorski [93], [94].

The method of integral equation also has a wide spectrum of application [83]. In this case a

solution is sought in the integral form being equivalent to the initial-boundary value problem.

The obtained integral equation is solved approximately. Then, the method has been developed

to that of boundary integral equations. The obtained integral equation is reduced to an integral

equation regarding plate contour, which allows us to reduce the dimension of the problem, and

it can be easily solved numerically. If one approximates the contour via finite elements, then

the problem reduces to one that can easily be solved by FEM.

Most reliable results devoted to solutions of mixed BVPs of plates have been obtained

through the method of multiple series (or multiple equations). The basic idea of the method

follows. A general solution of the governing equations is sought, including a set of constants.

On each separated part of the associated BVPs the constants are chosen in a way to satisfy

the BCs. Besides, if a solution is presented in the form of a Fourier series, then a number of

obtained different series overlaps with a number of BCs changes/variations. When a solution

is sought in the form of a Fourier integral, then a set of multiple integral equations is obtained.

Next, the obtained set of equations undergoes an action of a finite integral transformation

yielding eventually an infinite system of linear algebraic (integral) equations, which are then
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 107

solved through known procedures. The method described so far has been successfully applied

to problems of SSS and vibrations of plates with mixed BCs ([37], [78]–[82]), to stability

problems of three-layered plates with mixed BCs ([6]), and also to contact problems of theory

of elasticity and bending of plates ([4], [92]).

For periodically mixed BCs the homogenization approach can be used [56].

An important role in application to various real structures with complicated BCs is played by

plates with free edges and lying on an elastic foundation. B.G. Korenev proposed the method

of compensating loads for their computation [51]. Instead of a domain occupied by a plate

the more wide (for instance, a whole plane) with two introduced loads is determined. First

one (fundamental) corresponds to that of the really acting load, whereas the second (compen-

sating) is chosen in a way to satisfy BCs on the plate contour. A solution governing infinite

plate behavior under the action of the first load is called the fundamental solution, whereas

the second is referred to as the compensating solution. A sum of solutions should satisfy the

differential equation and all BCs. In the general case, in order to define the compensating load,

a Fredholm integral equation is obtained. For many problems they can be reduced to a system

of LAEs. Other solution methods of plates with mixed BCs are analysed in [19], [33], [36],

[42], [45], [54], [57], [58], [59], [61], [70], [71], [73], [88], [91].

2.1.2 Method of Boundary Conditions Perturbation

The numerical and semi-analytical methods presented so far are oriented on application of

nowadays computational tools. However, their direct application to optimal design of struc-

tures is costly computation. Therefore, an important role in application is still played by the

development of approximate analytical methods devoted to computations of plates with com-

plicated BCs, allowing for getting simple and clear formulas, necessary for practical engineer-

ing computations with an emphasis on investigation of various factors (geometric and stiffness

characteristics, support conditions, etc.) on the structure behavior.

One of the possible approaches, directed to the solution of this problem, is an application of

the of perturbation of BCs. This method proposed by Dorodnitsin ([32]) may be treated as a

novel variant of the perturbation method. In what follows we briefly describe this approach.

Consider a BVP, governed by the DE

L(U) = 0 (2.1)

and BCs

D(U) = 0 on 𝜕G, (2.2)

where L(U) and D(U) are certain differential operators, and

D(U) = D0(U) + 𝜀D1(U).

Parameter 𝜀 is introduced initially or in a way to simplify the operator D0(U). If the BVP

L(U) = 0, D0(U) = 0 on 𝜕G (2.3)
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108 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

is easily solved, then a solution for perturbed BCs can be sought in the form of a PSwith respect

to 𝜀. In the final formula 𝜀 = 1 should be taken. Let us note that the method so far described
and applied has been revised recently and is referred to as the HPM (see Chapter 1.2.2).

So, it is necessary to consider PS regarding 𝜀 = 1. As a rule they are divergent, which is man-
ifested by the occurrence of poles in the circle of r ≤ |1|. In order to overcome this drawback

A.A. Dorodnitsyn proposed to use analytical continuation ([32]). The analytical continuation
([52], [66]) allows us to solve two fundamental problems: first, singular points of the function

using their approximation in powers of 𝜀 are detected; second, computation of function values
in an arbitrary point of the interval 0 ≤ 𝜀 ≤ 1 is carried out. Unfortunately, no progress has

been made in that direction so far. A reason is mainly motivated by the fact that in order to
detect singular points it is necessary to get higher order terms of PS. In real problems it is

impossible. On the other hand, without the exact poles determining standard methods of the
parameter change during an analytical continuation procedure will fail.

Sometimes, the information regarding location of poles of a function being sought can be
achieved via coefficients of the differential operator L(U) associated with a studied BVP. How-
ever, it should be underlined that the quoted goals in the case of civil engineering have not been
achieved.

In what follows we demonstrate how to increase efficiency of the continuation procedure.
Let us consider BCs (2.2) in the following modified form:

D0(U) + [D(U) − D0(U)] = 0 on 𝜕G. (2.4)

Let us introduce the following new parameter 𝜀1 :

D0(U) + 𝜀1[𝛼D(U) − D0(U)] = 0 on 𝜕G, (2.5)

where 𝛼 is a constant different from zero. BCs (2.4) and (2.5) allow us to obtain a link between

parameters 𝜀 and 𝜀1:

𝜀 =
𝛼𝜀1

1 − (1 − 𝛼)𝜀1
. (2.6)

Function (2.6) transforms a circle of unit radius of the plane 𝜀1 into a circle of radius 1∕(2 −
𝜀) with its center at ((1 − 𝛼)∕(2 − 𝛼); 0) of the plane 𝜀. Therefore, if a solution to the BVP

(2.1), (2.4) does not possess singularities inside the circle in point (0.5; 0) of the plane 𝜀, and
the radius larger then 0.5 + 𝛿, where 𝛿 is an arbitrarily small positive number, then for sufficient

small 𝛼 > 0, a solution to the BVP with BCs (2.4) will be analytical regarding 𝜀1 for 𝜀 ≤ 1.
This is particularly the case for the well known Euler summation method (see Section 1.3.1).

The discussed variant of the BCs perturbation has been applied in [66] for solutions devoted

to the dynamics of viscous fluids.
A more general form can be obtained assuming 𝛼 depending on 𝜀1:

𝜀 =
𝛼(𝜀1)𝜀1

1 − 𝜀1[1 − 𝛼(𝜀1)]
or 𝜀 =

𝛼𝜎(P)𝜀1
1 − 𝜀1[1 − 𝛼𝜎(P)]

,

where 𝜎(P) is an arbitrary strongly positive function defined on the boundary 𝜕G.
Unfortunately, a question regarding the proper choice of a coefficient 𝛼 or the function 𝛼(𝜀1)

and 𝜎(P) remains open for many real problems. This is why an analytical continuation does
not guarantee an increase of the velocity convergence of a PS and does not remove the problem

related to the construction of the high order approximations.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 109

2.2 Natural Vibrations of Beams and Plates

2.2.1 Natural Vibrations of a Clamped Beam

Consider the problem having the exact solution. Namely, we are going to determine eigenfre-

quencies and the eigenforms of a clamped beam of the length l. The basic DE is

EIzxxxx + 𝜌ztt = 0, (2.7)

where EI denotes beam bending stiffness, 𝜌 is the mass per unit beam length, x is the spatial
coordinate, E is the Young modulus, I is the moment of inertia, −l∕2 ≤ x ≤ l∕2.
Let us introduce the following nondimensional coordinate:

x = x∕l. (2.8)

Equation (2.7) takes the form:

zxxxx +
𝜌l4

EI
ztt = 0. (2.9)

A solution to Equation (2.9) is sought through the variable separation of the form:

z = W(x)T(t). (2.10)

After substitution Ansatz (2.10) into Equation (2.9) the following equations are obtained:

Ṫ + 𝜃2T = 0, (2.11)

WIV − 𝜆W = 0, (2.12)

where 𝜃2 is the circular frequency of the beam transversal vibrations, whereas 𝜆 = 𝜌𝜃2l4(EI)−1
is the corresponding eigenvalue.

Solution to Equation (2.11) follows:

T(t) = C1 sin 𝜃t + C2 cos 𝜃t, (2.13)

where C1,C2 = const.
In order to obtain an eigenavalue problem we add to the Equation (2.12) the following BCs:

W = 0, W′ = 0 for x = ±1∕2. (2.14)

Let us introduce the parameter 𝜀 to the BCs (2.14) in such a way that for 𝜀 = 0 one gets a

simple support, and for 𝜀 = 1 the clamped beam:

W = 0, (1 − 𝜀)W′′ ± 𝜀W′ = 0 for x + ±1∕2. (2.15)

For the remaining values of 𝜀 (0 < 𝜀 < 1) we apply conditions of elastic support with the

elasticity coefficient 𝜀∕(1 − 𝜀).
The mode W and the associated eigenvalue 𝜆 can be cast in the PS:

W =
∞∑
i=0

Wi𝜀
i, 𝜆 =

∞∑
i=0

𝜆i𝜀
i. (2.16)
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110 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

We substitute Ansatzes (2.16) into Equation (2.12) and BCs (2.15). The following recurrent

sequence of successive BVPs is obtained after splitting with respect to powers of 𝜀

WIV
0

− 𝜆0W0 = 0,

W0 = 0, W′′
0

for x = ±1∕2,

WIV
i − 𝜆0Wi =

i∑
j=1

𝜆iWi−j,

Wi = 0, W′′
i = ±

i−1∑
j=0

W′
j for x = ±1∕2, i = 1, 2, 3,… .

Solution to the zeroth order approximation is as follows:

𝜆0 = 𝜋4n4, n = 1, 2, 3,… , (2.17)

W0 = C

{
cos𝜋nx, n = 1, 3, 5,…
sin𝜋nx, n = 2, 4, 6,…

}
. (2.18)

Let us consider the BVP of the first order approximation:

WIV
1

− 𝜆0W1 = 𝜆1C

{
cos𝜋nx, n = 1, 3, 5,…
sin𝜋nx, n = 2, 4, 6,…

}
, (2.19)

W1 = 0, W′′
1
= ±C𝜋n

{
−(−1)(n−1)∕2

(−1)n∕2
}

for x = ±1∕2. (2.20)

We rely on the observation that we cannot satisfy all BCs for arbitrary values of 𝜆1. This

drawback can be removed by adding certain conditions, which can be constructed following

the way reported in monograph [27].

Let us multiply Equation (2.19) by the further defined function u(x), called the adjoint solu-
tion. Integration by parts from −1∕2 to 1∕2 yields

∫
1∕2

−1∕2
W1(uIV − 𝜆0u)dx + (uW′′′

1
− u′W′′

1
+ u′′W′

1
− u′′′W1)|1∕2−1∕2 = (2.21)

𝜆1 ∫
1∕2

−1∕2
W0udx.

We require that the integrand expression standing on the l.h.s. of Equation (2.21) will be

equal to zero,

uIV − 𝜆0u = 0. (2.22)

Since both 𝑤′′′
1

and 𝑤′
1
are unknown, we get

uW′′′
1

||||1∕2−1∕2
+ u′′W′

1

||||1∕2−1∕2
= 0. (2.23)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 111

Relation (2.23) can be satisfied if the coefficients standing byW′′′
1

andW′
1
are equal to zero.

BCs for u are as follows:

u = 0, u′′ = 0 for x = ±1∕2. (2.24)

Therefore, the function u represents the solution of the BVP for Equation (2.22) and BCs
(2.24). The given BVP with the accuracy of the assumed order coincides with the problem
of zeroth order approximation. Therefore, u = W0, and Equation (2.21) takes the following
form:

−W′
0
W′′

1

||||1∕2−1∕2
= 𝜆1 ∫

1∕2

−1∕2
W2

0
dx. (2.25)

This yields the first correction term to the eigenvalue:

𝜆1 = −
W′

0
W′′

1

||||1∕2−1∕2

∫ 1∕2
−1∕2W

2
0
dx

= 4𝜋2n2. (2.26)

Let us define the first order correcting term to the vibration mode:

W1 =
C
𝜋n

⎧⎪⎨⎪⎩
(−1)(n−1)∕2
2ch(𝜋n∕2) cosh𝜋nx − x sin𝜋nx, n = 1, 3, 5,…

−(−1)n∕2
2sh(𝜋n∕2) sinh𝜋nx + x cos𝜋nx, n = 2, 4, 6,…

⎫⎪⎬⎪⎭ . (2.27)

FunctionW1 is defined with accuracy up to functions (2.18), but this additional term can be
removed because it has already been included in the zeroth order approximation.
Analogously are defined 𝜆2 and W2. The eigenvalue approximation truncated to three first

terms has the following form:

𝜆 = 𝜋4n4 + 4𝜋2n2𝜀 + 4𝜋n

[
𝜋n − 1

2

(
coth

𝜋n
2

)(−1)n
− 1

2𝜋n

]
𝜀2 +… . (2.28)

Eigenmode W can be rewritten in the following form:

W = C

{
cos𝜋nx
sin𝜋nx

}
+ C

𝜋n

⎧⎪⎨⎪⎩
(−1)(n−1)∕2
2 cosh(𝜋n∕2) cosh𝜋nx − x sin𝜋nx

−(−1)n∕2
2 sinh(𝜋n∕2) sinh𝜋nx + x cos𝜋nx

⎫⎪⎬⎪⎭ 𝜀 +

⎡⎢⎢⎢⎣
(−1)n+1C
2𝜋2n2

⎧⎪⎨⎪⎩
(−1)(n−1)∕2
cosh(𝜋n∕2)

(−1)n∕2
sinh(𝜋n∕2)

⎫⎪⎬⎪⎭
([

𝜋n −
(
coth

𝜋n
2

)(−1)n
− 1

𝜋n

]{
cosh𝜋nx
sinh𝜋nx

}
+

x

{
sinh𝜋nx
cosh𝜋nx

})
− (−1)n+1C

𝜋2n2

[
𝜋n − 1

2

(
coth

𝜋n
2

)(−1)n
− 1

𝜋n

]
x

{
sin𝜋nx
cos𝜋nx

}
−

C
𝜋2n2

x

{
cos𝜋nx
sin𝜋nx

}]
𝜀2 + … ,

{
n = 1, 3, 5,…
n = 2, 4, 6,…

}
. (2.29)
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112 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

The obtained truncated PS (2.28) can be transformed to the following diagonal PA:

𝜆[1∕1](𝜀) =
a0 + a1𝜀

1 + b1𝜀
, (2.30)

where a0 = 𝜆0, a1 = 𝜆1 + b1𝜆0, b1 = −𝜆2∕𝜆1.
In what follows we are going to estimate an error associated with definition of eigenvalues 𝜆.

Since it is mainly influenced by BCs its main part is represented by the first eigenvalue of the

BVP (2.12)-(2.14). Solution to Equation (2.12) for symmetric modes is as follows

W = C1 cos 2𝛼x + C2 cosh 2𝛼x, 𝛼 = (1∕2)(𝜆)1∕4. (2.31)

Satisfaction of BCs (2.15) yields the following transcendental equation with respect to 𝛼:

4(1 − 𝜀)𝛼 cosh 𝛼 cos 𝛼 + 𝜀(cosh 𝛼 sin 𝛼 + cos 𝛼 sinh 𝛼) = 0. (2.32)

Numerical solution to Equation (2.32) for 𝜀 = 1 gives the value of 𝜆 = (1.5056𝜋)4, truncated
PS (2.28) - 𝜆 = (1.1542𝜋)4 (error of 23%), PA (2.30) - 𝜆 = (1.5139𝜋)4 (error of 0.58%).

Dependence of the first eigenvalue versus 𝜀 is reported in Figure 2.1. Curves 1, 2, 3 are

obtained with the help of the truncated PS (2.28), PA (2.30) and numerical solution to tran-

scendental Equation (2.32), respectively.

It is evident that results associated with getting the first eigenvalue of the BVP (2.12), (2.15)

obtained through PA practically coincide with the exact solution for all values of the parameter

𝜀, whereas the truncated series reliable results only up to 𝜀 = 0.4.

In Figure 2.2 the change of the relative error in estimation of the first five 15 eigenvalues is

reported. Curve 1 corresponds to results obtained via the truncated PS part, whereas curve 2

is associated with results obtained by the PA.

Since for low frequencies a difference between the truncated PS and the PA is sufficiently

large, then it is advised to focus on the results obtained via the PA. For higher frequencies

(n > 10) the error associated with frequencies definition is less than 5% and it decreases with

1.5

1.4

1.3

λ/
π

1.2

2
1
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Figure 2.1 Comparison of efficiency of different methods of determination of eigenvalues
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Figure 2.2 Comparison of efficiency of PA and truncated PS for first 15 modes of natural beam
vibrations

increase of the wave number. Besides, in the case of high valued frequencies estimation one

may get the upper (PA) and lower (truncated PS) values. Those estimations are of higher accu-

racy for higher frequencies.

Besides the numerical solution there exists a possibility of introduction of asymptotic sim-

plification of the transcendental equation for determination of the eigenvalues. Let us represent

𝛼 in the form PS:

𝛼 = 1

2

∞∑
i=0

𝛼i𝜀
i. (2.33)

Substituting Ansatz (2.33) into Equation (2.32) and splitting with respect to powers of 𝜀, the

following system of transcendental equations is obtained

4𝛼0 cos 𝛼0 cosh 𝛼0 = 0, (2.34)

4𝛼1 cos 𝛼0 cosh 𝛼0 + 4𝛼1𝛼0(cos 𝛼0 sinh 𝛼1 − sin 𝛼0 cosh 𝛼0)−

4𝛼0 cos 𝛼0 cosh 𝛼0 + sin 𝛼0 cosh 𝛼0 + cos 𝛼0 sinh 𝛼0 = 0,
(2.35)

2
{
4𝛼2 cos 𝛼0 + 𝛼2

1
(cos 𝛼0 sinh 𝛼0 − sin 𝛼0 cosh 𝛼0) + 2𝛼0

[(
𝛼2 sinh

𝛼0

2
+

𝛼2
1

2
cosh 𝛼0

)
cos 𝛼0 − 𝛼2

1
sin 𝛼0 sinh 𝛼0 −

(
𝛼2 sinh 𝛼0 +

𝛼2
1

2
cosh 𝛼0

)
cosh 𝛼0

]}
− (2.36)

4[𝛼1 cos 𝛼0 cosh 𝛼0 + 𝛼0𝛼1(cos 𝛼0 sinh 𝛼0 − sin 𝛼0 cosh 𝛼0)] = 0.

Equation (2.34) yields

cos 𝛼0 = 0, 𝛼0 = 2𝜋n, n = 1, 3, 5,… .
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114 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Furthermore, Equations (2.35), (2.36) give

𝛼1 =
2

𝜋n
, (2.37)

𝛼2 =
2

𝜋n

(
1 − 1

2𝜋n
tanh

𝜋n
2

− 1

𝜋2n2

)
. (2.38)

Analogously, are constructed transcendental equations regarding antisymmetric modes, and

finally we get

𝛼 = 𝜋n + 1

𝜋n
𝜀 + 1

𝜋n

[
1 − 1

2𝜋n

(
coth

𝜋n
2

)(−1)n
− 1

𝜋2n2

]
𝜀2 + … , n = 1, 3, 5,… . (2.39)

Note that the truncated PS in Equation (2.39) is a fourth root from expression (2.28).

While constructing vibration modes we find 𝛼 for 𝜀 = 1; in addition we carry out the recon-

struction of the truncated PS into PA according to formula (2.30). Computational results are

given in Figures 2.3 and 2.4. Curve 1 corresponds to W0, curve 2 −W1, curve 3 −W2, curve

4 −W0 +W1 +W2, curve 5 − PA, curve 6 − exact solution.

2.2.2 Natural Vibration of a Beam with Free Ends

In what follows we study natural vibrations of a beam with free ends governed by the follow-

ing DE:

WIV − 𝜆W = 0.

BCs follow

W′′ = 0, W′′′ = 0 for x = ±1∕2. (2.40)

1.0
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Figure 2.3 First symmetric vibration mode
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 115

1.0

0.8

W

1

4

5

6

2

3

0.6

0.4

0.2

0

0.1 0.2 0.3

X

0.4 0.5

Figure 2.4 First antisymmetric vibration mode

In the rewritten form BCs are

W′′′ = 0, (1 − 𝜀)W′ ± 𝜀W′′ = 0 for x = ±1∕2. (2.41)

Eigenmodes W and eigenvalue 𝜆 can be presented as PS (2.16). Substituting PS (2.16)
into Equation (2.12) and BCs (2.41), after splitting with regard to 𝜀, the following recurrent
sequence of BVPs is obtained:

WIV
0

− 𝜆0W0 = 0,

W′′′
0

= 0, W′
0
= 0 for x = ±1∕2,

WIV
i − 𝜆0Wi =

i∑
j=1

𝜆iWi−j,

W′′′
i = 0, W′

i = ±
i−1∑
j=0

W′′
j for x = ±1∕2, i = 1, 2, 3,… .

Solution of the zeroth order approximation follows:

𝜆0 = 𝜋4n4, n = 2, 3, 4,… , (2.42)

W0 = C

{
cos𝜋nx, n = 2, 4, 6,…
sin𝜋nx, n = 3, 5, 7,..

}
. (2.43)

Eigenform with number n = 1 should be rejected, since this case corresponds to a kinemat-
ically modified structure.
After defining of W0, the BVP of the first approximation has the following form:

WIV
1

− 𝜆0W1 = 𝜆1C

{
cos𝜋nx, n = 2, 4, 6,…
sin𝜋nx, n = 3, 5, 7,..

}
, (2.44)
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116 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

W′′′
1

= 0, W′
1
= ±C𝜋2n2

{
(−1)n∕2
(−1)(n−1)∕2

}
for x = ±1∕2. (2.45)

The solvability conditions yield

−W′
0
W′′

1

|||1∕2−1∕2
= 𝜆1 ∫

1∕2

−1∕2
W2

0
dx. (2.46)

The first correction term of the eigenavalue follows:

𝜆1 = −4𝜋4n4, (2.47)

whereas the first correction form of the vibration mode is

W1 = C𝜋n

⎧⎪⎪⎨⎪⎪⎩
(−1)n∕2
2 sinh

𝜋n
2

cosh𝜋nx + x sin𝜋nx, n = 2, 4, 6,…

(−1)(n−1)∕2
2 cosh

𝜋n
2

sinh𝜋nx − x cos𝜋nx, n = 3, 5, 7,…

⎫⎪⎪⎬⎪⎪⎭
. (2.48)

Here the zeroth order component in the expression for 𝑤1 should be rejected.

In an analogous way a second order correction term of the eigenvalue 𝜆2 is constructed, and

finally we get

𝜆 = 𝜋4n4 − 4𝜋4n4𝜀 + 2𝜋4n4(3 + 𝜋nCtanh(−1)
n
0.5𝜋n)𝜀2 + … . (2.49)

Note that for the truncated series (2.49) the PA takes the form (2.30). In order to compare the

results obtained via the truncated series and PA we use a transcendental equation. We take a

symmetric mode like that governed by Equation (2.31). Satisfaction of the BCs (2.41) reduces

the problem to the following transcendental equation:

2(1 − 𝜀) sinh 𝛼 sin 𝛼 + 𝜀𝜆(cosh 𝛼 sin 𝛼 + cos 𝛼 sinh 𝛼) = 0. (2.50)

The first root of the transcendental Equation (2.50) for 𝜀 = 1 gives the eigen-

value 𝜆 = (1.5056𝜋)4. Truncated PS (2.49) for n = 2 gives the value 𝜆 = (3.9696𝜋)4
(error − 163.54%), PA (2.30) for n = 2 gives 𝜆 = (1.4670𝜋)4 (error − 2.56%).
In Figure 2.5 the dependence of the first eigenvalue versus 𝜀 is reported.

The following notation is applied: curve 1 − truncated PS (2.49), curve 2 − PA (2.30), curve

3 − numerical solution. It is clear, that the first eigenvalue of the BVP (2.12), (2.41) that is

obtained with a help of PA coincides with the exact solution for all values of the parameter

𝜀 ≤ 1. At the same time threshold for truncated series 𝜀 < 0.05.

In Figure 2.6 is shown the change of relative error regarding the first fifteenth eigenvalues.

Curve 1 − truncated series (2.49), curve 2 − zero approximation (2.42), curve 3 − PA (2.30).

Onemay get an upper (truncated PS) and low (PA) error estimations for the eigenvalues associ-

ated with this problem. However, it should be emphasized that the first and second term of the

truncated PS (2.49) exceed zero term with respect to their module, therefore numerical results

obtained with a help of the truncated PS essentially differ from exact values of the eigenvalues.

This difference may increase with the increase of eigenvalue number; therefore only the zeroth
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Figure 2.5 Dependence of first eigenvalue of the symmetric vibration mode on 𝜀
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Figure 2.6 Relative errors in definition of first fifteenth eigenvalues for a symmetric vibration form
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118 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

order term should be kept in order to get the efficient upper estimation in the series part for 𝜆
in formula (2.49).
Let us construct an analytical solution of the transcendental equation (2.50). We assume for

𝛼 the PS (2.33). Substituting Ansatz (2.33) to Equation (2.50) and splitting it regarding 𝜀, the
following recurrent system of transcendental equations is obtained:

2 sin 𝛼0 sinh 𝛼0 = 0, (2.51)

2𝛼1(cosh 𝛼0 sin 𝛼0 + sinh 𝛼0 cos 𝛼0) − 2 sinh 𝛼0 sin 𝛼0 +

2𝜆0(cos 𝛼0 sinh 𝛼0 + sin 𝛼0 cosh 𝛼0) = 0,
(2.52)

2[𝛼2(cosh 𝛼0 sin 𝛼0 + sinh 𝛼0 cos 𝛼0) + 𝛼2
1
cosh 𝛼0 cos 𝛼0] −

2𝛼1(cosh 𝛼0 sin 𝛼0 + sinh 𝛼0 cos 𝛼0) + 4𝛼0𝛼1 cosh 𝛼0 cos 𝛼0 + (2.53)

2𝛼1(sinh 𝛼0 cos 𝛼0 + cosh 𝛼0 sin 𝛼0) = 0.

Equation (2.51) yields
𝛼0 = 2𝜋n, n = 2, 4, 6,… . (2.54)

Furthermore, Equations (2.52) and (2.53) allow us finally to get

𝛼1 = −2𝜋n, (2.55)

𝛼2 = 𝜋2n2 coth 0.5𝜋n. (2.56)

The final 𝛼 form follows:

𝛼 = 𝜋n − 𝜋n𝜀 + 𝜋2n2

2
coth(−1)

n 𝜋n
2
𝜀2 + …. (2.57)

2.2.3 Natural Vibrations of a Clamped Rectangular Plate

In this section we are aiming at generalization of the method so far proposed for the two-
dimensional BVPs. As an example we consider the natural vibrations of a rectangular plate
clamped on its contour (−0.5a ≤ x ≤ 0.55a,−0.5b ≤ y ≤ b). The governing equation is

D∇4W + 𝜌Wtt = 0, (2.58)

where D = Eh3∕[12(1 − 𝜈2)]; 𝜌 is the plate mass per its unit; x, y are the spatial variables; 𝜈 is
the Poissons ratio; ∇2 = 𝜕2∕𝜕x2 + 𝜕2∕𝜕y2.
Let us introduce the following notations:

y = y∕b, x = x∕b, k = a∕b. (2.59)

After substitution of variables (2.59) into Equation (2.58) we get

∇4W + 𝜌b4

D
Wtt = 0. (2.60)

A solution to Equation (2.60) is sought in the following form:

W = W(x, y) ⋅ T(t). (2.61)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 119

After substitution of Ansatz (2.61) into Equation (2.58) we get

T ′′(t) + 𝜃2T = 0, (2.62)

∇4W − 𝜆W = 0. (2.63)

where 𝜃 is the circular frequency of transversal plate vibrations, and 𝜆 = 𝜌𝜃2b4D−1 is its eigen-
value.

In order to get the eigenvalue problem, we attach the following BCs to Equation (2.63):

W = 0, Wx = 0 for x = ±0.5k, (2.64)

W = 0, Wy = 0 for y = ±0.5. (2.65)

BCs (2.64), (2.65) are introduced via 𝜀 in the following form:

W = 0, (1 − 𝜀)Wxx ± 𝜀kWx = 0 for x = ±0.5k, (2.66)

W = 0, (1 − 𝜀)Wyy ± 𝜀Wy = 0 for y = ±0.5. (2.67)

For 𝜀 = 0 one obtains a simply supported plate, whereas for 𝜀 = 1 one obtains BCs (2.66),

(2.67).

Further, we represent an eigenvalue 𝜆 and eigenform W in the form of PS (2.16). The fol-

lowing recurrent system of the BVPs is obtained by substituting PS (2.16) into Equation (2.63)

and into BCs (2.66), (2.67), after splitting regarding 𝜀:

∇4W0 − 𝜆0W0 = 0,

W0 = 0, W0xx = 0 for x = ±0.5k,

W0 = 0, W0yy = 0 for y = ±0.5,

∇4Wj − 𝜆0Wj =
j∑
i=1

𝜆iWj−i,

Wj = 0, Wjxx = ∓k
j−1∑
i=0

Wix for x = ±0.5k,

Wj = 0, Wjyy = ∓
j−1∑
i=0

Wiy for y = ±0.5.

In what follows we present the construction of eigenvalues and modes for the case, where a

symmetry in directions of x and y is exhibited by eigenforms.

In zeroth order approximation we have

𝜆0 = 𝜋4

(
m2

k2
+ n2

)2

, n,m = 1, 3, 5,… , (2.68)

W0 = c cos
nm
k
x cos𝜋ny. (2.69)
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120 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

The problem regarding first order approximation can be rewritten in the form:

∇4W1 − 𝜆0W1 = 𝜆1 cos
nm
k
x cos𝜋ny, (2.70)

W1 = 0, W1xx = ±𝜋m(−1)
m−1
2 cos𝜋ny for x = ±0.5k, (2.71)

W1 = 0, W1yy = ±𝜋n(−1)
n−1
2 cos

𝜋m
k
x for y = ±0.5. (2.72)

A solution is sought by the method of variable separation assuming the function W1 in the
form:

W1 = Y1y cos
𝜋m
k
x + X1x cos𝜋ny. (2.73)

Eigenvalue 𝜆1 can be presented as the following sum:

𝜆1 = 𝜆1x + 𝜆1y. (2.74)

After substitution of Ansatzes (2.73) and (2.74) into Equation (2.70) and BCs (2.71)–(2.72),
the two following BVPs are obtained:

YIV
1

− 2𝜋2m2

k2
YII
1
− 𝜋4n2

(
2
m2

k2
+ n2

)
Y1 = 𝜆1y cos𝜋ny, (2.75)

Y1 = 0, YII
1
= ±𝜋n(−1)

n−1
2 for y = ±0.5, (2.76)

XIV
1

− 2𝜋2n2XII
1
− 𝜋4m2

k2

(
m2

k2
+ 2n2

)
X1 = 𝜆1x cos

𝜋m
k
x, (2.77)

X1 = 0, XII
1
= ±𝜋m(−1)

m−1
2 for x = ±0.5k. (2.78)

We present a construction of solvability conditions regarding the BVP (2.75), (2.76). Mul-
tiplying Equation (2.75) by a function u(y), to be defined later, and integration with respect to
y from −0.5 to 0.5 yields

∫
0.5

−0.5
u(y)

[
YIV
1

− 2
𝜋2m2

k2
YII
1
− 𝜋4n2

(
2
m2

k2
+ n2

)
Y1

]
dy =

𝜆1y ∫
0.5

−0.5
u(y) cos 𝜋nydy.

(2.79)

Integration of Equation (2.79) by parts gives

∫
0.5

−0.5
Y1

[
uIV (y) − 2

𝜋2m2

k2
uII(y) − 𝜋4n2

(
2
m2

k2
+ n2

)
u(y)

]
dy +

u(y)YIII
1

|0.5−0.5 − uI(y)YII
1
|0.5−0.5 + uII(y)YI

1
|0.5−0.5 − uIII(y)Y1|0.5−0.5 − (2.80)

2
𝜋2m2

k2
(
u(y)YI

1
|0.5−0.5 − uI(y)Y1|0.5−0.5

)
= 𝜆1y ∫

0.5

−0.5
u(y) cos 𝜋nydy.

Comparison to zero of the integrand expression in the l.h.s. of Equation (2.80) gives the
following equation with respect to u(y):

uIV (y) − 2
𝜋2m2

k2
uII(y) − 𝜋4n2

(
2
m2

k2
+ n2

)
u(y) = 0. (2.81)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 121

The following condition should be satisfied:

u(y)
[
YIII
1

− 2
𝜋2m2

k2
YI
1

] |0.5−0.5 + uII(y)YI
1
|0.5−0.5 = 0. (2.82)

Equation (2.82) is satisfied when the coefficients standing by YI
1
and YII

1
are equal to zero, i.e.

u(y) = 0, uII(y) = 0 for y = ±0.5. (2.83)

The general solution to Equation (2.82) follows:

u(y) = c1 cosh 𝜋

√
2
m2

k2
+ n2y + c2 cos 𝜋ny. (2.84)

BCs (2.83) are satisfied by the second term, and hence:

u(y) = c2 cos𝜋ny. (2.85)

Equation (2.80) yields the following solvability condition:

𝜆1y = 4𝜋2n2. (2.86)

We define also Y1, namely:

Y1 =
n
𝜋𝛼

[
(−1)

n−1
2

2 cosh
𝜋

2
𝛽1

cosh𝜋𝛽1y − y sin 𝜋ny

]
, (2.87)

where 𝛼 = n2 + m2

k2
; 𝛽1 =

√
2
m2

k2
+ n2, n = 1, 3, 5,… .

BVP (2.77), (2.78) is solved in the analogous way, and we get

𝜆1x = 4𝜋2m2

k2
, (2.88)

X1 =
m∕k
𝜋𝛼

[
k(−1)

m−1
2

2 cosh
𝜋

2
𝛽2

cosh𝜋𝛽2x − x sin
𝜋m
k
x

]
. (2.89)

where 𝛽2 =
√

m2

k2
+ 2n2, m = 1, 3, 5,… .

The first correction term of the eigenvalue 𝜆1 and of the eigenmode W1 regarding the sym-
metric form is

𝜆1 = 4𝜋2𝛼, (2.90)

W1 =
1

𝜋𝛼

{
n

[
(−1)

n−1
2

2 cosh
𝜋

2
𝛽1

cosh 𝜋𝛽1y − y sin𝜋ny

]
cos

𝜋m
k

+

m
k

[
k(−1)

m−1
2

2 cosh
𝜋

2k
𝛽2

cosh 𝜋𝛽2x − x sin
𝜋m
k
x

]
cos𝜋ny

}
, (2.91)

n,m = 1, 3, 5,…
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122 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

We define in a similar way also 𝜆2. Truncated PS for the egenvalue reads

𝜆 = 𝜋4𝛼2 + 4𝜋2𝛼𝜀 + 4𝜋

⎧⎪⎨⎪⎩𝜋𝛼 + 2
n2 m

2

k2

𝜋𝛼2
− 1

2𝜋
−

1

2𝛼

(
k
m2

k2
𝛽1coth

(−1)n 𝜋

2k
𝛽1 + n2𝛽2coth

(−1)n 𝜋

2
𝛽2

)⎫⎪⎬⎪⎭ 𝜀2 + … , (2.92)

n,m = 1, 3, 5,… .

Then, the truncated PS is transformed into the PA (2.30).

Let us now compare results obtained using the truncated PS (2.92) and PA (2.30) with the

numerical solution [39] for the first eigenvalue 𝜆1. For the rectangular plate (for n = m = 1)

the numerical method yields 𝜆(1) = (1.9093𝜋)4, whereas the truncated PS (2.92) gives

𝜆(1) = (1.5351𝜋)4 (difference of 19.61%), the PA (2.30) gives the value 𝜆(1) = (1.9142𝜋)4
(difference of 0.26%).
In Figure 2.7 the dependence of the first eigenvalue of the studied problem 𝜆(1) versus 𝜀 for

the truncated PS (2.92) (curve 1) and PA (2.30) (curve 2) are reported. It is clear that a threshold

value of 𝜀, for which a difference between results obtained via the PA and truncated PS will

be within 5% (𝜀 = 0.4). For 𝜀 = 1 results obtained with a help of truncated PS (2.92) are far

from the numerically obtained values, and they can be used for the eigenvalue estimation from

below. Although results obtained through the PA are located higher than those of numerical

solution, they can be used for all values of the parameter 0 ≤ 𝜀 ≤ 1.
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1.5
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ε
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Figure 2.7 First eigenvalue of the square clamped plate
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 123

2.2.4 Natural Vibrations of the Orthotropic Plate with Free Edges Lying
on an Elastic Foundation

We consider the problem of free vibrations of the lying on the elastic Winkler-Fuss foundation
orthotropic rectangular plate (−a∕2 ≤ x ≤ a∕2; −b∕2 ≤ y ≤ b∕2).
PDE governing behavior of free vibrations of the orthotropic plate follows:

D1Wxxxx + 2D3Wxxyy + D2Wyyyy + 𝜌Wtt + CW = 0, (2.93)

where D1 = E1h
3∕(12(1 − 𝜈1𝜈2)), D2 = E2h

3∕(12(1 − 𝜈1𝜈2)), D3 = D1𝜈2 + Gh3∕6, C is the
elastic foundation coefficient; D1, D2 are the cylindrical stiffness in directions x and y,
respectively; D3 is the rotational stiffness; E1, E2 are the elasticity modulus in directions x
and y, respectively; G - shear modulus; 𝜈1, 𝜈2 are the Poisson’s ratios in directions of x and y,
respectively.
After separation of time and spatial variables (2.61), and introduction of the non-dimensional

variables (2.59), Equation (2.93) can be rewritten in the following form:

Wxxxx + 2𝛼3Wxxyy + 𝛼2Wyyyy − 𝜆W = 0, (2.94)

where 𝛼3 = D3∕D1, 𝛼2 = D2∕D1, 𝜆1 = (b4(m𝜃2 − c))∕D1.
Let us add the following BCs to the Equation (2.94):

Wxxx + (2 − 𝜈1)Wyyx = 0,

(1 − 𝜀)Wx ∓ k𝜀(Wxx + 𝜈1Wyy) = 0 for x = ±0.5k,
(2.95)

Wyyy + (2 − 𝜈2)Wxxy = 0,

(1 − 𝜀)Wy ∓ 𝜀(Wyy + 𝜈2Wxx) = 0 for y = ±0.5.
(2.96)

Eigenvalues and eigenforms are represented in the form of PS (2.16). Substituting these
series into Equation (2.94) and BCs (2.95)–(2.96), and splitting with respect to 𝜀, the following
recurrent sequence of BVPs is obtained:

W0xxxx + 2𝛼3W0xxyy + 𝛼2W0yyyy − 𝜆0W0 = 0,

W0x = 0, W0xxx = 0 for x = ±0.5k,

W0y = 0, W0yyy = 0 for y = ±0.5,

Wjxxxx + 2𝛼3Wjxxyy + 𝛼2Wjyyyy − 𝜆0Wj =
j∑
i=1

𝜆iWj−i,

Wjxxx + (2 − 𝜈1)Wjyyx = 0,

for x = ±0.5k,
Wjx = 𝜀k

∑j−1
i=0(Wixx + 𝜈1Wiyy),

Wjyyy + (2 − 𝜈2)Wjxxy = 0,

for y = ±0.5.
Wjy = 𝜀

∑j−1
i=0(Wiyy + 𝜈2Wixx),
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124 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

In zeroth order approximation we have:

𝜆0 = 𝜋4

[
m4

k4
+ 2𝛼3n

2m2

k2
+ 𝛼2n

4

]
, (2.97)

W0 = X0Y0 =
{
sin𝜋ny
cos𝜋ny

}⎧⎪⎨⎪⎩
sin

𝜋m
k
x, n,m = 3, 5, 7,…

cos
𝜋m
k
x, n,m = 2, 4, 6,…

⎫⎪⎬⎪⎭ . (2.98)

Construction of further approximations will be illustrated and discussed for the symmetric

modes n,m = 3, 5, 7,… . We have the following BVP for the first order approximation:

W1xxxx + 2𝛼3W1xxyy + 𝛼2W1yyyy − 𝜆0W1 = 𝜆2 sin𝜋ny sin
𝜋m
k
x, (2.99)

W1xxx + (2 − 𝜈1)Wyyx = 0,
for x = ±0.5k,

W1x = ±k2𝜋2
(
m2

k2
+ 𝜈1n

2
)
(−1)

m−1
2 sin𝜋ny

(2.100)

W1yyy + (2 − 𝜈2)Wxxy = 0,

for y = ±0.5.
W1y = ±𝜋2

(
n2 + 𝜈2

m2

k2

)
(−1)

n−1
2 sin

𝜋m
k
x

(2.101)

Solution to the BVP (2.99)–(2.101) is sought in the form

W1 = X1(x) sin𝜋ny + Y1(y) sin𝜋
m
k
x, (2.102)

𝜆1 = 𝜆1x + 𝜆1y. (2.103)

Substituting Ansatzes (2.102), (2.103) into Equation (2.99) and BCs (2.100) and (2.101), the

problem is reduced for two one-dimensional problems:

XIV
1
(x) + 2𝛼3𝜋

2n2XII
1
(x) − 𝜋4

[
m4

k4
+ 2𝛼3n

2m2

k2

]
X1(x) =

𝜆1x sin
𝜋m
k

,

(2.104)

XI
1
(x) = ±kn2

(
m2

k2
+ 𝜈1n

2
)
(−1)

m−1
2 ,

for x = ±0.5k,
XIII
1
(x) − 𝜋2n2(2 − 𝜈1)XI1(x) = 0,

(2.105)

YIV
1
(y) + 2𝛼3𝜋

2m2

k2
YII
1
(y) − 𝜋4

[
2𝛼3n

2m2

k2
+ n4

]
Y1(y) = (2.106)

𝜆1y sin𝜋ny,

YI
1
(y) = ±𝜋2

(
n2 + 𝜈2

m2

k2

)
(−1)

n−1
2 ,

for y = ±0.5.
YIII
1
(y) − 𝜋2 m2

k2
(2 − 𝜈2)YI1(y) = 0,

(2.107)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 125

Construction of solvability conditions is carried out by means of the previously described

algorithm. In what follows we give only final results:

𝜆1x = 4𝜋4

(
m2

k2
+ 𝜈1n

2

)[
n2(2 − 𝜈1 − 2𝛼3) −

m2

k2

]
, (2.108)

𝜆1y = 4𝜋4

(
n2 + 𝜈2

m2

k2

)[
m2

k2
(2 − 𝜈2 − 2𝛼3) − n2

]
. (2.109)

First correction to the eigenform W1 follows as

W1 =
𝜋

(
m2

k2
+ 𝜈1n

2
)

(
m2

k2
+ 𝛼3n2

)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k

⎧⎪⎨⎪⎩
(−1)

m−1
2

(−1)
m
2

⎫⎪⎬⎪⎭
(
n2(2 − 𝜈1) +

m2

k2

)

2𝛽2

⎧⎪⎨⎪⎩
cosh

𝜋

2
𝛽2k

sinh
𝜋

2
𝛽k

⎫⎪⎬⎪⎭

{
sinh𝜋𝛽2x
cosh𝜋𝛽k2x

}
−

(−1)m k
m

(
n2(2 − 𝜈1 − 2𝛼3) −

m2

k2

)
x

⎧⎪⎨⎪⎩
cos

𝜋m
k
x

sin
𝜋m
k
x

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
{
sin𝜋ny
cos𝜋ny

}
+

𝜋

(
n2 + 𝜈2

m2

k2

)
(
n2 + 𝛼3

m2

k2

)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎨⎪⎩
(−1)

n−1
2

(−1)
n
2

⎫⎪⎬⎪⎭
(
m2

k2
(2 − 𝜈2) + n2

)

2𝛽1

⎧⎪⎨⎪⎩
cosh

𝜋

2
𝛽1

sinh
𝜋

2
𝛽1

⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩
sinh𝜋𝛽1y

cosh𝜋𝛽1y

⎫⎪⎬⎪⎭− (2.110)

(−1)n 1
n

(
m2

k2
(2 − 𝜈2 − 2𝛼3) − n2

)
y

⎧⎪⎨⎪⎩
cos𝜋ny

sin𝜋ny

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
sin

𝜋m
k
x

cos
𝜋m
k
x

⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩
n,m = 1, 3, 5,…

n,m = 2, 4, 6,…

⎫⎪⎬⎪⎭ .
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126 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

In the case of the second order approximation we get

𝜆2x = 4𝜋4

[
n2(2 − 𝜈1 − 2𝛼3) −

m2

k2

]{(
m2

k2
+ 𝜈1n

2

)
−

⎧⎪⎨⎪⎩
(
m2

k2
+ 𝜈1n

2
)

(
m2

k2
+ 𝛼3n2

) ×

[
𝜋k
2

(
n2(2 − 𝜈1) +

m2

k2

)2

coth(−1)
m 𝜋

2
𝛽2 − 2

(
n2(2 − 𝜈1 − 2𝛼3) −

m2

k2

)]
−

2𝜈1

(
n2 + 𝜈2

m2

k2

)
(
n2 + 𝛼3

m2

k2

) ×
(
m2

k2
(2 − 𝜈2 − 2𝛼3) − n2

)
−

(
n2 + 𝜈2

m2

k2

)
(
n2 + 𝛼3

m2

k2

)× (2.111)

⎡⎢⎢⎢⎣
(
m2

k2
(2 − 𝜈2) + n2

)(
m2

k2
(1 − 2𝜈1𝛼3) − n2

)
(
n2 + 𝛼3

m2

k2

) + 1

2n2

(
m2

k2
(2 − 𝜈2 − 2𝛼3) − n2

)
×

(
m2

k2
+ 𝜈1n

2

)]}
−

𝜆1

2

(
m2

k2
+ 𝜈1n

2
)

(
m2

k2
+ 𝛼3n2

) ⎧⎪⎨⎪⎩k
(
n2(2 − 𝜈1) +

m2

k2

)
(
m2

k2
+ 𝛼3n2

) +

1

n2

(
m2

k2
(2 − 𝜈2 − 2𝛼3) − n2

)}
,

(
𝜆2y,

m2

k2
, n2, 𝜈1, 𝜈2, 𝛽1

)
→

(
𝜆2x, n

2,
m2

k2
, 𝜈2, 𝜈1, 𝛽2

)
.

