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Preface

It is customary, in the engineering community, to distinguish linear from
nonlinear theories. As a matter of fact, “Dynamics” and “Nonlinear Dynamics”, as
well as “Buckling” and “Post-Buckling” are considered to be basically different
disciplines. Usually, the adjective “linear” is omitted so that theories, “by default”,
are understood to be linear, and nonlinearities, when accounted for, must be explicitly
mentioned. This habit is probably due to the fact that, usually, linear models are
believed sufficient to solve most of the technical problems encountered in practice.
Linear theories, therefore, are well rooted in the knowledge of any engineer, whereas
nonlinear theories are considered to be of the competence of few specialists.

The opposite, instead, occurs in the field of Applied Mathematics. For example,
“Continuum Mechanics” and “Dynamical System Theory” are understood as
intrinsically nonlinear, with no need for further specifications. If nonlinearities are
instead ignored, mathematicians stress that the problem has been linearized. This
practice is probably due to the fact that mathematicians are not very interested in
solving technical problems and, therefore, they are not stimulated by “simplifying”
models, but rather by formulating theories and proving theorems of the widest
generality.

The theory of beams, which is the subject of this book, is not an exception to this
rule. The relevant linear theory is well-known to mechanical and civil engineers, but
only some researchers and few PhD students operating in the field are confident with
nonlinear theories. Thus, if an engineer tries to enter this new world, he or she must
face the reading of books whose mathematics is often beyond his or her knowledge;
the focus is on the formulation in itself, and often little (or even no) attention is paid
to algorithms and examples. In other words, the engineer has to face an environment
where mathematics “is a end, but not a means”. On the other hand, there exist some
good books specialized in one of the subjects discussed above. However, very often,
they are entirely devoted to illustrating algorithms and results, while modeling is
overlooked or required as a reader’s prerequisite.
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xii Mathematical Models of Beams and Cables

All previous considerations seemed to be good reasons for the authors to write a
new book, which is aimed (a) at introducing the reader to geometrically exact
nonlinear modeling of one-dimensional structures, by using elementary mathematics
only; (b) at consistently deriving approximate models in order to render the relevant
equations amenable to semi-analytical solutions; and (c) at giving a comprehensive
overview of different engineering problems, in which the application of nonlinear
theories is mandatory. However, after having written a few chapters, the project soon
appeared too ambitious to be fully realized in a single volume. Therefore, it was
decided to devote a first book to models and a forthcoming book (Nonlinear Beam
and Cable Mechanics in Engineering Applications) to algorithms and phenomena,
with the aim of guiding the reader throughout the whole process of the engineering
design. The two books, therefore, should be intended as sequential and closely
related, but, at the same time, independent, so that only one of the two aspects,
theoretical or algorithmic-phenomenological, can be addressed by the readers,
consistently with their interest.

In this book, several models of elastic and viscoelastic beams, both in statics and
dynamics, are analyzed. They are discussed in order of increasing complexity by
including straight/curved, planar/non-planar, extensible/inextensible, shearable/
unshearable, warpable/unwarpable, cross-deformable/undeformable and prestressed/
unprestressed beams. String and cables, straight or curved, perfectly flexible or
endowed with flexural–torsional stiffnesses, are also addressed. Modeling is
developed via a direct approach, based on one-dimensional polar or Cauchy continua.

In summary, this book is an attempt (a) to make it easy to learn the nonlinear theory
of beams and cables and (b) to formulate consistent approximate models, leading to
reasonably simple mathematical problems.

The book is mainly devoted to researchers and PhD students in Civil and
Mechanical Engineering, as well as in Applied Mathematics. It is also hoped to be
useful for professional engineers. It requires only the basic knowledge of
Mathematical Analysis, Linear Algebra and Continuum Mechanics, generally
covered in engineering courses.

Angelo Luongo
Daniele Zulli

September 2013
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Introduction

Here we summarize the main concepts to be discussed later and illustrate the
guiding factor of this book. Firstly, the modeling problem for a beam is addressed by
comparing two different philosophies: derivation from a three-dimensional (3D)
Cauchy continuum, or direct formulation as a one-dimensional (1D) polar
continuum. Secondly, string and cables are successively considered as degenerate
models of perfectly flexible beams, and the circumstances in which flexural and
torsional stiffnesses have to be considered are discussed. Thirdly, more sophisticated
models of beams with deformable cross-sections are addressed. Finally, a quick
overview of the literature and of this book is given.

I.1 Derived one-dimensional models

A beam is a slender solid, spanned by a planar figure A (the cross-section) which
moves along a smooth (C1 class) curve S (the beam axis or centerline), by remaining
orthogonal to it and keeping its centroid G on it. If S is a planar curve, the beam is
called planar, otherwise it is spatial; if S is a segment, then the body is a cylinder, and
the beam is called straight. The length l of S is called the beam length. Slenderness,
in a broad sense, refers to the fact that a characteristic linear dimension r of the cross-
section A is much less than the length l (typically l/r = O(102)). This property plays
a fundamental role in deriving mechanical models of beams, as discussed further.

As is well-known, the Fundamental Problem of Continuum Mechanics,
formulated in the context of the Lagrangian description, consists of evaluating
stresses, strains and displacements in a body, when this is loaded by assigned
volume and surface forces, and, moreover, displacements are prescribed on a portion
of the boundary. When this problem is addressed for a beam, a 3D Cauchy
continuum model could be applied, which would lead to a system of partial
differential equations, in which each (scalar, vector or tensor) magnitude is a function
of three coordinates (time understood), which span the volume occupied by the body
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xiv Mathematical Models of Beams and Cables

in the reference configuration. Such an approach, however, although “exact” in the
context of continuum mechanics, is almost unpractical for the difficulty of solving
the governing equations, so that it is advisable to resort to “approximate” models that
exploit the geometric peculiarity of the body, namely its slenderness. The main object
of the analysis consists of formulating a 1D (rather than a 3D) model in which all the
magnitudes involved depend on only one coordinate, e.g. a curvilinear abscissa s
running along the (unstretched) curve S.

To achieve this goal, different methods can be followed. We first approach the
problem by illustrating how to derive a 1D model from a 3D model. Let us consider
the displacement u(r, s) at a point P belonging to the section A at abscissa s, where

r :=
−−→
PG is the oriented distance of P from the centroid G of A. By using a Taylor

expansion, it follows that u(r, s) = u(0, s) + ∂ru(0, s)r + O r 2 . Since
r  l, it can be assumed that the remainder of the series is negligible, with an

error which, in non-dimensional variables, is of the order of (r/l)2. As a result, the
displacement at any point of the section is expressed as a function of quantities all
evaluated at the centroid, namely u(r, s) = uG(s) + ∂ruG(s)r with
uG(s) := u(0, s) and ∂ruG(s) := ∂ru(0, s). Once this displacement field is
introduced in a variational principle (e.g. if the beam is elastic, in the total potential
energy principle), ordinary (instead of partial) differential equations are obtained, the
unknowns now only depend on the coordinate s. The approximation, of course, could
be improved by retaining higher-order terms up to a desired one, this entailing the
need for introducing higher-order derivatives. These, however, do not change the
essence of the Taylor expansion, which consists of extrapolating information from
the beam axis to points external to the axis, but “close” to it, when one looks at the
beam on a scale of characteristic length l.

The previous kinematic description, when truncated at the first order, expresses
the displacement field on the section as linearly dependent on the distance r from the
centroid (note that this property has nothing to do with the magnitude of
displacements that, indeed, can be arbitrarily large, but is only a consequence of the
“closeness” of P to G). The field depends on nine scalar parameters, three contained
in the vector uG(s), describing translations of the section, and six in the 3× 2 matrix
of ∂ruG(s). The latter, suitably combined among them (generally in a nonlinear
way), are responsible for a rotation (three parameters) and an affine transformation of
the cross-section in its own plane (other three parameters). If we neglect the latter, by
assuming that the section is rigid in its own plane, we reduce the motion to
u(r, s) = uG(s) + (R(s) − I)r, where I is the identity tensor, and R(s) is the
rotation tensor, (nonlinearly) depending on three scalar parameters θ1, θ2 and θ3.
This result suggests we look at the beam from a different perspective, namely as a
collection of infinitely many rigid bodies of evanescent thickness (the cross-sections),
supported by a flexible line (the beam axis). Each section, therefore, has six degrees
of freedom, being only capable of translating and rotating, not deforming itself. Of
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Introduction xv

course, this is quite a rough model because we know, even from the linear de
Saint-Venant Theory, that the cross-sections do deform in their own plane, and,
moreover, they warp out-of-plane. However, we also know that the former strains
represent less important aspects of kinematics, whereas the latter effects are very
important only in thin-walled beams, which therefore call for a special treatment. On
the other hand, renouncing the description of some aspect of the problem represents a
compromise between the desired accuracy and the complexity of the equations to be
solved.

I.2 Direct one-dimensional models

In the former approach, the 1D model was derived from a 3D one, by
constraining, in some sense, the kinematics. However, we could wonder if it is
possible to formulate a “direct” 1D model of a beam, by avoiding “derivation” from a
more complex system. This, indeed, is possible, by referring, however, to a
continuum richer than Cauchy’s, namely to a polar continuum (also known as
Cosserat’s continuum or a structured continuum). A polar continuum is made of
material particles that are endowed with orientation; they, therefore, can translate, as
the particles of the Cauchy continuum, but, in addition, can rotate. (This rotation is
often called the micro-rotation, to distinguish it from the macro-rotation that one
observes in a Cauchy continuum, when one looks not at a particle, but at a small
neighborhood of it). With this idea in mind, we can consider the beam as a 1D object,
geometrically described by its axis S, which, however, is made up of orientable
material particles, in other words, as a 1D polar continuum. Each point of this
continuum possesses six degrees of freedom, as the 3D beam made up of rigid
sections. If we compare the two points of view (3D and 1D objects), we observe that
the cross-sections A disappear in the latter model; however, they are replaced by
body-points, able to describe, via their orientation, the cross-section attitude, thus
regaining the information lost. (Of course, if the cross-section was also able to
deform itself, in addition to rotating, more information should be borne by the
structured continuum, as we will discuss later).

How can we account for the orientation of body-points? The best way is to
consider that a triad of orthonormal unit vectors ai(s), called directors, is attached to
each of them. The rotation of the triad, described by a rotation tensor R(s), describes
the rotation of the body-point. Although not strictly necessary, one can think that two
of the directors lie, in any configuration, in the plane of the (now disappeared)
cross-section, whereas the third one, orthogonal to former ones, is initially aligned
with the beam axis, but, after the deformation, loses this parallelism.
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xvi Mathematical Models of Beams and Cables

It is interesting to compare derived and direct models not only from a kinematic
point of view, but also from a dynamical perspective. In a Cauchy 3D continuum, in-
contact points only exchange forces per unit area; in a 1D polar continuum, instead,
they exchange forces and couples. When we consider a beam as a 3D object, we have
to integrate the stresses on the cross-section, to evaluate their resultants, namely the
axial and shear forces, and the bending and torsional moments. When, instead, we
use the 1D polar continuum, the internal forces already represent these resultants.
Therefore, the absence of an “internal arm”, which is responsible for the moment in
the 3D model, is regained, in the 1D polar continuum, by the dynamic property of the
body-points to exchange couples.

Using a direct model, instead of deriving it from a 3D continuum, offers some
advantages. Indeed, the direct model is capable to describe beam-like structures, as
trussed or framed beams (Vierendel-like), or, moreover, spiral structures (as
helicoidal springs), when one is not interested in the local behavior (e.g. of the single
truss), but rather in the global behavior of the structure as a whole. These systems put
in evidence a new question: how can we endow the model with a constitutive law?
The problem, however, is not specific to beam-like structures, but also concerns
massive beams and represents, in some sense, the drawback of direct models. If,
indeed, in the derived models, the constitutive law is a straightforward consequence
of that of the Cauchy continuum, in contrast, in the direct model, the law has to be
independently enforced. The problem can be tackled by considering a representative
volume of the refined model (e.g. one period length of a periodic structure) and
establishing an energy equivalence between this and an equally long segment of the
rough model.

In this book, we follow the direct approach and will show how to formulate
constitutive laws for massive and beam-like structures.

I.3 Cables and strings

When the beam possesses a very high slenderness ratio (e.g. of the order of 103,
or more), it becomes extremely flexible. For example, if it is disposed (without
stretch) on a horizontal line, hinged at the ends, and then made subject to its own
weight, it undergoes large, prevalently transverse, displacements, thus resulting as
axially stressed rather than subject to a bending moment. Such an object, of course,
would be of no utility in structural engineering, where beams are designed to carry
loads. However, if the beam is put into a state of tensile prestress, it can assume a
significant geometric stiffness, which makes the structure work. As is well-known
from the elementary theory of beams, the geometric stiffness is produced by the
perturbation of the pre-existent state of equilibrium, which brings unbalanced forces
up, able to balance the incremental loads. Such a mechanical system is usually not
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Introduction xvii

recognized as a beam, but rather as a string or cable, the first denomination being
preferred when the axis is almost rectilinear (i.e. when the prestress is mainly due to
tensile end forces), and the second when the axis is significantly curved (or piecewise
linear, i.e. when the prestress is due to carried weights).

The simplest (and nearly universally used) model for a string completely neglects
the flexural (and torsional) stiffness. Therefore, a string is viewed as a perfectly
flexible, idealized beam, whose cross-sectional area is lumped at the centroid, and,
consequently, has zero moment of inertia. More precisely, we can also say that a
string is a 1D Cauchy continuum (instead of polar), embedded in a 3D environment.
As a result of this idealization, the string does not possess its own specific shape,
since it can assume infinite natural configurations in which stress and strain
simultaneously vanish. In the linear field, therefore, the string is a kinematically
undetermined and statically impossible continuum system; prestress, however, makes
the equilibrium possible in a configuration very close to the prestressed one (often
called adjacent configuration), as occurs, for example, for a mathematical pendulum
prestressed by the gravity force, when it is disturbed by a transverse force. The
prestressed configuration is usually taken as reference configuration in a Lagrangian
approach.

There exist, however, some problems in which the perfectly flexible model is not
adequate to give an answer. We cite two of these circumstances. (a) If the string is
clamped at the ends, a boundary layer manifests itself in a narrow zone close to the
clamps, in which the bending effects cannot be neglected. The same occurs close to
transverse loads applied to the string, as those transmitted by a pulley moving along
the cable. Without going into detail, which is out of the scope of this book, it can be
checked that the flexural stiffness appears as a small term affecting the highest
derivatives in the equations of motions. This term can be neglected almost
everywhere (to obtain the so-called outer solution), but not close to singular points
(where an inner solution must be sought). Here, in order to satisfy the boundary
conditions, the solution becomes fast varying, thus rendering the (elsewhere) small
terms comparable to the leading terms. If, therefore, one uses the perfectly flexible
model, one has to renounce satisfying some of the boundary conditions and,
consequently, investigating the mechanical state in the boundary layers. (b) As a
second example, let us consider the effect of wind on iced strings. Ice accretion
modifies the (usually) original circular shape of the section and consequently its
aerodynamic properties. Therefore, wind loads depend on the attitude of the
cross-section, and change during motion, as a consequence of the twisting of the
string. To correctly analyze this interaction phenomenon, torsional effects need to be
introduced into the structural model.

One could, of course, use a complete model of a prestressed beam to analyze all
problems involving strings and cables, without introducing the drastic simplification
concerning their flexibility. This is usually done in purely numerical investigations,
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xviii Mathematical Models of Beams and Cables

where all the terms of the beam model are retained in the analysis, and used together
with prestress. However, such models are complex and suffer from ill-conditioning,
since the relevant stiffness matrices are nearly singular, for the presence of small terms.
An approximated simple model, accounting for the essential terms, is discussed later
in this book.

I.4 Locally deformable beams

As we observed before, there are problems in which deformations of the
cross-section cannot be ignored. The question assumes great importance when the
beam is thin-walled, open or closed. As a first example, it is known from the Vlasov
theory [VLA 61] that warping of open thin-walled beams, when caused by
non-uniform torsion, induces stresses normal to the cross-section (equivalent to a
bi-moment), variable along the beam-axis; these, in turn, trigger tangential stresses
equivalent to a (so-called secondary) torsional moment which cannot be ignored.
Consequently, the torsional stiffness of the beam turns out to be much higher than the
de Saint-Venant stiffness. As a second example, it is known from the Brazier theory
[BRA 27] that when a tubular beam is bent, the original circular middle line
undergoes ovalization, with flattening and consequent reduction of the cross-section
inertia moment.

A proper modeling of a thin-walled beam therefore calls for accounting for in-
plane and/or out-of-plane deformability of the cross-sections. We will refer to these
beams as locally deformable (and to the former as locally undeformable). The task
can, again, be accomplished via derivation from a 3D model or via a direct approach,
as here briefly outlined.

The modern generalized beam theory (GBT, see e.g. [GON 07, BEB 08, BAS 09,
SIL 10, CAM 10, GON 10] for a wide overview) derives a 1D model from the 3D
Cauchy continuum. It is based on the semi-variational (or Kantorovitch) method,
according to which the displacements u(r, s) are expressed as a linear combination
of known shape functions ψ(r) and unknown amplitude functions a(s). A variation
principle leads to a set of ordinary differential equations in the amplitudes. Of course,
if the shape functions only describe rigid motions of the cross-section, the GBT
furnishes the locally undeformable model; for this reason, it is called generalized,
since it includes the standard model. However, it is much more powerful, because it
is capable of accounting for changes of shape of the cross-section, including warping.

If a direct model is desired, the classical Cosserat continuum must be endowed
with additional kinematic descriptors a(s), here called distortional variables, whose
meaning, at least initially, is not necessary to be specified. These descriptors entail
that the strains of the beam increase in number, with respect to the standard model.
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Introduction xix

In the context of a first-gradient theory, strains consist of the descriptors themselves,
α(s) := a(s) and of their first derivatives β(s) := a(s). The use of a variational
principle leads to balance equations in the displacements and distortional variables.
The main difficulty of this approach consists of assigning the constitutive law, which
links the generalized strains to their dual generalized stresses (i.e. distortional and
bi-distortional stresses). This task can be accomplished by an identification procedure
from a 3D model, based on an equivalence in energy. The operation leads to attributing
a geometrical meaning to the distortional variables and a mechanical meaning to the
dual stress quantities.

In this book, we will follow the direct approach and use a 3D fiber-model to
identify the constitutive law.

I.5 An overview of literature

The literature on beams and cables is extensive and continuously produced over the
years. A huge quantity of books and scientific papers are issued daily on the topics,
and it would be in any case impossible to try to overview most of them. Therefore,
we limit ourselves, here, to cite only some classical and recent books, considering
that the literature on beams and cables should be necessarily embedded in the wider
context of continuum mechanics, rational mechanics, linear and nonlinear dynamics
and stability theory.

From this point of view, the main reference is given to classic benchmarks on
continuum mechanics [GUR 82, GUR 72, GUR 83, GUR 00, TRU 77, TRU 66,
TRU 04, CIA 88, VIL 77, GRE 92, LAN 70, LEI 74, MAL 69, MAR 93, OGD 07,
POD 00, SOU 73, TIM 51, FUN 01, HOL 00, DEN 87, WAS 82, ODE 82, RED 02]
as well as to more recent contributions [GUR 10, OGD 97, CHA 13, CON 07,
WEG 09, DIM 11, DYM 13, ROM 06, BER 09, BAR 10, BRI 13, ERE 13, ESL 13,
RED 10, RED 13].

Fundamental concepts about the mathematical framework, general mechanics,
stability theory and nonlinear dynamics can be found in [COU 53, CHO 01, CLO 03,
FIN 08, GAL 07, GAN 13, GOL 80, GRE 10, KOK 06, KUI 99, LAN 97, LEI 87,
LOV 89, MAR 12, MEI 70, MEI 97, MEI 01, MEI 80, NAY 79, NAY 73, WEI 74,
PRE 13].

Many books move freely from the general continuum mechanics to more specific
theories of beams, plates or shells. Among them, reference is made to
[ANT 05, LOV 44, NAY 04, BIG 12, HOW 09, LAC 13, RUB 00]. Sometimes the
subject is approached in the finite element context, as in
[BAT 82, WRI 08, ZIE 05, IBR 09].
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xx Mathematical Models of Beams and Cables

On the other hand, books specifically devoted to cables, beams and/or shells are
[ANT 72, CAP 89, VIL 97, TIM 65, TIM 59, VLA 61, FER 06, LIB 06, IRV 81,
MAG 12, MUR 86, OBO 13, ROS 11, VIN 89, VOR 99, WAN 00, HOD 06,
HOD 11] and those devoted to their stability are [BOL 64, BOL 63, ATA 97,
BAŽ 03, ELI 01, LEI 87, PIG 92, SIM 06, AMA 08, TIM 63].

As a specific choice of the authors, only a few journal papers are reported here,
the literature overview being more turned towards books. Nevertheless, we find it
important to cite here some fundamental contributions reported in papers: on general
framework and continuum mechanics [GER 73, DIC 96], on cables
[IRV 74, REG 04a, REG 04b, IBR 04, PER 87, LU 94, LEE 92, BUR 88, TJA 98,
TRI 84, GAT 02, GOY 07, GOY 05], on beams [SIM 85, SIM 86, SIM 88, SIM 91,
CRE 91, CRE 78a, CRE 78b, ZAR 94, CRE 88a, CRE 88b], on thin-walled beams
[BRA 27, RIZ 96, DIC 99, REI 59, REI 83a, REI 83b, REI 84, REI 87, RUT 06], and
on beam-like structures [DIC 90] and GBT [SIL 03, GON 07, BAS 09, BEB 08,
CAM 06, SIL 10, CAM 10, GON 10].

I.6 An overview of the book

All the concepts discussed above are detailed in this book. Here, a short overview
is presented. The book is ideally divided into four parts: (a) metamodel (Chapter 1),
(b) locally undeformable beams (Chapters 2–4), (c) cables and strings (Chapters 5 and
6), and (d) locally deformable thin-walled beams (Chapters 7 and 8).

In Chapter 1 a metamodel is introduced, which works as a progenitor for specific
models to be dealt with later. Here, unprestressed, prestressed and internally
constrained beams, with or without prestress, are studied. The virtual power principle
is used to derive the balance equations [GER 73]. The variational formulation is also
illustrated. Exact equations are derived in operator form and then linearized around
the reference configuration.

Planar straight beams, locally undeformable, are addressed in Chapter 2. Exact
kinematics and balance equations are derived. Homogenization procedures are
outlined to derive the constitutive law. The model is developed in a 3D environment.
The planar beam is drawn as a particular case.

The previous analysis is extended in Chapter 3 to curved beams (arches), both
in-space and in-plane.

Chapter 4 deals with internally constrained beams for which two basically
different approaches (mixed and displacement formulations) are followed,
respectively, including or not the reactive stresses produced by the internal
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Introduction xxi

constraints. Several cases of internally constrained beams are considered; a few
among them are unshearable, inextensible, untwistable, and shear–shear–torsional
beams.

In Chapter 5 flexible cables and strings are analyzed as 1D bodies not endowed
with flexural and/or torsional stiffnesses. Both unprestressed and prestressed cables
are considered and linearized equations are derived for the latter group. Approximated
equations for shallow cables, horizontal or inclined, are obtained. Finally, inextensible
cables are addressed.

In Chapter 6 stiff cables, equipped with flexural and torsional stiffnesses, are
considered. A simplified model, based on the hypothesis of small curvature and large
elongation, is developed.

A 1D model of a thin-walled beam undergoing in-plane and out-of-plane
distortions of the cross-section is formulated in Chapter 7. Nonlinear hyper-elastic
laws are obtained by the homogenization process of a 3D fiber-model. Due to their
cumbersome expressions, governing equations are explicitly given only for simple
cases, although the illustrated procedure is general.

The theory is specialized in Chapter 8 to locally deformable thin-walled beams
with internal constraints, of the Vlasov, Bredt and Brazier type, able to supply
nonlinear equations which generalize the underlying linear theories, respectively.

I.7 Notation

Throughout the book, a scalar quantity is denoted by a Roman or Greek italic
letter (e.g. u or ω). A bold Roman or Greek letter denotes a vector or a tensor: the
former (mostly, but not exclusively) lowercase (e.g. u or ω) and the latter
(exclusively) uppercase (e.g. R). A bold italic letter refers to a column-matrix or
matrix (e.g. u,ω,R) which, typically, are the scalar representation of the
homonymous vector quantities in a specified basis, as discussed below.

Vectors and tensors attached to bases

We will often handle vectors and tensors attached to bases. For example the vector
r̄ :=

−−→
OP , denoting the relative position of the points P and O of the space attached to

the basis B̄, is itself an attached vector. If the space undergoes a rotation R (remember
that R−1 = RT ) which brings the basis B̄ to another basis B, then r̄ rotates with the
space, and changes into a new vector r := Rr̄. Consequently, if L̄ is a tensor which
transforms the vector ū into v̄, both attached to B̄, (i.e. v̄ = L̄ū), then L := RL̄RT is
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xxii Mathematical Models of Beams and Cables

a new tensor which transforms the rotated vectoru := Rū into v = Rv̄ (i.e. v = Lu).
Note that, by taking L = R, it follows, that R̄ = R.

Scalar representation of vectors and tensors in different bases

The aforementioned transformations describe the change, under a rotation, of
absolute geometric entities into new geometric enties. As is well-known to the reader,
they should not be confused with the transformations undergone by the components
of a (sole) geometric entity when the basis is rotated. To relate the components of a
given vector w or tensor T in different bases, B̄ or B, we first note that the matrix of
the change of basis is [R]T := [R]TB̄ = [R]TB (where square brackets denote
component evaluation in the basis indicated as an index); therefore:

[w]B = [R]T [w]B̄, [T]B = [R]T [T]B̄[R] [1]

Components of attached vectors and tensors in their “natural bases”

To stress the independence of the two concepts previously discussed, both vectors
r, r̄, as well as both the tensors L, L̄, could be represented either in B̄ or B, and
denoted by [r̄]B̄ , [r̄]B, [r]B̄ , [r]B ,. . ., respectively. Of course, it appears “more natural”
to express r̄, L̄ in B̄ and r, L in B since, in those bases, they are more meaningful.
When we apply the component transformations to the attached vectors, we have:

[r]B = [R]T [r]B̄ = [R]T [Rr̄]B̄ = [r̄]B̄ [2]

and, for tensors:

[L]B = [R]T [L]B̄[R] = [R]T [RL̄RT ]B̄[R] = [L̄]B̄ [3]

In conclusion, as expected, we find that the attached vectors and tensors have the
same components in their respective “natural bases”.

Notation adopted

In this book, with a few exceptions to be clearly stated later, an overbar affixed on
a vector or tensor denotes that that entity is attached to the basis B̄; the same symbol
without a bar denotes that the vector or tensor has been transformed by a rotation
which led B̄ to B. When, instead, an overbar appears on column matrices, matrices,
or their components, it denotes that a vector or tensor (regardless if it is attached to
the basis or not) has been represented in B̄, and, without a bar, in B. As an example,
w̄ := [w]B̄ and w = [w]B , which are related by w = RT w̄; similarly, T̄ := [T]B̄
and T = [T]B , related by T = RT T̄R.
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List of Main Symbols

ai amplitude of the i-th distorsional mode
ai, āi unit vectors of the bases B and B̄ (i = 1, 2, 3), respectively
aα, āα unit vectors of the bases Bf , B̄f (α = t, n, b), respectively
A cross-section area
Ai shear-areas of the cross-section (i = 2, 3)

A velocity constraint operator
A equilibrium condensation operator
A cross-section domain
AH boundary equilibrium condensation operator
b thickness of the TWB cross-section
b volume force density
Bi bi-distorsional forces
Bω, B̄ω matrices collecting the components of the spin-axes in B and B̄,

respectively
B, B̄,Be current, reference and external bases
Bf Frenet basis (B̄f also used for cables)
c circumferential abscissa
ci, c̄i components of c in B and B̄, respectively
CiH , C̄iH components of CH in B and B̄, respectively
c linear couple density
C cross-section flexural- (or shear-) center
CH end-couple

c̊, C̊H pre-existing couples

c̃, C̃H incremental couples
c, c̄ column matrices collecting the components of c in B and B̄,

respectively
CH , C̄H column matrices of the components of CH in B and B̄, respectively
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xxiv Mathematical Models of Beams and Cables

C middle-line of the TWB cross-section
d stretching velocity gradient
Di distorsional forces
D kinematic operator
D0 infinitesimal kinematic operator
D equilibrium operator
D0 linear equilibrium operator
DH boundary equilibrium operator
D0H linear boundary equilibrium operator
e unit extension
e (reference, or right) strain vector
e column matrix collecting the components of e in B̄

E Young modulus
Eij elastic coefficients
E elastic matrix
E column matrix collecting the strain-displacement relationships
f surface force density
G cross-section centroid, or
G tangential elastic modulus
G geometric stiffness operator
GH boundary geometric stiffness operator
h angular momentum per unit length
H dummy index H = A,B denoting the end points of the body
H Hamilton functional
ij unit vectors of the external basis
Iα mass-moment of inertia of the cross-section
IG inertia tensor
I identity matrix
j linear momentum per unit length
Jα geometrical characteristics of the cross-section
k, k̄ Frenet curvature, in the current and reference configuration,

respectively
k, k̄ axial vectors of K, K̄, respectively
k, k̄ column matrices collecting the components of k and k̄ in B̄,

respectively
K (reference, or right) curvature in the current state
K̄ curvature in the reference state (or initial curvature)
K, K̄ matrices collecting the components of K, K̄ in B̄, respectively
l initial length of the beam
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List of Main Symbols xxv

L linear elastic stiffness operator
LH boundary elastic stiffness operator
m mass per unit length
m couple-stress
m̊ pre-existing couple-stress
m̃ incremental couple-stress
m column matrix collecting the components of m in B

Mi torsional (i = 1) and bending (i = 2, 3) moment components in B

n̄ rotation axis
N axial (or normal) force component in B

pi, p̄i components of p in B and B̄, respectively
PiH , P̄iH components of PH in B and B̄, respectively
p linear force density
PH end-force

p̊, P̊H preloads

p̃, P̃H incremental loads
p, p̄ column matrices of the components of p in B and B̄

PH , P̄H column matrices of the components of PH in B and B̄, respectively
Pint,Pext virtual power, internal and external
qi distortional linear force density
Qi distortional end-force
ri components of r in B or, equivalently, of r̄ in B̄ (i = 2, 3)

r, r̄ oriented distance of a point on the cross-section from the centroid, in
the current or reference configuration, respectively

R rotation tensor

R̆H rotation prescribed at the ends
R rotation matrix, collecting the components of R in B̄ and B

s axis-abscissa
s spin-gradient
S beam- or cable-axis
t time
t force-stress
t̊ pre-existing force-stress
t̃ incremental force-stress
t column matrix collecting the components of t in B

T tension of the cable, or
T kinetic energy
Ti shear-force components in B (i = 2, 3)

ui displacement components in B̄
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xxvi Mathematical Models of Beams and Cables

u displacement
ŭH displacement prescribed at the ends
u column matrix collecting the components of u in B̄

U elastic potential energy
vi velocity component in B̄

v velocity
v column matrix collecting the components of v in B̄

w column matrix collecting the configuration variables
W external work
W spin tensor
W matrix collecting the component of Win B

W column matrix collecting the constraint relationships of internally
constrained models

x position vector in the current configuration
x̄ position vector in the reference configuration
yα column vector collecting Yα

Yα geometric characteristics of a TWB cross-section
αi distortional strain
βi distorsion gradient
γi transverse-strain components in B̄ (i = 2, 3)

γ shear-strain vector in the fiber-model
Γw, ΓwC scalar geometrical characteristics of a TWB cross-section
Γ tensor geometrical characteristic of a TWB cross-section
δ deviation angle between the Frenet and the principal triad in a curved

beam
ε longitudinal strain component in B̄

ε column matrix collecting the strains
ζ, η vicosity coefficients
θi Tait-Bryan angles, or elementary rotations
θ column matrix collecting the Tait-Bryan angles (pseudo-rotation vector)
Θ rotation angle around the rotation axis n̄
κi, κ̄i components of k, k̄ in B̄

λ Lagrangian multiplier, or
λ stretch
Λ skew-symmetric tensor whose axial vector is x

Λ scalar representation of Λ in B

Π total potential energy
ρ volume mass density
ρG, ρC area inertia radius, with respect to G or C
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List of Main Symbols xxvii

σ stress component normal to the cross section in 3D-models
σ column matrix collecting the stresses
τα stress component tangent to the cross-section in 3D-models
χi components of χ in B̄

χ axial vector of X
X change (or increment) of curvature in a curved beam
φ elastic potential energy density
ψij component of ψi in B or, equivalently, of ψ̄i in B̄

ψi, ψ̄i distortional modes of a TWB, expressed in the current or reference
configuration, respectively

ωi, ω̄i components of ω in B and B̄, respectively
ω spin-vector, axial vector of W
ω, ω̄ column matrices collecting the components of ω in B and B̄,

respectively
ΩC sectorial area with respect to C

Ω infinitesimal rotation matrix

Indeces

a, r active/reactive
c, u constrained/unconstrained
c, r current/reference
m, s master/slave
w, π out-of-plane/in-plane components

Overmarks

(·)
 space-derivative

˙(·) time-derivative

(̊·) preload and prestress

(̃·) incremental load or stress

(̆·)H prescribed displacement/rotation at the boundary
(̄·) vector or tensor attached to B̄, or

(̄·) column matrix or matrix representing the components in B̄ of a vector
or tensor

(̂·) deformed geometric entity
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Chapter 1

A One-Dimensional Beam
Metamodel

We introduce a one-dimensional (1D) metamodel of a beam as a progenitor of
specific models to be formulated later in the book. The metamodel establishes
properties and rules that highlight the common logic structure of the particular
models. It leads us to formulate equations in terms of abstract quantities (typically
column-vectors and formal matrix differential operators), whose contents do not need
to be specified at this stage. We first address internally unconstrained beams,
i.e. models in which all the variables introduced in the kinematic description are not
subject to additional limitations. Formulation of the balance equations via the virtual
power principle (VPP) straightforwardly leads us to recognize kinematic and
equilibrium operators as mutually adjoint. Then, we analyze internally constrained
beams, in which one or more strains are prescribed to identically vanish along the
beam, for which we illustrate two alternative approaches: (a) the mixed formulation,
in which reactive stresses enter the set of the main unknowns; and (b) the
displacement formulation, in which kinematic and dynamic equations are condensed
in order to satisfy constraints and to filter reactive stresses, respectively. Then,
prestressed beams are considered, for which the reference state differs from the
natural state, since stresses there are different from zero for the existence of preloads.
Both cases of internally unconstrained and constrained prestressed beams are
analyzed, and the previous analysis is entirely repeated to account for prestress. In
this context, attention is devoted to the linearized theory, widely used in technical
applications, able to furnish critical loads (in buckling problems), eigenfrequencies
(of strings and cables), as well as the response to small incremental loads. For each

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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2 Mathematical Models of Beams and Cables

problem addressed, a brief sketch of the variational formulation is also given as an
alternative approach.

1.1 Models and metamodel

In the modeling process of the mechanical behavior of a beam or cable, different
phenomenological aspects can be taken into account, and/or the same aspect
described at different sophistication levels. Thus, a beam can be 3D or 1D, with rigid
or deformable cross-sections, with deformability permitted in the plane and/or
out-of-plane of the section. Each of these assumptions leads to a specific model; thus,
for example, we have the “Timoshenko beam”, which is able to describe the relative
rotation between the rigid cross-section and the centerline (the so-called shearable
beam), as well as the “Euler–Bernoulli beam”, in which the cross-section keeps its
orthogonality to the centerline (the so-called unshearable beam), or the “Vlasov
thin-walled beam”, in which the cross-section is allowed to warp, but not to deform
in its plane, or the “Brazier tubular beam” which does not warp, but ovalizes itself.
As a further example, a cable can be considered as flexible, and therefore modeled as
a (prestressed) Cauchy continuum (the “flexible cable”), or provided with flexural
and torsional rigidity, and therefore modeled as a Cosserat continuum (the “stiff
cable”).

All these mathematical models, although different, and therefore leading to
different equations, have common features, which refer to the logic underlying all of
them. It is therefore convenient to introduce a metamodel (from the Greek “beyond
the model”), which is independent of the specific aspects of the single model, but, in
contrast, highlights the common structure of the models. A quite accepted definition
of a metamodel is the following: “a precise definition of the constructs and rules
needed for creating specific models”. Accordingly, the metamodel is a system of
inter-related “empty boxes”; once it is available, formulation of specific models
consists of “filling in” these boxes.

As in all the problems of continuum mechanics, modeling requires analyzing
three independent aspects: (a) geometrical (or kinematic), (b) dynamical, and
(c) constitutive. Here, we will introduce these three aspects from an abstract point of
view, in order to formulate a metamodel. However, to make the discussion clearer,
we will often refer to (linear) models known to the reader, with the only purpose of
exemplification. Although the metamodel would work for any spatial dimension, we
will refer to a 1D problem because this will be the object of our successive studies.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A One-Dimensional Beam Metamodel 3

1.2 Internally unconstrained beams

Let us consider a 1D deformable body, whose material points P densely fill a
curve in the space. We will say that the beam is locally rigid, when P is capable of
translations (non-polar continuum) and, possibly, also of rotations (polar continuum),
i.e. it behaves as an evanescent rigid body. We will say that the beam is locally
non-rigid when P is also endowed with a “shape” susceptible to change in time.
Standard models of cables and beams, possessing rigid cross-sections, fall into the
first category; non-standard models, accounting for the change of shape of the
cross-section, fall into the second category.

We will use the wording “position of the pointP ” in a generalized sense, including
place, attitude and “shape” of the point. The collection of the positions is called a
configuration. The configuration assumed by the body at t = 0 is called the reference
configuration; the one assumed at time t is called the current configuration. Let us
consider a curve S, of extremesA,B, on which the body lies at t = 0, and let s ∈ [0, l]
be a curvilinear abscissa taken on it; in such a way s is a label for the material point P ,
in the sense that Q(s, t) represents the value assumed by the quantity Q at the position
occupied by the material point P at time t.

1.2.1 Kinematics

To describe the current configuration of the body, we follow the referential
description of the continuum mechanics, by introducing suitable generalized
displacements w(s, t) := (wi (s, t))

T , i = 1, . . . , N , measured from the reference
configuration. This is a set of kinematic descriptors (translations, rotations and
distortion parameters) able to describe the change of position of the point P in
passing from the reference to the current configuration. The integer N is also called
the number of degrees of freedom of the point.

The change of configuration, except for special rigid transformations, entails a
change of shape of the body, which we will call a deformation1. A measure of the
local change of shape is called a strain; examples of strains are not only extension,
shear, flexure and torsion of a bar, but also warping and ovalization of a pipe cross-
section. These can be collected in the column-matrix of generalized strains ε(s, t) :=
(εj (s, t))

T , with j = 1, . . . ,M . The number of generalized strains is closely related
to the number of generalized displacements and the dimensions of the space in which
the body is embedded. As a matter of fact, the change of shape of an infinitesimal
element of length ds depends on the displacements at its end, w(s, t) and w(s+ds, t);

1. We prefer to reserve the word deformation to non-rigid transformations, although it is used
in the literature with a wider meaning.
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4 Mathematical Models of Beams and Cables

the latter, in turn, can be expressed by Taylor series as w(s, t) +w(s, t)ds2, so that
the configuration depends on 2N independent quantities, namely (w(s, t), w(s, t))3.
Since R of them describe a rigid motion, the number of strains is M := 2N − R.
Usually, R = 6, 3, 1 in the spatial, planar and linear cases, respectively; however,
it can be lower, if some rotation remains undefined when w(s, t) and w(s, t) are
prescribed. For example, for a Timoshenko beam in the space, it is N = 6 (three
translations and three rotation angles) and R = 6, so that M = 6 (one extension, two
shear strains and three curvatures); in the plane, it is N = 3 (two translations and
one rotation) and R = 3, and therefore M = 3 (one extension, one shear strain and
one curvature). For a flexible cable in the plane, it is N = 2 (two translations) and
R = 3, so that M = 1 (the extension); however, in the spatial case, it is N = 3 (three
translations) but R = 5, since the displacements and their derivatives are unable to
describe the rotation around the tangent to the element, so that it is still M = 1 (the
extension).

The generalized strains depend on displacements and their first derivatives via the
strain–displacement relationships. These are nonlinear differential equations of the
type:

ε = E (w,w) [1.1]

where the arguments s, t have been understood. Displacements and strains related by
equation [1.1] are called kinematically admissible.

The kinematic description is completed by the geometric boundary conditions,
which prescribe (part of) the displacements at the ends, where mechanical devices are
applied, namely:

wH (t) = w̆H (t) , H = A,B [1.2]

where the overmark denotes a known term.

However, not only strains, but even strain-rates are of interest. They are obtained
by time-differentiating equation [1.1], thus obtaining4:

ε̇ = D (w,w) ẇ [1.3]

where5:

D :=
∂E (w,w)

∂w
+

∂E (w,w)
∂w

∂

∂s
[1.4]

2. Here and further on a dash denotes s-differentiation.
3. There exist richer continua of higher gradient (see e.g. [DEL 09]), which call for higher
derivatives of w(s, t), which, however, we will not consider in this book.
4. Here and further on a dot denotes t-differentiation.

5. The derivative of a vector with respect to a vector is a matrix; thus, e.g. ∂E
∂w

= ∂Ei
∂wj

, where

i is the row index and j the column index.
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A One-Dimensional Beam Metamodel 5

is a (formal) M × N matrix, containing the displacements and the space-differential
operator ∂s := ∂/∂s6. D is a linear differential operator which transforms the
generalized velocities in generalized strain-rates, called the kinematic operator. This
depends, via w and w, on the configuration assumed by the body at time t.

If we consider an infinitesimal time interval dt, and we want to evaluate the strains
that have been experienced by the beam in this interval, we have:

δε = D (w,w) δw [1.5]

where δε := ε̇dt are infinitesimal strains produced by infinitesimal displacements
δw := ẇdt, superimposed to a deformed state w. If we take w ≡ 0, i.e. if we consider
infinitesimal displacements undergone by the beam starting from its undeformed state,
then the infinitesimal kinematic operator D0 := D (0,0) must be considered, which
is well-known in the linear theory.

Boundary conditions for equation [1.3] are ẇH = 0 and for equation [1.5] are
δwH = 0.