In the orthotropic case (D1 = D2 = D3 = D, 𝜈1 = 𝜈2 = 𝜈) formulas for 𝜆 and W take the
following form

𝜆 = 𝜋4

(
m2

k2
+ n2

)2

− 4𝜋4(1 + 𝜈)
(
m2

k2
+ n2

)
𝜀 + (𝜆2x + 𝜆2y)𝜀2 + … , (2.112)

W =
⎧⎪⎨⎪⎩
sin𝜋ny sin 𝜋m

k
x

cos𝜋ny cos 𝜋m
k
x

⎫⎪⎬⎪⎭ + 𝜋(
n2 + m2

k2

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k

⎧⎪⎨⎪⎩
(−1)

m−1
2

(−1)
m
2

⎫⎪⎬⎪⎭
(
n2(2 − 𝜈) + m2

k2

)

2𝛽2

⎧⎪⎨⎪⎩
cosh𝜋𝛽2k∕2

sinh𝜋𝛽2k∕2

⎫⎪⎬⎪⎭
×

⎧⎪⎨⎪⎩
sinh𝜋𝛽2x

cosh𝜋𝛽2x

⎫⎪⎬⎪⎭ + (−1)m k
m

(
m2

k2
+ 𝜈n2

)
x

⎧⎪⎨⎪⎩
cos

𝜋m
k
x

sin
𝜋m
k
x

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
sin𝜋ny

cos𝜋ny

⎫⎪⎬⎪⎭+ (2.113)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 127

(
n2 + m2

k2

)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎨⎪⎩
(−1)

n−1
2

(−1)
n
2

⎫⎪⎬⎪⎭
(
m2

k2
(2 − 𝜈) + n2

)
⎧⎪⎨⎪⎩
cosh𝜋𝛽1∕2

sinh𝜋𝛽1∕2

⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩
sinh𝜋𝛽1y

cosh𝜋𝛽1y

⎫⎪⎬⎪⎭+

(−1)1
n

(
n2 + 𝜈

m2

k2

)
y

⎧⎪⎨⎪⎩
cos𝜋ny

sin𝜋ny

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
sin

𝜋m
k
x

cos
𝜋m
k
x

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ 𝜀 + … ,

𝜆2x = 8𝜋4(1 + 𝜈)
(
m2

k2
+ 𝜈n2

)⎡⎢⎢⎢⎣
k
2

(
n2(2 − 𝜈) + m2

k2

)
n2 + m2

k2

− k2

m2

(
m2

k2
+ 𝜈n2

)⎤⎥⎥⎥⎦−

4𝜋4

(
m2

k2
+ 𝜈n2

)2

+ 8𝜋4

(
m2

k2
+ 𝜈n2

)
(
n2 + m2

k2

) {(
m2

k2
+ 𝜈n2

) ⎡⎢⎢⎢⎣
k
(
n2(2 − 𝜈) + m2

k2

)
2𝛽2

×

𝜋 tanh
𝜋𝛽2k

2
+ 2

(
m2

k2
+ 𝜈n2

)]
+ 2𝜈

(
n2 + 𝜈

m2

k2

)
+ 𝜈

(
n2 + 𝜈

m2

k2

)
×

⎡⎢⎢⎢⎣
(
m2

k2
(2 − 𝜈) + n2

)(
m2

k2
(1 − 2𝜈) + n2

)
(
m2

k2
+ n2

) +

(
n2 + 𝜈

m2

k2

)(
m2

k2
+ 𝜈n2

)
2n2

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ,

(
𝜆2y; n2;

m2

k2
; 𝛽2

)
→

(
𝜆2x;

m2

k2
; n2; 𝛽1

)
.

Results verification is carried out for the first eigenvalue of the free square isotropic plate. The

PA of the truncated PS (2.112) has the form (2.30). First eigenvalue of the BVP (2.94)–(2.96)

for obtained via the PA for 𝜈 = 1∕6 is equal to 𝜆 = (1.100𝜋)4, whereas the Bubnov-Galerkin
method [39] gives 𝜆 = (1.2295𝜋)4 (error - 10.51%).
For 𝜈 = 0.3 the PA gives 𝜆 = (1.1198𝜋)4, the Bubnov-Galerkin method - 𝜆 = (1.1683𝜋)4

(error 4.15%), the Southwell method [39] 𝜆 = (1.1424𝜋)4 (error 1.14%). It should be empha-

sized that both Bubnov-Galerkin and Southwell methods yields upper estimation of the eigen-

value. Zero order approximation yielded by the truncated PS and PA for 𝜀 = 1 gives upper and

lower bounds of eigenfrequency, respectively.
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128 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

2.2.5 Natural Vibrations of the Plate with Mixed Boundary Conditions
“Clamping-Simple Support”

Lets consider the problem of natural plate vibrations (0.5k ≤ x ≤ 0.5k, 0.5 ≤ y ≤ 0.5).
The plate is simply supported for x = ±0.5k, and on edges y = ±0.5 it has mixed BCs of

the “clamping-simple support” type. In what follows we study a symmetric problem first
(Figure 2.8a).

The original PDE has the form (2.63). We apply the BCs through the parameter 𝜀 in such a
way that for 𝜀 = 0 we have BCs of simply supporting on edges y = ±0.5, whereas for 𝜀 = 1

we apply the given BCs:

W = 0, Wxx = 0 for x = ±0.5, (2.114)

W = 0, Wyy = H(x)𝜀(Wyy ±Wy) for y = ±0.5, (2.115)

where: H(x) = H(x − 𝜇k) + H(−x − 𝜇k); H(x) is the Heaviside function.

0

0

−kμ

−k/2 k/2

kμ

k

y

y
(a)

(b)

kμ

x

0.5

0.5

x

0.5

0.5

Figure 2.8 Schemes of plates with mixed BCs (− − − simple support, ∕∕∕∕ clamping)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 129

For this purpose eigenvalues and eigenforms are rewritten in the (2.16) form. Substituting

them into Equation (2.63) and BCs (2.114)-(2.115), and carrying out the splitting procedure
regarding 𝜀, the following recurrent sequence of the BVPs is obtained:

∇4W0 − 𝜆0W0 = 0,

W0 = 0, W0xx = 0 for x = ±0.5k,

W0 = 0, W0yy = 0 for y = ±0.5,

∇4Wj − 𝜆0Wj =
j∑
i=1

𝜆iWj−i,

Wj = 0, Wjxx = 0 for x = ±0.5k,

Wj = 0, Wjyy = ∓H(x)
j−1∑
i=0

Wiy for y = ±0.5.

Let us study a solution to the problem for the symmetric with respect to eigenform axes x
and y case. In zero order approximation we have

W0 = X0Y0 = cos
𝜋m
k
x cos𝜋ny, (2.116)

𝜆0 = 𝜋4

(
n2 + m2

k2

)2

, n,m = 1, 3, 5,… . (2.117)

In the first order approximation, the following BVP is obtained:

∇4W1 − 𝜆0W0 = 𝜆1W0, (2.118)

W1 = 0, W1xx = 0 for x = ±0.5k, (2.119)

W1 = 0, W1yy = 𝜋n(−1)
n−1
2 H(x) cos 𝜋mx

k
for y = ±0.5. (2.120)

A solution is sought in the following series form:

W =
∑

i=1,3,5,…
Y1i cos

𝜋i
k
x. (2.121)

After substitution of Ansatz (2.121) into Equations (2.118)(2.120), the following two BVPs
are obtained:

for i = m∶
YIV
1m − 2

𝜋2m2

k2
YII
1m − 𝜋4n2

(
2
m2

k2
+ n2

)
Y1m = 𝜆1 cos𝜋ny, (2.122)

Y1m = 0, YII
1m = ±𝜋n(−1)

n−1
2 𝛾mm (y = ±0.5); (2.123)

for i ≠ m∶

YIV
1i − 2

𝜋2i2

k2
YII
1i − 𝜋4

[(
n2 + m2

k2

)2

− i4

k4

]
Y1i = 0, (2.124)

Y1i = 0, YII
1i = ±𝜋n(−1)

n−1
2 𝛾im (y = ±0.5), (2.125)
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130 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

where

𝛾im =
⎧⎪⎨⎪⎩
2(0.5 − 𝜇) − 1

𝜋m
sin 2𝜋m𝜇 for i = m,

4

𝜋

1

(m2−i2) [i sin𝜋𝜇i cos 𝜋𝜇m − m sin𝜋𝜇m cos𝜋𝜇i] for i ≠ m.

Removing secular terms, we define the first correction term:

𝜆1 = 4𝜋2n2𝛾mm. (2.126)

After 𝜆1 determination, we construct Y1m:

Y1m = n
𝜋𝛼

𝛾mm

[
(−1)

n−1
2

2ch
𝜋

2
𝛽1

cosh 𝜋𝛽1y − y sin𝜋ny

]
, i = m, (2.127)

where 𝛼 = n2 + m2∕k2, 𝛽1 =
√
2m2∕k2 + n2.

Solution to the BVP (2.124)–(2.125) does not yield any correction terms to the eigenavalue,
but it gives some additional corrections to vibration modes, i.e.

Y1i =
n(−1)

n−1
2

2𝜋
(
i2

k2
+ n2

)𝛾im

⎡⎢⎢⎢⎢⎣
cosh 𝛼1iy

cosh 𝛼1i∕2
−

{
cosh 𝛾1iy
cos 𝛽1iy

}
{
cosh 𝛾1i∕2
cos 𝛽1i∕2

}
⎤⎥⎥⎥⎥⎦
,

⎧⎪⎨⎪⎩
i2 > m2 + n2k2

i2 < m2 + n2k2

⎫⎪⎬⎪⎭ , (2.128)

where 𝛼1i = 𝜋

√
i2+m2

k2
+ n2, 𝛽1i = 𝜋

√
m2−i2
k2

+ n2, 𝛾1i = 𝜋

√
m2+i2
k2

− n2.
Summing up expressions in (2.126) and (2.127), the following first correction to the eigen-

form is obtained

W1 =
n
𝜋𝛼

{
𝛾mm

[
(−1)

n−1
2

2 cosh
𝜋

2
𝛽1

cosh𝜋𝛽1y − y sin𝜋ny

]
cos

𝜋m
k
x +

(−1)
n−1
2

∞∑
i=1,3,5,…

𝛾im

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛼1iy

cosh 𝛼1i∕2
−

⎧⎪⎨⎪⎩
cosh 𝛾1iy

cos 𝛽1iy

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cosh 𝛾1i∕2

cos 𝛽1i∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos

𝜋m
k
x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (2.129)

Here operator
∑

i=1,3,5,… denotes summation procedure without the term i = m.
Proceeding in the analogous way, we get the formula for the second correction term to the

eigenvalue:

𝜆2 = 4𝜋2n2𝛾mm

{
1 −

𝛾mm

𝜋2𝛼

[
𝜋𝛽1

2
tanh

𝜋𝛽1

2
+ n2

𝛼
− 3

2

]}
−

(2.130)

2n2

𝛼

∑
i=1,3,5,…

𝛾2im

[
𝛼i tanh

𝛼i

2
+

{
−𝜑1i tanh𝜑1i∕2
𝛽1i tan 𝛽1i∕2

}]
.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 131

In this case the truncated PS has the following form:

𝜆 = 𝜋4𝛼4 + 4𝜋2n2𝛾mm𝜀 +
{
4𝜋2n2𝛾mm

(
1 −

𝛾mm

𝜋2𝛼

[
𝜋𝛽1

2
coth(−1)

m 𝜋𝛽1

2
+

n2

𝛼
− 3

2

])
− 2n4

𝛼

∑
{
i = 1, 3, 5,…
i = 2, 4, 6,…

} 𝛾2im

[
𝛼icoth

(−1)i 𝛼1i
2
+

(2.131){
−𝜑1icoth

(−1)i𝜑1i∕2
𝛽1icoth

(−1)i𝛽1i∕2

}]}
𝜀2 + … ,

W =
⎧⎪⎨⎪⎩
cos

𝜋m
k
x cos𝜋ny

sin
𝜋m
k
x sin𝜋ny

⎫⎪⎬⎪⎭ +

⎡⎢⎢⎢⎢⎢⎣
n
𝜋𝛼

𝛾mm

⎛⎜⎜⎜⎜⎜⎝

{
(−1)

n−1
2 cosh𝜋𝛽1y

(−1)
n
2 sinh𝜋𝛽1y

}
{
cosh𝜋𝛽1∕2
sinh𝜋𝛽1∕2

} +

{
sin𝜋ny
cos𝜋ny

}){
cos

𝜋m
k
x

sin
𝜋m
k
x

}
+

n

{
(−1)

n−1
2

(−1)
n
2

}
2𝜋𝛼

∞∑
{
i = 1, 3, 5,…
i = 2, 4, 6,…

} 𝛾im

⎛⎜⎜⎜⎜⎝

{
cosh 𝛼1iy
sinh 𝛼1iy

}
{
cosh 𝛼1i∕2
sinh 𝛼1i∕2

} +

{
A1i
A2i

}
{
B1i
B2i

}
⎞⎟⎟⎟⎟⎠
{

cos
𝜋i
k
x

sin
𝜋i
k
x

}⎤⎥⎥⎥⎥⎦
𝜀 + … ,

{
n,m = 1, 3, 5,…
n,m = 2, 4, 6,…

}
, (2.132)

where

𝛾im =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − 2𝜇 + (−1)m
𝜋m

sin 2𝜋m𝜇 for i = m,

4

𝜋
⋅ 1

(m2−i2)

[{
i

m

}
sin𝜋𝜇i cos𝜋𝜇m−

−

{
m

i

}
sin𝜋𝜇m cos𝜋𝜇i

]
for i ≠ m,

(2.133)

{
A1i
A2i

}
{
B1i
B2i

} =

{
cosh𝜑1iy
sinh𝜑1iy

}
{
cosh𝜑1i∕2
sinh𝜑1i∕2

} for i2 > m2 + n2k2,

{
A1i
A2i

}
{
B1i
B2i

} =

{
cos 𝛽1iy
sin 𝛽1iy

}
{
cos 𝛽1i∕2
sin 𝛽1i∕2

} for i2 < m2 + n2k2.
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132 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

We solve the problem regarding computation of the natural frequencies for the plate with
nonsymmetric located parts of mixed BCs (Figure 2.8b). Formulas regarding eigenvalues and
eigenforms (2.131) and (2.132) remain valid assuming that the following transformations are
applied:

(−1)
m−1
2 → (−1),

{
cos𝜋mx∕k
sin𝜋mx∕k

}
→ sin

𝜋m
k
x,

{
cos𝜋ix∕k
sin𝜋ix∕k

}
→ sin

𝜋i
k
x,

m = 1, 2, 3,… , i = 1, 2, 3,… ,

and 𝛾im follows

𝛾im =
⎧⎪⎨⎪⎩
𝜇 − 1

2𝜋m
sin 2𝜋m𝜇 for i = m,

2

𝜋
⋅ 1

(m2−i2) [i sin𝜋𝜇m cos 𝜋𝜇i − m sin𝜋𝜇i cos𝜋𝜇m] for i ≠ m.
(2.134)

Further, we use PA (2.30), and we compute the value of the first eigenvalue associated with
the BVP (2.63), (2.114), (2.115) for 𝜀 = 1. Computational results are reported in Figure 2.9.
A solid curve represents the dependence of the eigenvalue versus the parameter 𝜇 for the plate
with symmetrically located clamping, whereas dashed curves correspond to the nonsymmetric
problem. In the limiting case (edges y = ±0.5 are completely clamped) the first eigenvalue
obtained numerically 𝜆 = (1.7050𝜋)4, whereas the PA (2.30) yields 𝜆 = (1.7081𝜋)4 (error -
0.18%). A dashed curve is associated with results obtained through the method of integral
equations. One may see that the difference in results is small.
In the frame of the proposed method, we may include an influence of the support stiffness on

the clamped plate parts. The dependence of the first eigenvalue of BVP (2.63), (2.114), (2.115)
versus the parameter 𝜀 for various values of 𝜇 is shown. One may conclude that the influence
of clamping stiffness onto the eigenvalue is mainly exhibited for elastic supports being similar
to completely developed supports.
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Figure 2.9 Influence of plate clamping parts on the first eigenvalue
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 133
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Figure 2.10 Influence of support stiffness on first eigenvalue

μk

0.5 k 0.5 k

0.5

0.5

0

y

x

μk

Figure 2.11 Scheme of the plate with mixed BCs

2.2.6 Comparison of Theoretical and Experimental Results

In this section we study the problem regarding natural vibrations of the plate (−0.5k ≤ x ≤
0.5k; −0.5 ≤ y ≤ 0.5), simply supported for x = ±0.5k, and having on y = ±0.5 mixed BCs

of the “clamping-simple support” type, where clamping parts are located symmetrically with

respect to plate sides y = ±0.5 (Figure 2.11).

The governing PDE has the form (2.63), wheres in BCs (2.114), (2.115) functionH(x) should
be taken as follows:

H(x) = H(−x + 𝜇k) − H(−x − 𝜇k).
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134 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Applying this to the problem so far defined in our approach, one gets formulas for eigenval-
ues and eigenforms of (2.131) and (2.132). Formulas for 𝛾im in this case follow

𝛾im =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2𝜇 − (−1)m
4𝜋m

sin 2𝜋m𝜇 for i = m,

4

𝜋
⋅ 1

(m2−i2)

[{
i

−m

}
sin𝜋𝜇i cos 𝜋𝜇m+{

−m
i

}
sin𝜋𝜇m cos 𝜋𝜇i

]
for i ≠ m.

(2.135)

Furthermore, the truncated PS is transformed into the PA (2.30), and the first eigenvalue
is computed. Computational results are shown in Figure 2.12. A solid curve corresponds to
the obtained result, whereas the dashed and dash-dot curves correspond to theoretical results
reported in references [49], [65]. It is evident that all three curves almost coincide with each
other for all values of the parameter 𝜇. Experimental data [65] (points) are also close to
computed ones.
Observe that the graph of eigenvalue dependence on the parameter 𝜇 possesses two zones:

0.0 ≤ 𝜇 ≤ 0.3 and 0.3 < 𝜇 ≤ 0.5. On the first part an increase of the parameter 𝜇 implies an
essential increase of 𝜆. In the second zone the parameter 𝜇 variation does not practically influ-
ence the eigenvalues positions.
Therefore, a plate having clamping parts of length being larger than 𝜇 = 0.3, may be treated

as that clamped on edges y = ±0.5.
In Figure 2.13 the dependence of eigenvalue 𝜆 versus parameter 𝜀 for various 𝜇 is reported.

It is clear that the influence of support stiffness is strongly exhibited for 𝜀 > 0.7.
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Figure 2.12 Comparison of theoretical and experimental data
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 135

1.70

1.65

1.60

λ/
π

μ = 0.5

μ = 0.3

μ = 0.2

μ = 0.1

μ = 0.0

1.55

1.50

1.45

1.40

0.2 0.4 0.6
ε

0.8 0.9

Figure 2.13 Influence of clamping lengths on the first eigenvalue
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Figure 2.14 Plate with mixed BCs

2.2.7 Natural Vibrations of a Partially Clamped Plate

We consider now the more complicated case of the BCs, i.e. partially clamped plate along

its rectangular contour (0 ≤ x ≤ k; −0.5 ≤ y ≤ 0.5). It is simply supported on the side x = k,
clamped on the side x = 0, and has mixed BCs of the type “clamping - simple support” on

the sides y = ±0.5 (Figure 2.14). Plate vibrations are governed by the PDE (2.63), and the
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136 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

following BCs are attached:

W = 0, Wyy = 𝜀H(x)(Wyy ∓Wy) for y = ±0.5,

W = 0, Wxx = 𝜀(Wxx + kWx) for x = 0, (2.136)

W = 0, Wxx = 0 for x = k,

where H(x) = H(x) − H(x − 𝜇k).
Substituting PS (2.16) into the BVP (2.63), (2.136) yields the following system of equations:

∇4W0 − 𝜆0W0 = 0,

W0, W0yy = 0 for y = ±0.5,

W0, W0xx = 0 for x = 0, k,

∇4Wj − 𝜆0Wj =
j∑
i=1

𝜆iWj−i,

Wj = 0, Wjyy = ∓H(x)
j−1∑
i=0

Wiy for y = ±0.5,

Wj = 0, Wjxx = k
j−1∑
i=0

Wix for x = 0,

Wj = 0, Wjxx = 0 for x = k.

In zero order approximation the problem is reduced to that of the plate simply supported

along its contour, and hence its solution follows:

W0 = X0Y0 = sin
𝜋m
k
x

⎧⎪⎨⎪⎩
cos𝜋ny, n = 1, 3, 5,…
sin𝜋ny, n = 2, 4, 6,…

⎫⎪⎬⎪⎭ , (2.137)

𝜆0 = 𝜋4

(
m2

k2
+ n2

)2

= 𝜋4𝛼. (2.138)

First we consider the BVP of the first order approximation:

∇W1 − 𝜆0W1 = 𝜆1W0, (2.139)

W1 = 0, W1yy = ∓
⎧⎪⎨⎪⎩
(−1)

n−1
2

(−1)
n
2

⎫⎪⎬⎪⎭𝜋nH(x) sin 𝜋m
k
x for y = ±0.5, (2.140)

W1 = 0, W1xx = 𝜋m

{
cos𝜋ny
sin𝜋ny

}
for x = 0, (2.141)

H(x) = H(−x + 𝜇k) − H(−x − 𝜇k), (2.142)

where 𝜆1 = 𝜆1x + 𝜆1y.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 137

Its solution has the following form:

W1 = X1

{
cos𝜋ny
sin𝜋ny

}
+

∞∑
i=1

Y1i sin
𝜋i
k
x. (2.143)

Substitution of Ansatz (2.143) into Equation (2.139) and BCs (2.140)–(2.141) yields the
following three BVPs:

XIV
1

− 2𝜋2n2XII
1
− 𝜋4m2

k2

(
2n2 + m2

k2

)
X1 = 𝜆1x sin

𝜋m
k
x, (2.144)

X1 = 0, XII
1
= 𝜋m for x = 0, (2.145)

X1 = 0, XII
1
= 0 for x = k, (2.146)

for i = m:

XIV
1m − 2𝜋2m2

k2
YII
1m − 𝜋4n2

(
2
m2

k2
+ n2

)
Y1m = 𝜆1y

{
cos𝜋ny
sin𝜋ny

}
, (2.147)

YIV
1m = 0, YII

1m = ∓

{
−(−1)

n−1
2

(−1)
n
2

}
𝜋n𝛾mm for y = ±0.5, (2.148)

for i ≠ m:

YIV
1i − 2𝜋2 i2

k2
YII
1i − 𝜋4

[(
m2

k2
+ n2

)2

− i4

k4

]
Y1i = 0, (2.149)

YIV
1i = 0, YII

1i = ∓

{
−(−1)

n−1
2

(−1)
n
2

}
𝜋n𝛾im for y = ±0.5. (2.150)

where 𝛾im is defined through formula (2.134).
BVPs (2.144)–(2.146) and (2.147)–(2.148) possess secular terms, and their removal allows

us to define 𝜆1x and 𝜆1y:

𝜆1x = 2
𝜋2m2

k2
, (2.151)

𝜆1y = 4𝜋2n2𝛾mm. (2.152)

Eigenfunctions of BVPs (2.144)-(2.146) and (2.147)-(2.148) follow:

X1 =
m
2𝜋𝛼

[
cosh 𝛽2x − coth 𝛽2k sinh 𝛽2x − cos

𝜋m
k
x + 1

k
x cos

𝜋m
k
x
]
, (2.153)

Y1m =
(−1)n+1n𝛾mm

𝜋𝛼

⎡⎢⎢⎢⎢⎢⎣

{
(−1)

n−1
2

(−1)
n
2

}
2

{
cosh 𝛽1∕2
sinh 𝛽1∕2

} {
cosh 𝛽1y
sinh 𝛽1y

}
− (2.154)

Y

{
sin𝜋ny
cos 𝜋ny

}]
,

{
n = 1, 3, 5,…
n = 2, 4, 6,…

}
.
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138 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Solutions to the BVPs (2.149)–(2.150) do not influence the eigenvalues but they bring in

corrections to the eigenforms, i.e. we get

Y1i =
n

2𝜋𝛼
𝛾im

⎧⎪⎨⎪⎩
(−1)

n−1
2

(−1)
n
2

⎫⎪⎬⎪⎭
⎡⎢⎢⎢⎢⎣

{
cosh 𝛼1iy
sinh 𝛼1iy

}
{
cosh 𝛼1i∕2
sinh 𝛼1i∕2

} −

{
A1i
A2i

}
{
B1i
B2i

}
⎤⎥⎥⎥⎥⎦
. (2.155)

Summing up formulas (2.151) and (2.152), the first correction term is found:

𝜆1 = 2𝜋2

(
m2

k2
+ 2n2𝛾mm

)
. (2.156)

The first correction term of the eigenform is defined by formulas (2.143), (2.153)–(2.155):

W1 =
m
2𝜋𝛼

[
cosh 𝛽2x − coth 𝛽2k sinh 𝛽2x − cos

𝜋m
k
x + 1

k
x cos

𝜋m
k
x
]{

cos𝜋ny
sin𝜋ny

}
+

(−1)n+1 n
𝜋𝛼

𝛾mm

⎡⎢⎢⎢⎢⎢⎣

{
(−1)

n−1
2

(−1)
n
2

}
2

{
cosh 𝛽1∕2
sinh 𝛽1∕2

} {
cosh 𝛽1y
sinh 𝛽1y

}
− Y

{
sin𝜋ny
cos𝜋ny

}⎤⎥⎥⎥⎥⎥⎦
sin

𝜋m
k
x +

n
2𝜋𝛼

⎧⎪⎨⎪⎩
(−1)

n−1
2

(−1)
n
2

⎫⎪⎬⎪⎭
∞∑
i=1

𝛾im

⎡⎢⎢⎢⎢⎣

{
cosh 𝛼1i
sinh 𝛼1i

}
{
cosh 𝛼1i∕2
sinh 𝛼1i∕2

} −

{
A1i
A2i

}
{
B1i
B1i

}
⎤⎥⎥⎥⎥⎦
sin

𝜋i
k
x. (2.157)

In an analogous way we find second correction to the eigenvalue. Finally, the eigenvalue

being estimated has the following form:

𝜆 = 𝜋4𝛼2 + 2𝜋2

(
m2

k2
+ 2n2𝛾mm

)
𝜀 + (𝜆2x + 𝜆2y)𝜀2 +… (2.158)

where

𝜆2x = 2
𝜋2m2

k2

{
1 + k

2𝜋2𝛼

(
1

k
− 𝛽2 coth 𝛽2k

)
−

𝛾mm

2𝜋2𝛼

(
n2 − m2

k2

)
+

4

𝜋2
⋅
n2

m

∞∑
i=1

𝛾im
1(

i2−m2

k2

)(
i2+m2

k2
+ 2n2

) −
𝜆1

2𝜋2𝛼2

(
m2

k2
− n2

)
,

𝜆2y = 4𝜋2n2
{
𝛾mm + m

2𝜋𝛼

[
1

k
⋅

1

𝜋2𝛼

(
𝛽2 sinh 𝛽2𝜇k sin𝜋𝜇k −

𝜋m
k

cosh 𝛽2𝜇k cos𝜋m𝜇 + 𝜋m
k

− coth 𝛽1k(𝛽1 cosh 𝛽1𝜇k sin𝜋m𝜇 −

𝜋m
k

sinh 𝛽1𝜇k cos𝜋m𝜇
))

+ 1

2𝜋m

(
1

2𝜋m
sin 2𝜋m𝜇 +
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 139

(1 − 𝜇) cos 2𝜋m𝜇 − 1)] −
𝛾2mm

𝜋2𝛼

(
𝛽1

2
tanh

𝛽1

2
− 1

)
+

1

2𝜋2𝛼

∞∑
i=1

𝛾2im

⎡⎢⎢⎢⎣𝛼icoth
(−1)n 𝛼1i

2
−

⎧⎪⎨⎪⎩
𝜑1icoth

(−1)n 𝜑1i

2

(−1)n𝛽1icoth(−1)
n 𝛽1i

2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭−

𝜆1
𝛾mm

8𝜋2𝛼2

(
n2 − m2

k2

)
.

In the next step we transform the results obtained via truncated PS (2.158) into the PA (2.30).

Let us compare the obtained results with known solutions obtained for some limiting cases.

For 𝜇 = 0 we get a plate clamped on one side and simply supported on the remaining plate

sides. In this case the first eigenvalue 𝜆(1), obtained with a help of PA in (2.30) is equal to

(1.5520𝜋)4. The eigenvalue obtained numerically - 𝜆(1) = (1.5501𝜋)4, and the error is 0.12%.
In the second limiting case (𝜇 = 1) we have a plate simply supported on one side and

clamped on the remaining three sides. First eigenvalue obtained through our method yields

𝜆(1) = (1.7963𝜋)4. The comparison has been carried out with results reported in [53], where the

eigenvalues have been obtained using the method of the series, finite differences, R-function
method, and the Bolotin method. Largest error achieves 0.76%.
For a plate clamped on its half of the contour 𝜇 = 0.5, the PA gives 𝜆(1) = (1.6076𝜋)4. In

reference [53] eigenvalues obtained via the R-function method are reported, and the largest dif-

ference is 6.5%. For the eigenvalue obtained via finite difference method [53], the error is 3%.
In Figure 2.15 the dependence 𝜆(1) versus parameter 𝜇 is reported. The graph has three char-

acteristic zones: [0, 0.3], [0.3, 0.85], [0.85, 1]. In the first and third zones the eigenvalue prac-

tically does not depend on the parameter 𝜇. In the second zone 𝜆(1) essentially increases with

increase of 𝜇. The discussed results show that the occurrence of the clamped side x = 0 influ-

ences the eigenvalue of the plate vibrations essentially. Occurrence of symmetrically located

plate support on opposite plate sides practically does not influence the fundamental frequency

1.80
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1.70

λ/
π

1.65

1.60

1.55

0.2 0.4 0.6
μ

0.8 0.9

Figure 2.15 Dependence of the first eigenvalue versus the clamping length
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140 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions
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Figure 2.16 Dependence of the eigenvalue 𝜆(1) versus parameter 𝜀

up to the value of 𝜇 ≈ 0.3. In this case, where plate sides y = ±0.5 are almost completely

clamped, occurrence of simply supported parts does not influence the fundamental vibration

frequency. In some cases a minor change of the clamping length changes values of the funda-

mental frequency essentially.

One may also estimate the influence of the clamping stiffness on the fundamental frequency.

In Figure 2.16 the dependence of 𝜆(1) versus parameter 𝜀 for various values of the parameter 𝜇

is given. Contrary to the previous problem, influence of the parameter 𝜀 on 𝜆(1) is essential for
the whole interval of the parameter 𝜀 variation, although for 0.8 ≤ 𝜀 ≤ 1.0 with the increase

of 𝜀 the eigenvalue increases fast.

2.2.8 Natural Vibrations of a Plate with Mixed Boundary Conditions
“Simple Support-Moving Clamping”

Let us consider natural vibrations of a rectangular plate (−0.5k ≤ x ≤ 0.5k; −0.5 ≤ y ≤ 0.5)
simply supported on edges x = ±0.5k, and having mixed BCs “free edge moving clamping.”

First, we solve the problem for a plate having symmetry in two directions (Figure 2.17a).

Plate vibrations are governed by the PDE (2.63). Let us attach the modified BCs of the form

Wyyy + (2 − 𝜈)Wxxy = 0,

Wy = 𝜀H(x)[Wy ∓ (Wyy + 𝜈Wxx)] for y = ±0.5, (2.159)

W = 0, Wxx = 0 for x = ±0.5k, (2.160)

where H(x) = H(−x + 𝜇k) − H(−x − 𝜇k).
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Figure 2.17 Plates with mixed BCs; – – – - simple support, //// - moving clamping, − - free edge

Next we apply our method to the BVP (2.162), (2.159)–(2.160). As a result we obtain the

following recurrent sequence of the BVPs:

∇4W0 − 𝜆0W0 = 0,

W0 = 0, W0xx = 0 for x = ±0.5k,

W0y = 0, W0yyy = 0 for y = ±0.5,

∇4Wj − 𝜆0Wj =
i∑
i=1

𝜆iWj−i,
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142 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Wj = 0, Wjxx = 0 for x = ±0.5k,

Wjyyy + (2 − 𝜈)Wjxxy = 0,

Wjy = ±
j−1∑
i=0

(Wiyy + 𝜈Wixx) for y = ±0.5.

Solving the stated problems, the following formula for the eigenvalue is obtained:

𝜆 = 𝜋4𝛼2 − 4𝜋4

(
n2 + 𝜈

m2

k2

)
𝛾mm𝜀 +

{
𝜆1

[
1 −

𝛾mm

𝛼

(
𝜋

2𝛽1

(
n2 − (2 − 𝜈)m

2

k2

)
×

coth(−1)
m 𝜋

2
𝛽1 − 2

(
n2 + 𝜈

m2

k2

) ⎛⎜⎜⎝
n2 + (2 − 𝜈)m

2

k2

𝛼
−
n2 + 𝜈

m2

k2

2n2

⎞⎟⎟⎠
⎞⎟⎟⎠
⎤⎥⎥⎦+

4𝜋2

(
n2 + 𝜈

m2

k2

)
×

∑
{
i = 1, 3, 5,…
i = 2, 4, 6,…

} 𝛾2im

[
(1 − 𝜈) i

2

k2
+ 𝛼

]
coth(−1)

i 𝛼1i

2
⋅
1

𝛼1i
[(1−

𝜈) i
2

k2
− 𝛼

]2 ⎧⎪⎨⎪⎩
coth(−1)

i 𝜑1i

2
⋅ 1

𝜑1i

coth(−1)
i 𝛽1i

2
⋅ 1

𝛽1i

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ 𝜀2 + … ,

{
n,m = 1, 3, 5,…
n,m = 2, 4, 6,…

}
, (2.161)

and the eigenmode W are obtained

W =
⎧⎪⎨⎪⎩
cos𝜋ny cos 𝜋m

k
x

sin𝜋ny sin 𝜋m
k
x

⎫⎪⎬⎪⎭+

𝜋

(
n2 + 𝜈

m2

k2

)
𝛼

⎧⎪⎪⎨⎪⎪⎩
𝛾mm

⎡⎢⎢⎢⎢⎢⎣

(
n2 + (2 + 𝜈)m

2

k2

){
(−1)

n−1
2

(−1)
n
2

}
{
sinh𝜋𝛽1∕2
cosh𝜋𝛽1∕2

} {
cosh𝜋𝛽1y
sinh𝜋𝛽1y

}
+

(−1)n
(
n2 + 𝜈

m2

k2

)
Y

{
sin𝜋ny
cos𝜋ny

}]{
sin

𝜋m
k
x

cos
𝜋m
k
x

}
+

𝜋𝛼(−1)
m−1
2

∞∑
{
i = 1, 3, 5,…
i = 2, 4, 6,…

} 𝛾im ×

[
(1−𝜈)i2+m2

k2
+ n2

]
𝛼1i

{
sinh 𝛼1i∕2
cosh 𝛼1i∕2

} {
cosh 𝛼1iY
sinh 𝛼1iY

}
+
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 143

(−1)i

[
(1−𝜈)i2−m2

k2
− n2

]
{
C1i
C2i

} {
D1i
D2i

} {
cos

𝜋i
k
x

sin
𝜋i
k
x

}}
𝜀 + … ,

{
n,m = 1, 3, 5,…
n,m = 2, 4, 6,…

}
. (2.162)

where

𝛾im =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2𝜇 − (−1)m
4𝜋m

sin 2𝜋m𝜇 for i = m,

4

𝜋
⋅ 1

(m2−i2)

[{
i

−m

}
sin𝜋𝜇i cos𝜋𝜇m+{

−m
i

}
sin𝜋𝜇m cos 𝜋mi

]
for i ≠ m,

{
C1i
C2i

}
=

{
sinh𝜑1i∕2
cosh𝜑1i∕2

}
for i2 > m2 + k2n2,

{
C1i
C2i

}
=

{
sin 𝛽1i∕2
cos 𝛽1i∕2

}
for i2 < m2 + k2n2,

{
D1i
D2i

}
=

⎧⎪⎨⎪⎩
1

𝜑1i
cosh𝜑1iy

1

𝜑1i
sinh𝜑1iy

⎫⎪⎬⎪⎭ for i2 > m2 + k2n2,

{
D1i
D2i

}
=

⎧⎪⎨⎪⎩
1

𝛽1i
cos 𝛽1iy

1

𝛽1i
sin 𝛽1iy

⎫⎪⎬⎪⎭ for i2 < m2 + k2n2.

The obtained formulas also have application in the case of nonsymmetric position of the

free plate part (Figure 2.17b). For this purpose it is necessary to change

{
cos(𝜋mx∕k)
sin(𝜋mx∕k)

}
by sin(𝜋mx∕k), and

{
cos(𝜋ix∕k)
sin(𝜋ix∕k)

}
by sin(𝜋ix∕k), m = 1, 2, 3,… , i = 1, 2, 3,… in formulas

(2.161) and (2.162).

In this case coefficients 𝛾im are defined by formula (2.134). Furthermore, truncated PS

(2.161) is converted into PA (2.30), and we compute its value for 𝜀 = 1. Computational

results are shown in Figure 2.18. A solid (dashed) curve corresponds to the case of symmetric

(nonsymmetric) free edge location. In the limiting case, where edges y = ±0.5 are free, the

solution obtained so far can be compared with a numerical one. For 𝜈 = 0.3 the numerical

solution yields 𝜆 = (1.2758𝜋)4; the PA solution–𝜆 = (1.2766𝜋)4 (error of 0.15%). For

𝜈 = 1∕6 the numerical solution gives 𝜆 = (1.3132𝜋)4; PA - 𝜆 = (1.3122𝜋)4 (error 0.08%).
Error regarding determination of eigenvalues decreases with a decrease of the Poisson’s ratio.

Decrease of the Poisson’s ratio causes a shift of the BCs to that of the moving clamping, and

hence a contribution of zero order approximation increases in the series of the eigenvalue

estimation.
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Figure 2.18 Eigenvalue versus length of mixed BCs

Let us consider influence of the geometric dimension of mixed BCs on the eigenfrequency of

plate vibrations for 𝜈 = 0.3. In Figure 2.18 onemay distinguish three parts: [0,0.5], [0.15,0.35],

[0.35,0.5] in the case symmetrically located free plate edge and [0,0.2], [0.2,0.6], [0.6,1.0] in

the nonsymmetric case. In the first zone the eigenvalue 𝜆 depends on geometric dimensions of

the plate free edge in essentially nonlinear way, and it decreases negligibly with increase of 𝜇.

In the second zone almost linear dependence of 𝜆 versus 𝜇 is obtained, and small increase

of the geometric dimensions of the free plate edge yields remarkable changes of the eigen-

value. In third zone with increase of dimension of the free edge the eigenfrequency decreases

insignificantly. This zone is wide one in particular in the case of nonsymmetrically located

free edge part. The obtained and discussed so far results show that small dimension BCs do

not have significant influence on the eigenavalue.

2.3 Nonlinear Vibrations of Rods, Beams and Plates

2.3.1 Vibrations of the Rod Embedded in a Nonlinear Elastic Medium

We begin investigating nonlinear vibrations of spatially finite continuous systems with a study

of longitudinal vibrations of the rod embedded into a nonlinear-elastic medium. This will serve

as an example for introduction of our asymptotic techniques suitable for solution of similar

problems as well as for illustration of some peculiarities of the obtained solution being typical

and common for many other problems exhibited by continuous mechanical systems. We study

the following equation regarding displacements:

a2
𝜕2u
𝜕x2

− 𝜕2u
𝜕t2

− 𝛽1u − 𝜀𝛽2u
3 = 0. (2.163)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 145

Rod ends are clamped

u|x=0,l = 0, (2.164)

where: u is the longitudinal displacement; l is the rod length; a =
√
E∕𝜌; 𝛽1, 𝛽2 are the

coefficients characterizing influence of the external medium; 𝜀 is the nondimensional small

parameter.

We are aimed on founding a periodic solution of the following form

u(x, t) = u(x, t + T), (2.165)

where: T = 2𝜋∕𝜔 - period, 𝜔 is the frequency of vibrations.

We rescale the time

𝜏 = 𝜔t, (2.166)

and we propose the following PS of the solutions being sought:

u = u0 + 𝜀u1 + 𝜀2u2 +… , (2.167)

𝜔 = 𝜔0 + 𝜀𝜔1 + 𝜀2𝜔2 +… , (2.168)

where 𝜔0 =
√
(a𝜋∕l)2 + 𝛽1 is the fundamental frequency of the associated linear system for

𝜀 = 0.

Substituting Ansatzes (2.166)–(2.168) into the BVPs (2.487)–(2.165) and comparing terms

standing by the same power of 𝜀, the following recurrent system of linear equations is obtained

a2
𝜕2u0
𝜕x2

− 𝜔2
0

𝜕2u0
𝜕𝜏2

− 𝛽1u0 = 0, (2.169)

a2
𝜕2u1
𝜕x2

− 𝜔2
0

𝜕2u1
𝜕𝜏2

− 𝛽1u1 = 2𝜔0𝜔1

𝜕2u0
𝜕𝜏2

+ 𝛽2u
3
0
, (2.170)

.........................

BCs (2.164) and periodicity conditions (2.165) take the following form

ui|x=0,l = 0, (2.171)

ui(x, 𝜏) = ui(x, 𝜏 + 2𝜋), i = 0, 1, 2,… (2.172)

Solution of the BVP (2.169), (2.171), (2.172) corresponds to the following zero order

approximation:

u0 =
∞∑
i=1

Ai sin

(
𝜔lin
i

𝜔0

𝜏

)
sin

(
𝜋i
l
x
)
, (2.173)

where: A1 is the amplitude of the fundamental mode defined by initial conditions; Aj, j =
2, 3, 4,… are the amplitudes of successive harmonics; 𝜔lin

i =
√
(a𝜋i∕l)2 + 𝛽1, i = 1, 2, 3,…

are the frequencies of harmonics associated with the corresponding linear case, 𝜔0 = 𝜔lin
1
.

Next approximation is found via solution to the BVP (2.170)–(2.172). Note that in order to

avoid secular terms, coefficients standing by sin

(
𝜔lin
i

𝜔0
𝜏

)
sin

(
𝜋i
l
x
)
, i = 1, 2, 3,… are set to
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146 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

zero in the r.h.s. of Equation (2.170). Taking into account Ansatz (2.173), this condition yields
the infinite system of nonlinear algebraic equations of the form

2Ai𝜔1

𝛽2𝜔0

(
𝜔lin
i

)2 = 9

16
A2
i +

3

4
Ai

(
i−1∑
k=1

A2
k +

∞∑
k=i+1

A2
k

)
, i = 1, 2, 3,… . (2.174)

Solution to system (2.174) allows defining the second term of PS (2.168), i.e. correction
term 𝜔1 of the frequency being sought generated by the nonlinearity of the problem. In what
follows we analyze solutions of system (2.174). Vibrations modes are defined as follows:

u =
∞∑
i=1

Ai sin(Ωit) sin
(
𝜋i
l
x
)
+ O(𝜀), (2.175)

where Ωi =
𝜔lin
i

𝜔lin
1

, 𝜔 are the frequencies.

In a general case one deals with only one i-th harmonics, and therefore

Aj = 0, 𝜔1 =
9A2

i 𝛽2𝜔0

32
(
𝜔lin
i

)2 , j ∈ N, j ≠ i. (2.176)

Wanted amplitude-frequency relation has the following form

Ωi = 𝜔lin
i + 0.28125

A2
i 𝛽2

𝜔lin
i

𝜀 + O(𝜀2), (2.177)

where i = 1, 2, 3,… .
Positive (negative) value of 𝜀 corresponds to the stiff (weak) characteristic of the restoring

force.
Occurrence of internal resonances between harmonics belongs to peculiarities of a continu-

ous system vibrations [8], [9]. In the case considered the phenomenonmentioned so far appears
for 𝛽1 = 0. In this case, the form of nonlinear system (2.174) is changed qualitatively to yield

2A1𝜔1

𝛽2𝜔0

(𝜔lin
1
)2 = 9

16
A3
1
+ 3

4
A1(A2

2
+ A2

3
+ A2

4
+ A2

5
) +

3

8
(A1A2A4 + A2A3A4 + A1A3A5 + A2A4A5) +

3

16
(A2

1
A3 + A2

2
A3) +… ,

2A2𝜔1

𝛽2𝜔0

(𝜔lin
2
)2 = 9

16
A3
2
+ 3

4
A2(A2

1
+ A2

3
+ A2

4
+ A2

5
) +

3

8
(A1A2A3 + A1A3A4 + A1A2A5 + A1A4A5 + A3A4A5) + (2.178)

3

16
(A2

1
A4 + A2

3
A4) + … ,

2A3𝜔1

𝛽2𝜔0

(𝜔lin
3
)2 = 1

16
A3
1
+ 9

16
A3
3
+ 3

4
A3(A2

1
+ A2

2
+ A2

4
+ A2

5
) +

3

8
(A1A2A4 + A2A3A4 + A1A3A5 + A2A4A5) +

3

16
(A1A

2
2
+ A2

1
A5 + A2

4
A5) +… ,

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 147

2A4𝜔1

𝛽2𝜔0

(𝜔lin
4
)2 = 9

16
A3
4
+ 3

4
A4(A2

1
+ A2

2
+ A2

3
+ A2

5
) +

3

8
(A1A2A3 + A1A2A5 + A2A3A5 + A3A4A5) +

3

16
(A2A

2
1
+ A2A

2
3
) +… ,

2A5𝜔1

𝛽2𝜔0

(𝜔lin
5
)2 = 9

16
A3
5
+ 3

4
A5(A2

1
+ A2

2
+ A2

3
+ A2

4
) +

3

8
(A1A2A4 + A2A3A4) +

3

16
(A1A

2
2
+ A2

1
A3 + A2

3
A1 + A3A

2
4
) +… ,

..................................................................................................

An HPM can be applied in order to solve the infinite system of nonlinear algebraic equations
(2.178). On the r.h.s. of each i-th equation of the system (2.178), where the following condition
is satisfied (k > i) ∪ (l > i) ∪ (m > i) the𝜇 parameter is introduced before each of the following
terms AkAlAm, k, l,m = 1, 2, 3,… :

2A1𝜔1

𝛽2𝜔0

(𝜔lin
1
)2 = 9

16
A3
1
+ 𝜇

(
3

4
A1(A2

2
+ A2

3
+ A2

4
+ A2

5
) +

3

8
(A1A2A4 + A2A3A4 + A1A3A5 + A2A4A5) +

3

16
(A2

1
A3 + A2

2
A3) +…

)
,

2A2𝜔1

𝛽2𝜔0

(𝜔lin
2
)2 = 9

16
A3
2
+ 3

4
A2
1
A2 + 𝜇

(
3

4
A2(A2

3
+ A2

4
+ A2

5
) +

3

8
(A1A2A3 + A1A3A4 + A1A2A5 + A1A4A5 + A3A4A5) + (2.179)

3

16
(A2

1
A4 + A2

3
A4) +…

)
,

2A3𝜔1

𝛽2𝜔0

(𝜔lin
3
)2 = 1

16
A3
1
+ 9

16
A3
3
+ 3

4
A3(A2

1
+ A2

2
) + 3

16
A1A

2
2
+

𝜇

(
3

4
A3(A2

4
+ A2

5
) + 3

8
(A1A2A4 + A2A3A4 + A1A3A5 + A2A4A5) +

3

16
(A2

1
A5 + A2

4
A5) +…

)
,

2A4𝜔1

𝛽2𝜔0

(𝜔lin
4
)2 = 9

16
A3
4
+ 3

4
A4(A2

1
+ A2

2
+ A2

3
) + 3

8
A1A2A3 +

3

16
(A2A

2
1
+ A2A

2
3
) + 𝜇

(
3

4
A4A

2
5
+ 3

8
(A1A2A5 + A2A3A5 + A3A4A5) +…

)
,

2A5𝜔1

𝛽2𝜔0

(𝜔lin
5
)2 = 9

16
A3
5
+ 3

4
A5(A2

1
+ A2

2
+ A2

3
+ A2

4
) +

3

8
(A1A2A4 + A2A3A4) +

3

16
(A1A

2
2
+ A2

1
A3 + A2

3
A1 + A3A

2
4
) +… ,

.................................................................................................. .

In what follows system (2.179) for 𝜇 = 0 takes a triangular form and it can be reduced to the
recurrent sequence of equations, whereas for 𝜇 = 1 it transits into the input form (2.178).
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148 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Unknown quantities are sought in the forms of PS:

𝜔1 = 𝜔
(0)
1

+ 𝜇𝜔
(1)
1

+ 𝜇2𝜔
(2)
1

+… , (2.180)

Aj = A(0)
j + 𝜇A(1)

j + 𝜇2A(2)
j +… , j = 2, 3, 4,… . (2.181)

The first equation of system (2.179) is used for defining the first term of PS (2.180), i.e. 𝜔
(0)
1

through the condition of a lack of the secular terms in solution (2.167) being produced by the

fundamental mode. Remaining terms 𝜔
(j)
1
, j = 2, 3, 4,… are defined via lack of secular terms

generated by resonance harmonics. Furthermore, our considerations in series are restricted

(2.180) to only the first two terms.

A solution to system (2.179) corresponds to the case where all odd harmonics appear

simultaneously:

A2i = 0, i = 1, 2, 3,… ,

A3 = 0.014493151A1,

A5 = 0.000207090A1, (2.182)

.......................,

𝜔1 = 0.282688A2
1
𝛽2∕𝜔0.

The amplitude – frequency relation follows:

Ωi = i𝜔0

(
1 + 0.282688

A2
1
𝛽2

𝜔2
0

𝜀

)
+ O(𝜀2), i = 1, 3, 5,… , (2.183)

where 𝜔0 = a𝜋∕l.
For 𝛽1 = 0 solutions (2.182) and (2.183) correspond to the internal resonance between har-

monics. Further, we investigate the case, when our system is in a neighborhood of the reso-

nance, i.e. the so called detuning occurs (𝛽1 in (2.487) tends to zero). The governing Equation

(2.487) is cast to the following form

a2
𝜕2u
𝜕x2

− 𝜕2u
𝜕t2

− 𝛿𝛽∗
1
u − 𝜀𝛽2u

3 = 0, (2.184)

where 𝛽∗
1
, 𝛽2 are the some coefficients; 𝛿 = 𝛽1∕𝛽∗1 is the nondimensional detuning small param-

eter; 𝛿 → 0.

We rescale time in Equation (2.166), and a solution to the BVP (2.164), (2.165), (2.184) is

sought in the form of the PS:

u = u0 + 𝛿u1 + 𝛿2u2 +… , (2.185)

𝜔 = 𝜔0 + 𝛿𝜔1 + 𝛿2𝜔2 +… , (2.186)

terms of which are sought in the form of the following PS

u0 = u00 + 𝜀u01 + 𝜀2u02 +… , (2.187)

𝜔0 = 𝜔00 + 𝜀𝜔01 + 𝜀2𝜔02 +… , (2.188)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 149

u1 = u10 + 𝜀u11 + 𝜀2u12 +… , (2.189)

𝜔1 = 𝜔10 + 𝜀𝜔11 + 𝜀2𝜔12 +… , (2.190)

where 𝜔00 = a𝜋∕l is the fundamental frequency for 𝜀 = 0 and 𝛿 = 0.
Splitting the BVP (2.164), (2.165), (2.184) with respect to powers of 𝛿 and 𝜀, results in the

following recurrent sequence of linear PDEs:

a2
𝜕2u00
𝜕x2

− 𝜔2
00

𝜕2u00
𝜕𝜏2

= 0, (2.191)

a2
𝜕2u01
𝜕x2

− 𝜔2
00

𝜕2u01
𝜕𝜏2

= 2𝜔00𝜔01

𝜕2u00
𝜕𝜏2

+ 𝛽2u
3
00
, (2.192)

a2
𝜕2u10
𝜕x2

− 𝜔2
00

𝜕2u10
𝜕𝜏2

= 2𝜔00𝜔10

𝜕2u00
𝜕𝜏2

+ 𝛽∗
1
u00, (2.193)

a2
𝜕2u11
𝜕x2

− 𝜔2
00

𝜕2u11
𝜕𝜏2

= 2𝜔00𝜔10

𝜕2u01
𝜕𝜏2

+ 𝛽∗
1
u01+

+ 2(𝜔01𝜔10 + 𝜔00𝜔11)
𝜕2u00
𝜕𝜏2

+ 2𝜔00𝜔01

𝜕2u10
𝜕𝜏2

+ 3𝛽2u
2
00
u10, (2.194)

....................................................................................... .

BCs (2.164) and periodicity conditions (2.165) are given in the form

uij|x=0,l = 0, (2.195)

uij(x, 𝜏) = uij(x, 𝜏 + 2𝜋), i, j = 0, 1, 2,… . (2.196)

The first equation of sequence (2.191) together with conditions (2.195), (2.196) allow
defining

u00 =
∞∑
i=1

Ai sin
(
𝜋i
l
x
)
sin(i𝜏). (2.197)

Second approximation u01 can be found from the BVP (2.192), (2.195), (2.196). In order
to avoid secular terms in Equation (2.187), set to zero the coefficients standing by terms

sin
(
𝜋i
l
x
)
sin(i𝜏), i = 1, 2, 3,… in the r.h.s. of Equation (2.192):

2A1

𝛽2
𝜔00𝜔01 =

9

16
A3
1
+ 3

4
A1(A2

2
+ A2

3
+ A2

4
+ A2

5
) +

3

8
(A1A2A4 + A2A3A4 + A1A3A5 + A2A4A5) +

3

16
(A2

1
A3 + A2

2
A3) +… ,

8A2

𝛽2
𝜔00𝜔01 =

9

16
A3
2
+ 3

4
A2(A2

1
+ A2

3
+ A2

4
+ A2

5
) +

3

8
(A1A2A3 + A1A3A4 + A1A2A5 + A1A4A5 + A3A4A5) + (2.198)

3

16
(A2

1
A4 + A2

3
A4) +… ,
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18A3

𝛽2
𝜔00𝜔01 =

1

16
A3
1
+ 9

16
A3
3
+ 3

4
A3(A2

1
+ A2

2
+ A2

4
+ A2

5
) +

3

8
(A1A2A4 + A2A3A4 + A1A3A5 + A2A4A5) +

3

16
(A1A

2
2
+ A2

1
A5 + A2

4
A5) +… ,

32A4

𝛽2
𝜔00𝜔01 =

9

16
A3
4
+ 3

4
A4(A2

1
+ A2

2
+ A2

3
+ A2

5
) +

3

8
(A1A2A3 + A1A2A5 + A2A3A5 + A3A4A5) +

3

16
(A2A

2
1
+ A2A

2
3
) +… ,

50A5

𝛽2
𝜔00𝜔01 =

9

16
A3
5
+ 3

4
A5(A2

1
+ A2

2
+ A2

3
+ A2

4
) +

3

8
(A1A2A4 + A2A3A4) +

3

16
(A1A

2
2
+ A2

1
A3 + A2

3
A1 + A3A

2
4
) +… ,

..................................................................................... .

Solving system (2.198) with the help of the HPM, we obtain

A2i = 0, i = 1, 2, 3,… ,

A3 = 0.014493151A1,

A5 = 0.000207090A1, (2.199)

.........................,

𝜔01 = 0.282688A2
1
𝛽2∕𝜔00.

Function u01 is approximated by the series

u01 =
∞∑
i=1

fi(x)
(
C(1)
i sin(i𝜋) + C(2)

i cos(i𝜋)
)
, (2.200)

where C(1)
i , C(2)

i , fi(x) are some coefficients and functions.

Solution to the BVP (2.193), (2.195), (2.196) allows us to define the term u10. Lack of secular
terms in Equation (2.185) requires that coefficients standing by sin

𝜋i
l
x sin(i𝜏), i = 1, 2, 3,…

in the r.h.s. of Equation (2.193) should be equal to zero. Finally, we get

𝜔10 =
𝛽∗
1

2𝜔00i2
, (2.201)

u10 =
∞∑
i=1

Bi sin
( i𝜋
l
x
)
sin(i𝜋). (2.202)
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Observe that here correction term 𝜔10 to the frequency of the i-th harmonics depends on the

harmonics number.

Term u11 is defined through the BVP (2.194)–(2.196). In this case, taking into account the

earlier introduced relations for u01 in Ansatz (2.200), a condition of lack of secular terms

in the PS (2.189) yields the infinite system of equations linear with respect to 𝜔11 and Bi,
i = 1, 2, 3,… of the form

2

3𝛽2
(𝜔01𝜔10A1 + 𝜔00𝜔11A1 + 𝜔00𝜔01B1) =(

9

16
A2
1
+ 1

4
(A2

2
+ A2

3
+ A2

4
+ A2

5
) + 1

8
(A1A3 + A2A4 + A3A5)

)
B1+(

1

2
A1A2 +

1

8
(A2A3 + A1A4 + A3A4 + A2A5 + A4A5)

)
B2+(

1

16
(A2

1
+ A2

2
) + 1

2
A1A3 +

1

8
(A2A4 + A1A5 + A3A5)

)
B3+(

1

2
A1A4 +

1

8
(A1A2 + A2A3 + A2A5)

)
B4+ (2.203)(

1

16
(A2

2
+ A2

3
) + 1

2
A1A5 +

1

8
(A1A3 + A2A4)

)
B5 +… ,

8

3𝛽2
(𝜔01𝜔10A2 + 𝜔00𝜔11A2 + 𝜔00𝜔01B2) =(

1

2
A1A2 +

1

8
(A2A3 + A1A4 + A3A4 + A2A5 + A4A5)

)
B1+(

9

16
A2
2
+ 1

4
(A2

1
+ A2

3
+ A2

4
+ A2

5
) + 1

8
(A1A3 + A1A5)

)
B2+(

1

2
A2A3 +

1

8
(A1A2 + A1A4 + A3A4 + A4A5)

)
B3+(

1

16
(A2

1
+ A2

3
) + 1

2
A2A4 +

1

8
(A1A3 + A1A5 + A3A5)

)
B4+(

1

2
A2A5 +

1

8
(A1A2 + A1A4 + A3A4)

)
B5 +… ,

6

𝛽2
(𝜔01𝜔10A3 + 𝜔00𝜔11A3 + 𝜔00𝜔01B3) =(
1

16
(A2

1
+ A2

2
) + 1

2
A1A3 +

1

8
(A2A4 + A1A5 + A3A5)

)
B1+(

1

2
A2A3 +

1

8
(A1A2 + A1A4 + A3A4 + A4A5)

)
B2+(

9

16
A2
3
+ 1

4
(A2

1
+ A2

2
+ A2

4
+ A2

5
) + 1

8
(A2A4 + A1A5)

)
B3+(

1

2
A3A4 +

1

8
(A1A2 + A2A3 + A2A5 + A4A5)

)
B4+(

1

16
(A2

1
+ A2

4
) + 1

2
A3A5 +

1

8
(A1A3 + A2A4)

)
B5 +… ,
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152 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

32

3𝛽2
(𝜔01𝜔10A4 + 𝜔00𝜔11A4 + 𝜔00𝜔01B4) =(

1

2
A1A4 +

1

8
(A1A2 + A2A3 + A2A5)

)
B1+(

1

16
(A2

1
+ A2

3
) + 1

2
A2A4 +

1

8
(A1A3 + A1A5 + A3A5)

)
B2+(

1

2
A3A4 +

1

8
(A1A2 + A2A3 + A2A5 + A4A5)

)
B3+(

9

16
A2
4
+ 1

4
(A2

1
+ A2

2
+ A2

3
+ A2

5
) + 1

8
A3A5

)
B4+(

1

2
A4A5 +

1

8
(A1A2 + A2A3 + A3A4)

)
B5 +… ,

50

3𝛽2
(𝜔01𝜔10A5 + 𝜔00𝜔11A5 + 𝜔00𝜔01B5) =(

1

16
(A2

2
+ A2

3
) + 1

2
A1A5 +

1

8
(A1A3 + A2A4)

)
B1+(

1

2
A2A5 +

1

8
(A1A2 + A1A4 + A3A4)

)
B2+(

1

16
(A2

1
+ A2

4
) + 1

2
A3A5 +

1

8
(A1A3 + A2A4)

)
B3+(

1

2
A4A5 +

1

8
(A1A2 + A2A3 + A3A4)

)
B4+(

9

16
A2
5
+ 1

4
(A2

1
+ A2

2
+ A2

3
+ A2

4
)
)
B5 +… ,

.................................................................................. .
Finally, we get

B2i = 0, i = 1, 2, 3,… ,

B3 = 0.0144344B1,

B5 = 0.000200445B1, (2.204)

.........................,

𝜔11 = 0.565352
𝛽2A1B1

𝜔00

− 0.141344
𝛽∗
1
𝛽2A

2
1

i2𝜔3
00

,

and

u =
∞∑
i=1

(Ai + 𝛿Bi) sin
( i𝜋
l
x
)
sin(Ωit) + O(𝜀) + O(𝜀𝛿) + O(𝜎2), (2.205)

Ωi =
√
i2𝜔2

00
+ 𝛽∗

1
𝛿 + 0.282688

i2𝛽2A
2
1√

i2𝜔2
00
+ 𝛽∗

1
𝛿

𝜀+ (2.206)

0.565352
i𝛽2A1B1

𝜔00

𝜀𝛿 + o(𝜀) + o(𝛿) + o(𝜀𝛿), i = 1, 2, 3,… ,

where 𝜔00 = a𝜋∕l.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 153

The obtained solution coincides with the results obtained in the one above. For instance, for

𝛿 = 0 relation (2.206) coincides with formula (2.183), and for 𝜀 = 0 with formula (2.177).

2.3.2 Vibrations of the Beam Lying on a Nonlinear Elastic Foundation

Let us consider the problem of bending vibrations of the beam lying on a nonlinear-elastic

foundation. We assume enough high beam stiffness (in order to neglect occurrence of the

longitudinal forces in the beam during its bending). This allows us to study the following PDE:

c2
𝜕4𝑤

𝜕x4
+ 𝜕2𝑤

𝜕t2
+ 𝛽1𝑤 + 𝜀𝛽2𝑤

3 = 0. (2.207)

BCs follow
𝜕2𝑤

𝜕x2
|x=0,l = 𝑤|x=0,l = 0, (2.208)

where: 𝑤 is the transversal beam displacement; c =
√
EI∕𝜌S, S is the area of the transversal

beam cross section.

The solution being sought satisfies the following periodicity condition

𝑤(x, t) = 𝑤(x, t + T). (2.209)

After rescaling of time (2.166), a solution is sought in the form of PS:

𝑤 = 𝑤0 + 𝜀𝑤1 + 𝜀2𝑤2 +… , (2.210)

𝜔 = 𝜔0 + 𝜀𝜔1 + 𝜀2𝜔2 +… , (2.211)

where 𝜔0 =
√
𝜋4c2∕l4 + 𝛽1 is the eigenfrequency of the fundamental mode of linear system

(for 𝜀 = 0).

Substituting Ansatzes (2.166), (2.210) and (2.211) into the input BVP (2.207)–(2.209), and

after splitting with respect to 𝜀 the following recurrent system of linear equations is obtained

c2
𝜕4𝑤0

𝜕x4
+ 𝜔2

0

𝜕2𝑤0

𝜕𝜏2
+ 𝛽1𝑤0 = 0, (2.212)

c2
𝜕4𝑤1

𝜕x4
+ 𝜔2

0

𝜕2𝑤1

𝜕𝜏2
+ 𝛽1𝑤1 = −2𝜔0𝜔1

𝜕2𝑤0

𝜕𝜏2
− 𝛽2𝑤

3
0
, (2.213)

....................................................................

BCs (2.208) and periodicity conditions (2.209) take the following form

𝜕2𝑤i∕𝜕x2|x=o,l = 𝑤i|x=o,l = 0, (2.214)

𝑤i(x, 𝜏) = 𝑤i(x, 𝜏 + 2𝜋), i = 0, 1, 2,… . (2.215)

Solving the BVP (2.212), (2.214), (2.215) yields zero order approximation

𝑤0 =
∞∑
i=1

Ai sin

(
𝜔lin
i

𝜔0

𝜏

)
sin

(
𝜋i
l
x
)
, i = 1, 2, 3,… , (2.216)

where 𝜔lin
i =

√
𝜋4c2i4∕l4 + 𝛽1 are eigenfrequencies of the linear system, 𝜔lin

1
= 𝜔0.
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154 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

In order to find the next approximation, the BVP (2.213)–(2.215) should be solved.

We compare coefficients standing by sin

(
𝜔lin
i

𝜔0
𝜏

)
sin

(
𝜋i
l
x
)
, i = 1, 2, 3,… in the r.h.s. of

Equation (2.213) to zero to remove secular terms. The conditions mentioned so far yield the

infinite system of nonlinear algebraic Equations. (2.174).

Modes of vibrations have the following form

𝑤 =
∞∑
i=1

Ai sin(Ωit) sin
(
𝜋i
l
x
)
+ O(𝜀), (2.217)

where Ωi =
𝜔lin
i

𝜔lin
1

.

In a general case, system (2.174) possesses solution (2.176). In this case only

one i-th harmonic appears, whose frequency is governed by formula (2.177), where

𝜔lin
i =

√
𝜋4c2i4∕l4 + 𝛽1.

For 𝛽1 = 9c2𝜋4∕l4 in the system the internal resonance takes place between the first and third

harmonics. Owing to the lack of secular terms requirement, the nonlinear system of equations

finally takes the following form:

2A1𝜔1

𝛽2𝜔0

(𝜔lin
1
)2 = 9

16
A3
1
+ 3

16
A2
1
A3 +

3

4
A1

∞∑
k=2

A2
k ,

2A3𝜔1

𝛽2𝜔0

(𝜔lin
3
)2 = 1

16
A3
1
+ 9

16
A3
3
+ 3

4
A3

2∑
k=1

A2
k +

3

4
A3

∞∑
k=4

A2
k , (2.218)

2Ai𝜔1

𝛽2𝜔0

(𝜔lin
i )2 = 9

16
A2
i +

3

4
Ai

(
i−1∑
k=1

A2
k +

∞∑
k=i+1

A2
k

)
, i = 2, 4, 5, 6,… .

In order to solve system (2.218), we again apply the HPM. Unknown quantities are sought

through series (2.180), (2.181). Restricting considerations only to the two first terms in PS

(2.180) we get

Ai = 0, i = 2, 4, 5, 6,… ,

A3 = 0.0144072A1, (2.219)

𝜔1 = 0.282679A2
1
𝛽2∕𝜔0.

It should be emphasized that the solution obtained having frequencies (2.220) corresponds

to the internal resonance of the first and third harmonics:

Ωi = i𝜔0

(
1 + 0.282679

A2𝛽2
1

𝜔2
0

𝜀

)
+ O(𝜀2), i = 1, 3, (2.220)

where 𝜔0 = c𝜋2
√
10∕l.

Positive (negative) values correspond to stiff (weak) characteristics of the restoring force.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 155

2.3.3 Vibrations of the Membrane on a Nonlinear Elastic Foundation

Now let us consider natural vibrations of the rectangular membrane lying on the nonlinear

elastic support. The basic Equation has the following form:

a2∇2𝑤 − 𝜕2𝑤

𝜕t2
− 𝛽1𝑤 − 𝜀𝛽2𝑤

3 = 0. (2.221)

Membrane edges are clamped, and hence BCs and periodicity condition have the following

form:

𝑤|x=0,l1 = 𝑤|y=0,l2 = 0,

𝑤(x, y, t) = 𝑤(x, y, t + T), (2.222)

where l1, l2 are membrane edges length in directions x, y, respectively; a =
√
N∕𝜌; N is the

stretching force.

When in the linear case one half-wave appears on each of membrane sides the eigenfrequen-

cies correspond to a fundamental vibration mode.

We rescale time as in (2.166). A solution to the BVP (2.221), (2.222) is sought in the form

of Ansatzes (2.210 ), (2.211). Now in the PS (2.211) we take 𝜔0 =

√
a2

(
𝜋2

l2
1

+ 𝜋2

l2
2

)
+ 𝛽1 as

the eigenfrequency of the fundamental vibration mode of the corresponding linear system. By

substitution of the Ansatzes (2.166), (2.210), (2.211) into the input BVP (2.221), (2.222), the

following recurrent system of linear equations is obtained:

a2∇2𝑤0 − 𝜔2
0

𝜕2𝑤0

𝜕𝜏2
− 𝛽1𝑤0 = 0, (2.223)

a2∇2𝑤1 − 𝜔2
0

𝜕2𝑤1

𝜕𝜏2
− 𝛽1𝑤1 = 2𝜔0𝜔1

𝜕2𝑤0

𝜕𝜏2
+ 𝛽2𝑤

3
0
, (2.224)

................................................................... .

BCs and periodicity condition (2.222) take the form

𝑤i|x=0,l1 = 𝑤i|y=0,l2 = 0,

𝑤i(x, y, 𝜏) = 𝑤i(x, y, 𝜏 + 2𝜋), i = 0, 1, 2,… .
(2.225)

Zero order approximation is yielded via a solution to the BVP (2.223), (2.225):

𝑤0 =
∞∑
m=1

∞∑
n=1

Am,n sin

(
𝜔lin
m,n

𝜔0

𝜏

)
sin

(
𝜋m
l1
x

)
sin

(
𝜋n
l2

)
, (2.226)

whereA1,1 is the amplitude of the fundamental vibrations mode;Am,n,m, n = 1, 2, 3,… ,m, n ≠
(1, 1) are the amplitudes of the successive harmonics; 𝜔lin

m,n =

√
a2

(
𝜋2m2

l2
1

+ 𝜋2n2

l2
2

)
+𝛽1,m, n =

1, 2, 3,… are the eigenfrequencies of the linear system vibrations, 𝜔lin
1,1

= 𝜔0.

In order to find the next approximation we need to solve the BVP (2.224), (2.225). The con-

dition of absence of secular terms requires that on the r.h.s. of Equation (2.224) the coefficients
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156 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

near the terms sin

(
𝜔lin
m,n

𝜔0
𝜏

)
sin

(
𝜋m
l1
x
)
sin

(
𝜋n
l2

)
, m, n = 1, 2, 3,… should be equal to zero. As

the result the following system of nonlinear algebraic equations is obtained:

2A1,1

𝛽2
𝜔0𝜔1 =

27

64
A3
1,1

+ 9

16
A1,1(A2

1,2
+ A2

2,1
) + 3

8
A1,1A

2
2,2

+… ,

2A1,2

𝛽2

𝜔1

𝜔0

(𝜔lin
1,2
)2 = 27

64
A3
1,2

+ 9

16
A1,2(A2

1,1
+ A2

2,2
) + 3

8
A1,2A

2
2,1

+… ,

2A2,1

𝛽2

𝜔1

𝜔0

(𝜔lin
2,1
)2 = 27

64
A3
2,1

+ 9

16
A2,1(A2

1,1
+ A2

2,2
) + 3

8
A2,1A

2
1,2

+… ,

2A2,2

𝛽2

𝜔1

𝜔0

(𝜔lin
2,2
)2 = 27

64
A3
2,2

+ 9

16
A2,2(A2

1,2
+ A2

2,1
) + 3

8
A2,2A

2
1,1

+… ,

...................................................................................

(2.227)

Vibrations mode is defined by the series

𝑤 =
∞∑
m=1

∞∑
n=1

Am,n sin(Ωm,nt) sin
(
𝜋m
l1
x

)
sin

(
𝜋n
l2
y

)
+ O(𝜀), (2.228)

where Ωm,n =
𝜔lin
m,n

𝜔lin
1,1

𝜔 are the frequencies of the corresponding harmonics.

A solution to the system (2.227) corresponds to the case where only one harmonic with the

numbers m, n appears

Ai,j = 0, i, j = 1, 2, 3,… , (i, j) ≠ (m, n); 𝜔1 =
27

128

A2
m,n𝛽2𝜔0

(𝜔lin
m,n)2

. (2.229)

In the case of frequency Ωm,n, we obtain

Ωm,n = 𝜔lin
m,n + 0.2109375

A2
m,n𝛽2

𝜔lin
m,n

𝜀 + O(𝜀2), (2.230)

where m, n = 1, 2, 3,… .

Positive (negative) values of 𝜀 correspond to stiff (weak) restoring force value. However, a

solution changes qualitatively if the linear part of the restoring force is equal to zero (𝛽1 = 0).
In this case the internal resonance occurs between the natural vibration harmonics. A condition

of the absence of secular terms yields the following set of nonlinear algebraic equations:

2A1,1

𝛽2
𝜔0𝜔1 =

27

64
A3
1,1

+ 3

8
A1,1(A2

2,2
+ A2

3,3
+ A2

4,4
+ A2

5,5
)+

3

32
(−A1,1A2,2A4,4 + A2,2A3,3A4,4 − A1,1A3,3A5,5 + A2,2A4,4A5,5)+

3

64
(−A2

1,1
A3,3 + A2

2,2
A3,3 − A2

2,2
A5,5 + A2

3,3
A5,5) +… ,

2A2,2

𝛽2

𝜔1

𝜔0

(𝜔lin
2,2
)2 = 27

64
A3
2,2

+ 3

8
A2,2(A2

1,1
+ A2

3,3
+ A2

4,4
+ A2

5,5
)+

3

32
(A1,1A2,2A3,3 + A1,1A3,3A4,4 − A1,1A2,2A5,5 + A1,1A4,4A5,5+
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A3,3A4,4A5,5 +
3

64
(−A2

1,1
A4,4 + A2

3,3
A4,4) +… ,

2A3,3

𝛽2

𝜔1

𝜔0

(𝜔lin
3,3
)2 = − 1

64
A3
1,1

+ 27

64
A3
3,3

+ 3

8
A3,3(A2

1,1
+ A2

2,2
+ A2

4,4
+ A2

5,5
)+

3

32
(A1,1A2,2A4,4 + A2,2A3,3A4,4 + A1,1A3,3A5,5 + A2,2A4,4A5,5)+

3

64
(A1,1A

2
2,2

− A2
1,1
A5,5 + A2

4,4
A5,5) +… ,

2A4,4

𝛽2

𝜔1

𝜔0

(𝜔lin
4,4
)2 = 27

64
A3
4,4

+ 3

8
A4,4(A2

1,1
+ A2

2,2
+ A2

3,3
+ A2

5,5
)+

3

32
(A1,1A2,2A3,3 + A1,1A2,2A5,5 + A2,2A3,3A5,5 + A3,3A4,4A5,5)+

3

64
(−A2

1,1
A2,2 + A2,2A

2
3,3
) +… ,

2A5,5

𝛽2

𝜔1

𝜔0

(𝜔lin
5,5
)2 = 27

64
A3
5,5

+ 3

8
A5,5(A2

1,1
+ A2

2,2
+ A2

3,3
+ A2

4,4
)+

3

32
(A1,1A2,2A4,4 + A2,2A3,3A4,4)+

3

64
(−A1,1A

2
2,2

+ A2
1,1
A3,3 + A1,1A

2
3,3

+ A3,3A
2
4,4
) +… ,

..................................................................................... .

(2.231)

The solution to system (2.231) is sought with the help of the HPM. Namely, we introduce
the homotopy parameter 𝜇 into the r.h.s. of system (2.231). Unknown quantities are written in
the form of the following PS

𝜔1 = 𝜔
(0)
1

+ 𝜇𝜔
(1)
1

+ 𝜇2𝜔
(2)
1

+… , (2.232)

Am,n = A(0)
m,n + 𝜇A(1)

m,n + 𝜇2A(2)
m,n +… ,

m, n = 1, 2, 3,… (m, n) ≠ (1, 1). (2.233)

System (2.231) gives a solution, where all even “diagonal” harmonics appear simultaneously

Am,n = 0,

m, n = 1, 2, 3,… (m, n) ≠ (1, 1),
(m, n) ≠ (2i − 1, 2i − 1), i = 1, 2, 3,… ,

A3,3 = −0.004566222A1,1,

A5,5 = 0.000021139A1,1,

.......................

𝜔1 = 0.211048A2
1,1
𝛽2∕𝜔0.

(2.234)

The amplitude-frequency relation required possesses the following effective asymptotic
formula

Ωm,n = m𝜔0

(
1 + 0.211048

A2
1,1
𝛽2

𝜔2
0

𝜀

)
+ O(𝜀2), m = n = 1, 3, 5,… , (2.235)

where 𝜔0 =
√

𝜋2

l2
1

+ 𝜋2

l2
2

.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



158 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

2.3.4 Vibrations of the Plate on a Nonlinear Elastic Foundation

Now consider the case of the rectangular simply supported plate lying on a nonlinear elastic

foundation. Basic Equation is

D∇4𝑤 + 𝜌h
𝜕2𝑤

𝜕t2
+ 𝛽1𝑤 + 𝜀𝛽2𝑤

3 = 0, (2.236)

whereas BCs and periodicity conditions are cast in the form

𝑤|x=0,l1 = 𝑤|y=0,l2 = 0,
||||𝜕2𝑤𝜕x2

||||x=0,l1 = ||||𝜕2𝑤𝜕y2
||||y=0,l2 = 0,

𝑤(x, y, t) = 𝑤(x, y, t + T).
(2.237)

Proceeding in a way similar to that of the previous section, we are looking for fre-

quencies corresponding to such a form of the fundamental vibrations mode, where in the

linear case only vibrations exhibiting one half-wave in the direction of each plate sides

is realized.

Then, we change the time scale regarding (2.166). The solution to the BVP (2.236), (2.237)

is approximated through Ansatzes (2.210), (2.211). In the PS (2.211) we take the following

eigenfrequency of the fundamental mode of linear vibrations: 𝜔0 =

√
D
𝜌h

(
𝜋2

l2
1

+ 𝜋2

l2
2

)
+ 𝛽1

𝜌h
.

Substituting Ansatzes (2.166 ), (2.210) and (2.211) into the basic BVP (2.236), (2.237), after

splitting with respect to 𝜀, the following recurrent system of equations is obtained:

D∇4𝑤0 + 𝜌h𝜔2
0

𝜕2𝑤0

𝜕𝜏2
+ 𝛽1𝑤0 = 0, (2.238)

D∇4𝑤1 + 𝜌h𝜔2
0

𝜕2𝑤1

𝜕𝜏2
+ 𝛽1𝑤1 = −2𝜌h𝜔0𝜔1

𝜕2𝑤0

𝜕𝜏2
− 𝛽2𝑤

3
0
, (2.239)

............................................. .

BCs and periodicity conditions (2.237) have the following form:

𝑤i|x=0,l1 = 𝑤i|y=0,l2 = 0,
|||||𝜕

2𝑤i

𝜕x2

|||||x=0,l1 =
|||||𝜕

2𝑤i

𝜕y2

|||||y=0,l2 = 0,

𝑤i(x, y, 𝜏) = 𝑤i(x, y, 𝜏 + 2𝜋), i = 0, 1, 2, ....

(2.240)

Solution to BVP (2.238), (2.240), corresponding to zero order approximation, is defined via

formula (2.226), where 𝜔lin
m,n =

√
D
𝜌h

(
𝜋2m2

l2
1

+ 𝜋2n2

l2
2

)
+ 𝛽1

𝜌h
, m, n = 1, 2, 3,… are the eigenfre-

quencies of vibrations of the associated linear system (for 𝜀 = 0), 𝜔lin
1,1

= 𝜔0.

Next approximation is found solving the BVP (2.239), (2.240). In order to exclude secular

terms, coefficients standing by the terms sin

(
𝜔lin
m,n

𝜔0
𝜏

)
sin

(
𝜋m
l1
x
)
sin

(
𝜋n
l2
y
)
, m, n = 1, 2, 3,…

on the r.h.s. of Equation (2.75) are set to zero. The latter condition produces the following
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 159

infinite system of nonlinear algebraic equations:

2𝜌hA1,1

𝛽2
𝜔0𝜔1 =

27

64
A3
1,1

+ 9

16
A1,1(A2

1,2
+ A2

2,1
) + 3

8
A1,1A

2
2,2

+… ,

2𝜌hA1,2

𝛽2

𝜔1

𝜔0

(𝜔lin
1,2
)2 = 27

64
A3
1,2

+ 9

16
A1,2(A2

1,1
+ A2

2,2
) + 3

8
A1,2A

2
2,1

+… ,

2𝜌hA2,1

𝛽2

𝜔1

𝜔0

(𝜔lin
2,1
)2 = 27

64
A3
2,1

+ 9

16
A2,1(A2

1,1
+ A2

2,2
) + 3

8
A2
1,2
A2,1 +… ,

2𝜌hA2,2

𝛽2

𝜔1

𝜔0

(𝜔lin
2,2
)2 = 27

64
A3
2,2

+ 9

16
A2,2(A2

1,2
+ A2

2,1
) + 3

8
A2
1,1
A2,2 +… ,

................................................................. .

(2.241)

Similarly to the previous case, the vibration form is defined by formula (2.228). Solution to
system (2.241) has the following form

Ai,j = 0, i, j = 1, 2, 3,… , (i, j) ≠ (m, n),

𝜔1 =
27

128

A2
m,n𝛽2𝜔0

𝜌h(𝜔lin
m,n)2

.

Only one harmonic with numbers (m, n) appears, and its frequency is

Ωm,n = 𝜔lin
m,n + 0.2109375

A2
m,n𝛽2

𝜌h𝜔lin
m,n

𝜀 + O(𝜀2), m, n = 1, 2, 3,… .

Positive (negative) values of 𝜀 corresponds to stiff (weak) characteristics of the restoring
force.
For 𝛽1 = 9𝜋4D(1∕l2

1
+ 1∕l2

2
)2 a solution to the problem changes qualitatively. Namely, in

this case simultaneously appear harmonics (1, 1) and (3, 3). Absence of secular terms yields
the following system of nonlinear equations:

2𝜌hA1,1

𝛽2
𝜔0𝜔1 =

27

64
A3
1,1

− 3

64
A2
1,1
A3,3+

3

8
A1,1(A2

2,2
+ A2

3,3
+ A2

4,4
+ A2

5,5
) +… ,

2𝜌hA2,2

𝛽2

𝜔1

𝜔0

(𝜔lin
2,2
)2 = 27

64
A3
2,2
+

3

8
A2,2(A2

1,1
+ A2

3,3
+ A2

4,4
+ A2

5,5
) +… ,

2𝜌hA3,3

𝛽2

𝜔1

𝜔0

(𝜔lin
3,3
)2 = − 1

64
A3
1,1

+ 27

64
A3
3,3
+

3

8
A3,3(A2

1,1
+ A2

2,2
+ A2

4,4
+ A2

5,5
) +… ,

2𝜌hA4,4

𝛽2

𝜔1

𝜔0

(𝜔lin
4,4
)2 = 27

64
A3
4,4
+ (2.242)
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160 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

3

8
A4,4(A2

1,1
+ A2

2,2
+ A2

3,3
+ A2

5,5
) +… ,

2𝜌hA5,5

𝛽2

𝜔1

𝜔0

(𝜔lin
5,5
)2 = 27

64
A3
5,5
+

3

8
A5,5(A2

1,1
+ A2

2,2
+ A2

3,3
+ A2

4,4
) +… ,

................................................................. .

In order to solve system (2.242) we introduce the homotopy parameter 𝜇 on its r.h.s. in a

way similar to that described previously. Unknown quantities are rewritten in the form of PS

(2.232), (2.233). By taking in PS (2.232) only the first two terms, the following solution to

system (2.242) is obtained:

Ai,j = 0, i, j = 1, 2, 3,… , (i, j) ≠ (1, 1), (3, 3),

A3,3 = −0.004566222A1,1, 𝜔1 = 0.211048
A2
1,1
𝛽2

𝜌h𝜔0

.

Frequencies of the harmonics follow:

Ωm,n = m𝜔0

(
1 + 0.211048

A2
1,1
𝛽2

𝜌h𝜔2
0

𝜀

)
+ O(𝜀2), m = n = 1, 3,

where 𝜔0 =
√

10
𝜋4D
𝜌h

(
1

l2
1

+ 1

l2
2

)
.

2.4 SSS of Beams and Plates

2.4.1 SSS of Beams with Clamped Ends

In this section we apply our approach to compute SSS of a beam (−0.5l ≤ x ≤ 0.5l) clamped

on its ends. The beam is loaded by the uniformly distributed load q. After nondimensional

procedure owing to (2.8), the basic Equation takes the following form

WIV = q, q =
ql3

EI
. (2.243)

In order to close the BVP associated with the given equation, we attach the BCs (2.15). Exact

solution to BVP (2.243), (2.15) takes the following form:

W =
q

24
x4 −

q

48

6 − 5𝜀

2 − 𝜀
x2 +

q

384

10 − 9𝜀

2 − 𝜀
. (2.244)

In what follows we are going to compare how the solution obtained via our approach coin-

cides with the exact one governed by (2.244). First, we present the displacement W in the

form of (2.16). Substituting this Ansatz into Equation (2.243) and BCs (2.15), and splitting

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 161

with respect to powers of 𝜀, the following recurrent sequence of the BVPs is obtained:

WIV
0

= q;

W0 = 0, WII
0
= 0 for x = ±0.5,

WIV
j = 0;

Wj = 0, WII
j = ∓

j−1∑
i=0

WI
i for x = ±0.5, j = 1, 2, 3,… .

From BVPs one obtains:
W =

q

24
x4 + C1x

2 + C2, (2.245)

where

C1 =
q

24

(
−3

2
+

∞∑
j=1

1

2j
𝜀j

)
, (2.246)

C2 =
q

96

(
5

4
−

∞∑
j=1

1

2j
𝜀j

)
. (2.247)

The series in formulas (2.246) and (2.247) is the geometric progression with the denominator
0.5𝜀, having the radius of convergence 𝜀 = 2, and the following sum:

∞∑
j=1

𝜀j

2j
= 𝜀

2 − 𝜀
. (2.248)

Due to Equation (2.248), formula (2.245) coincides with formula (2.244). Therefore, in the
studied case our approach gives the exact solution to the problem. However, in practice for the
majority of the cases only a few of the first terms of the PS can be constructed. This is why we
apply PA to the PS.
Let us verify benefits yielded by the PA for the studied case. Let us take three first terms of

the PS for coefficients C1 and C2, and let us apply the PA:

C1[1∕1](𝜀) = −
q

48

6 − 5𝜀

2 − 𝜀
, C2[1∕1](𝜀) =

q

384

10 − 9𝜀

2 − 𝜀
.

We get the exact solution. Now let us estimate what is the difference between solutions
obtained via the PA and PS. For this purpose we estimate the bending moment using the exact
solution (2.244)

M = −
[q
2
x2 −

q

12

6 − 5𝜀

2 − 𝜀

]
. (2.249)

Next by taking three first terms we estimate the error in determination of the displacement
and bending moment at the beam center and at the beam end via the PS. In Figure 2.19 com-
putational results are shown. One may observe that the largest error is obtained in the beams
center (for 𝜀 = 1 error achieves 100%). Error regarding the bending moment in the beam center
(edge) is 50% (25%) for 𝜀 = 1. On the other hand for the value of 𝜀 < 0.5, the error associated
with the SSS factors estimation is less than 5%.
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Figure 2.19 Estimation of the PS accuracy
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Figure 2.20 Efficiency comparison of PS and PA, M|x=0
In Figures 2.20–2.22 various factors of the SSS versus 𝜀 are presented for an exact solution

(2.244), (2.249) (curve 2) and the solution is obtained with the help of PS (curve 1). Largest

error between them is achieved in the interval from 𝜀 = 0.8 up to 𝜀 = 1.0. In this case the PA

allows us to achieve the exact solutions.
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Figure 2.21 Efficiency comparison of PS and PA, M|x=±0.5
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Figure 2.22 Comparison of efficiency of PS and PA, W|x=0
2.4.2 SSS of the Beam with Free Edges

Let us focus on computation of the SSS of the beamwith free ends subjected to a self-balanced

load q(x) = q(4x − 1), 0 ≤ x ≤ 0.5 (Figure 2.23). Due to symmetry of the problem, we study

only half of the beam. Observe that the governing beam equation coincides with Equation

(2.243) assuming that instead of q = const we take q(x) = q(4x − 1) for 0 ≤ x ≤ 0.5. BCs take

the form (2.41). The exact solution to the BVP (2.243), (2.41) reads:

W =
q

6
x4

( x
5
− 1

4

)
+

q

96

1 + 3𝜀

1 + 𝜀
x2 for 0 ≤ x ≤ 0.5. (2.250)
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Figure 2.23 Beam subjected to self-balanced load

We assume the displacement W in the form of a PS. After splitting with respect to 𝜀, the

following recurrent set of BVPs is obtained:

WIV
0

= q(x);

WIII
0

= 0, WI
0
= 0 for x = ±0.5,

WIV
j = 0;

WIII
j = 0, WI

j = ∓
j−1∑
i=0

WI
i for x = ±0.5, j = 1, 2, 3,… .

Successively solving the obtained BVPs one finally obtains the beam dsplacement as

W =
q

6
x4

( x
5
− 1

4

)
+

q

48

(
1

2
+

∞∑
j=1

(−1)j−1𝜀

)
. (2.251)

The series appeared in (2.251) for 𝜀 = 1 is divergent; however, we are able to find its sum:

∞∑
j=1

(−1)j−1𝜀 = 𝜀

1 + 𝜀
.

Observe that the beam displacement (2.251) coincides with the exact solution (2.512). How-

ever, it should be emphasized that the exact solution obtained with the help of PS has been

found only due to the obtained summation procedure. An arbitrary finite number of approxi-

mations cannot yield the appropriate and validated solution.

Applying the PA to the first three terms of the PS one obtains exact solution. Using the exact

solution (2.512), the following bending moments are obtained:

M =
q

6
(4x3 − 3x2) +

q

48

1 + 3𝜀

1 + 𝜀
.

Inwhat followswe estimate the error in determination of the displacementW and the bending

moment M for various values of x (Figure 2.24). It is clear that accuracy of determination of

the displacement is better than that of the bending moment estimation.
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Figure 2.24 Estimation of accuracy of the normal displacement and bending moment of the beam
using the PS
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Figure 2.25 Accuracy estimation by partial sums of PS of normal beam displacements: 1 - W0,
2 - W1, 3 - W2, 4 - exact solution

In Figure 2.25 graphs of various approximations of the function W through partial sums of

the PS in comparison with the exact solution (2.512) are given. In Figure 2.26 graphs present

the first, second and third approximations of the PS for the function M.