1.2.2 Dynamics

Dynamics concerns the study of the contact internal actions exchanged by
adjacent points, when the body is loaded by external (active, dissipative or inertial)
forces. The internal action is described by generalized stresses (forces and couples in
locally rigid beams, but also more complex actions like the “bimoment”, in locally
non-rigid beams). The relationships linking generalized stresses and external forces
are called balance equations (or equilibrium equations, when they refer to the static
case). To define generalized stresses and to derive balance equations, we can follow
two alternative philosophies, both popular in the literature: (a) the power balance
formulation, based on the “virtual power principle”, or (b) the force balance
formulation, based on the “momentum principles” (or cardinal equations of motion,
or, in the static case, equilibrium equations)7. Both the approaches are (not
independent) postulates of the continuum mechanics, leading to the same results, so
that we can choose which of them to use. However, if the choice is just a question of
taste when dealing with locally rigid beams, the first approach is mandatory when
locally non-rigid beams are addressed in the context of 1D models because the
cardinal equations are not sufficient to describe the motion of a non-rigid body8. In

6. As an example, for a rod embedded in a 1D space, we have ε = w
1, hence D = (∂s).

7. These two approaches are also known in literature as integral (or weak) formulation, and
differential (or strong) formulation, respectively.
8. Of course, the force balance approach could be used for a 3D model, as for example is usually
done in the de Saint-Venant Problem.
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6 Mathematical Models of Beams and Cables

this book, we use both the approaches, as discussed later, guided by convenience
reasons.

The virtual power principle

We consider a beam loaded by generalized external forces (possibly including
inertia and damping forces), acting in the domain, of linear density p := (pi (s, t))

T

(with i = 1, . . . , N , i.e. a force component for each degree of freedom, d.o.f), as
well as boundary external forces PH := (PiH (s, t))

T , applied at H = A,B. These
forces, except the trivial (but frequent) case of dead loads, depend on the configuration
(e.g. if they are of follower type), for which p = p(w), PH = PH(w), although we
will often understand the argument. We then consider the beam frozen in the current
configuration and superimpose on it a virtual motion (i.e. a motion unrelated to the
forces), made of a velocity field ẇ and a strain-rate field ε̇. The following quantities
are introduced:

Pext :=

S
ẇTpds+

B

H=A

ẇT
HPH

Pint :=

S
σT ε̇ds

[1.6]

called the “external virtual power” and the “internal virtual power” of the beam,
respectively. The first of them is the usual definition of the power of a system of
forces, except for the fact that forces and velocities are unrelated. In the second
definition, σ := (σj (s, t))

T
, with j = 1, . . . ,M , are generalized stresses.

According to this approach, no physical meaning is given to them, but, in analogy
with external forces and velocities, they must be recognized as the dynamic action
dual of the strain-rate (which, in contrast, do have a geometrical meaning).

The VPP establishes that, in any kinematically admissible virtual motion (ẇ, ε̇),
the external virtual power spent by the generalized forces p,PH on the velocity field
ẇ, equates the internal virtual power spent by the stresses σ on the strain-rate field
ε̇, i.e.:

S
σT ε̇ds =

S
ẇTpds+

B

H=A

ẇT
HPH ∀ (ẇ, ε̇) |ε̇ = Dẇ [1.7]

The VPP furnishes the balance equations via the following procedure. By using
equation [1.3], and integrating by parts to “free” the velocities by the derivatives, the
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A One-Dimensional Beam Metamodel 7

internal power reads:

S
σTDẇds =

S
ẇTD σds+

B

H=A

ẇT
HDHσ [1.8]

where the following operators have been introduced, accounting for equation [1.4]9

D :=
∂E (w,w)

∂w
−

∂

∂s

∂E (w,w)
∂w −

∂E (w,w)
∂w

∂

∂s

T

DH := 
∂E (w,w)

∂w

T

H

[1.9]

The VPP, therefore, reads:

S
ẇT (D σ − p) ds−

B

H=A

ẇT
H (DHσ − PH) = 0 ∀ẇ [1.10]

and, since ẇ is arbitrary, it leads to the following field equations:

D (w,w) σ = p [1.11]

and to the boundary conditions:

ẇT (D (w,w)σ − P )
H

= 0 H = A,B [1.12]

Equation [1.11] is the balance (or equilibrium) equation sought. Equation [1.12]
supplies the relevant boundary conditions, called mechanical (or natural) conditions.
They supplement the geometric (or essential) boundary conditions [1.2] in the
following senses: (a) if H is fully constrained, then ẇH = 0, and therefore no
mechanical conditions hold there; (b) if H is fully free, then ẇH = 0 and it is
arbitrary, and therefore DHσ = PH must hold there. Similar properties hold for
partially restrained ends. In conclusion, if a displacement component is prescribed,
no mechanical condition must be added; if a displacement component is free, a scalar
mechanical condition must be enforced. Therefore, geometric and mechanical
conditions are alternative.

The operator D (w,w), which appears in the balance equations, is a formal
N ×M matrix, depending on the operator ∂s10. It is a linear differential operator that

9. For example, S σT A d
ds

ẇds = − S
d
ds

σTA ẇds + σTAẇ
B

A
=

− S ẇT d
ds

ATσ ds+ ẇTATσ
B

A
.

10. As an example, for a rod embedded in a 1D space, the equilibrium equation reads N +p1 =
0, hence D (·) = (−∂s).
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8 Mathematical Models of Beams and Cables

transforms the generalized stresses into generalized forces, and it is called the
equilibrium operator. Note that it depends on the state w because it describes
the equilibrium of the beam in the current configuration, thus encompassing the
nonlinear nature of the problem. When, in contrast, the effects of deformation are
ignored (i.e. the current configuration is confused with the reference configuration),
then the equilibrium operator reduces to D0 := D (0,0), which is the well-known
linear equilibrium operator of the linear theory. The operators DH are (algebraic)
boundary equilibrium operators.

REMARK 1.1. The VPP expression [1.8] is also called, in a wider context, the
extended Green identity. It states that the kinematic operator and the equilibrium
operator, as well as the associated boundary conditions, are mutually adjoint. Such
an occurrence is called duality property. It is well-known in the linear field (where it
concerns the adjointness property between D0 and D0), but it also holds in the
nonlinear field, when use is made of the kinematic and equilibrium operators relevant
to the current configuration.

REMARK 1.2. The VPP could be reformulated as a virtual work principle (VWP).
Indeed, it is sufficient to multiply both members of equation [1.7] by an infinitesimal
time interval dt, and to refer to infinitesimal displacements δw := ẇdt and
infinitesimal strains δε := ε̇dt, namely:

S
σT δεds =

S
δwTpds+

B

H=A

δwT
HPH ∀ (δw, δε) |δε = Dδw [1.13]

The formulation in terms of velocities is preferred in formal treatments because it does
not call for resorting to the concept of “infinitesimal” displacements and strains, which
understands a series expansion.

The force balance formulation for locally rigid beams

When the local structure of the 1D beam is rigid, the force balance formulation is
viable. With respect to the power balance formulation, it has the advantage to endow
the stresses of a physical meaning.

We consider the internal action that two parts of the beam mutually exchange at
the abscissa s and time t, and denote by f = (fi (s, t))

T
, i = 1, . . . , N the

generalized forces (i.e. forces and couples) acting on one of the two parts,
conventionally assumed as positive. Note that the internal force components are in
the same number of the degrees of freedom (translations and rotations) of the “rigid”
point P . We then consider an infinitesimal element of length ds, loaded by external
forces per unit length p := (pi (s, t))

T
, at whose ends, internal forces f(s, t) and

f(s+ ds, t) = f (s, t) + f (s, t)ds act. Therefore, the contact action that the element
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A One-Dimensional Beam Metamodel 9

exchanges with the adjacent ones depends on 2N independent scalar quantities,
namely f (s, t), f (s, t) .

We define stresses the independent internal forces able to describe the more general
self-equilibrated state of the element (i.e. when p = 0). We postulate that equilibrium
of this elementary body is governed by the same cardinal equations of rigid-body
mechanics. Since the scalar equilibrium equations are in number of R, i.e. one for each
independent rigid motion of the element, we conclude that the self-equilibrated states
are M := 2N −R, described by M independent stresses, i.e. stresses are in the same
number of strains. We collect all the stresses in a column-matrix σ := (σj (s, t))

T ,
with j = 1, . . . ,M . For example, for a spatial cable, we have 2N = 6 internal end-
forces, which have to satisfy R = 5 independent equilibrium equations (since the
sixth one, relevant to the moment with respect to the tangent axis, is trivially satisfied);
hence, M = 1 stresses exist (namely the axial force).

When the external forces are non-zero, then the cardinal equations must express
the balance of external forces and stresses acting on the element. However, just N of
them are significant, the remaining R − N being satisfied by the stresses alone (e.g.
in the spatial cable, all the moment equations are identically satisfied, so that only
the translational equilibrium has to be satisfied). In conclusion, the M generalized
stresses must satisfy N (differential) field balance equations; since these are linear,
they assume the form [1.11].

When the element is taken at the boundary of the beam, and this is free of
constraints, then the stresses are there prescribed; a suitable linear combination of the
stresses must equate the external forces at the end, as stated in equation [1.12].

1.2.3 The hyperelastic law

To complete the model, we need to introduce a constitutive law, able to link
generalized stresses σ to generalized strains ε, thus realizing the “bridge” between
kinematics and dynamics. This topic is quite difficult, when tackled in a general
context. Indeed, a general law linking stresses and strains should account for the
deformation history of the material, this requiring a quite complex mathematical
apparatus (i.e. the use either of functionals or of incremental forms in terms of
strain-rates and stress-rates). This, however, is a peculiarity of plasticity; if we are,
instead, interested in comparatively small strains, then we can ignore the past events,
and refer just to the current state, by writing σ(s, t) = F(ε(s, t), t). The explicit
dependence on time is a peculiarity of viscosity, whose brief treatment will be
postponed. If we admit that the constitutive law does not depend explicitly on time,
we simply write σ(s, t) = F(ε(s, t)) or, by omitting the arguments, σ = F(ε). This
law characterizes elasticity.
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10 Mathematical Models of Beams and Cables

If a beam is elastic, then stresses at the abscissa s and time t only depend on
strains existing at the same place at the same instant. However, this concept of
elasticity (said to be of Cauchy) does not match the idealization of the perception
everybody has in real life, i.e. an elastic body requires some energy to be deformed,
but it entirely returns when the deformation is removed, regardless of the way the
unloading is performed. In other words, this more refined idea of elasticity (said to be
of Green, or hyperelasticity) expresses the conservation of energy, i.e. the absence of
dissipation in any cyclic process the body can undergo (or, equivalently, the
independence of the energy spent on any paths followed to connect two states). Since
just Green-elastic bodies are of interest, very often the adjective “elastic” is used as
“hyperelastic”, and we will comply with this tradition.

The elastic potential

The work spent by the external forces to deform the beam in an interval of time dt
is equal to Pextdt, with Pext the deformation external power, formally still given by
equation [1.6a], but with velocities now denoting quantities related to the real (not
virtual) process. Since Pext = Pint for the VPP [1.7], then we can define a
deformation work for unit length as d

ds (Pintdt) = σT ε̇dt = σT δε. To evaluate the
work needed to lead a unitary element of beam from the state ε1 to the state ε2, we
have to integrate the linear differential form σ (ε)

T
δε along a line connecting the

two states in the space of the strains. The result, in general, depends on the path
chosen for integration (i.e. on the sequence of the deformation imposed), unless
σ (ε)

T
δε is an exact differential, i.e. it is the differential of a scalar function φ(ε).

By requiring σ(ε)T δε = δφ(ε) ≡ (δφ/δε)T δε, it follows that11:

σ(ε) =
δφ(ε)

δε
[1.14]

Equation [1.14] is the hyperelastic law sought. The law postulates the existence of
a function φ(ε), called the density of elastic potential energy or, simply, the elastic
potential.

The linear law

To write the elastic law, we have to assume a suitable form for the elastic potential,
and then to differentiate it. If, for example, we adopt a polynomial of degree n, we
obtain a stress–strain polynomial law of degree n− 1. Of course, the simplest choice

11. This symbolism means that the ith component of the column-matrix σ is equal to the
derivative of the scalar φ with respect to the ith component of the column-matrix ε, i.e. σi =
δφ/δεi.
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A One-Dimensional Beam Metamodel 11

is to take a quadratic potential, from which a linear law follows. We start by assuming
a homogeneous quadratic polynomial, as:

φ(ε) =
1

2
εTEε [1.15]

where E is a square matrix of constants, called the elastic matrix. It possesses two
properties: (a) E = ET is symmetric because it is the matrix of a quadratic form
(and therefore its non-symmetric part is unessential)12; and (b) E is positive definite,
this assuring that a positive work must be spent on the body in order to deform it, i.e.:
φ(ε) > 0 ∀ε = 0. By applying equation [1.14], the Hooke law follows:

σ = Eε [1.16]

It establishes direct proportionality between stresses and strains; moreover, it states
that stresses vanish when strains vanish. Since we decided to measure the strains
starting from the reference configuration, the homogeneous form of the elastic law
applies when the reference configuration is stress-free, also known as unprestressed.
Such a state is called the natural state of the body, whose existence is postulated. We
will return on this topic in the next section, when we will account for prestresses.

1.2.4 The Fundamental Problem

The Fundamental Problem of Elasticity (or elastic problem), relevant to a 1D
beam, is stated as follows. A beam is given under assigned loads p(s, t) acting in the
domain, and displacements w̆H (t) or forces PH (t) prescribed/applied at the ends
H = A,B. We want to determine the generalized displacements w(s, t), the strains
ε(s, t) and the stresses σ(s, t). The problem is governed by the field equations [1.1],
[1.11] and [1.16] and boundary conditions [1.2] and [1.12]. Overall, there are
N + 2M unknowns, appearing in as many field equations.

The equations can be combined according to the displacement method, which
consists of expressing the balance equations and the boundary conditions in terms of
displacements only, by using, in the order, the elastic law and the strain–displacement
relationships. The stress–displacement relationships, therefore, read:

σ = EE (w,w) [1.17]

and, consequently, the balance equations and the mechanical boundary conditions
transform into:

D (w,w)EE (w,w) = p

DH (w,w)EEH (w,w) = PH

[1.18]

12. We can also say that Eij = ∂2φ/∂εi∂εj = ∂2φ/∂εj∂εi = Eji.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 Mathematical Models of Beams and Cables

to be joined to the geometric boundary conditions [1.2]. These equations constitute a
nonlinear boundary value problem for the principal unknowns w. Since the equations
are nonlinear, the uniqueness of the solution is not ensured.

The linear theory

If all terms in equations [1.18] are expanded around the reference configuration,
and only the leading term is taken in each expansion, we have13:

D (w,w) = D0 + h.o.t.

E (w,w) = D0w + h.o.t.

p (w) = p0 + h.o.t.

DH (w,w) = D0H + h.o.t.

PH (w) = P 0H + h.o.t.

[1.19]

where use has been made of equation [1.4], and where the index 0 denotes evaluation
at w = 0. As a result, equations [1.18] become:

Lw = p0

LHw = P 0H

[1.20]

where:

L := D0ED0, LH : D0HED0H [1.21]

are the familiar (tangent) stiffness operators (in the domain and at the boundary) of
the linear theory. Note that L is self-adjoint, for the duality property and the symmetry
of E = ET 14.

REMARK 1.3. A consistent first-order expansion would also require the accounting
of the first derivative of the loads, but this effect is ignored in the linear theory
because equilibrium is referred to the reference configuration. Therefore, any
information about dependence of the loads on displacements is lost.

1.3 Internally constrained beams

It is well-known, from Lagrangian mechanics, that internal constraints reduce the
number of d.o.f. of the system. Thus, a collection of N particles, free in the space,

13. Here, and further on, h.o.t. denotes “higher order terms”.
14. Namely, L = (D0ED0) = D0E

TD0 = L.
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A One-Dimensional Beam Metamodel 13

possesses 3N d.o.f., but these reduce to 6 if the mutual distances among the particles
are constrained to remain unaltered in any motions, i.e. if the system behaves as a
rigid body. In addition, it is also well-known that introducing internal constraints,
while simplifying kinematics, makes the study of dynamics more difficult because
part of the forces are unrelated to displacements. Accordingly, we say that the internal
forces are active, when they depend on kinematic quantities via a constitutive law, and
reactive, when they are independent of them. Thus, by using again the example of a
collection of particles and assuming that they attract each other, the internal forces
depend on the mutual distances if the particles are unconstrained, but they assume any
magnitude if the particles are rigidly connected.

The degenerateness of the constitutive law can also be understood if we consider
a linear spring, whose stiffness quasi-statically increases to infinite. Until the stiffness
is finite, there exists proportionality between the force and the elongation (i.e. the
response curve is a straight line, whose slope is the stiffness); however, when the
stiffness becomes infinitely large, any force can be obtained because the product of
infinite (the stiffness) by zero (the elongation) is undetermined (the response curve is
vertical, i.e. it is the graph of a degenerate, not single-valued, function). As a matter
of fact, in the limit process, the spring becomes a rigid truss, able to supply any force
aligned with its axis.

These ideas can be translated into the mechanics of a deformable body, in
particular beams. We are encouraged to formulate internally constrained models, in
which the configuration variables are not free, but are required to satisfy one or more
geometrical constraints. Although, in principle, any conditions could be introduced,
the most meaningful of them consist of vanishing one or more strains, identically
along the beam. Thus, a beam is inextensible (or unshearable) if the elongation (or
the shear-strain) is prevented. Later in the book (Chapter 4), we will discuss the
conditions under which constrained models are applicable to real cases, and also
consider more complex linear and nonlinear constraint conditions (Chapter 8).

Because of the internal constraints, the dual stresses (i.e. those spending power on
the constrained strains) become reactive, so that they cannot be expressed by an elastic
law. This drawback calls either for a mixed displacement–stress formulation, or for a
special treatment to eliminate reactive stresses, which we are going to illustrate in the
next sections.

1.3.1 The mixed formulation for the internally constrained beam
kinematics and constraints

The deformation of a beam is described by M independent quantities ε (s, t). We
assume that Mc < M of them are identically zero, i.e. εc (s, t) = 0 ∀ (s, t), and we
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14 Mathematical Models of Beams and Cables

call them the constrained strains. The remaining Mu := M −Mc strains, εu = 0, are
referred to as the unconstrained (or admissible) strains. As a result, ε := (εu, εc)

T ,
and equations [1.1] read:

εu
0

=
Eu (w,w)
Ec (w,w) [1.22]

with the boundary conditions wH = w̆H , where H = A,B. We will refer to the
upper part of equations [1.22] as the strain–displacement relationships, and to the
lower part as a set of constraints, limiting the arbitrariness of the displacements and
their derivatives.

By time-differentiating equations [1.22], we obtain the strain-rate-velocity
relationships:

ε̇u
0

=
Du (w,w)
Dc (w,w) ẇ [1.23]

where Du, Dc are partitions of the kinematic operator appearing in equation [1.3].

Dynamics

To derive the balance equations for the constrained problem, we will apply the
VPP principle [1.7]. To express the virtual internal power, it is convenient to partition
the stress σ (s, t) in two subsets, namely σ = (σu,σc)

T
, where σu is an Mu-vector

collecting the stresses dual of the unconstrained strains, and σc is an Mc-vector listing
the stresses dual of the constrained strains. Thus, the VPP reads:

S
(σT

u ε̇u + σT
c ε̇c)ds =

S
ẇTpds+

B

H=A

ẇT
HPH

∀ (ẇ, ε̇u, ε̇c) | (ε̇u = Duẇ, ε̇c = 0 = Dcẇ)

[1.24]

where equations [1.23] have been accounted for. By using them in the internal power
expression, we have:

S
σT

uDuẇds =

S
ẇTpds+

B

H=A

ẇT
HPH ∀ẇ|Dcẇ = 0, [1.25]

which is still a constrained problem, since ẇ cannot be taken arbitrarily, but it must
satisfy an auxiliary condition. By following the well-known Lagrange multipliers
technique, we add to the previous equation the integral of λ

T
Dcẇ = 0, where
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A One-Dimensional Beam Metamodel 15

λ = λ (s, t) are unknown Lagrangian multipliers, and rewrite equation [1.25] as an
unconstrained problem15:

S
σT

uDuẇds =

S
ẇTpds+

B

H=A

ẇT
HPH −

S
λ
T
Dcẇds ∀ẇ [1.26]

But, if we rename λ as σc, i.e., if we attribute to the constrained stresses the meaning
of Lagrangian multipliers, this latter is equivalent to the original principle [1.24] with
no constraints, i.e.:

S
(σT

u ε̇u + σT
c ε̇c)ds =

S
ẇTpds+

B

H=A

ẇT
HPH

∀ (ẇ, ε̇u, ε̇c) | (ε̇u = Duẇ, ε̇c = Dcẇ)

[1.27]

Therefore, after integration by parts, results identical to those supplied by the principle
in equation [1.7] are recovered, but in split form; namely, the split balance equations:

Du Dc
σu

σc
= p [1.28]

and the split boundary conditions:

ẇT Du Dc
σu

σc
− P

H

= 0 [1.29]

where Du and Dc are the adjoint operators of Du and Dc.

Constitutive law

The left-hand member of equation [1.27] states that the internal virtual power Pint

of a constrained system is made of two contributions: an active virtual power Pact :=

S σT
u ε̇uds and a reactive virtual power Preact := S σT

c ε̇cds. Accordingly, σu is
called the active stress, and σc the reactive stress. Note that, as suggested by the
Lagrange multiplier technique, the reactive stress spends zero virtual power in any
admissible motion (as reactive forces do in rigid-body mechanics), i.e. it satisfies the
“perfect constraint postulate”.

15. It is well-known, from the Variational Calculus, that the constrained problem δI [u (s)] :=
b

a
δL (u (s) , u (s)) ds = 0, ∀δfi (u (s) , u (s)) = 0, i = 1, . . . , n is equivalent to the

unconstrained problem δĨ [u (s) , λi (s)] :=
b

a
δLds+ n

i=1
b

a
λiδfi = 0, where λi (s) are

Lagrange multipliers.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 Mathematical Models of Beams and Cables

We can still formulate a hyperelastic law for the active stresses, by requiring that
the deformation work for unit length of the beam, i.e. the work d

ds (Pactdt) spent by
the active stresses in time interval dt, equates the differential dφ of the elastic potential
φ = φ (εu); from this, σu = ∂φ/∂εu follows. If the potential is assumed quadratic,
i.e. φ = 1/2εTuEuuεu, the linear law follows:

σu = Euuεu [1.30]

General linear constraints

The constraints εc = 0, so far considered, are probably so simple that they hide some
interesting aspects of the problem. Therefore, we find useful a digression concerning more
general kinematic constraints, of the kind:

Bε = 0 [1.31]

where B is an Mc × M constant matrix. Of course, if B = [0, I], the previous case is
recovered. Later on in the book (Chapter 8), constraints like this will be addressed.

The VPP, with the constraint [1.31], reads:

S

(σT
a ε̇+ λ

T
Bε̇)ds =

S

ẇ
T
pds+

B

H=A

ẇ
T
HPH , ∀ (ẇ, ε̇) |ε̇ = Dẇ [1.32]

where we denoted by σa the active stresses and by λ the Lagrangian multipliers. Note that,
differently from the particular case examined previously, we did not introduce the constraint in
the active part of the internal power. From the VPP, the balance equations are derived:

D σa +B
T
λ = 0 [1.33]

together with the boundary conditions:

ẇ
T (D σ − P )

H
= 0 [1.34]

The internal virtual power states that the stress is the sum of an active and a passive quota,
namely σ = σa + σr , with σr := BTλ. By assuming for the active stresses a linear elastic
law, σa = Eε, and taking into account the reactive part, the elasto-reactive constitutive law
follows for the total stresses:

σ = Eε+B
T
λ [1.35]

This shows that, in general, each component of σ is partially active and partially reactive.

In the simplest constraint case, εc = 0, for which B = [0, I], the constitutive law [1.35]
reads:

σu

σc
=

Euu Euc

Ecu Ecc

εu

0
+

0

λ
=

Euuεu

Ecuεu + λ
[1.36]

so that σu is purely active, while σc is elasto-reactive. Since in equation [1.27] we zeroed ε̇c

in the active internal power, the Lagrangian multiplier used in that equation accounts for both
the active and reactive components of σc. In the special (but frequent) case in which the elastic
matrix E is diagonal, the constrained strains are purely reactive.
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A One-Dimensional Beam Metamodel 17

The constrained Fundamental Problem: the mixed formulation

By summarizing, the Fundamental Problem for the internally constrained beam is
governed by: Mu strain–displacements relationships, with Mc constraints equations
appended (equation [1.22]); N balance equation [1.28]; Mu purely elastic constitutive
equation [1.30]; overall 2Mu +Mc +N equations. The unknowns involved are: Mu

unconstrained strains εu, Mu+Mc stresses (σu,σc), N displacements w, i.e. 2Mu+
Mc + N unknowns. If we compare these numbers with that of the unconstrained
problem, we note that Mc constrained strains εc disappeared, and also Mc constitutive
elastic laws were canceled, this resulting in a contraction of the dimensions of the
problem.

The fundamental equations cannot be combined according to the displacement
method because the reactive stresses are independent of kinematic quantities.
Therefore, a mixed formulation must be adopted, in terms of both displacements and
reactions. Hence, the balance equations and constraints read (compare them with
equations [1.18]):

DuEuuEu +Dcσc = p

Ec (w,w) = 0
[1.37]

together with the boundary conditions:

DuHEuuEuH +DcHσc = PH

wH = w̆H

[1.38]

of mechanical and geometric types, respectively (to be enforced alternatively).
Equations [1.37] and [1.38] constitute a mixed boundary value problem, coupled in
N displacements and Mc reactive stresses.

The linear theory

If equations [1.37] and [1.38a] are linearized around the trivial configuration, we
have (compare them with equations [1.20] and [1.21]):

Lu D0c

D0c 0

w

σc
=

p0

0
[1.39]

with the mechanical boundary conditions:

LuHw +D0cHσc = P 0H [1.40]

where Lu,LuH are condensed linear stiffness operators:

Lu := D0uEuuD0u, LuH := [D0uEuuD0u]H [1.41]

Note that Lu is self-adjoint.
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18 Mathematical Models of Beams and Cables

1.3.2 The displacement method for the internally constrained
beam

The mixed formulation leads to balance equations that contain the reactive
stresses. In order to formulate a problem purely in terms of displacements, as for the
unconstrained beam, we have to eliminate the reactions. This goal could be reached,
in principle, by performing linear algebraic/differential combinations among the
original balance equation [1.28], by exploiting the fact that they are linear in the
stresses. Thus, by using Mc < N balance equations, we could eliminate as many
reactive stresses, so obtaining Nm := N − Mc equations in the active stresses only.
The operation is called condensation of the reactive stresses. This circumstance is
analogous to that of Lagrangian mechanics of constrained bodies, where one looks
for the “Lagrange equations of motion”, i.e. equations free of reactive forces.

As for rigid bodies, however, the condensation of the stresses via linear
combination is neither simple nor convenient, but a variational (or integral, i.e. based
on the VPP) approach is advised. This is based on a preliminary study of kinematics,
in which Nm = N − Mc displacements must be chosen as “master (or free)
variables”, and the remaining Mc “slave variables” related to them, in such a way to
identically satisfy the Mc constraints. This operation represents a condensation of the
displacements, dual to that of stresses, which balances the problem (Mc balance
equations disappear, and Mc unknown slave displacements are eliminated). The
master variables play a role identical to that of the Lagrangian parameters in
rigid-body mechanics, i.e. they describe the most general configuration that is
admissible with the constrains.

The true difficulty of the problem, however, consists of solving the constraint
equations. Since they are nonlinear equations, they can rarely be tackled in the exact
form, but, in contrast, a perturbation procedure must be applied, by resorting to series
expansions. There is, however, another problem that makes the elimination of the
variables difficult, due to the fact that the constraints are differential (and not
algebraic!) equations16. In lucky cases in which a not-differentiated variable wi

appears in one equation, we can solve this equation (maybe, by means of a
perturbation method) with respect to this variable, by using algebraic operations
only, thus obtaining wi = f wj , w


j with j = i. If, in contrast, only first derivatives

appear in the constraint equation, we could find w
i = f w

j still using algebra.
However, if wi is needed, for example to evaluate inertia forces proportional to ẅi,
we should integrate, thus obtaining wi = f w

j ds, and also using geometric
boundary conditions. In these circumstances, elimination of the variables could be
inconvenient, and the mixed formulation would be preferable. Hybrid procedures, in

16. A similar circumstance occurs in Lagrangian mechanics, when non-holonomic constraints
exist, which involve time-differentiated displacements.
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A One-Dimensional Beam Metamodel 19

which only a sub-set of the variables is eliminated, are also possible, and relevant
examples will be illustrated further on in the book (Chapter 4).

Condensation of displacements: master and slave variables

Let us assume that all the Mc constraint equations Ec (w,w) = 0 can be solved
with respect to Mc slave variables ws, i.e. ws = Ws (wm,w

m, . . .), where wm

are the remaining Nm = N −Mc master variables; therefore, w := (wm,ws)
T
=

(wm,Ws (wm,w
m, . . .))

T or, in short17:

w = W (wm,w
m, . . .) [1.42]

The generic configuration of the internally constrained beam is thus described by
master configuration variables only. We will call this (nonlinear) relation the
constraint for displacements, and we will say that the slave displacements have been
condensed.

By time-differentiating the previous equation, we obtain the more general velocity
field that is admissible for the instantaneous constraints, i.e.18:

ẇ = A (wm,w
m, . . .) ẇm [1.43]

which, therefore, represents a (linear) constraint for velocities; in it, by omitting the
arguments:

A :=
∂W

∂wm
+

∂W

∂w
m

∂

∂s
+ . . . [1.44]

is a linear differential operator, represented by a N × Nm matrix: we will call it the
velocity constraint operator. Since, from equation [1.23], it is Dcẇ = 0, ∀wm, it
follows from equation [1.43], that DcA = 0.

With equations [1.42], and [1.43], the strain–displacements relationship (upper
part of equation [1.22]) transforms into:

εu = Eu (wm,w
m, . . .) [1.45]

to be sided by geometric boundary conditions:

wmH = w̆mH , WsH (wm,w
m, . . .) = w̆sH [1.46]

17. The high-order derivatives of wm have been denoted by ellipsis. As an example of the
appearance of these terms, the equation us − u

m − u2
s = 0 admits the solution us = u

m +
u2
m + h.o.t.

18. Note that A := (Im,As) , Im being the identity matrix of order Nm.
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20 Mathematical Models of Beams and Cables

where the know-terms can be freely imposed. Similarly, the strain-rate-velocity
relationship (upper part of equation [1.23]) becomes:

ε̇u = DuAẇm [1.47]

where Du = Du W (wm,w
m, . . .) ,W  (wm,w

m, . . .) = Du (wm,w
m, . . .).

We will refer to equations [1.45] and [1.47] as the condensed kinematic relationships.

REMARK 1.4. The condensation of the slave displacements leads to the appearance
of the second- and high-order space-derivatives in the field, and first- and high-order
space-derivatives at the boundaries.

Condensation of the balance equations

Now, we address the problem of condensation of the reactive stresses by the power
balance approach. First, we rewrite the VPP in the form [1.25] we already used in the
mixed formulation:

S
σT
uDuẇds =

S
ẇTpds+

B

H=A

ẇT
HPH ∀ẇ|Dcẇ = 0 [1.48]

Differently from that approach, however, we will not introduce Lagrange multipliers
to express the geometrical constraints but, rather, we will use the master variables to
identically satisfy them, via, ẇ = Aẇm (equation [1.43]). Since the reactive stresses
do not appear in the VPP, the principle furnishes balance equations purely in the active
stresses.

From a computational point of view, we find it conceptually clearer to reach the
goal in two steps: (a) first, we integrate by parts equation [1.48] to free ẇ from the
derivatives; and (b) then, we substitute the velocity constraint, and integrate again by
parts, to free ẇm from the derivatives. By performing the first integration, we obtain:

S
ẇT (Duσu − p) ds+

B

H=A

ẇT (Duσu − P )
H

= 0 ∀ẇ|Dcẇ = 0 [1.49]

where we used the extended Green identity [1.8] for the u-parts of the operators and
stress19. Then, in order to satisfy the constraints, we express the velocities in terms of

19. Note that equation [1.49] could be directly obtained as a linear combinations of the split
balance equations [1.28] and boundary conditions [1.29], simply by ignoring the reactive
stresses. Therefore, if we already know the equilibrium equations for an unconstrained model,
we can follow this shortcut, thus avoiding the first integration by parts.
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A One-Dimensional Beam Metamodel 21

master velocities, namely ẇ = Aẇm in the field, and ẇ := (ẇm, ẇs)
T

=

ẇm,Ẇs (wm, . . .)
T

on the boundary, thus obtaining:

S

(Duσu − p)
T
Aẇmds

+

B

H=A

ẇT
m (Dumσu − Pm) + Ẇ

T

s (Dusσu − P s)
H

= 0 ∀ẇm

[1.50]

where the partitions Du := (Dum,Dus)
T
, P = (Pm,P s)

T have been
introduced20.

Now, a second integration by parts is needed, involving the A operator, whose
relevant extended green identity is written as21:

S
pT
c Aẇmds =

S
ẇT

mA pcds+

B

H=A

ẇT
mA pc H

[1.51]

where A (of dimensions Nm ×N ) is the adjoint of A, and AH (also of dimensions
Nm × N ) is the associated operator at the boundary, to be referred to as the
equilibrium condensation operators. By remembering the expression [1.44] for the
velocity constraint operator, we get22:

A :=
∂W

∂wm
−

∂

∂s

∂W

∂w
m

−
∂W

∂w
m

∂

∂s
+ . . .

T

AH := 
∂W

∂w
m

+ . . .
T

H

[1.52]

With equation [1.51], the VPP [1.50] reads:

S
ẇT

mA (Duσu − p) ds+

B

H=A

ẇT
mA (Duσu − p)

H

+

B

H=A

ẇT
m (Dumσu − Pm) + Ẇ

T

s (Dusσu − P s)
H

= 0 ∀ẇm

[1.53]

20. Note that Ẇs = ∂Ws
∂wm

ẇm + . . . also depends on ẇm.

21. Here pc is a dummy variable assuming the meaning of “external constraint force” pc :=
Duσu − p = Dcσc.
22. Note the analogy between equations [1.52] and [1.9].
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22 Mathematical Models of Beams and Cables

By taking into account that the velocities ẇm are arbitrary, the previous principle
supplies the field equations:

A Duσu = A p [1.54]

in which the two members represent Lagrange internal and external forces,
respectively.

Consistently with the geometrical boundary conditions [1.46] (in which slave and
master variables have been separated), the boundary terms in equation [1.53] also
separate in:

ẇT
m (A (Duσu − p) + (Dumσu − Pm))

H
= 0

Ẇ
T

s (Dusσu − P s)
H

= 0
[1.55]

Equations [1.54] and [1.55] are the condensed equations sought for. The example
of section 1.7 shows an application to a well-known linear problem of Timoshenko
beam, with the purpose to corroborate the understanding of the theory illustrated here.

REMARK 1.5. The condensation of the reactive stresses leads to the appearance of
space-derivatives of the loads, in the field equation [1.54] and to higher-order
derivatives of the stresses in the equilibrium operator; moreover, it brings a
contribution of the field load to the free boundaries (equation [1.55]).

REMARK 1.6. The condensed kinematic operator, DuA (equation [1.45]), and the
condensed equilibrium operator, A Du (equation [1.54a], are mutually adjoint.
Moreover, since DcA = 0, then even A Dc ≡ (DcA) = 0, thus explaining how
A annihilates σc, and therefore the reactive stresses.

The constrained Fundamental Problem: the displacement formulation

By summarizing, the Fundamental Problem for the constrained beam, when
formulated in terms of displacements wm only, is governed by the following field
equations:

– the condensed strain–displacement relationships [1.45];

– the condensed balance equations [1.54];

– the elastic law [1.30].

They are equipped with the alternative boundary conditions [1.55] and the geometric
boundary condition [1.46]. By combining the field equations, we can express the
balance equations in terms of the master displacements, namely:

A DuEuuEu = A p [1.56]
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A One-Dimensional Beam Metamodel 23

The boundary conditions, when handled in the same way, read:

[A DuEuuEu +DumEuuEu]H = [Pm +A p]H

[DusEuuEu]H = [P s]H

wmH = w̆mH , WsH (wm,w
m, . . .) = w̆sH

[1.57]

The linear theory

If equations [1.56] and [1.57] are linearized around the reference configuration
(and use is made of equation [1.47]), they read:

A0LuA0wm = A0p0 [1.58]

together with:

[A0LuA0 +LumA0]H wm = [P 0m +A0p0]H

[LusA0]H wm = [P 0s]H

wmH = w̆mH , [A0swm]H = w̆sH

[1.59]

where the index 0 denotes evaluation at wm = 0, and moreover:

Lu : = D0uEuuD0u, LumH : = [D0umEuuD0u]H

LusH : = [D0usEuuD0u]H
[1.60]

are condensed linear elastic operators, in the domain and at the boundary, with Lu

self-adjoint (remember equation [1.41]). In the last of the boundary conditions [1.59],
W = A0wm + h.o.t. has been used by exploiting equation [1.43] with the partition
A0 := (Im,A0s)

T .

Evaluation of the reactive stresses

Differently from the mixed formulation, in which the reactive stresses are included
in the set of the primary unknowns, in the displacement formulations, they have to be
evaluated by the balance equations, after the boundary value problem in the master
displacements has been solved. First, the active stresses σu = EuuEu are evaluated,
and then the split balance equations [1.28] and [1.29] written in the form:

Dcσc = p−Duσu

DcHσc = PH −DuHσu

[1.61]

where σc are the unknowns. These equations represent the equilibrium of an ideal
“rigid skeleton” of the beam, able to exert only reactive stresses σc, under the action
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24 Mathematical Models of Beams and Cables

of now known external and internal active forces. Such a problem, however, is
overdetermined, since we have N equilibrium equations in Mc < N unknowns.
Therefore, in order it admits a solution, the knownn terms must satisfy a
compatibility condition, i.e. they must be orthogonal to all the solutions of the adjoint
homogeneous problem23. Since the latter is just Dcẇ = 0, the know-term must be
orthogonal to ẇ = Aẇm, ∀ẇm, and therefore compatibility requires24:

S
(p−Duσu)

T
Aẇmds+

B

H=A

(P −Duσu)
T
Aẇm

H
= 0 ∀ẇm [1.62]

This expresses that the difference between the virtual powers spent by the active
stresses and the external forces in any admissible velocity field is zero. But this
equation is exactly equation [1.50], which has been already satisfied in formulating
the problem. Therefore, equations [1.61], although overdetermined, are integrable
because they are not linearly independent (see, again, the example of section 1.7).

1.4 Internally unconstrained prestressed beams

Usually, as already observed, the reference configuration ε = 0 is assumed to be
stress-free. However, there exist problems in which it is more convenient to refer to a
configuration in which the body is solicited by time-independent preloads, causing a
state of prestress. Buckling falls in this class of problems; another set of problems in
which prestress is important concerns strings and cables.

Of course, a prestressed beam is also prestrained, this entailing a change of
geometry with respect to its natural state. Thus, for example, if the prestress of
straight beam is caused by an axial load, the beam is shortened with respect to its
natural length; if the beam is transversely loaded, it is bent, twisted and
shear-strained; if, for example, the beam has an initial uniform curvature, this is
rendered non-uniform by preloads. Strictly speaking, such changes of geometry
should be accounted for in analyzing the mechanical behavior of the beam, when
incremental loads, additional with respect to preloads, are applied. Such an approach,
however, would nullify the advantage to refer to a prestressed configuration because
the relevant geometry would be more complex than the natural geometry. Therefore,
in order to simplify the problem, prestrains and deformations produced by preloads
are neglected, so that the reference prestressed configuration is confused with the

23. This property, known in functional analysis (Fredholm alternative), can be considered as a
straightforward extension of the Rouché–Capelli theorem, holding in Algebra.
24. Note that we did not account for any geometric boundary condition in evaluating ẇm, in
order to make the treatment as general as possible.
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A One-Dimensional Beam Metamodel 25

natural configuration. In other words, the geometrical effects caused by the prestress
are ignored.

1.4.1 The nonlinear theory

With these ideas in mind, let us consider a beam under time-independent preloads
p̊(w), P̊H (w), possibly dependent on the configuration, equilibrated with prestresses
σ̊(s), and assume the equilibrium configuration as a known reference configuration.
As a result, the following equations hold:

D0σ̊ = p̊0

D0H σ̊ = P̊ 0H

[1.63]

where the equilibrium operators and the loads have been evaluated at w ≡ 0. Let
us assume, then, that at time t = 0, incremental loads p̃(w), P̃H (w) are applied
to the beam. These loads bring the beam to occupy a new (possibly time-dependent)
current configuration, described by the generalized displacements w(s, t), measured
with respect to the reference configuration. Accordingly, kinematics is still governed
by equations [1.1] and [1.2], that we repeat here:

ε = E (w,w)

wH = w̆H

[1.64]

Similarly, the balance equations are still equations [1.11] and [1.12], but with total
loads applied, accounting for the current values of the preloads:

D (w,w)σ = p̊(w) + p̃(w)

DH (w,w)σ = P̊H(w) + P̃H(w)
[1.65]

Concerning the elastic law, we have to modify the Hook law in order to get σ = σ̊

when ε = 0. This is accomplished by considering an elastic potential represented by
a complete quadratic polynomial25:

φ(ε) = φ0 + σ̊T ε+
1

2
εTEε [1.66]

Then, a linear non-homogeneous law follows from equation [1.14]:

σ = σ̊ +Eε [1.67]

25. The constant φ0 is unessential, since a potential function is always defined to within a
constant. Therefore, we will omit it further on.
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26 Mathematical Models of Beams and Cables

The governing equations can be combined according to the displacement method,
as done for the stress-free beam. The stress–displacement relationships then read:

σ = σ̊ +EE(w,w) [1.68]

and, as a result, the balance equations and the mechanical boundary conditions
transform into:

D EE + (D σ̊ − p̊) = p̃

DHEEH + DH σ̊ − P̊H = P̃H

[1.69]

Equations [1.69] and the geometric boundary conditions [1.64b] constitute a nonlinear
boundary value problem for the main unknowns w.

REMARK 1.7. Equations [1.69] state that the incremental loads p̃, P̃H are
equilibrated not only by the incremental elastic forces, as happens in stress-free
beams, but also by the imbalance between preloads and prestresses, which is caused
by the change of geometry.

1.4.2 The linearized theory

Very often, in buckling problems, we are interested in determining the critical
load only, or the response of the beam to small incremental loads, acting as
disturbances/imperfections of the prestressed equilibrium configuration, mostly when
the beam is close to the bifurcation. Similarly, in dynamics, we want to evaluate the
frequencies of a prestressed beam or cable, or the response of the structure when
small incremental loads externally excite the beam, especially when this is close to
the resonance. In all these cases, the linearized version of equation [1.69] is sufficient
to give an accurate response (i.e. to within the effects of the neglected prestrains),
leading to a differential eigenvalue problem (for critical load or frequencies) or a
non-homogeneous boundary value problem (for small incremental loads). The
relevant framework is called Linearized Theory26.