Here, similarly to the case of displacement estimation, a sum of three first terms yields

the result coinciding with that of the zeroth order approximation, i.e. the accuracy is not

improved. At the same time, the PA constructed with the inclusion of only three terms yield

the exact solution.
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Figure 2.26 Accuracy estimation by partial sums of PS of bending beam moment: 1 -M0, 2 -M1, 3
- M2, 4 - exact solution

2.4.3 SSS of Clamped Plate

In what followswe study the SSS of the clamped rectangular plate (−0.5a ≤ x ≤ 0.5a,−0.5b ≤
y ≤ 0.5b) uniformly loaded. Governing PDE can be written in the following form:

∇4W = q, (2.252)

where y = y∕b, x = x∕b, k = a∕b, q = qb4∕D.
BCs are given in the form (2.66), (2.67). Let us introduce the plate displacement as a sum of

three components:

W = W1 +W2 +W3, (2.253)

W1 =
q

8k

∑
m=1,3,5

(−1)
m−1
2

𝛼5m

(
1 −

𝛼m tanh 𝛼m + 2

2 cosh 𝛼m
cosh 2𝛼my+

(2.254)𝛼m

cosh 𝛼m
y sinh 2𝛼my

)
cos 2𝛼mx,

W2 =
1

8

∑
m=1,3,5

(−1)
m−1
2 Am

𝛼2m cosh 𝛼m
(𝛼m tanh 𝛼m cosh 2𝛼my−

(2.255)2𝛼my sinh 2𝛼my) cos 2𝛼mx,

W3 =
k2

8

∑
m=1,3,5

(−1)
m−1
2 Bm

𝛽2m cosh 𝛽m

(
𝛽m tanh 𝛽m cosh

2

k
𝛽mx−

(2.256)2

k
𝛽mx sinh

2

k
𝛽mx

)
cos

2

k
𝛽my,

where 𝛼m = 𝜋m
2k
, 𝛽m = 𝜋mk

2
.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 167

Formula (2.254) describes the deflection of a simply supported plate and subjected to the

uniformly distributed load. Formula (2.255) describes simply supported plate bent bymoments

My acting on the edges y = ±0.5, and has the following form:

My|y=±0.5 = ∑
m=1,3,5,…

(−1)
m−1
2 Am cos

𝜋m
k
x.

Finally, formula (2.256) models the deflection of simply supported plate and subjected to

bending moment Mx located on its edges x = ±0.5k, which is given by the series

Mx|x=±0.5k = ∑
m=1,3,5,…

(−1)
m−1
2 Bm cos𝜋my.

Choice of the plate deformation form (2.253) allows satisfaction to one of the BCs, i.e. the

absence of displacements on the external plate contour. Satisfaction to BCs (2.66), (2.67) yields

the following equations regarding coefficients Am and Bm:

− (1 − 𝜀)
∑

m=1,3,5,…
(−1)

m−1
2 Bm cos𝜋my+

𝜀k

⎧⎪⎨⎪⎩−
q

4

∑
m=1,3,5,…

1

𝛼4m

⎛⎜⎜⎝1 −
𝛼m tanh 𝛼m + 2

2 cosh 𝛼m
cosh 2𝛼my +

𝛼m

cosh 𝛼m
y sinh 2𝛼my

⎞⎟⎟⎠ +

1

4

∑
m=1,3,5,…

Am
cosh 𝛼m

(tanh 𝛼m cosh 2𝛼my − 2y sinh 2𝛼my)+

(2.257)
k
4

∞∑
m=1,3,5,…

Am
𝛽m

(
tanh 𝛽m +

𝛽m

cosh2𝛽m

)
(−1)

m−1
2 cos𝜋mmy

}
= 0,

− (1 − 𝜀)
∑

m=1,3,5,…
(−1)

m−1
2 Am cos

𝜋m
k
x+

𝜀

{
q

8k

∑
m=1,3,5,…

1

𝛼4m

(
𝛼m

cosh2𝛼m
− tanh 𝛼m

)
× cos

𝜋m
k
x−

(2.258)
1

4

∑
m=1,3,5,…

(−1)
m−1
2
Am
𝛼m

(
tanh 𝛼m +

𝛼m

cosh2𝛼m

)
cos

𝜋m
k
x−

k
4

∑
m=1,3,5,…

Bm
cosh 𝛽m

(
tanh 𝛽m cosh

2

k
𝛽mx −

2

k
x sinh

2

k
𝛽mx

)}
= 0.

Underlined terms in Equation (2.257) represent even functions of y, which are equal to

zero for y = ±0.5, and which can be presented in the series form with respect to cos 𝜋iy, i =
1, 3, 5,… . The underlined term in Equation (2.258) is developed into a series with respect to

cos𝜋ix∕k, i = 1, 3, 5,… . By substituting the mentioned series into Equations (2.257), (2.258)

and collecting terms standing by cos 𝜋iy and cos 𝜋ix∕k, the following infinite system of LAE
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168 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

with respect to coefficients Ai and Bi is obtained:

Bi

{
1 + 𝜀

[
k2

4

1

𝛽i

(
tanh 𝛽i +

𝛽i

cosh2𝛽i

)
− 1

]}
+ 𝜀

4

𝜋2
i

∑
m=1,3,5,…

Am
m(

m2

k2
− i2

)2
=

𝜀
q

8

1

𝛽4i

(
𝛽i

cosh2𝛽i
− tanh 𝛽i

)
, i = 1, 3, 5,… , (2.259)

Ai

{
1 + 𝜀

[
k2

4

1

𝛼i

(
tanh 𝛼i +

𝛼i

cosh2𝛼i

)
− 1

]}
+ 𝜀

4

𝜋2

i
k

∑
m=1,3,5,…

Bm
m(

m2 + i2

k2

)2
=

𝜀
q

8k
1

𝛼4i

(
𝛼i

cosh2𝛼i
− tanh 𝛼i

)
, i = 1, 3, 5,… . (2.260)

Let us present the coefficients Ai and Bi in the following form:

Ai =
∞∑
j=0

Ai(j)𝜀
j, Bi =

∞∑
j=0

Bi(j)𝜀
j. (2.261)

After substitution of Ansatzes (2.261) into the system of LAE (2.259) and (2.260), the fol-
lowing formulas for determination of the j-th approximations of the unknown coefficients
are derived:

Ai(0) = 0, Bi(0) = 0,

Ai(1) =
q

8k
1

𝛼4i

(
𝛼i

cosh2𝛼i
− tanh 𝛼i

)
, Bi(1) =

q

8

1

𝛽4i

(
𝛽i

cosh2𝛽i
− tanh 𝛽i

)
,

Ai(j) = Ai(j−1)

[
1 − 1

4

1

𝛼i

(
tanh 𝛼i +

𝛼i

cosh2𝛼i

)]
− 4

𝜋
i×

(2.262)∑
m=1,3,5,…

Bm(j − 1)
m∕k(

i2

k2
+ m2

)2
, i = 1, 3, 5,… ,

Bi(j) = Bi(j−1)

[
1 − k2

4

1

𝛽i

(
tanh 𝛽i +

𝛽i

cosh2𝛽i

)]
−

(2.263)4

𝜋2
i

∑
m=1,3,5,…

Am(j − 1) m(
m2

k2
+ i2

)2
, i = 1, 3, 5,… .

Let us consider the SSS of the square plate. Distribution of bending moments is equal
regarding its edges; therefore Ai = Bi and systems (2.259) and (2.260) became identity. After
determination of first four coefficients Ai with respect to formulas (2.262) and (2.263), we
apply the PA:

Ai[1∕1](𝜀) = 𝜀
a0 + a1𝜀

b0 + b1𝜀
, (2.264)

where a0 = Ai(1), b0 = 1, a1 = Ai(2) + b1Ai(1), b1 = −Ai(3)∕Ai(2).
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 169

Estimated via PA in (2.264) for 𝜀 = 1 deflection in the plate center achieves 1.275 ⋅ 10−3q
(known value [76] - 1.260 ⋅ 10−3q, which gives the error of 1.2%). Displacement, obtained

using PS yields 1.797 ⋅ 10−3q, which corresponds to the error of 42.6%.
The bending moment in the plate center estimated through the PA in (2.264) for 𝜀 = 1,

𝜈 = 0.3 has a value of 5.173 ⋅ 10−2q (known value [76] - 5.130 ⋅ 10−2q; error - 0.83%). The
same quantities regarding the PS estimation yield: 3.883 ⋅ 10−2q (error - 24.2%).
The bending momentsMx andMy achieve their maximal values in the center of the clamped

plate side. The maximal bending moment defined via the PA in (2.264) is of 2.400 ⋅ 10−2q
(known value [76] - 2.310 ⋅ 10−2q, error - 3.90%). The corresponding result yielded by the PS
for 𝜀 = 1 is 2.941 ⋅ 10−2q (error - 27.3%).
For the coefficients Ai, obtained on the basis of the PS by (2.262)–(2.263) formulas for

𝜀 = 1 (curves 1) and those computed with the help of the PA (2.264) (curves 2). Dependencies

W|x=y=0, Mx|x=y=0 = My|x=y=0,Mx|x=±0.5k versus 𝜀 are shown in Figures 2.27, 2.28.

4.0

3.0

10
3 W

/q

2.0

1.0
0.2 0.4 0.6

ε
0.8

2

1

W|x = y = 0

Figure 2.27 Estimation of the PS accuracy in determination of the plate normal displacements

5.0

Mx|x=y=0

Mx|x=0.5
y=0

4.0

3.0

10
2 M

/q

2.0

1.0

0.2 0.4 0.6

2

1

1

2

x

0.8
0.0

Figure 2.28 Estimation of the PS accuracy while bending moment determination
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170 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Reported graphs allow us to trace the dependencies of the SSS factors versus parameter 𝜀.

For all of the presented curves two zones are remarkable. First one begins at 𝜀 = 0 and ends at

𝜀 = 0.6. In this zone the difference between results obtained via the PS and PA is less than 5%.
In the second zone (from 𝜀 = 0.6 up to 𝜀 = 1.0) one may observe the rather large difference

of both types of curves (the largest difference is achieved for 𝜀 = 1). Results obtained via the

PA can be practically treated as exact ones. Consequently, in the case studied we have reliable

results corresponding to the practical application of the PS only for 𝜀 = 0.6.

Interestingly the following peculiarity of our proposed method is exhibited if one carries out

computation only using the PS, then the largest error is achieved in the plate center (errors

regarding bending moments estimation in both plate center and its edges are smaller). Appli-

cation of the PA decreases the error in SSS factors estimation, making it almost the same for

either deflection or bending moment estimations.

This can be explained in the followingmanner. Location of poles of the PA in the unit circle of

the parameter 𝜀 is conserved during differentiation of the function found with respect to coor-

dinates x and y. Therefore, series improvement using the PA either for deflections or bending

moments is of the same order. This property belongs to one of the important PA benefits.

2.4.4 SSS of a Plate with Free Edges

Let us consider the SSS of the plate (−0.5a ≤ x ≤ 0.5a; −0.5b ≤ y ≤ 0.5b) being under

action of the self-balanced load q(x, y) = q0 cos
𝜋m
k
x cos𝜋ny, m, n = 2, 4, 6,… . The non-

dimensonalized governing PDE can be cast to the following form:

∇4W = q0 cos
𝜋m
k
x cos𝜋ny, (2.265)

where q0 = q0b
4∕D.

BCs regarding the free contour in the transformed form have the following form:

Wxxx + (2 − 𝜈)Wyyx = 0,

for x = ±0.5k,
(1 − 𝜀)Wx ± 𝜀k(Wxx + 𝜈Wyy) = 0,

(2.266)

Wyyy + (2 − 𝜈)Wxxy = 0,

for y = ±0.5.
(1 − 𝜀)Wy ± 𝜀(Wyy + 𝜈Wxx) = 0,

(2.267)

After substitution of the perturbation series into Equation (2.265), and into BCs (2.266),

(2.267), and after splitting with respect to powers of 𝜀, the following recurrent system of the

BVPs is obtained:

∇4W0 = q0 cos
𝜋m
k
x cos𝜋ny,

W0x = 0, W0xxx = 0 for x = ±0.5k,

W0y = 0, W0yyy = 0 for y = ±0.5,

∇4Wj = 0,
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 171

Wjxxx + (2 − 𝜈)Wjyyx = 0,

for x = ±0.5k.
Wjx = ∓k

∑j−1
i=0(Wixx + 𝜈Wiyy),

Wjyyy + (2 − 𝜈)Wjxxy = 0,

for y = ±0.5.
Wjy = ∓

∑j−1
i=0(Wiyy + 𝜈Wixx),

A few first coefficients of the PS

W = W0 +W1𝜀 +W2𝜀
2 +… (2.268)

follow

W0 =
q0

𝜋4
(
m2

k2
+ n2

) cos
𝜋m
k
x cos𝜋ny,

W1 = −
q0(1 − 𝜈)

2𝜋2
(
m2

k2
+ n2

) ⎧⎪⎨⎪⎩k
(
m2

k2
+ 𝜈n2

)
𝜋n sinh 𝜋nk∕2

(−1)
m
2

[(
𝜋nk
2
C tanh

𝜋nk
2

−

1 + 𝜈

1 − 𝜈

)
cosh𝜋nx − 𝜋nx sinh𝜋nx

]
cos𝜋ny +

n2 + 𝜈
m2

k2
𝜋m
k
sinh

𝜋m
2k

(−1)
n
2

[(
𝜋m
2k

coth
𝜋m
2k

−

1 + 𝜈

1 − 𝜈

)
coth

𝜋m
k
y − 𝜋m

k
y sinh

𝜋m
k
y
]
cos

𝜋m
k
x
}
,

W2 = −
q0(1 − 𝜈)2

4𝜋2
(
m2

k2
+ n2

) ⎧⎪⎨⎪⎩k
(
m2

k2
+ 𝜈n2

)
sinh𝜋nk∕2

(−1)
m
2

[
(1 − 𝜈)𝜋nk

2

1

sinh2𝜋nk∕2
−

(3 + 𝜈) coth 𝜋nk
2

] [(
𝜋nk
2

coth
𝜋nk
2

− 1 + 𝜈

1 − 𝜈

)
cosh𝜋nx − 𝜋nx sinh𝜋nx

]
cos𝜋ny+

n2 + 𝜈
m2

k2

sinh
𝜋m
2k

(−1)
n
2

[
(1 − 𝜈)𝜋m

2k
1

sinh2
𝜋m
2k

− (3 + 𝜈) coth 𝜋m
2k

]

[(
𝜋m
2k

coth
𝜋m
2k

− 1 + 𝜈

1 − 𝜈

)
cosh

𝜋m
k
y − 𝜋m

k
y sinh

𝜋m
k
y
]
cos

𝜋m
k
x−

2q0(1 − 𝜈)3(−1)
m
2 (−1)

n
2

𝜋5
(
m2

k2
+ n2

)2

{
k
(
𝜋m
k

)2

∑
i=2,4,6,…

i(−1)
i
2

sinh
𝜋ik
2

(
m2

k2
+ i2

)2

[(
𝜋ik
2

coth
𝜋ik
2

− 1 + 𝜈

1 − 𝜈

)
cosh𝜋ix−
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172 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

𝜋ix sinh𝜋ix] cos𝜋iy + (𝜋n2)
∑

i=2,4,6,…

(−1)
i
2 (i∕k)

sinh
𝜋i
2k

(
n2 + i2

k2

)2

[(
𝜋i
2k

coth
𝜋i
2k

−

1 + 𝜈

1 − 𝜈

)
cosh

𝜋i
k
y − 𝜋i

k
y sinh

𝜋i
k
y
]
cos

𝜋i
k
x
}
.

Further, we apply PA to the truncated PS (2.268). In what follows we give results of com-

putations of some SSS factors for the plate with the following parameters: m = n = 2, k = 1,

𝜈 = 0.3. Figures 2.29 and 2.30 show the plate displacement W as well as bending moments

Mx, My for y = 0.

Here we apply an approach differing from that of the so far illustrated and discussed. Namely,

although this problem could be reduced to that of an infinite system of LAEs, now the SSS is

constructed through successive solutions to the recurrent BVPs with the successive application

of the PA to a PS that is found. Even though two of the mentioned approaches yield the same

results, the approach now applied is more suitable, since solutions corresponding to the first

order approximation possess the same structure.

2.4.5 SSS of the Plate with Mixed Boundary Conditions
“Clamping–Simple Support”

We consider a rectangular plate simply supported on its two edges, and with mixed BCs on

the two remaining edges of the type of “clamping–simple support” (Figure 2.8). The plate

is subjected to the uniformly distributed load of q intensity. In what follows we will study a

symmetric problem (Figure 2.8a). Finding its solution is reduced to a solution of the infinite

system of LAEs that is analogous to that already considered during studies of the SSS of

6.0

4.0

2.0

10
3 W

/q

0.0

−0.2

0.1 0.2 0.3

x

0.4

−0.4

Figure 2.29 Normal displacement versus x for y = 0
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4.0
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3 M

/q
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x

0.4
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Figure 2.30 Bending moments versus x for y = 0

the rectangular clamped plate. After introduction of nondimensional quantities the basic PDE

takes the form (2.252), and BCs correspond to (2.114), (2.115). Plate displacement has the

following form

W = W1 +W2,

W1 =
q

8k

∑
m=1,3,5,…

(−1)
m−1
2

𝛼m

(
1 −

𝛼m tanh 𝛼m + 2

2 cosh 𝛼m
cosh 2𝛼my+

(2.269)𝛼m

cosh 𝛼m
y sinh 2𝛼my

)
cos

𝜋m
k
x,

W2 =
1

8

∑
m=1,3,5,…

(−1)
m−1
2

𝛼2m

Am
cosh 𝛼m

(𝛼m tanh 𝛼m cosh 2𝛼my−

(2.270)
2𝛼my sinh 2𝛼my) cos

𝜋m
k
x,

where 𝛼m = 𝜋m
2k
.

Similarly to the case of the clamped plate, formula (2.269) describes the displacement of

simply supported plate along its contour, whereas formula (2.270) yields the displacement of

the simply supported plate which is subjected to the bending moments loading My acting on

edges y = ±0.5:
My|y=±0.5 = ∑

m=1,3,5,…
Am(−1)

m−1
2 cos 2𝛼mx.

Ansatzes (2.269), (2.270) satisfy the condition of equality to zero of the vertical displace-

ments on the plate contour, as well as the BCs (2.114).
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174 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Satisfaction to BCs (2.115) yields the following equations:∑
m=1,3,5,…

Am(−1)
m−1
2 cos 2𝛼mx = 𝜀H(x)

{ ∑
m=1,3,5,…

(−1)
m−1
2 Am cos 2𝛼mx+

∑
m=1,3,5,…

q

8k
(−1)

m−1
2

𝛼4m

(
𝛼m

cosh2𝛼m
− tanh 𝛼m

)
cos 2𝛼mx−

∑
m=1,3,5,…

(−1)
m−1
2

4𝛼m

(
𝛼m

cosh2𝛼m
+ tanh 𝛼m

)
cos 2𝛼mx

}
, i = 1, 3, 5,… (2.271)

In order to obtain a system of LAEs the following series is applied

H(x) cos 2𝛼mx =
∑

i=1,3,5,…
𝛾im cos 2𝛼ix, (2.272)

𝛾im =
⎧⎪⎨⎪⎩
2
[
0.5 − 𝜇 − 1

2𝜋m
sin 2𝜋𝜇m

]
for i = m,

4

𝜋

1

(m2−i2) [i sin𝜋𝜇i cos 𝜋𝜇m − m sin𝜋𝜇m cos𝜋𝜇i] for i ≠ m.

Substituting Ansatz (2.272) into Equation (2.271) and collecting coefficients standing by
cos 2𝛼ix, the following infinite system of LAEs is obtained:

Ai(−1)
i−1
2 = 𝜀

∑
m=1,3,5,…

𝛾im(−1)
m−1
2 Am

[
1 − 1

4𝛼m

(
𝛼m

cosh2𝛼m
+ tanh 𝛼m

)]
+

𝜀
q

8k

∑
m=1,3,5,…

𝛾im
(−1)

m−1
2

𝛼4m

(
𝛼m

cosh2𝛼m
− tanh 𝛼m

)
, i = 1, 3, 5,… . (2.273)

Now perturbation analysis can be applied. We present coefficients Ai in a PS (2.261), and
after their substitution to Equations (2.273) and splitting with respect to 𝜀, the following recur-
rent system of equations is obtained

Ai(0) = 0, (2.274)

Ai(1) = (−1)
m−1
2

q

8k

∑
m=1,3,5,…

𝛾im
(−1)

m−1
2

𝛼4m

(
𝛼m

cosh2𝛼m
− tanh 𝛼m

)
, (2.275)

Ai(j) = (−1)
i−1
2

∑
m=1,3,5,…

𝛾im(−1)
m−1
2 Am(j−1)

[
1 − 1

4𝛼m

(
𝛼m

cosh2𝛼m
+ tanh 𝛼m

)]
. (2.276)

Note that the PA applied for definition of coefficients Ai has the form (2.264).
Let us analyse the obtained solution (2.274)–(2.276) in limiting cases. The value 𝜇 = 0.5

corresponds to a simple support plate on the edges y = ±0.5, and 𝛾im ≡ 0. Second limiting case
(𝜇 = 0) corresponds to clamped edges y = ±0.5, and 𝛾im = 𝛿im, where 𝛿im is the Kronecker
delta

𝛿im =
⎧⎪⎨⎪⎩
1, for i = m,

0, for i ≠ m.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 175

Recurrent relations (2.274)–(2.276) take the following form:

Ai(0) = 0, (2.277)

Ai(1) =
q

8k
1

𝛼4i

(
𝛼i

cosh2𝛼i
− tanh 𝛼i

)
, (2.278)

Ai(2) =
q

8k
1

𝛼4i

(
𝛼i

cosh2𝛼i
− tanh 𝛼i

)[
1 − 1

4𝛼i

(
𝛼i

cosh2𝛼i
+ tanh 𝛼i

)]
, (2.279)

Ai(3) =
q

8k
1

𝛼4i

(
𝛼i

cosh2𝛼i
− tanh 𝛼i

)[
1 − 1

4𝛼i

(
𝛼i

cosh2𝛼i
+ tanh 𝛼i

)]2

. (2.280)

For the truncated PS (2.277)–(2.280) and for 𝜀 = 1 PA follows:

Ai[1∕1] =
q

2𝛼3i

𝛼i − tanh 𝛼i(𝛼i tanh 𝛼i + 1)
𝛼i − tanh 𝛼i(𝛼i tanh 𝛼i − 1)

. (2.281)

It should be emphasized that formula (2.281) serving for determination of Ai coincides com-
pletely with the S.P. Timoshenko solution [76].
Computation of the SSS components is carried out for the squared plate taking into account

first ten coefficients Ai obtained via formula (2.264) for 𝜀 = 1. Displacement and bending
moments of the plate in its center versus various values of the 𝜇 parameter are shown in
Figures 2.31, 2.32 (solid curves–our solution; dashed curves–FEM solution).
Figure 2.33 reported the computational results of the bending moment My distributed on

edges y = ±0.5 and for different values of the 𝜇 parameter.
Let us briefly discuss the following problem. It is obvious that some of the SSS components

have singularities in the places of the BCs change (see Table 2.1). One may find the follow-

ing asymptotics:W = O(r𝜑+1),Mn = O(r𝜑−1), Qn = O(r𝜑−2). Here r =
√
x2 + y2,Mn and Qn

are the bending moment and generalized transversal force in n plate direction, respectively.
Note that for BCs 1–5 given in Table 2.1 we have 𝜑 = 0.5, whereas in the case of BCs 6 the
parameter 𝜑 is defined via the following transcendental equation:

cos 2𝜋𝜑 = −4 + (1 + 𝜈)2

4 − (1 − 𝜈)2
.

4.0

3.6

3.2

10
3 W

/q

2.8

2.4

2.0

0.1 0.2 0.3 0.4

W|x=y=0

μ

Figure 2.31 Comparison of FEM solutions with ours for plate displacement
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176 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

4.5
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0.1 0.2 0.3 0.4

3.0

4.0

10
3 W

/q

My |x=y=0

Mx|x=y=0

μ

Figure 2.32 Comparison of FEM computational results with ours regarding bending moments
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6.010
2 M

/q

4.0

2.0

0.0
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x
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−2.0

Figure 2.33 Bending moment My for y = ±0.5 for different values of 𝜇 ∶ 1 − 𝜇 = 0, 2 − 0.1, 3 −
0.2; 4 − 0.3; 5 − 0.4, 6 − 0.5

The constructed previously approximate solution does not suffer for the quoted singularities,

and hence they should be added through the known procedure. Namely, let us assume that we

are going to improve momentsMy in the neighborhood of a point of changes of BCs from the

simple support to clamping. Let us introduce polar coordinates with a pole in the BCs change

point (see Figure 2.34). Singular component of the bending moment My can be written in the

following way:

M(c)
y = r0.5C(𝜃) = r0.5(C0 + C1𝜃 +…), (2.282)

where C(𝜃) is a function depending on angle 𝜃.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 177

Table 2.1 Type of mixed BCs

Computational scheme BCs

1 0

y

x x < 0 ∶ My = 0, W = 0,

x > 0 ∶ My = 0, Qy = 0,

2 0

y

x x < 0 ∶ My = 0, W = 0,

x > 0 ∶ W = 0, dW∕dy = 0,

3 0

y

x
x < 0 ∶ Qy = 0, dW∕dy = 0,

x > 0 ∶ W = 0, dW∕dy = 0,

4 0

y

x x < 0 ∶ Qy = 0, dW∕dy = 0,

x > 0 ∶ My = 0, W = 0,

5 0

y

x
x < 0 ∶ Qy = 0, dW∕dy = 0,

x > 0 ∶ My = 0, Qy = 0,

6 0

y

x x < 0 ∶ W = 0, dW∕dy = 0,

x > 0 ∶ Qy = 0, My = 0,

r

0

θ

Figure 2.34 Local coordinates in a point of BCs change

In formula (2.282) while developing the function C(𝜃) into a series with respect to 𝜃 one

may leave only C0.

Let us construct the following equations:

My|y=±0.5 = M(c)
y|y=±0.5 for 𝜃 = 0, (2.283)

Qy|y=±0.5 = Q(c)
y|y=±0.5 for 𝜃 = 0, (2.284)

whereMy,Qy is the bending moment and shearing force, respectively, defined via perturbation

series.
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178 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Formulas (2.283), (2.284) yield the constant C0 and the point yc of matching of singular and

regular components of bending moments.

Let us now calculate the SSS of a plate having its clamping part nonsymmetrically located

with respect to the plate center (Figure 2.8b). PDE (2.252) and BCs (2.114) keep their forms,

whereas in BCs (2.115) the function H(x) should be defined in the following way: H(x) =
H(x) − H(x − 𝜇k). In Equations (2.269), (2.270) cos 𝜋m

k
x is substituted by sin 𝜋m

k
x, (−1)

m−1
2 is

substituted by 1, and summation is carried out through all m. Ansatz (2.272) can be recast to

the following form:

H(x) sin 2𝛼mx =
∑

i=1,2,3,…
𝛾im sin 2𝛼ix,

where 𝛾im are defined by Equation (2.134).

System of LAEs takes the following form:

Ai = 𝜀
∑

m=1,2,3,…
Am𝛾im

[
1 − 1

4𝛼m

(
𝛼m

cosh2𝛼m
+ tanh 𝛼m

)]
+

𝜀
q

8k

∑
m=1,2,3,…

𝛾im
1

𝛼4m

(
𝛼m

cosh2𝛼m
− tanh 𝛼m

)
, i = 1, 2, 3,… .

In reccurrent relations (2.277)–(2.280) for Ai it is necessary to carry out the following

changes: both (−1)
i−1
2 and (−1)

i−1
2 are substituted by 1, and summation is carried out through

all i and m.
PA regarding coefficients Ai keep the form of (2.264).

Computation of SSS components of the squared plate is carried out taking into account the

first ten coefficientsAi for various values of the 𝜇 parameter. Figures 2.35 and 2.36 demonstrate

displacement and moments in the plate center in dependence on 𝜇 parameter. In Figure 2.37

the distribution of the bending momentMy for different values of the 𝜇 parameter is presented.

Solid curves correspond to our solutions, whereas dashed ones to FEM solution.
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/q
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0.6 0.8

W|x=0.5
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Figure 2.35 Comparison of the normal displacement solutions using our and FEM
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Figure 2.36 Comparison of the bending moment solutions using our and FEM

14

12

10

10
2 M

/q

8

6

4

2 1

2
3

4
5

6

7

8
9

10

110

0.2 0.4 0.6
x

0.8

−2

−4

Figure 2.37 Bending moment My for y = ±0.5 for various values of the parameter 𝜇: 1 - 𝜇 = 0,
2–0.1; 3–0.2; 4–0.3; 5–0.4; 6–0.5; 7–0.6; 8–0.7; 9–0.8; 10–0.9; 11–1.0

Analysis of the obtained results shows that the application of HPM yields reliable determi-

nation of the SSS components of the plate with mixed BCs in places located relatively far from

the singularities.

Analysis of the drawings of the SSS factors versus the geometric size of the mixed BCs

allows us to distinguish three characteristic zones. The first zone concerns either the symmetric

location of the clamped plate edges and is located in the interval from 𝜇 = 0 to 𝜇 = 0.1 or

nonsymmetric location in the interval from 𝜇 = 0 to 𝜇 = 0.4. In this zone observed are rather
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180 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

negligible changes of the SSS factors. Deviation from the basic state is less than 5%. In the

second zone with increase of the parameter 𝜇 the significant almost linear increase of the SSS

factors is observed. The zone boundaries are located in intervals 𝜇 = 0.1 to 𝜇 = 0.4 for the

symmetric and from 𝜇 = 0.4 to 𝜇 = 0.9 for the nonsymmetric problem. Third zone begins

with 𝜇 = 0.4 and ends at 𝜇 = 0.5. The zone from 𝜇 = 0.9 to 𝜇 = 1.0 is characterized by a

rather negligible increase of SSS factors with the increase of 𝜇.

Therefore, rather negligible inclusions of nonhomogenous BCs (simple support and clamp-

ing) does not influence SSS of the plate significantly.

2.4.6 SSS of a Plate with Mixed Boundary Conditions “Free
Edge–Moving Clamping”

Let us consider a computation of the rectangular plate simply supported on two edges, and with

mixed BCs “free edge - moving clamping” on two other (see Figure 2.17). Plate is subjected

to action of the uniformly distributed load action of intensity q. In what follows we study the

symmetric case with respect to the origin coordinates (Figure 2.17a).

The input nondimensional BVP has the form (2.270), (2.159), (2.160). Plate displacement

has the following form:

W = W1 +W2,

W1 =
q

24

(
x4 − 3

2
k2x2 + 5

16
k4

)
, (2.285)

W2 =
1

4

∞∑
m=1,3,5,…

Am(𝜈 − 1)
𝛼m sinh 𝛼m

[(
𝜈 + 1

𝜈 − 1
+ 𝛼m coth 𝛼m

)
cosh 2𝛼my−

(2.286)2𝛼my sinh 2𝛽my] cos 2𝛼mx.

Formula (2.285) describes the cylindrical plate bending, if the plate is simply supported

on the edges x = ±0.5k and is subjected to action of the uniformly distributed load. Formula

(2.286) governs the plate displacement which is simply supported on edges x = ±0.5k, whereas
on edges y = ±0.5 the following BCs hold:

Wyyy + (2 − 𝜈)Wxxy = 0, Wy =
∑

m=1,3,5,…
Am cos 2𝛼mx.

Satisfaction to BCs (2.159), (2.160) yields the following equation:∑
m=1,3,5,…

Am cos 2𝛼mx =

𝜀H(x)

{ ∑
m=1,3,5,…

Am

[
1 − 𝛼m(𝜈 − 1)(𝛼m(1 − 𝜈) 1

sinh2𝛼m
−

(3 + 𝜈)C tanh 𝛼m)
]
cos 2𝛼mx + 𝜈

q

8
(4x2 − k2)

}
, m = 1, 3, 5,… .

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 181

Substituting the underlined terms and function H(x) cos 2𝛼mx in the form of the series with

respect to cos 2𝛼ix gives the following infinite system of LAEs regarding coefficients Ai:

Ai = 𝜀
∑

m=1,3,5,…
𝛾imAm

{
1 − 𝛼m(𝜈 − 1)

[
𝛼m(1 − 𝜈) 1

sinh2𝛼m

]}
−

𝜀𝜈q

(
4𝜇

k2

𝜋2t2 cos𝜋𝜇i
+ 2

k2

𝜋i

[(
𝜇2 − 1

4

)
− 2

𝜋2t2

])
, i = 1, 3, 5,… ,

𝛾im =
⎧⎪⎨⎪⎩
2𝜇 + 1

4𝜋m
sin 2𝜋𝜇m i = m,

4

𝜋

1

(m2−i2) [m sin𝜋𝜇m cos 𝜋𝜇i − i sin𝜋𝜇i cos 𝜋𝜇m] i ≠ m.

Further we apply the perturbation approach. As a result the following recurrent conditions

for coefficients Ai determination are obtained:

Ai(0) = 0,

Ai(1) = 𝜈q

(
4𝜇

k2

𝜋2i2
cos𝜋𝜇i + 2k2

𝜋i

[(
𝜇2 − 1

4

)
− 2

𝜋2i2

])
,

Ai(j) =
∑

m=1,3,5,…
Am(j−1)𝛾im

{
1 − 𝛼m(𝜈 − 1)

[
𝛼m(1 − 𝜈) 1

sinh2𝛼m
−

(3 + 𝜈) coth 𝛼m]}.

In the next step coefficients are recast by PA (2.264).

Let us analyse the obtained solution in limiting cases. Values of 𝜇 = 0 correspond tomovable

clamping on the plate edges y = ±0.5, where 𝛾im ≡ 0. The second limiting case corresponds

to 𝜇 = 0.5 and is associated with completely free edges y = ±0.5, where 𝛾im = 1 − 𝛿im. In this

case the PA in (2.264) for 𝜀 = 1 yields the following exact solution:

W =
q

24

(
x4 − 3

2
k2x2 + 5

16
k4

)
+ 𝜈

q

8k

∑
m=1,3,5,…

(−1)
m−1
2

𝛼5m
×

1

sinh 𝛼m(𝛼m(1 − 𝜈)sinh−2𝛼m + (3 + 𝜈) coth 𝛼m)
×[(

𝜈 + 1

𝜈 − 1
+ 𝛼m coth 𝛼m

)
cosh 2𝛼my − 2𝛼my sinh 2𝛼my

]
cos 2𝛼mx.

Computation of the SSS components has been carried out for a square plate taking into

account ten first coefficients Ai obtained via PA (2.264) for 𝜀 = 1. Both displacements and

bending moments are defined in the plate center for certain values of the parameter 𝜇. Results

are presented in Figures 2.38, 2.39, where solid (dashed) curves are obtained by our (FEM)

method.

In a similar way the problem regarding a computation of the SSS of a plate having a part

of the movable clamping nonsymmetrically located with respect to the plate center is solved
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Figure 2.38 Comparison of the plate normal deflection using different methods
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Figure 2.39 Comparison of the plate bending moments using different methods

(Figure 2.17b). In this case the basic PDE (2.252) and BCs (2.159), (2.160) remain valid. In

BCs (2.159), (2.160) the function H(x) takes the following form:

H(x) = H(x) − H(x − 𝜇k).

The formula describing the cylindrical plate bending has the following form:

W1 =
q

24
x(x32kx2 + k3).

In Ansatz (2.286) summation with respect to odd m is substituted by summation for all m.
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Infinite system of LAEs regarding the coefficients Ai has the following form:

Ai = 𝜀
∑

m=1,3,5,…

{
𝛾imAm(𝜈 − 1)

[
𝛼m(1 − 𝜈) 1

sinh2𝛼m
− (3 + 𝜈) coth 𝛼m

]}
+

𝜀𝜈
q

2

{
2
k2

𝜋2i2
sin𝜋𝜇i(2𝜇 − 1) − 2k2

𝜋i

(
𝜇2 + 𝜇 − 2

𝜋2i2

)
cos𝜋i𝜇 − 4

k2

𝜋3i3

}
,

where 𝛾im is defined by the formula (2.134).

Recurrent relations for the coefficients of the trigonometric series are as follows:

Ai(0) = 0,

Ai(1) = 𝜈
q

2

{
2
k2

𝜋2i2
sin𝜋𝜇i(2𝜇 − 1)−

2k2

𝜋i

(
𝜇2 + 𝜇 − 2

𝜋2i2

)
cos𝜋i𝜇 − 4

k2

𝜋3i3

}
,

Ai(j) =
∑

m=1,3,5,…
Am(j−1)𝛾im

{
1 − 𝛼m(𝜈 − 1)

[
𝛼m(1 − 𝜈) 1

sinh2𝛼m
−

(3 + 𝜈) coth 𝛼m]}.

PA coefficients Ai in (2.264) remain valid.

Let us consider the solution obtained in the limiting cases. Value 𝜇 = 0 corresponds to the

movable clamping on edges y = ±0.5, and hence 𝛾im ≡ 0. Second limiting case (𝜇 = 1.0) cor-
responds to free edges y = ±0.5 and hence 𝛾im. In this case the PA in (2.264) for 𝜀 = 1 yields

the exact solution:

W =
q

24
x(x3 − 2kx2 + k3)+

𝜈
q

8k

∑
m=1

1

𝛼5m

1

sinh 𝛼m(𝛼m(1 − 𝜈)sinh−2𝛼m + (3 + 𝜈) coth 𝛼m)
×[(

𝜈 + 1

𝜈 − 1
+ 𝛼m coth 𝛼my

)
cosh 2𝛼my − 2𝛼my sinh 2𝛼my

]
sin 2𝛼mx.

Results devoted to computation of the deflection and bending moments in the square plate

center are presented in Figures 2.38, 2.39 by the dashed curve. Computation is carried out

using the first ten coefficients Ai. Dashed curves correspond to results obtained via FEM.

Also in this case three important zones of the parameter 𝜇 are distinguished. The first one

corresponds to the interval of [0, 0.15] (symmetric) and [0, 0.3] (nonsymmetric) problems. The

second zone concerns intervals [0.15, 0.45] and [0.3, 0.9], whereas the third zone is associated
with intervals [0.45, 0.5] and [0.9, 1.0]. In the first and third zones changes of the parameter

𝜇 have negligible influence on the plate SSS factors. In the second zone small changes of the

parameter 𝜇 lead to essential changes of all SSS plate factors. The plate SSS is not changed

essentially by small parts of nonhomogeneous BCs.
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184 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

2.5 Forced Vibrations of Beams and Plates

2.5.1 Forced Vibrations of a Clamped Beam

We consider the clamped beam (−0.5l ≤ x ≤ 0.5l) subjected to the periodic external load

action of the form P(x, y) = P(x) sin(𝜔t + 𝛼). Basic PDE has the following form:

EIyxxxx + 𝜌ytt = P(x) sin(𝜔t + 𝛼). (2.287)

Solution to Equation (2.287) is sought in the following form:

y = W(x) sin(𝜔t + 𝛼), (2.288)

where x = x∕l.
Substituting Ansatz (2.288) into Equation (2.287) yields

WIV − 𝜆4W = P(x), (2.289)

where 𝜆4 = 𝜌𝜔2l2

EI
, P(x) = P(x)l3

EI
.

BCs are taken in the form of (2.15).
Let us present the beam displacement as PS. Substituting it to Equation (2.289) and BCs

(2.15), and after splitting with respect to 𝜀 the following recurrent sequence of the BVPs is
obtained:

WIV
0

− 𝜆4W0 = P(x),

W0 = 0, WII = 0 for x = ±0.5, (2.290)

WIV
j − 𝜆4Wj = 0,

Wj = 0, WII
j = ∓

j−1∑
i=0

WI
i for x = ±0.5. (2.291)

Let us consider the case when the frequency of excitation does not coincide with any of the
eigenfrequencies of the simply supported beam. PDE (2.290) in the zero order approximation
has the following form:

WIV
0

− 𝜆4W0 =
∑

n=1,3,5,…
An cos𝜋nx +

∑
n=2,4,6,…

Bn sin𝜋nx,

where

An = 2∫
0.5

−0.5
P(x) cos 𝜋ny for n = 1, 3, 5,… ,

Bn = 2∫
0.5

−0.5
P(x) sin𝜋nx for n = 2, 4, 6,… .

In this case we obtain:

W =
∑

n=1,3,5,…

An
𝜋4n4 − 𝜆4

cos𝜋nx +
∑

n=2,4,6,…

Bn
𝜋4n4 − 𝜆4

sin𝜋nx+

(2.292)∑
j=0

𝜀j+1

{ ∑
n=1,3,5,…

𝜋nAn(−1)
n−1
2

2𝜆2(𝜋4n4 − 𝜆4)

[
1 − 1

2𝜆2

(
tanh

𝜆

2
+ tan

𝜆

2

)]j
×

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 185

(
cosh 𝜆x
cosh 𝜆∕2

− cos 𝜆x
cos 𝜆∕2

)
−

∑
n=2,4,6,…

𝜋nBn(−1)
n
2

2𝜆2(𝜋4n4 − 𝜆4)

[
1 − 1

2𝜆2

(
coth

𝜆

2
cot

𝜆

2

)]j
×

(
sinh 𝜆x
sinh 𝜆∕2

− sin 𝜆x
sin 𝜆∕2

)}
.

Changing the summation order with respect to n and j in formula (2.292), the following
expression is obtained:

W =
∑

n=1,3,5,…

An
𝜋4n4 − 𝜆4

cos𝜋nx +
∑

n=2,4,6,…

Bn
𝜋4n4 − 𝜆4

sin𝜋nx+

∑
n=1,3,5,…

𝜋nAn(−1)
n−1
2

2𝜆2(𝜋4n4 − 𝜆4)
𝜀

1 −
[
1 − 1

2𝜆2

(
coth

𝜆

2
+ cot

𝜆

2

)]
𝜀

×

(
cosh 𝜆x
cosh 𝜆∕2

− cos 𝜆x
cos 𝜆∕2

)
−

∑
n=2,4,6,…

𝜋nBn(−1)
n
2

2𝜆2(𝜋4n4 − 𝜆4)
𝜀

1 −
[
1 − 1

2𝜆2

(
cot

𝜆

2
cot

𝜆

2

)]
𝜀

×

(
sinh 𝜆x
sinh 𝜆∕2

− sin 𝜆x
sin 𝜆∕2

)}
.

The same result is obtained if in Ansatz (2.292) we keep only three first terms, and then
recast them through the PA.
Let us estimate how the solution obtained via the PA differs from results found through PS.

Let us study the particular case:

P(x) = q cos 𝜋mx, m = 1, 3, 5,… .

Then, in the zeroth order approximation we get

W0 =
q

𝜋4m4 − 𝜆4
cos𝜋mx. (2.293)

In the next approximation we find

W1 =
xmq(−1)

m−1
2

2𝜆2(𝜋4m4 − 𝜆4)

(
cosh 𝜆x
cosh 𝜆∕2

− cos 𝜆x
cos 𝜆∕2

)
, (2.294)

W2 =
𝜋mq(−1)

m−1
2

2𝜆2(𝜋4m4 − 𝜆4)

(
1 − 1

2𝜆

(
tanh

𝜆

2
+ tan

𝜆

2

))(
cosh 𝜆x
cosh 𝜆∕2

− cos 𝜆x
cos 𝜆∕2

)
. (2.295)

Let us compute the beam displacement using the PS (Figure 2.40), where we have fixed the
value km = 𝜆4∕(𝜋m)4 = 0.9 during computations. It is clear that PS for 𝜀 = 1 gives a rather
high error of the beam displacement. In Figure 2.41 graphs of errors associated with the beam
displacement estimation for various values of the parameter km are shown.
Analogous results are obtained if one computes the bending moment for each step of

the approximations, and then the results obtained are compared with the exact solution
(Figure 2.42, km = 0.9).
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Figure 2.40 Computation of the beam displacement using PS and PA: 1 -W0 (2.293); 2 -W1 (2.294);
3 - W2 (2.295); 4 - W0 +W1 +W2; 5 - exact solution and PA
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Figure 2.41 Error in estimation of the beam deflection versus parameter km = 𝜆4∕(𝜋m)4

In Figure 2.43 it is shown how the error of the bending moment determination defined via

PS changes for 𝜀 = 1 in different beam cross sections for some values of the parameter km.
The solution constructed so far possesses the following drawback: secular terms appear when

the exciting frequency coincides with one of the simple supported beam frequencies. However,

this effect can be removed by developing the external load into a series regarding modes of the

clamped beam (2.29). One may verify that if in Equation (2.29) we take c =
√
2, then

∫
0.5

−0.5
WiWjdx = ∫

0.5

−0.5
W0iW0jdx + 𝜀∫

0.5

−0.5
(W0iW1j +W1iW0j)dx+

(2.296)
𝜀2 ∫

0.5

−0.5
(W0iW2j +W1iW1j +W2iW2j)dx = 𝛿ij.
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Figure 2.42 Errors in bending moment estimations by PS and PA: 1–M0; 2–M1; 3–M2; 4–M0 +
M1 +M2; 5–exact solution and PA

We apply the method of splitting with respect to eigenmodes Wn and we look for the beam

deflection in the following form:

W =
∞∑
n=1

AnWn. (2.297)
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Figure 2.43 Error in bending moment estimation by PS

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



188 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Substituting Ansatz (2.297) into Equation (2.289), multiplying it by the eigenform Wk, and

carrying out the integration with respect to x from −0.5 to 0.5, we get

∫
0.5

−0.5

∞∑
n=1

An(WIV
n − 𝜆4Wn)Wkdx = ∫

0.5

−0.5
P(x)Wkdx. (2.298)

Since an arbitrary eigenform satisfies the equation

WIV
n − 𝜆4nWn = 0,

where 𝜆4n is the eigenvalue of the BVP (2.12)–(2.15), Equation (2.298) takes the form:

∫
0.5

−0.5

∞∑
n=1

An(𝜆4n − 𝜆4)WnWkdx = ∫
0.5

−0.5
P(x)Wkdx.