26. We use the wordings linearized theory for prestressed beams, and linear theory for stress-
free beams.
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A One-Dimensional Beam Metamodel 27

To linearize equations [1.69], we have to move one order ahead with respect to the
series expansions [1.19]27. Concerning the field equations, we have28:

D (w,w) σ̊ = D0σ̊ +
∂ (D σ̊)

∂w 0

w +
∂ (D σ̊)

∂w
0

w + h.o.t.

p̊(w) = p̊0 +
∂p̊

∂w 0

w + h.o.t., p̃(w) = p̃0 + h.o.t.

[1.70]

in which we assumed p̃(w) and w small of the same order. Similarly, for the boundary
conditions, we have:

DH (w,w) σ̊ = D0H σ̊ +
∂ (DH σ̊)

∂w 0

w +
∂ (DH σ̊)

∂w
0

w + h.o.t.

P̊H(w) = P̊ 0H +
∂P̊H

∂w
0

w + h.o.t., P̃H(w) = P̃ 0H + h.o.t.

[1.71]

By retaining first-order terms only in the series expansions, and accounting for the
equilibrium conditions [1.63] of the prestressed configuration, we obtain:

Lw +Gw = p̃0

LHw + GHw = P̃ 0

[1.72]

where L and LH are the already introduced elastic stiffness operators of the linear
theory (equation [1.21]), and:

G :=
∂ (D σ̊)

∂w 0

+
∂ (D σ̊)

∂w
0

∂

∂s
−

∂p̊

∂w 0

GH :=
∂ (DH σ̊)

∂w 0

+
∂ (DH σ̊)

∂w
0

∂

∂s
−

∂P̊H

∂w
0

[1.73]

are geometric stiffness operators, in the domain and on the boundary, respectively,
accounting for prestress.

REMARK 1.8. The geometric stiffness accounts for the effect on the equilibrium of an
infinitely small change of geometry of the beam, when it passes from the reference to
an adjacent current configuration. The imbalance between prestresses and preloads,
D (w,w) σ̊ − p̊ (w), when linearized, is just Gw.

27. From this circumstance, the linearized theory is also called the “second-order theory”, this
being a less precise wording, often used in technical circles.
28. Although σ̊ is independent of w, we prefer to differentiate the product (D σ̊), to remember
that D operates on σ̊, and, moreover, to avoid introducing the derivative of a matrix with
respect to a vector.
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28 Mathematical Models of Beams and Cables

The geometric stiffness operator

To obtain an expression for the geometric stiffness operator [1.73a] in terms of strains, we
use equation [1.9a] and obtain29:

D σ̊ =
∂E

∂w

T

σ̊ − ∂

∂s

∂E

∂w

T

σ̊ − ∂E

∂w

T

σ̊


=
M

i=1

∂Ei

∂w
− ∂

∂s

∂Ei

∂w σ̊i − ∂Ei

∂w σ̊

i

[1.74]

From this, we can evaluate the contributions to Gw, namely:

∂ (D σ̊)

∂w 0

w =
M

i=1

Aiw −B
T
i w

 σ̊i −B
T
i wσ̊

i

∂ (D σ̊)

∂w
0

w
 =

M

i=1

Biw
 −Ciw

 σ̊i −Ciw
σ̊

i

[1.75]

where the following matrices of the second derivatives of Ei, evaluated at (w,w) = (0,0),
have been introduced30:

Ai :=
∂2Ei

∂w2
0

, Bi :=
∂2Ei

∂w∂w
0

, Ci :=
∂2Ei

∂w2
0

[1.77]

being Ai = AT
i , Ci = CT

i , while BT
i = ∂2Ei

∂w∂w
0
= Bi

31. Hence:

G =
M

i=1

Aiσ̊i −B
T
i σ̊


i + Biσ̊i −B

T
i σ̊i −Ciσ̊


i

∂

∂s
−Ciσ̊i

∂2

∂s2
− ∂p̊

∂w 0

[1.78]

The stiffness operator at the boundary can be obtained in a similar manner. By using
equation [1.9] we have:

DHσ̊ :=
∂E (w,w)

∂w

T

H

σ̊ [1.79]

29. Note that, e.g., ∂E
∂w

T
is the column-wise matrix ∂E1

∂w
, ∂E2

∂w
, . . . , ∂EM

∂w
, where the

derivative of a scalar with respect to a vector denotes a column vector.
30. Note that these are sub-matrices of the Hessian of Ei at the origin, once the variables have
been ordered as (w,w):

H
0
i =

Ai Bi

BT
i Ci

[1.76]

31. Indeed, Bi =
∂2Ei

∂uj∂u

k 0

, BT
i = ∂2Ei

∂u
j∂uk 0

with j being the row and k the column.
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A One-Dimensional Beam Metamodel 29

from which:

∂ (D σ̊)

∂w 0H

w =
M

i=1

B
T
i wσ̊i,

∂ (D σ̊)

∂w
0H

w
 =

M

i=1

Ciw
σ̊

i [1.80]

and therefore, from equation [1.73b], we finally get:

GH =
M

i=1

B
T
i σ̊i +Ciσ̊i

∂

∂s
− ∂P̊

∂w
0H

[1.81]

1.5 Internally constrained prestressed beams

We consider again a prestressed beam, but refer ourselves to an internally
constrained model, so that all the aspects illustrated in the previous sections are
involved in this more complex problem. As for the stress-free beam, we want to
tackle both the mixed and displacement formulations, and as for the prestressed
beam, we want to develop models in the nonlinear and linearized frameworks.
Therefore, four different models are illustrated further on.

1.5.1 The nonlinear mixed formulation

Let us assume that the beam is in equilibrium under time-independent but
configuration-dependent preloads p̊(w), P̊H (w), and prestresses σ̊, and ignore any
deformation of the beam, so that the equilibrium configuration is confused with the
reference configuration. Prestresses can be either of active or reactive type,
i.e. σ̊ = (σ̊u, σ̊c)

T , and we assume they have been already determined from a
prestress analysis. As a result, the equilibrium equations [1.63] hold, with the
partition introduced:

D0uσ̊u +D0cσ̊c = p̊0

D0uH σ̊u +D0cH σ̊c = P̊ 0H

[1.82]

and where the index 0 denotes evaluation at the trivial configuration.

Let us consider, then, incremental loads p̃(w), P̃H (w) applied to the beam at
t = 0. They cause the beam to assume a current unknown configuration, in which
unconstrained and constrained strains are related to displacements by equations [1.22],
which we repeat here:

εu = Eu (w,w)

0 = Ec (w,w)
[1.83]
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30 Mathematical Models of Beams and Cables

The balance equations [1.65], relevant to the current configuration, in the split form
read:

Du (w,w)σu +Dc (w,w)σc = p̊(w) + p̃(w)

DuH (w,w)σa +DcH (w,w)σc = P̊H(w) + P̃H(w)
[1.84]

The constitutive law is non-homogeneous, as equation [1.67], but it concerns only
the active stresses, as equation [1.30], namely:

σu = σ̊u +Euuεu [1.85]

By using the previous equations, we write the balance equations and the
mechanical boundary conditions in terms of displacements and incremental reactive
stresses:

σ̃c := σc − σ̊c [1.86]

Moreover, we append to them the constraints and the geometric boundary conditions.
Hence, the final boundary value problem consists of the following field equations:

DuEuuEu +Dc σ̃c + (D σ̊ − p̊) = p̃

Ec (w,w) = 0
[1.87]

and the boundary conditions32:

DuHEuuEuH +DcH σ̃c + DH σ̊ − P̊H = P̃H

wH = w̆H

[1.88]

Comparison with equations [1.37] and [1.38], relevant to the unprestressed beam,
highlights the contribution of the prestress.

1.5.2 The linearized mixed formulation

To linearize equations [1.87a] and [1.88a], we use the series expansions [1.70]
and [1.71] and assume incremental reactive stresses and loads to be small first-order
quantities; moreover, we replace the constraint condition by its first-order
approximation. Thus, we get the linearized equations (compare them with

32. Note that the prestresses have been merged, via Duσ̊u +Dc σ̊c = D σ̊ and DuHσ̊u +
DcH σ̊c = DHσ̊, since they are known terms in this analysis.
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A One-Dimensional Beam Metamodel 31

equations [1.39] and [1.40], relevant to the linear theory of the unprestressed beam,
and with equations [1.72], relevant to the linearized theory of the prestressed
unconstrained beam):

Lu D0c

D0c 0
+

G 0

0 0

w

σ̃c
=

p̃0

0
[1.89]

with the mechanical boundary conditions:

LuHw + GHw +D0cHσ̃c = P̃ 0H [1.90]

where Lu, LuH are defined in equations [1.41], and G, GH in equations [1.73].

1.5.3 The nonlinear displacement formulation

If we follow the displacement formulation, we have to condense slave
displacements and reactive stresses, as we did for the stress-free beam. Kinematics is
governed by the condensed strain–displacement relationships [1.45] and geometric
boundary conditions [1.46], i.e.:

εu = Eu (wm,w
m, . . .)

wmH = w̆mH , WsH (wm,w
m, . . .) = w̆sH

[1.91]

Equilibrium is governed by equations [1.54] and boundary conditions by
equations [1.55], provided total loads p := p̊+ p̃, PH := P̊H + P̃H are taken into
account, i.e.:

A Duσu = A (̊p+ p̃) [1.92]

and:

A (Duσu − p̊− p̃) + Dumσu − P̊m − P̃m
H

= 0

Dusσu − P̊ s − P̃ s
H

= 0

[1.93]

where all the operators and loads depend on wm and its derivatives, via
w = W (wm,w

m, . . .) (equation [1.42]). Finally, the constitutive law is given by
equation [1.85], i.e.:

σu = σ̊u +Euuεu [1.94]

Combination of the previous field equations leads to (compare them with
equation [1.56], where prestress was absent):

A DuEuuEu +A (Duσ̊u − p̊) = A p̃ [1.95]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



32 Mathematical Models of Beams and Cables

and the relevant boundary conditions (compare with [1.57]):

A DuEuuEu +DumEuuEu +A (Duσ̊u − p̊) + Dumσ̊u − P̊m
H

= P̃m +A p̃
H

DusEuuEu + Dusσ̊u − P̊ s
H

= P̃ s
H

wmH = w̆mH , WsH (wm,w
m, . . .) = w̆sH

[1.96]

Once the problem has been solved, the total reactive stresses follow from the not-
condensed equilibrium equations.

REMARK 1.9. Equations [1.95] and [1.96], as equations [1.69], contain unbalanced
preloads–prestress forces. These, however, differently from the previous formulations,
are expressed in terms of active forces only, since premultiplication by A filters the
reactive contributions.

1.5.4 The linearized displacement formulation

Linearization of equations [1.95] and [1.96] calls for using series expansions of
all operators and loads. Elastic terms and incremental loads can been dealt with as for
the unprestressed beam (equations [1.58] and [1.59]). Additional geometric terms
arise from imbalanced prestresses and preloads, requiring expansion of the u-parts of
the equilibrium operators,Du, Du = (Dum,Dus)

T and of the preloads p̊. Now, as
we observed, these quantities depend on the master displacements via the constraints,
e.g. Du = Du W (wm,w

m, . . .) ,W  (wm,w
m, . . .) ; thus, we find it more

convenient to first expand them with respect to w,w, and then to use
w = W (wm,w

m, . . .) = A0wm + h.o.t., namely:

Duσ̊u = D0uσ̊u +
∂ (Duσ̊u)

∂w 0

w +
∂ (Duσ̊u)

∂w
0

w + h.o.t.

= D0uσ̊u +
∂ (Duσ̊u)

∂w 0

+
∂ (Duσ̊u)

∂w
0

∂

∂s
A0wm + h.o.t.

[1.97]

Similarly, we obtain:

DuH σ̊u = D0uH σ̊u +
∂ (DuH σ̊u)

∂w 0

+
∂ (DuH σ̊u)

∂w
m 0

∂

∂s
A0wm + h.o.t.

p̊ = p̊0 +
∂p̊

∂w 0

Awm + h.o.t., P̊H(w) = P̊ 0H +
∂P̊H

∂w
0

A0wm + h.o.t.

[1.98]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A One-Dimensional Beam Metamodel 33

Hence, the field equations are linearized as follows (compare them with
equation [1.58]):

A0LuA0wm +A0GuA0wm = A0p̃0 [1.99]

and the boundary conditions as (compare them with equation [1.59]):

[A0LuA0 +LumA0 +A0GuA0 + GumA0]H wm = P̃ 0m +A0p̃0
H

[LusA0 + GusA0]H wm = P̃ 0s
H

wmH = w̆mH , [A0swm]H = w̆sH

[1.100]

where the condensed elastic stiffness operators Lu,LumH ,LusH have already been
defined (equations [1.60]), and the condensed geometric stiffness operators are:

Gu :=
∂ (Duσ̊u)

∂w 0

+
∂ (Duσ̊u)

∂w
0

∂

∂s
−

∂p̊

∂w 0

GuH :=
∂ (DuH σ̊u)

∂w 0

+
∂ (DuH σ̊u)

∂w
0

∂

∂s
−

∂P̊H

∂w
0

+ . . .

[1.101]

with GuH := (Gum,Gus)
T
H . The latter are therefore the u-part of the operators

G, GH of the unconstrained beam, defined in equations [1.73], and also appearing in
the mixed formulation for the constrained beam.

1.6 The variational formulation

In the previous sections, we formulated the Fundamental Problem of beam
mechanics, via the power balance approach, based on the VPP, which provided the
field equations and the alternative boundary conditions. We also mentioned the
possibility of achieving the same goal by the force balance approach (when the beam
is locally rigid), based on the application of the linear and angular momentum
principles. There exists, however, a third method, which is called the variational
approach, which we want to discuss here with a little detail.

A variational principle states that the solution to a given field problem renders
stationary a (properly built-up) functional in its domain, i.e. in the space of functions
from which the functional depends. The stationary condition, provided by the
variational calculus, is a differential equation, which is called the Eulerian equation
of the variational problem. In elastostatics, when the Fundamental Problem is
formulated in the context of the displacement method, the proper functional is the
total potential energy (TPE), which is a scalar function of the admissible vector
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34 Mathematical Models of Beams and Cables

displacement field (i.e. compatible with the external and, possibly, internal
constraints). With each arbitrarily chosen admissible displacement field, a scalar
value of TPE is associated; by the stationary condition, we look for the particular
vector field (possibly not unique) which makes the TPE “locally flat” in its
neighborhood. This means that a first-order perturbation of the field that solves the
Eulerian equations produces a second- or high-order perturbation in the value
assumed by the TPE. The Eulerian equations supplied by the TPE principle are the
balance equations and the mechanical boundary conditions we derived in alternate
procedures, but, differently from those, directly expressed in terms of displacements.

The TPE principle, however, being related to an energy, only works for
conservative systems33. When the beam is elastic (and therefore it cannot dissipate
energy), we just have to assume that the external loads are conservative. However, if
the request of conservativeness strongly limits the applicability of the variational
approach, another circumstance mitigates this drawback, namely: the first variation
of the TPE is found to coincide with the VWP expression, with stresses expressed in
terms of displacements. Differently from the TPE principle, the VPP holds for any
system, conservative and not, so that the varied form of TPE can be used as a method
to automatically derive the VWP, to be applied, for example, to a non-conservative
case. In this form, the Variational principle is said to be extended.

In this section, we will go over all the problems we studied in this chapter, by
reobtaining known results via the variational approach.

1.6.1 The total potential energy principle

We define the TPE functional, Π [w] , whose domain U is the space of the
kinematically admissible displacements w, as:

Π [w] := U [w]−W [w] [1.102]

where U [w] is the elastic potential energy and −W [w] is the force potential energy
(equal to the external work W [w], changed in sign, spent from the forces to bring the
beam from the reference to the current configuration). Here:

U [w] :=

S
φ(E (w,w))ds

W [w] := −

S
ψ(w)ds−

B

H=A

Ψ(wH)

[1.103]

33. Follower forces, therefore, are excluded.
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A One-Dimensional Beam Metamodel 35

where φ(ε) is the density of the elastic potential energy of the beam, ψ(w), Ψ(wH)
are the potential energies of the forces and ε = E (w,w) expresses admissibility of
strains and displacements (equation [1.1]).

The total potential energy principle (TPEP) states that the displacement field w

that solves the elastic problem makes Π [w] stationary, i.e.:

δΠ [w] = 0 ∀δw ∈ U [1.104]

Equivalently, we can say that among all the kinematically admissible displacement
fields, the ones also equilibrated render stationary the TPE. By using the variational
calculus, we find:

δΠ [w] :=

S

∂φ

∂ε

T

δεds+

S

∂ψ

∂w

T

δwds+

B

H=A

∂Ψ

∂wH

T

δwH

=

S
σT δεds−

S
pT δwds−

B

H=A

P T
HδwH = 0 ∀ (δw, δε) |δε = Dδw

[1.105]

where we accounted for the elastic law [1.14], the definition of force potential
energies, p := −∂ψ(w)/∂w, PH := −∂Ψ(wH)/∂wH

34, and, finally, for the
kinematic constraint [1.5] linking variations of strains and displacements. We,
however, observe that equation [1.105] coincides with the VWP, equation [1.13], in
which the stresses are expressed in terms of strains via the elastic law, and these, in
turn, in terms of displacements, via the strain–displacement relationships. Therefore,
the TPE principle and the VWP are equivalent for conservative systems and lead to
the same balance equations (and boundary conditions). If, in contrast, forces are not
conservative, then the extended form of the principle (i.e. the last line of
equation [1.105]) also holds.

Dynamical systems: the Hamilton principle

When inertia forces have to be taken into account, we can either apply the
d’Alembert principle, by including inertial effects in the external forces, or use the
Hamilton principle. When specialized to the problem at hand, the principle states that
the true evolution w (s, t) of a beam makes stationary the functional:

H [w] :=
t2

t1

(T [w]−Π [w]) dt [1.106]

34. The minus sign denotes a decrement of energy when the force spends a positive work.
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36 Mathematical Models of Beams and Cables

in the space of all the kinematically admissible motions w (s, t) which bring the beam
from a specified state w (s, t1) to a specified state w (s, t2), where t1, t2 are two
selected times. Here, T is the kinetic energy of the beam, and Π := U − W is the
TPE, already introduced. The Variational principle therefore requires that:

δH := δ
t2

t1

(T −Π) dt = 0 ∀δw|δw (s, t1) = δw (s, t2) = 0 [1.107]

Its varied form:

t2

t1

(δT − δU + δW ) dt = 0 ∀δw|δw (s, t1) = δw (s, t2) = 0 [1.108]

is called the extended hamilton principle; it holds even for non-conservative forces
(e.g. for visco-elastic or externally damped beams). When kinetic effects are
negligible, the Hamilton principle reduces to the TPE principle.

1.6.2 Unconstrained beams
If we limit ourselves to linear elastic material, we have φ(ε) = 1/2ETEE (equation [1.15]);

moreover, if the external forces are dead loads p, PH (i.e. independent of w), then, to within
an inessential constant, is ψ (w) := −pw, Ψ(wH) := −PHwH , so that:

Π [w] :=
1

2
S

E
T

w,w
EE w,w ds−

S

w
T
pds−

B

H=A

w
T
HPH [1.109]

By equating to zero the first variation, and observing that, for the symmetry of E, it is δφ =
ETEδE = (EE)T δE, where δE = Dδw, equation [1.5], we have:

δΠ [w] =

S

(EE)T Dδwds−
S

δwT
pds−

B

H=A

δwT
HPH

=

S

δwT (D EE − p) ds+

B

H=A

δwT (D EE − P )
H

= 0 ∀δw
[1.110]

where we used the extended Green identity [1.8]. From equation [1.110], the balance equations
[1.18] follow.

If we linearize the strain–displacement relationship, by taking E = D0w, then, after
integration by parts, the equilibrium operators D0 and D0H appear, so that the balance
equations [1.20] of the linear theory are recovered.
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A One-Dimensional Beam Metamodel 37

1.6.3 Constrained beams
When internal constraints exist, of type εc = 0, the displacements w are no longer free,

but they have to satisfy auxiliary equations Ec (w,w) = 0, which restrict the space U of the
kinematically admissible displacements. To account for constraints, we can follow two different
strategies, already discussed with reference to the VPP approach, i.e.: (a) to use Lagrange
multipliers, according to the mixed formulation; and (b) to refer to master variables, identically
satisfying the constraints, according to the displacement formulation. We briefly illustrate both
the approaches.

The mixed formulation

By following the Lagrange multiplier technique, we modify the TPE functional
(equation [1.109]) by adding to it a zero-quantity, namely the auxiliary conditions multiplied
by unknown functions λ = λ (s)35; the modified TPE, therefore, reads:

Π̌ [w,λ] := Πu [w] +Πλ [w,λ] [1.111]

where Πu [w] is the TPE of the unconstrained beam when εc = 0, and Πλ [w,λ] the “work of
the Lagrange multipliers in the zero-strains”, namely:

Πu [w] :=
1

2
S

E
T
u w,w

EuuEu w,w ds−
S

w
T
pds−

B

H=A

w
T
HPH

Πλ [w,λ] :=

S

λ
T
Ec w,w ds

[1.112]

The variation of the first contribution, by remembering equation [1.110], is:

δΠu [w] =

S

δwT (DuEuuEu − p) ds+

B

H=A

δwT (D uEuuEu − P )
H

[1.113]

The variation of the second contribution, since δ λTEc = δλTEc + λT δEc, reads:

δΠλ [w,λ] =

S

δλT
Ec + λ

T
Dcδw ds

=

S

δλT
Ec + δwT

Dcλ ds+
B

H=A

δwT
Dcλ

H

[1.114]

35. The constrained problem “finds the function u (s) which makes the functional I [u (s)] :=
b

a
L (u (s) , u (s)) ds stationary, under the differential constraints fi (u (s) , u (s)) = 0, i =

1, . . . , n”, is equivalent to the unconstrained problem: “it finds the functions u (s) and λi (s)

that makes stationary the modified functional Ǐ [u (s) , λi (s)] :=
b

a
L (u (s) , u (s)) ds +

n
i=1

b

a
λi (s) fi (u (s) , u (s)) ds ”.
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38 Mathematical Models of Beams and Cables

having accounted for δEc = Dcδw and performed an integration by parts according to
equation [1.8].

The Variational principle finally reads:

δΠ̌ [w,λ] =

S

δwT (DuEuuEu +Dcλ− p) + δλT
Ec ds

+
B

H=A

δwT (D uEuuEu +Dcλ− P )
H

= 0 ∀ (δw, δλ)

[1.115]

from which the constrained elastic problem, equations [1.37] and [1.38], follows, with λ ≡ σc.

If we linearize the strain–displacement relationship, by taking Eu = D0uw, Ec = D0cw,
then, after integration by parts, the equilibrium operators D0u, D0c and D0uH , D0cH appear,
so that the balance equations [1.39] and [1.40] of the linear theory are recovered.

The displacement formulation

Instead of using Lagrange multipliers, we consider a TPE reduced to the unconstrained
contribution Πu [w] (equation [1.112a]), whose domain Um := {w|w ∈ U , w =
W (wm,w

m, . . .)} is a subset of U , where wm are master variables identically satisfying
the constraints, i.e. Ec W, ∂

∂s
W = 0, ∀wm. Therefore, the TPE is sided by constraints as

follows:

Πu [w] :=
1

2
S

E
T
u w,w

EuuEu w,w ds−
S

w
T
pds−

B

H=A

w
T
HPH

w = W wm,w
m, . . .

[1.116]

Constraints [1.116b] could be easily accounted for by direct substitution in equation [1.116a],
by leading to a new functional Πu [wm] := Πu [W (wm,w

m, . . .)] in which wm are free
variables. However, we find it more convenient first to perform the variation δΠu [w] (already
performed in equation [1.113]) and then to substitute the constraints, both in the arguments
(e.g. Eu = Eu W (wm,w

m, . . .) , ∂
∂s

W (wm,w
m, . . .) ), and in the variation, i.e. δw =

Aδwm (having used equation [1.43], multiplied by dt). In so doing, we obtain:

δΠu [wm] =

S

(DuEuuEu − p)
T
(Aδwm) ds

+
B

H=A

(Aδwm)T (D uEuuEu − P )
H

= 0 ∀δwm

[1.117]

However, this is just equation [1.50], with the active stresses expressed in terms of strains.
Therefore, by performing similar steps, the Fundamental Problem equations [1.56], [1.57] are
recovered.
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A One-Dimensional Beam Metamodel 39

If we linearize kinematics, by taking Eu = D0uw, A = A0 = (Im,A0s)
T , then,

after integration by parts, the operators D0u,A0 and D0H ,A0H appear, so that the balance
equations [1.59] of the linear theory are recovered.

1.6.4 Unconstrained prestressed beams
When preloads and prestresses act on the beam, the TPE [1.102] must accordingly be

modified. By remembering expression [1.66] of the elastic potential and considering total dead
loads, we have:

Π [w; σ̊] := Π [w] + Π̊ [w; σ̊] [1.118]

where Π [w] is the TPE of the unprestressed beam (equation [1.109], with incremental loads
p̃, P̃H replacing p,PH ), and:

Π̊ [w; σ̊] :=

S

σ̊
T
E w,w ds−

S

w
T
p̊ds−

B

H=A

w
T
HP̊H [1.119]

is the contribution of prestresses and preloads. δ σ̊TE = σ̊TDδw, we have, after integration
by parts:

δΠ̊ [w; σ̊] :=

S

δwT (D σ̊ − p̊) ds+
B

H=A

δwT
D σ̊ − P̊

H
[1.120]

The Variational principle δΠ [w] + δΠ̊ [w; σ̊] = 0 then leads to the balance equations [1.69],
where the elastic and incremental load terms spring from the first contribution (see
equation [1.110]), and prestress and preload terms stem from the second.

The linearized theory

The variational formulation is often followed in literature in the context of the linearized
theory of prestressed beams (under conservative loads). The main idea of the method consists of
assuming a quadratic polynomial expression for the TPE, in order to get equilibrium equations
linear in the displacements (given that the variation entails a lowering of 1 in the polynomial
degree). Therefore, we write the strains by series expansions, as the sum of linear and quadratic
contributions in the displacements, namely:

E = E
(1)

w,w + E
(2)

w,w + h.o.t. [1.121]

and, moreover, we assume the preloads as O(1)-quantities and the incremental load as O(w)-
quantities. Hence, the TPE [1.118] reads as:

Π [w; σ̊] = Π(1) [w; σ̊] +Π(2) [w; σ̊] + h.o.t. [1.122]
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40 Mathematical Models of Beams and Cables

where, by omitting the arguments:

Π(1) [w; σ̊] :=

S

σ̊
T
E

(1)ds−
S

w
T
p̊ds−

B

H=A

w
T
HP̊H

Π(2) [w; σ̊] :=

S

1

2
E

(1)T
EE

(1) + σ̊
T
E

(2) ds−
S

w
T
p̃ds−

B

H=A

w
T
HP̃H

[1.123]

are first- and second-order terms, respectively. However, we observe that
δΠ(1) [w; σ̊] = 0 ∀δw, since it expresses the total virtual work spent by the equilibrated
prestresses and preloads, acting in the reference configuration, in the kinematically admissible
infinitesimal strains E(1) and infinitely small displacements w. Hence, the first-order term of
the potential energy is not essential, and we can assume, after truncation,
Π [w; σ̊] ≡ Π(2) [w; σ̊].

The first- and second-order parts of the strain components read:

E (1)
i :=

∂Ei

∂w

T

0

w +
∂Ei

∂w

T

0

w


E (2)
i :=

1

2
w

T
Aiw + 2wT

Biw
 +w

T
Ciw


[1.124]

where we used the positions [1.77]. When the variational principle δΠ(2) = 0, ∀δw is
invoked, the first, third and fourth addenda in equation [1.123b] lead, after straightforward
(and therefore omitted) calculations, to the familiar terms of the linear theory of the stress-free
beam. In contrast, we focus the attention on the second term, whose variation reads:

δ

S

σ̊
T
E

(2)ds =

M

i=1 S

σ̊iδE (2)
i ds

=

M

i=1 S

σ̊i δwT
Aiw + δwT

Biw
 +w

T
Biδw

 + δwT
Ciw

 ds

=

M

i=1 S

δwT
Aiw +Biw

 σ̊i − B
T
i wσ̊i +Ciw

σ̊i


ds+

+ δwT
B

T
i wσ̊i +Ciw

σ̊i

B

A

[1.125]

where we accounted for the symmetry of Ai,Ci and integrated by parts. By remembering
equations [1.78] and [1.81], we can write:

δ

S

σ̊
T
E

(2)ds =

S

δwT
Gwds+

B

H=A

δwT
Gw

H
[1.126]

to within, of course, the effects of the follower preloads, absent here. Therefore, the variational
principle leads to balance equation [1.72].

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A One-Dimensional Beam Metamodel 41

REMARK 1.10. The two contributions under the integral sign in Π(2) represent, in order: (a)
the elastic potential of a stress-free beam, when kinematics is linearized; and (b) the work spent
by the prestress in the second-order part of the strain–displacement relationship. While the first
term behaves as the progenitor of the linear elastic stiffnesses L and LH , the second term is the
progenitor of the geometric stiffnesses G and GH .

1.6.5 Constrained prestressed beams
The nonlinear mixed formulation

We already introduced in equation [1.112] a modified TPE Π̌ [w,λ] for unprestressed
beams, able to account for the constraints Ec (w,w) = 0 via the Lagrange multipliers. Now,
we just have to update the expression of the elastic potential to include the contribution of
prestress, and to add the potential of the preloads, as we did in equation [1.118]. Therefore, we
have:

Π̌ [w,λ; σ̊u] := Πu [w] +Πλ [w,λ] + Π̊ [w; σ̊u] [1.127]

where Πu [w] is the TPE of the unconstrained beam when εc = 0 (equation [1.112a),
Πλ [w,λ] is the work of the Lagrange multipliers on the constrained zero-strains
(equation [1.112b]), and the additional term is36:

Π̊ [w; σ̊u] :=

S

σ̊
T
uEu w,w ds−

S

w
T
p̊ds−

B

H=A

w
T
HP̊H [1.128]

The variations of the first two contributions are given by equations [1.113] and [1.114]; the
variation of the third contribution is:

δΠ̊ [w; σ̊] :=

S

δwT (Duσ̊u − p̊) ds+
B

H=A

δwT
D uσ̊u − P̊

H
[1.129]

Hence, the variational principle reads:

δΠ̌ [w,λ; σ̊u] =

S

δwT (DuEuuEu − p̃) ds+
B

H=A

δwT
DuEuuEu − P̃

H

+

S

δwT (Duσ̊u +Dcλ− p̊) + δλT
Ec ds+

+
B

H=A

δwT
Duσ̊u +Dcλ− P̊

H
= 0 ∀ (δw, δλ)

[1.130]

From the latter, the boundary value problems [1.87] and [1.88] follow, if λ := σ̊c+σ̃c is taken.

36. This is analogous to that in equation [1.119], relevant to the unconstrained beam, but it is
limited to the admissible strains.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 Mathematical Models of Beams and Cables

The linearized mixed formulation

According to the linearized theory, we have to retain in equation [1.127] the second-order
terms only. Since λ = σ̊c+σ̃c is a sum of a zero-th order and a first-order term, then λTE

(2)
c =

σ̊T
c E

(2)
c + σ̃T

c E
(1)
c + h.o.t.; therefore37:

Π̌(2) [w, σ̃c; σ̊] :=

S

E
(1)T
u (w,w)EuuE

(1)
u (w,w)ds

−
S

w
T
p̃ds−

B

H=A

w
T
HP̃H +

S

σ̊
T
E

(2) + σ̃cD0cw ds

[1.131]

where we accounted for E(1)
c = D0cw and we merged two terms.

The variational principle, by remembering equations [1.126], therefore reads:

δΠ̌(2) [w, σ̃c; σ̊] =

S

δwT (Luw − p̃) ds+
B

H=A

δwT
Luw − P̃

H

+

S

δwT
Gwds+

B

H=A

δwT
Gw

H

+

S

δσ̃T
c Ec + δwT

D0cσ̃c ds+
B

H=A

δwT
HD0cH σ̃c ∀ (δw, δσ̃c)

[1.132]

from which equations [1.89] and [1.90] are recovered, together with the constraint equation.

The nonlinear displacement formulation

We write the TPE Πu [w] with the geometrical constraint appended, as we did for the
unprestressed beam (equation [1.116]), but we add the prestress contribution Π̊ [w; σ̊]
(equation [1.128]):

Π [w; σ̊] :=Πu [w] + Π̊ [w; σ̊]

w =W wm,w
m, . . .

[1.133]

37. Note that the free variables are now w, σ̃c.
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A One-Dimensional Beam Metamodel 43

By following the same steps of the unprestressed case, we perform the variation, substitute
δEu = Duδw and integrate by parts, to obtain:

δΠ [w; σ̊] =

S

δwT (DuEuuEu − p̃) ds+

B

H=A

δwT
DuEuuEu − P̃

H

+

S

δwT (Duσ̊u − p̊) ds+

B

H=A

δwT
Duσ̊u − P̊

H
= 0 ∀δw = Aδwm

[1.134]

Then, we substitute the constraint, both in the arguments and in the variation
(i.e. δw = A (wm,w

m) δwm), thus obtaining:

δΠ [wm; σ̊] =

S

((DuEuuEu − p̃) + (Duσ̊u − p̊))
T
(Aδwm) ds

+

B

H=A

(Aδwm)T D uEuuEu + D uσ̊u − P̊
H

= 0 ∀δwm

[1.135]

By integrating by parts with the aid of equation [1.51], equation [1.95] is recovered, with the
boundary conditions [1.96].

The linearized displacement formulation

When the TPE [1.133a] is truncated at the second order, and the constraint [1.133b] is
linearized, they become:

Π(2) [w; σ̊u] : =

S

E
(1)T
u (w,w)EuuEu(w,w)ds

−
S

w
T
p̃ds−

B

H=A

w
T
HP̃H +

S

σ̊
T
uE

(2)
u w,w ds

w = A0wm

[1.136]

The variational principle reads:

δΠ(2) [w; σ̊u] =

S

δwT (Luw − p̃) ds+

B

H=A

δwT
Luw − P̃

H

+

S

δwT
Guwds+

B

H=A

δwT
Guw

H
= 0 ∀δw = A0δwm

[1.137]
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44 Mathematical Models of Beams and Cables

where, concerning the geometric term, we used equation [1.126] and exploited similarity
between the definitions [1.78], [1.81] for G, GH , and definitions [1.101] for Gu, GuH .

By substituting the constraint, namely w = A0wm, δw = A0δwm, we obtain:

S

(A0δwm)T ((Lu +Gu) (A0wm)− p̃) ds

+
B

H=A

(A0δwm)T (Lu + Gu) (A0wm)− P̃
H

= 0 ∀δwm

[1.138]

Then, by integrating by parts (with the help of the linearized version of equation [1.51], i.e. for
A replaced by A0), and by splitting the boundary terms into master and slave contributions,
i.e. by letting A0 = (Im,A0s)

T , we get:

S

δwT
mA0 ((Lu +Gu) (A0wm)− p̃) ds

+
B

H=A

δwT
mA0 ((Lu +Gu) (A0wm)− p̃)

H

+

B

H=A

δwT
m (Lum + Gum) (A0wm)− P̃m

H

+
B

H=A

(A0sδwm)T (Lus + Gus) (A0wm)− P̃ s
H

= 0 ∀δwm

[1.139]

From this form, the field equations [1.99] and the boundary conditions [1.100] follow.

1.7 Example: the linear Timoshenko beam
Let us consider the unconstrained linear model of the Timoshenko beam, undergoing

transverse displacements and rotations only, governed by the following equations:

γ
κ

=
u − θ
θ

,
−∂s 0
−1 −∂s

T
M

=
p
c

,

T
M

=
GAt 0
0 EJ

γ
κ

[1.140]

with the boundary conditions (a geometrical one excludes the dual mechanical):

uH

θH
=

ŭH

θ̆H
,

1 0
0 1

TH

MH
=

PH

CH
, H = A,B [1.141]

The previous equations are, in order: the (infinitesimal) strain–displacement relationships; the
equilibrium equations (in the reference configuration); and the elastic law. Here,
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A One-Dimensional Beam Metamodel 45

ε = (γ, κ)T are generalized strains, shear–strain and curvature, respectively; w = (u, θ)T are
generalized displacements, transverse displacement and rotation, respectively; σ = (T,M)T

are generalized stresses, shear–force and bending moment, respectively; p = (p, c)T are
external forces, transverse and couples; and GAt, EJ are elastic stiffnesses. Moreover,

w̆H = ŭH , θ̆H
T

are prescribed displacements/rotations and PH = (PH , CH)T are

prescribed forces/couples at ends. The minus/plus identity matrices are the boundary
equilibrium operator DH . The strain-rate-velocity relationships read:

γ̇
κ̇

=
∂s −1
0 ∂s

u̇

θ̇
[1.142]

which defines the operator D ≡ D0, adjoint of the equilibrium operator D ≡ D0 appearing
in equation [1.140b].

For this model, we want to enforce the constraint condition γ = 0 (unshearable beam) and
derive the displacement formulation (Euler–Bernoulli beam). Then, we want to find the reactive
stress T .

The admissible strain is κ, the constrained strain is γ; consistently, T is the reactive stress
and M is the active stress. In the constraint equation u − θ = 0, we chose the
non-differentiated variable θ as slave variable and, consequently, u as master variable.
Accordingly, Du = (0, ∂s) , Dc = (∂s,−1) and Du = (0,−∂s)

T , Dc = (−∂s,−1)T .
From the constraint, we get θ = u, and therefore W = (u, u)T (equation [1.42]); by
time-differentiating it, we obtain (equation [1.43]):

u̇

θ̇
=

1
∂s

u̇ [1.143]

which defines the velocity constraint operator A := (1, ∂s)
T . Note that DcA = ∂s − ∂s = 0.

The condensed strain–displacement relationships [1.45] and the condensed
strain-rate-velocities [1.47], read:

κ = u 
, κ̇ = (0, ∂s)

1
∂s

u̇ = u̇ [1.144]

while the geometric boundary conditions [1.46] are:

uH

u
H

=
ŭH

θ̆H
[1.145]

To build up the extended Green identity for the velocity constraint operator, equation [1.51],
we take a dummy vector pc = (pc, cc)

T , perform the scalar product pT
c Aẇm = pcu̇+ ccu̇

,
and integrate by parts over S to free the velocities from the space-derivatives, thus obtaining:

S

pcu̇+ ccu̇
 ds =

S

u̇ pc − cc ds+ [u̇cc]
B
A [1.146]
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46 Mathematical Models of Beams and Cables

Therefore, the equilibrium condensation operators are (check equations [1.52]):

A = 1 −∂s , AA = 0, −1 , AB = 0, 1 [1.147]

Note that A Dc = −∂s + ∂s = 0.

To condense the equilibrium equations, we could use the previous operators directly in
equations [1.54] and [1.55]. However, for illustrative purposes, we restart the whole procedure.
First, we write the VPP in the form [1.48], by using κ̇ = θ̇:

Mθ̇ds =

S

pu̇+ cθ̇ ds+ PAu̇A + PBu̇B + CAθ̇A + CB θ̇B

∀ u̇, θ̇ |θ̇ = u̇
[1.148]

Note that the constraint has not been substituted, yet! Then, we perform a first integration by
parts:

S

−pu̇− M  + c θ̇ ds− PAu̇A − PB u̇B

− (MA + CA) θ̇A − (−MB + CB) θ̇B = 0 ∀ u̇, θ̇ |θ̇ = u̇
[1.149]

Only after that, we substitute the constraint:

S

−pu̇− M  + c u̇ ds− PAu̇A − PB u̇B

− (MA + CA) u̇

A − (−MB +CB) u̇

B = 0 ∀u̇
[1.150]

This equation is in the form of equation [1.50], where the first two boundary terms refer to the
master variable, and the last two to the slave variable, expressed in terms of the master one. A
second integration by parts leads to:

S

−p+ (M  + c) u̇ds− (M  + c)u̇
B

A
− PAu̇A − PB u̇B

− (MA + CA) u̇

A − (−MB +CB) u̇

B = 0 ∀u̇
[1.151]

Because of the arbitrariness of u̇, we get:

M  = p− c

(M 
A + cA − PA)u̇A = 0, (−MA − CA) u̇


A = 0

(−M 
B − cB − PB)u̇B = 0, (MB −CB) u̇

B = 0

[1.152]

Therefore, the couple density c contributes to the translational equilibrium, in the field and at
the boundaries (i.e. they enter the “master part” of the equation, not the “slave part”, as stated
by equations [1.56] and [1.96]).
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A One-Dimensional Beam Metamodel 47

If, e.g., the beam is clamped at A (u̇A = 0, u̇
A = 0) and free at B (u̇B = 0, u̇

B = 0), the
mechanical conditions are − (M 

B + cB + PB) = 0, MB −CB = 0. By using kinematics and
the elastic law, we have M = EJu, from which:

EJu = p− c

uA = ŭA, u
A = θ̆A

− EIu
B + cB + PB = 0, EJu

B − CB = 0

[1.153]

Once the problem has been solved, the field balance equation [1.140b] read as equations [1.61a]:

T  = −p

T = −c−EJu [1.154]

These are not independent, because of [1.153a]. From either of them, the reactive stress T is
drawn.

1.8 Summary

In this chapter, we formulated a 1D beam metamodel, i.e. an ensemble of property
and rules that each specific model, to be developed in the following chapters, must
obey. It calls for analyzing: (a) kinematics, (b) dynamics, and (c) rheology of the
model.

We started, in section 1.2, analyzing internally unconstrained beams, by defining
column-vectors of unknown generalized displacements, strains and stresses, and
known generalized field forces and boundary forces (generally non-conservative), as
well as boundary displacements. We separately addressed kinematics, dynamics and
rheology.

Concerning kinematics, we first discussed locally rigid/non-rigid beams, as 1D
bodies not-endowed/endowed with kinematic descriptors able to account for the
“change of shape” of the point (typically the deformation of the underlying
cross-section). We introduced nonlinear strain–displacement relationships, whose
time-differentiation led to linear strain-rate-velocity relationships, which define the
(differential) kinematic operator. Since this is configuration dependent, it differs
from that of the linear theory, which is evaluated at the reference configuration.
Differential relationships are sided by algebraic geometric boundary conditions,
prescribing displacements at the ends of the beam.

Concerning dynamics, we derived balance (or equilibrium) equations, and
mechanical (or natural) boundary conditions, via VPP. This states that an equality
must hold between the powers spent by forces on virtual velocities, on one side, and
stresses on virtual strain-rates, on the other side, when arbitrary strain-rates and
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48 Mathematical Models of Beams and Cables

velocities are assigned to the body, provided they are respectful of the kinematic
constraints. The VPP provides differential balance equations, governed by an
equilibrium operator, and algebraic boundary conditions, both linear in the stresses
(but nonlinear in the displacements). The VPP can also be read as an extended Green
identity, which states that the equilibrium operator is the adjoint of the kinematic
operator, and that mechanical boundary conditions are the adjoint of the geometrical
boundary conditions. Such a property is known as duality property; differently from
the linear theory, this holds in the current (not in the reference!) configuration, to
which the virtual motion is superimposed. If the beam is locally rigid, the balance
equations can also be interpreted (or alternatively derived) as the cardinal equation of
motion (or equilibrium) of an infinitesimal segment of the beam, and the mechanical
boundary conditions as the equality of the emerging stresses to the forces applied to
the boundary.

Concerning rheology, we limited ourselves to hyperelastic materials (often called
although improperly, elastic), for which stresses at a point at an instant not only
depend on strains at the same point at the same instant, as occurs for simply elastic
materials, but, moreover, the stresses spend a deformation work over the strains,
which is independent of the strain-path. Therefore, hyperelasticity is synonymous of
conservativeness (i.e. lack of dissipation) of the material. It entails the existence of an
elastic potential, function of the strains, from which stresses are derived by
differentiation. Here, linear hyperelastic materials were considered only, for which
stresses and strains are proportional, by the way of an elastic matrix.

The equations of the problem were combined according to the displacement
method, which consists of expressing the balance equations in terms of the
displacements only, which are therefore the main unknown of the problem.
Linearization of these equations around the reference configuration supplies the
familiar (tangent) stiffness operators (in the domain and at the boundary) of the
linear theory.

In section 1.3 we considered internally constrained beams, in which one or more
of the strains are prescribed to identically vanish along the beam. The constraints call
for splitting the generalized strain vector into an unconstrained (or admissible) part,
collecting the non-zero strains, and a constrained part, collecting the vanishing
strains. Accordingly, the generalized stress vector was split ino the active part, and a
(maybe, partially) reactive part, concerning the stresses spending power on the
admissible and constrained strains, respectively. Because of the reactive character of
part of the stresses, the elastic law only involves active stresses and admissible
strains. The equations of the constrained problem were combined according to two
different philosophies: (a) the mixed formulation, in which displacements and
reactive stresses were assumed as the main variables; and (b) the displacement
formulation, in which the equations were further manipulated to eliminate reactive
stresses.
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A One-Dimensional Beam Metamodel 49

In the mixed formulation, the VPP must account for the prescribed internal
constraints. These are introduced by the Lagrange multipliers technique, which, in
the case studied here, just assumes the physical meaning of reactive stresses. The
balance equations supplied by the VPP contain active as well reactive stresses, only
the former being expressible in terms of displacements via the elastic law and the
unconstrained strain–displacement relationships. The increased number of
unknowns, however, is balanced by the nonlinear constraint relationships (i.e. the
conditions of vanishing of the restrained strains), which must be appended to the
balance equations.

The task of the displacement formulation consists of eliminating the reactive
stresses from the equation of motion, and, moreover, to express them in terms of a
reduced set of free displacement variables, able to describe the most general
configuration of the body compatible with the constraints. The goal is similar to that
of the analytical mechanics, in which we want to write the Lagrange equations of
motion in terms of Lagrange parameters only. To this end, the constraint equations
are solved (when possible, and maybe by a perturbation method) to express a set of
slave variables as function of the remaining master (or free) variables. The
relationship linking all displacements to the master displacements is called the
constraint for displacements. By using it, the (active) strain–displacement
relationships and the geometric boundary conditions are expressed in terms of master
variables only, this operation being referred to as the condensation of the kinematic
equations. When the constraints for displacements are time-differentiated, linear
constraints for velocities are obtained (although nonlinear in the displacements, since
referred to the current configuration). These relationships define a (differential)
velocity constraint operator, which plays an important role in the formulation. To
filter reactive stresses, we used the VPP, in which the velocity constraints were
directly substituted (and not accounted for via Lagrange multipliers, as done in the
mixed formulation!). The procedure leads to balance equations which are linear
combinations of the original equation, able to automatically filter the reactive
stresses. The linear operator acting on them is called the equilibrium condensation
operator, which turns out to be the adjoint of the velocity constraint operator. When
we combine the condensed kinematic and equilibrium equations, and we make use of
the elastic law, final equilibrium equations, pure in the master variables, are obtained.
Reactive stresses, if of interest, can be derived after having solved the elastic
problem, by resorting to the non-condensed balance equations. Although they appear
in an over-determined form, they can be solved, since the relevant compatibility
condition is satisfied by the VPP itself!

In sections 1.4 and 1.5, we studied prestressed beams. These are bodies subjected
to time-independent preloads which bring the beam into a prestressed configuration,
which is taken as reference configuration, in place of the natural one. After that,
incremental loads, possibly time-dependent, act on the beam, by bringing it into the
current configuration. The main difference with the formulation of the stress-free
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50 Mathematical Models of Beams and Cables

beams relies on the elastic law, which becomes linear but non-homogeneous, to
account for prestresses when the incremental strains are zero. To simplify the
analysis, prestrains are usually neglected, i.e. the beam is assumed to undergo a
prestress by keeping its original geometry. For these beams the linear approximation
(according to the linearized theory) is of remarkable importance in the technical
applications, since it allows us to solve important problems such as: to find the
critical value of the load in buckling problems; to evaluate the eigenfrequencies of
strings and cables; to determine the response of prestressed beam/cables to small
incremental loads, and/or imperfections; i.e. solving linear problems in which,
however, the geometric stiffness, related to the prestress, plays a non-negligible role.
If the beam is internally unconstrained, the prestress simply adds an extra-term to the
nonlinear equilibrium equation, with respect to the unprestressed case. If, in contrast,
the beam is internally constrained, we have to distinguish: (a) in the mixed
formulation, the incremental reactive stress also appears among the unknowns, while
the prestress contributes to the stiffness of the beam; and (b) in the displacement
formulation, all the reactive stresses, pre-existing and incremental, are filtered, so that
only the active prestress appears in the stiffness.

In closing the chapter, all the previous models were reformulated by an
alternative approach, the variational formulation. This consists of enforcing the
stationary condition of the TPE functional, over the domain of the admissible
displacements. Internal constraints can also be taken into account by introducing
Lagrange multipliers. The approach only requires analyzing kinematics and
elasticity, and furnishes the balance equations directly in terms of displacements,
and, possibly, reactive stresses. As a drawback, it can only be used for conservative
forces. Remarkably, its varied form is just the virtual work principle, which in
contrast holds for any type of force. The linearized theory also admits a variational
formulation, when the forces are conservative, in which only the second-order part of
the TPE is retained. In particular, the geometric stiffness comes out of the work spent
by the prestresses in the second-order part of the strains.

Tables 1.1 and 1.2 summarize the main results of the analysis carried out in the
chapter. They report the solving equations for (a) the nonlinear Fundamental Problem,
(b) for the linear/linearized problem, and (c) the relevant expressions for the TPE,
for all cases examined: unconstrained/constrained, unprestressed/prestressed beams
and, when appropriated, mixed/displacement formulations. The tables make it easy
to compare formulas, and to appreciate the contributions of reactive stresses and/or
prestresses.
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A One-Dimensional Beam Metamodel 51

Unconstrained & Unprestressed beams
Nonlinear Problem Linear Problem

D w,w EE w,w = p

D
H w,w EEH w,w = PH

wH = w̆H

Lw = p0

LHw = P 0H

where: L := D
0ED0, LH := D

0HED0H

Constrained & Unprestressed beams: Mixed Formulation
Nonlinear Problem Linear Problem

D
uEuuEu + D

cσc = p

Ec w,w = 0

D
uHEuuEuH + D

cHσc = PH

wH = w̆H

Lu D
0c

D0c 0

w

σc
=

p0

0

LuHw + D
0cHσc = P 0H

wH = w̆H

where: Lu := D
0uEuuD0u, LuH := [D

0uEuuD0u]H

Constrained & Unprestressed beams: Displacement Formulation
Nonlinear Problem Linear Problem

AD
uEuuEu = Ap

[AD
uEuuEu + D

umEuuEu]H = [Pm + Ap]H

[D
usEuuEu]H = [P s]H

wmH = w̆mH , WsH wm,w
m, . . . = w̆sH

A
0LuA0wm = A

0p0

[A
0LuA0 + LumA0]H wm = [P 0m + A

0p0]H

[LusA0]H wm = [P 0s]H

wmH = w̆mH , [A0swm]H = w̆sH

where: Lu := D
0uEuuD0u, LumH := [D

0umEuuD0u]H

LusH := [D
0usEuuD0u]H

Unconstrained & Prestressed beams
Nonlinear Problem Linearized Problem

DEE + (Dσ̊ − p̊) = p̃

D

HEEH + D


H σ̊ − P̊H = P̃H

wH = w̆H

Lw + Gw = p̃0

LHw + GHw = P̃ 0

wH = w̆H

where: L := D
0ED0, LH := D

0HED0H

G :=
∂(Dσ̊)

∂w
0

+
∂(Dσ̊)

∂w
0

∂
∂s − ∂p̊

∂w
0

GH :=
∂(D

H σ̊)
∂w

0

+
∂(D

H σ̊)
∂w

0

∂
∂s − ∂P̊H

∂w
0

Table 1.1: The Fundamental Problem: nonlinear and linear/linearized equations
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52 Mathematical Models of Beams and Cables

Constrained & Prestressed beams: Mixed Formulation
Nonlinear Problem Linearized Problem

D
uEuuEu + D

c σ̃c + (Dσ̊ − p̊) = p̃

Ec w,w = 0

D
uHEuuEuH + D

cH σ̃c + D
H σ̊ − P̊H = P̃H

wH = w̆H

Lu D
0c

D0c 0
+

G 0

0 0

w

σ̃c
=

p̃0

0

LuHw + GHw + D
0cH σ̃c = P̃ 0H

wH = w̆H

where: Lu := D
0uEuuD0u,

LuH := [D
0uEuuD0u]H

G :=
∂(Dσ̊)

∂w
0

+
∂(Dσ̊)

∂w
0

∂
∂s − ∂p̊

∂w
0

GH :=
∂(D

H σ̊)
∂w

0

+
∂(D

H σ̊)
∂w

0

∂
∂s − ∂P̊H

∂w
0

Constrained & Prestressed beams: Displacement Formulation
Nonlinear Problem Linearized Problem

AD
uEuuEu + A (D

uσ̊u − p̊) = Ap̃

AD
uEuuEu + D

umEuuEu + A (D
uσ̊u − p̊)

+ D
umσ̊u − P̊m

H
= P̃m + Ap̃

H

D
usEuuEu + D

usσ̊u − P̊ s
H

= P̃ s
H

wmH = w̆mH , WsH wm,w
m, . . . = w̆sH

A
0LuA0wm + A

0GuA0wm = A
0 p̃0

[A
0LuA0 + LumA0 + A

0GuA0 + GumA0]H wm

= P̃ 0m + A
0p̃0

H

[LusA0 + GusA0]H wm = P̃ 0s
H

wmH = w̆mH , [A0swm]H = w̆sH

where: Lu := D
0uEuuD0u,

LumH := [D
0umEuuD0u]H

LusH := [D
0usEuuD0u]H

Gu :=
∂(D

uσ̊u)
∂w

0

+
∂(D

uσ̊u)
∂w

0

∂
∂s − ∂p̊

∂w
0

GuH :=
∂(D

uH σ̊u)
∂w

0

+
∂(D

uH σ̊u)
∂w

0

∂
∂s

− ∂P̊H
∂w

0
+ . . .

Table 1.1: (Continued) The Fundamental Problem: nonlinear and linear/linearized equations
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A One-Dimensional Beam Metamodel 53

Unconstrained & Unprestressed beams
Nonlinear Problem Linear Problem

Π [w] := 1
2 S ET w,w EE w,w ds

− S wTpds − B
H=A wT

HPH

Π [w] := 1
2 S E(1)T w,w EE(1) w,w ds

− S wTpds − B
H=A wT

HPH

where: E(1) = D0w

Constrained & Unprestressed beams: Mixed Formulation
Nonlinear Problem Linear Problem

Π̌ [w,λ] := 1
2 S ET

u w,w EuuEu w,w ds

− S wTpds − B
H=A wT

HPH + S λTEc w,w ds

Π̌ [w,λ] := 1
2 S E(1)T

u w,w EuuE
(1)
u w,w ds

− S wTpds − B
H=A wT

HPH + S λTE(1)
c w,w ds

where: E(1)
u = D0uw, E(1)

c = D0cw

Constrained & Unprestressed beams: Displacement Formulation
Nonlinear Problem Linear Problem

Πu [w] := 1
2 S E

T
u w,w EuuEu w,w ds

− S wTpds − B
H=A wT

HPH

w = W wm,w
m, . . .

Πu [w] := 1
2 S E

(1)T
u w,w EuuE

(1)
u w,w ds

− S wTpds − B
H=A wT

HPH , w = A0wm

where: E(1)
u = D0uw

Unconstrained & Prestressed beams
Nonlinear Problem Linearized Problem

Π [w; σ̊] := 1
2 S ET w,w EE w,w ds

− S wTpds − B
H=A wT

HPH + S σ̊TE w,w ds

− S wT p̊ds − B
H=A wT

HP̊H

Π(2) [w; σ̊] := S
1
2E

(1)TEE(1) + σ̊TE(2) ds

− S wT p̃ds − B
H=A wT

HP̃H

Table 1.2: The Variational formulation: the EPT functional for nonlinear and linear/linearized
theories
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54 Mathematical Models of Beams and Cables

Constrained & Prestressed beams: Mixed Formulation
Nonlinear Problem Linearized Problem

Π̌ [w,λ; σ̊u] :=
1
2 S ET

u w,w EuuEu w,w ds

− S wTpds − B
H=A wT

HPH + S λTEc w,w ds

+ S σ̊T
uEu w,w ds − S wT p̊ds

− B
H=A wT

H P̊H

Π̌(2) [w, σ̃c; σ̊] := S E(1)T
u (w,w)EuuE

(1)
u (w,w)ds

− S wT p̃ds − B
H=A wT

HP̃H

+ S σ̊TE(2) + σ̃cE
(1)
c ds

Constrained & Prestressed beams: Displacement Formulation
Nonlinear Problem Linearized Problem

Π [w; σ̊] := 1
2 S ET

u w,w EuuEu w,w ds

− S wTpds − B
H=A wT

HPH

+ S σ̊T
uEu w,w ds − S wT p̊ds − B

H=A wT
H P̊H

w = W wm,w
m, . . .

Π(2) [w; σ̊u] := S E(1)T
u (w,w)EuuEu(w,w)ds

− S wT p̃ds − B
H=A wT

HP̃H + S σ̊T
uE

(2)
u w,w ds

w = A0wm

Table 1.2: (Continued) The Variational formulation: the EPT functional for nonlinear and linear/
linearized theories
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Chapter 2

Straight Beams

We consider a straight beam embedded in a three-dimensional (3D)-space,
modeled as a one-dimensional (1D) polar continuum. The kinematics of the beam is
first analyzed, by introducing important concepts such as: translations and finite
rotations of the body-points; current and reference strains and curvatures; and
velocity, spin, velocity gradients and strain-rates. The dynamics of the beam is
successively addressed by first applying the Virtual Power Principle (VPP) as a tool
for introducing stresses and to provide balance equations and boundary conditions.
Then, the problem is approached in an alternate way, in which force-stress and
couple-stress acting at a body-point are defined, and then the principles of linear and
angular momentum are invoked. Several forms of the scalar balance equations are
discussed, namely, in the reference, in the current and in a non-orthogonal basis, the
latter naturally stemming from a Lagrangian approach. Constitutive laws are
successively formulated, both for hyperelastic and viscoelastic materials, by
accounting for possible prestress. An approximate nonlinear elastic law, accounting
for large twist, is derived. A brief sketch of homogenization problems is given for
beam-like structures. To sum up, all the basic equations are combined to formulate
the Fundamental Problem. Finally, the whole formulation is retraced and specialized
for the case of planar beams.

2.1 Kinematics

2.1.1 The displacement and rotation fields

Let us consider a prismatic straight beam embedded in a 3D environment space.
We define a centerline, or beam axis, as the geometrical locus of the centers of area,

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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56 Mathematical Models of Beams and Cables

or centroids P , of the cross-sections. We assume that the centerline is flexible, while
the cross-sections are rigid, and free to rotate around any axes passing through P .
Thus, the 3D-continuum is reduced to a flexible line and a collection of rigid planes
connected to it. This object is modeled as a 1D polar continuum, i.e. constituted by
body-points P endowed with orientation (also called “endowed with a local rigid
structure”), able to account for the attitude of the cross-sections (Figure 2.1).

ā1

ā2

ā3

s

A BP

S

(a)

a1

a2

a3Â

B̂

P̂

Ŝ

(b)

Figure 2.1: Straight beam in 3D and directors: (a) reference configuration; (b) current
configuration.

In the reference configuration, the beam axis is assumed to be straight, lying on a
segment S of the space, of extreme-points A,B (Figure 2.1(a)). An abscissa s ∈ [0, l]
is taken on it, with l as the initial beam-length. In the framework of the referential
description of motion, we assume s as a label that identifies the generic body-pointP ,
and consequently, we will indifferently use s or P to denote a material point. In this
configuration, the cross-sections are assumed to be orthogonal to the axis. To describe
their attitude, we rigidly apply three directors that form a right orthogonal basis B̄ :=
(ā1, ā2, ā3), in which ā1 is a unit vector normal to the section (and therefore tangent
to S), and ā2, ā3 are unit vectors lying in the plane of the section, freely chosen, but
independent of s.

Displacement and rotation

In the current configuration, occupied by the beam at the time t, the axis is no
longer straight, but lies on a (sufficiently smooth) curve Ŝ, whose regularity properties
will be determined later (Figure 2.1(b)). Let x̄(s) and x(s, t) be the positions of the
point P in the reference and current configurations, respectively, both measured with
respect to an arbitrary pole O (Figure 2.2). We define:

u := x(s, t) − x̄(s) [2.1]
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Straight Beams 57

to be the displacement of the point P at the time t. By introducing scalar components
in the basis B̄, we have1:

u := u1(s, t)ā1 + u2(s, t)ā2 + u3(s, t)ā3 [2.2]

In the current configuration, the triad of directors, solid with the cross-section,
forms a basis B := (a1(s, t), a2(s, t), a3(s, t)), which depends on s (in addition to t),
and where aj , j = 1, 2, 3, are the new directions of āj . The transformation leading āj
to match aj(s, t) is a rotation expressed by:

aj(s, t) = R(s, t)āj(s) [2.3]

where R(s, t) is a proper orthogonal rotation tensor, meaning that detR = 1 and
R−1 = RT , i.e.:

RRT = RTR = I [2.4]

The rotation depends on three scalar functions, θj(s, t), j = 1, 2, 3, as will be
discussed soon.

In summary, the displacement field u(s, t) describes the translation of the body-
points, and therefore determines the current shape Ŝ of the centerline; the rotation field
R(s, t) describes the cross-section attitudes. Therefore, any geometric transformation
undergone by the beam depends on a vector and a tensor field, or, equivalently, by six
scalar fields, uj(s, t), θj(s, t), j = 1, 2, 3, called the configuration variables.

ā1

ā2

ā3

a1
a2

a3u

x̄

x

R

O

S

Ŝ

Figure 2.2: Displacement and rotation fields.

1. As a general rule, we will denote by an overbar the components of a vector in B̄, and no
overbar for its components in B, for example ω = n

i=1 ω̄iāi = n
i=1 ωiai. However, to

simplify the notation, we will omit the overbar on the components of vectors, as u, that are
always evaluated in B̄.
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58 Mathematical Models of Beams and Cables

Building the rotation tensor

To build up the tensor R, we compose three successive elementary rotations
defined as follows (see Figure 2.3):

1) A rotation R3 of amplitude θ3, around ā3, which leads the basis B̄ := (āj) onto
the new basis B̌ := (ǎj) (with ǎ3 ≡ ā3).

2) A rotation R2 of amplitude θ2, around ǎ2, which leads the basis B̌ onto the new
basis B̃ := (ãj) (with ã2 ≡ ǎ2).

3) A rotation R1 of amplitude θ1, around ã1, which leads the basis B̃ onto the
current basis B := (aj) (with a1 ≡ ã1).

ā1

ā2

ā3 ≡ ǎ3

ã1 ≡ a1

a2

a3

ǎ1

ǎ2 ≡ ã2

ã3

θ1
θ1

θ1

θ2

θ2

θ2

θ3

θ3

θ3

Figure 2.3: Composition of elementary rotations.

Therefore:

R = R1R2R3 [2.5]
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Straight Beams 59

By evaluating the components of R in the basis B̄, the following matrix is found:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ2 cos θ3 sin θ1 sin θ2 cos θ3 cos θ1 sin θ2 cos θ3
− cos θ1 sin θ3 +sin θ1 sin θ3

cos θ2 sin θ3 sin θ1 sin θ2 sin θ3 cos θ1 sin θ2 sin θ3
+cos θ1 cos θ3 − sin θ1 cos θ3

− sin θ2 sin θ1 cos θ2 cos θ1 cos θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[2.6]

that will be referred to as the rotation matrix; it collects, column-wise, the components
of aj onto B̄. The three elementary rotations are measured by the angles θi, also called
the Tait–Bryan (or Cardan) angles2.

To evaluate the matrix R̄ that collects the components of the tensor R in B̄, we need the
components of the elementary rotations R̄i in the same basis, i.e. R̄ = R̄1R̄2R̄3. However,
R3,R2,R1 are more easily expressed in the bases B̄, B̌, B̃, respectively, in which they assume
the simple forms:

R̄3 :=

cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1

 , Ř2 :=

 cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2


R̃1 :=

1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1


[2.7]

On the other hand, we observe that R̄3 is also the matrix of the change of basis from B̄ to
B̌ (since it collects the components of the unit vectors of B̌ in B̄), and, therefore, R̄−1

3 ≡
R̄

T
3 is the matrix of the reverse change of basis; hence, R̄2 = R̄3Ř2R̄

T
3 . Similarly, R̄1 =

R̄3Ř2 R̃1 R̄3Ř2
T

. In conclusion:

R̄ = R̄3Ř2 R̃1 R̄3Ř2
T

R̄3Ř2R̄
T
3 R̄3

= R̄3Ř2R̃1

[2.8]

By performing the matrix multiplications, and omitting the overbar, we finally obtain equation
[2.6].

REMARK 2.1. It is interesting to note that any rotation R has the same components
in the start and end bases. For example [R]B̄ ≡ [R]B; as a matter of fact, by virtue of

2. Sometimes, Tait–Bryan or Cardan angles are called Euler angles. Nevertheless, rigorously,
Tait–Bryan angles act around axes descending from three different axes (e.g. as in the
considered case, the rotations act around ā3, ǎ2, ã1, which descend from the three axes
ā3, ā2, ā1, respectively), while Euler angles act around axes descending from two different axes
(an example would be if the rotation were built by means of three angles, around ā3, ǎ2, ã3,
descending just from ā3, ā2, respectively).
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60 Mathematical Models of Beams and Cables

equation [2.3], āi · Rāj = RTai · aj = ai · Raj3. In contrast, in the construction
illustrated above, matrices differ between them, e.g. R̄2 = Ř2, since the bases B̄ and
B̌ are not the start and end bases.

REMARK 2.2. In the nonlinear field, a rotation is a tensor, not a vector. In the linear
theory, in contrast, the rotation amplitudes θj(s, t), j = 1, 2, 3 are dealt with as if they
were infinitesimal quantities, so that cos θj  1, sin θj  θj . This entails that, within
higher order terms, R = I +Ω, where I is the identity matrix and:

Ω :=

⎡⎣ 0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0

⎤⎦ [2.9]

is a skew-symmetric matrix, whose axial vector is θ := (θ1, θ2, θ3)
T 4. The latter is

referred to (although not properly) as the “rotation vector” of the linear theory. When,
later in the book (see equation [2.60], we introduce the spin matrixW , we will observe
that Ω = W dt, i.e. the infinitesimal rotation vector is instead of an angular velocity
vector, multiplied by an infinitesimal interval of time.

2.1.2 Tackling the rotation tensor

Some problems related to the rotation tensor are now addressed. They give
answers to the following questions: (a) how to find the Tait–Bryan angles when the
rotation tensor is assigned, (b) how to write the rotation tensor when the rotation axis
is assigned, (c) how to extract the rotation axis from an assigned rotation tensor.
These questions are not merely theoretical, but, in contrast, have some practical
relevance when boundary conditions must to be written, as will appear more clear
later.

Finding the elementary rotations

In the last subsection, we solved the problem: “given three elementary rotations (or
Tait–Bryan angles) θi, find the rotation tensor”. The constructive procedure led us to

3. We remember that if v = Lu, where u = j ujaj and v = j vjaj , then vi = ai · v =

j ujai · Laj =: j lijuj , where lij := ai · Laj are the components of the tensor L in the

basis (ai). Moreover, the identity Ra · b = a ·RTb has been used.
4. The following identity is known from algebra: Wx = ω × x, ∀x, where the scalar
representations of W and ω are, respectively:

W =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω =

ω1

ω2

ω3


and where ω is called the axial vector of the skew-tensor W.
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Straight Beams 61

equation [2.6]. Now, we want to solve the inverse problem: “given a scalar representation of a
rotation tensor, find the Tait–Bryan angles θi”. As we know from rigid-body kinematics
(see [BRA 02, SLA 99]), this nonlinear problem generally does not admit a unique solution, in
the sense that there is more than one triplet of angles θi, which leads a body from an initial to
an assigned final position.

Let us assume that the rotation matrix R = [Rij ] is given (equation [2.6]), representing the
tensor R in B̄ and we want to find θi. We can derive θ1 from the ratio R32/R33, θ2 from the
simplest entry R31 and, finally, θ3 from the ratio R21/R11; therefore:

tan θ1 = R32/R33

sin θ2 = −R31

tan θ3 = R21/R11

[2.10]

Even if we confine ourselves to the interval (−π, π], these equations are ambiguous, since, given
a solution (θ1, θ2, θ3), also the triplet (θ1 + π, π − θ2, θ3 + π) is a valid solution. Note that
the solutions are only two and no more, since in evaluating the ratios R32/R33, R21/R11, we
canceled the common factor cos θ2; therefore, once a root has been chosen for θ2, the ambiguity
for θ1 and θ3 is resolved. However, if we are interested in moderately large rotations, we can
assume that all angles range in the interval (−π/2, π/2) so that:

θ1 = arctan (R32/R33)

θ2 = arcsin (−R31)

θ3 = arctan (R21/R11)

[2.11]

where the inverse trigonometric function returns the principal values of the angles.

A singular case, admitting infinite solutions, occurs when θ2 = ±π/2, for which the
element Rij we chose vanished (see [BRA 02, SLA 99]).

Finding or assigning the rotation axis

As equation [2.6] shows, the rotation of the cross-section is defined by three scalar
parameters taken there as the Tait–Bryan angles. However, as it is well-known from rigid-body
kinematics, a rotation can also be described by its rotation axis, viz. n̄ = n1ā1 +n2ā2 +n3ā3

(two independent parameters) and the rotation angle Θ (third parameter). Therefore, we can ask
ourselves which relation holds between the Tait–Bryan angles θi and (n̄, Θ). In investigating
such a relationship, we have to address two related problems, namely:

1) Direct problem: given the axis n̄ and the rotation Θ, find the rotation tensor R.

2) Inverse problem: given the rotation tensor R, find the rotation axis n̄ and the rotation Θ.

The direct problem is solved by the so-called Euler–Rodrigues formula, which states that:

R = I cosΘ + n̄ ⊗ n̄ (1− cosΘ) + N̄ sinΘ [2.12]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



62 Mathematical Models of Beams and Cables

where N̄ is the skew-symmetric tensor whose axial vector is n̄, i.e. N̄r = n̄×r, ∀r; moreover,
⊗ denotes a dyadic or tensor product, i.e. [n̄ ⊗ n̄] = n̄n̄T . When expressed in the B̄-basis, this
formula becomes:

R =

1 0 0
0 1 0
0 0 1

 cosΘ+

+

 n2
1 n1n2 n1n3

n2n1 n2
2 n2n3

n3n1 n3n2 n2
3

 (1− cosΘ) +

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 sinΘ

[2.13]

Once R has been computed, the Tait–Bryan angles are evaluated by equations [2.11]. The proof
of the Euler–Rodrigues is constructive, based on geometrical consideration, and can be found
in literature (e.g. see [KOK 06]). Here, we will limit ourselves to checking that it works. In
order to prove that, indeed, it describes a rotation of axis n̄ and amplitude Θ, we have to show
that (a) Rn̄ = n̄, i.e. the rotation leaves the axis unaltered and (b) that m̄ · Rm̄ = cosΘ,
where m̄ is a unit vector orthogonal to n̄. Concerning task (a), it is sufficient to observe that
(n̄⊗ n̄) n̄ = n̄ and N̄n̄ = n̄ × n̄ = 0; concerning task (b), it is sufficient to observe that
(n̄⊗ n̄) m̄ = (n̄ · m̄) n̄ = 0 and that N̄m̄ ⊥ m̄; therefore, both properties are verified.

The inverse problem could be easily solved by observing that, because Rn̄ = n̄, the
rotation axis n̄ is the eigenvector of R associated with the eigenvalue 1 (this stating that
rotation does not stretch the axis). Moreover, since the other two eigenvalues are exp (±iΘ)5,
the rotation could also be computed. However, this approach is not computationally
convenient, but use of the Euler–Rodrigues formula is still advisable. Accordingly, if the skew
part of R is computed, namely skwR = R−RT /2, since I and n̄ ⊗ n̄ are symmetric
tensors while N̄ is skew-symmetric, it follows:

N̄ =
1

2 sinΘ
R−R

T [2.14]

Then, by identifying the three independent components of the two skew-symmetric tensors, we
finally have:

n1 =
1

2 sinΘ
(R32 −R23)

n2 =
1

2 sinΘ
(R13 −R31)

n3 =
1

2 sinΘ
(R21 −R12)

[2.15]

5. Indeed, in the l̄, m̄, n̄ -basis, the rotation tensor admits the representation:

R :=

cosΘ − sinΘ 0
sinΘ cosΘ 0
0 0 1
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Straight Beams 63

From these, if, e.g., n3 = 0, the ratios:

n1

n3
=

R32 −R23

R21 −R12
,

n2

n3
=

R13 −R31

R21 −R12
[2.16]

are evaluated, and finally the angle Θ is computed.

2.1.3 The geometric boundary conditions

The displacement and rotation fields are not completely free, since, as we already
observed, (a) they must be sufficiently regular, and, moreover, (b) they must fulfill
prescriptions at the points where the constraints (i.e. the mechanical devices) are
applied. These latter prescriptions are called geometric boundary conditions. We
assume that the constrained points coincide with the ends H = A,B of the beam;
moreover, we admit that the constraints are time-dependent.

When one, or both, the ends are fully restrained, the geometric boundary
conditions assume the following form:

uH = ŭH(t), RH = R̆H(t) H = A,B [2.17]

where the index H denotes evaluation at one end-point, and the curve-bar indicates a
known function of time. We will usually refer to this simplest case. However, partially
restrained ends are also frequent, and some example will be discussed soon.

The previous vector and tensor equations are equivalent to the following six scalar
conditions:

ui = ŭiH , θ = θ̆iH , i = 1, . . . , 3 [2.18]

where θ̆i are the three independent Tait–Bryan angles of R̆H . In the matrix form, we
also have:

u = ŭ, θ = θ̆ [2.19]

where u = (u1, u2, u3)
T and θ = (θ1, θ2, θ3)

T .

For illustrative purposes, some common constraints are considered here. While conditions on
the translations are trivial, those on rotations are, generally, more difficult to express, due to the
nonlinear nature of the rotation tensor. We have:

– Free boundary: no geometric constraints are prescribed.

– Spherical hinge: ui = ŭiH must be prescribed, while the elementary rotations θiH are
arbitrary.
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64 Mathematical Models of Beams and Cables

– Clamp: the six conditions [2.18] must be enforced. If the prescribed rotation Θ̆H is zero,
then, trivially, the three Tait–Bryan angles θ̆iH are all zero; if, in contrast, Θ̆H = 0 around a
selected rotation axis n̄, then the Euler–Rodrigues formula [2.13] must be used to evaluate R̆H ,
and equations [2.11] must be used to successively compute θ̆iH :

θ̆1H = arctan

n3n2 1− cos Θ̆ + n1 sin Θ̆

cos Θ̆ + n2
3 1− cos Θ̆


H

θ̆2H = − arcsin n3n1 1− cos Θ̆ − n2 sin Θ̆
H

θ̆3H = arctan

n2n1 1− cos Θ̆ + n3 sin Θ̆

cos Θ̆ + n2
1 1− cos Θ̆


H

[2.20]

– Cylindrical hinge: ui = ŭiH must be prescribed; moreover, since the axis of rotation n̄

is given, but the rotation Θ around it is arbitrary, the conditions [2.16] must be enforced, which
constitutes two additional constraints for the Tait–Bryan angles:

n1

n3
=

sin θ1 cos θ2 − cos θ1 sin θ2 sin θ3 + sin θ1 cos θ3
cos θ2 sin θ3 − sin θ1 sin θ2 cos θ3 + cos θ1 sin θ3 H

n2

n3
=

cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 + sin θ2
cos θ2 sin θ3 − sin θ1 sin θ2 cos θ3 + cos θ1 sin θ3 H

[2.21]

REMARK 2.3. When the constraints are applied at interior points of the beam, we
have to break the beam in pieces in such a way that the constraints always fall at the
boundaries of the subintervals in which the domain has been split. However, while
constraints at the end points, according to equation [2.17], restrain the local absolute
displacements, constraints at the interior points restrain the absolute and/or relative
displacements between adjacent points. The latter are of the type:

u+
H − u−

H = ΔŭH(t), R+
H −R−

H = ΔR̆H(t) H = A,B [2.22]

i.e. they establish the jump in the displacement field at the constrained point and not
the displacement itself.

2.1.4 The strain vector

When a beam undergoes a displacement and/or a rotation field, except for special
rigid transformations, it changes its shape. This change is called a deformation. A
measure of the local change of shape is said to be a strain.

With the aim of defining strain measures, we consider a small neighborhood of
the point P and fix our attention on (a) the tangent to the centerline and (b) the
attitude of the cross-section before and after the deformation (see Figure 2.4, where
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Straight Beams 65

ā1

ā1 ≡ x̄

ā2

ā2

Rā1

Rā1

Rā2

Rā2

ec

ec

er

er
RTx

x

R

R

Figure 2.4: Current and reference deformation vectors.

the undeformed and deformed states are represented on the left and on the right sides,
respectively; the figure refers to a planar beam, just for clarity of representation). In
the reference configuration, the tangent to the centerline is represented by the unit
vector x̄ (where a dash denotes differentiation with respect to s) and the attitude of
the section by the normal vector ā1; in this state, the two vectors coincide, since
x̄ ≡ ā1. In the current configuration, the tangent to the centerline is identified by the
vector x and the normal to the cross-section by a1 = Rā1; the two vectors, however,
are no longer aligned, and, moreover, have different length, since x = 1.
Accordingly, the length of x accounts for a local stretch, and the angle between x

and a1 for a local shear strain.

Current and reference strains

To define a strain magnitude having a vector character, which describes both
stretch and shear, we should first observe that the deformation process includes two
contributions: a rotation and a pure deformation. In order to describe the latter, we
have to deflate the motion by the rotation. To achieve this goal, we can follow two
different processes, illustrated in Figure 2.4, in which the order of rotation and pure
deformation are exchanged.

In the first process (upper part of the figure), (a) we first apply a rotation R so that
the vector ā1 is transformed into a1 = Rā1, then (b) we permit x̄ to stretch and to
rotate to match x. Accordingly, we introduce a strain vector as the difference between
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66 Mathematical Models of Beams and Cables

the stretched tangent and the rotated unit normal vector, i.e.:

ec := x
−Rā1 [2.23]

Since the deformation occurs in the current basis, we will call ec the current strain
vector.

In the second process (bottom part of the figure), (a) we first stretch and rotate x̄,
by transforming it into RTx (i.e. into the pulled-back image of vector x); then, (b)
we apply the rotation R so that all vectors reach their final position. Accordingly, we
introduce a strain vector as the difference between the pulled-back tangent and the
(unrotated) unit normal vector, i.e.:

er := RTx
− ā1 [2.24]

Since the deformation occurs in the reference basis, we will call er the reference strain
vector.

Other names for ec, er are the left and right strain vectors, respectively, as
borrowed from the Cauchy Continuum Mechanics6. Both the vectors are differences
between the tangent to the centerline and the normal to the section, but they are
evaluated after or before the rotation occurs, respectively. As a result, the two vectors
differ from each other, but they are merely related by a rotation, namely:

er := RTec [2.25]

Hence, the reference strain vector is equal to the current one, pulled-back. This
property entails that the two strain vectors have the same components in two different
bases, ec in the current basis B, and er in the reference basis B̄:

ec := εa1 + γ2a2 + γ3a3

er := εā1 + γ2ā2 + γ3ā3
[2.26]

as it immediately follows from equations [2.25] and [2.3].7

6. The Polar Decomposition Theorem (see [GUR 82]), indeed, states that the deformation
gradient F (relating two material vectors, before and after the deformation, via dx = F dx̄),
can be decomposed in two alternate ways in the product of a rotation tensor R and a symmetric
positive definite stretch tensor, U or V, according to F = RU = VR; U is called the
right stretch tensor and V the left stretch tensor. Since the transformations must be applied in
sequence, from the right to the left, U is responsible for a stretch that precedes the rotation,
while V is a stretch that follows the rotation.
7. Therefore ec, er are vectors attached to the bases B and B̄, respectively, as we discussed
in the Introduction. Note that, as an exception to the general rule stated there, we did not use
the overbar here (i.e. we did not write e := ec, ē := er), since this is suggested by notational
convenience.
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Straight Beams 67

The scalar components of the strain vector(s) are called the longitudinal strain ε
and the transverse strains γ2, γ3. Very often, they are confused with the unit extension
and the shear strains, from the meaning they assume in the linear theory, although this
wording should be avoided, in order to not generate confusion.

As a final comment, the current strain appears, in some sense, “more natural” than
the reference strain, since it is the strain that an observer attached to the section would
see. In contrast, the reference strain calls for introducing “pulled-back vectors”, that
make its meaning less evident. Nonetheless, the reference strain is consistent with the
usual choice made in the Lagrangian approach of elasticity, according to which strains
are referred to as the reference configuration. Therefore, we will adopt the reference
vector as a strain measure; accordingly, we will omit the index r, by letting e := er,
when this does not generate ambiguity.

REMARK 2.4. The strain measures (2.4) are exact, in the sense that their expressions
hold for arbitrarily large displacements and rotations. As a matter of the fact, they
vanish when the transformation is a translation (x = x̄ ≡ ā1, R = I) or a rotation
(x = Rā1).

Physical strain measures

Physical scalar measures for the strains are the unit extension and the shear strains,
which represent, respectively, the relative change of length of an infinitesimal segment
of the beam axis, and the change of the (initially right) angles between the beam axis
and the two directors lying in the cross-section plane (see Figure 2.5), namely8 9:

e :=
dx − dx̄

dx̄
= x

− 1, αj :=
π

2
− (x, aj) j = 2, 3 [2.27]

in which dx̄ = ds has been accounted for.

From equations [2.24] and [2.26b], it follows that:

x = R (ā1 + e) = (1 + ε)a1 + γ2a2 + γ3a3 [2.28]

and therefore, equation [2.27] furnishes:

e = (1 + ε)
2
+ γ2

2 + γ2
3 − 1 [2.29]

8. The unusual symbols e, αj here replace the usually adopted symbols ε, γj , since the latter
assume a different meaning in our context.
9. We found it simpler to perform the analysis in the current configuration. The reader is
suggested to redraw the figure by considering “pure deformation” only (i.e. before the rotations
occur) and to repeat calculations. Of course, since lengths and angle difference are not affected
by the rotation, he/she will find the same results.
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68 Mathematical Models of Beams and Cables

ā1

ā2

a1

a2

x

Rā1

ec

Q

Q̂

QP

π/2− α2

γ2

ε

Figure 2.5: Physical strains.

which expresses the unit extension as a function of the longitudinal as well of the
transverse strains.

To evaluate αj , we resort to the definition of scalar product:

cos
π

2
− αj =

x · aj
x j = 2, 3 [2.30]

from which we get:

αj = arcsin

⎛⎝ γj

(1 + ε)
2
+ γ2

2 + γ2
3

⎞⎠ j = 2, 3 [2.31]

This expression shows, once again, that the change of the angles depends on all the
scalar strains.

When strains ε, γj are small of order := e  1, equations [2.29] and [2.31]
can be expanded in series to give:

e = ε+
1

2
γ2
2 + γ2

3 +O( 3)

αj = γj (1− ε) + O( 3)

[2.32]

Therefore, when → 0, then e → ε αj → γj , so that the unit extension can be
confused with the longitudinal strain and the transverse strain with the shear strain.

2.1.5 The curvature vector
The strain vector, discussed before, is not sufficient, by itself, to describe the local

change of shape of the body, since the beam could undergo no stretch and no shear,
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Straight Beams 69

but it could bend or twist itself. Therefore, we have to define another quantity able to
account for the curvature of the beam. To introduce the concept in a very simple way,
we start from the elementary notion of curvature of a line, which is well-known from
differential geometry of curves. Then, we will adapt this definition to our mechanical
problem.

The curvature of a line and the Frenet formulas

Let us consider a curve S (Figure 2.6(a), on which a curvilinear abscissa s has
been introduced, and let Bf := (at(s), an(s), ab(s)) a right orthogonal triad, called
TNB or Frenet triad10, depending on s, in which: at is unit tangent vector, an is the
unit normal vector (spanning, with at, the osculating plane at s) and ab := at × an is
the unit binormal vector completing the triad. The derivatives of the unit vectors are
expressed by the Frenet formulas:

at = kan, ab = −τan, an = τab − kat [2.33]

where k is the curvature and τ is the torsion of the curve at s. When k > 0, an points
toward the concavity of the curve. Equations [2.33a,b] give us an interpretation of the
curvature (and torsion) as the “velocity” by which the tangent (or the binormal) to the
curve rotates in traveling the curve itself with uniform speed; the faster the tangent (or
binormal) rotates, the larger the curvature (or torsion)11.

The Frenet formulas can be more conveniently recast in tensor form as:

aα = Kfaα, α = t, n, b [2.34]

in which Kf is the Frenet curvature tensor, which transforms the unit vectors of the
Frenet triad in their derivatives12. The components of Kf in Bf are aα · Kfaβ =
aα · aβ ; since, from equations [2.33], we have:

at · at = an · an = ab · ab = 0, at · ab = −ab · at = 0

at · an = −an · at = k, an · ab = −ab · an = τ
[2.35]

10. Commonly, TNB stands for tangent–normal–binormal, which is an alternative way to
indicate the Frenet triad.
11. Formula [2.33a] can be easily justified on a geometrical ground, as shown in (Figure 2.6(b).
Since at(s + ds) − at(s) = dθan + O(ds2), where dθ is the angle between the two vectors,
then a

t = (dθ/ds)an = kan, where k := 1/R(s) is the inverse of the radius of the osculating
circle. Analogously, the second formula defines torsion as a measure of how the curve deviates
from the osculating plane; if the curve is locally planar, then the torsion vanishes. The third
equation follows from the identity a

n = (ab × at)
, when equations [2.33a,b] are used.