Taking into account Equation (2.296) we get

Ak =
1

𝜆4n − 𝜆4 ∫
0.5

−0.5
f (x)(W0k +W1k𝜀 +W2k𝜀

2 +…)dx.

Therefore, coefficient Ak is defined in the form of truncated PS:

Ak = A0 + A1𝜀 + A2𝜀
2 +… =

1

𝜆cn − 𝜆4

[
∫

0.5

−0.5
f (x)W0kdx + 𝜀∫

0.5

−0.5
f (x)W1kdx + 𝜀2 ∫

0.5

−0.5
f (x)W2kdx +…

]
.

Further, coefficients Ak are presented in the form of PA

Ak[1∕1](𝜀) =
a0 + a1𝜀

1 + b1𝜀
,

where a0 = A0k, a1 = A1k + b1A0k, b1 = A2k∕A1k.

Now the beam deflection can defined using formula Ansatz (2.297), and eigenformsWn are

constructed in the form of PA.

One can mention that the free oscillations problem is reduced to the forced oscillations one

because the initial conditions

𝑤 = 𝑤(0)(x, y), 𝑤t = 𝑤(1)(x, y); at t = 0

are equivalent to the load

q = 𝑤(0) d
2𝛿(t)
dt2

+𝑤(1) d𝛿(t)
dt

,

where 𝛿(t) is the Dirac function.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 189

0

q

q

x

0.5l 0.5l

Figure 2.44 Beam subjected to a self-balanced load

2.5.2 Forced Vibrations of Beam with Free Edges

We consider computation of the dynamical SSS of a beam with free edges (−0.5l ≤ x ≤ 0.5l),
subjected to action of the periodic self-balanced load q(x, t) = q cos 𝜋m

l
x sin(𝜔t + 𝛼),

m = 2, 4, 6,… (Figure 2.44). PDE governing the beam dynamics obtained via introduction

of the nondimensional quantities (2.8), and then time and space variables separation (2.288)

takes the following form:

WIV − 𝜆4W = q cos 𝜋mx, m = 2, 4, 6,… . (2.299)

We apply BCs (2.41) to the ODE (2.299).

Note that exact solution to the BVP (2.299), (2.41) follows:

W =
q

𝜋4n4 − 𝜆4
cos𝜋mx + C1 cosh 𝜆x + C2 cos 𝜆x.

Satisfaction to the BCs (2.41) allows us to define arbitrary constants C1 and C2:

C1 =
q𝜋2m2(−1)

m
2

𝜆(𝜋4n4 − 𝜆4)
⋅

𝜀

[2(1 − 𝜀) + 𝜀𝜆(coth 𝜆∕2 + cot 𝜆∕2)]
⋅

1

sinh 𝜆∕2
,

C2 =
q𝜋2m2(−1)

m
2

𝜆(𝜋4n4 − 𝜆4)
⋅

𝜀

[2(1 − 𝜀) + 𝜀𝜆(coth 𝜆∕2 + cot 𝜆∕2)]
⋅

1

sin 𝜆∕2
.

Finally, the exact solution has the following form:

W =
q

𝜋4m4 − 𝜆4

[
cos𝜋mx + 𝜋2m2(−1)

m
2 𝜀

𝜆[2(1 − 𝜀) + 𝜀𝜆(coth 𝜆∕2 + cot 𝜆∕2)]
×

(2.300)(
cosh 𝜆x
sinh 𝜆∕2

− cos 𝜆x
cos 𝜆∕2

)]
.

Substituting the displacement W in the form of PS in (2.16), and then substituting it to the

ODE (2.299) and BCs (2.41), and splitting with respect to 𝜀, the following recurrent sequence

of the BVPs is obtained:

WIV
0

− 𝜆4W0 = q cos 𝜋mx, m = 2, 4, 6,… ,

WIII
0

= 0, WI
0
= 0 for x = ±0.5,
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190 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

WIV
j − 𝜆4Wj = 0,

WIII
j = 0, WI

j = ∓
j−1∑
i=0

WII
i for x = ±0.5, j = 1, 2, 3,… .

Taking into account the successive approximations, one may obtain the form of a general
term of PS:

W0 =
q

𝜋4m4 − 𝜆4
cos𝜋mx, m = 2, 4, 6,… , (2.301)

W1 =
q𝜋2m2(−1)

m
2

2𝜆(𝜋4m4 − 𝜆4)

(
cosh 𝜆x
sinh 𝜆∕2

− cos 𝜆x
sin 𝜆∕2

)
, (2.302)

W2 =
q𝜋2m2(−1)

m
2

2𝜆(𝜋4m4 − 𝜆4)

[
1 − 𝜆

2

(
coth

𝜆

2
+ cot

𝜆

2

)](
cosh 𝜆x
sinh 𝜆∕2

− cos 𝜆x
sin 𝜆∕2

)
, (2.303)

Wj =
q𝜋2m2(−1)

m
2

2𝜆(𝜋4m4 − 𝜆4)

[
1 − 𝜆

2

(
coth

𝜆

2
+ cot

𝜆

2

)]j−1 (
cosh 𝜆x
sinh 𝜆∕2

− cos 𝜆x
sin 𝜆∕2

)
. (2.304)

After summing up the obtained approximations the solution takes the form:

W =
q

𝜋4m4 − 𝜆4
cos𝜋mx +

q𝜋2m2(−1)
m
2

2𝜆(𝜋4m4 − 𝜆4)
×,

(2.305){ ∞∑
j=0

𝜀j+1
[
1 − 𝜆

2

(
coth

𝜆

2
+ cot

𝜆

2

)]j}(
cosh 𝜆x
sinh 𝜆∕2

− cos 𝜆x
sin 𝜆∕2

)
.

Since the series appearing in (2.305) is a geometric progression, its sum is

∞∑
j=0

𝜀j+1
[
1 − 𝜆

2

(
coth

𝜆

2
+ cot

𝜆

2

)]
= 𝜀

1 −
[
1 − 𝜆

2

(
coth

𝜆

2
+ cot

𝜆

2

)]
𝜀

. (2.306)

Observe that taking into account Equation (2.306) the solution (2.305) coincides with the
exact one (2.300).
Exact solution can be obtained taking into account only three terms of the series regarding

excitation and applying PA to the truncated PS.
Let us compare how the solution constructed using the truncated PS differs from the exact

one. For this purpose we compute the deflection for n = 2, rm = 𝜆4∕(𝜋m)4 (Figure 2.45).
In Figure 2.46 bending moments computational results obtained via PS are reported. It is

evident that the PS cannot be applied for the bending moment determination. However, appli-
cation of PA essentially improves the results.

2.5.3 Forced Vibrations of a Clamped Plate

We study vibrations of the rectangular plate (−0.5a ≤ x ≤ 0.5a; −0.5b ≤ y ≤ 0.5b) clamped
along its contour and loaded by a normal periodic force of the following form

q(x, y, t) = q0 cos
𝜋m
a
x cos

𝜋n
b
y sin(𝜔t + 𝛼), m, n = 1, 3, 5,… .
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Figure 2.45 Comparison of efficiency of various approximations: 1 – W0 (2.301); 2 – W1 (2.302);
3 – W2 (2.303); 4 – W0 +W1 +W2; 5 – exact solution (2.300) and PA
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Figure 2.46 Comparison of efficiency of PS and PA: 1 – M0; 2 – M1; 3 – M2; 4 –M0 +M1 +M2;
5 – exact solution and PA
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192 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Basic PDE has the following form:

D∇4W + 𝜌Wtt = q0 cos
𝜋m
a
x cos

𝜋n
b
y sin(𝜔t + 𝛼). (2.307)

Solution to Equation (2.299) is sought in the form:

W = W(x, y) sin(𝜔t + 𝛼), (2.308)

where x = x∕b, y = y∕b.
Substituting Ansatz (2.308) into Equation (2.307) we obtain

∇4W − 𝜆4W = q cos
𝜋m
k
x cos𝜋ny, m, n = 1, 3, 5,… , (2.309)

where 𝜆4 = 𝜌𝜔2b2∕D; q = q0b
3∕D.

We add to Equation (2.308) BCs (2.66), (2.67).

We present the plate displacement as PS (2.16). Then we substitute the PS into Equation

(2.309) and BCs (2.66), (2.67), and after a splitting procedure with respect to 𝜀, the following

recurrent set of the BVPs is obtained:

∇4W0 − 𝜆4W0 = q cos
𝜋m
k
x cos 𝜋ny, m, n = 1, 3, 5,… ,

W0 = 0, W0xx = 0 for x = ±0.5k,

W0 = 0, W0yy = 0 for y = ±0.5,

∇4Wj − 𝜆4Wj = 0,

Wj = 0, Wjxx = ∓k
j−1∑
i=0

Wix for x = ±0.5k,

Wj = 0, Wjyy = ∓k
j−1∑
i=0

Wiy for y = ±0.5.

In zeroth order approximation we get:

W0 =
q

𝜋4𝛼2 − 𝜆4
cos

𝜋m
k
x cos𝜋ny, 𝛼 = n2 + m2

k2
. (2.310)

In successive approximations we obtain problems governed by homogeneous equations and

nonhomogeneous BCs. Their solutions with respect to the first- and second-order approxima-

tions follow:

W1 =
𝜋q

2𝜆2(𝜋4𝛼2 − 𝜆4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m(−1)

m−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛽1nx

cosh 𝛽1n∕2
−

{
cos 𝛽2nx
cosh 𝛽3nx

}
⎧⎪⎨⎪⎩
cos 𝛽2nk∕2

cosh 𝛽3nk∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos𝜋ny +
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 193

n(−1)
n−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛾1my

cosh 𝛾1m∕2
−

⎧⎪⎨⎪⎩
cos 𝛾2my

cosh 𝛾3my

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛾2m∕2

cosh 𝛾3m∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos

𝜋m
k
x;

⎧⎪⎨⎪⎩
𝜆 > 𝜋n, 𝜆 >

𝜋m
k

𝜆 < 𝜋n, 𝜆 <
𝜋m
k

⎫⎪⎬⎪⎭ ;

W2 =
𝜋q

2𝜆2(𝜋4𝛼2 − 𝜆4)

[
m(−1)

m−1
2

{
1 − 1

2𝜆2

[
𝛽1n tanh 𝛽1n∕2 +

⎧⎪⎨⎪⎩
𝛽2n tan 𝛽2nk∕2

−𝛽2n tanh 𝛽3nk∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛽1nx

cosh 𝛽1n∕2
−

⎧⎪⎨⎪⎩
cos 𝛽2nx

cosh 𝛽3nx

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛽2nk∕2

cosh 𝛽3nk∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos𝜋ny +

n(−1)
n−1
2

{
1 − 1

2𝜆2

[
𝛾1m tanh 𝛾1mk∕2 +

{
𝛾2m tan 𝛾2m∕2

−𝛾3m tanh 𝛾3m∕2

}]}
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛾1my

cosh 𝛾1m∕2
−

⎧⎪⎨⎪⎩
cos 𝛾2my

cosh 𝛾3my

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛾2m∕2

cosh 𝛾3m∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos

𝜋m
k
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

2𝜋3qmn

𝜆2(𝜋4𝛼2 − 𝜆4)
(−1)

m−1
2 × (−1)

n−1
2

∑
i=1,3,5,…

(−1)
i−1
2 i

⎡⎢⎢⎢⎣
1

𝜋4
(
m2

k2
+ i2

)2
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cosh 𝛽1ix

cosh 𝛽1ik∕2
−

⎧⎪⎨⎪⎩
cos 𝛽2ix

cosh 𝛽3ix

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛽2ik∕2

cosh 𝛽3ik∕2

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
cos𝜋iy − 1

𝜋4
(
i2

k2
+ n2

)2

− 𝜆4

{
cosh 𝛾1iy

cosh 𝛾1i∕2
−
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194 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

⎧⎪⎨⎪⎩
cos 𝛾2iy

cosh 𝛾3y

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛾2i∕2

cosh 𝛾3i∕2

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
cos

𝜋i
k
x
]
;

⎧⎪⎨⎪⎩
𝜆 > 𝜋i(n), 𝜆 >

𝜋i(m)
k

𝜆 < 𝜋i(n), 𝜆 <
𝜋i(m)
k

⎫⎪⎬⎪⎭ , (2.311)

where 𝛽1i =
√
𝜆2 + 𝜋2i2, 𝛽2i =

√
𝜆2 − 𝜋2i2, 𝛽3i =

√
𝜋2i2 − 𝜆2, 𝛾1i =

√
𝜆2 + 𝜋2i2∕k2,

𝛾2i =
√
𝜆2 − 𝜋2i2∕k2, 𝛾3i =

√
𝜋2i2∕k2 − 𝜆2.

We construct PA using the first three coefficients of the series W. In Figure 2.47 graphs

of deflection changes for y = 0, m = n = 1, km = 𝜆4∕(𝜋4𝜆) are shown. In Figure 2.48 results

concerning a computation of the bending moment are reported.

2.5.4 Forced Vibrations of Plates with Free Edges

We consider vibrations of the rectangular plate (−a∕2 ≤ x ≤ a∕2; −b∕2 ≤ y ≤ b∕2), loaded
by the self-balanced normal periodic load

q(x, y, t) = q cos
𝜋m
a
x cos

𝜋n
b
y sin(𝜔t + 𝛼), m, n = 2, 4, 6,… .

0.2 0.4

x

0.6 0.8

10
2 W

/q

2.5

2.0 1

3 4 5

2

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

−2.0

Figure 2.47 Computational results of deflections using PS and PA: 1–W0 (2.310); 2–W1 (2.311);
3–W2 (2.311); 4–W0 +W1 +W2; 5–PA
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 195

0.2

2

3
5 4

1

0.1 0.2 0.3

x

0.4

0.0

10
M

x/
q

−0.2

Figure 2.48 Computation of the bending moment using PS and PA: 1 – M0; 2 – M1; 3 – M2;
4 – M0 +M1 +M2; 5 – PA

After introduction of the nondimensional quantities and after separation of spatial and time

variables the input equations have the following form:

∇4W − 𝜆4W = q cos
𝜋m
k
x cos𝜋ny, m, n = 2, 4, 6,… . (2.312)

We attach BCs (2.284), (2.285) to the PDE (2.312). Furthermore, in order to solve the BVP

(2.312), (2.284), (2.285) the PS () is applied. Plate deflection is presented in the form of (2.16).

After its substitution into PDE (2.312) and BCs (2.284), (2.285), and after splittingwith respect

to 𝜀, the following recurrent sequence of the BVPs is obtained

∇4W0 − 𝜆4W0 = q cos
𝜋m
k
x cos𝜋ny, m, n = 2, 4, 6,… ,

W0 = 0, W0xxx = 0 for x = ±0.5k,

W0 = 0, W0yyy = 0 for y = ±0.5,

∇4Wj − 𝜆4Wj = 0,

Wjxxx + (2 − 𝜈)Wjyyx = 0, Wjx = ∓k
j−1∑
i=0

(Wixx + 𝜈Wiyy) for x = ±0.5k,

Wjyyy + (2 − 𝜈)Wjxxy = 0, Wjy = ∓
j−1∑
i=0

(Wiyy + 𝜈Wixx) for y = ±0.5.
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196 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Zeroth order approximation yields:

W0 =
q

𝜋4𝛼2 − 𝛼4
cos

𝜋m
k
x cos𝜋ny.

We find the PS coefficients successively solving the obtained sequence of approximations:

W1 =
q𝜋2

2𝜆2(𝜋4𝛼2 − 𝜆4)

{(
n2 + 𝜈

m2

k2

)
(−1)

n
2

[(
𝜆2 + (1 − 𝜈)𝜋2m2

k2

)
1

𝛾1m
×

cosh 𝛾1my

sinh 𝛾1m∕2
+

(
𝜆2 − (1 − 𝜈)𝜋2m2

k2

) ⎧⎪⎨⎪⎩
− 1

𝛾2m
⋅ cos 𝛾2my

sin 𝛾2m∕2

1

𝛾3m
⋅ cosh 𝛾3my

sinh 𝛾3m∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ cos

𝜋m
k
x+

(
m2

k2
+ 𝜈n2

)
(−1)

m
2

[
(𝜆2 + (1 − 𝜈)𝜋2n2) 1

𝛽1n
⋅

cosh 𝛽1nx

sinh 𝛽1nk∕2
+

(𝜆2 − (1 − 𝜈)𝜋2n2)
⎧⎪⎨⎪⎩
− 1

𝛽2n
⋅ cos 𝛽2nx

sin 𝛽2nk∕2

1

𝛽3n
⋅ cosh 𝛽3nx

sinh 𝛽3nk∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ cos𝜋ny

⎫⎪⎬⎪⎭ ,

W2 = W1 −
q𝜋2

2𝜆2(𝜋4𝛼2 − 𝜆4)

{
k(−1)

n
2

(
n2 + 𝜈

m2

k2

)[
1

𝛾1m

(
𝜆2+

(1 − 𝜈)𝜋2m2

k2

)2

coth 𝛾1m∕2 +
(
𝜆2 − (1 − 𝜈)𝜋2m2

k2

)2
⎧⎪⎨⎪⎩

1

𝛾2m
cot 𝛾2m∕2

− 1

𝛾3m
coth 𝛾3m∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦×[(

𝜆2 + (1 − 𝜈)𝜋2m2

k2

)
1

𝛾1m
⋅
cosh 𝛾1my

sinh 𝛾1m∕2
−

(
𝜆2 − (1 − 𝜈)𝜋2m2

k2

)
⋅

⎧⎪⎨⎪⎩
− 1

𝛾2m
⋅ cos 𝛾2my

sin 𝛾2m∕2

1

𝛾3m
⋅ cosh 𝛾3my

sinh 𝛾3m∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ cos

𝜋m
k
x + (−1)

m
2

(
m2

k2
+ 𝛾n2

)
×

⎡⎢⎢⎢⎣
(
𝜆2 + (1 − 𝜈)𝜋2n2

) 1

𝛽1n
coth 𝛽1nk∕2 + (𝜆2 − (1 − 𝜈)𝜋2n2)

⎧⎪⎨⎪⎩
1

𝛽2n
⋅ cos 𝛽2nx

sin 𝛽2nk∕2

− 1

𝛽3n
⋅ cosh 𝛽3nx

sinh 𝛽3nk∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦×

cos𝜋ny} +
2𝜋q(−1)

m
2 (−1)

n
2

𝜆4(𝜋4𝛼2 − 𝜆4)
∑

i=2,4,6….

(−1)
i
2

{
k

(
n2 + 𝜈

m2

k2

)
×

⎡⎢⎢⎢⎣
(
𝜆2 + (1 − 𝜈)n2 m

2

k2

)(
(1 − 𝜈)𝜋2 m2

k2
+ 𝜈𝜆2

)
𝜆2 + 𝜋2

(
m2

k2
+ i2

) −
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 197

(
𝜆2 − (1 − 𝜈)𝜋2 m2

k2

)(
(1 − 𝜈)𝜋2 m2

k2
+ 𝜈𝜆2

)
𝜆2 − 𝜋2

(
i2 + m2

k2

) ⎤⎥⎥⎥⎦×[(
𝜆2(1 − 𝜈)𝜋2i2

) 1

𝛽1i
⋅

coth 𝛽1ix

sinh 𝛽1ik∕2
+ (𝜆2 − (1 − 𝜈)𝜋2i2)×

⎧⎪⎨⎪⎩
− 1

𝛽2i
⋅ cos 𝛽2ix

sin 𝛽2ik∕2

1

𝛽3i
⋅ cosh 𝛽3ix

sinh 𝛽3ik∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ cos𝜋iy +

1

k

(
m2

k2
+ 𝜈n2

)
×

⎡⎢⎢⎢⎣
(
𝜆2 + (1 − 𝜈)𝜋2n2

)
((1 − 𝜈)𝜋2n2 + 𝜈𝜆2)

𝜆2 + 𝜋2
(
n2 + i2

k2

) −

(
𝜆2 − (1 − 𝜈)𝜋2n2

)
((1 − 𝜈)𝜋2n2 + 𝜈𝜆2)

𝜆2 − 𝜋2
(
n2 + i2

k2

) ⎤⎥⎥⎥⎦ ⋅
⋅
[(

𝜆2 + (1 − 𝜈)𝜋2 i2

k2

)
1

𝛾1i

cosh 𝛾1iy

sinh 𝛾1i∕2
+

(
𝜆2 + (1 − 𝜈)𝜋2 i2

k2

)
×

⎧⎪⎨⎪⎩
− 1

𝛾2i
⋅ cos 𝛾2iy

sin 𝛾2i∕2

1

𝛾3i
⋅ cosh 𝛾3iy

sinh 𝛾3i∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ cos

𝜋i
k
x

⎫⎪⎬⎪⎭ ,

where

𝛽1i =
√
𝜆2 + 𝜋2i2, 𝛽2i =

√
𝜆2 − 𝜋2i2, 𝛽3i =

√
𝜋2i2 − 𝜆2,

𝛾1i =
√
𝜆2 + 𝜋2i2∕k2, 𝛾2i =

√
𝜆2 − 𝜋2i2∕k2, 𝛾3i =

√
𝜋2i2∕2 − 𝜆2.

Knowing three terms of the PS we construct PA in (2.268). The displacement and bending

moments of the squared plate computed via PA for y = 0, k = 1, 𝜈 = 0.3, 𝜂m = 𝜆4∕𝜋4𝛼2 = 0.9

are shown in Figure 2.49 and 2.50.

2.5.5 Forced Vibrations of Plate with Mixed Boundary Conditions
“Clamping-Simple Support”

Let us study vibrations of the squared plate (−0.5a ≤ x ≤ 0.5a; −0.5b ≤ y ≤ 0.5b) simply sup-

ported on its edges x = ±0.5a, having mixed BCs “clamping – simple support” on its sides
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12
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x

0.4

010
3 W

/q
−4

−8

W|y = 0

Figure 2.49 Displacement of the squared plate with free edges

4

2

0.1 0.2 0.3
x

0.4

0

10
2 W

/q

−2

−4

My|y = 0

Mx|y = 0

Figure 2.50 Bending moments of the squared plate with free edges

y = ±0.5b, and symmetrically locatedwith respect to the axis y (Figure 2.8a). Plate is subjected
to action of the normal periodic load of the form:

q(x, y, t) = q0 cos
𝜋m
k
a cos

𝜋m
b
y sin(𝜔t + 𝛼), m, n = 1, 2, 3,… .

BCs are taken in the form (2.114)–(2.115).

BVP (2.309), (2.114), (2.115) is reduced to an infinite system of LAE in a way analogous to

the one in Section for a static case.

Boundary moment occurring on the clamping part can be approximated by the following

series

My|y=±0.5 = ∑
i=1,3,5,…

Ai cos
𝜋i
k
x,

where Ai are unknown coefficients.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 199

Solution is sought in the following form

W = W1 +W2,

where W1 =
q

𝜋4𝛼2−𝜆4 cos
𝜋m
k
x cos𝜋ny, and W1 is a particular solution to Equation (2.309) for

homogeneous BCs
W1 = 0, W1xx = 0 for x = ±0.5k,

W1 = 0, W1yy = 0 for y = ±0.5.

Function W2 takes the following form:

W2 =
∑

1,3,5,…

Ai
2𝜆2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛽1iy

cosh 𝛽1i∕2
−

⎧⎪⎨⎪⎩
cos 𝛽2iy

cosh 𝛽3iy

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛽2i∕2

cos 𝛽3i∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos

𝜋i
k
x,

𝜆 >
𝜋i
k

𝜆 <
𝜋i
k

,

where 𝛽1i =
√
𝜆2 + 𝜋2i2∕k2, 𝛽2i =

√
𝜆2 − 𝜋2i2∕k2, 𝛽3i =

√
𝜋2i2∕k2 − 𝜆2. It describes a solu-

tion to the following BVP:
∇4W2 − 𝜆4W2 = 0,

W2 = 0, W2xx = 0 for x = ±0.5k,

W2 = 0, W2yy =
∞∑

i=1,3,5,…
Ai cos

𝜋i
k
x for y = ±0.5.

Satisfaction to BCs (2.115) yields the following equations:∑
i=1,3,5,…

Ai cos
𝜋i
k
x = 𝜀H(x)

[ ∑
i=1,3,5,…

Ai cos
𝜋i
k
x +

q𝜋n(−1)
n−1
2

𝜋4𝛼2 − 𝜆4
cos

𝜋m
k
x−

∑
i=1,3,5,…

Ai
2𝜆2

⎛⎜⎜⎜⎝𝛽1i tanh 𝛽1i∕2 +
⎧⎪⎨⎪⎩

𝛽2i tan 𝛽2i∕2

−𝛽3i tanh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠ cos

𝜋i
k
x

⎤⎥⎥⎥⎦ , i = 1, 3, 5,… . (2.313)

Splitting of the r.h.s. of Equation (2.313) into series regarding cos
𝜋j
k
x, j = 1, 3, 5,… , yields

the infinite system of LAE:

Aj = 𝜀
∑

i=1,3,5,…
𝛾jiAi

⎡⎢⎢⎢⎣1 −
1

2𝜆2

⎛⎜⎜⎜⎝𝛽1i tanh 𝛽1i∕2 +
⎧⎪⎨⎪⎩

𝛽2i tan 𝛽2i∕2

−𝛽3i tanh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦+

𝜀𝛾jm
q𝜋n(−1)

n−1
2

𝜋4𝛼2 − 𝜆4
, j = 1, 3, 5,… .

(2.314)
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200 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Here 𝛾ji coefficients are defined by Equation (2.272) (j→ i, i → m).
Occurrence in the infinite system (2.314) of the parameter 𝜀 allows us to present coeffi-

cients Aj in the form of (2.261). After substitution of PS in (2.261) into system (2.314) and

after comparison of coefficients standing by the same powers of 𝜀, the following formulas for

determination of unknown coefficients are obtained:

Aj(0) = 0, (2.315)

Aj(1) = 𝛾jm
q𝜋n(−1)

n−1
2

𝜋4𝛼2 − 𝜆4
, (2.316)

Aj(p) =
∞∑

i=1,3,5,…
𝛾jiAi(p−1)

⎡⎢⎢⎢⎣1 −
1

2𝜆2

⎛⎜⎜⎜⎝𝛽1i tanh 𝛽1i∕2 +
⎧⎪⎨⎪⎩

𝛽2i tan 𝛽2i∕2

−𝛽3i tanh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ . (2.317)

PA for coefficients Aj takes the form of (2.264).

We consider behavior of the obtained solution in the limiting cases. Limiting case 𝜇 = 0

corresponds to the simple support of plate edges y = ±0.5. Second limiting case 𝜇 = 0.5 core-

sponds to the following BVP

∇4W − 𝜆4W = q cos
𝜋m
k
x cos𝜋ny, n,m = 1, 3, 5,… ,

W = 0, Wxx = 0 for x = ±0.5k,

W = 0, Wyy = 0 for y = ±0.5,

having the following exact solution:

W =
q

𝜋4𝛼2 − 𝜆4
cos

𝜋m
k
x cos𝜋ny +

q𝜋n(−1)
n−1
2

𝜋4𝛼2 − 𝜆4
× (2.318)

1

𝛽1m tanh 𝛽1m∕2 +
⎧⎪⎨⎪⎩

𝛽2m tan 𝛽2m∕2

−𝛽3m tanh 𝛽3m∕2

⎫⎪⎬⎪⎭
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛽1my

cosh 𝛽1m∕2
−

⎧⎪⎨⎪⎩
cos 𝛽2my

cosh 𝛽3my

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cos 𝛽2m∕2

cos 𝛽3m∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos

𝜋m
k
x.

Let us check what kind of benefits can be obtained applying the HPM. For 𝜇 = 0.5 we have

𝛾ji = 𝛿ij, and recurrent formulas for coefficients Ai (2.315)–(2.317) can be written in the fol-

lowing form

Aj = Aj(0) + Aj(1)𝜀 + Aj(2)𝜀
2 + Aj(3)𝜀

3 +… , (2.319)

where

Aj(0) = 0; Aj(1) =
q𝜋n(−1)

n−1
2

𝜋4𝛼2 − 𝜆4
,
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 201

Aj(2) =
q𝜋n(−1)

n−1
2

𝜋4𝛼2 − 𝜆4

⎡⎢⎢⎢⎣1 −
1

2𝜆2

⎛⎜⎜⎜⎝𝛽1i tanh 𝛽1i∕2 +
⎧⎪⎨⎪⎩

𝛽2i tan 𝛽2i∕2

−𝛽3i tanh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ,

Aj(3) =
q𝜋n(−1)

n−1
2

𝜋4𝛼2 − 𝜆4

⎡⎢⎢⎢⎣1 −
1

2𝜆2

⎛⎜⎜⎜⎝𝛽1i tanh 𝛽1i∕2 +
⎧⎪⎨⎪⎩

𝛽2i tan 𝛽2i∕2

−𝛽3i tanh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
2

.

We recast the truncated PS (2.319) into PA in (2.264), and we get

Aj[1∕1](𝜀) =
q𝜋n(−1)

n−1
2

𝜋4𝛼2 − 𝜆4
⋅

𝜀

1 −
⎡⎢⎢⎢⎣1 −

1

2𝜆2

⎛⎜⎜⎜⎝𝛽1i tanh 𝛽1i∕2 +
⎧⎪⎨⎪⎩

𝛽2i tan 𝛽2i∕2

−𝛽3i tanh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ 𝜀

.

(2.320)
If we compare formula (2.320) for 𝜀 = 1 with the multiplier standing before a squared

bracket in formula (2.318), it is evident that the PA gives the exact value. Therefore, in the
second limiting transition we get the exact solution of the BVP (2.309), (2.114), (2.115).
In the similar way we calculate also the dynamic SSS of the plate with mixed BCs and

with nonsymmetric location of the plate clamping parts (Figure 2.8b). We take symmetrically
located, with respect to the plate center, the periodic load of the following form:

q(x, y, t) = q0 sin
𝜋m
a
x cos

𝜋n
b
y sin(𝜔t + 𝛼), m = 1, 2, 3,… , n = 1, 3, 5,… .

PDE (2.309) is still valid assuming that we substitute cos
𝜋m
k
x by sin

𝜋m
k
x. In the remaining

terms we also substitute cos
𝜋m
k
x by sin

𝜋m
k
x, cos 𝜋i

k
x by sin

𝜋i
k
x, whereas the summation

is carried out with respect to i,m = 1, 2, 3,… . Coefficient 𝛾ji takes the form (2.134)
(i→ j,m→ i). For the infinite system of LAE (2.314) the summation is carried out with
respect to i = 1, 2, 3,… .
Computation of the dynamic SSS for the squared plate is carried out by taking into account

the first ten coefficients Aj, obtained with a help of the PA (2.264) for 𝜀 = 1. Displacement
and bending moments in the plate center for different values of the parameter 𝜇 are computed.
Results are shown in Figures 2.51, 2.52. Similarly as in previous cases, solid (dashed) curve
corresponds to symmetric (nonsymmetric) location of the plate clamping (we fixed the value
of km = 𝜋4𝛼2∕𝜆4 = 0.9).
While analysing of the reported curves onemay distinguish three characteristic zones regard-

ing the 𝜇 parameter: [0, 0.1], (0.1, 0.45], (0.45, 0.5] for the symmetric case and [0, 0.5], (0.5,
0.7], (0.7, 1] - for the nonsymmetric case. In first and third zone an increase of the plate
displacement and bending moments accompanied by increase of the parameter 𝜇 is rather
negligible. In the second zone even for small changes of the parameter 𝜇 essential changes of
the plate displacement and bending moments are observed.
Therefore, if the size of the mixed BCs are within the first zone, one may consider it as the

plate simply supported along its contour. If the size of the mixed BCs are within the third zone,
then one may consider it as the plate simply supported along its two edges and clamped along
the remaining two. In other cases we must take into account the mixed BCs.
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202 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions
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Figure 2.51 Dependence of the normal plate displacement versus length of simple support

3.0

2.0

1
2

3
4

10
2 M

/q

1.0

0.2 0.4

μ
0.6 0.8

Figure 2.52 Dependence of the bending moment versus simple support length: 1 – Mx|x=0,y=0 ,
2 – My|x=0,y=0 , 3 – Mx|x=0.5,y=0 , 4 – My|x=0.5,y=0

2.5.6 Forced Vibrations of Plate with Mixed Boundary Conditions “Free
Edge – Moving Clamping”

We consider forced vibrations of the rectangular plate (−0.5a ≤ x ≤ 0.5a; −0.5b ≤ y ≤ 0.5b)
that is simply supported on its edges x = ±0.5a and has mixed BCs “free edge – moving

clamping” on its edges y = ±0.5b symmetrically located with respect to the axis y
(Figure 2.17a). Plate is loaded as follows

q(x, y, t) = q0 cos
𝜋m
a
x sin

𝜋n
b
y sin(𝜔t + 𝛼), m = 1, 3, 5,… , n = 2, 4, 6,… .

Introducing the nondimensional parameters (2.59) we obtain basic PDE has the following

form

∇4W − 𝜆4W = q cos
𝜋m
k
x cos𝜋ny, m = 1, 3, 5,… , n = 2, 4, 6,… . (2.321)

We attach to PDE (2.321) the BCs (2.159), (2.160).
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 203

Plate displacement follows:

W = W1 +W2,

where W1 is the particular solution to nonhomogeneous PDE (2.321),

W1 =
q

𝜋4𝛼2 − 𝜆4
cos

𝜋m
k
x cos𝜋ny. (2.322)

Function W2 takes the form:

W2 =
∑

1,3,5,…

Ai
2𝜆2

[(
𝜆2 + (1 − 𝜈)𝜋2 i2

k2

)
1

𝛽1i
⋅
cosh 𝛽1iy

sinh 𝛽1i∕2
+ (2.323)

(
𝜆2 − (1 − 𝜈)𝜋2 i2

k2

)
×

⎧⎪⎨⎪⎩
− 1

𝛽2i
⋅ cos 𝛽2iy

sin 𝛽2i∕2

1

𝛽3i
⋅ cosh 𝛽3iy

sinh 𝛽3i∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ cos

𝜋i
k
x,

⎧⎪⎨⎪⎩
𝜆 >

𝜋i
k

𝜆 <
𝜋i
k

⎫⎪⎬⎪⎭ .

It has been obtained by solving the following BVP:

∇4W2 − 𝜆4W = 0,

W = 0, Wxx = 0 for x = ±0.5k,

Wyyy + (2 − 𝜈)Wxxy = 0, Wy =
∑

i=1,3,5,…
Ai cos

𝜋i
k
x for y = ±0.5.

Unknown coefficients Ai are defined from the BCs (2.159), (2.160):

∑
i=1,3,5,…

Ai cos
𝜋i
k
x = 𝜀H(x)

⎧⎪⎨⎪⎩
∑

i=1,3,5,…
Ai cos

𝜋i
k
x +

q𝜋2
(
n2 + 𝜈

m2

k2

)
𝜋4𝛼2 − 𝜆4

×

(−1)
n
2 cos

𝜋m
k
x −

∑
i=1,3,5,…

Ai
2𝜆2

[
1

𝛽1i

(
𝜆2 + (1 − 𝜈)𝜋2 i2

k2

)
coth 𝛽1i∕2+

(
𝜆2 − (1 − 𝜈)𝜋2 i2

k2

)2
⎧⎪⎨⎪⎩

1

𝛽2i
cot 𝛽2i∕2

− 1

𝛽3i coth 𝛽3i∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ . (2.324)

Splitting the r.h.s. of Equation (2.324) into series with respect to cos
𝜋j
k
x, j = 1, 3, 5,… , the

following infinite system of LAE is obtained:

Aj = 𝜀
∑

j=1,3,5,…
Aj𝛾ji

[
1 − 1

2𝜆2

[
1

𝛽1i

(
𝜆2 + (1 − 𝜈)𝜋2 i2

k2

)
coth 𝛽1i∕2+

(
𝜆2 − (1 − 𝜈)𝜋2 i2

k2

) ⎧⎪⎨⎪⎩
1

𝛽2i
cot 𝛽2i∕2

− 1

𝛽3i
coth 𝛽3i∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ + 𝜀𝛾im

q𝜋2
(
n2 + 𝜈

m2

k2

)
𝜋4𝛼2 − 𝜆4

(−1)
n
2 , (2.325)
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204 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

where 𝛾ji takes the form (2.135) (m→ j).
In what follows we recast coefficients Aj as PS (2.261), substitute them into the system

(2.325) and we compare the coefficients standing by same powers of 𝜀:

Aj(0) = 0, (2.326)

Aj(1) = 𝛾jm

q𝜋2
(
n2 + 𝜈

m2

k2

)
(−1)

n
2

𝜋4𝛼2 − 𝜆4
, (2.327)

Aj(p) =
∑

j=1,3,5,…
Ai(p−1)𝛾ji

[
1 − 1

2𝜆2

[
1

𝛽1i

(
𝜆2 + (1 − 𝜈)𝜋2 i2

k2

)
coth 𝛽1i∕2+

(
𝜆2 − (1 − 𝜈)𝜋2 i2

k2

)
×

⎧⎪⎨⎪⎩
1

𝛽2i
cot 𝛽2i∕2

− 1

𝛽3i
coth 𝛽3i∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ , j = 1, 3, 5,… .

(2.328)

PA for coefficients Aj has the form (2.264).
We consider the behavior of the solution obtained so far in limiting cases. The first case

corresponds to the movable clamping of plate sides y = ±0.5, the second case for 𝜇 = 0.5
corresponds in full to free plate sides y = ±0.5. Observe that in the second case we get the
exact solution:

W =
q

𝜋4𝛼2 − 𝜆4
cos

𝜋m
k
x cos 𝜋ny+

q
(
n2 + 𝜈

m2

k2

)
(−1)

n
2

⎡⎢⎢⎢⎣
1

𝛽1m
K2
1
coth

𝛽1m

2
+ K2

2

⎧⎪⎨⎪⎩
1

𝛽2m
cot 𝛽2m∕2

− 1

𝛽3m
coth 𝛽3m∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
×

⎡⎢⎢⎢⎣K1
1

𝛽1m
⋅
cosh 𝛽1my

sinh 𝛽1m∕2
+ K2

⎧⎪⎨⎪⎩
1

𝛽2m
⋅ cos 𝛽2my

sin 𝛽2m∕2

− 1

𝛽3m
⋅ cosh 𝛽3my

sinh 𝛽3m∕2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ . (2.329)

where K1 =
(
𝜆2 + (1 − 𝜈)𝜋2 m2

k2

)
and K2 =

(
𝜆2 − (1 − 𝜈)𝜋2 m2

k2

)
.

Our method for 𝜇 = 0.5 yields 𝛾ji = 𝛿ij, and the recurrent formulas for coefficients Aj
(2.326)–(2.328) can be presented in the following form:

Aj = Aj(1)𝜀 + Aj(2)𝜀
2 + Aj(3)𝜀

3 +… , (2.330)

where
Aj(0) = 0,

Aj(1) =
q𝜋2

(
n2 + 𝜈

m2

k2

)
𝜋4𝛼2 − 𝜆4

(−1)
n
2 ,
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 205

Aj(2) =
q𝜋2

(
n2 + 𝜈

m2

k2

)
𝜋4𝛼2 − 𝜆4

(−1)
n
2

[
1 − 1

2𝜆2

(
1

𝛽1m
K2
1
coth 𝛽1m∕2+

K2
2

⎧⎪⎨⎪⎩
1

𝛽2m
cot 𝛽2m∕2

− 1

𝛽3m
coth 𝛽3m∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ,

Aj(3) =
q𝜋2

(
n2 + 𝜈

m2

k2

)
𝜋4𝛼2 − 𝜆4

(−1)
n
2

[
1 − 1

2𝜆2

(
1

𝛽1m
K2
1
coth 𝛽1m∕2+

K2
2

⎧⎪⎨⎪⎩
1

𝛽2m
cot 𝛽2m∕2

− 1

𝛽3m
coth 𝛽3m∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
2

,

PA in (2.264) has the following form for PS (2.330):

Aj[1∕1](𝜀) =
q𝜋2

(
n2 + 𝜈

m2

k2

)
𝜋4𝛼2 − 𝜆4

(−1)
n
2×

𝜀

1 −
⎡⎢⎢⎢⎣1 −

1

2𝜆2

⎛⎜⎜⎜⎝
1

𝛽1m
K2
1
coth 𝛽1m + K2

2

⎧⎪⎨⎪⎩
1

𝛽2m
cot 𝛽2m∕2

− 1

𝛽3m
coth 𝛽3m∕2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ 𝜀

.

If one compares the PA in (2.264) with the multiplier standing by the square bracket in

formula (2.330), then it is clear that for 𝜀 = 1 the PA coefficients Aj in expression (2.264)

yield the exact solution. Therefore, in the second limiting case we obtain the exact solution to

the BVP (2.321), (2.159), (2.160).

In the analogous way we solve the BVP regarding the plate with nonsymmetric location of

the clamping plate parts (Figure 2.17b). In this case we take

q(x, y, t) = q0 sin
𝜋m
a
x cos

𝜋n
b
y sin(𝜔t + 𝛼), m = 1, 2, 3,… , n = 2, 4, 6,… .

Consequently, assuming that we substitute cos
𝜋m
k
x by sin

𝜋m
k
x Equation (2.321) remains

valid. In Equations (2.322)–(2.324) we substitute respectively cos
𝜋m
k
x by sin 𝜋m

k
x, cos 𝜋i

k
x by

sin
𝜋i
k
x, and the summation is carried out on m, i = 1, 2, 3,… . Coefficient 𝛾ji in this case takes

the form of (2.134) (m → j). In infinite system of LAE (2.325) the summation is carried out

regarding i = 1, 2, 3,….

For the square plate computation of components of the plate dynamic SSS is carried out

taking into account the first ten coefficients Aj, obtained with the help of PA in (2.264) for

𝜀 = 1. Both plate deflection and bendingmoments in the plate center are computed for different

values of the 𝜇 parameter.
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206 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions
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Figure 2.53 Influence of simple supported plate parts on its normal displacement
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Figure 2.54 Dependence of bending moments versus length of a plate simple support

Results of computations are shown in Figures 2.53, 2.54. Solid (dashed) curves correspond

to results with symmetric (nonsymmetric) location of the plate clamping parts.

Analyzing the results one may distinguish three characteristic zones regarding values of the

parameter 𝜇: in the case of symmetry – [0,0.05], [0.05,0.47], [0.47,0.5], and in the case of

nonsymmetry – [0,0.47], [0.47,0.9]; [0.9,1]. In the case of first and third zones a small change

of the plate SSS accompanies increase of the parameter 𝜇. In the second case small change of

the parameter 𝜇 yields significant changes of all SSS plate factors.

Therefore, if the size of the plate support parts belong to the first zone, then with a small

error we may treat this plate as simply supported on edges x = ±0.5k and edges y = ±0.5 are

supported by moving clamping. If the size of the mixed BCs are related to the third zone,

then that plate can be considered as simply supported on edges x = ±0.5k, and with free edges
y = ±0.5. In transitional cases (second zone) mixed BCs should be taken into account.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 207

2.6 Stability of Beams and Plates

2.6.1 Stability of a Clamped Beam

We begin with a study of a clamped beam (−0.5l ≤ x ≤ 0.5l). The basic ODE governing its

stability has the following form

EIWxxxx + NWxx = 0, (2.331)

where N is the compressing force.

We introduce first the nondimensional quantities x = x∕l, then Equation (2.331) takes the

following form:

WIV + 𝛼2WII = 0, (2.332)

where

𝛼2 = Nl2∕EI. (2.333)

In order to close the BVP we introduce BCs (2.15).

The solution to Equation (2.332) has the following form:

W = C1 cos 𝛼x + C2.

Satisfaction to BCs (2.15) reduces the problem to that of the following transcendental

equation with respect to 𝛼:

(1 − 𝜀)𝛼 cos 𝛼
2
+ 𝜀 sin

𝛼

2
= 0. (2.334)

The solution of this equation gives the buckling force.

Let us present parameter 𝛼 as PS:

𝛼 = 2

∞∑
i=0

𝛼i𝜀
i. (2.335)

After substitution of Ansatz (2.335) into Equation (2.334) and after splitting with respect to

powers of 𝜀 the following recurrent system is obtained:

𝛼0 cos 𝛼0 = 0,

−2𝛼0𝛼1 sin 𝛼0 + (𝛼1 − 𝛼0) cos 𝛼0 + sin 𝛼0 = 0,

−𝛼0(2𝛼2 sin 𝛼0 + 𝛼2
1
cos 𝛼0) − 2𝛼1(𝛼1 − 𝛼0) sin 𝛼0 + 2(𝛼2 − 𝛼1)×

cos 𝛼0 + 𝛼1 cos 𝛼0 = 0,

𝛼0

3
(−3𝛼3 sin 𝛼0 − 6𝛼1𝛼2 cos 𝛼0 + 4𝛼3

1
sin 𝛼0) − (2𝛼2 sin 𝛼0 − 𝛼2

1
cos 𝛼0)×

(𝛼1 − 𝛼0) − 2𝛼1 sin 𝛼0(𝛼2 − 𝛼1) + 2(𝛼3 − 𝛼2) cos 𝛼0+(
𝛼2 cos

𝛼0

2
−

𝛼2
1

2
sin

𝛼0

2

)
= 0,
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208 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

𝛼0

12
(−6𝛼4 sin 𝛼0 − 4𝛼1𝛼3 cos 𝛼0 − 12𝛼2

2
cos 𝛼0 + 12𝛼2

1
𝛼2 sin 𝛼0 + 𝛼4

1
cos 𝛼0)+

(−2𝛼3 sin 𝛼0 − 2𝛼1𝛼2 cos 𝛼0 + 𝛼3
1
sin 𝛼0)(𝛼1 − 𝛼0) − (2𝛼2 sin 𝛼0 + 𝛼2

1
cos 𝛼0)×

(𝛼1 − 𝛼0) − (2𝛼2 sin 𝛼0 − 𝛼2
1
cos 𝛼0)(𝛼2 − 𝛼1) − 2𝛼1 sin 𝛼0(𝛼3 − 𝛼2)+

2(𝛼4 − 𝛼3) cos 𝛼0 +
1

6
(6𝛼3 cos 𝛼0 − 6𝛼1𝛼2 sin 𝛼0 − 𝛼3 cos 𝛼0) = 0.