12. Therefore, Kf transforms any vector w, of constant modulus and attached to the basis, in
its derivative w.
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70 Mathematical Models of Beams and Cables

then Kf is skew-symmetric, and, moreover, its scalar representation on Bf is:

Kf := [Kf ]Bf
=

⎡⎣0 −k 0
k 0 −τ
0 τ 0

⎤⎦ [2.36]

The skew-symmetric tensor admits kf := kab+ τat as the axial vector, for which the
following property holds:

aα = kf × aα, α = t, n, b [2.37]

REMARK 2.5. The Frenet axial vector kf (as well the matrix curvatureKf ) possesses
only two non-zero components along the binormal and the tangent to the curve. This
is due to the special character of the Frenet triad, in which the normal and binormal
are TNB directions. If we, in contrast, choose two generic directions in the normal
plane, then, of course, all the components of the axial vector are non-zero.

at

an

ab

s
S

(a)

at(s)

an(s)

at(s+ ds)

dθ

R

dθan(s)

(b)

Figure 2.6: Frenet triad and formulas: (a) intrinsic triad, (b) unit vector derivatives.

The curvature of the beam

In defining the curvature of a beam, we will closely follow the definition of the
curvature of a linefernet! principal curvature and torsion of a line. However, two main
differences must be taken into account with respect to that case. First, (a) we are not
interested in determining how fast the intrinsic basis Bf , attached to the curve, rotates
in traveling the centerline, but, in contrast, we are interested in evaluating how fast the
basis B of the directors, attached to the cross-sections, rotates. That will be a measure
of the change of attitude of the cross-section along the centerline. Second, (b) while
the Frenet curvature refers to the current arc length, it seems more suitable, in defining
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Straight Beams 71

the mechanical curvature, to refer to the unstretched arc length s as a simple example
shows13.

Guided by the previous considerations, we define the current curvature tensor Kc

as the linear operator which transforms aj into its derivative aj , i.e.:

aj = Kcaj j = 1, 2, 3 [2.38]

To express Kc in terms of the rotation tensor, we differentiate equation [2.3] with
respect to s, to get:

aj = Rāj = RRTaj [2.39]

in which we accounted for āj = 0 (since the beam is initially straight) and, moreover,
we again used equation [2.3]. By comparing equations [2.38] and [2.39], we find:

Kc = RRT [2.40]

Since, by differentiating equation [2.4], we have RRT 
= RRT + RRT = 0,

thenKc = −KT
c , i.e. the current curvature tensor is skew-symmetric. Hence, equation

[2.38] is equivalent to:

aj = kc × aj j = 1, 2, 3 [2.41]

where the current curvature vector kc is the axial vector of Kc.

Similar to what we did for strain vectors, we can also define a reference curvature
tensor Kr, which performs the same operation of Kc, but before the rotation R

occurred, i.e. working on the pulled-back images of aj and aj . Accordingly, we let:

RTaj = Krāj [2.42]

To obtain an expression for Kr in terms of the rotation tensor, we substitute aj =
Rāj into equation [2.42] and we get:

Kr = RTR [2.43]

13. Let us discuss the example of a planar beam, whose cross-sections remain orthogonal to the
axis. If we bend the beam in a circular shape, without stretching its axis, we observe that the
mechanical curvature of the beam coincides with the geometrical curvature (i.e. the inverse of
the circle radius). If, however, we superimpose a displacement field in which all points move
along the local external normal to the circle, the shape of the beam is still circular, but of larger
radius. The geometrical curvature, of course, decreases in this transformation, but we say, on
a physical ground, that the beam undergoes a pure stretching, not a bending. Indeed, if we
evaluate the derivatives of the unit vectors of the triad with respect to the unstretched abscissa,
the curvature does not change in the second transformation.
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72 Mathematical Models of Beams and Cables

Since RTR

= RTR+RTR = 0, then Kr = −KT

r , i.e. the reference curvature
tensor is skew-symmetric. Consequently, a reference curvature vector kr exists, such
that:

RTaj = kr × āj j = 1, 2, 3 [2.44]

The two tensors, Kc and Kr, differ from each other, but they are related by:

Kr = RTKcR [2.45]

this showing that they have the same components in the two bases, namely the current
one in the current basis B and the reference one in the reference basis B̄ 14, 15; since
they are antisymmetric, their scalar representation is:

K := [Kc]B ≡ [Kr]B̄ =

⎛⎝ 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

⎞⎠ [2.46]

The same property, of course, holds for the relevant axial vectors. Therefore:

kc := κ1a1 + κ2a2 + κ3a3

kr := κ1ā1 + κ2ā2 + κ3ā3
[2.47]

where κ1 is called the torsional curvature and κ2, κ3 are the bending curvatures. The
axial vectors are therefore related, as the strain vectors are (equation [2.25]), namely:

kc = Rkr [2.48]

Although the definition of the current curvature appears to be more natural,
according to previous considerations, we assume the reference curvature as a
measure of strain. Accordingly, we will omit the index r, by letting K := Kr and
k := kr, when this does not generate ambiguity.

REMARK 2.6. Equations [2.41] permit us to evaluate the space-derivative of a vector
attached to the basis B, e.g. w =

3
i=1 wiai. Since w = 3

i=1 (w

iai + wia


i), it

follows that:

w =
3

i=1

w
iai + kc ×w [2.49]

which is known as Poisson formula.

14. As a matter of fact,
mathbfai ·Kcaj = ai ·RRTaj = Rāi ·RRTRāj = āi ·RTRāj = āi ·Krāj , having
used equation [2.4] and the identity Lu · v = u · LTv.
15. Therefore Kc, Kr are tensors attached to the bases B and B̄, respectively, as we discussed
in the Introduction. As an exception to the general rule we established there, we avoided using
the overbar here (i.e. we did not write K := Kc, K̄ := Kr), as suggested by notational
convenience and to avoid conflicts with other symbols. Analogous comments hold for the axial
vectors, to be introduced in the equation [2.47].
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Straight Beams 73

REMARK 2.7. The scalar representation [Kc]B can, of course, be obtained via direct
evaluation of the components of RRT in B, instead of resorting to the components
of RTR in B̄. The calculation, however, is much more difficult, since the basis B

depends on s, and therefore [R]B = [R]

B , i.e. the matrix of derivatives is not the

derivative of the matrix. The reader interested in the question can adapt formula [3.13]
to the problem at hand, to prove that [R]B = [R]


B + [Kc]B [R]B − [R]B [Kc]B.

Then, by post-multiplying this equation by [R]TB , taking into account that [Kc]B :=

[R]B [R]
T
B and simplifying, it follows that [Kc]B = [R]

T
B [R]


B; since [R]B = [R]B̄,

then [Kc]B = [R]
T
B̄ [R]


B̄ .

2.1.6 The strain–displacement relationships
The equations relating strains and displacements are named strain-displacement

relationships. To obtain them, we have to express the strain vector e and the curvature
vector k in terms of the translation u and the rotation R.

By using x = ā1 + u in equation [2.24], we have:

e = RT (ā1 + u)− ā1 [2.50]

whose scalar representation in B̄, in matrix form, is:

e = RT (ā1 + u)− ā1 [2.51]

or, in extended form:

⎛⎝ ε
γ2
γ3

⎞⎠ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2

sin θ1 sin θ2 cos θ3 sin θ1 sin θ2 sin θ3 sin θ1 cos θ2
− cos θ1 sin θ3 +cos θ1 cos θ3

cos θ1 sin θ2 cos θ3 cos θ1 sin θ2 sin θ3 cos θ1 cos θ2
+sin θ1 sin θ3 − sin θ1 cos θ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎝1 + u

1

u
2

u
3

⎞⎠−

⎛⎝1
0
0

⎞⎠

[2.52]

where equations [2.26b], [2.2] and [2.6] have been accounted for.

To express the scalar components in B̄ of the curvature in terms of rotations,
K = RTR is used, according to equation [2.43], in which R is evaluated by
differentiating, term-by-term, matrix R. Then, the components of the axial vector are
extracted by the matrix, according to equation [2.46]. After simplification, the
following, quite simple, relations are found:⎛⎝κ1

κ2

κ3

⎞⎠ =

⎛⎝1 0 − sin θ2
0 cos θ1 sin θ1 cos θ2
0 − sin θ1 cos θ1 cos θ2

⎞⎠⎛⎝θ1
θ2
θ3

⎞⎠ [2.53]
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74 Mathematical Models of Beams and Cables

or in compact form16:

k = Bωθ
 [2.54]

Equations [2.52] and [2.53] are the strain-displacement relationships sought for.
They show that for differentiability, displacements and rotations must be continuous
along the centerline.

REMARK 2.8. While the column matrix k is the collection of the components of a
vector, θ is not the collection of the components of a vector. Therefore, occasionally,
it is called a pseudo-vector (by Argyris [ARG 82]).

2.1.7 The velocity and spin fields

Displacement and rotation fields are not sufficient to describe the state of the body,
but additional quantities, having the meaning of time-rates, must be introduced. Here
we define velocity and spin.

Velocity field

By taking the first time-derivative (denoted by a dot) of the position vector x(s, t)
and using equation [2.1], we obtain the velocity field:

v := ẋ(s, t) ≡ u̇(s, t) [2.55]

which, due to equation [2.2], entails that:

v := u̇1(s, t)ā1 + u̇2(s, t)ā2 + u̇3(s, t)ā3 [2.56]

Spin field

By exploiting the analogy with the space-derivatives of the unit vectors (equation
[2.38]), we introduce a spin tensor W as the linear operator that transforms aj into its
time-derivative ȧj , i.e.:

ȧj = Waj j = 1, 2, 3 [2.57]

16. The matrix Bω possesses columns of unitary modulus, i.e. it represents a basis of unit
vectors. We will investigate its meaning (and understand the reason of the index ω) in the next
section.
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Straight Beams 75

By time-differentiating equation [2.3] and using the same equation, we get
ȧj = Ṙāj = ṘRTaj , from which:

W = ṘRT [2.58]

Since RRT ·
= ṘRT + RṘT = 0, then W = −WT , i.e. the spin tensor is

skew-symmetric. Therefore, equation [2.57] can also be written as:

ȧj = ω× aj j = 1, 2, 3 [2.59]

where the spin (or angular velocity) vector ω is the axial vector of W.

By using arguments similar to those used for the curvature tensor, we get the scalar
representations in the current basis for the spin tensor and vector, namely, W :=
[W]B = RT Ṙ, or:

W :=

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ [2.60]

and:

ω := ω1a1 + ω2a2 + ω3a3 [2.61]

Finally, in analogy with equations [2.53], we find the components of ω in B:⎛⎝ω1

ω2

ω3

⎞⎠ =

⎛⎝1 0 − sin θ2
0 cos θ1 sin θ1 cos θ2
0 − sin θ1 cos θ1 cos θ2

⎞⎠⎛⎝θ̇1
θ̇2
θ̇3

⎞⎠ [2.62]

or in compact form:

ω = Bωθ̇ [2.63]

REMARK 2.9. By bearing in mind the analogy with the curvature tensors, the spin
tensor and vector defined above should be meant as the current spin tensor W ≡ Wc

and vetor ω ≡ ωc. Of course, a reference spin tensor could also be defined as Wr :=
RT Ṙ, with axial vector ωr, such that RT ȧj = ωr × āj ; consequently,ωc = Rωr.
However, different from the strains, Wr is not useful to our treatment, as will be
clearer later. This is due to the fact that strains refer to the reference configuration,
while virtual motions and inertia forces (which the spin contributes to) are referred to
the current configuration.

REMARK 2.10. Equations [2.59] permit us to evaluate the time-derivative of a vector
attached to the basis B, e.g. w =

3
i=1 wiai. Since ẇ =

3
i=1 (ẇiai + wiȧi), it

follows that (Poisson formula):

ẇ =

3

i=1

ẇiai +ω×w [2.64]
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76 Mathematical Models of Beams and Cables

REMARK 2.11. The Evaluation of the second time-derivative of w =
3
i=1 wiai

could be needed. It happens, for example, when the acceleration of a point is desired
in local (rotating) coordinates. By differentiating the previous equation and using
equation [2.64] again, we obtain:

ẅ =
3

i=1

ẅiai + 2ω×

3

i=1

ẇiai + ω̇×w +ω× (ω×w) [2.65]

The Fundamental Formula of Rigid Kinematics

We will resort, occasionally, to a 3D-model of beams with rigid cross-sections, to
identify kinetic or elastic quantities for the 1D-model. In view of these developments,
we need to express the velocity field of the rigid cross-section. To this end, let us
consider the generic cross-section and denote its centroid by G17. In the reference
configuration, the position of a point Q on the section is x̄Q = x̄G + r̄, where r̄ :=
r2ā2 + r3ā318. In the current configuration, the position of Q is:

xQ = xG (s, t) +R (s, t) r̄ [2.66]

By differentiating the previous equations with respect to the time, and accounting for
the independence of time of r̄, it follows:

vQ = vG (s, t) + Ṙ (s, t) r̄

= vG (s, t) + Ṙ (s, t)RT (s, t) r
[2.67]

where vQ := ẋQ, vG := ẋG and r = r2a2 + r3a3 is the transformed vector r̄. By
accounting for equation [2.58] and omitting the arguments, we finally get:

vQ = vG +Wr [2.68]

or:

vQ = vG +ω× r [2.69]

This is known as the “Fundamental Formula of Rigid Kinematics”.

17. We call P a point of the 1D-model (although it could be thought as the centroid of the
underlying 3D-model), but we use G for the centroid of the cross-section of the 3D-model and
Q for a generic point which lies on the cross-section.
18. We avoid the overbar on the coordinates ri, since we will always need to express r̄ in B̄ and
r = Rr̄ in B, which have the same components ri.
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Straight Beams 77

A geometrical interpretation of the spin vector: the spin basis

We now want to give a geometrical interpretation of the spin vector ω, which
will be useful for further developments. We saw that a finite rotation is a composition
of three elementary rotations around three axes, namely (ā3, θ3),(ǎ2, θ2) and
(ã1, θ1), in the order. If we perturb the elementary rotations, i.e. if we consider the
composition of (ā3, θ3 + δθ3),(ǎ2, θ2 + δθ2) and (ã1, θ1 + δθ1), and then linearize
in the perturbations, we obtain a motion which differs from the original one by a sum
of three infinitesimal rotations (ā3, δθ3),(ǎ2, δθ2) and (ã1, δθ1). By considering an
infinitesimal interval of time δt and denoting by θ̇i := δθi/δt the time-derivatives of
the elementary rotations, we obtain the spin vector as a sum of three elementary spin
vectors:

ω = θ̇1ã1 + θ̇2ǎ2 + θ̇3ā3 [2.70]

It should be stressed that the basis Bω := (ã1, ǎ2, ā3) is non-orthogonal; we will refer
to it as the spin basis.

Of course, we can represent the vector ω in the two (orthogonal) bases B̄ or B, by
letting ω = 3

i=1 ω̄iāi or ω = 3
i=1 ωiai: in matrix form, ω̄ := (ω̄1, ω̄2, ω̄3)

T or
ω := (ω1, ω2, ω3)

T . Consequently, we have:

ω̄ = B̄ωθ̇, ω = Bω θ̇ [2.71]

Here, the matrices B̄ω and Bω collect, column-wise, the director cosines of
(ã1, ǎ2, ā3) in the reference or current bases, respectively; we will call them the
spin-basis matrices. To build them up, we start from the reference basis, in which,
with the help of Figure 2.3, we have:

ǎ2 = − sin θ3ā1 + cos θ3ā2

ã1 = cos θ2ǎ1 − sin θ2ā3

= cos θ2 (cos θ3ā1 + sin θ3ā2)− sin θ2ā3

[2.72]

from which we get:

B̄ω :=

⎛⎝cos θ2 cos θ3 − sin θ3 0
cos θ2 sin θ3 cos θ3 0
− sin θ2 0 1

⎞⎠ [2.73]
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78 Mathematical Models of Beams and Cables

The same procedure could be applied in the current basis to find Bω; alternatively,
since ω = RT ω̄ = RT B̄ωθ̇19, then Bω = RT B̄ω and therefore20:

Bω =

⎛⎝1 0 − sin θ2
0 cos θ1 sin θ1 cos θ2
0 − sin θ1 cos θ1 cos θ2

⎞⎠ [2.74]

which is just the matrix appearing in equation [2.62] (and, for the analogy between
the curvature vector and the spin vector, also in equation [2.53]).

2.1.8 The velocity gradients and strain-rates

In this section, we introduce two new vector quantities, the velocity and spin
gradients. These are a measure of how displacement time-gradients vary in space.
After that, we will link them to the strain-rates, which are a measure of how
displacement space-gradients vary in time.

The velocity and the spin gradients

Let us consider two material body-pointsP,Q on the beam axis, infinitely close to
each other, whose relative position, in the reference configuration, is Δx̄ := x̄Q − x̄P

(Figure 2.7). In the current, configuration, their relative position changes into Δx :=
xQ − xP , and the two points have velocities vP and vQ, respectively. We define:

g := lim
Δx̄ →0

vQ − vP

Δx̄
=

∂v

∂s
≡ v [2.75]

and call it the velocity gradient. Note that the incremental ratio is evaluated with
respect to the undeformed length Δx̄ , not to the current Δx . For this reason, the
vector g is a material gradient, which measures the variation of velocity in passing
from a point to a closer one, compared with the distance they had in the reference
configuration. This gradient, however, is not a measure of the strain-rate, since, in a
locally rigid motion, as that described by equation [2.69], the same definition
furnishes:

w := lim
Δx̄ →0

ω×Δx

Δx̄
= ω× x [2.76]

(to be referred to as the rigid velocity gradient), and therefore it does not vanish.
However, we can express the velocity gradient g as the sum of two vectors, one

19. Indeed, if the representation of a vector w is known in B, i.e. w = 3
j=1 wjaj , then

w̄i := āi ·w = 3
j=1 āi ·Rājwj = Rijwj ; therefore w̄ = Rw.

20. Note that Bω, B̄ω do not transform as a tensor, since θ is not a vector.
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Straight Beams 79

vP

vQ

vQ − vP

Δx

Δx̄
P

P̂

Q

Q̂

uP
uQ

Figure 2.7: Velocity gradient.

accounting for the rigid component of motion, w, the other for the pure stretching
part, d, by letting g = w+ d, from which we get21:

d = v
−ω× x [2.77]

to be referred to as the stretching velocity gradient. It represents the gradient of
velocity in a pure deformation, since it vanishes in a rigid motion.

Similar to what was done for the velocity field v, we can define a spin gradient:

s := lim
Δx̄ →0

ωQ −ωP

Δx̄
=

∂ω

∂s
≡ ω [2.78]

Since in a locally rigid motion ωQ = ωP , the spin gradient is also a measure of
stretching, i.e. no deflation is needed.

Strain-rates versus velocity gradients

We define strain-rate and curvature-rate as the time-derivatives of the strain and
curvature vectors, namely ė and k̇, respectively. They are a measure of how a strain at

21. This additive decomposition is similar to that performed in the Cauchy Continuum
Mechanics, usually denoted as G = W + D [GUR 82], in which G is the velocity gradient
tensor, W is the spin tensor and D is the velocity of deformation tensor. However, different
from our approach, all these are spatial gradients, i.e. expressed in terms of current coordinates.
Moreover, they are tensors and not vectors, since they refer to a 3D-continuum.
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80 Mathematical Models of Beams and Cables

a fixed point s varies in time. On the other hand, we observe that the stretching velocity
gradient d and the spin gradient s, which has just now been introduced, are a measure
of how the stretching velocity at a given time t varies in space. Therefore, both pairs of
quantities concern deformation (i.e. space-gradient) and velocity (i.e. time-gradient),
although the operation of space- and time-differentiation are exchanged. One could
ask himself if the two pairs of quantities are somewhat related.

To answer the question, we start from the definition d := v − ω × x of the
stretching velocity gradient, and rearrange it as follows:

d = ẋ
− ṘRTx = ẋ +RṘTx = R RT ẋ + ṘTx = Rė [2.79]

having used, in order: the identity v ≡ ẋ, equations [2.58] and [2.59],
time-differentiation of equation [2.4] and, finally, equation [2.24]. In summary, the
stretching velocity gradient is equal to the strain-rate vector pushed-forward, i.e.:

d := v
−ω× x = Rė [2.80]

In other words, d and ė describe the same physical quantity, namely the increment
of strain accumulated in an infinitesimal time interval dt = 1; however, they are seen
by two different observers, attached to the bases B and B̄, respectively. Therefore, d
has in the current B-basis the same components that ė has in the reference B̄-basis.

A geometrical interpretation of this property is given in Figure 2.8, which concerns an example
of local pure extension and rotation around ā3. The figure shows the segment PQ = 1 in the
reference configuration (at t = 0), in the current configuration (at t > 0), and in a configuration
adjacent to the latter (at t+ dt, with dt = 1). In Figure 2.8(a) the decomposition of the velocity
gradient g = ẋ, in its stretching d and rigid part w = ω× x, is shown. In Figure 2.8(b) the
strain measures er, ec and the strain-rates ėr, ėc are illustrated. It is apparent that according to
equation [2.79], d = Rėr . This relation can be interpreted as follows: (a) the current strain ec is
first pulled-back as er = RT ec in the reference configuration; (b) here it is time-differentiated,
to become ėr; (c) finally, this is further pushed-forward as Rėr, which coincides with d. In
contrast, ėc = d, since, by the Poisson formula [2.64], ėc = Rėc +ω× ec, as highlighted in
the figure. For these reasons, the reference measure of the strain appears better suited than the
current one in the framework of our formulation.

Similar to what was done for the strain, we now compare the curvature-rate k̇ and
the spin gradient ω. We start from the definitions of k and ω, given in equations
[2.44] and [2.59], respectively, and we differentiate the first one with respect to s and
the second one with respect to t by getting:

ṘTaj +RT ȧj = k̇× āj

ȧj = ω
× aj +ω× aj

[2.81]
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Straight Beams 81

ā1

ā2

x̄

x
ω

ω× x
x + ẋ

ẋ

d

P Q

Q̂

Q̃

(a)

ā1

ā2

a1
ω

ω× ec
ec + ėc

ėc

ėrer

ec
d

P Q

Q̂

Q̃

(b)

Figure 2.8: Geometrical interpretation of: (a) the stretching velocity gradient d, (b)
the strain rate vectors ėr and ėc. The example concerns pure extension of the beam,
and a rotation around the fixed axis ā3; moreover, ds = dt = 1.

The first of them can be rearranged as follows:

ȧj = −RṘTaj +R k̇× āj

= Waj +Rk̇×Rāj

= ω× aj +Rk̇× aj

[2.82]

in which RṘT = WT = −W and a known identity has been used22. If we compare
the last equation with equation [2.81b], we finally get:

s := ω = Rk̇ [2.83]

which is the companion of equation [2.79]. Once again, a stretching gradient coincides
with a pushed-forward reference strain-rate; therefore, previous remarks still hold.

Strain-rate-velocity scalar relationships

Our task is now writing strain-rates in scalar form, in the reference basis. From
equations [2.80] and [2.83], we have:

ė = RT (v
−ω× x)

k̇ = RTω [2.84]

We rewrite the first of them by noting that the cross-product can be expressed as the
product of a skew-symmetric tensor by a vector; namely ω × x = Wx (as we are

22. The identity Ru×Rv = R (u × v) expresses “the rotational invariance of cross product”.
It means that, if u and v are both rotated by R, then their cross-product is also rotated by R.
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82 Mathematical Models of Beams and Cables

used to doing), but also x ×ω = Λω. Here, Λ is a tensor23 whose axial vector is x

(see equation [2.28]) whose representation in the current basis is:

Λ :=

⎡⎣ 0 −γ3 γ2
γ3 0 − (1 + ε)
−γ2 1 + ε 0

⎤⎦ [2.85]

since, from equation [2.24], x = R (e+ ā1). Therefore:

[x
×ω]B̄ = R [x

×ω]B = RΛω = RΛRT ω̄ [2.86]

where ω = RT ω̄ has been used. By letting ė = ε̇ā1 + γ̇2ā2 + γ̇3ā3, k̇ = κ̇1ā1 +
κ̇2ā2 + κ̇3ā3 and collecting the strain-rate components in the column-matrices ė, k̇,
we finally have the scalar representation of equations [2.84] in the reference basis:

ė = RTv +ΛRT ω̄

k̇ = RT ω̄
[2.87]

where v := (u̇1, u̇2, u̇3)
T , ω̄ := (ω̄1, ω̄2, ω̄3)

T . These are called the strain-rate-
velocity relationships.

Equations [2.87] link the strain-rates to the angular velocity ω̄; however, we will
fulfill the need to express them in terms of the time-derivatives θ̇. Within this scope,
by using ω̄ = B̄ωθ̇ (equation [2.71a]), we also find 24:

ė = RTv +ΛRT B̄ωθ̇

k̇ = RT B̄

ωθ̇ + B̄ωθ̇

 [2.88]

2.2 Dynamics

After having analyzed the kinematic aspects of the beam model, we have to deal
with dynamic features. As we saw in section 1.2.2, dynamics is ruled by balance

23. The symbol Λ adopted should evoke the stretch λ := dx/ds, used in Continuum
Mechanics.
24. When equations [2.88] are put in matrix form, and v = u̇ is used, we have

ė

k̇
=

0 ΛRT B̄ω

0 RT B̄

ω

+
RT 0

0 RT B̄ω
∂s

u̇

θ̇

They look like equations [1.3], that we wrote for the metamodel. Indeed, if we collect the
strain-rate components and velocities in column-matrices ε := (ε, γ2, γ3, κ1, κ2, κ3)

T , w :=
(u1, u2, u3, θ1, θ2, θ3)

T , the equation above becomes ε̇ = D (w,w) ẇ, where D (w,w) is
the 6× 6 kinematic operator of the straight beam.
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Straight Beams 83

equations, whose derivation calls for introducing stresses and linking them to external
forces by invoking a principle. The task can be alternatively accomplished by invoking
two different balance principles: (a) the VPP or (b) the linear and angular momentum
principles. According to the former, a balance of powers is performed; according to
the latter, a balance of forces is executed. Both of them are integral principles, but their
localization leads to differential equations. We will illustrate both the procedures.

The object of our study is a beam loaded by external forces of linear density
p(s, t) (having physical dimensions [MT−2]) and external couples of linear density
c(s, t) ([MLT−2]) represented by a vector orthogonal to the plane of the couple (see
Figure 2.9); moreover, forces PH(t) ([MLT−2]) and couples CH(t) ([ML2T−2]) are
applied at the ends H = A,B.

ā1

ā2

ā3

pc
PA

CA

PB

CB

A B

Figure 2.9: Beam loaded by forces and couples, both distributed in the body and
applied at the ends.

2.2.1 The balance of virtual powers

The external and internal virtual powers

We consider the beam frozen in the unknown current configuration, occupied at
time t and superimpose a virtual motion consisting of a velocity field v and a spin
field ω. These fields are also called a test motion, since they are arbitrary and
completely unrelated to the true motion of the beam. We say that the virtual motion is
kinematically admissible when it is sufficiently regular and compatible with the
external constraints; if the latter depend on time, they must be frozen at t25. Then, a
velocity gradient g = d+w and a spin gradient s can be associated with it.

25. For example, if the displacement is prescribed, i.e. uH = ŭH (t) , then u̇H = 0; similarly,
if the rotation is assigned, RH = R̆H (t), then ωH = 0.
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84 Mathematical Models of Beams and Cables

We define the external virtual power according to the usual definition given for a
system of forces26:

Pext :=

S
(p · v + c ·ω) ds+

B

H=A

(PH · vH +CH ·ωH) [2.89]

Then, in a similar way, we define the internal virtual power as the power spent by
contact internal forces (or stresses) t,m, on the stretching velocity gradient d =
v −ω× x and the spin gradient s = ω, namely:

Pint :=

S
(t · d+m · s) ds [2.90]

The vector t is called the force-stress, and the vector m the couple-stress27. The
definition [2.90] meets the principle of material frame-indifference (or of objectivity),
which requires that Pint = 0 for any rigid motion. As a matter of fact, in a rigid
motion, d = 0 and s = 0, as we commented in section 2.1.8. Therefore, the stresses
are dynamic entities which spend zero virtual power in rigid motions28.

A more formal derivation of the expression of the internal virtual power is the following. We
start from a general definition, in which the internal virtual power is a linear combination of
dynamic quantities and kinematic descriptors taken as the velocity fields v,ω and their first
derivatives v,ω, namely:

Pint :=

S

t0 · v+ t1 · v +m0 ·ω+m1 ·ω ds [2.91]

where t0 is the (internal) self-force, t1 is the force, m0 is the self-couple and m1 is the couple.
The four stresses, however, are not all independent, since Pint must vanish when the test motion
is rigid. In this occurrence, v = v0 +ω0 × (x− x0) , ω = ω0, with v0,ω0 constant on S ,
from which v = ω0 × x, ω = 0. Therefore, the principle requires that:

S

t0 · v0 + (x− x0)× t0 + x
 × t1 +m0 ·ω0 ds = 0 ∀ (v0,ω0) [2.92]

from which follows:

t0 = 0, m0 = −x
 × t1 [2.93]

26. The adjective “virtual”, here and in the following, stresses the fact that the dynamical and
kinetic quantities are unrelated.
27. Note that (as for the Cauchy continuum) just the first gradient of the velocity appears in
the definition of the internal virtual power. For this reason, the theory is of first gradient (or
degree-1).
28. This definition is equivalent to that given in the force balance approach (section 1.2.2),
according to which the stress is the more general system of self-equilibrated internal forces
acting on an infinitesimal element of the body.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Straight Beams 85

In conclusion, with these restrictions, the internal virtual power [2.91] assumes the form:

Pint :=

S

t1 · v
 −ω× x

 +m1 ·ω ds [2.94]

which is just equation [2.90], with the index 1 omitted on the stresses.

REMARK 2.12. Equation [2.90], which defines the internal virtual power, implicitly
also defines the stresses. These, however, are not introduced on the ground of a
dynamic characterization of the internal contact interactions, as will be done in the
equilibrium approach, but rather are defined as (not observable) dual quantities of
kinetic (observable) quantities.

The stress components

The stresses t,m are conveniently expressed in the current configuration
(Figure 2.10(b) as:

t = Na1 + T2a2 + T3a3

m = M1a1 +M2a2 +M3a3
[2.95]

Here, N is the normal force29; T2, T3 are the shear forces; M1 is the twisting moment
and M2, M3 are the bending moments. Therefore, the state of stress depends on six
scalar fields.

The internal virtual power in terms of strain-rates

The internal virtual power has been introduced in terms of stretching velocity
gradients. However, it is possible to give to it an alternative expression in terms of
strain-rates that will be useful later.

We remember (equations [2.80] and [2.83]) that the stretching velocity gradients
are related to the strain-rates via d = Rė and s = Rk̇; therefore, equation [2.90] can
also be written as:

Pint :=

S
t ·Rė+m ·Rk̇ ds [2.96]

29. Here, according to the tradition, allusion is made to the section, although it disappeared in
the polar model.
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86 Mathematical Models of Beams and Cables

Both the strain-rates, ė, k̇, refer to the B̄-basis, but pre-multiplication by R pushes
them to the B-basis, according to:

Rė = ε̇a1 + γ̇2a2 + γ̇3a3

Rk̇ = κ̇1a1 + κ̇2a2 + κ̇3a3

[2.97]

so that, by using equations [2.95], which express stresses in B, we finally have:

Pint =

S
(Nε̇+ T2γ̇2 + T3γ̇3 +M1κ̇1 +M2κ̇2 +M3κ̇3) ds [2.98]

Therefore, the internal virtual power is sum of the products between the stress
components, evaluated in the current basis, and the dual strain-rate components,
evaluated in the reference basis30.

The Virtual Power Principle

The VPP establishes that in any kinematically admissible virtual motion, the
external virtual power spent by the forces p, c,PH ,CH on the velocity and spin
fields v,ω, equates the internal virtual power spent by the stresses t,m on the
stretching velocity gradient fields d, s, i.e.:

Pext = Pint ∀ (v,ω) [2.99]

or by remembering that d = v −ω× x and s = ω:

S

(p · v + c ·ω)ds+
B

H=A

(PH · vH +CH ·ω)

=

S
[t · (v

−ω× x) +m ·ω] ds ∀ (v,ω)

[2.100]

30. With the symbols of the metamodel (equation [1.6]), it is Pint = S σT ε̇ds, with σ :=

(N,T2, T3,M1,M2,M3)
T and ε̇ := (ε̇, γ̇2, γ̇3, κ̇1, κ̇2, κ̇3)

T .
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Straight Beams 87

The balance equations and boundary conditions

The VPP provides the balance equations via the following procedure. By
integrating by parts and permuting the factor of the mixed product, we have:

S
(p · v + c ·ω) ds+

B

H=A

(PH · vH +CH ·ωH)

= −

S
(t · v +m

·ω+ x
× t ·ω) ds+ [t · v +m ·ω]

B
A ∀ (v,ω)

[2.101]

or, rearranging:

S
[(t + p) · v + (m + x

× t+ c) ·ω] ds

+

B

H=A

[(PH ± tH) · vH + (CH ±mH) ·ωH ] = 0 ∀ (v,ω)

[2.102]

where the upper sign holds at A and the lower at B. Due to the arbitrariness of the test
motion, the following field equations are derived:

t + p = 0

m + x
× t+ c = 0

[2.103]

together with the boundary conditions:

(PH ± tH) · vH = 0

(CH ±mH) ·ωH = 0, H = A,B
[2.104]

Equations [2.103] are the (local form of the) balance equations. Equations [2.104]
generate the relevant boundary conditions. Once the geometric (or essential) boundary
conditions [2.17] are prescribed, they supply the natural conditions. For example, (a)
if H is clamped, then vH = 0, ωH = 0, and therefore no mechanical condition
must be enforced there; (b) if H is free, then vH = 0, ωH = 0 are arbitrary, and
therefore PH ± tH = 0, CH ±mH = 0 must hold there. Therefore, geometric and
mechanical conditions are alternative.

The same property holds for partially restrained ends. For example, if the end H is constrained
by a spherical hinge, then vH = 0 but ωH is arbitrary so that the mechanical conditions only
concern the couple-stress, i.e. CH ± mH = 0. As a second example, if the constraint is a
cylindrical hinge of axis n̄, then vH = 0 and ωH = Θ̇n̄, where the angular velocity Θ̇ is
arbitrary. Then, the mechanical condition is scalar, i.e. (CH ±mH) · n̄ = 0, and expresses the
equality of the couple-stress and the external couple, when they are both projected along the
fixed rotation axis n̄.
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88 Mathematical Models of Beams and Cables

2.2.2 The inertial contributions

We now account for inertial effects on the dynamics of the beam. We will first
incorporate the inertia forces in the VPP, and then we will illustrate an alternative
approach, based on the Extended Hamilton Principle (EHP).

The inertia forces

If dynamical effects are not negligible, by invoking the d’Alembert principle, the
inertia forces pin := −mv̇ and the inertia couples cin := −IGω̇ must be included
in the external power, with m the mass per unit length of the beam and IG the inertia
tensor of the cross-section (we will derive later from the 3D-model, see equation
[2.113]). Therefore, the VPP [2.99] modifies into:

P
act
ext + P

in
ext = Pint [2.105]

where31:

P
act
ext :=

S
(p · v̂ + c · ω̂) ds+

B

H=A

(PH · v̂H +CH · ω̂H)

P
in
ext :=

S
(−mv̇ · v̂ − IGω̇ · ω̂) ds

[2.106]

Here, a hat (not necessary before) has been used to denote virtual velocities v̂, ω̂, in
order to not confuse them with the unrelated true velocities v,ω. Accordingly, the
balance equations become:

t + p = mü

m + x
× t+ c = IGω̇

[2.107]

The Extended Hamilton Principle

An alternative derivation of the principle [2.105], and the consequent balance
equations [2.107], descends from the EHP, (see equation [1.108]). It works as a
generalization of the VPP and avoids the need to resort to the notion of inertia force.

31. A boundary term in Pin
ext can also exist, if lumped masses, not considered here, are attached

at the ends of the beam.
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Straight Beams 89

The EHP, in its usual form, states that:

t2

t1

(δT − δU + δW ) dt = 0, ∀ (δu, δR) |δu (s, ti) = 0, δR (s, ti) = 0, i = 1, 2

[2.108]

where δT is the variation of kinetic energy, δU the work spent by the internal forces
and δW the work spent by the external forces during the motion in the interval δt. It
can be recast in terms of powers as follows:

t2

t1

δT

δt
−

δU

δt
+

δW

δt
dt = 0, ∀ (v̂, ω̂) |v̂ (s, ti) = 0, ω̂ (s, ti) = 0, i = 1, 2

[2.109]

But, according to equation [2.106a], δW/δt ≡ Pact
ext ; moreover, according to equation

[2.90], or to the alternative expression [2.98], it is δU/δt ≡ Pint. Therefore, in order
to reobtain equation [2.105], it only needs to prove that δT/δt ≡ P in

ext. To this end,
we start from the definition of kinetic energy:

T :=

S

1

2
mv · v +

1

2
IGω ·ω ds [2.110]

from which:

δT =

S
(mv · δv̂ + IGω · δω̂) ds [2.111]

and finally:

δT

δt
=

S
mv ·

δv̂

δt
+ IGω ·

δω̂

δt
ds =

S
(−mv̇ · v̂ − IGω̇ · ω̂) ds = P

in
ext

[2.112]

where an integration by parts has been performed and boundary terms vanished, as
requested in equation [2.109].

In conclusion, δT/δt accounts for the contribution of the d’Alembert inertia forces
to the balance equations.
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90 Mathematical Models of Beams and Cables

The inertia tensor

The inertia tensor IG (whose dimensions are [ML]), appearing in the inertia forces
and in the kinetic energy, can be derived by the 3D-model of beam with rigid cross-
section. In the current basis, it assumes the following representation:

IG := [IG]B =

⎛⎝I1 0 0
0 I2 −I23
0 −I23 I3

⎞⎠ [2.113]

where:

I1 :=

A
r22 + r23 dA, I2 :=

A
r23dA,

I3 :=

A
r22dA, I23 :=

A
r2r3dA

[2.114]

where is the mass density ML−3 , A is the cross-section and dA is the element of
area. If the triad B is principal of inertia, then the mixed moment of inertia vanishes,
I23 = 0, so that the tensor becomes diagonal. We will later refer to this simplest case.

To prove equation [2.113], we write the kinetic energy for unit length of the 3D-beam:

dT

ds
:=

1

2
A

vQ · vQdA

=
1

2
A

vG +ω× r
2dA

=
1

2
A

vG
2 + ω× r

2 dA

[2.115]

where we used equation [2.69] and accounted for the A rdA = 0. Since:

ω × r
2 = ω r sin (ω, r)

2

= ω
2
r

2 1− ω · r
ω r

2

= (ω ·ω) (r · r) − (ω · r)2

[2.116]

by defining:

m :=

A

ρdA, IGω :=

A

[(r · r)ω− (ω · r) r] dA [2.117]
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Straight Beams 91

it follows that dT
ds

= 1
2
mvG · vG + 1

2
IGω ·ω, i.e. equation [2.110] is derived, with v ≡ vG.

By expanding the products in the definition of the inertia tensor we have:

IGω =

A

r22 + r23 (ω1a1 + ω2a2 + ω3a3)

− (r2ω2 + r3ω3) (r2a2 + r3a3) dA

=

A

r22 + r23 ω1a1 + r23ω2 − r2r3ω3 a2

+ r22ω3 − r2r3ω2 a3 dA

[2.118]

from which equation [2.113] follows.

2.2.3 The balance of momentum

An alternative procedure to derive the local balance equations is offered by the
principles of the (linear) momentum and of the angular moment, which lead to
equations known as “cardinal equations of dynamics”, or, in the static case,
“equilibrium equations”, or “balance of force equations”. These principles are
postulates of continuum mechanics, borrowed from mechanics of a collection of
particles and rigid bodies. They state that “the time-derivative of the total (angular)
momentum of any parts of a body is equal to the vector sum (of the moments) of the
external forces acting on it”. Since a part of the body is subjected to external and
internal forces (or stresses), we have to first define stresses on a physical ground,
which is something different from the definition we gave before via the concept of
internal power. We will see, however, that the two approaches give the same results.

The linear and angular momentum

According to well-known results of rigid-body dynamics, we introduce two vector
quantities:

j := mv [2.119]

called the momentum per unit length of the beam32, and:

h := x×mv + IGω [2.120]

32. The linear momentum is often denoted by p or f ; these symbols, however, assume different
meanings in this book.
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92 Mathematical Models of Beams and Cables

called the angular momentum per unit length of the beam (with respect to a fixed pole
O). Here, m is the mass per unit length of the beam, and IG is the mass inertia tensor
of the cross-section with respect to the center of mass G defined in equation [2.113].
The two terms on the right side of equation [2.120] are known as translational and
rotational contribution to the angular moment, respectively.

We can derive the previous expressions by resorting to a 3D-model of a beam with rigid cross-
sections. Let us consider the cross-section at abscissa s, and let G be its centroid, that we will
assume coincident with its center of mass (as it happens, for example, when the mass density is
constant). The momentum per unit length of the beam is defined as:

j :=

A

vQdA =

A

vGdA+

A

ω× rdA [2.121]

where the “Fundamental Formula of Rigid Kinematics”, has been used (equation [2.69]). Since
G is center of mass of the section, the second integral (being linear in r) vanishes, and equation
[2.119] is reobtained, in which m := A dA, and v := vG has been posed.

The angular momentum per unit length of the beam with respect to O is defined as:

h :=

A

xQ × vQdA

=xG × vG

A

dA+ xG ×
A

(ω× r) dA

+

A

rdA× vG +

A

r× (ω× r) dA

[2.122]

where equation [2.69] has been used and xQ = xG + r has been posed. Due to the geometrical
properties of G, the second and third integrals (whose integrands are linear in r) vanish; hence:

h = x×mv+

A

[(r · r)ω− (r ·ω) r] dA [2.123]

where x := xG has been posed and the double cross-product has been expanded33. By using
the definition [2.117b] for the inertia tensor, equation [2.120] follows.