Solving these problems successively we obtain eigenvalue:

𝛼 =2
[
𝜑 + 2

𝜑
𝜀 + 2

𝜑

(
1 − 2

𝜑2

)
𝜀2 + 2

𝜑

(
1 − 13

𝜑2
− 8

𝜑4

)
𝜀3+

2

𝜑

(
1 − 12

𝜑2
+ 110

3𝜑4
− 40

𝜑6

)
𝜀4

]
,

(2.336)

where 𝜑 = 𝜋n, n = 1, 3, 5,….
Application of the PA to the first 3 terms of truncated PS (2.336) yields:

𝛼[1∕1](𝜀) =
𝜑 +

(
4

𝛼0
− 𝜑

)
1 −

(
1 − 2

𝜑2

)
𝜀

. (2.337)

For n = 1, 𝜀 = 1, we get 𝛼[1∕1] = 2𝜋, which coincides with the exact solution. Summation
of the first 3 terms of truncated PS (2.336) gives the result of 32% below the exact value
(𝛼 = 1.3642𝜋).
We consider higher order PA of the following form:

𝛼[2∕2](𝜀) =
𝜑 + a1𝜀 + a2𝜀

2

1 + b1𝜀 + b2𝜀2
, (2.338)

where
a1 = 2(𝛼1 + b1𝜑), a2 = 2(𝛼2 + b1𝛼1 + b2𝜑),

b1 =
𝛼1𝛼4 − 𝛼2𝛼3

𝛼2
2
− 𝛼1𝛼3

, b2 =
𝛼2
3
− 𝛼2𝛼4

𝛼2
2
− 𝛼1𝛼3

.

For n = 1, 𝜀 = 1 the PA (2.338) gives exact solution, whereas truncated PS (2.336) gives the
value of 𝛼 = 1.8369𝜋 (error – 8.15%).
In Figure 2.55 dependencies of eigenvalue 𝛼 versus the parameter 𝜀 for truncated PS hav-

ing three and five terms (curves 1 and 2), and PA (2.337), (2.338) (curve 3) are reported. PA
practically offer the same results for all values of 0 ≤ 𝜀 ≤ 1. Numerical solution of the tran-
scendental Equation (2.334) almost completely coincides the results obtained with the help
of PA. Therefore, the following conclusion is formulated: there is no need to achieve high
order PA, since they will not introduce any essentially important solution improvements. Fur-
thermore, increase of the number of terms of truncated PS does not improve essentially the
obtained results.
Finally, observe that eigenvalues of BVPs (2.332), (2.15) with the help of the proposed ear-

lier method, can be obtained directly from the governing BVP without using a transcendental
equation.
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Figure 2.55 Comparison of efficiency of truncated PS and PA

2.6.2 Stability of a Clamped Rectangular Plate

We consider a clamped along its contour plate (−a∕2 ≤ x ≤ a∕2,−b∕2 ≤ y ≤ b∕2) being com-

pressed along axis x by a continuously distributed load N. The governing equation has the

form

D∇4W + NWxx = 0, (2.339)

and its nondimensional form can be written as follows:

∇4W + NWxx = 0, (2.340)

where N = Nb2∕D.
BCs are taken in the form (2.66), (2.67).

Buckling load N and plate deflection W are presented as PS:

N =
∞∑
i=0

Ni𝜀
i, W =

∞∑
i=0

Wi𝜀
i. (2.341)

Substituting Ansatzes (2.341) into Equation (2.340) and BCs (2.66), (2.67) and splitting with

respect to 𝜀 yields the following sequence of the BVPs:

∇4W0 + N0W0xx = 0, (2.342)

W0 = 0, W0xx = 0 for x = ±0.5k, (2.343)

W0 = 0, W0yy = 0 for y = ±0.5, (2.344)

Wj + N0Wjxx = −
j−1∑
i=0

Nj−1Wixx,
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210 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Wj = 0, Wjxx = ∓k
j−1∑
i=0

Wix for x = ±0.5k,

Wj = 0, Wjyy = ∓
j−1∑
i=0

Wiy for y = ±0.5.

BVP regarding the zero order approximation (2.342)–(2.344) describes stability of the sim-
ply supported plate, and its solution has the following form:

N0 =
𝜋2k2

m2

(
m2

k2
+ n2

)2

, (2.345)

W0 = C cos
𝜋m
k
x cos𝜋ny, n,m = 1, 3, 5,… . (2.346)

Here N0 is the buckling load of simply supported plate;W0 is the form of buckling.
The first correction term to the buckling load follows:

N1 = 4
k2

m2

(
m2

k2
+ n2

)
, (2.347)

whereas the first correction term to the mode of buckling has the following form:

W = n
n2𝛼

[
(−1)

n−1
2

2 cosh 𝜋𝛽1∕2
cosh𝜋𝛽1y − y sin𝜋ny

]
cos

𝜋m
k
x+ (2.348)

⎧⎪⎪⎨⎪⎪⎩
− 2

𝜋
⋅ m3∕k3(

n4−m4

k4

)
[

(−1)
n−1
2

2 cos
𝜋

2
n2 k

2

m

cos𝜋n2 k
m
x − x sin 𝜋m

k
x

]
, n ≠ m

k

− 1

2
x2 cos 𝜋m

k
x, n = m

k

⎫⎪⎪⎬⎪⎪⎭
cos𝜋ny.

The expression regarding the second correcting term of the buckling load follows:

N2 = N2x + N2y, (2.349)

where

N2x =
4

k
⋅
𝜋2m2

k2

⎧⎪⎪⎨⎪⎪⎩
1 +

⎛⎜⎜⎜⎜⎜⎝
n2 − m2

k2

2𝜋2𝛼2
−

⎧⎪⎪⎨⎪⎪⎩
2

𝜋
⋅ m2∕k2(

n4−m4

k4

) (
𝜋

2
n2 k

m
tan

𝜋

2
n2 k

2

m
+ 1

)
k2

8

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭
+

8

k𝜋2
⋅
k4

m4
𝛼

⎧⎪⎪⎨⎪⎪⎩
− 2

𝜋
⋅ m3∕k3

n4−m4

k4

[
m3∕k3

n4−m4

k4

n4 k
2

m2 tan
𝜋

2

n2

m
k2 + 3

4
m

]
k
8

𝜋2m2

k2

(
k2

6
− 1

)
⎫⎪⎪⎬⎪⎪⎭
,
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 211

N2y = 4n2
k2

m2

[
1 − 1

𝜋2𝛼

(
𝜋𝛽1

2
tanh

𝜋𝛽1

2
− 1

)
+ 2

𝜋𝛼
− 4n(−1)

n−1
2

k
𝜋m

]
×

⎧⎪⎪⎨⎪⎪⎩
− 2

𝜋
⋅ m3∕k3

n4−m4

k4

[
2

k
⋅ 1

𝜋
⋅ m3∕k3

n4−m4

k4

tan
𝜋

2
n2 k

2

m
− k

2𝜋m

]
1

4

(
k2

6
− 1

)
⎫⎪⎪⎬⎪⎪⎭
,

⎧⎪⎨⎪⎩
n ≠ m

k

n = m
k

⎫⎪⎬⎪⎭ .

Knowing three terms of the PS for N

N = N0 + 𝜀N1 + 𝜀2N2, (2.350)

we construct PA.
Let us compare obtained results with the numerical solution for the squared plate. The

obtained results are as follows: for known solution–N = 8.5540𝜋2, for (2.350)–N = 5.4512𝜋2

(error–56.9%) and for PA–N = 7.8662𝜋2 (error–8.04%). In Figure 2.56 shown are curves of
N versus 𝜀. Curve 1 denotes results obtained with the (2.350); curve 2–results obtained via
PA; point 3–numerical solution [87]. Drawings 1 and 2 for 𝜀 < 0.5 differ from each other on
less than 5%.

2.6.3 Stability of Rectangular Plate with Mixed Boundary Conditions
“Clamping-Simple Support”

We apply our approach to determine buckling loads for plates with mixed BCs of the form
“clamping - simple support”. We study two principally different computational shemes shown
in Figure 2.57a,b and Figure 2.57c,d. BCs follow:

Tx = N, Txy = 0 for x = ±0.5k,
Ty = 0, Txy = 0 for y = ±0.5,

8.0

7.0

N
/π

2

6.0

5.0

4.0

0.2 0.4 0.6
ε

0.8

1

2

3

Figure 2.56 Comparison of efficiency of PS and PA
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Figure 2.57 Plates with mixed BCs
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 213

where Tx(Ty) is the force in x(y) direction; Txy is the shear force.
The basic equation has the form of (2.340).

Let us determine a buckling load for the plate shown in Figure 2.57a. BCs take the form

(2.114), (2.115).

We substitute Ansatz (2.341) into Equation (2.340) and BCs (2.114)–(2.115), and splitting

the problem regarding 𝜀. As a result, the following sequence of BVPs is obtained:

∇4W0 + N0W0xx = 0,

W0 = 0, W0xx = 0 for x = ±0.5k,

W0 = 0, W0yy = 0 for y = ±0.5,

∇4Wj + N0Wjxx = −
j−1∑
i=0

Nj−iWixx,

Wj = 0, Wjxx = 0 for x = ±0.5k,

Wj = 0, Wjyy = ∓H(x)
j−1∑
i=0

Wiy for y = ±0.5.

In zero order approximation we get the problem for a plate simply supported on its contour

and being compressed by the load N0 in direction of the x axis.
BVP of the first order approximation has the form:

∇4W1 + 𝜋2 k2

m2

(
n2 + m2

k2

)2

Wxx = N1𝜋
2m2

k2
cos

𝜋m
k
x,

W1 = 0, W1xx = 0 for x = ±0.5k,

W1 = 0, W1yy = ±𝜋n(−1)
n−1
2 H(x) cos 𝜋m

k
x for y = ±0.5,

and its solution is

W1 =
∑

i=1,3,5,…
y1i cos

𝜋i
k
x.

The following two BVPs are obtained by developing what appeared in BCs functions into

series with respect to cos(𝜋ix∕k), i = 1, 3, 5,… :

for i = m:

YIV
1m − 2

𝜋2m2

k2
YII
1m − 𝜋4n2

(
2
m2

k2
+ n2

)
Y1m = N1

𝜋2m2

k2
cos𝜋ny, (2.351)

Y1m = 0, YII
1m = 𝜋n(−1)

n−1
2 𝛾mm for y = ±0.5, (2.352)

for i ≠ m:

YIV
1i − 2

𝜋2i2

k2
YII
1i − 𝜋4

[
i2

m2

(
n2 + m2

k2

)2

− i4

k4

]
Y1i = 0, (2.353)
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214 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Y1i = 0, Y1i = ±𝜋n(−1)
n−1
2 𝛾im for y = ±0.5. (2.354)

Here 𝛾im is defined by Equation (2.272), and N1 follows:

N1 = 4k2
n2

m
𝛾mm. (2.355)

Function Yim takes the following form:

Y1m = n
𝜋𝛼

𝛾mm

[
(−1)

n−1
2

2ch𝜋𝛽1∕2
cosh𝜋𝛽1y − y sin𝜋ny

]
,

where 𝛽1 =
√
2m2∕k2 + n2.

The solution to BVP (2.353), (2.354) does not give a correction term to the buckling load,

but improves the buckling form:

Y1i = 𝜋n(−1)
n−1
2

∑
i=1,3,5,…

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛼2iy

cosh 𝛼2i∕2
−

⎧⎪⎨⎪⎩
cosh 𝛽2iy

cos𝜑2iy

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cosh 𝛽2i∕2

cos𝜑2i∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎧⎪⎨⎪⎩
m(i − m) > n2k2

m(i − m) < n2k2

⎫⎪⎬⎪⎭ ,

where 𝛼2i = 𝜋

√
i
(
i+m
k2

+ n2

m

)
, 𝛽2i = 𝜋

√
i
(
i+m
k2

− n2

m

)
, 𝜑2i = 𝜋

√
i
(
n2

m
− i−m

k2

)
.

The first correcting term to a buckling form is as follows:

W1m = n
𝜋𝛼

𝛾mn

[
(−1)

n−1
2

2 cosh 𝜋𝛽1∕2
cosh𝜋𝛽1y − y sin𝜋ny

]
cos

𝜋m
k
x+

𝜋n(−1)
n−1
2

∑
i=1,3,5,…

𝛾im

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh 𝛼2iy

cosh 𝛼2i∕2
−

⎧⎪⎨⎪⎩
cosh 𝛽2iy

cos𝜑2iy

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
cosh 𝛽2i∕2

cos𝜑2i∕2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos

𝜋i
k
x.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 215

We find the second correcting term to the buckling load by taking into account the second

approximation:

N2 =
k2

𝜋2m2

{
4𝜋2n2𝛾mm − 2n2

𝛼
𝛾2mm

(
𝜋

2
𝛽1 tanh

𝜋

2
𝛽1 − 1

)
− (2.356)

n2m
𝛼2

(
n2 − m2

k2

)
𝛾2mm − 4𝜋2n2

∑
i=1,3,5,…

𝛾2im

⎡⎢⎢⎢⎣𝛼2i tanh
𝛼2i

2
−

⎧⎪⎨⎪⎩
𝛽2i tanh

𝛽2i
2

−𝜑2i tan
𝜑2i

2

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ .

For the case shown in Figure 2.57b, formula (2.310) remains valid when the summation with

respect to odd values of i is extended into all values of i. The parameter 𝛾im in this case has the

form of (2.134). Knowing three coefficients of truncated PS (2.350), we construct PA.

In the limiting case corresponding to completely clamping on sides y = ±0.5, the exact solu-
tion for the squared plate has been obtained numerically from the transcendental equation

for m = 1 and it is equal to N = 8.6044𝜋2. PA yields N = 8.7136𝜋2 (error–1.27%), whereas

(2.350) gives N = 4.7757𝜋2 (error - 44.5%). Numerical solution obtained from the transcen-

dental equation for m = 2 gives N = 7.6913𝜋2, whereas PA - N = 7.7156𝜋2 (error–0.32%),

(2.350)–N = 6.4456𝜋2 (error–16.2%).

The dependence of the critical force on the geometric dimensions of the mixed parts of BCs

for the quadratic plate is given in Figure 2.58. Solid (dashed) curve corresponds to symmet-

ric (nonsymmetric) location of clamping parts. Dashed–dotted curves correspond to results

obtained via the R-function method [10]. Dots correspond to results obtained numerically for

limiting cases 𝜇 = 0, 0.5, 1 [84].

One may distinguish two zones of the parameter 𝜇. First one for symmetric case begins at

𝜇 = 0 and ends at 𝜇 = 0.15 and second for nonsymmetric case from 𝜇 = 0 up to 𝜇 = 0.55.

In this zone a buckling occurs with the appearance of two half-waves in direction x. In the

second zone, from 𝜇 = 0.15 to 𝜇 = 0.5 for the symmetric case and from 𝜇 = 0.55 to 𝜇 = 1 for

8.0

7.0

N
/π

2

6.0 m = 2

m = 2

m = 1

m = 1

5.0

4.0

0.2 0.4

μ
0.6 0.8

Figure 2.58 Buckling load versus length of simply support parts
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216 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions
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Figure 2.59 Buckling load versus stiffness of elastic clamping

the nonsymmetric case the plate buckles due to the occurrence of one half-wave in direction

x. Therefore, for 𝜇 = 0.15 (or 𝜇 = 0.55) one may expect either the first or second buckling

mode. Solutions obtained using the R-function method give practically the same results.

Our approach allows the investigate influence of the clamping stiffness on the buckling load

N. In Figure 2.59 the dependence of the buckling load N versus the parameter 𝜀 for some

values of 𝜇 is reported. Solid (dashed) curve correspond to symmetric (nonsymmetric) case.

It should be emphasized that for the elastic clamping of the plate edges y = ±0.5 with a lack

of mixed BCs related equilibrium forms occur for 𝜀 = 0.96, and the buckling associated with

the occurrence of one half-wave in direction x is possible for 𝜀 < 0.96, and with two half-

waves for 𝜀 > 0.96. The simultaneous occurrence of both buckling forms is possible only for

mixed BCs, and for 𝜇 → 0 related buckling form appears for 𝜀 → 1. The limiting value of 𝜇,

for which the plate buckling exhibiting one half-wave in direction x for 𝜀 = 1 corresponds to

𝜇 = 0.25 (𝜇 = 0.58) for the case of symmetric (nonsymmetric) position of the mixed BCs.

Let us proceed now to the second case of the mixed BCs (Figure 2.57c,d). Basic Equation

has the form of (2.340). We attach the following BCs:

W = 0, Wyy = 0 for y = ±0.5, (2.357)

W = 0, Wxx = H(y)𝜀(Wxx ∓ kWx) for x = ±0.5k, (2.358)

where H(y) = H(y − 𝜇) − H(−y − 𝜇).
Let us present the displacement W and buckling load N as PS (2.341). Substituting them

into Equation (2.340) and BCs (2.357), (2.358) we get the following recurrent sequence of the

BVPs:

∇4W0 + N0W0 = 0,

W0 = 0, W0yy = 0 for y = ±0.5,

W0 = 0, W0xx = 0 for x = ±0.5k,
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 217

∇4Wj + N0Wjxx = −
j−1∑
i=0

Nj−iWixx,

Wj = 0, Wjyy = 0 for y = ±0.5,

Wj = 0, Wjxx = ∓H(y)k
j−1∑
i=0

Wx for x = ±0.5k.

First order BVP is

∇4W1 + 𝜋2 k2

m2

(
n2 + m2

k2

)2

W1xx = N1𝜋
2m2

k2
cos

𝜋m
k
x cos𝜋ny, (2.359)

W1 = 0, W1yy = 0 for y = ±0.5, (2.360)

W1 = 0, W1xx = ±k𝜋m
k

(−1)
m−1
2 H(y) cos𝜋ny for x = ±0.5k. (2.361)

The assumed solution follows:

W1 =
∑

p=1,3,5,…
X1p cos𝜋py. (2.362)

Substituting series (2.362) into Equation (2.359) and BCs (2.360), (2.361) we obtain the

following two one-dimensional problems:

for p ≠ n:

XIV
1n + 𝜋2 k2

m2

(
m2

k2
+ n2

)
XII
1n + 𝜋4n4X1n = N1

𝜋2m2

k2
cos

𝜋m
k
x, (2.363)

X1n = 0, XII
1n = ±k𝜋m

k
(−1)

m−1
2 𝛾nn for x = ±0.5k, (2.364)

for p = n:

XIV
1p − 𝜋2

[
2p2 − k2

m2

(
m4

k4
+ n4

)2
]
XII
1p + 𝜋4p4X1p = 0, (2.365)

X1p = 0, XII
1p = ±k𝜋m

k
(−1)

m−1
2 𝛾pm for x = ±0.5k. (2.366)

Here 𝛾pn is defined by formula (2.272) (i→ p,m → n).
Solvability condition of the BVP (2.363), (2.364) yields

N1 = 4𝛾nn. (2.367)

BVP (2.363), (2.364) yields corrections to the force and to the form of the buckling. Its

solution is composed of two parts:

for n ≠ m∕k:

X1n = − 2

𝜋
⋅

m3∕k3(
n4 − m4

k4

)𝛾nn

⎡⎢⎢⎣
(−1)

m−1
2 k

2 cos
𝜋

2
n2 k

2

m

cos𝜋n2
k
m
x − x sin

𝜋m
k
x
⎤⎥⎥⎦ ,
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218 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

for n = m∕k:
X1n = −

𝛾nn

2
x2 cos

𝜋m
k
x.

BVP (2.365), (2.366) gives only a correction to the buckling form

X1p = 𝜋m(−1)
m−1
2

𝛾pn

𝛼2p − 𝛽2p

[
cosh 𝛼px

cosh 𝛼pk∕2
−

cosh 𝛽px

cosh 𝛽pk∕2

]
,

where ⎧⎪⎨⎪⎩
𝛼p

𝛽p

⎫⎪⎬⎪⎭ =

√√√√√𝜋2

2

(
2p2 + k2

m2

(
m2

k2
+ n2

)2
)

± 𝜋2k
2m

(
m2

k2
+ n2

)√
k2

m2

(
m2

k2
+ n2

)2

− 4p2.

In the case where 𝛼p and 𝛽p are complex, cosh 𝛼px and cosh 𝛽px should be substituted by

cos 𝛼px and cos 𝛽px, respectively.
First, the correcting term to the buckling form follows:

W1 =

⎧⎪⎪⎨⎪⎪⎩
− 2

𝜋
⋅ m3∕k3(

n4−m4

k4

)𝛾nn
[

(−1)
n−1
2 k

2 cos
𝜋

2
n2 k

2

m

cos𝜋n2 k
m
x − x sin 𝜋m

k
x

]

− 𝛾nn

2
x2 cos 𝜋m

k
x

⎫⎪⎪⎬⎪⎪⎭
cos𝜋ny+

𝜋m(−1)
m−1
2

∑
p=1,3,5,…

𝛾pn

𝛼2p − 𝛽2p

[
cosh 𝛼px

cosh 𝛼2pk∕2
−

cosh 𝛽px

cosh 𝛽2pk∕2

]
cos𝜋py

⎧⎪⎨⎪⎩
n ≠ m

k

n = m
k

⎫⎪⎬⎪⎭ . (2.368)

The second approximation gives

N2 =

⎧⎪⎪⎨⎪⎪⎩
4𝛾nn

𝜋2m2

k2

{
1 − 2𝛾nn

m2∕k2

𝜋2
(
n4−m4

k4

)
[
k
2
n2 tan 𝜋

2
n2 k

2

m2

(
1 − 4n2

k
(
n4−m4

k4

)
)

− 3

2

]}

𝛾nn

(
4 − k2

3
𝛾nn − 𝛾nn

)
⎫⎪⎪⎬⎪⎪⎭
−

4k2

𝜋m

∑
p=1,3,5,…

𝛾2pn
1

𝛼2p − 𝛽2p

[
𝛼p tanh

𝛼pk

2
− 𝛽p tanh

𝛽pk

2

]
. (2.369)

In the case of nonsymmetric location of the clamping part (Figure 2.57g) formulas (2.367),

(2.368) remain valid assuming that the previous summation with respect to the odd values of

p should be substituted by the even values of p. Now the parameter 𝛾pn is defined by (2.134).
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Figure 2.60 Buckling force versus length of simply supported parts

In the limiting case corresponding to the complete clamping of sides x = ±0.5k, the buckling
force obtained numerically from the transcendental equation is equal toN = 5.4390𝜋2. (2.350)

yields N = 4.7654𝜋2 (error - 14.01%), PA - N = 5.2159𝜋2 (error - 4.1%).

The dependence of buckling force N versus length 𝜇 of the squared plate clamping part

is shown in Figure 2.60. A solid (dashed) curve corresponds to symmetric (nonsymmetric)

location of the mixed BCs, whereas a dashed-dotted curve presents results obtained using the

R-function method [10]. Points are associated with results obtained numerically in limiting

cases for 𝜇 = 0, 0.5, 1.

One may isolate three zones of different values of the parameter 𝜇: case of symmetry – [0,

0.1], (0.1, 0.45], (0.45, 0.5]; case of nonsymmetry – (0.8, 1], (0.1, 0.8], [0, 0.1]. If size of the

mixed BCs belong to the first zone, then this plate can be treated as simply supported on its

two edges y = ±0.5, and clamped on two remaining ones. The buckling force is overestimated

in comparison to the exact solution by no more than 5%. If the size of the mixed BCs are

within the third zone, the studied plate can be treated as that being simply supported along its

contour, and the error is less than 5%. If the size of the mixed BCs corresponds to the second

zone, then the analyzed plate can be treated as that with the mixed BCs.

The plates buckling force versus the parameter 𝜀 is shown in Figure 2.61. In this case, con-

trary to the previously studied one, we cannot distinguish an intensive force increase part.

There may be observed a remarkable influence of the clamped parts for arbitrary values of 𝜀.

2.6.4 Comparison of Theoretical and Experimental Results

Let us study the stability of the plate shown in Figure 2.62. For the buckling load one has

a formula (2.350), where N0,N1 and N2 can be found from Equations (2.345), (2.355) and

(2.356) respectively. Coefficients 𝛾im in this case are defined by the formula (2.135).

Next we recast (2.350) into PA. For the limiting case, corresponding to complete clamping

of the plate edges y = ±0.5, the results obtained coincide with those presented and discussed

in the previous section.
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Figure 2.61 Influence of stiffness of an elastic support on plate buckling force
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Figure 2.62 Computational plate scheme

In Figure 2.63 solid curves correspond to the buckling force dependent on the length of

the squared plate simple support (𝜇). The dashed curve is associated with results obtained in

reference [41]; dashed-dotted curve = results reported in [49]; points-experimental data [41].

Two zones, i.e. [0, 0.08] and [0.08, 1] can be distinguished. In the first (second) zone the

plate buckling takes place through the occurrence of one (two) half-wave(s) in direction of the

axis x. For 𝜇 = 0.08 either occurrence of the first or second buckling form is expected.

Results obtained via our method have high coincidence with the results obtained by others,

as well as with experimental results.

Observe that occurrence of related buckling forms is possible for various values of the param-

eter 𝜀. For example, in the case of complete clamping of the plate sides y = ±0.5 related forms

appear for 𝜀 = 0.96. If 𝜇 < 0.075, the plate will buckle through the exhibition of only one

half-wave in direction of x for an arbitrary value of 𝜀.
The buckling force N versus elasticity of clamping of plate faces 𝜀 is shown in Figure 2.64.
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Figure 2.64 Buckling plate force versus plate stiffness support

2.7 Some Related Problems

2.7.1 Dynamics of Nonhomogeneous Structures

It is obvious that an analytical or numerical solution of dynamical problems for nonhomoge-

neous structures is associated with a lot of problems. Analytical methods, relying on splitting

of an initial problem into subsystems with their successive connections, yield a system of

higher order algebraic equations. On the other hand, numerical methods in many cases can-

not be directly applied due to the change in the structures characteristics in threshold places,
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222 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

where different object characteristics meet, and therefore stiff problems are produced. Here

we apply HPM.

We consider as an example longitudinal vibrations of a nonhomogeneous rodwith the density

𝜌, the area of its cross section F with elasticity modulus E1 in the interval −1 ≤ x < 0 and in

the interval 0 < x ≤ 1 - modulus E2. Basic equations have the form

E1(2)F
𝜕2u1(2)

𝜕x2
− 𝜌F

𝜕2u1(2)

𝜕t2
= 0, (2.370)

where u1(2) is the longitudinal displacement.

Solutions to Equation (2.370) are sought in the following form:

u1(2)(x) = u1(2)(x)(A cos𝜔t + B sin𝜔t). (2.371)

Substituting Ansatz (2.371) into Equation (2.370), we get

d2u1(2)

dx2
+ 𝜔2

a2
1(2)

u1(2) = 0,

where a2
1(2) = E1(2)∕𝜌.

Solutions to these equations follow:

u1(2) = C1(2)
1

cos
𝜔

a1(2)
x + C1(2)

2
sin

𝜔

a1(2)
x.

Arbitrary constants are defined by BCs C1(2)
i due to conditions

u1(−1) = u2(1) = 0

and conditions of equality in zero point of both displacements and longitudinal forces. These

conditions yield a transcendental equation.

(1 −
√
1 + 𝜀) cos𝜔∗ sin(𝜔∗

√
1 + 𝜀) + sin𝜔∗ cos𝜔∗(

√
1 + 𝜀) = 0. (2.372)

Here 𝜀 = (E2 − E1)∕E1, 𝜔
∗ = 𝜔∕a1.

We develop the function 𝜔∗(𝜀) into a Maclauring series up to the third term:

𝜔∗ ≈ 𝜔0 + 𝜀𝜔1 + 𝜀2𝜔2. (2.373)

Substituting the Ansatz (2.373) into Equation (2.372), carrying out elementary transforma-

tions and comparing coefficients standing by the same powers of 𝜀 we get

𝜔1 = 𝜋k

(
1 − 𝜀

4
+ 𝜀4

4

)
, 𝜔2 =

(
𝜋

2
+ 𝜋k

)(
1 − 𝜀

4
+ 𝜀2

8

)
, k = 1, 2, 3,… .

For k = 1 the corresponding PA regarding 𝜔1 and 𝜔2 follow:

𝜔1[1∕1] =
𝜋

4

(
4 + 3E
1 + E

)
,

𝜔2[1∕1] =
𝜋

4

(
4 + 3E
2 + E

)
.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 223

Table 2.2 Solutions to transcendental Equation (2.372)

𝜀 𝜔n 𝜔1[1∕1] 𝜔n 𝜔2[0∕1]

0.01 1.566888 1.566888 3.133800 3.133
0.1 1.532510 1.533390 3.068490 3.070
0.3 1.451702 1.468353 2.948120 2.960
0.5 1.398080 1.413716 2.851390 2.870
1.0 1.265672 1.308996 2.666309 2.740
2.0 1.079770 1.178097 2.397360 2.610

Also solutions 𝜔n of transcendental Equation (2.372) are found numerically with the accu-
racy of 10−6. The results obtained are reported in Table 2.2. It can be observed that application
of the PA improves asymptotic results essentially and allows for their application even for the
large values of 𝜀.
Let us now consider vibrations of a beam with density 𝜌 and with static moment of the

beam cross section I, having the elasticity modulus E1 on the interval −1 ≤ x < 0, whereas
the modulus E2 on the interval 0 < x ≤ 1. After the introduction of perturbation parameter 𝜀 =
(E2 − E1)∕E1, the elasticity modulus of the whole interval [-1;1] can be rewritten as follows:
E = E1 + 𝜀H(x − 0.5)E1.
The basic equations can be presented in the following form:

EI𝑤IV − 𝜌F𝜔2𝑤 = 0, (2.374)

with the BCs
𝑤 = 𝑤xx = 0 for x = −1, x = 1. (2.375)

We assume the following solution form:

𝜔2 ≈ 𝜔2
1
+ 𝜀𝜔2

1
+ 𝜀2𝜔2

2
, 𝜔 ≈ 𝜔0 + 𝜔1𝜀 + 𝜔2𝜀

2, (2.376)

and we substitute Ansatz (2.376) into Equations (2.374), (2.375). Comparison of coefficients
standing by the same powers of 𝜀 gives:

𝑤IV
0

− 𝜌F
IE

𝜔2
0
𝑤0 = 0, (2.377)

𝑤0 = 𝑤0xx = 0 for x = −1, x = 1, (2.378)

𝑤IV
0

− 𝜌F
IE1

𝜔2
0
𝑤1 =

𝜌F
IE1

𝜔2
1
𝑤0 − H(x − 0.5)𝑤IV

0
,

𝑤0 = 𝑤1xx = 0 for x = −1, x = 1.

A solution to BVPs (2.377), (2.378) takes the following form:

𝜔0 = (𝜋k)2
√
E1I

𝜌F
, 𝑤0 = D sin(𝜋kx), k = 1, 2, 3,… .
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224 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Table 2.3 Computational results

𝜆∕k 1 2 3 4 5

𝜆I 2.64 5.28 7.92 10.56 13.2
𝜆 2.69 5.39 8.099 10.799 13.499
𝜆[1∕1] 2.69 5.38 8.07 10.77 13.46

For the next approximation one obtains

𝜔2
1
= 0.5𝜔2

0
, 𝜔2

2
= 𝜔2

0
∕32,

which means that

𝜔2 ≈ (𝜋k)4
E1I

𝜌F

(
1 + 𝜀

2
+ 𝜀2

32

)
, k = 1, 2, 3,… . (2.379)

PA for the given case is

𝜔2
[1∕1] = (𝜋k)2

E1I(16 + 7𝜀)
𝜌F(16 − 𝜀)

, k = 1, 2, 3,… . (2.380)

Computational results regarding 𝜆 = 𝜔∕𝜔0 with the help of Equation (2.379), PA (2.380)

and numerical solution with accuracy of 10−6 for various values of k for 𝜀 = 1 are reported

in Table 2.3. One may conclude that an application of the HPM for 𝜀 = 1 is generally effi-

cient. However, an additional investigation implies that for 𝜀 ≥ 2 also the PA possesses a lot

of benefits regarding the accuracy of computational results.

2.7.2 Method of Ishlinskii-Leibenzon

Ishlinskii [47] and Leibenzon [55] have proposed the method of stability investigation devoted

to structures with free edges (or bodies with free surfaces). Namely, in the governing stabil-

ity equations parametric terms are omitted and they are kept only for BCs. This method has

been widely applied; however, there were many doubts regarding its accuracy. In what follows

we show how one can treat the mentioned approach as a zeroth approximation of a certain

asymptotic approach [17].

Firstly let us consider the model problem regarding the stability of a cantilever beam. Both

stability equations and BCs are presented in the following form:

EI𝑤xxx + T𝑤xx = 0, (2.381)

𝑤(0) = 𝑤x(0) = 0, (2.382)

𝑤xx(L) = 0, (2.383)

EI𝑤xxx(L) + T𝑤x(L) = 0, (2.384)

where T denotes the compressing force.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 225

The exact solution to the eigenvalue problem (2.381)–(2.384) has the form

T = 𝜋2

4

EI
L2

, (2.385)

𝑤 = 1 − cos
𝜋x
2L

. (2.386)

Direct comparison of parametric terms occurred in stability equations (2.381) and BCs

(2.384) constitutes a rather difficult task, therefore we apply the variational-asymptotic

method. The potential energy of the cantilever beam is

Π = 1

2 ∫
1

0

(EI𝑤2
xx + T𝑤2

x)dx = (2.387)

1

2
EI ∫

1

0

𝑤2
xxdx +

1

2
T ∫

1

0

𝑤𝑤xxdx +
1

2
T𝑤𝑤x|x=1.

It appears that a ratio of the second and third terms in Equation (2.387), taking for𝑤 Ansatz

(2.386), is a relatively small one: 1 − 𝜋∕4 ≈ 0.215. Consequently, we can omit the parametric

term in the stability equation, and let us try to construct an iteration procedure.

Namely, we introduce the homotopic parameter 𝜀 into Equation (2.381) in the following

way:

EI𝑤xxx + 𝜀T𝑤xx = 0. (2.388)

Both eigenfunction 𝑤 and eigenvalue T are presented in the PS:

𝑤 = 𝑤0 +𝑤1𝜀 +𝑤2𝜀
2 + … , (2.389)

T = T0 + T1𝜀 + T2𝜀
2 + … . (2.390)

Substituting Ansatz (2.389) into BVP (2.388), (2.381)–(2.383) and carrying out the splitting

regarding 𝜀, we get

EI𝑤0xxxx = 0,

𝑤0(0) = 𝑤0x(0) = 0, 𝑤0xx(L) = 0, EI𝑤0xxx(L) + T0𝑤0x(L) = 0,

EI𝑤kxxxx = −
k−1∑
i=0

Ti𝑤k−1xx, k = 1, 2,… ,

𝑤k(0) = 𝑤kx(0) = 0, 𝑤kxx(L) = 0, EI𝑤kxxx(0) +
k∑
i=1

Ti𝑤k−ix(L) = 0.

In zeroth order case we have

T0 = 2EI∕L2, 𝑤0 = Ax2(x − 3L).

In the case of first order approximation we get

T1 =
EI
3L2

, 𝑤1 = −5ALx2 + Ax3 + A
2L
x4 − A

10L2
x5.

Second order approximation yields T2 = 4EI∕(45L2).
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226 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

The obtained solution is improved via the PA, and we obtain

T = 2
(15 − 1.5𝜀)EI
(15 − 4𝜀)L2

.

Note that for 𝜀 = 1 we have T = 2.4545EI∕L2, which differs from the exact solution T =
0.25𝜋2EI∕L2 ≈ 2.4650EI∕L2 by 0.42%.

As the second example we take a beam lying on an elastic foundation and having free ends.

After the introduction of the homotopic parameter 𝜀 we get

EI𝑤xxxx + 𝜀T𝑤xx + c𝑤 = 0,

where c is the elasticity coefficient of foundation support.

Let us investigate a symmetric form of buckling (in an analogous way one may investigate

the nonsymmetric case). BCs follow:

𝑤x(0) = 𝑤xxx(0) = 0,

𝑤xx(l) = 0, EI𝑤xx(l) + T𝑤x(l) = 0.

Using Ansatz (2.389), (2.390) and after splitting regarding 𝜀, the following BVPs are

obtained:

EI𝑤0xxxx + c𝑤0 = 0,

𝑤0xx(0) = 𝑤0xxx(0) = 0,

𝑤0xx(l) = 0, EI𝑤0xxx(l) + T0𝑤0x(l) = 0,

EI𝑤kxxxx + c𝑤k = −k
∑
i=0

Ti𝑤k−(i+1)xx,

𝑤k(0) = 𝑤kixx(0) = 0,

𝑤kxx(l) = 0, EI𝑤kxxx(l) +
k∑
i=0

Ti𝑤k−ix(l) = 0, k = 1, 2, 3,… .

Zeroth order approximation gives

𝑤0 = C1(a1 sinh kx sin kx + cosh kx cos kx), T0 = (EI∕l2)T0, (2.391)

where: T0 = 2𝜔2(a2 − a1a3)∕(a3 + a1a2), 𝜔 = lk, a1 = tanh𝜔 tan𝜔, a2 = coth𝜔 + tan𝜔,

a3 = cot𝜔 − tan𝜔.

First order approximation yields

T1 = (EI∕l2)T1, T1 = 𝜔2(t1 + t2 − t3t4)𝑤−1
0x (l),

t1 =
T0

2𝜔2
(b1(coth𝜔 + k2𝜔a4) + b2(tanh𝜔 + k2𝜔a1)),

t2 = b2(3 cot𝜔 − 𝜔a4) − b1(tan𝜔 + 𝜔a5), t3 =
1

2a1

(
ka2 +

T0

𝜔l
a3

)
,

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 227

0.6

μ

a

0.4

0.2

0 40 80

3

2

1

120

Figure 2.65 Comparison of various approaches for investigation of beam stability

t4 = (b1(a4 − 𝜔 tan𝜔) + b2(a5 + 𝜔 coth𝜔))k−1,

b1 =
T0a4
4𝜔l

, b2 =
T0a5
4𝜔l

, a4 = −a1, a5 = 1 + a1.

PA for 𝜀 = 1 gives:
T ≈ T2

0
∕(T0 − T1). (2.392)

The results of calculations by using the formula (2.392) compared with the exact solu-

tion are shown in Figure 2.65, where a = cl4EI∕16 and 𝜇 = 𝜋∕T
−1∕2

. In this figure, curve
1 was obtained in accordance with Equation (2.391), curve 2 was calculated by using formula
(2.392), and curve 3 represents the exact solution [20].
Now let us investigate a stability of a thin isotropic rectangular plate (0 ≤ x ≤ a; 0 ≤ y ≤ b)

being simply supported on three sides and compressed on its fourth side by the load P being
parallel to two simply supported sectors. After introduction of the homotopic parameter 𝜀 the
plate stability equation is

D∇4𝑤 + 𝜀P𝑤yy = 0.

BCs follow:
𝑤 = 0, 𝑤xx = 0 for x = 0, a,

𝑤 = 0, 𝑤yy = 0 for y = 0,

𝑤yy + 𝜈𝑤xx = 0, D[𝑤yyy + (2 − 𝜈)𝑤xxy] + P𝑤y = 0 for y = b.

Let us present the function 𝑤 in a PS (2.389), and the parameter P in the form of

P = P0 + 𝜀P1 + 𝜀2P2 + … .

After splitting with respect to 𝜀 the following BVPs are obtained:

D∇4𝑤i +
i−1∑
i=0

Pi−1𝑤k−ixx = 0, (2.393)

𝑤i = 0, 𝑤ixx = 0 for x = 0, a, (2.394)

𝑤i = 0, 𝑤iyy = 0 for y = 0, (2.395)
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228 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

𝑤iyy + 𝜈𝑤ixx = 0, D[𝑤iyyy + (2 − 𝜈)𝑤ixxy] +
k∑
i=0

Pi𝑤k−iy = 0 (2.396)

for y = b, i = 0, 1, 2,… ,

where Pi = 0.
Equations (2.393)–(2.396) for i = 0 are the Ishlinskii-Leibenzon equations. Their solutions

is
𝑤0 = C(sinh 𝜆y − 𝜆yC1 cosh 𝜆y) sin 𝜆y, 𝜎0 = H0𝜑,

where

H0 = [(1 − 𝜈) + C1(1 + 𝜈) − (1 − 𝜈)A tanhA]𝜗, 𝜗 = 1∕[1 − C1(1 + A tanhA)],

𝜑 = 𝜋2E
12(1 − 𝜈2)

(h
a

)2

, 𝜎0 =
P0

h
, A = b𝜋

a
, Ñ1 = (1 − 𝜈)𝜓,

𝜓 = 1∕(2 + A(1 − 𝜈) cothA).

Solution to the first order approximation gives

𝑤1 = C

{
sinh 𝜆y − 𝜆(C1C2)y cosh 𝜆y +

H0𝜆
2

8

[
(C2 − 1)y2 sinh 𝜆y+

𝜆C1

3
y3 cosh 𝜆y

]}
sin 𝜆x, 𝜎1 = H1𝜑,

where

C2 =
H0

8

{
[2 + 4A cothA + (1 − 𝜈)A2] +

C1A

3
[6 cothA + 6A + (1 − 𝜈)A2 cothA]

}
𝜓,

H1 =
{
−1 + (C1 + C2)(3 + A tanhA) −

H0

8

[
(C2 − 1)(6 + 6A tanhA + A2)+

C1

3
(6 + 18A tanhA + 9A2 + A3 tanhA)

]
− (H0 − 2 + 𝜈){1 − (C1 + C2)(1 + A tanhA)+

H0

8

[
(C1 − 1)(2A tanhA + A2) +

C1

3
(3A2 + A3 tanhA)

]}}
𝜗.

We solve a second order approximation in a similar way and we obtain

𝜎2 = H2𝜑,

where

H2 = {[24𝛽 − 6(a − 2𝛽A2 + 3𝛾 − 10𝜃A2) − A2(𝛾 + 𝜃A2) + C1 + C3] tanhA+

{𝛽A4 − 1 − aA2 − 6(a − 6𝛽A2 + 𝛾 − 10𝜃A2) + 3(C1 + C3 − A2(3𝛾 − 5𝜃A2))}−

(H0 − 2 + 𝜈){[2A(a − 2𝛽A2) − A(C1 + C3) + A3(𝛾 − 𝜃A2)] tanhA+

[1 − aA2 − 𝛽A4 − C1 − C3 + A2(3𝛾 − 5𝜃A2)] − H1{1 − (C1 + C3)(1 + A tanhA+
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 229

H0

8

[
(C1 − 1)(2A tanhA + A2) +

C1

3
(3A2 + A3 tanhA)

]}}
𝜗,

C3 = {{2a + A2[(1 − 𝜈)a − 12𝛽 + 6𝛾] − A4[(1 − 𝜈)𝛽 + 10𝜃]} + {2A(a + 3𝛾)+

{2A(a + 3𝛾) + A3[(1 − 𝜈)𝛾 − 8𝛽 − 20𝜃] − A5(1 − 𝜈)𝜃} cothA}𝜑,

𝛼 = 1

8

[
H0(C1 + C3) +

H2
0

16
(C1 − 1) + H1C1 − H0 − H1

]
, 𝛽 =

H2
0

384
(2C1 − 1),

𝜃 =
H2
0
C1

1920
, 𝛾 = 1

24

[
H0(C1 + C3) +

H2
0

16
(4 − 3C1) + H1C1

]
.

Finally we get

𝜎 ≈ 𝜑(H0 + 𝜀H1 + 𝜀2H2). (2.397)

Taking into account two first terms of truncated PS (2.397) and for 𝜀 = 1 the PA gives

𝛾 = 𝜑H0∕(1 − 𝛽1), (2.398)

where 𝛽1 = H1∕H01.

PA for 𝜀 = 1 and taking into account three terms of truncated PS (2.397) yields

H = 𝜑H0

1 + (𝛽1 + 𝛽2)
1 + 𝛽2

, (2.399)

where 𝛽2 = −H2∕H1.

In Table 2.4 are shown results regarding parameter H computation and results are reported

in [84] for plates with different ratio a∕b for 𝜈 = 0.3. Also values of relative errors 𝛿 as a

percentage are given.

Table 2.4 Computational results regarding plates with different sides ratio

a∕b 1 1.5 2 3

Solution [] 2.36 2.30 2.19 1.72
𝜑H0 1.76 1.7 1.64 1.54

𝛿 = 25.3% 𝛿 = 25.7% 𝛿 = 25.1% 𝛿 = 10.5%
𝜑(H0 + H1) 2.30 2.11 1.96 1.71

𝛿 = 2.5% 𝛿 = 8.7% 𝛿 = 10.5% 𝛿 = 0.6%
Formula (2.397) 2.18 2.17 1.91 1.68
for 𝜀 = 1 𝛿 = 2.41% 𝛿 = 10.1% 𝛿 = 12.9% 𝛿 = 2.26%
Formula (2.398) 2.30 2.19 1.98 1.07

𝛿 = 2.41% 𝛿 = 4.87% 𝛿 = 9.37% 𝛿 = 0.43%
Formula (2.399) 2.36 2.25 2.02 1.71

𝛿 = 0.16% 𝛿 = 2.17% 𝛿 = 7.94% 𝛿 = 0.43%
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230 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Therefore, two approximations matched with PA give good results. However, even either

zero or first approximations can be used directly.

The Ishlinskii-Leibenzon simplification can be treated as zero approximation to a certain

asymptotic process. If the error of zero order approximation is high, then the solution can be

improved by applying the PA to the series part obtained so far. It appears that modified, in

the way described so far, the Ishlinskii-Leibenzon method can be directly applied to stability

investigation of elastic systems without the previously mentioned drawbacks.

2.7.3 Vibrations of a String Attached to a Spring-Mass-Dashpot System

In this section we study the dynamical system shown in Figure 2.66. The given problem can

describe vibrations of suspended bridges, cables of power transmission lines, or shroud sys-

tems [28], [31], [60].

Basic BVP has the following form:

𝜌u𝜏𝜏 − T uxx = 0, (2.400)

u(0, 𝜏) = 0, (2.401)

m1u𝜏𝜏 (1, 𝜏) + 𝛾2u(1, 𝜏) + ux(1, 𝜏) = −𝛼u𝜏 (1, 𝜏), (2.402)

u(x, 0) = 𝜑(x), u𝜏 (x, 0) = 𝜓1(x), (2.403)

γ2

𝑚1

𝑥

𝑢

0

a

1

Figure 2.66 Model of a string fixed in the point x = 0 and having in the point x = 1 the attached
mass and viscous damper
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 231

where 𝜌 is the density of string material per its length, T is the string stretching force, 𝜏 is the

time, and the remaining notation is illustrated in Figure 2.66.

Let us rewrite system (2.400)–(2.403) in new variables

utt − uxx = 0, (2.404)

u(0, t) = 0, (2.405)

mutt(1, t) + 𝛾1u(1, t) + ux(1, t) = −𝜀1ut(1, t), (2.406)

u(x, 0) = 𝜑(x), ut(x, 0) = 𝜓(x). (2.407)

where t = 𝜏
√
𝜌∕T , m = m1∕𝜌, 𝛾1 = 𝛾2∕T , 𝜀1 = 𝛼∕

√
𝜌T , 𝜓 = 𝜓1

√
𝜌∕T .

Let us present the function u(x, t) in the following form:

u = exp
(
−
𝜀1t

2m

)
u(x, t). (2.408)

Substituting Ansatz (2.408) into Equations (2.404) – (2.407) we get

utt − uxx = 𝜀ut − 0.25𝜀2u, (2.409)

u(0, t) = 0, (2.410)

mutt(1, t) + 𝛾u(1, t) + ux(1, t) = 0, (2.411)

u(x, 0) = 𝜑(x), ut(x, 0) = 𝜓(x) + 0.5𝜀𝜑(x), (2.412)

where 𝜀 = 𝜀1∕m, 𝛾 = 𝛾1 − 0.25𝜀2
1
∕m.

Further we assume that 𝜀 << 1. A solution to BVP (2.409) – (2.412) can be presented as PS

u = u0 + 𝜀u1 + 𝜀2u2 +… . (2.413)

Substituting Ansatz (2.413) into Equations (2.409)–(2.412) after splitting with respect to

𝜀 gives

u0tt − u0xx = 0, (2.414)

u0(0, t) = 0, (2.415)

mu0tt(1, t) + 𝛾u0(1, t) + u0x(1, t) = 0, (2.416)

u0(x, 0) = 𝜑(x), u0t(x, 0) = 𝜓(x), (2.417)

u1tt − u1xx = u0t,

u1(0, t) = 0, (2.418)

mu1tt(1, t) + 𝛾u1(1, t) + u1x(1, t) = 0, (2.419)
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232 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

u1(x, 0) = 0, u1t(x, 0) = 0.5𝜓(x), (2.420)

u2tt − u2xx = u1t − 0.25u0,

u2(0, t) = 0,

mu2tt(1, t) + 𝛾u2(1, t) + u2x(1, t) = 0,

u2(x, 0) = 0, u2t(x, 0) = 0,

....................

BVP (2.414)–(2.417) allows for the variables separation. Eigenvalues to the problem are

yielded by solutions to the transcendental equation

cot 𝜆 = m𝜆 − 𝛾∕𝜆. (2.421)

One may check that (n − 1)𝜋 < 𝜆n < n𝜋, n = 1, 2, 3,… , and for n→ ∞ we have 𝜆n → n𝜋.
Roots to Equation (2.421) are found numerically. Eigenfunctions sin 𝜆nx are orthogonal in the
following sense:

∫
1

0

[1 + m𝛿(x − 1)] sin(𝜆nx) sin(𝜆mx)dx = 0.

Finally, a solution to the BVP (2.414) – (2.417) has the following form:

u0(x, t) =
∞∑
n=1

[An sin(𝜆nt) + Bn cos(𝜆nt)] sin(𝜆nx), (2.422)

where

An = A((𝜓(x), sin(𝜆nx))∕A, Bn = A((𝜑(x), sin(𝜆nx))∕(𝜆nA),

A = A(sin(𝜆nx), sin(𝜆nx)), A(a(x), b(x)) = ∫
1

0

[1 + m𝛿(x − 1)]abdx.

Equation of the first order approximation is

u1tt − u1xx =
∞∑
n=1

𝜆n[An cos(𝜆nt) − Bn sin(𝜆nt)] sin(𝜆nx),

and a particular solution to this equation follows:

u(0)
1

= −0.5t
∞∑
n=1

[An cos(𝜆nt) + Bn sin(𝜆nt)] sin(𝜆nx), (2.423)

and it is a secular one.

Let us apply the Pritulo method to remove singularities. We briefly revisit this approach pre-

sented in [62], [63], [69]. Let us suppose that as a result of the perturbation method application

the following solution is obtained

x(t) = cos𝜔t + 𝛽t𝜀 sin𝜔t.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 233

One may apply the AEF in order to remove secular term

x(t) = cos(𝜔 + 𝜀𝛽)t.

In fact, this defines the Pritulo method.

Pritulo approach applied to formulas (2.422), (2.423) allows to remove the secular terms

u(1)
1

= u0 + 𝜀u1 ≈
∞∑
n=1

[An sin((𝜆n + 0.5𝜀)t) + Bn cos((𝜆n + 0.5𝜀)t)] sin(𝜆nx).

Hence, a solution to equation

u(1)
1tt − u(1)

1xx = 0

with conditions (2.418) – (2.420) takes the following form:

u(1)
1

=
∞∑
n=1

A(1)
n sin(𝜆nt) sin(𝜆nx),

where A(1)
n = 0.5A(𝜑(x), sin(𝜆nx))∕A.

Finally, the following approximating solution is obtained

u ≈ u(1)
0

+ 𝜀u(1).

2.7.4 Vibrations of a String with Nonlinear BCs

In this section we study the linear wave equation

utt = uxx (2.424)

with the nonlinear BCs

u(0, t) = 0, (2.425)

ux(1, t) + u(1, t) + 𝛼u3(1, t) = 0. (2.426)

In the case 𝛼 << 1 problem (2.424) – (2.426) is often solved via the Bubnov-Galerkin

method or using the multiple-scales method. On the other hand during application of the

variation approaches a nontrivial problem appears of reduction of an infinite system of ODEs

[28], [29]–[31], [60], [74], [89].

Successive sequences of asymptotic solutions are constructed in references [29]–[31]. How-

ever, for 𝛼 ∼ 1 the problem becomes difficult. If we consider solutions in the form

u(x, t) =
∞∑

j=1,3,5,…
Aj sin

𝜋jx

2
sin

𝜋jt

2
,

then the problem is reduced to an infinite system of coupled LAEs regarding coefficients Aj.
Even though it can be solved through a truncation, the solution is not satisfactory even for a

relatively small number of equations.
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234 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Therefore, it seems to be promising an idea of seeking for another asymptotic parameter

instead of 𝛼. Here we use the method of small delta (see Chapter 1.2.3). Following the men-

tioned approach the BC (2.426) can be presented in the following form:

ux + u + 𝛼u1+2𝛿 = 0 for x = 1, (2.427)

and a solution to the BVP (2.424), (2.425), (2.427) can be sought in the form of PS.

Let us consider the BVP (2.424), (2.425), (2.427) by using in the last formula 𝛼 = 1, and let

us find its solution as PS

u =
∞∑
k=0

𝛿kuk. (2.428)

Variational approaches are also widely used [28], [60], [74], [89].

We change the variable applying

t = 𝜏

𝜔
, 𝜔2 = 1 + 𝛼1𝛿 + 𝛼2𝛿

2 + … . (2.429)

The nonlinear term in the BC (2.427) has the form

u3 ≡ u1+2𝛿 = u

[
1 + 𝛿 ln u2 + 𝛿2

2
(ln u2)2 +…

]
. (2.430)

We take small 𝛿 in the solving process, whereas in the final result we put 𝛿 = 1.

Substituting Ansatzes (2.429), (2.428), (2.430) into the BVP (2.424), (2.425), (2.427) and

splitting with respect to 𝛿 the following recurrent sequence of BVPs is obtained:

u0tt = u0xx, (2.431)

u0 = 0 for x = 0, (2.432)

u0x + 2u0 = 0 for x = 1, (2.433)

u0tt = u0xx −
1∑
p=0

𝛼i−puptt, (2.434)

u1 = 0 for x = 0, (2.435)

u1x + 2u1 = −u0 ln u2
0

for x = 1, (2.436)

u0tt = u0xx −
2∑
p=0

𝛼i−puptt, (2.437)

u2 = 0 for x = 0, (2.438)

u2x + 2u2 = −u1 ln u2
0
− 2u1 − 0.5u0(ln u2

0
)2 for x = 1, (2.439)

...................

where 𝛼0 = 0.

The solution to zeroth order BVP (2.431)–(2.433) has the following form:

u0 = A sin(𝜔0x) sin(𝜔0t),
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 235

Table 2.5 Nonzero values of 𝜔

𝜔
(1)
0

𝜔
(2)
0

𝜔
(3)
0

𝜔
(4)
0

𝜔
(5)
0

𝜔
(6)
0

𝜔
(7)
0

𝜔
(8)
0

𝜔
(9)
0

𝜔
(10)
0

2.289 5.087 8.096 11.17 14.28 17.39 20.52 23.65 26.78 29.91

where the frequency 𝜔0 is governed by the following transcendental equation:

𝜔0 = −2 tan𝜔0.

A few first nonzero values of 𝜔 are given in Table 2.7.4. For k → ∞ we have the following

asymptotics: 𝜔
(k)
0

→ 0.5𝜋(2k + 1).
Relations regarding the first order approximation follow:

u1xx − u1tt = 𝛼1A𝜔
2
0
sin(𝜔0x) sin(𝜔0t), (2.440)

u1 = 0 for x = 0, (2.441)

u1x + 2u1 = A1 sin(𝜔0t)[ln (A2sin2𝜔0) + ln (sin2𝜔0t)] for x = 1, (2.442)

where A1 = −A sin𝜔0.

The particular solution to Equation (2.440), which satisfies the BC (2.441), has the following

form:

u(1)
1

= −0.5𝛼1A𝜔0x cos(𝜔0x) sin(𝜔0t).

Let us choose 𝛼1 in a way to remove secular term occurring on the r.h.s. of Equation (2.442):

𝛼1 = 2R1∕(𝜔0(6 + 𝜔2
0
)),

where R1 = ln (0.25eA2 sin2𝜔0).
Nonsecular harmonics that appeared on the r.h.s. of BC (2.442) yield the following solution:

u(2)
1

= 4A1

∞∑
k=2

Tk sin(𝜔0kx) sin(𝜔0kt)
1

k2 − 1
, (2.443)

where Tk = 1∕[k𝜔0 cos(k𝜔0) + 2 sin(k𝜔0)].
A complete solution to the first order approximation has the following form:

u1 = u(1)
1

+ u(2)
1
.

In order to construct the second order approximation the r.h.s. of the BC (2.439) is rewritten

into the form

u2x + 2u2 = −2u1 − 0.5u1 ln u2
0

for x = 1. (2.444)

Let us separate secular harmonics on the r.h.s. of the BC (2.444):

u2x + 2u2 = −R2 sin𝜔0t + 𝜑(t) for x = 1, (2.445)
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236 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

where R2 = A𝜔0 sin𝜔0[𝛼1(cot𝜔0 + 0.5(𝜔0 − cot𝜔0)R1) + R3], R3 = 4
∑

k=3,5,… Tk, Tk = k2∕
[(k2 − 1)(k𝜔0 + 2 tan(k𝜔0))2], and by 𝜑(t) the sum of nonsecular harmonics is denoted.

We construct a particular solution to Equation (2.444) satisfying the BC (2.438) regarding

the secular part of the r.h.s.:

u(1)
2

= −0.5A sin(𝜔0t)x𝜔0[𝛼2 cos(𝜔0x) + 𝛼2
1
sin(𝜔0x)]. (2.446)

Constant 𝛼2 is chosen from a condition of lack of secular terms on the r.h.s. of the BC (2.442):

𝛼2 =
𝛼2
1
(tan𝜔0 + 𝜔0) + 𝛼1(2 − R1) + tan𝜔0(𝛼1𝜔0 + 2R3)

𝜔0 tan𝜔0 − 3
.

Therefore, the following frequency of vibrations is obtained with an accuracy up to the third

order terms with respect to 𝛿:

𝜔 ≅ 𝜔0

√
1 + 𝛼1𝛿 + 𝛼2𝛿

2. (2.447)

If the PA is applied then

𝜔 ≅ 𝜔0

√
𝛼1 + (𝛼2

1
− 𝛼2)𝛿

𝛼1 − 𝛼2𝛿
. (2.448)

Assuming 𝛿 = 1, formulas (2.447), (2.448) yield the solution to our problem governed by

(2.424)–(2.426).

It should be emphasized that the procedure so far illustrated and applied loses its benefits

with an increase in frequency values. However, it is not difficult to guess that in the latter

cases one may use asymptotics regarding an inverted frequency value. Then, in the zero order

approximation we get the linear BVP (2.431), (2.432) and

u0x(0, t) = 0,

whereas nonlinear terms of BCs are taken into account with the help of known perturbation

methods.

Let us consider one more application of the 𝛿 perturbation method, using it for the following

ODE:

ẍ + x
1

2n+1 = 0 (2.449)

with attached initial conditions

x(0) = 0, x(0) = A (2.450)

for n→ ∞.

Although a solution to Equation (2.449) can be found directly through special functions, this

approach is not convenient for direct applications. In the limit n→ ∞ we get

ẍ0 + sgn(x0) = 0, sgn(x) =
⎧⎪⎨⎪⎩
+1 for x > 0,

−1 for x < 0.

(2.451)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 237

Table 2.6 Comparison of analytical and numerical results

T n = 2 n = 3 n = 4 n = 5 n = 10 n = 100

Runge-Kutta 1.2198 1.1651 1.1320 1.1099 1.0598 1.0068
(2.457) 1.3057 1.2077 1.1575 1.1269 1.0644 1.0065
Δ(2.457),% 7.04 3.66 2.25 1.53 0.434 0.0047

(2.458) - - - 1.2537 1.0793 1.0066
Δ(2.458),% - - - 12.9 1.85 0.0160

(2.459) - - 1.2231 1.1612 1.0710 1.0066
Δ(2.459),% - - 8.05 4.62 1.06 0.0103

Analytical solution to Equation (2.451) can be sought in the form of a Fourier series or

saw-tooth functions proposed by Pilipchuk [67]. One can also use a fitting method.

Let us introduce the parameter 𝛿 = (2n + 1)−1, 𝛿 << 1.We consider only values x > 0, since

for x < 0 we get a symmetric solution. Applying the series

x𝛿 = 1 + 𝛿 ln |x| + O(𝛿2), (2.452)

a solution to the Cauchy problem (2.449), (2.450) is sought in the following form

x = x0 + 𝛿x1 + O(𝛿2). (2.453)

Substituting Ansatz (2.453) into Equation (2.449), (2.450) and taking into account relations

(2.452) yield the following equation:

ẍ1 = − ln |x0|. (2.454)

We consider a solution to Equation (2.454) in the interval of the 1/4 period part. The zero

order solution of Equation (2.451) has the following form:

x(t) =
⎧⎪⎨⎪⎩
− t

2
(t − 2A) for 0 ≤ t ≤ 2A,

t2

2
− 3At + 4A2 for 2A ≤ t ≤ 4A,

x(t + nt) = x(t), T = 4A.

First order approximation is

ẍ = − ln

(
tA − t2

2

)
, (2.455)

x1(0) = 0, x(0) = 0. (2.456)

Integrating Equation (2.455) gives

x1(t) = 2At − 3t2 − t2 ln 2 − 4A(A − t) ln | − 2A| + t2 ln |2A − t|+
t2 ln t + 4A2 ln | − 2A + t| − 4At ln | − 2A + t|.
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238 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

and finally we get

x ≈ x0 + 𝛿x1. (2.457)

The PA yields

x ≈
x2
0

x0 − 𝛿x1
. (2.458)

The exponential approximation follows

x ≈ x0 exp (𝛿x1∕x0). (2.459)

The results obtained by the obtained formulas have been compared with those obtained

through Runge-Kutta method (Table 2.6). Analysis of the results allows us to conclude that

best results are given by the formula (2.457). Relative error decreases fast with increase of n.
Besides, the exponential approximation give better results than the PA.

2.7.5 Boundary Conditions and First Order Approximation Theory

Theories devoted to improvement in accuracy regarding beams, plates and shells have been

widely applied [40]. It should be noted that all mentioned theories have been constructed on the

basis of certain introduced phenomenological approaches. As has been shown in the series of

works [38], the direct use of the improved equations without the associated modification of the

BCs may result in errors. Therefore, this section is aimed at presentation of relatively simple

examples, showing how modifications of the BCs may improve the solution approximation

accuracy.

To begin with we study vibration of a stretched beam governed by the equation

𝜌FWtt − TWxx + EIWxxxx = 0, (2.460)

where T is the stretching force.

The following BCs are applied:

W = Wxx = 0 for x = 0,L. (2.461)

Let us rescale BVP (2.516), (2.517) taking into account 𝜉 = x∕L, 𝜀2 = EI∕(TL2):

W𝜏𝜏 −W𝜉𝜉 + 𝜀2W𝜉𝜉𝜉𝜉 = 0, (2.462)

W = W𝜉𝜉 = 0 for 𝜉 = 0, 1. (2.463)

For 𝜀 = 0 the BVP (2.516), (2.517) yields the string model

W𝜏𝜏 −W𝜉𝜉 = 0, (2.464)

W = 0 for 𝜉 = 0, 1. (2.465)

We note the second order derivative regarding the longitudinal coordinate, which essentially

simplifies further analysis [48]. In what follows we show how to keep the second order of
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 239

the approximating equation with a simultaneous improvement of the approximation accuracy.
Namely, for the differential operator −𝜕2∕𝜕𝜉2 + 𝜀2𝜕4∕𝜕𝜉4 the following PA is applied:

−𝜕2∕𝜕𝜉2

(1 + 𝜀𝜕2∕𝜕𝜉2)
.

Then, Equation (2.518) with accuracy of 𝜀2 can be recast to the form(
1 + 𝜀2

𝜕2

𝜕𝜉2

)
W𝜏𝜏 −W𝜉𝜉 = 0. (2.466)

BCs for Equation (2.466) have the form (2.465). If the BVP (2.464), (2.465) approximates
eigenvalues of the studied problem with accuracy 𝜀2, then BVP (2.466), (2.465) does the same
with accuracy of 𝜀4, whereas the order of the governing equation with respect to the spatial
coordinate does not change.
Observe that Equation (2.466) may be obtained by the differential approach. Namely, if the

operator 1 + 𝜀2𝜕2∕𝜕𝜉2 acts on Equation (2.518), then all terms of the accuracy order higher
than two are neglected.
Analogously, one may consider vibrations of a plate with the small bending stiffness

governed by the equation
W𝜏𝜏 − ∇2W + 𝜀2∇4W = 0, (2.467)

W = ∇2W = 0 for 𝜉, 𝜂 = 0, 1, (2.468)

where ∇2 = 𝜕2

𝜕𝜉2
+ 𝜕2

𝜕𝜂2
.

Furthermore, one gets the membrane model from Equation (2.467) for 𝜀 = 0:

W𝜏𝜏 − ∇2W = 0, (2.469)

W = 0 for 𝜉, 𝜂 = 0, 1. (2.470)

The accuracy improved model takes the form

(1 + 𝜀2∇2)W𝜏𝜏 − ∇2W = 0 (2.471)

with BCs (2.470).
In what follows we consider the problem of formulation of the BCs for the Equation (2.466).

In the case of a simple support the approach so far works excellently.
Let us study the beam clamped on its ends:

W = Wx = 0 for x = 0,L.

In this case Equation (2.464) does not allow satisfying all BCs, and hence the following state
(boundary layer) should be attached:

𝜀2Wn0xx −Wn0 = 0, (2.472)

𝜀Wn0x = −W0x for x = 0,L. (2.473)

The solution to Equation (2.472) has the following form:

Wn0 = ⌊C1 exp (−𝜀−1x) + C2 exp (𝜀−1(x − 𝜋))⌋ sin𝜔t. (2.474)
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240 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

We assume that the beam possesses enough length that the mutual influence of the boundary

layers governed by formula (2.474) can be neglected.

Solution (2.474) suffers for the incorrectness of 𝜀 order, which has occurred in the BCs with

respect to 𝑤:

W0 + 𝜀Wn0 ≠ 0 for x = 0,L.

Consequently, application of the improved Equation (2.466) is not allowed in this case. How-

ever, taking into account solution (2.474) in BCs (2.473), one may reduce the BVP in a way

that the obtained BCs consisting of Equation (2.466) and BCs

W0 − 𝜀W0x for x = 0,L. (2.475)

yield a solution with the accuracy of 𝜀2.

The examples illustrated and discussed so far can also be applied in the case of nonlinear

problems. For instance, consider the following nonlinear elastic formulation:

𝜀2Wxxxx −Wxx +W3 +Wtt = 0.

In this case, the zeroth order nonlinear equation is of a second order regarding the spatial

coordinate with the following form:

−W0xx +W3 +W0tt = 0. (2.476)

The accuracy improved equation, suitable for the case of simple support, has the form:

−Wxx +
(
1 + 𝜀2

𝜕2

𝜕x2

)
(W3 +Wtt) = 0.

In the case of clamping one can use Equation (2.476) with BCs (2.475).

2.8 Links between the Adomian and Homotopy Perturbation
Approaches

Recently the development of various practical approaches of analytical approximate integra-

tions of nonlinear differential equations aremainlymatchedwith the application of the solution

continuation with respect to a parameter within two main modifications: the Adomian decom-

position method (ADM) and HPM. ADM in spite of a lack of any links with either small or

large parameters [1], [3], [25], practically coincides with the special form perturbation method

(see [16]). On the other hand, the method of HPM initially uses the artificially introduced

parameter and takes into account a special function, called a homotopic mapping. Today’s

variant of this method influenced theory of analytical solutions of nonlinear DEs considerably.

However, the authors of the papers devoted to those problems usually do not study links of

the homotopic functional properties and the help obtained with its approximations (existence,

domain of applicability, stability, convergence, etc.). Although for the ADM the convergence

properties have been widely studied via various methods [1], [3], [25], [26], [46] the HPM

has been less investigated. This problem has been analyzed for instance in [64], where only

algebraic equations have been studied. However, numerous references illustrate the efficiency

of the method devoted to solve numerous model and real problems.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 241

If the known functions occurred in an ODE can be presented in the form of the generalized
series regarding the unknown variable, the function and its derivative being sought, then the
approximate solution obtained either by the ADM or the HPM has a polynomial form with
the power of the integration variable. The ADM variant described so far is called the modified
ADM approach [46]. In some cases solutions obtained via those different approaches coincide,
but not always. Therefore, a problem of relation between approximations obtained via the
ADM and HPM appears. It should be emphasized that in the case of algebraic equations this
question has been rigorously solved in [64], where the coincidence of the results has been
shown for the suitable chosen parameters. In what follows we show how two methods can be
unified through the novel synthetic approach.
In the beginning we study the model examples of ODEs, where a solution obtained via either

the ADM or HPM do not coincide, and then we study the qualitative behavior of the solutions.
Let us take a nonhomogenous linear singularly ODE perturbated with the following initial

conditions:
𝜀z′ + z = 1, z(0), 0 < 𝜀 << 1. (2.477)

Exact solution of this problem z = 1 − exp (−x∕𝜀) while developing into the Maclaurin
series regarding the independent variable is presented in the following form

z = x
𝜀
− x2

2𝜀2
+ · · · + (−1)n+1 1

n!

( x
𝜀

)′′
+ … . (2.478)

Equations (2.477) and (2.478) show that either the exact solution or its representation in
the power of the series have the logarithmic singularity at point 𝜀 = 0, where the series is
divergent. Therefore, accuracy of the solution approximation through the Maclaurin series
part is nonhomogenous in the neighborhood of the singularity.
Let us introduce parameter 𝜀1 in the following way:

z′ = 1

𝜀
− 𝜀1

z
𝜀
. (2.479)

This idea of the parameter introduction reduces the problem to a sequence of the ADM
approximations [16]. Let us present z in the form of the series with respect to 𝜀1, and let us
substitute this series into Equation (2.479), and then let us compare to zero the terms standing
by the same power of this parameter. We obtain:

𝜀0
1
: z′

0
= 1

𝜀
, z0(0) = 0⇒ z0 =

x
𝜀
,

𝜀1
1
: z′

1
= − z0

𝜀
= − x

𝜀2
, z1(0) = 0⇒ z1 = − x2

2𝜀2
= (−1)1 1

2!

(
x
𝜀

)2

,

𝜀2
1
: z′

2
= − z1

𝜀
= x2

2𝜀2
, z2(0) = 0⇒ z2 =

x3

6𝜀3
= (−1)2 1

3!

(
x
𝜀

)3

,

…
𝜀n
1
: z′n = − zn−1

𝜀
= (−1)n 1

(n−1)!

(
x
𝜀

)n (
1

𝜀

)
,

zn(0) = 0 ⇒ zn = (−1)n 1

n!

(
x
𝜀

)n+1
,

…

z = x
𝜀
− x2

2𝜀2
𝜀1 +

x3

6𝜀3
𝜀2
1
· · · + (−1)n 1

n!

( x
𝜀

)n+1
𝜀n
1
+ … .
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242 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

For 𝜀1 = 1 we get the approximate solution in the form overlapping with series (2.478),

which is an agreement with the results reported in reference [16].
In order to remove the nonhomogeneity in the neighborhood of zero point the PA is applied.

Since in the approximation two variable quantities appear (the introduced parameter and inde-

pendent variable), the PA is constructed according to the following three steps:

(i) with respect to 𝜀1 for x = const, x ≠ 0;

(ii) with respect to x for 𝜀1 = const, 𝜀1 ≠ 0;
(iii) two-dimensional form with respect to both 𝜀1 and x, simultaneously.

In what follows we apply the method of V. Vavillov [86] while the 2D PA is constructed. The

method allows to get uniquely defined coefficients of the approximation, as well as it guaran-
tees that the 2D PA possesses a whole spectrum of properties in the sense of the Montessus de

Ballore theorem [18].
If the considerations are restricted to the first order approximation, then for all studied cases

and for 𝜀 = 1 we obtain approximation z𝜀1 regarding 𝜀1 in the following form:

z𝜀1 =
x
𝜀

(
1 − 3x

6𝜀 + 2x

)
,

whereas the coinciding approximations of zx regarding x as well as the two-dimensional z2D
have the following forms:

zx = z2D = 2x
2𝜀 + x

.

It is clear that the first PA, contrary to the second and third, does not remove the singularity

at the point 𝜀 = 0.

If all terms of Equation (2.477) are shifted into its l.h.s., and if then we add a higher order
derivative to both sides of the obtained equation and we introduce 𝜀1 in the following form:

z′ = 𝜀1(1 − z + (1 − 𝜀)z′) (2.480)

one gets the following sequence of approximations regarding to the HPM [43]:

𝜀0
1
∶ z′

0
= 0, z0(0) ⇒ z0 = 0;

𝜀1
1
∶ z′

1
= 1 − z0 + (1 − 𝜀)z′

0
= 1, z1(0) = 0 ⇒ z1 = x;

𝜀2
1
∶ z′

2
= −z1 + (1 − 𝜀)z′

1
= −x + (1 − 𝜀), z2(0) = 0

⇒ z2 = − x
2!
+ (1 − 𝜀)x;

𝜀3
1
∶ z′

3
= −z2 + (1 − 𝜀)z′

2
= x2

2
− (1 − 𝜀)x + (1 − 𝜀)(−x + (1 − 𝜀)),

z3(0) = 0 ⇒ z3 =
x3

3!
− (1 − 𝜀)x2 + (1 − 𝜀)2x;

𝜀4
1
∶ z′

4
= −z3 + (1 − 𝜀)z′

3
= − x3

6
+ (1 − 𝜀)x2 − (1 − 𝜀)2x + (1 − 𝜀)( x

2

2
− 2(1 − 𝜀)x +

(1 − 𝜀)2), z4(0) = 0⇒ z4 = − x4

4!
+ (1 − 𝜀) x

3

2
− 3(1 − 𝜀)2 x

2

2
+ (1 − 𝜀)3x.

Therefore, the following approximation of the HPM is obtained:

z = x𝜀1 +
(
−x

2

2!
+ (1 − 𝜀)x

)
𝜀2
1
+

(
x3

3!
− (1 − 𝜀)x2 + (1 − 𝜀)2x

)
𝜀3
1
+ … .

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 243

Equivalently, for 𝜀1 = 1 we get

z =(1 + (1 − 𝜀) + (1 − 𝜀)2 + (1 − 𝜀)3 + … )x+(
− 1

2!
− (1 − 𝜀) − 3(1 − 𝜀)2 1

2
+ …

)
x2+(

1

3!
+ (1 − 𝜀)1

2
+ …

)
x3 − x4

4!
+ … ,

(2.481)

which coincides with series (2.478) taking into account the development of its coefficients into

the series regarding 𝜀 in the neighborhood of 𝜀 = 1.

In what follows we construct the PA in the way analogous to that of the ADM construction.

For 𝜀 = 1 we get approximations regarding 𝜀1 in the following form:

z𝜀1 = z2D = 2x
2𝜀 + x

,

whereas the approximation regarding x is

zx =
2(2 − 𝜀)2x
2(2 − 𝜀) + x

.

Parameter 𝜀1 is introduced in the following form:

z′ = 𝜀1
1 − z
𝜀

, (2.482)

which yields the novel system of subsequent approximations.

We present z in the series form with respect to powers of 𝜀1, substitute this series into

Equation (2.482), and then after the comparison of terms standing by the same parameter

into zero we get

𝜀0
1
∶ z′

0
= 0, z0(0) = 0⇒ z0 = 0;

𝜀1
1
∶ z′

1
= 1−z0

𝜀
= 1

𝜀
, z1(0) = 0⇒ z1 =

x
𝜀
= (−1)2 1

1!

(
x
𝜀

)1

;

𝜀2
1
∶ z′

2
= − z1

𝜀
= − x

𝜀2
, z2(0) = 0⇒ z2 = − x2

2𝜀2
= (−1)3 1

2!

(
x
𝜀

)2

;

…
𝜀n
1
∶ z′n = − zn−1

𝜀
= (−1)n+1 1

(n−1)

(
x
𝜀

)n−1 (
1

𝜀

)
, zn(0) = 0

⇒ zn = (−1)n+1 1

n!

(
x
𝜀

)n
;

…
z = x

𝜀
𝜀1 −

1

2!

(
x
𝜀

)2

𝜀2
1
+ 1

3!

(
x
𝜀

)3

+ ….

Observe that for 𝜀1 = 1 we obtain the solution being sought in the form coinciding with

series (2.478).

PA for 𝜀1 = 1 in this case yields

z𝜀1 = zx = z2D = 2x
2𝜀 + x

.
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244 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

As the second example we consider the nonhomogenous linear singular perturbated ODE

with variable coefficients with the following BC:

𝜀z′ + xz = x, z(0) = 2, 0 < 𝜀 << 1. (2.483)

Exact solution of Equation (2.483) z = 1 + exp
(
− x2

2𝜀

)
can be developed into the Maclaurin

series:

z = 2 − x2

2𝜀
+ x4

8𝜀2
· · · + (−1)n 1

n!

(
x2

2𝜀

)n

+ … . (2.484)

As in the first case in order to proceed with the ADM, we introduce the parameter 𝜀1

z′ = x
𝜀
− 𝜀1

xz
𝜀
. (2.485)

Let us present z in the series form with powers of 𝜀1, and let us introduce this series into

Equation (2.485). After splitting with respect to 𝜀1 we get

𝜀0
1
∶ z′

0
= x

𝜀
, z0(0) = 2⇒ z0 = 2 + x2

2𝜀
;

𝜀1
1
∶ z′

1
= − xz0

𝜀
= − x

𝜀

(
2 + x2

2𝜀

)
, z1(0) = 0⇒ z1 = − x2

𝜀
− x4

8𝜀2
;

𝜀2
1
∶ z′

2
= − xz1

𝜀
= x

𝜀

(
x2

𝜀
+ x4

8𝜀2

)
, z2(0) = 0⇒ z2 =

x4

4𝜀2
+ x6

48𝜀3
;

…
z = 2 + x2

2𝜀
+

(
− x2

𝜀
− x4

8𝜀2

)
𝜀1 +

(
x4

4𝜀2
+ x6

48𝜀3

)
𝜀2
1
− ….

For 𝜀1 = 1 the approximate solution is

z = 2 + x2

2𝜀
− x2

𝜀
− x4

8𝜀2
+ x4

4𝜀2
+ x6

48𝜀3
− … .

Observe that it coincides with series (2.484) up to the summation term with power 2n
regarding x, which is in agreement with the result presented in [16].

Diagonal PA of the first order with respect to 𝜀1 and for 𝜀1 = 1 has the following form:

z𝜀1 = 2 + x2

2𝜀
− x2

(8𝜀 + x2)2

384𝜀3 + 32x2𝜀2 + 8x4
,

whereas the expecting approximation zx and z2D do not exist.

Since the solution practically depends on x2, let us apply the following change x̃ = x2 during
construction of the PA. Approximation regarding 𝜀1 will not change in this case, whereas

approximation with respect to x and the 2D form are as follows

zx = z2D = 8𝜀

4𝜀 + x2
.

In order to carry out the HPM, we shift all terms of Equation (2.483) into its l.h.s. We add

a higher order derivative to both sides of the obtained equation, and we introduce 𝜀1 in the

following way:

z′ = 𝜀1(x − xz + (1 − 𝜀)z′); (2.486)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 245

𝜀0
1
∶ z′

0
= 0, z0(0) = 2⇒ z0 = 2;

𝜀1
1
∶ z′

1
= x − xz0 + (1 − 𝜀)z′

0
= x − 2, z1(0) = 0⇒ z1 = − x2

2
;

𝜀2
1
∶ z′

2
= −xz1 + (1 − 𝜀)z′

1
= x3

2
− (1 − 𝜀)x, z2(0) = 0

⇒ z2 =
x4

8
− (1 − 𝜀) x

2

2
;

…
z = 2 − x2

2
𝜀1 +

(
x4

8
− (1 − 𝜀) x

2

2

)
𝜀2
1
+ ….

For 𝜀1 = 1 we get approximation of the HPM in the following form:

z = 2 − (1 + (1 − 𝜀) + … )x
2

2
+

(
1

2
+ …

) x2

4
+ … , (2.487)

which corresponds to series (2.484) taking into account the development of its coefficients into

the series regarding 𝜀 in the vicinity of 𝜀 = 1.

Diagonal PA of both first order regarding 𝜀1 and the 2D approximation have the following

forms

z𝜀1 = z2D = 8𝜀

4𝜀 + x2

and

zx = 2 − x2
8 − 4𝜀 + 𝜀2

8 − 4𝜀 + x2
.

Solving Equation (2.483) with respect to the higher derivative and introducing the parameter

𝜀1 in the following way:

z′ = 𝜀1
x − xz
𝜀

, (2.488)

we get

𝜀0
1
∶ z′

0
= 0, z0(0) = 2⇒ z0 = 2;

𝜀1
1
∶ z′

1
= x−xz0

𝜀
= − x

𝜀
, z1(0) = 0⇒ z1 = − x2

2𝜀
= (−1)1 1

1!

(
x2

2𝜀

)1

;

𝜀2
1
∶ z′

2
= − xz1

𝜀
= x3

2𝜀2
, z2(0) = 0⇒ z2 =

x4

8𝜀2
= (−1)2 1

2!

(
x2

2𝜀

)2

;

…
𝜀n
1
∶ z′n = − xzn−1

𝜀
= (−1)n 1

(n−1)!

(
x2

2𝜀

)n−1
, zn(0) = 0

⇒ zn = (−1)n 1

n!

(
x2

2𝜀

)n
;

…
z = 2 − x2

2𝜀
𝜀1 +

x4

8𝜀2
𝜀2
1
+ ….

For 𝜀1 = 1 we obtain the approximate solution being sought in the form coinciding with

series (2.484) without a need for summation with respect to x and 𝜀.

Diagonal PA of the first order for 𝜀1 = 1 has the following form:

z𝜀1 = zx = z2D = 8𝜀

4𝜀 + x2
.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



246 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Now we study nonhomogenous singularly Riccati ODE [68], with the initial condition of
the form:

𝜀z′ = z2 + x, z(1) = 1, 0 < 𝜀 << 1. (2.489)

It is known that a general solution can be obtained using the special functions, and it has the
following form:

z = −𝜀
𝑤′
x

𝑤
, 𝑤 =

√
x
(
C1J 1

3

(
2

3𝜀
x
3
2

)
+ C2Y 1

3

(
2

3𝜀
x
3
2

))
,

where J𝛼 , Y𝛼 are the Bessel functions of the order 𝛼 ([2], chapter 9), and C1, C2 are arbitrary
constants.
It is known that for 𝛼 = 1

3
the solution cannot be obtained in the quadratures of elementary

functions, as well as the determination of the constants do not belong to a trivial problem.
General solution can be presented in the following form:

z = −𝜀
⎛⎜⎜⎜⎝

1

2
√
x
+
C d
dx
J 1
3

(
2

3𝜀
x
3
2

)
+ d

dx
Y 1

3

(
2

3𝜀
x
3
2

)
CJ 1

3

(
2

3𝜀
x
3
2

)
+ Y 1

3

(
2

3𝜀
x
3
2

) ⎞⎟⎟⎟⎠ , C =
C1

C2

,

and

C = −

2+𝜀
2𝜀
Y 1

3

(
2

3𝜀

)
+ d

dx
Y 1

3

(
2

3𝜀

)
2+𝜀
2𝜀
J 1
3

(
2

3𝜀

)
+ d

dx
J 1
3

(
2

3𝜀

) .

Since the illustrated methods are particularly suitable to be applied having the initial condi-
tion in zero, we change the variable andwe obtain the following problem equivalent to (2.489):

𝜀z′ = −z2 + x − 1, z(0) = 1, 0 < 𝜀 << 1. (2.490)

To realize the ADM we solve Equation (2.490) with respect to the derivative and we intro-
duce the parameter 𝜀1 in the following way:

z′ = −𝜀1
z2

𝜀
+ x − 1

𝜀
, z(0) = 1. (2.491)

We present z in the series regarding 𝜀1, substitute this series into Equation (2.491), and com-
pare to zero terms standing by the same powers of 𝜀.
We obtain

𝜀0
1
∶ z′

0
= x−1

𝜀
, z0(0) = 1⇒ z0 =

x2

2𝜀
− x

𝜀
+ 1;

𝜀1
1
∶ z′

1
= − x4

4𝜀3
+ x3

𝜀3
− 2x2

𝜀3
+ 2x

𝜀2
− 1

𝜀
, z1(0) = 0

⇒ z1 =
1

60𝜀3
(−3x5 + 15x4 − 40x3 + 60𝜀x2 − 60𝜀2x);

𝜀2
1
∶ z′

2
= − 1

60𝜀5
(−3x5 + 15x4 − 40x3 + 60𝜀x2 − 60𝜀2x)(x2 − 2x + 2𝜀),
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 247

z2(0) = 0⇒ z2 = − 1

60𝜀5

(
− 3x8

8
+ 3x7 − (3𝜀+55)2x6

6
+ (18𝜀 + 16)x5−

(15𝜀2 + 50𝜀)x4 + 80𝜀2x3 − 60𝜀3x2);
…
z = 1 − x

𝜀
+ x2

2𝜀
+ 1

60𝜀3
(−30x5 + 15x4 − 40x3 + 60𝜀x2 − 60𝜀2x)𝜀1+

1

60𝜀5

(
3x8

8
+ 3x7 − (3𝜀+55)2x6

6
+ (18𝜀 + 16)x5−

(15𝜀2 + 50𝜀)x4 + 80𝜀2x3 − 60𝜀3x2)𝜀2
1
+ ….

For 𝜀1 = 1 we obtain the approximation being sought in the following form:

z = 1 − 2x
𝜀

+
(
1

2𝜀
+ 2

𝜀2

)
x2 + 1

60𝜀3
(−30x5 + 15x4 − 40x3)−

1

60𝜀5

(
3x8

8
+ 3x7 − (3𝜀 + 55)2x6

6
+ (18𝜀 + 16)x5−

(15𝜀2 + 50𝜀)x4 + 80𝜀2x3).

Diagonal PA of the first order with respect to 𝜀1 and for 𝜀1 = 1 has the following form:

z𝜀1 = 1 − x
𝜀
+ x2

2𝜀
+ 1

60𝜀3
(3x5 + 15x4 − 40x3 + 60𝜀x2 − 60𝜀2x)2×

(
3x5 + 15x4 − 40x3 + 60𝜀x2 − 60𝜀2x +

(
−3x8

8
+ 3x7−

(3𝜀 + 55)2x6

6
+ (18𝜀 + 16)x5 − (15𝜀2 + 50𝜀)x4 + 80𝜀2x3 − 60𝜀3x2

))
,

whereas the approximation zx is

zx =
4𝜀 + (𝜀 − 6)x
4𝜀 + (𝜀 + 2)x

and the 2D approximation reads:

z2D = 2𝜀 + (𝜀 − 3)x
2𝜀 + (𝜀 + 1)x

.

In order to proceed with the HPM, we introduce 𝜀1 in the following way:

z′ = 𝜀1((1 − 𝜀)z′ − z2 + x − 1); (2.492)

𝜀0
1
∶ z′

0
= 0, z0(0) = 1⇒ z0 = 1;
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248 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

𝜀1
1
∶ z′

1
= x − 2, z1(0) = 0⇒ z1 =

x2

2
− 2x;

𝜀2
1
∶ z′

2
= −x2 + (5 − 𝜀)x − 2(1 − 𝜀), z2(0) = 0⇒

z2 = − x3

3
+ (5−𝜀)

2
x2 − 2(1 − 𝜀)x;

…

z = 1 +
(
x2

2
− 2x

)
𝜀1 +

(
− x3

3
+ (5−𝜀)

2
x2 − 2(1 − 𝜀)x

)
𝜀2
1
+ ….

For 𝜀1 = 1 we obtain the following approximation of the HPM:

z = 1 − 2(2 − 𝜀)x + (6 − 𝜀)
2

x2, (2.493)

where the coefficients standing by x represent the series part regarding the development of

ADM coefficients with respect to 𝜀 in the neighborhood of one.

Diagonal PA of the first order for 𝜀1 = 1 has the following form:

z𝜀1 = 1 + 3

2

x(x − 4)2

2x2 + (3𝜀 − 12)x − 12𝜀
,

zx =
4(2 − 𝜀) + (−26 + 31𝜀 − 8𝜀2)x

4(2 − 𝜀) + (6 − 𝜀)x
,

z2D = 4𝜀 − (𝜀 − 4)x + 4𝜀(𝜀 − 1)
4𝜀 − (𝜀 − 4)x + 4x(2𝜀 − 1)

.

Let us introduce the parameter 𝜀1 in the following way:

z′ = 𝜀1
−z2 + x − 1

𝜀
, z(0) = 1. (2.494)

We obtain

𝜀0
1
∶ z′

0
= 0, z0(0) = 1⇒ z0 = 1;

𝜀1
1
∶ z′

1
= x−2

𝜀
, z1(0) = 0⇒ z1 =

x2

2𝜀
− 2x

𝜀
;

𝜀2
1
∶ z′

2
= − x2

𝜀2
+ 4x

𝜀2
, z2(0) = 0⇒

z2 = − x3

3𝜀2
+ 2x2

𝜀2
;

…

z = 1 +
(
x2

2𝜀
− 2x

𝜀

)
𝜀1 +

(
− x3

3𝜀2
+ 2x2

𝜀2

)
𝜀2
1
+ ….
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 249

For 𝜀1 = 1 the solution being sought has the following form:

z = 1 − 2x
𝜀

+
(
1

2𝜀
+ 2

𝜀2

)
x2 − x3

3𝜀2
,

which fully coincides with the first terms of the ADM formula.
Diagonal PA of the first order for 𝜀1 = 1 is

z𝜀1 = 1 + 3

2

x(x − 4)2

2x2 + (3𝜀 − 12)x − 12𝜀
,

zx = z2D = 4𝜀 + (𝜀 − 4)x
4𝜀 + (𝜀 + 4)x

.

It is seen that z𝜀1 overlaps with analogous approximation of the HPM.
Therefore we have illustrated that:

- governing equations of the ADM are solved regarding higher derivative with respect to the
independent variable, whereas the HPM allows to get the similar result only for 𝜀 = 1;

- coefficients of the ADM approximation yield the exact solution after the summation of the
corresponding approximations, whereas the HPM, after both the same summation procedure
and development of the exact solution coefficients versus the real small parameter 𝜀, yields
the exact solution in the neighborhood of 𝜀 = 1;

- in the given examples both approximations coincide in a limit approaching the real solution
in the domain of its holomorphicity with respect to both the independent variable and small
parameter;

- proposedmethod allows us to get values of coefficients standing by powers of the independent
variable without their summation with respect to higher order approximations.