The stresses and the “Action and Reaction Principle”

We introduce magnitudes able to describe the mechanical interactions occurring
among the body-points of the beam. Similar to what was done for the Cauchy
continuum, we assume that the interaction only occurs through contact. Differently to

33. We remember the identity u× (v ×w) = (u ·w)v − (u · v)w.
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Straight Beams 93

P−

P+

−t −m

tm

A

B

(a)

a1

a2

N,M1

T2,M2

P+

(b)

Figure 2.10: Force-stress and couple-stress: (a) Newton’s third law, (b) scalar
components.

that model, however, and as a peculiarity of the polar continuum, we admit that the
body-points are able to exchange contact internal couples in addition to contact
internal forces. This aspect should be considered as the dynamic counterpart of the
ability to rotate possessed by the body-points. The internal actions are called stresses,
in a generalized meaning, although they have the physical dimensions of forces
(i.e. [MLT−2]) or couples ([ML2T

−2
]), respectively. The force should be interpreted

as the integral of the (properly said) stresses acting on the cross-section of the beam,
and the couple as the integral of the moment of these stresses with respect to the
cross-section centroid. Thus, via the polar model, and as already observed in
kinematics, we regain the information lost in passing from the 3D to 1D object.

With these ideas in mind, we define two vector fields: (a) the force-stress t(s, t),
as the force exchanged at the abscissa s and time t between two points in contact, and
(b) the couple-stress m(s, t), as the couple exchanged by the same points. We admit
that the Newton’s third law of action and reaction is satisfied, namely34:

t− = −t+, m− = −m+ [2.124]

in which the ± superscript denotes the positive, P+, or the negative, P−, “face” of
the point P , where the stress is applied (see Figure 2.10(a)).

Conventionally, we will assume as positive the face that is on the boundary of a
“volume” whose outward normal is concordant with a1, and we will simply denote by
t,m the stresses acting on it; the stresses acting on the opposite face will be denoted
by −t,−m.

REMARK 2.13. It should be noted, that the Action and Reaction Principle is
unimportant in the power balance approach, while, as we will see soon, it is essential
in the force balance approach.

34. This is equivalent to the Cauchy Lemma of Continuum Mechanics.
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94 Mathematical Models of Beams and Cables

The linear momentum balance equation

To write the momentum principles, we start by considering a finite portion of the
beam, of end-points P−

1 and P+
2 , in its current configuration (Figure 2.11(a)). On this

piece of beam, there are applied external forces p(s, t) and external couples c(s, t).
Moreover, internal forces −t1, t2, and couples −m1, m2, are applied at the end-
points, where ti := t(si, t),mi := m(si, t) and equation [2.124] has been exploited.

P−
1

P+
2

−t1

−m1

t2

m2

x(s, t)

p

c

(a)

P

Q

−t

−m

t+ dt

m+ dm

pds

cds

dx

(b)

Figure 2.11: Internal and external forces acting on: (a) a finite portion of a beam, (b)
an infinitesimal element.

The momentum principle requires that:

−t1 + t2 +

s2

s1

pds = ∂t

s2

s1

mvds [2.125]

where m is the mass per unit length of the beam, assumed uniform, and the last term
is the momentum time-rate (equation [2.119]). Note that the external forces act in
the deformed configuration, but they refer to the original arc length; similarly for the
mass 35. Equation [2.125] can be transformed by bringing all terms under the integral
sign36:

s2

s1

(t + p−mü) ds = 0 [2.126]

35. In an Eulerian approach, we would refer the principle to the current configuration by writing
p̂dŝ and m̂dŝ where a hat denotes a stretched quantity; however, continuity of force and mass
entails that p̂dŝ = pds and m̂dŝ = mds.
36. This operation is the one-dimensional counterpart of the Green Lemma that permits us to
transform a surface integral into a volume integral.
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Straight Beams 95

where v = u̇ has been used. Since this integral must be equal to zero for any interval
(s1, s2), the integrand must be zero everywhere, i.e.:

t + p = mü [2.127]

which is the momentum equation sought for (identical to equation [2.107a]). If
dynamics effects can be neglected, it reduces to the equilibrium equation [2.103a].

The angular momentum balance equation

By selecting an arbitrary pole O, and taking, for simplicity xO = 0, the moment
of all forces, internal and external, with respect to this point can be evaluated. The
angular momentum principles states that:

−m1 − x1 × t1 +m2 + x2 × t2 +

s2

s1

(x× p+ c) ds

= ∂t

s2

s1

(mx× v + IGω) ds

[2.128]

where xi := x (si, t) and equation [2.120] has been accounted for by the angular
moment. Here, the mass inertia tensor of the section with respect to the centroid, IG,
is assumed to be diagonal and uniform along the beam37. By transforming the first
terms in integral form, and accounting for ∂tx× v = 0, we have:

s2

s1

m + (x× t)

+ x× (p−mẍ) + (c− IGω̇) ds = 0 [2.129]

But, if equation [2.127] is used, this equation further reduces to:
s2

s1

[m + x
× t+ c− IGω̇] ds = 0 [2.130]

hence:

m + x
× t+ c = IGω̇ [2.131]

which is the angular momentum equation we looked for (identical to equation
[2.107b]. If inertia effects are negligible, then this reduces to the equilibrium
equation [2.103b].

37. Note that IG is independent of time, since it represents the inertia of the cross-section with
respect to the attached basis B.
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96 Mathematical Models of Beams and Cables

REMARK 2.14. The equilibrium equations [2.103] can also be obtained by writing
the balance of forces on an infinitesimal piece of beams, PQ, of length ds, namely
(Figure 2.11(b)):

− t+ t+ dt+ pds = 0

−m+m+ dm+ dx× (t+ dt) ds+
1

2
dx× pds+ cds = 0

[2.132]

where O ≡ P has been taken to simplify the expressions. By retaining the first-order
quantities only, and dividing by ds, the equations previously obtained are reobtained.
By invoking the d’Alembert principle, inertia forces −mü and inertia couples −IGω̇

must be added to obtain equations [2.127] and [2.131].

REMARK 2.15. Note that the balance equations, in vector form, are similar but not
equal to the relevant expressions of the linear theory. Indeed, the arm of the force-
stress in equation [2.131] is x = ā1+u, while it is ā1 in the linear theory. Moreover,
the normal and shear forces now act along the vectors of the current basis B, while in
the linear theory they are directed as the vectors of the reference basis B̄.

The mechanical boundary conditions

The mechanical boundary conditions, in the framework of the force balance
approach, must be established separately from the field equations. These conditions
prescribe the equality of the stresses “emerging” at the ends of the beam to the
external forces applied there. Since the stresses acting at A− are −tA,−mA, and
those at B+ are tB,mB , the conditions become (see Figure 2.9):

tH = PH , mH = CH , H = A,B [2.133]

where the upper (or lower) sign holds at A (or B).38

However, only active forces applied at the free boundary are known a priori; in
contrast, reactive forces acting at the constrained boundary are unknown. Therefore,
the mechanical boundary conditions [2.133] can only be prescribed at the free
boundary. Thus, the same result [2.104] supplied by the virtual power formulation is
obtained, i.e. natural and mechanical boundary conditions coincide.

38. Note that the boundary conditions [2.133] have a structure which is similar to that of the
Cauchy continuum, i.e. Tn = f , where T is the stress tensor, n is the outward normal and f is
the surface force. Here, in a 1D continuum, the stress tensor is replaced by a vector, t or m, and
the normal vector by a scalar, namely +1 on the right, where the outward normal is concordant
with a1, and -1 on the left, where the outward normal is discordant with a1.
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Straight Beams 97

2.2.4 The scalar forms of the balance equations and boundary
conditions

The balance equations [2.107] and the mechanical (or natural) boundary conditions
[2.133] can indifferently be projected onto the basis B or B̄. We will derive both forms
of these scalar equations. In the next section, we will derive a third form.

The balance equations in the current basis

The space-derivatives of the vectors t and m, being vectors attached to B, follow
the rule in equation [2.49]; the same occurs for the angular acceleration ω̇ that must
be evaluated by equation [2.64]. Therefore39:

[t]B =

3

i=1

T 
iai + kc × t

B
= t +Kt

[m]B =

3

i=1

M 
iai + kc ×m

B
= m +Km

[ω̇]B =

3

i=1

ω̇iai +ω×ω

B
= ω̇

[2.134]

In contrast, since the displacement u = 3
i=1 uiāi is represented in B̄, the linear

acceleration is ü =
3
i=1 üiāi, and therefore40:

[ü]B = RT
3

i=1

üiai

B
= RT ü [2.135]

Concerning external forces, and depending on our convenience41, we can
represent them in either bases, e.g. p =

3
i=1 piai or p =

3
i=1 p̄iāi, independent

of the fact that we decided to project the equations in the current basis. If we use the
former representation, we write [p]B = p, with p := (p1, p2, p3)

T ; if we use the
latter representation (as we do for the inertial forces), we write [p]B = RT p̄, with

39. Here, T1 ≡ N .
40. If, however, u is represented in B, as for example could be useful for rotating shafts,
then equation [2.65] must be used, leading to local, gyroscopic, centripetal and tangential
components.
41. For example, dead loads are more conveniently expressed in the reference basis, while
pressure or tangential forces are more conveniently expressed in the current basis.
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98 Mathematical Models of Beams and Cables

p̄ := (p̄1, p̄2, p̄3)
T . Similarly, for the other forces c, PH ,CH . Here, we use the

representation in B.

Therefore, the linear momentum equation, in the current basis, becomes:

t +Kt+ p = mRT ü [2.136]

or in extended form:⎛⎝N 

T 
2

T 
3

⎞⎠+

⎛⎝ 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

⎞⎠⎛⎝N
T2

T3

⎞⎠+

⎛⎝p1
p2
p3

⎞⎠

=

⎛⎝R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞⎠T ⎛⎝mü1

mü2

mü3

⎞⎠
[2.137]

By similar arguments, and remembering the definition [2.85], the scalar form in B

of the angular momentum equation is42:

m +Km +Λt+ c = IGω̇ [2.138]

or: ⎛⎝M 
1

M 
2

M 
3

⎞⎠+

⎛⎝ 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

⎞⎠⎛⎝M1

M2

M3

⎞⎠
+

⎛⎝ 0 −γ3 γ2
γ3 0 − (1 + ε)
−γ2 1 + ε 0

⎞⎠⎛⎝N
T2

T3

⎞⎠+

⎛⎝c1
c2
c3

⎞⎠ =

⎛⎝I1ω̇1

I2ω̇2

I3ω̇3

⎞⎠
[2.139]

With regard to the mechanical boundary conditions, when equations [2.133] are
projected onto the current basis, they furnish:

tH = PH , mH = CH [2.140]

where PH := (P1H , P2H , P3H)
T
, CH := (C1H , C2H , C3H)

T are the components
in B of forces and couples acting at the beam ends.

42. The rotatory inertia can also been expressed in terms of Tait–Bryan angles by using equation
[2.71b].
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Straight Beams 99

The balance equations in the reference basis

To express the balance equations in B̄, we can use the scalar representation
obtained in B and perform a change of basis. Accordingly, we have to pre-multiply
the column matrix that collects the equations by the rotation matrix R =: [Rij ].
Thus, equations [2.136] and [2.138] transform as follows43:

R (t +Kt) + p̄ = mü

R (m +Km) +RΛt+ c̄ = RIGω̇
[2.141]

where we used components of forces in B̄.

Concerning the mechanical boundary conditions, when equations [2.133] are
projected onto the reference basis, we have:

RHtH = P̄H , RHmH = C̄H [2.142]

where P̄H := P̄1H , P̄2H , P̄3H
T
, C̄H := C̄1H , C̄2H , C̄3H

T
list the component

of forces and couples acting at H = A,B in the basis B̄.

REMARK 2.16. The translational inertia forces assume a simpler form in reference
basis, while the angular inertia forces are simpler in the current basis.

2.2.5 The Lagrangian balance equations

In the previous sections, we derived the vector form of the balance equations, and
then projected it onto a basis to our liking. There, all magnitudes involved have a
vector (or tensor) character. However, as is well-known, there exists an alternative
approach, in which magnitudes are handled as scalar quantities. As an example, the
Euler–Lagrange equations of motions of a finite-dimensional system involve the
Lagrangian coordinates, which are not components of a vector, but a collection of
scalar quantities.

In our treatment, we indeed encountered a similar collection, namely the
pseudo-vector (by Argyris [ARG 82]) θ, which lists the Tait–Bryan angles θi. Their
time-derivatives θ̇i naturally appear when strain–rates are evaluated by
time-differentiation of the strain-displacement relationships, instead of using their

43. Collecting stresses and forces in column-vectors, i.e. σ := (N, T2, T3,M1,M2,M3)
T ,

p := (p1, p2, p3, c1, c2, c3)
T , they become D (w,w)σ = p. Here, D (w,w) is the 6× 6

equilibrium operator, depending on the six configuration variables w and their derivatives
(via the rotations θi and the strain–displacement relationships). The equilibrium operator
D (w,w) is the adjoint of the kinematic operator D (w,w).
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100 Mathematical Models of Beams and Cables

relations with the stretching and curvature gradient. Therefore, it is expected that if
the pseudo-vector is used, scalar balance equations, different from those derived
above, are found.

We want to investigate this topic with a twofold scope: (a) to understand the link
existing among the different forms of the scalar balance equations and (b) to prepare
the ground for further developments (namely, formulation of internally constrained
models, Chapter 4, where the scalar approach is more useful).

The scalar balance equations in the reference basis

We start by rewriting the VPP in scalar form, namely:

S
ėT t+ k̇

T
m ds =

S
vT p̄+ ω̄T c̄ ds+

B

H=A

vT P̄ + ω̄T C̄
H

[2.143]

where all the quantities are evaluated in the reference basis. Here, the internal virtual
power appears as the product of column matrices, namely the strain-rates
ė := (ε̇, γ̇2, γ̇3)

T
, k̇ := (κ̇1, κ̇2, κ̇3)

T , we introduced in section 2.1.8, and the dual
stresses t := (N,T2, T3)

T
, m := (M1,M2,M3)

T . By expressing (by the way of
equations [2.87]) the strain-rates in terms of velocity and spin components,
i.e. v := (u̇1, u̇2, u̇3), ω̄ := (ω̄1, ω̄2, ω̄3), and integrating by parts, the internal virtual
power becomes:

Pint :=

S
vTRt+ ω̄TRΛT t+ ω̄TRm ds

=

S
−vT (Rt) − ω̄TRΛt− ω̄T (Rm) ds

+ vTRt+ ω̄TRm
B

A

[2.144]

where we used ΛT = −Λ; therefore, the VPP becomes:

S
vT (Rt)


+ p̄ + ω̄T (Rm)


+RΛt+ c̄ ds

+

B

H=A

vT P̄ ±Rt + ω̄T C̄ ±Rm
H

= 0 ∀ (v, ω̄)

[2.145]

From this, the static version of the scalar balance equations [2.141] and the boundary
conditions [2.140] follow once the derivative of the product has been performed and
K = RTR has been taken into account.
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Straight Beams 101

The Lagrangian balance equations

According to the Lagrangian formulation, the configuration variables are the
translations u and the elementary rotations θ, so that the virtual motion is described
by the velocities v ≡ u̇ and the time-derivatives θ̇, instead of ω̄. Since these latter
quantities are related by ω̄ = B̄ωθ̇ (equation [2.71a]), the VPP [2.145] modifies into:

S
u̇T (Rt) + p̄ + θ̇

T
B̄

T
ω (Rm) +RΛt+ c̄ ds

+

B

H=A

u̇T P̄ ±Rt + θ̇
T
B̄

T
ω C̄ ±Rm

H
= 0 ∀ u̇, θ̇

[2.146]

from which the balance equations follow44:

R (t +Kt) + p̄ = 0

B̄
T
ω [R (m +Km) +RΛt+ c̄] = 0

[2.147]

with the boundary conditions:

u̇T
H P̄H ±RHtH = 0

θ̇
T

HB̄
T
ωH C̄H ±RHmH = 0

[2.148]

These will be referred to as the Lagrangian equations. By comparing them with
equations [2.141] and [2.140], it appears that while the linear momentum equations
coincide, the angular momentum equations differ. As a matter of fact, by
remembering that the columns of B̄ω are the director cosines of the three elementary
rotation axes with respect to the reference basis (i.e. the unit vectors of the spin basis
Bω), we conclude that they are the projection of the moment vector equations on
these axes. Therefore, according to the Lagrangian formulations, while the
translation equations represent the force balance along the orthogonal directions of
B̄, the moment equations express the balance of moments around the non-orthogonal
directions of Bω.

REMARK 2.17. Note that B̄
T
ω c̄ and B̄

T
ωHC̄H are just the Lagrangian forces of the

Analytical Mechanics, i.e. the forces which spend power on the time-derivatives of the
Lagrange parameters, θ̇ and θ̇H , respectively.

44. When these equations are written in formal matrix form, as we did for the metamodel
(section 1.2.2), they become:

− RK 0

B̄
T
ωRΛ B̄

T
ωRK

+
R 0

0 B̄
T
ωR

∂s
t

m
=

p̄

c̄
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102 Mathematical Models of Beams and Cables

2.3 Constitutive law

The formulation of the model calls for introducing a constitutive law characterizing
the material behavior, aimed at establishing a link among stresses and strains. We
mainly confine ourselves to hyperelastic materials; however, we also give an outline
for linear viscoelastic materials.

2.3.1 The hyperelastic law

As we discussed about the metamodel in section 1.2.3, a beam is hyperelastic when
the work spent by the external forces to deform it is equal to the variation of an elastic
energy, whose existence is postulated. This property excludes any internal dissipation.
By referring to an interval of time dt, the work spent by the external forces acting on
the beam in the true (not virtual) velocity field is Pextdt, which, by virtue of the VPP
[2.99], is equal to Pintdt. Therefore, the deformation work for unit length of the beam
is;

d

ds
(Pintdt) = t ·Rė+m ·Rk̇ dt

= t ·Rde+m ·Rdk

= de ·RT t+ dk ·RTm

[2.149]

where the expression [2.96] for Pint and an identity have been used. In order for
this expression to be an exact differential, it must equate the differential of an elastic
potential function φ(e,k), which, by definition, becomes:

dφ = de ·
∂φ(e,k)

∂e
+ dk ·

∂φ(e,k)

∂k
[2.150]

By equating the previous expressions, the hyperelastic (or Green) law follows:

RT t =
∂φ(e,k)

∂e
, RTm =

∂φ(e,k)

∂k
[2.151]

It states that the pulled-back stresses, RT t, RTm, equate the derivatives of the elastic
potential with respect to the dual (reference) strains e,k, respectively. Therefore, RT

accounts for the fact that the stresses are defined in the current configuration, while
the strains are defined in the reference configuration.
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Straight Beams 103

In scalar form, since:

RT t = N ā1 + T2ā2 + T3ā3

RTm = M1ā1 +M2ā2 +M3ā3

∂φ

∂e
=

∂φ

∂ε
ā1 +

∂φ

∂γ2
ā2 +

∂φ

∂γ3
ā3

∂φ

∂k
=

∂φ

∂κ1
ā1 +

∂φ

∂κ2
ā2 +

∂φ

∂κ3
ā3

[2.152]

the hyperelastic law becomes:

N =
∂φ

∂ε
, T2 =

∂φ

∂γ2
, T3 =

∂φ

∂γ3

M1 =
∂φ

∂κ1
, M2 =

∂φ

∂κ2
, M3 =

∂φ

∂κ3

[2.153]

with φ = φ (ε, γ2, γ3, κ1, κ2, κ3). In general, these laws are nonlinear and coupled.

The Hooke law

As an example of a widely used elastic law, let us assume that the potential is a
complete quadratic form in the strains, namely:

φ(e,k) :=φ0 + e · t̊+ k · m̊

+
1

2
(e · Eeee+ e · Eekk+ k ·Ekee+ k · Ekkk)

[2.154]

where φ0 is an inessential constant, and Eαβ = ET
βα are elastic tensors, whose

symmetry properties came down to the fact that φ ≡ φT . Then, according to
equations [2.151], the hyperelastic law is linear:

RT t = t̊+Eeee+Eekk

RTm = m̊+Ekee+Ekkk
[2.155]

and it is known as the (non-homogeneous) Hooke law. In it, the prestresses, t̊, m̊
appear, i.e. possible stresses acting in the reference configuration, at which e = k = 0.
If the natural configuration is taken as a reference, then prestresses vanish, and the
Hooke law becomes homogeneous.

In matrix form (by equations [2.152a,b]), we can also write:

t = t̊+Eeee+Eekk

m = m̊+Ekee+Ekkk
[2.156]
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104 Mathematical Models of Beams and Cables

where all vectors and matrices collect components in the reference basis. In extended
form, we have:⎛⎜⎜⎜⎜⎜⎜⎝

N
T2

T3

M1

M2

M3

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

N̊

T̊2

T̊3

M̊1

M̊2

M̊3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝
E11 E12 E13 E14 E15 E16

E22 E23 E24 E25 E26

E33 E34 E35 E36

E44 E45 E46

E55 E56

sym E66

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
ε
γ2
γ3
κ1

κ2

κ3

⎞⎟⎟⎟⎟⎟⎟⎠ [2.157]

in which the 6× 6 elastic matrix [Eij ] is full, depending on 21 independent constants.

2.3.2 Identification of the elastic law from a 3D-model

To formulate a hyperelastic law, we must, in this order: (a) adopt an elastic
potential and (b) attribute a value to the elastic constants contained in it. Concerning
task (a), the simplest choice consists of taking a polynomial expression, of second or
higher degree. The higher the degree, the higher the possibility of fitting
experimental results. Usually, a quadratic expression, leading to the Hooke law, is
adopted in application, but we will show soon that this drastic simplification suffers
some drawbacks. Concerning task (b), if experimental data are not available, one can
perform an identification of the elastic constants from a 3D-model, for which the
elastic potential is known. The procedure requires to express the strains of the
3D-model in terms of the strains of the 1D-model via a strain-map. Once this has
been built up, the elastic potential for the 3D-model is assumed as the potential for
the 1D-model. Here, the procedure is explained for a linear and a (simplified)
nonlinear model.

The strain map

A 3D-beam is considered, which is made up of linear elastic and isotropic material.
Its elastic potential for unit length becomes:

φ =

A
(̊σ11ε11 + τ̊12γ12 + τ̊13γ13) dA+

1

2
A

Eε211 +G γ2
12 + γ2

13 dA [2.158]

where A is the cross-section area, E is the Young modulus, G is the tangential elastic
modulus, ε11 is the unit extension of the longitudinal fibers, γ12, γ13 are the shear
strains and σ̊11, τ̊12, τ̊13 are the pre-existing stresses. By assuming that the
cross-sections of the beam remain planar and adopting linear kinematics, the strain
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Straight Beams 105

field on the cross-section becomes:

ε11 = ε+ κ2r3 − κ3r2

γ12 = γ2 − κ1r3

γ13 = γ3 + κ1r2

[2.159]

It depends on six constants (ε; γ2, γ3;κ1, κ2, κ3), denoting, in order: the unit
extension at the centroid, the uniform (averaged) shear strains and the torsional and
flexural curvatures; moreover,

−−→
GQ := r̄ = r2ā2 + r3ā3 selects the generic point Q

with respect to the centroid G. If we identify the six constants using homonymous
quantities of the 1D-model, equations [2.159] takes the role of a strain-map, linking
the strain field of the 3D-model to the strains of the 1D-model.

A linear uncoupled law

By using equation [2.159] in equation [2.158], performing integrations and by
assuming that B̄ is the principal inertia basis, a quadratic non-homogeneousexpression
for the potential is obtained:

φ =N̊ε+ T̊2γ2 + T̊3γ3 + M̊1κ1 + M̊2κ2 + M̊3κ3

+
1

2
EAε2 +GAγ2

2 +GAγ2
3 +GJGκ

2
1 + EJ2κ

2
2 + EJ3κ

2
3

[2.160]

where, A is the cross-section area, JG is the area polar moment of inertia with respect
to the centroid and J2, J3 are the area moments of inertia with respect to the two
principal axes, i.e.:

A :=

A
dA, J2 =

A
r23dA, J3 =

A
r22dA, JG =

A
r2dA [2.161]

where r := r̄ ; moreover:

N̊ :=

A
σ̊11dA, M̊1 :=

A
(̊τ13r2 − τ̊12r3) dA

T̊2 :=

A
τ̊12dA, M̊2 :=

A
σ̊11r3dA

T̊3 :=

A
τ̊13dA, M̊3 := −

A
σ̊11r2dA

[2.162]

are the prestresses for the 1D-model.
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106 Mathematical Models of Beams and Cables

However, as is well-known, this expression is quite inaccurate in describing the
contribution of shear strains and torsion because we neglected the relevant warping.
Therefore, although in an inelegant way, the potential is usually “corrected” into:

φ̃ =N̊ε+ T̊2γ2 + T̊3γ3 + M̊1κ1 + M̊2κ2 + M̊3κ3

+
1

2
EAε2 +GA2γ

2
2 +GA3γ

2
3 +GJ1κ

2
1 + EJ2κ

2
2 + EJ3κ

2
3

[2.163]

where A2, A3 are shear-areas and J1 is the torsional moment of inertia45. Here, EA is
the axial stiffness, GAj is the shear stiffnesses, GJ1 is the torsional stiffness and EJj
is the bending stiffnesses (j = 2, 3). In the 1D-model, each double symbol should
be considered as a “whole symbol”, including both the material properties and the
geometric properties of the (disappeared) cross-section.

The potential [2.163] is a special case of the more general form [2.154], in which
no mixed terms in the strains appear. Therefore, in the symbolism of equation [2.157],
the elastic matrix [Eij ] is diagonal. The uncoupled constitutive law, hence, becomes:

N = N̊ + EAε, T2 = T̊2 +GA2γ2, T3 = T̊3 +GA3γ3

M1 = M̊1 +GJ1κ1, M2 = M̊2 + EJ2κ2, M3 = M̊3 + EJ3κ3

[2.164]

A nonlinear constitutive law for large twist

The linear, uncoupled law [2.164] is widely adopted in applications. However, it
suffers a serious setback when the beam undergoes large twist. To bring the problem
to light, let us consider a beam in pure torsion (ui ≡ 0, θ1 = 0, θ2 = θ3 ≡ 0). From
the strain–displacement relationships [2.52] and [2.53], it follows that the unique not
vanishing strain is κ1 = θ1, which is a linear relation. Moreover, since u = 0, the
equilibrium equations [2.103] also become linear; in particular, M 

1 + c1 = 0. If,
therefore, we also adopt a linear constitutive law, such as M1 = GJ1κ1, the whole
problem is linear, irrespective of the amplitude of the twist. Since this result is
unrealistic, and kinematics and equilibrium are exact, we must conclude that the
inadequacy of the model lies in the constitutive law, which must be taken as
nonlinear. On a physical ground, indeed, we have to take into account that, when the
3D-beam is twisted, the longitudinal fibers elongate in passing from straight lines to
helicoidal spirals.

Although inconsistently, we improve the model by adding just a term to equation
[2.159a], in which we include the effect of twist. Accordingly, the unit extension

45. The shear areas are evaluated resorting to the exact theory of non-uniform bending, or to
the simplified Jourawsky theory, while the torsional inertia is computed via the torsion theory,
stated in the Neumann or Dirichlet forms.
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Straight Beams 107

becomes:

ε11 = (1 + u
1)

2
+ u

π
2 − 1 [2.165]

where we wrote u = u1ā1 + uπ, with uπ the in-plane component. Since, in linear
kinematics, uπ = θ1ā1 × r̄, then u

π = κ1r; hence, by expanding in series:

ε11 = u
1 +

1

2
κ2
1r

2 + higher order terms [2.166]

Equation [2.159a] is consequently updated as:

ε11 = ε+ κ2r3 − κ3r2 +
1

2
κ2
1r

2 [2.167]

while equations [2.159b,c] are left unchanged. Therefore, the potential [2.158]
modifies because of the appearance of the extra-terms:

Δφ :=
1

2
κ2
1

A
σ̊11r

2dA

+
1

2
EJGεκ

2
1 − EY3Gκ3κ

2
1 + EY2Gκ2κ

2
1 + h.o.t.

[2.168]

where only prestress and cubic terms have been retained. Here, JG is the
already-encountered, area polar inertia moment, and new, third-order area moments,
of dimensions L5 , have been introduced46:

Y2G :=

A
r3r

2dA, Y3G :=

A
r2r

2dA [2.169]

Note that Y2G = 0 if ā2 is a symmetry axis for the section; similarly, Y3G = 0 if ā3 is
of symmetry. The prestress contribution, moreover, can be transformed assuming that
(Navier formula):

σ̊11 =
N̊

A
+

M̊2

J2
r3 −

M̊3

J3
r2 [2.170]

so that:

A
σ̊11r

2dA = N̊ρ2G + M̊2
Y2G

J2
− M̊3

Y3G

J3
[2.171]

46. As a general notation adopted in this book, [Jα] = L4 , [Yα] = L5 and, to be used later,
[Γα] = L6 .

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



108 Mathematical Models of Beams and Cables

where ρ2G := JG/A is the polar radius of inertia with respect to the centroid.

By differentiating the extended potential φ̃ + Δφ, the following quadratic
constitutive law is obtained:

N = N̊ + EAε+
1

2
EJGκ

2
1

T2 = T̊2 +GA2γ2

T3 = T̊3 +GA3γ3

M1 = M̊1 +GJ1κ1 + EJGεκ1 − EY3Gκ3κ1 + EY2Gκ2κ1

M2 = M̊2 + EJ2κ2 +
1

2
EY2Gκ

2
1

M3 = M̊3 + EJ3κ3 −
1

2
EY3Gκ

2
1

[2.172]

where:

GJ1 := GJ1 + N̊ρ2G + M̊2
Y2G

J2
− M̊3

Y3G

J3
[2.173]

It appears that the quadratic nonlinearities couple torsion to extension and bending.
Thus, if a double-symmetric beam is twisted, axial forces must be applied at the ends
in order to keep the length unchanged; otherwise, a shortening occurs. If the cross-
section is not symmetric, couples are also necessary, otherwise the beam bends itself.
Moreover, if the beam is prestressed by an axial force and/or bending moment, these
stresses contribute to the torsional moment. This is an effect which is well-known in
elastic stability of beams (see e.g. [PIG 92]), where axial forces and bending moments
can produce torsional/lateral buckling.

REMARK 2.18. At a first glance, it could appear that the part of the elastic energy
[2.168] which is independent of the prestress is not positive-definite. However, it
must be kept in mind that this expression is truncated, and therefore it is invalid when
third-order terms become of the same order as second-order terms. If a non-truncated
expression were instead adopted, the contribution to the elastic energy would be
positive-definite, since it comes down to the integral of the square of ε11. However,
we must not forget that ε11 itself (equation [2.167]) is approximated, since it does not
vanish for any rigid motions. Therefore, the constitutive law [2.172] should be used
in a perturbation perspective only.

REMARK 2.19. Equation [2.173] can be explained as follows. When the beam is
prestressed, because of the fact that the longitudinal fibers incline with respect to the
(assumed planar) cross-section, the pre-existing stresses also incline, so that they
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Straight Beams 109

have a non-zero moment with respect to the beam axis. A simple experiment
highlighting this effect consists of twisting a two-string swing; since the strings,
which are prestressed by the plate’s own weight, are no longer vertical in the current
configuration, an apparent (geometric) torsional stiffness manifests itself, giving rise
to twist oscillations, although no first-order elastic strains occur.

Rotation about the center of twist

A more refined analysis of the twist requires accounting for twist rotations occurring not
around the centroid, but around the center of twist (or flexural center or shear center). The
question is not really relevant for compact cross-sections, but it is very important for thin-
walled beams (see the later Chapter 7). In the context of the locally undeformable beams we are
dealing with, we can easily include this aspect in the analysis, by rewriting equations [2.167]
and [2.159b,c] as:

ε11 = ε+ κ2r3 − κ3r2 +
1

2
κ2
1 (r − rC)

2

γ12 = γ2 − κ1 (r3 − r3C)

γ13 = γ3 + κ1 (r2 − r2C)

[2.174]

These account for the fact that bending occurs with respect to an axis passing through the
centroid G, while torsion occurs about the normal axis through the center of twist C, located
by the vector

−−→
GC := r̄C = r2C ā2 + r3C ā3, of modulus rC := r̄C . When the previous

procedure restarts, we find the following constitutive law:

N = N̊ + EAε+
1

2
EJCκ

2
1

T2 = T̊2 +GA2γ2

T3 = T̊3 +GA3γ3

M1 = M̊1 +GJ1 κ1 +EJCεκ1 −EY3Cκ3κ1 +EY2Cκ2κ1

M2 = M̊2 + EJ2κ2 +
1

2
EY2Cκ

2
1

M3 = M̊3 + EJ3κ3 − 1

2
EY3Cκ

2
1

[2.175]

where all the inertias are evaluated with respect to C:

JC :=

A

(r − rC)
2 dA, Y2C :=

A

r3 (r − rC)
2 dA

Y3C :=

A

r2 (r − rC)
2 dA

[2.176]

and, moreover:

GJ1 := GJ1 + N̊ρ2C + M̊2
Y2C

J2
− M̊3

Y3C

J3
[2.177]

with ρ2C := JC/A.
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110 Mathematical Models of Beams and Cables

2.3.3 Homogenization of beam-like structures

There exist structures that are not really beams, but that can be roughly assimilated
to be beams. Examples include: trussed beams, Vierendel beams, helicoidal springs
and, in general, periodic structures in which one dimension is prevalent on the other
two, realized as an assembly of a large number of cells that repeat themselves and
therefore also called cellular structures. If we look at these structures on a large scale,
and we are not interested in evaluating the local behavior, affecting one or few cells,
but the global behavior interesting a large number of cells, then we can model the
beam-like structure as a beam. The key point consists of a homogenization process of
the cellular structure able to provide a constitutive law for the equivalent 1D-beam.47

We will explain the procedure by referring to a specific example.

b
b

bb
b

(a)

O

G

b
Q1

Q2

Q3

Q4

(b)

O

G

b

a1

a2

a3

(c)

Figure 2.12: Trussed beam (refined model) and homogeneous beam (coarse model).

Let us consider the trussed beam of Figure 2.12, made up of several cubic cells of
side b, each made up of pinned trusses of known axial stiffness. We will refer to the
trussed beam as the refined model and to the homogeneous beam as the coarse model.
We consider one of the cells as a representative volume of the periodic structure, and
we take a piece of equal length to the homogeneous beam. Our goal is equating the
elastic potentials stored in the two volumes when the two models undergo the same
displacements. Of course, we cannot enforce the equality of the displacement field in
each interior point, since the models are different, but we can equate the
displacements of “sections” of the two models, by identifying the cross-stiffened
meshes of the trussed beam as the cross-sections of the homogeneous beam.
Moreover, since our coarse model is unable to account for dilatation of the section,
we have to assume that the cross-stiffened sections are undeformable and behave as
rigid bodies. Which displacements should be assigned to the sections? The best way
is to assign a uniform strain field inside the volume of the coarse model and then to
evaluate the displacements at the cross-section. The assumption seems acceptable in
view of the fact that we are interested in the behavior of a beam much longer than b.

47. Homogenization, however, can lead either to first-gradient beams [DIC 90] or higher-
gradient beams [ALI 03, SEP 11]; here we limit ourselves to the former case.
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Straight Beams 111

With these ideas in mind, we establish the following homogenization procedure:

1) Take the strains constant over the length b of the coarse model, delimited by the
sections O andG, assume O fixed and evaluate the displacementu := uG and rotation
R := RG of the section G, by integrating the strain–displacement relationships (in
scalar form, equations [2.52] and [2.53]) in which strains are taken constant over s.

2) Attribute the displacement u and the rotation R to the right sections of the
refined representative volume, and, by using uQk

= u + (R− I) r̄Qk
(with r̄Qk

:=
−−→
GQk), evaluate the displacement uQk

of any points Qk on the section through G,
where a truss is connected.

3) Evaluate the unit extensions ek of the trusses, their elastic potential energy
Uk(ek): = φk(ek)lk (with lk the length) and then sum the energies as U : =

k Uk(ek).

4) Evaluate the potential energy per unit length of the coarse model as φ := U/b
and finally derive the constitutive law via equation [2.151].

Of course, since each step involves nonlinear analysis, the constitutive law will
also be nonlinear. This could be tackled by a perturbation analysis, mainly to integrate
the kinematic problem, which, however, will not be addressed in this book.

b

b

(a)

ā1

ā2

u1L

u2L

u1U

u2U

L

U

O G

1

2

3

(b)

Figure 2.13: Planar truss.

As a simple example, let us consider the squared mesh planar truss in Figure 2.13 and carry out
the analysis in the linear field. The strain–displacement relationships [2.52] and [2.53] reduce
to:

ε = u
1, γ = u

2 − θ, κ = θ

where θ := θ3, γ := γ2, κ := κ3. Integration in the interval s ∈ [0, b], with zero conditions on
the left side of the cell (s = 0), provides the displacements on the right (s = b):

u1 = bε, u2 = bγ +
1

2
b2κ, θ = bκ
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112 Mathematical Models of Beams and Cables

Here, the displacements of the upper and lower U,L nodes, whose distances from G are ±b/2,
are:

u1U,L = bε
1

2
b2κ, u2U,L = bγ +

1

2
b2κ

These displacements induce in the trusses the following strains:

e1,2 =
u1U,L

b
= ε

1

2
bκ, e3 =

√
2
2

(u1U + u2U )√
2b

=
1

2
(ε+ γ)

The elastic energy stored in the cell is U = 1
2
EA0

3
i=1 e

2
i li, where A0 is the cross-sectional

area of all trusses; by dividing it by the cell length, the elastic potential (per unit length) φ =
U/b is derived:

φ =
1

2
EA0

5

4
ε2 +

1

4
γ2 +

√
2

2
εγ +

1

2
b2κ2

This is assumed as the elastic potential for the homogeneous beam. Finally, by applying the
Green law [2.151], we find the stresses:N

T
M

 = EA0

 5
4

√
2

2
0√

2
2

1
4
b2 0

0 0 1
2
b2


ε
γ
κ


Note that longitudinal and transverse strains are coupled, due to the presence of the diagonal
truss, which breaks the symmetry with respect to the beam axis.

2.3.4 Linear viscoelastic laws

Viscoelasticity accounts for slow phenomena, in which the response of the
material is not instantaneous, as happens in elasticity, but evolves even when the
solicitation remains constant in time. As peculiar examples, a relaxation occurs when
the stress evolves, notwithstanding the strain is kept constant; conversely, a creep
manifests itself when the strain evolves while the stress is constant. Such phenomena
are intrinsically irreversible, so that they always entail a loss of energy48.

Rheological models

The simplest rheological model accounting for linear viscosity is the Newton
model (see Figure 2.14(a)), or dashpot, whose constitutive law expresses

48. Viscoelastic models are also important in dynamics if we want to model the internal
dissipation of material. This leads to the concept of internal damping as opposited to that of
“external damping”, which only accounts for the interaction of the body with the surrounding
air.
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Straight Beams 113

proportionality between stress and strain-rate, i.e. σ = ηε̇, where η is the viscosity
constant; according to it, creep is unbounded since ε → ∞ when σ = const. If,
however, a linear spring is placed in parallel to the dashpot, the Kelvin–Voigt (KV)
rheological model is obtained (Figure 2.14(b)), for which the stress is the sum of: (a)
an elastic part, σe = Eε, where E is a modulus of delayed elasticity and (b) a
viscous part, σv = ηε̇; hence:

σ = Eε+ ηε̇ [2.178]

Such a model is able to describe, at least qualitatively, the creep phenomenon,
predicting a finite asymptotic response ε → σ/E, reached via an exponential
evolution49. However, the KV model is unable to describe the instantaneous elastic
response, and therefore a second elastic spring of modulus E0 (called of
instantaneous elasticity) is placed in series with it, to provide the standard (or
three-parameter) model (Figure 2.14(c))50:

σ̇ +
E0 + Ev

η
σ = E0ε̇+

E0Ev

η
ε [2.179]

The standard model predicts the asymptotic response to creep as ε → σ(1/Ev +
1/E0).

For its simplicity, the KV model is very often preferred to the standard model,
mainly in dynamics. If the former is used, it is suitable to take 1/E = (1/Ev+1/E0),
so that the asymptotic response of the standard model is correctly captured.

η

(a)

E

η

(b)

Ev

Eo

η

(c)

Figure 2.14: Viscous and viscoelastic rheological models: (a) Newton, (b) Kelvin–
Voigt and (c) standard.

Viscoelastic beams

Rheological models suggest formulation of viscoelastic laws for continuous
systems. If the KV model is used, consistently with equation [2.178], the relevant

49. To find steady solutions, here and equation [2.179], put all time-derivatives equal to zero
here and in equation [2.179].
50. The standard model is governed by σ = EvεKV + ηε̇KV , concerning the Kelvin–Voigt
model, σ = E0ε0, relevant to the elastic spring, and, finally, the compatibility condition ε =
εKV + ε0, from which equation [2.179] is drawn.
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114 Mathematical Models of Beams and Cables

constitutive laws are obtained from the elastic laws by exploiting the similarity of the
viscous terms. Thus, the linear uncoupled elastic law [2.164] modifies into51:

N = N̊ + EAε+ ηAε̇

Tj = T̊j +GAjγj + ζAj γ̇j

M1 = M̊1 +GJ1κ1 + ζJ1κ̇1

Mj = M̊j + EJjκj + ηJj κ̇j

[2.180]

with j = 2, 3. Here, by accounting for viscosity, the elastic constants E, G were
substituted by the viscous coefficients η, ζ and strains by strain-rates.

Under the same hypotheses, according to the standard model, we have:

Ṅ +
E0 + Ev

η
N − N̊ = E0Aε̇+

E0Ev

η
Aε

Ṫj +
G0 +Gv

ζ
Tj − T̊j = G0Aj γ̇j +

G0Gv

ζ
Ajγj

Ṁ1 +
G0 +Gv

ζ
M1 − M̊1 = G0J1κ̇1 +

G0Gv

ζ
J1κ1

Ṁj +
E0 + Ev

η
Mi − M̊i = E0Jj κ̇i +

E0Ev

η
Jjκi

[2.181]

2.4 The Fundamental Problem
The Fundamental Problem of continuum mechanics, when referring to the beam,

is formulated as follows. “A beam is given, which is straight in its reference
configuration, whose material is hyperelastic or viscoelastic. The beam is (fully or
partially) constrained at the boundaries A, B, where displacements are prescribed,
and loaded by known forces and couples, distributed along the centerline and/or on
the portion of the boundary which is free of constraints. We want to evaluate the state
of stress, of strain and the actual configuration of the beam (as a function of time in
the dynamical problem, or independent of time in the static problem)”.

The data of the problem are therefore (a) the displacements ŭ, θ̆ prescribed at the
constraints and (b) the forces p̄, c̄ in the field and the forces at the boundaries P̄H ,
C̄H , (H = A,B), all expressed in the reference basis. The unknowns are: (a) the
displacements u and the rotations θ; (b) the strains e and the curvatures k; and (c) the
force-stresses t and the couple-stresses m.

51. For the more general linear coupled law [2.157], the constitutive law becomes σ = σ̊ +
Eε+H ε̇, where E is the elastic matrix and H is the viscosity matrix.
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Straight Beams 115

2.4.1 Exact equations

The governing equations

The equations governing the problem, here rewritten in matrix form, are:

– six strain–displacement relationships [2.51], [2.54]:

e = RT (ā1 + u)− ā1

k = B̄ωθ
 [2.182]

– six balance equations in the current configuration [2.136] and [2.138]:

(t +Kt) +RT p̄ = mRT ü

(m +Km) +Λt+RT c̄ = IGω̇
[2.183]

or, equivalently, in the reference configuration [2.141]:

R (t +Kt) + p̄ = mü

R (m +Km) +RΛt+ c̄ = RIGω̇
[2.184]

– six constitutive laws, e.g. elastic [2.156]:

t = t̊+Eeee+Eekk

m = m̊+Ekee+Ekkk
[2.185]

– six geometric and/or mechanical boundary conditions, to be enforced at the ends
of the beam (equations [2.19] and [2.142]):

u = ŭ, θ = θ̆ [2.186]

and, in the current configuration:

 tH = RT
HP̄H , mH = RT

HC̄H [2.187]

or, in the reference configuration:

RHtH = P̄H , RHmH = C̄H [2.188]

Overall, we have 18 field scalar equations containing 18 unknowns.

The equations of motion for unprestressed beams

The governing equations are combined to express the balance equations in terms
of displacements. Equations in the current configuration are found to be much shorter
than those in the reference configuration, and therefore the former are preferred here.
When a diagonal elastic law is adopted (Eek = Eke = 0), and prestress is absent
they read:
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116 Mathematical Models of Beams and Cables

– balance of linear momentum:

{EA[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2 − 1]}

−GA2[(1 + u
1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ u
3(sin θ1 cos θ2)][θ


3 cos θ1 cos θ2 − θ2 sin θ1]

+GA3[(1 + u
1)(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + u
2(cos θ1 sin θ2 sin θ3

− cos θ3 sin θ1) + u
3(cos θ1 cos θ2)][θ


2 cos θ1 + θ3 sin θ1 cos θ2]

− (mü1 − p̄1)[cos θ1 cos θ3]− (mü2 − p̄2) cos θ2 sin θ3

+ (mü3 − p̄3) sin θ2 = 0

{GA2[(1 + u
1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3) + u

3(sin θ1 cos θ2)]}


+ EA[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2

− 1][θ3 cos θ1 cos θ2 − θ2 sin θ1]

−GA3[(1 + u
1)(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + u
2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ u
3(cos θ1 cos θ2)][θ


1 − θ3 sin θ


2]

− (mü1 − p̄1)[sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]

− (mü2 − p̄2)[cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3]

− (mü3 − p̄3)[sin θ1 cos θ2] = 0

{GA3[(1 + u
1)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ u
2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ u
3(cos θ1 cos θ2)]}


− EA[(1 + u

1) cos θ2 cos θ3 + u
2 cos θ2 sin θ3

− u
3 sin θ2 − 1][θ2 cos θ1 + θ3 sin θ1 cos θ2]

+GA2[(1 + u
1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ u
3(sin θ1 cos θ2)][θ


1 − θ3 sin θ2]

− (mü1 − p̄1)[cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]

− (mü2 − p̄2)[cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]

− (mü3 − p̄3) cos θ1 cos θ2 = 0

[2.189]
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Straight Beams 117

– balance of angular momentum:

{GJ1[θ

1 − θ3 sin θ2]}

 + (GJ3 −GJ2)[θ

2 cos θ1

+ θ3 sin θ1 cos θ2][θ

3 cos θ1 cos θ2 − θ2 sin θ1]

+ (GA3 −GA2)[(1 + u
1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ u
3(sin θ1 cos θ2)][(1 + u

1)(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + u
2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ u
3(cos θ1 cos θ2)] + cos θ1 cos θ3c̄1 + cos θ2 sin θ3c̄2

− sin θ2c̄3 − I1{θ̇1 − θ3 sin θ2}̇ = 0

{GJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2]}

 + (GJ1 −GJ3)[θ

1

− θ3 sin θ2][θ

3 cos θ1 cos θ2 − θ2 sin θ1]

+ (EA−GA3)[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3

− u
3 sin θ2 − 1][(1 + u

1)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ u
2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ u
3(cos θ1 cos θ2)]−GA3[(1 + u

1)(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + u
2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ u
3(cos θ1 cos θ2)] + [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]c̄1

+ [cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3]c̄2 + sin θ1 cos θ2c̄3

− I2{θ̇2 cos θ1 + θ̇3 sin θ1 cos θ2}̇ = 0

{GJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1]}

 + (GJ2 −GJ1)[θ

1

− θ3 sin θ2][θ

2 cos θ1 + θ3 sin θ1 cos θ2]

+ (GA2 − EA)[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3

− u
3 sin θ2 − 1][(1 + u

1)(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ u
3(sin θ1 cos θ2)] +GA2[(1 + u

1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ u
3(sin θ1 cos θ2)] + [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]c̄1

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]c̄2 + cos θ1 cos θ2c̄3

− I3{θ̇3 cos θ1 cos θ2 − θ̇2 sin θ1}̇ = 0

[2.190]
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118 Mathematical Models of Beams and Cables

together with the mechanical boundary conditions:

EA[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2 − 1]H

= cos θ1 cos θ3P̄1H + cos θ2 sin θ3P̄2H − sin θ2P̄3H

GA2[(1 + u
1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3) + u

3(sin θ1 cos θ2)]H

= [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]P̄1H

+ [cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3]P̄2H + sin θ1 cos θ2P̄3H

GA3[(1 + u
1)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ u
2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + u

3(cos θ1 cos θ2)]H

= [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]P̄1H

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]P̄2H + cos θ1 cos θ2P̄3H

GJ1[θ

1 − θ3 sin θ2]H

= cos θ1 cos θ3C̄1H + cos θ2 sin θ3C̄2H − sin θ2C̄3H

GJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2]H

= [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]C̄1H + [cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3]C̄2H + sin θ1 cos θ2C̄3H

GJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1]H

= [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]C̄1H

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]C̄2H + cos θ1 cos θ2C̄3H

[2.191]

and/or the geometric boundary conditions [2.186].

Since the equations are nonlinear, uniqueness of the solution is not ensured. The
problem, in general, cannot be solved in closed form, but it calls for numerical
algorithms. A different approach consists of tackling the equation by perturbation
methods, by looking for solutions that are perturbations of the (unique) solution of
the associated linear problem.

2.4.2 The linearized theory for elastic prestressed beams

As discussed with the metamodel (section 1.4), sometimes a linear model,
accounting for prestress, is suited to the scope (e.g., to determine a bifurcation load).
In these cases, the linearized theory is employed, in which the equations of motion
are linearized in the displacements, but the prestresses are assumed as finite
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Straight Beams 119

quantities (while the increment of stresses are considered as first-order quantities).
Thus, for example, the axial force N = N̊ + EAε is made up of a (order-1) leading
part N̊ and an (first-order) infinitesimal correction Ñ := EAε. Accordingly,
kinematics is linearized (since higher power displacements must be neglected), but
the balance equations must account for terms which are bilinear in strains and
prestresses. As an example, a term such as κ3N , appearing in the equilibrium
equations, since κ3 = θ3 + h.o.t., must be approximated as N̊θ3 in the linearized
theory. Since the linearized equations are much more manageable than the nonlinear
equations, they are convenientely expressed in the reference basis.

According to these ideas, kinematics states that:

ε = u
1

γ2 = u
2 − θ3

γ3 = u
3 + θ2

κ1 = θ1

κ2 = θ2

κ3 = θ3

[2.192]

However, the balance in the adjacent configuration requires (linear momentum
equations):

(N̊ + Ñ) − θ3T̊2 + θ2T̊3 + p̊1 + p̃1 −mü1 = 0

(T̊2 + T̃2)

− θ1T̊3 + θ3N̊ + p̊2 + p̃2 −mü2 = 0

(T̊3 + T̃3)
 + θ1T̊2 − θ2N̊ + p̊3 + p̃3 −mü3 = 0

[2.193]

and (angular momentum equations):

(M̊1 + M̃1)

− θ3M̊2 + θ2M̊3

− (u
3 + θ2)T̊2 + (u

2 − θ3)T̊3 + c̊1 + c̃1 − I1θ̈1 = 0

(M̊2 + M̃2)
 + θ3M̊1 − θ1M̊3

+ (u
3 + θ2)N̊ − u

1T̊3 −GA2(u

2 − θ3) + c̊2 + c̃2 − I2θ̈2 = 0

(M̊3 + M̃3)
 + θ1M̊2 − θ2M̊1

+ u
1T̊2 − (u

2 − θ3)N̊ +GA3(u

3 + θ2) + c̊3 + c̃3 − I3θ̈3 = 0

[2.194]
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120 Mathematical Models of Beams and Cables

with the boundary conditions:

 [N̊ + Ñ − θ3(T̊2 + T̃2) + θ2(T̊3 + T̃3)]H = P̊1H + P̃1H

 [T̊2 + T̃2 + θ3(N̊ + Ñ)− θ1(T̊3 + T̃3)]H = P̊2H + P̃2H

 [T̊3 + T̃3 − θ2(N̊ + Ñ) + θ1(T̊2 + T̃2)]H = P̊3H + P̃3H

 [M̊1 + M̃1 − θ3(M̊2 + M̃2) + θ2(M̊3 + M̃3)]H = C̊1H + C̃1H

 [M̊2 + M̃2 + θ3(M̊1 + M̃1)− θ1(M̊3 + M̃3)]H = C̊2H + C̃2H

 [M̊3 + M̃3 − θ2(M̊1 + M̃1) + θ1(M̊2 + M̃2)]H = C̊3H + C̃3H

[2.195]

Here, both stresses and loads (assumed to be gravitational) have been expressed
in their incremental form, e.g. N = N̊ + Ñ , p = p̊ + p̃, where the symbol (̊ )
denotes prestresses and preloads and the symbol (̃ ) denotes a small increment.
However, taking into account that prestresses and preloads are equilibrated in the
reference configuration (in which displacements and strains disappear), it follows
that terms exclusively containing over-ring quantities can be mutually cancelled.
Therefore, the former equilibrium equations reduce to:

Ñ 
− θ3T̊2 + θ2T̊3 + p̃1 −mü1 = 0

T̃ 
2 − θ1T̊3 + θ3N̊ + p̃2 −mü2 = 0

T̃ 
3 + θ1T̊2 − θ2N̊ + p̃3 −mü3 = 0

[2.196]

and:

M̃ 
1 − θ3M̊2 + θ2M̊3 − (u

3 + θ2)T̊2 + (u
2 − θ3)T̊3 + c̃1 − I1θ̈1 = 0

M̃ 
2 −GA2(u


2 − θ3) + θ3M̊1 − θ1M̊3 + (u

3 + θ2)N̊ − u
1T̊3 + c̃2 − I2θ̈2 = 0

M̃ 
3 +GA3(u


3 + θ2) + θ1M̊2 − θ2M̊1 + u

1T̊2 − (u
2 − θ3)N̊ + c̃3 − I3θ̈3 = 0

[2.197]

while boundary conditions become:

 [Ñ − θ3T̊2 + θ2T̊3]H = P̃1H

 [T̃2 + θ3N̊ − θ1T̊3]H = P̃2H

 [T̃3 − θ2N̊ + θ1T̊2]H = P̃3H

 [M̃1 − θ3M̊2 + θ2M̊3]H = C̃1H

 [M̃2 + θ3M̊1 − θ1M̊3]H = C̃2H

 [M̃3 − θ2M̊1 + θ1M̊2]H = C̃3H

[2.198]
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Straight Beams 121

Equations [2.196] and [2.197] are known as incremental equilibrium equations.

When the linear elastic law is used for the incremental stresses, the following
equations of motion are found:

(EAu
1)


− θ3T̊2 + θ2T̊3 + p̃1 −mü1 = 0

(GA2(u

2 − θ3))


− θ1T̊3 + θ3N̊ + p̃2 −mü2 = 0

(GA3(u

3 − θ2))

 + θ1T̊2 − θ2N̊ + p̃3 −mü3 = 0

[2.199]

and:

(GJ1θ1)

− θ3M̊2 + θ2M̊3 − (u

3 + θ2)T̊2 + (u
2 − θ3)T̊3 + c̃1 − I1θ̈1 = 0

(GJ2θ2)

−GA2(u


2 − θ3) + θ3M̊1 − θ1M̊3

+ (u
3 + θ2)N̊ − u

1T̊3 + c̃2 − I2θ̈2 = 0

(GJ3θ3)
 +GA3(u


3 + θ2) + θ1M̊2 − θ2M̊1 + u

1T̊2

− (u
2 − θ3)N̊ + c̃3 − I3θ̈3 = 0

[2.200]

with the boundary conditions:

 [EAu
1 − θ3T̊2 + θ2T̊3]H = P̃1H

 [GA2(u

2 − θ3) + θ3N̊ − θ1T̊3]H = P̃2H

 [GA3(u

3 − θ2)− θ2N̊ + θ1T̊2]H = P̃3H

 [GJ1θ1 − θ3M̊2 + θ2M̊3]H = C̃1H

 [GJ2θ2 + θ3M̊1 − θ1M̊3]H = C̃2H

 [GJ3θ3 − θ2M̊1 + θ1M̊2]H = C̃3H

[2.201]

They are the equations governing the (small) motion around a prestressed equilibrium
configuration52.

REMARK 2.20. While the linear theory expresses the equilibrium in the reference
configuration, the linearized theory enforces equilibrium in the so-called adjacent
configuration, i.e. in a current configuration infinitely close to the former. Bilinear
terms in strains and prestresses (of the type N̊θ3) account for the effect of the
(infinitesimal) change of configuration, leading to the appearance of a geometric
stiffness of the beam.

52. These equations are of type Lw + Gw = p̃ in the field and LHw + GHw = P̃ on the
boundary which we have already discussed in section 1.4.2 (equation [1.72]). Here, L,LH are
elastic stiffness operators and G,GH are geometric stiffness operators.
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122 Mathematical Models of Beams and Cables

REMARK 2.21. When the prestress is dropped, the previous equations of motion
reduce to the well-known equations of the linear Timoshenko beam.

2.5 The planar beam

Very often, straight beams are loaded in one of their principal inertia planes and are
suitably constrained in such a way that they only stretch, shear and bend themselves
in the same plane. In these cases, the beam is called planar, and the relevant problem
is much more easily tackled. A planar model can, of course, be derived from the
more general model in the 3D-space, addressed in the previous sections. Here, we
will review the main steps of formulation, by specializing results to the planar case.

2.5.1 Kinematics

Let us consider a planar beam, of ends A, B, belonging to the plane π spanned
by the (ā1, ā2) unit vectors, and let B̄ = (ā1, ā2, ā3) be the orthogonal triad attached
to the cross-sections in the reference configuration, with ā1 tangent to the centerline.
Such a basis transforms into B = (a1(s, t), a2(s, t), a3) in the current configuration,
with a3 ≡ ā3 independent of s, t.

Displacement and rotation

The displacement field is described by:

u := u1(s, t)ā1 + u2(s, t)ā2 [2.202]

and the rotation field by the tensor R(s, t), whose scalar representation in B̄ becomes:

R =

⎡⎣cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤⎦ [2.203]

where θ := θ3 denotes the amplitude of the rotation around ā3. Therefore, any
geometric transformations depend on three scalar fields, u1(s, t), u2(s, t), θ(s, t),
which constitute the configuration variables of the planar beam.

The previous equations must be sided by geometric boundary conditions of the
type:

u1H = ŭ1H , u2H = ŭ2H , θH = θ̆H , H = A,B [2.204]

where a curved overbar denotes a known quantity.
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Straight Beams 123

Strain–displacement relationships

Since RTx belongs to π, the reference strain vector e ≡ er := RTx − ā1 also
belongs to π. The current curvature vector kc, according to its definition a3 = kc×a3,
is orthogonal to π; therefore, the reference curvature vector k ≡ kr = RTkc also
belongs to the plane. Accordingly:

e = εā1 + γā2

k = κā3
[2.205]

where γ := γ2, κ := κ3. Their scalar components are easily found to be 53:

ε = −1 + (1 + u
1) cos θ + u

2 sin θ

γ = −(1 + u
1) sin θ + u

2 cos θ

κ = θ
[2.206]

Velocity and spin

The velocity vector and the spin vector follow from equation [2.202] and from the
analogy with the current curvature vector; they are given by:

v = u̇1(s, t)ā1 + u̇2(s, t)ā2

ω = ωa3 = θ̇a3
[2.207]

with ω ≡ ω̄.

Strain rates

The time-derivatives of the strain components are the strain-rates:

ė = ε̇ā1 + γ̇2ā2

k̇ = κ̇ā3
[2.208]

53. As a matter of fact, since ā1 + e = RT (ā1 + u), then:1 + ε
γ
0

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1 + u
1

u
2

0


Moreover, since K = RTR, then:

K = R
T
R

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

−θ sin θ −θ cos θ 0
θ cos θ −θ sin θ 0

0 0 0

 =

0 −θ 0
θ 0 0
0 0 0
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124 Mathematical Models of Beams and Cables

They are related to the velocities through:

ε̇ = u̇
1 cos θ + u̇

2 sin θ + γθ̇

γ̇ = −u̇
1 sin θ + u̇

2 cos θ − (1 + ε)θ̇

κ̇ = θ̇

[2.209]

obtained by time-differentiating equations [2.206] and again using the same
equations54.

2.5.2 Dynamics

Let the beam be loaded by in-plane forces p = p̄1ā1 + p̄2ā2 and in-plane couples
c = c̄ā, distributed along the beam, as well as forces and couples at boundaries PH =
P̄1H ā1 + P̄2H ā2 and CH = C̄H ā3 with H = A,B.

Balance equations

The balance equations, in vector form, are still given by equations [2.107]:

t + p = mü

m + x
× t+ c = IGω̇

[2.210]

and boundary conditions by equations [2.104]:

(PH ± tH) · vH = 0

(CH ±mH) ·ωH , H = A,B
[2.211]

54. Equations [2.209] can be recast in matrix form as we did for the metamodel, namely ε̇ =
D (w,w) ẇ, where ε := (ε, γ, κ)T , w := (u1, u2, θ)

T and:

D w,w :=

 (cos θ) ∂s (sin θ) ∂s γ
− (sin θ) ∂s (cos θ) ∂s −(1 + ε)

0 0 ∂s


in which both ε and γ depend on w and w. The matrix D (w,w) is the kinematic operator
of the planar beam. If it is evaluated at the reference configuration, then D0 := D (0,0) is the
infinitesimal kinematic operator of the linear theory:

D0 :=

∂s 0 0
0 ∂s −1
0 0 ∂s
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Straight Beams 125

Now, however, the force-stress t and the couple-stress m are an in-plane and an out-
of-plane vector, respectively:

t = Na1 + Ta2

m = Ma3
[2.212]

where T := T2 is the shear force and M := M3 the bending moment; moreover,
IGω̇ = Iθ̈a3, with I := I3 is the mass moment of inertia with respect to a3. When
these equations are projected onto the reference basis, they become55, 56:

(N 
− κT ) cos θ − (T  + κN) sin θ + p̄1 −mü1 = 0

(N 
− κT ) sin θ + (T  + κN) cos θ + p̄2 −mü2 = 0

M  + (1 + ε)T − γN + c̄− Iθ̈ = 0

[2.213]

The balance equations must be sided by mechanical boundary conditions, of the type:

 [N cos θ − T sin θ]H = P1H

 [N sin θ + T cos θ]H = P̄2H

MH = C̄H , H = A,B

[2.214]

55. Indeed, by remembering the Poisson formula, and accounting for k = κa3, we have:

t
 = N 

a1 + T 
a2 + k× t = N  − κT a1 + T  + κN a2

m
 = M 

a3 + k×m = M 
a3

in which ai = Rāi must be used. Moreover, since, x = R (ā1 + e):

x
 × t = [(1 + ε)a1 + γa2]× (Na1 + Ta2) = [(1 + ε)T − γN ] a3

56. Equations [2.213] are of type D (w,w)σ = p, where σ := (N,T,M)T , p :=
(p̄1, p̄2, c̄)

T and:

D w,w :=

(− cos θ) ∂s + κ sin θ (sin θ + κ cos θ) ∂s 0
(− sin θ) ∂s − κ cos θ (− cos θ) ∂s + κ sin θ 0

γ −(1 + ε) −∂s


is theequilibrium operator of the planar beam, which depends on w,w, via the strains; it
is the adjoint of the kinematic operator D (w,w). When it is evaluated at the reference
configuration, it reduces to the equilibrium operator of the liner theory, D0 := D (0,0),
adjoint of D0:

D
∗
0 :=

−∂s 0 0
0 −∂s 0
0 −1 −∂s
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126 Mathematical Models of Beams and Cables

2.5.3 The Virtual Power Principle

The Virtual Power equation [2.100], Pext = Pint, specializes as follows for the
planar beam, when vectors are represented in the reference basis:

S
(p̄1v1 + p̄2v2 + c̄ω) ds+

B

H=A

P̄1Hv1H + P̄2Hv2H + C̄HωH

=

S
(Nε̇+ T γ̇ +Mκ̇) ds, ∀ u̇1, u̇2, θ̇

[2.215]

This equation can also be used to alternatively derive the scalar balance equations
and boundary conditions, according to the balance power approach. Indeed, if the
strain-rate-velocity relationships [2.209] are introduced in this equation, and v1 = u̇1,
v2 = u̇2, ω = θ̇ are used, equation [2.215] becomes:

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds+

B

H=A

P̄1H u̇1H + P̄2H u̇2H + C̄H θ̇H

=

S
N u̇

1 cos θ + u̇
2 sin θ + θ̇γ ds

+T (−u̇
1 sin θ + u̇

2 cos θ − (1 + ε)θ) +Mθ̇ ds

[2.216]

or, after an integration by parts:

S
(N cos θ)


+ (T sin θ)


+ p̄1 u̇1

+ − (N sin θ)

+ (T cos θ)


+ p̄2 u̇2

+ [M 
−Nγ + T (1 + ε) + c̄] θ̇ ds

+ ± (N cos θ − T sin θ) + P̄1 u̇1 H

+ ± (N sin θ + T cos θ) + P̄ u̇2 H
+ ±Mθ̇ + C̄

H
= 0

[2.217]

Finally, since (sin θ)


= κ cos θ, (cos θ)


= −κ sin θ, equations [2.213] are
re-obtained, together with equation [2.214] on the free boundary.
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Straight Beams 127

2.5.4 Constitutive laws

By confining ourselves to the uncoupled linear elastic law, we have:

N = N̊ + EAε

T = T̊ +GAsγ

M = M̊ + EJκ

[2.218]

where GAs: = GA2 is the shear stiffness, EJ := EJ3 is the bending stiffness and
quantities with over-ring symbol are prestresses.

If a KV model is adopted, the constitutive law becomes:

N = N̊ + EAε+ ηAε̇

T = T̊ +GAsγ + ζAsγ̇

M = M̊ + EJκ+ ηJκ̇i

[2.219]

where η, ζ are viscosity coefficients.

2.5.5 The Fundamental Problem

The equations governing the motion (or the equilibrium, in the static case) of the
planar beam, are obtained by expressing the balance equations [2.213] and boundary
conditions [2.214] in terms of the configuration variables, once the constitutive law
(e.g. equation [2.218] and the strain–displacement relationships (equations [2.206])
are substituted into them.

The following exact equations of motion are obtained:

{[N̊ + EA((1 + u
1) cos θ + u

2 sin θ − 1)] − θ[T̊ +GAs(u

2 cos θ

− (1 + u
1) sin θ)]} cos θ − {[T̊ +GAs(u


2 cos θ − (1 + u

1) sin θ)]


+ θ[N̊ + EA((1 + u
1) cos θ + u

2 sin θ − 1)]} sin θ + p̄1 −mü1 = 0

{[N̊ + EA((1 + u
1) cos θ + u

2 sin θ − 1)] − θ[T̊ +GAs(u

2 cos θ

− (1 + u
1) sin θ)]} sin θ + {[T̊ +GAs(u


2 cos θ − (1 + u

1) sin θ)]


+ θ[N̊ + EA((1 + u
1) cos θ + u

2 sin θ − 1)]} cos θ + p̄2 −mü2 = 0

{M̊ + EJθ} + [(1 + u
1) cos θ + u

2 sin θ][T̊ +GAs(u

2 cos θ

− (1 + u
1) sin θ)]− [u

2 cos θ − (1 + u
1) sin θ][N̊ + EA((1 + u

1) cos θ

+ u
2 sin θ − 1)] + c̄− Iθ̈ = 0

[2.220]
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128 Mathematical Models of Beams and Cables

with the mechanical boundary conditions:

[[N̊ + EA((1 + u
1) cos θ + u

2 sin θ − 1)] cos θ − [T̊ +GAs(u

2 cos θ

− (1 + u
1) sin θ)] sin θ]H = P̄1H

[[N̊ + EA((1 + u
1) cos θ + u

2 sin θ − 1)] sin θ − [T̊ +GAs(u

2 cos θ

− (1 + u
1) sin θ)] cos θ]H = P̄2H

[M̊ + EJθ]H = C̄H H = A,B

[2.221]

and the geometric boundary conditions [2.204].

Linearized theory

The linearized version of the strain–displacement relationships [2.206] is:

ε = u
1

γ = u
2 − θ

κ = θ
[2.222]

Concerning the balance equations [2.213], we split the forces in (large) preloads and
(small) incremental contribution, p̄i = p̊i + p̃i, c̄i = c̊i + c̃i, as well the stresses
in N = N̊ + Ñ , T = T̊ + T̃ , M = M̊ + M̃ , and then we expand up to first-
order quantities. By accounting for the pre-existing equilibrium, the balance equations
transform into:

Ñ 
− θT̊ − θT̊  + p̃1 −mü1 = 0

T̃  + θN̊  + θN̊ + p̃2 −mü2 = 0

M̃  + (1 + u
1)T̊ + T̃ − (u

2 − θ)N̊ + c̃− Iθ̈ = 0

[2.223]

By applying the same procedure to the boundary conditions [2.214], we have:

 [Ñ − T̊ θ]H = P̃1H

 [N̊θ − T̃ ]H = P̃2H

 M̃H = C̃H

[2.224]
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Straight Beams 129

Finally, by using the uncoupled linear elastic law [2.218], we obtain the equations of
motion57:

[EAu
1]


− θT̊ − θT̊  + p̃1 −mü1 = 0

[GAs(u

2 − θ)] + θN̊  + θN̊ + p̃2 −mü2 = 0

[EJθ] +GAs(u

2 − θ) + u

1T̊ − (u
2 − θ)N̊ + c̃− Iθ̈ = 0

[2.225]

Similarly, the mechanical boundary conditions are:

 [EAu
1 − θT̊ ]H = P̃1H

 [GAs(u

2 − θ) + θN̊ ]H = P̃2H

 [EJθ]H = C̃H

[2.226]

If the prestress is ignored (or it is absent), the equations govern the Timoshenko linear
planar beam.

2.6 Summary

Here, we summarize the main results of this chapter. We formulated a model of
straight beam with rigid cross-sections as a polar, 1D continuum, embedded in a
3D-space. This is made up of body-points that are able to rotate, in addition to
translation; conversely, in dynamics, they are able to exchange couple-stresses, in
addition to force-stresses.

We started with kinematics, by defining translations and rotations of body points,
the former being a vector field and the latter being a tensor field. To describe strains,
we defined strain and curvature vectors, of two different types, called “current” (or

57. They are of the type Lw+Gw = p̃ in the field and LHw +GHw = P̃ on the boundary
(equation [1.72]), where:

L :=

−EA∂2
s 0 0

0 −GAs∂
2
s GAs∂s

0 −GAs∂s GAs − EJ∂2
s

 , G :=

 0 0 T̊  + T̊ ∂s

0 0 −N̊  − N̊∂s

−T̊ ∂s N̊∂s −N̊


are elastic and geometric stiffness operators, and:

LH :=

EA∂s 0 0
0 GAs∂s −GAs

0 0 EJ∂s


H

, GH :=

0 0 −T̊

0 0 N̊
0 0 0


H

are their counterpart on the free boundary.
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130 Mathematical Models of Beams and Cables

left), if they follow the local rotation, or called “reference” (or right), if they precede
the rotation. Current and reference strains have the same scalar components in the
current and reference bases, respectively. Although the current measures have a
clearer geometrical meaning, they suffer from the drawback that not only their
components, but also the unit vectors of the current basis depend on time. By
accounting for time-rates, we introduced velocity and spin fields, both of which are
vector fields, since the latter is described by an antisymmetric tensor. In addition, we
defined the stretching velocity gradients, as that part of the material gradient of the
velocity which is not a mere rotation. While the reference strain-rates equate the
stretching velocity gradients, the current strain-rates do not. However, if reference is
made to triplets of components (taken in the proper bases), instead of to vectors or
tensors, no such problem arises (since unit vectors disappear).

After that, we addressed the dynamics of beams. We first presented the power
balance approach based on the VPP. In this framework, the stresses are introduced as
the dual quantities of the stretching velocity gradients. The principle leads to (a)
balance equations in the field, which are differential equations involving stresses and
external forces, of active and inertial type, as well (b) boundary conditions, from
which natural (or mechanical) conditions spring on the portion of the boundary that
is unconstrained. Second, we discussed an alternative force balance approach based
on the linear and angular momentum principles, valid for rigid body dynamics, and
accepted here as postulates. The procedure requires primarily defining the stresses as
contact interactions between adjacent body-points made up of a force-stress and a
couple-stress vector. The “Principle of action and reaction” has also to be invoked.
Boundary conditions are enforced on the free boundary by requiring that the
emerging stresses equate the applied external forces. The two procedures supply the
same equations. We projected them onto the current, as well onto the reference bases.
A third form of the scalar equations was also derived, in which the balance of the
forces is expressed in the reference basis, while the balance of the moments is
enforced in the spin basis, i.e. the non-orthogonal basis formed by the directions
along which the spin vector naturally decomposes in elementary contributions of
moduli θ̇i. These moment equations naturally appear in a Lagrangian approach in
which the virtual motion is expressed by the time-derivatives of the Tait–Bryan
angles θ̇i, instead of the components of the spin vector ω̄i.

To complete the modeling, we discussed constitutive laws, mainly confining
ourselves to the hyperelastic behavior. This called for postulating the existence of an
elastic potential, function of the strains, from which stresses are derived via
differentiation (Green law). We paid special attention to a linear (or Hooke) law by
accounting for possible prestress acting in the reference configuration, assumed to be
known. We showed how to identify the constants of the elastic potential from a
3D-model of beam, after suitable kinematic hypotheses had been introduced. The
procedure led us to formulate a linear diagonal law, in which the usual axial, shear,
torsional and bending stiffness of the elementary theory of beam appear. However, it
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Straight Beams 131

was mentioned that such a simple model, although commonly used, is unable to
account for the elongation of the longitudinal fibers of beam when a large twist
occurs. Therefore, we modified the model, although in an inconsistent way, to
account for this phenomenon, which produces a nonlinear coupling between torsion,
on the one side, and extension and bending, on the other side. Moreover, we also
suggested how to formulate an elastic law for beam-like structures, where a
homogenization process provides equivalent elastic coefficients for the beam model.
Finally, we brifely mentioned linear viscoelastic laws, based on elementary
rheological models, such as the KV and the standard models.

All the equations of the problem were combined to formulate the Fundamental
Problem for the straight beam, governed by 18 scalar equations in as many unknowns.
Linearized equations, accounting for large prestresses, were also derived.

In conclusion, the whole model was revisited to specialize it for the case of planar
beams, very frequent in applications. The strong simplification of this model relies on
the fact that the rotation of the cross-section occurs around a fixed axis, orthogonal to
the plane. Accordingly, the curvature vector and the spin vector are also orthogonal
to this plane, as well as the couple-stress and the angular acceleration. In contrast, the
displacement, velocity and force-stress are vectors contained in the plane of the beam.
The exact equations of motion for prestressed beams, together with their linearized
version, were supplied.
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Chapter 3

Curved Beams

We consider a curved beam, of arbitrary shape, immersed in a three-dimensional
(3D)-space and model it as a one-dimensional polar continuum. The reference
configuration is described by the parametric equations of the centerline and by a
deviation angle able to identify the attitude of the local principal inertia basis. Initial
curvature tensor and vector are consistently introduced. While the strain vector is
defined as for the straight beam, a new “change of curvature” vector is defined,
measuring the variation of the curvature undergone by the beam in passing from the
reference to the current configuration. Vector balance equations are derived by the
Virtual Power Principle (VPP), and then projected onto the reference basis. An elastic
constitutive law is accounted for. The Fundamental Problem is then formulated and
matrix as well as extended expressions for the exact equations of motion are given
for unprestressed elastic beams. The linearized equations of motion for elastic
prestressed beams are also worked out. Finally, the special case of planar beam is
analyzed, for which explicit expressions of the equations of motion are derived.

3.1 The reference configuration and the initial
curvature

We consider a curved beam, made up of a flexible centerline and rigid
cross-sections, and we consider it as a one-dimensional polar continuum endowed
with a local rigid structure. The centerline, in the reference configuration, is a regular
(generally not planar) curve S, of parametric equations x̄ = x̄(s), where s is the
arclength and x̄ is a vector describing the position of the generic material point P

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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134 Mathematical Models of Beams and Cables

with respect to an arbitrary pole O (Figure 3.1(a)). Denoting by Be := (i1, i2, i3) a
right orthogonal external triad, it is x̄ =

3
j=1 x̄j(s)ij .

at ≡ ā1

an

ab

ā2

ā3

A
B

δ

δ

i1

i2

i3

S

(a)

an

ab

ā2

ā3

δ

δ

kab

(b)

Figure 3.1: Curved beam in the reference configuration: (a) triad (i1, i2, i3) external
to the beam, triad (at, an, ab) intrinsic to the centerline and triad (ā1, ā2, ā3) intrinsic
to the cross-section; and (b) δ deviation angle and projection of the vector kab.

Once the centerline has been described, we have to specify the attitude of the
cross-sections as a function of s, namely the orientation of a triad of directors
B̄ := (ā1 (s) , ā2 (s) , ā3 (s)) attached to them. We already noted that, in order to
simplify the constitutive law and inertia forces, it is convenient to choose ā2, ā3 as
principal axes of inertia of the cross-section, ā1 being orthogonal to them, and
therefore tangent to S; hence, the task is to fix these axes with respect to the Be triad.
The best strategy is the following: (a) first, by using the parametric equations for the
centerline and the Frenet formulas (equations [2.33], find the TNB (or Frenet) basis
Bf := (at (s) , an (s) , ab (s)), which are intrinsic to the curve; (b) then, define the
angle of deviation δ(s) := arccos (an · ā2) ≡ arccos (ab · ā3) between the inertia
basis B̄ and the TNB basis Bf (Figure 3.1(b)).

Concerning task (a), we have:

at = x̄, an =
1

k
x̄, ab =

1

k
(x̄

× x̄) [3.1]

with the curvature and torsion of the curve x̄(s) given by:

k := x̄ , τ :=
x̄ × x̄ · x̄

x̄ 2 [3.2]
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Curved Beams 135

or by using components:

k = x̄2
1 + x̄2

3 + x̄2
3 , τ =

1

x̄2
1 + x̄2

3 + x̄2
3

x̄
1 x̄

2 x̄
3

x̄
1 x̄

2 x̄
3

x̄
1 x̄

2 x̄
3

[3.3]

Indeed, x̄ is the unit tangent vector; since at = x̄ = x̄ vers (x̄), by accounting
for equation [2.33a], k and an are derived; hence, ab = at × an is used; finally, the
torsion is evaluated as τ = ab · a


n (see equation [2.35]).

Concerning task (b), the inertia triad is obtained by rotating the Frenet triad by an
angle δ(s) around at; consequently:

ā1 = at

ā2 = an cos δ + ab sin δ

ā3 = −an sin δ + ab cos δ

[3.4]

By differentiating equation [3.4], and using the Frenet formulas [2.33] and the inverse
transformation of equation [3.4], the derivatives āj are obtained in terms of the same
āj’s, as follows:

ā1 = ā2k cos δ − ā3k sin δ

ā2 = −ā1k cos δ + ā3(τ + δ)

ā3 = ā1k sin δ − ā2(τ + δ)

[3.5]

These equations suggest defining, in analogy with equations [2.38] and [2.41], an
initial curvature skew tensor K̄, or, equivalently, an initial curvature vector k̄, such
that:

āj = K̄āj = k̄× āj [3.6]

whose scalar representation in B̄ is:

k̄ = κ̄1ā1 + κ̄2ā2 + κ̄3ā3 [3.7]

Substitution of equation [3.7] into equation [3.6] and comparison with equation [3.5]
yields the components:

κ̄1 := (τ + δ) , κ̄2 := k sin δ, κ̄3 := k cos δ [3.8]

In conclusion, the effect of the deviation angle δ only consists of adding an increment
δ to the torsion of the curve. Indeed, the curvature component kab remains unaltered,
but it is now projected onto the B̄-basis, and not onto the TNB basis, and therefore it
provides two non-zero components on ā2, ā3 (see Figure 3.1(b)).
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136 Mathematical Models of Beams and Cables

REMARK 3.1. Equation [3.6] permits us to evaluate the space-derivative of a generic
vector attached to the basis B̄, e.g. w = 3

i=1 wiāi. Since
w = 3

i=1 (w

iāi + wiā


i), it follows that:

w =
3

i=1

w
iāi + k̄×w [3.9]

which is known as Poisson formula. When this is represented in B̄, it yields:

[w]B̄ = [w]

B̄ + K̄w [3.10]

where [w]

B̄ is the column matrix of the derivatives of the components of w in B̄.

REMARK 3.2. Equation [3.6] also permits us to evaluate the space-derivative of a
generic tensor attached to B̄, which we will use further. By letting:

W =

3

i=1

3

j=1

wij āi ⊗ āj [3.11]

where the symbol ⊗ denotes the tensor (or dyadic) product; after differentiation of
both members, it follows:

W =
3

i=1

3

j=1

w
ij āi ⊗ āj + wij ā


i ⊗ āj + wij āi ⊗ āj

=
3

i=1

3

j=1

w
ij āi ⊗ āj + K̄wij āi ⊗ āj + wij āi ⊗ ājK̄

T

[3.12]

where equation [3.6] has been used, and a known property is taken into account1.
Equation [3.12] is the tensor counterpart of equation [3.9], valid for a vector.
Therefore, the scalar representation of W in B̄ is:

W 
B̄ = [W ]


B̄ + K̄W −WK̄ [3.13]

where K̄
T
= −K̄ has been accounted for; here, [W ]


B̄ is the matrix of the derivatives

of the components of W in B̄ and the last two terms account for the derivatives of the
unit vectors of the basis.

1. The dyadic product between two vectors u and v is a second-order tensor, T := u⊗ v such
that Tw = (v · w)u, ∀w. Therefore, u ⊗ Lv = (u⊗ v)LT holds, where L is a generic
second-order tensor, since (u⊗ Lv)w = (Lv ·w)u = v · LTw u = (u⊗ v)LTw. The
scalar representation of the tensor in a selected basis is a matrix T = uvT , where u,v are
column matrices, representing u,v in the same basis. As a particular case, Āij := āi ⊗ āj is
a tensor, whose scalar representation is a matrix of zeros, except for the (i, j)-entry, which is
equal to 1; therefore Āij , for i, j = 1, 2, 3 is a basis for the second-order tensor space.
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Curved Beams 137

3.2 The beam model in the 3D-space

In studying kinematics, dynamics and constitutive laws of curved beams, we will
closely follow the analysis carried out for straight beams, mainly focusing our
attention on the differences due to the existence of an initial curvature.

3.2.1 Kinematics

The displacement and rotation fields

ā1

ā2

ā3

a1
a2

a3u

x̄

x

R

O

S

Ŝ

Figure 3.2: Displacement and rotation.

Let us consider the beam in the current configuration occupied at the time t, in
which the centerline lies on a line Ŝ , while the cross-sections are no longer orthogonal
to the centerline (Figure 3.2). Let x be the positions of the material point P in the
current configurations and let:

u := x(s, t) − x̄(s) [3.14]

be the displacement of P at the time t. By introducing intrinsic scalar components in
the basis B̄, we have:

u = u1(s, t)ā1(s) + u2(s, t)ā2(s) + u3(s, t)ā3(s) [3.15]

In the current configuration, the triad of directors forms a basis
B := (a1(s, t), a2(s, t), a3(s, t)), which is related to B̄ by a rotation:

aj(s, t) = R(s, t)āj(s) [3.16]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



138 Mathematical Models of Beams and Cables

The proper orthogonal tensor R is represented in B̄ by the matrix (equation [2.6]):

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ2 cos θ3 sin θ1 sin θ2 cos θ3 cos θ1 sin θ2 cos θ3
− cos θ1 sin θ3 +sin θ1 sin θ3

cos θ2 sin θ3 sin θ1 sin θ2 sin θ3 cos θ1 sin θ2 sin θ3
+cos θ1 cos θ3 − sin θ1 cos θ3

− sin θ2 sin θ1 cos θ2 cos θ1 cos θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[3.17]

The geometric boundary conditions

Displacement and rotation fields must satisfy the prescribed geometric boundary
conditions [2.17] at the constrained ends of the beam (if any), i.e:

uH = ŭH(t), RH = R̆H(t) H = A,B [3.18]

or, in equivalent matrix form:

uH = ŭH(t), θH = θ̆H(t) [3.19]

The strain vector

The (reference) strain vector is defined as for the straight beam (equation [2.24]),
i.e.:

e := RTx
− ā1 [3.20]

and its representation in B̄ is:

e = εā1 + γ2ā2 + γ3ā3 [3.21]

Curvature tensors and vectors

Concerning the curvature, we have to account for the initial contribution, which
was absent in the straight beam. We start by defining a current Kc, and a reference Kr

curvature tensors, as in equations [2.38] and [2.42]:

aj = Kcaj

RTaj = Krāj
[3.22]

As for the straight beam (equation [2.45]), Kr = RTKcR holds; hence, the two
tensors have the same components in B and B̄, respectively.
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Curved Beams 139

To evaluate aj we need to differentiate equation [3.16], now accounting for the
space dependence of the unit vectors, i.e.:

aj = Rāj +Rāj = R +RK̄ āj [3.23]

where equation [3.6] has been used. By substituting this result in equation [3.22] and
using again equation [3.16], the two curvature tensors are obtained:

Kc = RRT +RK̄RT

Kr = RTR + K̄
[3.24]

in each of which an additional term appears, with respect to the definitions [2.40] and
[2.43]. Both the tensors are skew-symmetric, being K̄ is skew-symmetric, too.