Let us formulate the problem more rigorously. Namely, let us formally introduce the ADM
and HPM for the system of ODEs in the asymptotic terminology language.
It is recognized [90], that an ODE or system of ODEs can be recast to the so called normal

form of the first order regarding unknown functions {ui = ui(𝜉)}ni=1 in the same interval 𝜔 ∶
𝜉 ∈]0, 1[ of the following form:

Lui + Ri(𝜉, u1,… , un) + Ni(𝜉, u1,… , un) = gi(𝜉), L = d
d𝜉

, i = 1, n, (2.495)

with the BCs on the boundary 𝜕𝜔 ∶ 𝜉 = 0 ∪ 1

Gj(u1,… , un)|𝜕Ω = 0, j = 1, n, (2.496)

where: L is the operator of the derivative with respect to the independent variable 𝜉; Ri is
the linear differential operator with respect to the sought function; Ni and Gj are nonlinear
differential operators regarding the function being sought gi = gi(𝜉).
We also assume the point 𝜉0 = 0 belonging to a closure of Ω, whereas Ri, Ni and Gj are the

holomorphic functions regarding {ui}ni=1. Owing to the ADM, a solution can be presented in
the following form:

ui =
∞∑
j=0

uAij , i = 1, n. (2.497)
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250 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Component of a solution can be found from the equations

LiAij = Aij, i = 1, n, j = 0,∞. (2.498)

where Aij are the Adomian polynomials [3] defined through the following formulas:

Ai0 = gi, Aij = − 1

j!
𝜕j

𝜕𝜆j

(
Ni

(
j∑

m=0
uAim𝜆

m

)
+ Ri

(
j∑

m=0
uAim𝜆

m

))||||||𝜆=0,
i = 1, n, j = 1,∞.

(2.499)

As has been shown in [16], the ADM is equivalent to both development of the governing

equation and its solution with respect to powers of the artificial parameter 𝜆, which is intro-

duced in the following way:

ui =
∞∑
j=0

uAij𝜆
j, Lui + 𝜆(Ri(u1,… , un) + Ni(u1,… , un)) = gi, i = 1, n

for 𝜆 = 1.

In the case of the HPM, the governing equation (in general) cannot be solved regarding a

higher derivative, therefore the system of ODEs can be cast to the following form:

Lu1 + R1(u1,… , un) + N1(u1,… , un) + F(Lu1, u1,… , un) = g1,

Lui + Ri(u1,… , un) + Ni(u1,… , un) = gi, i = 2, n,
(2.500)

where F is the nonlinear differential operator, and 𝜀 is introduced in the following way:

ui =
∞∑
j=0

uHij 𝜀
j,

(1 − 𝜀)(Lu1 − Lu1|𝜕Ω) + 𝜀(Lu1 + R1 + N1 + F − g1) = 0,

(1 − 𝜀)(Lui − Lui|𝜕Ω) + 𝜀(Lui + Ri + Ni − gi) = 0, i = 2, n,

Gj(u1|𝜕Ω,… , un|𝜕Ω)|𝜕Ω = 0, j = 1, n,

(2.501)

u1|𝜕Ω are referred to as the “probe” functions satisfying the BCs [44].

System (2.501) can be rewritten in the following form:

Lui + 𝜀(Lui|𝜕Ω + Ri + Ni + F𝛿1i − gi) = 0, i = 1, n, (2.502)

where 𝛿1i is the Cronecker symbol.

Assuming {ui = ui(𝜉)}ni=1 and their derivatives as the independent arguments, let us substi-

tute the operators Ri, Ni, F and Gj in the form of the generalized multidimensional Taylor

series:

Ri + Ni =
n∑
j=1

(
Nijuj +

1

2!

n∑
p=1

Nijpujup + …

)
, i = 1, n, (2.503)
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 251

F =

(
F0Lu1 +

1

2!

n∑
p=1

F0pupLu1 + …

)
+

n∑
j=1

(
Fjuj +

1

2!

n∑
p=1

Fjpujup + …

)
,

Gj =
n∑
q=1

(
Gjq(uq − uq|𝜕Ω) + 1

2!

n∑
p=1

Gjqp(uq − uq|𝜕Ω)(up − up|𝜕Ω) + …

)
,

j = 1, n.

(2.504)

Let us also develop the coefficients of the applied operators and functions gi into the series

with respect to powers of 𝜉:

Nij =
∞∑
r=0

Nr
ij𝜉

r, Nijp =
∞∑
r=0

Nr
ijp𝜉

r,… i, j, p = 1, n,

Fj =
∞∑
r=0

Frj 𝜉
r, Fjp =

∞∑
r=0

Frjp𝜉
r,… j, p = 0, n,

gi =
∞∑
j=0

gij𝜉
i, i = 1, n.

(2.505)

We substitute the series (2.503)–(2.505) into Equations (2.499):

Aij = − 1

j!
𝜕j

𝜕𝜆j

(
n∑
r=1

(
Nirur +

1

2!

n∑
p=1

Nirpurup + …

))||||||𝜆=0 =
− 1

j!
𝜕j

𝜕𝜆j

(
n∑
r=1

(
Nir

j∑
k=0

uArk𝜆
k + 1

2!

n∑
p=1

Nirp

j∑
k=0

uArk𝜆
k

j∑
q=0

uApq𝜆
q + …

))||||||𝜆=0 =
−

n∑
r=1

(
Niru

A
rj +

n∑
p=1

Nirp

j∑
k=0

uArku
A
p(j−k) + …

)
. (2.506)

The following sequence of the ADM problems is obtained:

𝜀0 ∶ LuAi0 = gi, Gj(uA10,… , uAn0)|𝜕Ω = 0, j = 1, n,

𝜀0 ∶ LuAi1 = −
n∑
r=1

(
Niru

A
r0 +

n∑
p=1

1∑
m=0

Nirpu
A
r0u

A
p0 + …

)
,

uAj1|𝜕Ω = 0, j = 1, n,

𝜀0 ∶ LuAi2 = −
n∑
r=1

(
Niru

A
r1 +

n∑
p=1

Nirp(uAr1u
A
p0 + uAr0u

A
p1) + …

)
,

uAj2|𝜕Ω = 0, j = 1, n.

(2.507)
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252 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Let us substitute Ansatzes (2.500), (2.503)–(2.505) into Equations (2.502) and let us collect

terms standing by the same powers of 𝜀:

Lui + 𝜀

(
Lui|𝜕Ω + 𝛿1i

(
F0Lu1 +

1

2!

n∑
p=1

F0pupLu1 + …

)
+

𝛿1i

n∑
j=1

(
Fjuj +

1

2!

n∑
p=1

Fjpujup + …

)
+

n∑
j=1

(
Nijuj +

1

2!

n∑
p=1

Nijpujup + …

)
− gi

)
= L

∞∑
k=0

uHik𝜀
k + 𝜀

(
L

∞∑
k=0

uHik𝜀
k
|||||𝜕Ω+

𝛿1i

(
F0L

∞∑
k=0

uH
1k𝜀

k + 1

2!

n∑
p=1

F0p

∞∑
k=0

uH
1k𝜀

k
∞∑
q=0

uHpq𝜀
q + …

)
+

𝛿1i

n∑
j=1

(
Fj

∞∑
k=0

uHjk𝜀
k + 1

2!

n∑
p=1

Fjp

∞∑
k=0

uHjk𝜀
k

∞∑
q=0

uHpq𝜀
q + …

)
+

n∑
j=1

(
Nij

∞∑
k=0

uHjk𝜀
k + 1

2!

n∑
p=1

Nijp

∞∑
k=0

uHjk𝜀
k

∞∑
q=0

uHpq𝜀
q + …

)
− gi

)
=

LuHi0 − gi𝜀 +
∞∑
k=1

𝜀k
(
LuHi(k−1)

|||𝛿Ω + 𝛿1i

(
F0Lu

H
1(k−1) +

1

2!

n∑
p=1

F0p

k−1∑
q=0

uHp(k−q−1)Lu
H
1q + …

)
+ 𝛿1i

n∑
r=1

(FruHr(k−1)+

1

2!

n∑
p=1

Frp

k−1∑
q=0

uHrqu
H
p(k−q−1) + …

)
+

n∑
r=1

(NiruHr(k−1)+

1

2!

n∑
p=1

Nirp

k−1∑
q=0

uHrqu
H
p(k−q−1) + …

))
. (2.508)

Comparing to zero the coefficients standing by the same power of 𝜀, the following sequence

of problems of the HPM is obtained:

𝜀0 ∶ LuHi0 = 0, Gi(uH10,… , uHn0)|𝜕Ω = 0, i = 1, n,

𝜀1 ∶ LuHi1 − gi + LuHi0|𝜕Ω + 𝛿1i

(
F0Lu

H
10
+ 1

2!

n∑
p=1

F00u
H
p0Lu

H
10
+ …

)
+

𝛿1i

n∑
r=1

(
Fru

H
r0 +

1

2!

n∑
p=1

Frpu
H
r0u

H
p0 + …

)
+
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n∑
r=1

(
Niru

H
r0 +

1

2!

n∑
p=1

Nirpu
H
r0u

H
p0 + …

)
= 0, uHi1|𝜕Ω = 0, i = 1, n,

𝜀2 ∶ LuHi2 + LuHi1|𝜕Ω + 𝛿1i

(
F0Lu

H
11
+ 1

2!

n∑
p=1

F00

(
uHp0Lu

H
11
+ uHp1Lu

H
10

)
+ …

)
+

𝛿1i

n∑
r=1

(
Fru

H
r1 +

1

2!

n∑
p=1

Frp
(
uHr1u

H
p0 + uHr0u

H
p1

)
+ …

)
+

n∑
r=1

(
Niru

H
r1 +

1

2!

n∑
p=1

Nirp
(
uHr1u

H
p0 + uHr0u

H
p1

)
+ …

)
= 0,

uHi2|𝜕Ω = 0, i = 1, n.

(2.509)

Substituting Ansatz (2.505) into Equations (2.507) and (2.509), the following sequence of

the ADM approximations is obtained:

𝜀0 ∶ LuAi0 =
∞∑
j=0

gij𝜉
i, Gj(uA10,… , uAn0)|𝜕Ω = 0, j = 1, n,

⇒ uAi0 = ui|𝜕Ω +
∞∑
j=0

gij
(j + 1)

𝜉j+1,

𝜀1 ∶ LuAi1 = −
n∑
r=1

([
Nirur||𝜕Ω + 1

2!

n∑
p=1

Nirpur|𝜕Ωup|𝜕Ω + …

]
+

Nir

∞∑
j=0

grj
(j + 1)

𝜉j+1 + 1

2!

n∑
p=1

(
Nirp

(
ur||𝜕Ω ∞∑

j=0

gpj
(j + 1)

𝜉j+1+

up
|||𝜕Ω ∞∑

j=0

grj
(j + 1)

𝜉j+1

)
+ …

)
+

(
1

2!

n∑
p=1

Nirp

∞∑
j=0

∞∑
q=0

grjgpq
(j + 1)(q + 1)

𝜉j+q+2+

))
,

uAj1|𝜕Ω = 0, j = 1, n, ⇒ uAi1 = −
n∑
r=1

∞∑
k=0

((
Nk
ir ur

||𝜕Ω +

1

2!

n∑
p=1

Nk
irp ur

||𝜕Ωup|𝜕Ω + …

)
𝜉k+1

(k + 1)
+

Nk
ir

∞∑
j=0

grj
(j + 1)(k + j + 2)

𝜉k+j+2+ (2.510)

1

2!

n∑
p=1

(
Nk
irp

∞∑
j=0

ur|𝜕Ωgpj + up|𝜕Ωgrj
(j + 1)(k + j + 2)

𝜉k+j+2 + …

)
+
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(
1

2!

n∑
p=1

Nk
irp

∞∑
j=0

∞∑
q=0

grjgpq
(j + 1)(q + 1)(k + j + q + 3)

𝜉k+j+q+3 + …

))
,

j = 1, n,

𝜀2 ∶ LuAi2 = −
n∑
r=1

(
Niru

A
r1 +

1

2!

n∑
p=1

Nirp(uAr1u
A
p0 + uAr0u

A
p1) + …

))
,

uAj2|𝜕Ω = 0, j = 1, n,

In the case of the HPM we get

𝜀0 ∶ LuHi0 = 0, Gi(uH10,… , uHn0)|𝜕Ω = 0, ⇒ uHi0 = ui|𝜕Ω, i = 1, n,

𝜀1 ∶ LuHi1 − gi + LuHi0|𝜕Ω + 𝛿1i

(
F0Lu

H
10
+ 1

2!

n∑
p=1

F00u
H
p0Lu

H
10
+ …

)
+

𝛿1i

n∑
r=1

(
Fru

H
r0 +

1

2!

n∑
p=1

Frpu
H
r0u

H
p0 + …

)
+

n∑
r=1

(NiruHr0+

1

2!

n∑
p=1

Nirpu
H
r0u

H
p0 + …

)
= 0, uHi1|𝜕Ω = 0 ⇒ uHi1 =

∞∑
j=0

gij
(j + 1)

𝜉j+1−

∞∑
k=0

𝜉k+1

(k + 1)

n∑
r=1

(
(Nk

ir + 𝛿1i F
k
r )ur||𝜕Ω + (2.511)

1

2!

n∑
p=1

(
Nk
irp + 𝛿1i F

k
rp

)
ur|𝜕Ωup|𝜕Ω + …

)
, i = 1, n,

𝜀2 ∶ LuHi2 + LuHi1|𝜕Ω + 𝛿1i

(
F0Lu

H
11
+ 1

2!

n∑
p=1

F00

(
uHp0Lu

H
11
+ uHp1Lu

H
10

)
+ …

)
+

n∑
r=1

((
Nir + 𝛿1i Fr

)
uHr1 +

1

2!

n∑
p=1

(Nirp + 𝛿1i Frp)(u
H
r1u

H
p0 + uHr0u

H
p1) +…

)
= 0,

uHi2|𝜕Ω = 0 ⇒ uHi2 = −𝛿1i
∞∑
k=0

(
Fk
0
+ Fk

00

∞∑
p=1

up
|||𝜕Ω

)
×

( ∞∑
j=0

g1j
(j + 1)

𝜉k+j+1 −
∞∑
q=0

𝜉k+q+1

(q + 1)

n∑
l=1

(
(Nq

1l + Fql )ul||𝜕Ω +
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1

2!

n∑
p=1

(Nq
1lp + Fqlp)ul||𝜕Ωup|𝜕Ω

))
−

∞∑
s=0

n∑
r=1

((
Ns
ir + 𝛿1i F

s
r

)( ∞∑
j=0

grj
(j + 1)(s + j + 2)

𝜉s+j+2−

∞∑
t=0

𝜉s+t+2

(t + 1)(s + t + 2)

n∑
l=1

((Nt
rl + 𝛿1r F

t
l)ul|𝜕Ω+

1

2!

n∑
q=1

(
Nt
rlq + 𝛿1r F

t
lq

)
ul|𝛿Ωuq|𝜕Ω + …

))
+

1

2!

n∑
p=1

(Ns
irp + 𝛿1i F

s
rp)

(
up

|||𝜕Ω
( ∞∑

j=0

grj
(j + 1)(s + j + 2)

𝜉s+j+2 +

∞∑
t=0

𝜉s+t+2

(t + 1)(s + t + 2)

n∑
l=1

((Nt
rl + 𝛿1r F

t
l)ul|𝜕Ω+

1

2!

n∑
q=1

(
Nt
rlq + 𝛿1r F

t
lq

)
ul|𝛿Ωuq|𝜕Ω))

+

ur|𝜕Ω ( ∞∑
j=0

gpj
(j + 1)(s + j + 2)

𝜉s+j+2 −

∞∑
t=0

𝜉s+t+2

(t + 1)(s + t + 2)

n∑
l=1

((Nt
pl + 𝛿1pF

t
l)ul|𝜕Ω+

1

2!

n∑
q=1

(
Nt
plq + 𝛿1pF

t
lq

)
ul|𝛿Ωuq|𝜕Ω)))

+ …

)
+ … , i = 1, n,

… .

Summation of the coefficients standing by powers of 𝜉 yields for the ADM:

ui = 𝜉0([ui|𝜕Ω] + [0] + [0] + … )+ (2.512)

𝜉1

(
[gi0] +

[
−

(
n∑
j=1

(
N0
ij +

1

2!

n∑
p=1

N0
ijpuj|𝜕Ωup|𝜕Ω

)
+ …

)]
+ 0 + …

)
+

𝜉2

([gi1
2

]
+

[
− 1

2!

n∑
r=1

((
N1
irur|𝜕Ω + 1

2!

n∑
p=1

N1
irpur|𝜕Ωup|𝜕Ω + …

)
−
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(
N0
ir

gr0
2!

+ 1

2!

n∑
p=1

N0
irp

(gr0up|𝜕Ω + gp0ur|𝜕Ω
2!

+
)
+ …

)]
+ …

)
+ … ,

i = 1, n,

and for the HPM

u1 = 𝜉0([u1|𝜕Ω] + [0] + [0] + … )+

𝜉1

(
[0] +

[
g10 −

n∑
r=1

(
(N0

1r + F0
r )ur|𝜕Ω+

1

2!

n∑
p=1

(N0
1rp + F0

rp)ur|𝜕Ωup|𝜕Ω + …

)]
+ (2.513)

[
−

(
F0
0
+ F0

00

∞∑
p=1

up|𝜕Ω)(
g10 −

n∑
r=1

((
N0
1r + F0

r

)
ur|𝜕Ω +

1

2!

n∑
p=1

(N0
1rp + F0

rp)ur|𝜕Ωup|𝜕Ω + …

))]
+ …

)
+

𝜉2

(
[0] +

[
gi1
2!

− 1

2

n∑
r=1

(
(N1

1r + F1
r )ur|𝜕Ω+

1

2!

n∑
p=1

(N1
1rp + F1

rp)ur|𝜕Ωup|𝜕Ω + …

)]
+

[
−

(
F1
0
+ F1

00

∞∑
p=1

up|𝜕Ω)(
g10 −

n∑
l=1

((
N0
1l + F0

l

)
ul|𝜕Ω +

1

2!

n∑
p=1

(N0
1lp + F0

lp)ul|𝜕Ωup|𝜕Ω + …

))
−

(
F0
0
+ F0

00

∞∑
p=1

up|𝜕Ω)(
g11
2

− 1

2!

n∑
l=1

((
N1
1l + F1

l

)
ul|𝜕Ω +

1

2!

n∑
p=1

(N1
1lp + F1

lp)ul|𝜕Ωup|𝜕Ω + …

))
+

n∑
r=1

((
N0
1r + F0

r

)( ∞∑
j=0

grj
2
−

1

2

n∑
l=1

((
N0
1l + F0

l

)
ul|𝜕Ω + 1

2!

n∑
q=1

(N0
1lq + F0

lq)ul|𝜕Ωuq|𝜕Ω + …

))
+
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1

2!

n∑
p=1

(N0
1rp + F0

rp)

(
up|𝜕Ω (

gr0
2

− 1

2

n∑
l=1

((
N0
rl + F0

l

)
ul|𝜕Ω +

1

2!

n∑
q=1

(
N0
rlq + F0

lq

)
ul|𝜕Ωuq|𝜕Ω))

+ ur|𝜕Ω (
gp0
2

− 1

2

n∑
l=1

((
N0
pl + F0

l

)
ul|𝜕Ω +

1

2!

n∑
q=1

(N0
plq + F0

lq)ul|𝜕Ωuq|𝜕Ω
)))

+ …

])
+ … ,

ui = 𝜉0([ui|𝜕Ω] + [0] + [0] + … )+

𝜉1

(
[0] +

[
gi0 −

n∑
r=1

(
N0
irur|𝜕Ω + 1

2!

n∑
p=1

N0
irpur|𝜕Ωup|𝜕Ω + …

)]
+ [0] + …

)
+

𝜉2

(
[0] +

[
gi1
2

− 1

2

n∑
r=1

(
N1
irur|𝜕Ω + 1

2!

n∑
p=1

N1
irpur|𝜕Ωup|𝜕Ω + …

)]
+

[
−

n∑
r=1

(
N0
ir

(
gr0
2

− 1

2

n∑
l=1

(
N0
rlul|𝜕Ω + 1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω + …

))
+

1

2!

n∑
p=1

N0
irp

(
up|𝜕Ω (

gr0
2

− 1

2

n∑
l=1

(
N0
rlul|𝜕Ω + 1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω

))
+

ur|𝜕Ω (
gp0
2

− 1

2

n∑
l=1

(
N0
plul|𝜕Ω + 1

2!

n∑
q=1

N0
plqul|𝜕Ωuq|𝜕Ω

)))
+

)]
+ …

)
+

+ … , i = 2, n.

Square brackets include expressions corresponding to subsequent approximations regarding

powers of the parameter.

Analysis of relations between solutions yielded by the ADM and HPM is explicitly defined

by the relation of the nonlinear operator of the studied ODEs in both normal and general forms.

Although in general this approach seems to be difficult, but assuming that the considerations

will be limited to the second order terms in the series (2.503), the normal form of the system

(2.500) can be recast in the following way:

Lu1 +
n∑
j=1

(N1j + Fj
1 + F0

uj +

1

2

n∑
p=1

(N1jp + Fjp)(1 + F0) − F0p(N1j + Fj) − F0j(N1p + Fp)
2(1 + F0)2

ujup

)
=

g1
1 + F0

,

Lui + Ri(u1,… , un) + Ni(u1,… , un) = gi, i = 2, n.

(2.514)
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258 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

In other words, the application of the ADM to Equations (2.514) is equivalent to application

of the HPM to Equations (2.500) taking into account terms of less than the second order in

Equations (2.503).

There are also a few particular cases worthy to be studied from an application point of view.

In what follows for a nonlinear equation having a real small parameter 𝜀 standing by a higher

derivativeF0 = F0
0
= 𝜀 − 1 = const,Fj ≡ Fjp ≡ 0, j, p = 1, n, formulas (2.513)–(2.514) yield:

Lu1 +
n∑
j=1

(
N1j

𝜀
uj +

1

2

n∑
p=1

N1jp

2𝜀
ujup

)
=
g1
𝜀
, (2.515)

u1 = 𝜉0u1|𝜕Ω + 𝜉1

((
g10 −

n∑
r=1

(
N0
1rur|𝜕Ω + 1

2!

n∑
p=1

N0
1rpur|𝜕Ωup|𝜕Ω + …

)
−

(𝜀 − 1)

(
g10 −

n∑
r=1

(
N0
1rur|𝜕Ω + 1

2!

n∑
p=1

N0
1rpur|𝜕Ωup|𝜕Ω + …

))
+ …

)
+

𝜉2

((
gi1
2!

− 1

2

n∑
r=1

(
N1
1rur|𝜕Ω + 1

2!

n∑
p=1

N1
1rpur|𝜕Ωup|𝜕Ω + …

)
−

(𝜀 − 1)

(
g11
2

− 1

2!

n∑
l=1

(
N1
1lul|𝜕Ω + 1

2!

n∑
p=1

N0
1lpul|𝜕Ωup|𝜕Ω + …

))
−

n∑
r=1

(
N0
1r

( ∞∑
j=0

grj
2

− 1

2!

n∑
l=1

(
N0
1lul|𝜕Ω + 1

2!

n∑
q=1

N0
1lqul|𝜕Ωuq|𝜕Ω + …

))
+

1

2!

n∑
p=1

N0
1rp

(
up|𝜕Ω (

gr0
2

− 1

2

n∑
l=1

(
N0
rlul|𝜕Ω + 1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω

))
+

ur|𝜕Ω (
gp0
2

− 1

2

n∑
l=1

(
N0
plul|𝜕Ω + 1

2!

n∑
q=1

N0
plqul|𝜕Ωuq|𝜕Ω

)))
+ …

)
+ … ,

In words, the coefficients standing by the powers of the independent variable in the HPM

solution represent the development of the ADM coefficients with respect to the real small

parameter in the vicinity of one.

Let us now apply PA. Relations (2.512)–(2.513) show that if the equation is solvable regard-

ing its higher derivative, then the coefficients standing by the same powers of the variable 𝜉 of

both ADM and HPM tend to each other and overlap with increase of the approximation order.

It has been shown in reference [16], if the ADM is convergent to the development of the real

solution into the Taylor series in its domain of holomorphicity in the neighborhood of 𝜉 = 0,

then those properties will also be exhibited by a solution of the HPM for the solvable equation.

This allows us to apply to the obtained approximations the meromorphic continuation in the

PA form [18]. In the case of ADM this type of continuation procedure has been proposed by

many researchers [16] and has been called the modified Adomian method supplemented by
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 259

the PA (MHPM-Padé). One may also apply the PA in the case of the HPM through its modi-
fication method of the nonlinear terms into series regarding the independent variable and the
functions being sought (MHPM-Padé).
It seems, however, that more perspectives are associated with application of two-dimensional

PA in the form proposed by V. Vavilov [86]. The latter approach allows us to define the approx-
imation coefficients and a set of coefficients of the two-dimensional Taylor series uniquely,
which are further used in order to construct approximations, as well as which, this approach
guarantees the PA optimality in the sense of theMontessus de Ballore theorem. This is matched
with the input requirements of the 2D approximations satisfying their transformation into 1D
approximation, for the case in which the second variable is equal zero [86]. Furthermore, in
order to apply the continuation procedure, one requires applicability of this transition for the
parameter equal one. This can be done via the construction described so far of the 2D of PA
regarding the transformed parameter mapping one into zero.
The method proposed by us coincides with the HPM for F ≡ 0, and with the ADM for g ≡ 0,

and hence generalizes both approaches. It should be emphasized that the method does not
require introducing into the equations the probe functions satisfying the BCs. This is carried
out in a natural way in the process of construction of the successive approximations and allows
us to solve the problem even for complicated BCs [16].
In order to apply the so far described method, we introduce the parameter 𝜀 in the following

way:

ui =
∞∑
j=0

uMij 𝜀
j,

Lui = 𝜀(gi − Ri(u1,… , un) − Ni(u1,… , un)), i = 1, n,

Gj(u1|𝜕Ω,… , un|𝜕Ω)|𝜕Ω = 0, j = 1, n.

Applying series (2.505) and equating to the zero coefficients standing by the same powers
of 𝜀 one obtains:

𝜀0 ∶ LuMi0 = 0, Gi(uM10,… , uMn0)|𝜕Ω = 0 ⇒ uMi0 = ui|𝜕Ω, i = 1, n,

𝜀1 ∶ LuMi1 − gi +
n∑
r=1

(
Niru

M
r0 +

1

2!

n∑
p=1

Nirpu
M
r0u

M
p0 + …

)
= 0,

uHi1|𝜕Ω = 0 ⇒ uMi1 =
∞∑
j=0

𝜉j+1

(j + 1)

(
gij −

n∑
r=1

(
Nj
irur|𝜕Ω+

1

2!

n∑
p=1

Nj
irpur|𝜕Ωup|𝜕Ω + …

))
, i = 1, n, (2.516)

𝜀2 ∶ LuMi2 +
n∑
r=1

(
Niru

M
r1 +

1

2!

n∑
p=1

Nirp
(
uMr1u

M
p0 + uMr0u

M
p1

)
+ …

)
= 0,

uMi2 |𝜕Ω = 0 ⇒ uMi2 = −
∞∑
s=0

n∑
r=1

(
Ns
ir

( ∞∑
j=0

𝜉s+j+2

(j + 1)(s + j + 2)
(
grj−
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n∑
l=1

(
Nj
rlul|𝜕Ω + 1

2!

n∑
q=1

Nj
rlqul|𝜕Ωuq|𝜕Ω + …

)))
+

1

2!

n∑
p=1

Ns
irp

(
up|𝜕Ω ( ∞∑

j=0

𝜉s+j+2

(j + 1)(s + j + 2)
(
grj−

n∑
l=1

(
Nj
rlul|𝜕Ω + 1

2!

n∑
q=1

Nj
rlqul|𝜕Ωuq|𝜕Ω + …

)))
+

ur|𝜕Ω ( ∞∑
j=0

𝜉s+j+2

(j + 1)(s + j + 2)

(
gpj −

n∑
l=1

(
Nj
plul|𝜕Ω+

1

2!

n∑
q=1

Nj
plqul|𝜕Ωuq|𝜕Ω

)))
+ …

))
+ … , i = 1, n,

… .

Summing up coefficients by powers of the independent variables yields

ui = 𝜉0([ui|𝜕Ω] + [0] + [0] + … )+ (2.517)

𝜉1

(
[0] +

[
gi0 −

n∑
r=1

(
N0
irur|𝜕Ω + 1

2!

n∑
p=1

N0
irpur|𝜕Ωup|𝜕Ω + …

)]
+

[0] + … ) + 𝜉2

(
[0] +

[
gi1
2

− 1

2

n∑
r=1

(
N1
irur|𝜕Ω+

1

2!

n∑
p=1

N1
irpur|𝜕Ωup|𝜕Ω + …

)]
+

[
−

n∑
r=1

(
N0
ir

(
gr0
2

− 1

2

n∑
l=1

(
N0
rlul|𝜕Ω+

1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω + …

))
+ 1

2!

n∑
p=1

N0
irp

(
up|𝜕Ω (gr0

2
−

1

2

n∑
l=1

(
N0
rlul|𝜕Ω + 1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω

))
+ ur|𝜕Ω (gp0

2
−

1

2

n∑
l=1

(
N0
plul|𝜕Ω + 1

2!

n∑
q=1

N0
plqul|𝜕Ωuq|𝜕Ω

)))
+ …

)]
+ …

)
+ … ,

i = 1, n.
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Computational Methods for Plates and Beams with Mixed Boundary Conditions 261

It has been shown in [16] that approximation yielded by the proposed method is equiva-

lent to the development of the exact solution into the Taylor series in the neighborhood of

zero and allows us to carry out the analytical continuation into its meromorphic space using

PA. Analysis of the obtained approximation allows us to conclude that this approximation,

in contrary to the ADM and HPM, yields coefficients standing by powers of the independent

variable up to the order of the approximation order keeping the accuracy of development into

a series of the sought functions. This guarantees a stability of computations with limitation of

the approximation order regarding the independent variable.

Geometrically nonlinear static equations governing the behavior of thin-walled construction

include products and squares of the sought functions and their derivatives [7]. In this case

solution (2.461) takes the following form:

ui = 𝜉0ui|𝜕Ω + 𝜉1

(
gi0 −

n∑
r=1

(
N0
irur|𝜕Ω + 1

2!

n∑
p=1

N0
irpur|𝜕Ωup|𝜕Ω

))
+

𝜉2

((
gi1
2

− 1

2

n∑
r=1

(
N1
irur|𝜕Ω + 1

2!

n∑
p=1

N1
irpur|𝜕Ωup|𝜕Ω

))
− (2.518)

n∑
r=1

(
N0
ir

(
gr0
2

− 1

2

n∑
l=1

(
N0
rlul|𝜕Ω + 1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω

))
+

1

2!

n∑
p=1

N0
irp

(
up|𝜕Ω (

gr0
2

− 1

2

n∑
l=1

(
N0
rlul|𝜕Ω + 1

2!

n∑
q=1

N0
rlqul|𝜕Ωuq|𝜕Ω

))
+

ur|𝜕Ω (
gp0
2

− 1

2

n∑
l=1

(
N0
plul|𝜕Ω + 1

2!

n∑
q=1

N0
plqul|𝜕Ωuq|𝜕Ω

)))))
+ … ,

i = 1, n.

Let us consider numerical aspects of the obtained approximations and their PA.

A typical behavior of the approximations in the case of the following initial value problem:

𝜀z′ + z = 1, z(0) = 0.

ADM approximation describes the exact solution only in part of the interval compared with

the real small parameter approach. In spite of that, the errors of solution obtained via the HPM

are essentially of lower order than those introduced by the ADM. The latter one exhibits the

boundary layer occurrence in the neighborhood of zero. On the contrary, the PA regarding the

independent variable of the ADM approximation, when the proposed method is applied, gives

reliable qualitative and quantitative results (Figure 2.67).

Analogous results are also given by analysis of initial value problem for the following

equation with variable coefficients:

𝜀z′ + xz = x, z(0) = 2,

and the obtained results are reported in Figure 2.68.
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Figure 2.67 The exact solution (solid line) of Equation (2.477) when 𝜀 = 0.1 and approximate solu-
tions (1–three terms ADM, 2–z𝜀1 for ADM, 3–three terms HPM, 4–zx for HPM, 5–2D Padé for
MMPC, ADM and HPM)
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Figure 2.68 The exact solution (solid line) of Equation (2.483) when 𝜀 = 0.2 and approximate solu-
tions (1 – three terms ADM, 2 – z𝜀1 for ADM, 3 – three terms HPM, 4 – zx for HPM, 5 – 2D Padé for
MMPC, ADM and HPM)

Figure 2.69 presents graphs of approximation for the essentially nonlinear problem governed

by the following initial value problem:

z′ = −𝜀1
z2

𝜀
+ x − 1

𝜀
, z(0) = 1.

One can see that approximations of the HPM and MHPM-Padé describe relatively well the

curve in average and rather badly in the case of the boundary layer. On the contrary, the ADM

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [31/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Computational Methods for Plates and Beams with Mixed Boundary Conditions 263

2.00

1.00

−1.00

−2.00
0 0.25 0.5

X

0.75 1.00

0

2

1

3 5
7

6

4

Z

Figure 2.69 Approximate solutions of Equation (2.489) when 𝜀 = 0.2 (1 – three terms ADM, 2 – z𝜀1
for ADM, 3 – zx for ADM, 4 – three terms HPM, 5 – zx for HPM, 6 – z𝜀1 for HPM and MMPC, 7 – zx
and 2D Padé for MMPC)

and MADM-Padé approximations well coincide with the solution behavior in the vicinity of

zero, and rather badly on its stationary part. However, the PA results obtained on a basis of the

proposed method are in good agreement with the exact solution in the whole studied interval.

2.9 Conclusions

Let us finish our book with comments related to (i) advantages and (ii) disadvantages of the

asymptotic methods.

(i.1.) Essential simplification of a solution, which in many cases can be found analytically.

(i.2.) In general, asymptotic methods are rather easily matched with computational approaches

including numerical and variational ones. Namely, after a simplification of the studied BVP

and after separation of its key features, one may apply a wide spectrum of the numeri-

cal methods. It should be emphasized that the asymptotic methods allow detecting main

properties of the solution, and hence yield a proper recommendation regarding a choice of

the approximating functions associated with the Bubnov-Galerkin, Rayleight-Ritz, Trefftz,

Kantonorovich, etc. approaches. Furthermore, sometimes a zeroth order asymptotic approx-

imation can be directly applied in other iterational processes, such as for instance in the case

of the Newton-Kantorovich method.

(i.3.) Since the asymptotic methods are tightly linked with the physical interpretation of a

studied problem, they usually give the full picture of its behavior and allow for a deep

understanding.
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264 Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

(i.4.) Asymptotic methods allow clarifying both mathematical and physical backgrounds of the

engineering oriented procedures and approaches, as well as usually improving the accuracy,

validity and reliability of the obtained solutions.

(i.5.) Asymptotic methods are universal ones, since in many cases they allow us to use one

general approach to sometimes different, for a first glance, problems and exhibit their hidden

universal property.

(ii.1.) In many cases the first approximating solution does not guarantee an expected accuracy.

(ii.2.) Construction of higher order approximations sometimes requires hard computational

effort.

(ii.3.) Estimation of both the accuracy of asymptotic methods and intervals of their application

does not belong to trivial tasks.

Finally, it seems that the further development of asymptotic methods is associated with

the use of numerical-asymptotic approaches. Namely, a smooth solution part can be moni-

tored numerically, whereas boundary layers can be constructed with the help of an asymptotic

approach.

As for the HPM, one can conclude the following. HPM has often been applied recently [43],

but it suffers for the lack of any rigorous treatment. We are aiming at an extension of the main

concept of this method into effective solutions of complicated problems ofmechanics.We have

shown that matching of the HPM with PA allows to solve problems of natural, free and forced

vibrations, as well as the SSS and stability of plates with mixed BCs in an analytical way.

In the case of nonlinear problems the proposed approach allows for the effective investi-

gation of the infinite systems of nonlinear either algebraic or differential equations. Possible

generalizations are associated with the solution to the mixed problems of the theory of elas-

ticity (in the 2D-case, there are already promising results [16]) as well as mixed problems of

the theory of shells. The proposed way of modification and validity extension also concerns

the Ishlinskii-Leibenzon method applied in the theory of stability, numerous methods devoted

to investigation of dynamic stability problems and the SSS of nonhomogenous constructions,

as well as series of nonlinear problems, including those with nonlinear BCs.
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Ansatz, 10, 15, 20, 33, 45, 55, 75, 77, 85,

89, 93, 109, 113, 118, 124, 129, 137,

145, 151, 153, 155, 158, 160, 168,

173, 178, 182, 184, 188, 192, 207,

209, 213, 222, 225, 231, 234, 237, 252

Amplitude

frequency, 13, 146, 148, 157

Approximation

eigenvalue, 16, 32, 58, 63, 83, 111

Hermite-Padé, 34

subsequent, 243, 257

Autocorrection, 27

Averaging

Voigt, 82

Reuss, 82

Barrier

periodic, 84

Beam

cantilever, 224

clamped, 106, 109, 160, 184, 186, 207,

239

ends, 114, 160, 163, 226, 239

stiffness, 109, 153

with free ends, 114, 163, 189, 226

stability, 207, 224

Bending moment, 161, 164, 172, 175, 185,

190, 194, 197, 201, 205

Bernoulli numbers, 70

Bifurcation, 12, 34
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Coefficient

slope, 5

quickly changing, 71, 79

discontinuous, 84

periodically, 84

condition

boundary

clamping, 49, 132, 140, 143, 172,

176, 180, 197, 202, 211

elastic clamping, 51, 216, 220

free edge, 59, 107, 114, 123, 140, 143,

163, 170, 180, 183, 189, 194,

198, 202, 204, 206, 224, 226

homogenized, 90, 92, 199

mixed, 105, 128, 132, 135, 140, 144,

172, 177, 179, 197, 201, 202,

206, 211, 215, 219

non-homogeneous, 64, 91, 180, 183,

192

perturbation, 107

equality, 90

jump, 85

Continued fraction, 24, 28, 35

Continuum media, 61, 66

Convergence

accelerating, 29

Correction term, 106, 111, 116, 121, 130,

138, 146, 151, 210, 214

Cubic

body centered, 46
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Cubic (continued)
face centered, 46

simple, 46

Cronecker symbol, 250

Deflection, 55, 58, 167, 169, 182, 186, 190,

194, 205, 209

Denominator, 9, 25, 37, 44, 161

Divergence, 3, 31

Effect

dynamical edge, 49, 58, 60

Gibbs-Wilbraham, 31

micro-structural, 62

Eigenfrequency, 58, 63, 127, 144, 153, 155,

158

Eigenfunction, 16, 49, 137, 225, 232

Elastically coupled masess, 35, 62

Energy

kinetic, 58, 60

potential, 58, 66, 225

Envelope continualization, 66

Equation

Berger, 78

dynamic, 54

Duffing, 72

Hill, 92

homogeneous, 192

integro-differential, 74

integral, 106, 132

Fredholm, 107

Kirchhoff, 51, 79

Poisson, 88, 92

Schrödinger, 16, 32, 45

transcendental, 15, 29, 40, 59, 94, 112,

116, 118, 175, 207, 215, 219, 222,

232, 235

Van der Pol, 41, 71

Equilibrium position, 32, 62, 85

Force

restoring, 13, 146, 154, 156, 159

stretching, 155, 231, 238

Formula

Cauchy-Hadamard, 21

Euler-Maclaurin, 70

Frequency

circular, 109, 119

fundamental, 51, 58, 139, 145, 149

vibration, 11, 50, 65, 74, 77, 140, 145,

236

Function

asymptotically equivalent, 7, 38, 45

continuous, 28, 61

Gamma, 2

Heaviside, 19, 128

Heriside, 66

holomorphic, 27, 249

Lambert, 10

Pilipchuk

saw-tooth, 237

rational, 3, 37, 41

Stieltjes, 2

Freedom degrees, 60

Heat flux, 46

Homogenization, 61, 71, 79, 81, 92, 107

Hooke’s law, 35, 62

Interpolation

rational, 36

Iterative process, 29

Limiting transition, 8, 92, 201

Load

buckling, 209, 213, 219

normal periodic, 85, 194, 198

Local properties, 66

Longitudinal displacement, 145, 222

Method

Adomian decomposition (ADM), 240,

243, 246, 248, 253, 255, 257, 261,

258

Aitken, 30

AEF construction, 39, 43, 233

Bloch, 92

Bolotin’s, 51, 59, 77, 106, 139

boundary conditions perturbation, 11,

84, 107

Bubnov-Galerkin, 8, 105, 127,

233
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Index 271

Cauchy-Hadamard, 21

computational, 45, 105

D’Alembert, 65

dynamical edge effect, 49, 58, 60

finite element (FEM), 105, 175, 178,

181, 183

Floquet, 92

homotopy perturbation (HPM), 10, 108,

147, 150, 154, 157, 179, 200,

222, 224, 240, 244, 247, 252, 254,

256, 261

Ishlinskii-Leibenzon, 224, 228, 230

Kantorovitch, 53, 56, 88, 105

Keller-Rubinov, 51

Kuzmak-Whitham, 77

large delta, 10, 17

least squares, 4

multiscale, 71, 77

Newton-Kantorovich, 105, 263

R-function, 106, 139, 215, 219

Rayleigh-Bolotin, 59

Rayleigh-Ritz, 58, 105

Runge-Kutta, 237

semi-analytical, 107

Shanks, 30

small delta, 10, 13, 234

Southwell, 127

Van der Pol, 71

variational-asymptotic, 225

Vavilov, 259

WKB, 43, 75

Multiplier, 7, 56, 201, 205

Newton

laws, 35, 61

polygon, 34

numerator, 9, 25, 27, 37, 44

Operator

differential, 64, 107

linear, 249

non-linear, 249, 250

pseudo, 36, 65

Origin co-ordinate, 180

Oscillation

period, 42

Oscillator
nonlinear, 33

Padé
approximants, 24
table, 26
two-point, 41, 69

Paradox, 66, 92
Parameter

bifurcation, 11
homotopy, 11, 13, 157, 160
perturbation, 2, 11, 85, 223
small, 2, 8, 11, 18, 34, 67, 85, 88, 94,

145, 148, 240, 249, 258, 261
Perturbation

method, 9, 84, 94, 107, 236, 240
non-standart procedure, 8

Plate
clamped, 60, 89, 118, 122, 132, 134,

139, 166, 169, 173, 179, 190, 201,
209, 219

cylindrical, 59, 180, 182
displacement, 78, 166, 169, 172, 175,

178, 180, 192, 197, 201, 206, 216
edge, 56, 60, 107, 123, 128, 132, 134,

140, 143, 170, 172, 179, 183, 194,
197, 200, 206, 216, 219

lying, 11, 107, 123, 158
orthotropic, 123, 126
partially clamped, 135
rectangular, 54, 60, 74, 106, 118, 122,

135, 140, 155, 158, 166, 172, 180,
190, 194, 202, 209, 211, 227

stability, 60, 209, 219, 227
Plot

Domb-Sykes, 21
Polynomial

Adomian, 250
form, 241

Thread stiffness
relative, 85

Relaxation kernel, 74

Scalar product, 92
Series

asymptotic, 1, 6, 21, 49
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272 Index

Series (continued)
convergent, 2, 72

divergent, 2, 164, 241

hyperasymptotic, 3

MacLaurin, 3, 18, 26, 28, 33, 36, 44, 65,

94, 222, 241, 244

power type, 2, 7, 11, 23, 28, 45

Taylor, 19, 24, 26, 69, 250, 258, 261

Singulant, 2

Solution

asymptotic, 2, 4, 5, 41, 45, 60, 223, 233

exact, 3, 5, 10, 16, 19, 31, 37, 49, 59, 64,

68, 74, 105, 109, 112, 114, 116,

160, 181, 183, 185, 189, 200, 204,

208, 215, 219, 225, 241, 244, 249,

261

numerical, 4, 10, 33, 82, 105, 112, 116,

122, 143, 208, 211, 215, 221, 223

Timoshenko, 175

Space arrangement, 46

Splash, 65, 68

Symbol

asymptotic, 5

System

continuous, 60, 62, 65, 70, 144, 146

discrete, 60, 62, 65, 68

non-linear, 11, 60, 77

spring-mass-dashpot, 230

subsequent approximations, 243

Term

secular, 12, 14, 16, 73, 130, 137, 145,

148, 154, 158, 186, 233, 235

Theory

composites, 46

Floquet, 93

molecular, 61

Montessus de Ballore, 242, 259

structurally-orthotropic, 87

Thin-walled construction, 261

Truncation procedure, 3

Transformation

Euler, 23

Fourier, 36, 41, 65, 69

Hilbert, 71

Laplace, 19, 36, 38, 43, 69

Shanks, 30

Transversal crossection, 76, 153

Uniqueness, 6

Variational

approaches, 58, 105, 234

asymptotic method, 84, 225

Vavilov method, 259

Vibration

forced, 69, 106, 184, 189, 194, 197,

202

linear, 49, 60, 155, 158

natural, 11, 49, 109, 113, 118, 123, 128,

132, 135, 140, 155

string, 230, 233

Wave, 11, 14, 16, 50, 59, 63, 65, 69, 92,

113, 155, 158, 215, 220, 233

Wiener bounds, 35

Winkler-Fuss foundation, 123

Wynn algorithm, 30

Young modulus, 109
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