The tensors introduced, however, measure the present state of the beam, but they
are not a measure of strain, since the beam was initially curve. Therefore, we need to
define a new quantity that is able to account for the increment of curvature. Since the
initial curvature refers to the reference configuration, it is suitable to use the reference
curvature tensor Kr and to define2:

X := Kr − K̄ [3.25]

as the change of curvature tensor, therefore:

X = RTR [3.26]

The previous tensors, Kc, Kr, X being all skew-symmetric, are equivalent to their
associated axial vectors, kc, kr, χ, respectively. By defining:

aj = kc × aj

RTaj = kr × āj
[3.27]

it follows that kc = Rkr
3; moreover, the change of curvature vector turns out to be4:

χ := kr − k̄ [3.28]

which admits in B̄ the following scalar representation:

χ := χ1ā1 + χ2ā2 + χ3ā3 [3.29]

Since kr =
3
i=1 κiāi and k̄ =

3
i=1 κ̄iāi, then:

χi = κi − κ̄i, i = 1, . . . , 3 [3.30]

As for the straight beam, index r will be discussed further.

2. Here, X should not be read “capital ex”, but rather “capital chi”.
3. Multiply equation [3.27-b] by R and observe that R (kr × āj) = Rkr×Rāj = Rkr×aj .
4. Indeed, from equation [3.25], Xāj = Kr − K̄ āj , from which χ× āj = kr − k̄ × āj .
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140 Mathematical Models of Beams and Cables

REMARK 3.3. Formula [3.26] is surprisingly similar to equation [2.43], valid for the
straight beam, and, at a first glance, it seems that the contribution of the initial
curvature disappeared. However, we have to keep in mind that we are now dealing
with a curvilinear coordinate s, so that R does account for the initial curvature,
according to equation [3.12].

REMARK 3.4. The change of curvature can also be written in terms of the current
curvature vector as χ := RTkc − k̄. It is interesting to observe that this equation has
the same form as equation [3.20], which is relevant to strain, and, indeed, it keeps the
same meaning. As a matter of fact, the current curvature of the beam, kc, must first be
pulled back to the reference configuration before it can be compared with the initial
curvature; their difference is a measure of strain.

The strain–displacement relationships

Since x = ā1 + u, equation [3.20] also becomes e = RT (ā1 + u) − ā1. To
represent it in B̄, the Poisson formula [3.10] must be used to express the components
of u. Therefore, in matrix form, we have (compare it with equation [2.51]):

e = RT ā1 + u + K̄u − ā1 [3.31]

or, in extended form:⎛⎝ ε
γ2
γ3

⎞⎠ = RT

⎛⎝⎛⎝1 + u
1

u
2

u
3

⎞⎠+

⎡⎣ 0 −κ̄3 κ̄2

κ̄3 0 −κ̄1

−κ̄2 κ̄1 0

⎤⎦⎛⎝u1

u2

u3

⎞⎠⎞⎠−

⎛⎝1
0
0

⎞⎠ [3.32]

To evaluate the change of curvature components, we represent equation [3.26] in
the reference basis. By using equation [3.13] to express the components of R, we
have:

X = RT R + K̄R−RK̄

= RTR +RT K̄R − K̄
[3.33]

where we adopted the symbol R instead of the cumbersome [R]B̄ . By performing
calculations, and then extracting the components of the axial vector, we obtain
(compare it with equation [2.53])5:

χ = Bωθ
 + RT

− I k̄ [3.34]

5. Equation [3.34] can be read as follows: the first term on the right-hand side of equation,
Bωθ

, is identical to that in equation [2.54], holding for the straight beam; the third term,
k̄, collects the components of the axial vector of K̄; the second term, RT k̄, collects the
components of the axial vector of the rotated tensor RT K̄R.
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Curved Beams 141

where the spin-basis matrix Bω is defined by equation [2.74] and θ := (θ1, θ2, θ3)
T

is the rotation pseudo-vector. In extended form, the previous equation becomes:⎛⎝χ1

χ2

χ3

⎞⎠ =

⎛⎝1 0 − sin θ2
0 cos θ1 sin θ1 cos θ2
0 − sin θ1 cos θ1 cos θ2

⎞⎠⎛⎝θ1
θ2
θ3

⎞⎠

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ2 cos θ3 − 1 cos θ2 sin θ3 − sin θ2

sin θ1 sin θ2 cos θ3 sin θ1 sin θ2 sin θ3 sin θ1 cos θ2
− cos θ1 sin θ3 +cos θ1 cos θ3 − 1

cos θ1 sin θ2 cos θ3 cos θ1 sin θ2 sin θ3 cos θ1 cos θ2 − 1
+ sin θ1 sin θ3 − sin θ1 cos θ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎝κ̄1

κ̄2

κ̄3

⎞⎠
[3.35]

Velocity and spin

Kinetic quantities for curved beams assume the same expressions as those for
straight beams. Indeed, while āj depends on space (this entailing, as we saw, the
occurrence of new terms in strain and curvature), it is independent of time. As an
example, ȧj = (Ṙāj + R ˙̄aj) = ṘRTaj , from which W = ṘRT follows, as in
equation [2.58]. Therefore, the analogy we stressed for straight beams, holding
between curvature and spin (tensors and vectors), no longer holds for curved beams.
Here, we discuss the most important relationships that we derived in Chapter 2.

Velocity, when expressed in the reference basis, becomes:

v := u̇(s, t) = u̇1(s, t)ā1 + u̇2(s, t)ā2 + u̇3(s, t)ā3 [3.36]

The spin vector and tensor are defined via:

ȧj = Waj = ω× aj [3.37]

where:

W = ṘRT [3.38]

The components of the spin vector ω, when expressed in the reference or current
bases, respectively, become (equation [2.71]):

ω̄ = B̄ωθ̇, ω = Bω θ̇ [3.39]

with B̄ω,Bω defined by equations [2.73] and [2.74]. Similarly, the first and second
time-derivatives of a vector attached to B are expressed by equations [2.64] and [2.65].
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142 Mathematical Models of Beams and Cables

ā1
ā2

ā3

pc
PA

CA

PB

CB

A
B

Figure 3.3: Curved beam loaded by forces and couples, both distributed in the body
and applied at the ends.

Stretching velocity gradients and strain rates

The stretching velocity and the spin velocity gradients are (equations [2.80] and
[2.83]):

d := v
−ω× x = Rė

s := ω = Rχ̇
[3.40]

where, according to equation [3.28], k̇ has been substituted by χ̇, since ˙̄k = 0. In
equation [3.40], ė = ε̇ā1 + γ̇2ā2 + γ̇3ā3 and χ̇ = χ̇1ā1 + χ̇2ā2 + χ̇3ā3 are the
strain-rate and the curvature-rate vectors6.

3.2.2 Dynamics

The dynamic aspects of the problem are now addressed. Results obtained in
Chapter 2 are recalled and adapted to the curved beam.

The Virtual Power Principle

Let us consider a curved beam under external forces and couples of density p(s, t)
and c(s, t), respectively, distributed along the centerline, as well as forces and couples
PH(t) and CH(t), respectively, acting at the ends H = A,B (Figure 3.3).

6. With the notation of the metamodel (Chapter 1), strain rates can be written as
ε̇ = D (w,w) ẇ, where ε := (ε, γ2, γ3, χ1, χ3, χ3)

T , w := (u1, u2, u3, θ1, θ2, θ3)
T and

D (w,w) is the 6× 6 kinematic operator of the curved beam.
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Curved Beams 143

The external and internal virtual powers become, as in equations [2.89] and [2.90]:

Pext :=

S
(p · v + c ·ω) ds+

B

H=A

(PH · vH +CH ·ωH)

Pint :=

S
[t · (v

−ω× x) +m ·ω] ds =
S

[t ·Rė+m ·Rχ̇] ds

[3.41]

where equation [3.40] has been used. In equation [3.41], t(s, t) and m(s, t) are the
force-stress and the couple-stress, admitting the following representation in the current
basis B:

t = Na1 + T2a2 + T3a3

m = M1a1 +M2a2 +M3a3
[3.42]

where symbols keep the meaning already introduced. Since Rė = ε̇a1+ γ̇2a2+ γ̇3a3
and Rχ̇ = χ̇1a1 + χ̇2a2 + χ̇3a3, it is also:

Pint =

S
(Nε̇+ T2γ̇2 + T3γ̇3 +M1χ̇1 +M2χ̇2 +M3χ̇3) ds [3.43]

The VPP [2.100] states that Pext = Pint, ∀ (v,ω); from this, by performing the
same steps as for the straight beam, the same vector form of balance equation [2.107]
is derived:

t + p = mü

m + x
× t+ c = IGω̇

[3.44]

in which inertia forces have been introduced via the d’Alembert principle. They
express the linear and angular momentum balance equations, respectively. The VPP
also furnishes the natural boundary conditions, via the alternatives [2.104]:

(PH ± tH) · vH = 0

(CH ±mH) ·ωH , H = A,B
[3.45]

Scalar balance equations in the current and reference bases

When the balance equations are projected onto the current basis B, the matrix
equations [2.136] and [2.138] still hold, in which, however, the curvature K must be
replaced by K̄ +X , in order for strain measures to appear. Consequently:

t + K̄ +X t+RT p̄ = mRT ü

m + K̄ +X m+Λt+RT c̄ = IGω̇
[3.46]
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144 Mathematical Models of Beams and Cables

where Λ is defined in equation [2.85]. Concerning the mechanical boundary
conditions, no changes are requested, so that they read:

tH = RT
HP̄H , mH = RT

HC̄H [3.47]

When projections are made onto the reference basis B̄ the field equations read:

R t + K̄ +X t + p̄ = mü

R m + K̄ +X m +RΛt+ c̄ = RIGω̇
[3.48]

and the boundary conditions:

RHtH = P̄H , RHmH = C̄H [3.49]

3.2.3 The elastic law
If the material is hyperelastic and the simplest uncoupled linear law is adopted,

then:

N = N̊ + EAε, T2 = T̊2 +GA2γ2, T3 = T̊3 +GA3γ3

M1 = M̊1 +GJ1χ1, M2 = M̊2 + EJ2χ2, M3 = M̊3 + EJ3χ3

[3.50]

where EA,GAj , GJ1, EJj are elastic coefficients. These equations are identical to
equation [2.164], valid for the straight beam, but with the changes of curvature χi

replacing κi.

3.2.4 The Fundamental Problem
The Fundamental Problem for the curved beam is governed by eighteen equations

in the eighteen unknowns u ,θ e, χ, t, m, namely:

– the six strain-displacement relationships [3.31] and [3.34];

– the six balance equations [3.46], or [3.48];

– the six constitutive laws [3.50], if the material is linearly elastic.

These equations must be joined to the geometric boundary conditions [3.19] and/or
the mechanical boundary conditions [3.47], or [3.49].

The equations of motion for unprestressed beams

When the governing equations are combined among them, the equations of
motion are derived. In the following we will limit ourselves to the unprestressed case,
to avoid very cumbersome expressions, and we will use the scalar representation of
the balance equations and relevant boundary conditions in the current configuration,
where equations assume a simpler form.
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Curved Beams 145

The balance of forces [3.46a] reads:

{EA[((1 + u
1)− κ̄3u2 + κ̄2u3) cos θ1 cos θ3 + (u

2 + κ̄3u1

− κ̄1u3) cos θ2 sin θ3 − (u
3 − κ̄2u1 + κ̄1u2) sin θ2 − 1]}

−GA2[θ

3 cos θ1 cos θ2 − θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + κ̄2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ κ̄3 cos θ1 cos θ2][((1 + u
1)− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + (u
3 − κ̄2u1 + κ̄1u2) sin θ1 cos θ2]

+GA3[θ

2 cos θ1 + θ3 sin θ1 cos θ2 + κ̄1(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + κ̄2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ κ̄3 sin θ1 cos θ2][((1 + u
1)− κ̄3u2 + κ̄2u3)(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 sin θ2 sin θ3

− sin θ1 cos θ3) + (u
3 − κ̄2u1 + κ̄1u2) cos θ1 cos θ2]

− (mü1 − p̄1) cos θ1 cos θ3 − (mü2 − p̄2) cos θ2 sin θ3

+ (mü3 − p̄3) sin θ2 = 0

[3.51]

{GA2[((1 + u
1)− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ (u
3 − κ̄2u1 + κ̄1u2) sin θ1 cos θ2]} + EA[θ3 cos θ1 cos θ2

− θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3) + κ̄2(cos θ1 sin θ2 sin θ3

− sin θ1 cos θ3) + κ̄3 cos θ1 cos θ2][((1 + u
1)− κ̄3u2 + κ̄2u3) cos θ1 cos θ3

+ (u
2 + κ̄3u1 − κ̄1u3) cos θ2 sin θ3 − (u

3 − κ̄2u1 + κ̄1u2) sin θ2 − 1]

−GA3[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3 + κ̄2 cos θ2 sin θ3 − κ̄3 sin θ2][((1 + u

1)

− κ̄3u2 + κ̄2u3)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3) + (u
2 + κ̄3u1

− κ̄1u3)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + (u
3 − κ̄2u1 + κ̄1u2) cos θ1 cos θ2]

− (mü1 − p̄1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)− (mü2 − p̄2)(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3)− (mü3 − p̄3) sin θ1 cos θ2 = 0

[3.52]
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146 Mathematical Models of Beams and Cables

{GA3[((1 + u
1)− κ̄3u2 + κ̄2u3)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + (u

3 − κ̄2u1

+ κ̄1u2) cos θ1 cos θ2]} − EA[θ2 cos θ1

+ θ3 sin θ1 cos θ2 + κ̄1(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + κ̄2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ κ̄3 sin θ1 cos θ2][((1 + u
1)− κ̄3u2 + κ̄2u3) cos θ1 cos θ3

+ (u
2 + κ̄3u1 − κ̄1u3) cos θ2 sin θ3 − (u

3 − κ̄2u1

+ κ̄1u2) sin θ2 − 1] +GA2[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3 + κ̄2 cos θ2 sin θ3

− κ̄3 sin θ2 − κ̄1][((1 + u
1)− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + (u
3 − κ̄2u1 + κ̄1u2) sin θ1 cos θ2]

− (mü1 − p̄1)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

− (mü2 − p̄2)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

− (mü3 − p̄3) cos θ1 cos θ2 = 0

[3.53]

Concerning the balance of moments, equation [3.46b], we have:

{GJ1[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3 + κ̄2 cos θ2 sin θ3 − κ̄3 sin θ2 − κ̄1]}

−EJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2 + κ̄1(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + κ̄2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ κ̄3 sin θ1 cos θ2 − κ̄2][θ

3 cos θ1 cos θ2 − θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + κ̄2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + κ̄3 cos θ1 cos θ2]

+EJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ κ̄2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + κ̄3 cos θ1 cos θ2

− κ̄3][θ

2 cos θ1 + θ3 sin θ1 cos θ2 + κ̄1(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + κ̄2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ κ̄3 sin θ1 cos θ2] + (GA3 −GA2)[((1 + u
1)− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + (u
3 − κ̄2u1 + κ̄1u2) sin θ1 cos θ2][((1 + u

1)

− κ̄3u2 + κ̄2u3)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ (u
3 − κ̄2u1 + κ̄1u2) cos θ1 cos θ2]− I1(θ̇1 − θ3 sin θ2)̇

+ c̄1 cos θ1 cos θ3 + c̄2 cos θ2 sin θ3 + c̄3 sin θ2 = 0

[3.54]
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Curved Beams 147

{EJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2 + κ̄1(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ κ̄2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3) + κ̄3 sin θ1 cos θ2 − κ̄2]}

+GJ1[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3 + κ̄2 cos θ2 sin θ3

− κ̄3 sin θ2 − κ̄1][θ

3 cos θ1 cos θ2 − θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + κ̄2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ κ̄3 cos θ1 cos θ2]−GJ1[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3

+ κ̄2 cos θ2 sin θ3 − κ̄3 sin θ2 − κ̄1][θ

3 cos θ1 cos θ2 − θ2 sin θ1

+ κ̄1(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3) + κ̄2(cos θ1 sin θ2 sin θ3

− sin θ1 cos θ3) + κ̄3 cos θ1 cos θ2] + (EA−GA3)[((1 + u
1)− κ̄3u2

+ κ̄2u3) cos θ1 cos θ3 + (u
2 + κ̄3u1 − κ̄1u3) cos θ2 sin θ3 − (u

3 − κ̄2u1

+ κ̄1u2) sin θ2 − 1][((1 + u
1)− κ̄3u2 + κ̄2u3)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ (u
3 − κ̄2u1 + κ̄1u2) cos θ1 cos θ2]−GA3[((1 + u

1)− κ̄3u2

+ κ̄2u3)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3) + (u
2 + κ̄3u1

− κ̄1u3)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + (u
3 − κ̄2u1 + κ̄1u2) cos θ1 cos θ2]

− I2(θ̇2 cos θ1 + θ̇3 sin θ1 cos θ2)̇

+ c̄1(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3) + c̄2(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + c̄3 sin θ1 cos θ2 = 0

[3.55]
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148 Mathematical Models of Beams and Cables

{EJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3

+ sin θ1 sin θ3) + κ̄2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)

+ κ̄3 cos θ1 cos θ2 − κ̄3]} −GJ1[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3

+ κ̄2 cos θ2 sin θ3 − κ̄3 sin θ2 − κ̄1][θ

2 cos θ1 + θ3 sin θ1 cos θ2

+ κ̄1(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3) + κ̄2(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + κ̄3 sin θ1 cos θ2]−EI2[θ

2 cos θ1 + θ3 sin θ1 cos θ2

+ κ̄1(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3) + κ̄2(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + κ̄3 sin θ1 cos θ2 − κ̄2][θ

1 − θ3 sin θ2

+ κ̄1 cos θ1 cos θ3 + κ̄2 cos θ2 sin θ3 − κ̄3 sin θ2]

+ (GA2 − EA)[((1 + u
1)− κ̄3u2 + κ̄2u3) cos θ1 cos θ3 + (u

2 + κ̄3u1

− κ̄1u3) cos θ2 sin θ3 − (u
3 − κ̄2u1 + κ̄1u2) sin θ2 − 1][((1 + u

1)

− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ (u
3 − κ̄2u1 + κ̄1u2) sin θ1 cos θ2] +GA2[((1 + u

1)− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3

− cos θ1 sin θ3) + (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+ (u
3 − κ̄2u1 + κ̄1u2) sin θ1 cos θ2]− I3(θ̇3 cos θ1 cos θ2

− θ̇2 sin θ1 )̇ + c̄1(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3) + c̄2(cos θ1 sin θ2 sin θ3

+ sin θ1 cos θ3)− c̄3 cos θ1 cos θ2

[3.56]
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Curved Beams 149

The mechanical boundary conditions [3.47] become (forces):

{EA[((1 + u
1)− κ̄3u2 + κ̄2u3) cos θ1 cos θ3 + (u

2 + κ̄3u1

− κ̄1u3) cos θ2 sin θ3 − (u
3 − κ̄2u1 + κ̄1u2) sin θ2 − 1]}H

= P̄1H(cos θ1 cos θ3)H + P̄2H(cos θ2 sin θ3)H − P̄3H(sin θ2)H

{GA2[((1 + u
1)− κ̄3u2 + κ̄2u3)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3) + (u

3 − κ̄2u1

+ κ̄1u2) sin θ1 cos θ2]}H = P̄1H(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)H

+ P̄2H(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)H + P̄3H(sin θ1 cos θ2)H

{GA3[((1 + u
1)− κ̄3u2 + κ̄2u3)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ (u
2 + κ̄3u1 − κ̄1u3)(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + (u

3 − κ̄2u1

+ κ̄1u2) cos θ1 cos θ2]}H = P̄1H(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)H

+ P̄2H(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3)H + P̄3H(cos θ1 cos θ2)H

[3.57]

and (moments):

{GJ1[θ

1 − θ3 sin θ2 + κ̄1 cos θ1 cos θ3 + κ̄2 cos θ2 sin θ3 − κ̄3 sin θ2 − κ̄1]}H
= C̄1H(cos θ1 cos θ3)H + C̄2H(cos θ2 sin θ3)H

− C̄3H(sin θ2)H

{EJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2 + κ̄1(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ κ̄2(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3) + κ̄3 sin θ1 cos θ2 − κ̄2]}H
= C̄1H(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)H + C̄2H(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3)H + C̄3H(sin θ1 cos θ2)H

{EJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1 + κ̄1(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ κ̄2(cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + κ̄3 cos θ1 cos θ2 − κ̄3]}H
= C̄1H(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)H + C̄2H(cos θ1 sin θ2 sin θ3

− sin θ1 cos θ3)H + C̄3H(cos θ1 cos θ2)H

[3.58]

while the geometric boundary conditions are expressed by equation [3.19].

Linearized equations for elastic prestressed beams

If the beam is prestressed, and we confine ourselves to the linearized theory, the
governing equations reduce to:
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150 Mathematical Models of Beams and Cables

1) Linearized strains and changes of curvature:

ε = u
1 − κ̄3u2 + κ̄2u3

γ2 = u
2 − θ3 + κ̄3u1 − κ̄1u3

γ3 = u
3 + θ2 − κ̄2u1 + κ̄1u2

χ1 = θ1 − κ̄3θ2 + κ̄2θ3

χ2 = θ2 + κ̄3θ1 − κ̄1θ3

χ3 = θ3 − κ̄2θ1 + κ̄1θ2

[3.59]

2) Linearized balance equations in incremental form (forces):

Ñ 
− κ̄3T̃2 + κ̄2T̃3 − [θ3 − κ̄2θ1 + κ̄1θ2]T̊2

+ [θ2 + κ̄3θ1 − κ̄1θ3]T̊3 −mü1 + p̃1 = 0

T̃ 
2 + κ̄3Ñ − κ̄1T̃3 + [θ3 − κ̄2θ1 + κ̄1θ2]N̊

− [θ1 − κ̄3θ2 + κ̄2θ3]T̊3 −mü2 + p̃2 = 0

T̃ 
3 − κ̄2Ñ + κ̄1T̃2 − [θ2 + κ̄3θ1 − κ̄1θ3]N̊

+ [θ1 − κ̄3θ2 + κ̄2θ3]T̊2 −mü3 + p̃3 = 0

[3.60]

and (moments):

M̃ 
1 − κ̄3M̃2 + κ̄2M̃3 − [θ3 − κ̄2θ1 + κ̄1θ2]M̊2

+ [θ2 + κ̄3θ1 − κ̄1θ3]M̊3 − [u
3 + θ2 − κ̄2u1 + κ̄1u2]T̊2

+ [u
2 − θ3 + κ̄3u1 − κ̄1u3]T̊3 − I1θ̈1 + c̃1 = 0

M̃ 
2 + κ̄3M̃1 − κ̄1M̃3 + [θ3 − κ̄2θ1 + κ̄1θ2]M̊1

− [θ1 − κ̄3θ2 + κ̄2θ3]M̊3 − T̃3 + [u
3 + θ2 − κ̄2u1 + κ̄1u2]N̊

− [u
1 − κ̄3u2 + κ̄2u3]T̊3 − I2θ̈2 + c̃2 = 0

M̃ 
3 − κ̄2M̃1 + κ̄1M̃2 − [θ2 + κ̄3θ1 − κ̄1θ3]M̊1

+ [θ1 − κ̄3θ2 + κ̄2θ3]M̊2 + T̃2 − [u
2 − θ3 + κ̄3u1 − κ̄1u3]N̊

+ [u
1 − κ̄3u2 + κ̄2u3]T̊2 − I3θ̈3 + c̃3 = 0

[3.61]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Curved Beams 151

with the mechanical boundary conditions:

{Ñ − θ3T̊2 + θ2T̊3}H = P̃1H

{T̃2 + θ3N̊ − θ1T̊3}H = P̃2H

{T̃3 − θ2N̊ + θ1T̊2}H = P̃3H

{M̃1 − θ3M̊2 + θ2M̊3}H = C̃1H

{M̃2 + θ3M̊1 − θ1M̊3}H = C̃2H

{M̃3 − θ2M̊1 + θ1M̊2}H = C̃3H

[3.62]

Here, as usual, the symbol over-ring (̊ ) denotes a prestress or a preload and a tilde (̃ )
denotes a small increment; moreover, equilibrium at reference configuration has been
taken into account.

3) Linear elastic laws for the incremental stresses:

Ñ = EAε, T̃2 = GA2γ2, T̃3 = GA3γ3

M̃1 = GJ1χ1, M̃2 = EJ2χ2, M̃3 = EJ3χ3

[3.63]

From the previous equations, the following equations of motion are derived for the
forces:

{EA[u
1 − κ̄3u2 + κ̄2u3]}


− κ̄3GA2[u


2 − θ3 + κ̄3u1 − κ̄1u3]

+ κ̄2GA3[u

3 + θ2 − κ̄2u1 + κ̄1u2]− [θ3 − κ̄2θ1 + κ̄1θ2]T̊2

+ [θ2 + κ̄3θ1 − κ̄1θ3]T̊3 −mü1 + p̃1 = 0

{GA2[u

2 − θ3 + κ̄3u1 − κ̄1u3]}

 + κ̄3EA[u
1 − κ̄3u2 + κ̄2u3]

− κ̄1GA3[u

3 + θ2 − κ̄2u1 + κ̄1u2] + [θ3 − κ̄2θ1 + κ̄1θ2]N̊

− [θ1 − κ̄3θ2 + κ̄2θ3]T̊3 −mü2 + p̃2 = 0

{GA3[u

3 + θ2 − κ̄2u1 + κ̄1u2]}


− κ̄2EA[u

1 − κ̄3u2 + κ̄2u3]

+ κ̄1GA2[u

2 − θ3 + κ̄3u1 − κ̄1u3]− [θ2 + κ̄3θ1 − κ̄1θ3]N̊

+ [θ1 − κ̄3θ2 + κ̄2θ3]T̊2 −mü3 + p̃3 = 0

[3.64]
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152 Mathematical Models of Beams and Cables

and the following equations of motion are derived for the moments:

{GJ1[θ

1 − κ̄3θ2 + κ̄2θ3]}


− κ̄3EJ2[θ


2 + κ̄3θ1 − κ̄1θ3]

+ κ̄2EJ3[θ

3 − κ̄2θ1 + κ̄1θ2]− [θ3 − κ̄2θ1 + κ̄1θ2]M̊2

+ [θ2 + κ̄3θ1 − κ̄1θ3]M̊3 − [u
3 + θ2 − κ̄2u1 + κ̄1u2]T̊2

+ [u
2 − θ3 + κ̄3u1 − κ̄1u3]T̊3 − I1θ̈1 + c̃1 = 0

{EJ2[θ

2 + κ̄3θ1 − κ̄1θ3]}

 + κ̄3GJ1[θ

1 − κ̄3θ2 + κ̄2θ3]

− κ̄1EJ3[θ

3 − κ̄2θ1 + κ̄1θ2] + [θ3 − κ̄2θ1 + κ̄1θ2]M̊1

− [θ1 − κ̄3θ2 + κ̄2θ3]M̊3 −GA3[u

3 + θ2 − κ̄2u1 + κ̄1u2]

+ [u
3 + θ2 − κ̄2u1 + κ̄1u2]N̊ − [u

1 − κ̄3u2 + κ̄2u3]T̊3 − I2θ̈2 + c̃2 = 0

{EJ3[θ

3 − κ̄2θ1 + κ̄1θ2]}


− κ̄2GJ1[θ


1 − κ̄3θ2 + κ̄2θ3]

+ κ̄1EJ2[θ

2 + κ̄3θ1 − κ̄1θ3]− [θ2 + κ̄3θ1 − κ̄1θ3]M̊1

+ [θ1 − κ̄3θ2 + κ̄2θ3]M̊2 +GA2[u

2 − θ3 + κ̄3u1 − κ̄1u3]

− [u
2 − θ3 + κ̄3u1 − κ̄1u3]N̊ + [u

1 − κ̄3u2 + κ̄2u3]T̊2 − I3θ̈3 + c̃3 = 0

[3.65]

The boundary conditions are7:

[EA(u
1 − κ̄3u2 + κ̄2u3)− θ3T̊2 + θ2T̊3]H = P̃1H

[GA2(u

2 − θ3 + κ̄3u1 − κ̄1u3) + θ3N̊ − θ1T̊3]H = P̃2H

[GA3(u

3 + θ2 − κ̄2u1 + κ̄1u2)− θ2N̊ + θ1T̊2]H = P̃3H

[GJ1(θ

1 − κ̄3θ2 + κ̄2θ3)− θ3M̊2 + θ2M̊3]H = C̃1H

[EJ2(θ

2 + κ̄3θ1 − κ̄1θ3) + θ3M̊1 − θ1M̊3]H = C̃2H

[EJ3(θ

3 − κ̄2θ1 + κ̄1θ2)− θ2M̊1 + θ1M̊2]H = C̃3H

[3.66]

3.3 The planar curved beam

Let us consider a curved beam, whose centerline, in the reference configuration,
lies on a curve S of the plane π that is spanned by the (i1, i2) unit vectors. Let us

7. These equations, in matrix form, become Lu + Gu = p̃, LHu + GHu = P̃ (equation
[1.72]).
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Curved Beams 153

assume that π is a principal plane of inertia for any cross-sections. Moreover, let the
constraints at the boundary allow the beam to assume configurations still contained in
π. Such a curved beam is said to be planar or an arch.

The initial curvature

Since S is planar, the position vector in the reference configuration is
x̄ = x̄1(s)i1 + x̄2(s)i2; moreover, since the osculating plane coincides with π for
any s, then the tangent and normal vector to the curve also belong to π, while the
binormal vector is orthogonal to it:

at = x̄, an =
1

k
x̄, ab = i3 [3.67]

with k = x̄ and τ = 0. As π is a principal plane of inertia, the deviation angle
δ(s) vanishes everywhere. Therefore, from equation [3.4], the triad of directors B̄ =
(ā1(s), ā2(s), ā3) attached to the cross-section coincides with the TNB basis Bf =
(at(s), an(s), ab). Consequently, from equation [3.8], the unique non-zero component
of the initial curvature vector is κ̄ := κ̄3 = k, so that k̄ = κ̄ā3.

In-plane and out-of-plane behavior

The equations of motion governing the planar beam can be derived from the
general model in 3D by letting κ̄1 = κ̄2 = 0. It can be checked from these equations
that, if the beam is loaded by external (or inertia) forces contained in the plane π,
i.e. if p3 = c1 = c2 = 0, then the model in 3D admits a planar solution
u3 = θ1 = θ2 = 0; accordingly, the beam assumes a current configuration still
contained in π. If, in contrast, the loads act orthogonally to π, i.e. if
p1 = p2 = c3 = 0, then the solution is complete, in the sense that all the
displacement and rotation components are different from zero. Therefore,
out-of-plane forces call for in-plane displacements, so that the general model must be
used to evaluate the response. In this section, therefore, we will formulate the planar
model only, able to describe the uncoupled in-plane behavior.

3.3.1 Kinematics

Displacement, rotation and strains

The displacement is:

u := u1(s, t)ā1 (s) + u2(s, t)ā2 (s) [3.68]
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154 Mathematical Models of Beams and Cables

and the rotation is R(s, t), whose scalar representation in B̄ becomes:

R =

⎡⎣cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤⎦ [3.69]

where θ := θ3; therefore, any geometric transformations depend on three scalar fields,
u1(s, t), u2(s, t), θ(s, t).

The geometric boundary conditions are of the type:

u1H = ŭ1H , u2H = ŭ2H , θH = θ̆H , H = A,B [3.70]

The strain vector [3.20] and the change of curvature vector [3.28] reduce to:

e = εā1 + γā2

χ = χā3
[3.71]

where γ := γ2, χ := χ3, and where the components follow from equations [3.32] and
[3.35]8:

ε = −1 + (1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ

γ = −(1 + u
1 − κ̄u2) sin θ + (u

2 + κ̄u1) cos θ

χ = θ
[3.72]

Velocity and spin

The velocity vector is obtained by time-differentiation of equation [3.68]; the spin
vector follows from the specialization of either equation [3.39]:

v = u̇1(s, t)ā1 + u̇2(s, t)ā2

ω = ω3a3 = θ̇a3
[3.73]

8. Alternatively, by direct calculations, we have ā1 + ē = RT (ā1 + u) and, moreover, u =
u
1ā1 + u

2ā2 + k̄× u; therefore:1 + ε
γ
0

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1 + u
1 − κ̄u2

u
2 + κ̄u1

0


Concerning the curvature, since S and Ŝ are planar curves, then k̄ = [arccos (ā1 · i1)] ā3 and
k = kr ≡ kc = [arccos (a1 · i1)] ā3; hence χ = k− k̄ = θā3 with θ := arccos (a1 · ā1).
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Curved Beams 155

Strain rates

The strain-rates ė = ε̇ā1 + γ̇2ā2 and χ̇ = χ̇ā3 admit the following components:

ε̇ = (u̇
1 − κ̄u̇2) cos θ + (u̇

2 + κ̄u̇1) sin θ + γθ̇

γ̇ = − (u̇
1 − κ̄u̇2) sin θ + (u̇

2 + κ̄u̇1) cos θ − (1 + ε)θ̇

χ̇ = θ̇

[3.74]

where equation [3.72]9.

3.3.2 Dynamics

Let the beam be loaded by distributed in-plane forces p = p̄1ā1 + p̄2ā2 and in-
plane couples c = c̄ā3; moreover, let PH = P̄1H ā1 + P̄2H ā2 and CH = C̄H ā3
(H = A,B), be forces and couples applied at the boundaries.

Balance equations

The balance equations, in vector form, still read as in equation [2.107]:

t + p = mü

m + x
× t+ c = IGω̇

[3.75]

and boundary conditions as in equation [3.45]:

(PH ± tH) · vH = 0

(CH ±mH) ·ωH = 0, H = A,B
[3.76]

9. In matrix form, it is ε̇ = D (w,w) ẇ, where ε := (ε, γ, χ)T , w := (u1, u2, θ)
T and:

D w,w :=

 (cos θ) ∂s + κ̄ sin θ (sin θ) ∂s − κ̄ cos θ γ
− (sin θ) ∂s + κ̄ cos θ (cos θ) ∂s + κ̄ sin θ −(1 + ε)

0 0 ∂s


is the kinematic operator of the curved planar beam. If it is evaluated at the reference
configuration, it becomes the infinitesimal kinematic operator of the linear theory:

D0 := D (0,0) =

∂s −κ̄ 0
κ̄ ∂s −1
0 0 ∂s
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156 Mathematical Models of Beams and Cables

Now, however, the force-stress t and the couple-stress m, are contained in π, i.e.:

t = Na1 + Ta2

m = Ma3
[3.77]

where N is the axial force, T := T2 is the shear force and M := M3 is the bending
moment; moreover, since ω̇ is orthogonal to π, the only significant part of IG is the
mass moment of inertia with respect to a3, I := I3.

By projecting the field equations onto the reference basis, we have10, 11:

[N 
− (κ̄+ χ)T ] cos θ − [T  + (κ̄+ χ)N ] sin θ + p̄1 −mü1 = 0

[N 
− (κ̄+ χ)T ] sin θ + [T  + (κ̄+ χ)N ] cos θ + p̄2 −mü2 = 0

M  + (1 + ε)T − γN + c̄− Iθ̈ = 0

[3.78]

By projecting, at the free ends, the boundary conditions, it follows:

 (N cos θ − T sin θ)H = P̄1H

 (N sin θ + T cos θ)H = P̄2H

MH = C̄H , H = A,B

[3.79]

10. Indeed, by remembering the Poisson formula, and accounting for k = (κ̄+ χ) a3, we have:

t
 = N 

a1 + T 
a2 + k× t = N  − (κ̄+ χ)T a1 + T  + (κ̄+ χ)N a2

m
 = M 

a3 + k×m = M 
a3

Moreover, since, x = R (ā1 + e), then:

x
 × t = [(1 + ε)a1 + γa2]× (Na1 + Ta2) = [(1 + ε)T − γN ] a3

Finally, ai = Rāi must be used.
11. In matrix form, D (w,w)σ = p, where σ := (N, T,M)T , p := (p̄1, p̄2, c̄)

T and:

D w,w :=

(− cos θ) ∂s + (κ̄+ χ) sin θ [(sin θ) ∂s + (κ̄+ χ) cos θ] 0
(− sin θ) ∂s − (κ̄+ χ) cos θ (− cos θ) ∂s + (κ̄+ χ) sin θ 0

γ −(1 + ε) −∂s


is the equilibrium operator of the curved planar beam; it is the adjoint of the kinematic operator
D (w,w). When, in the framework of the linear theory, it is evaluated at the reference
configuration, it reduces to adjoint of D0, namely:

D0 := D (0, 0) =

−∂s κ̄ 0
−κ̄ −∂s 0
0 −1 −∂s
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Curved Beams 157

3.3.3 The Virtual Power Principle

The balance equations can, of course, be derived by specializing the VPP for the
planar case and restarting the procedure. We will show this approach as an exercise.

The Virtual Power equation, Pext = Pint, when vectors in equation [3.41] are expressed in
the reference basis, specializes as follows:

S

(p̄1v1 + p̄2v2 + c̄ω) ds+

B

H=A

P̄1Hv1H + P̄2Hv2H + C̄HωH

=

S

(Nε̇+ T γ̇ +Mχ̇) ds, ∀ u̇1, u̇2, θ̇

[3.80]

Accordingly, if the Strain-rate-velocity relationships [3.74] are introduced in this equation, and
v1 = u̇1, v2 = u̇2, ω = θ̇ are used, the principle becomes:

S

p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds+
B

H=A

P̄1H u̇1H + P̄ u̇2H + C̄H θ̇H

=

S

N u̇
1 − κ̄u̇2 cos θ + u̇

2 + κ̄u̇1 sin θ + γθ̇

+ T − u̇
1 − κ̄u̇2 sin θ + u̇

2 + κ̄u̇1 cos θ − (1 + ε)θ̇ +Mθ̇ ds

[3.81]

or, after an integration by parts:

S

(N cos θ − T sin θ) − κ̄N sin θ − κ̄T cos θ + p̄1 u̇1

+ − (N sin θ + T cos θ) + κ̄N cos θ − κ̄T sin θ + p̄2 u̇2

+ M  −Nγ + T (1 + ε) + c̄ θ̇ ds+ {[− (N cos θ − T sin θ)

+P̄1 u̇1
B

A
+ − (N sin θ + T cos θ) + P̄2 u̇2

B

A
+ −[M + C̄]θ̇

B

A
= 0

[3.82]

Finally, since (sin θ) = χ cos θ, (cos θ) = −χ sin θ, equations [3.78] are reobtained, together
with equation [3.79] on the free boundary.

3.3.4 Constitutive law

The uncoupled linear elastic law becomes:

N = N̊ + EAε

T = T̊ +GAsγ

M = M̊ + EJχ

[3.83]
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158 Mathematical Models of Beams and Cables

where GAs := GA2 is the shear stiffness, EJ := EJ3 is the bending stiffness and
overmarked quantities are prestresses.

3.3.5 Fundamental Problem

The equations governing the motion are obtained by combining the strain–
displacement relationships [3.72], the balance equations [3.78] and the constitutive
law [3.83], together with boundary conditions [3.70] and [3.79].

The exact equations for unprestressed beams

By ignoring the prestress, the following exact equations of motion are derived:

[{EA[(1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ − 1]}

− (κ̄+ χ)GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ]] cos θ

− [{GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ]}


+ (κ̄+ χ)EA[(1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ − 1]] sin θ

+ p̄1 −mü1 = 0

[{EA[(1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ − 1]}

− (κ̄+ χ)GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ]] sin θ

+ [{GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ]}


+ (κ̄+ χ)EA[(1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ − 1]] cos θ

+ p̄2 −mü2 = 0

{EJθ} + (GAs − EA)[(1 + u
1 − κ̄u2) cos θ + (u

2

+ κ̄u1) sin θ][(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ]

−GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ] + c̄− Iθ̈ = 0

[3.84]

with the mechanical boundary conditions:

{EA[(1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ − 1] cos θ

−GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ] sin θ}H = P̄1H

{EA[(1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ − 1] sin θ

+GAs[(u

2 + κ̄u1) cos θ − (1 + u

1 − κ̄u2) sin θ] cos θ}H = P̄2H

{EJθ}H = C̄H , H = A,B

[3.85]
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Curved Beams 159

and the geometric boundary conditions:

u1H = ŭ1H , u2H = ŭ2H , θH = θ̆H , H = A,B [3.86]

Linearized theory for prestressed beams

Equations of motions for prestressed beams are obtained here in the framework of
the linearized theory.

The strain–displacement relationships [3.72] become:

ε =u
1 − κ̄u2

γ =u
2 + κ̄u1 − θ

κ =θ
[3.87]

The incremental balance equations are obtained from equation [3.78], once all the
quantities are split into a pre-existing (large) part and a (small) incremental part,
namely p̄i = p̊i + p̃i, c̄ = c̊ + c̃ for forces and N = N̊ + Ñ , T = T̊ + T̃ ,
M = M̊ + M̃ for stresses. By retaining first-order terms only and accounting for the
pre-existing equilibrium, the balance equations transform into:

Ñ 
− κ̄T̃ − (θT̊ ) − κ̄θN̊ + p̃1 = mü1

T̃  + κ̄Ñ + (θN̊ ) − κ̄θT̊ + p̃2 = mü2

M  + T̃ + (u
1 − κ̄u2)T̊ − (u

2 + κ̄u1 − θ)N̊ + p̃ = Iθ̈

[3.88]

By the same procedure, the boundary conditions follow from equation [3.79]:

Ñ 
− κ̄T̃ − (θT̊ ) − κ̄θN̊ + p̃1 = mü1

T̃  + κ̄Ñ + (θN̊ ) − κ̄θT̊ + p̃2 = mü2

M  + T̃ + (u
1 − κ̄u2)T̊ − (u

2 + κ̄u1 − θ)N̊ + p̃ = Iθ̈

[3.89]
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160 Mathematical Models of Beams and Cables

By using the elastic law [3.83], the equations of motion are finally derived12:

[EA(u
1 − κ̄u2)]


− κ̄GAs(u


2 + κ̄u1 − θ)− (θT̊ ) − κ̄θN̊ + p̃1 −mü1 = 0

[GAs(u

2 + κ̄u1 − θ)] + κ̄EA(u

1 − κ̄u2) + (θN̊) − κ̄θT̊ + p̃2 −mü2 = 0

(EJθ) +GAs(u

2 + κ̄u1 − θ) + (u

1 − κ̄u2)T̊ − (u
2 + κ̄u1 − θ)N̊ + c̃− Iθ̈ = 0

[3.90]

Similarly, the mechanical boundary conditions are:

 [EA(u
1 − κ̄u2)− θT̊ ]H = P̃1H

 [GAs(u

2 + κ̄u1 − θ) + θN̊ ]H = P̃2H

 [EJθ]H = C̃H

[3.91]

If the prestress is ignored (or it is absent), the model reduces to the linear Timoshenko
beam.

3.4 Summary

Here, we summarize the main results of this chapter. We formulated a model of
curved beam immersed in a 3D-space, made up of a flexible centerline and rigid cross-
sections, modeled as a polar, one-dimensional continuum.

12. They are of the type Lu+Gu = p̃ in the field, and LHu+ GHu = P̃ on the boundary
(equation [1.72]), where:

L :=

 −EA∂2
s + κ̄2GAs κ̄EA+ κ̄EA∂s + κ̄GAs∂s κ̄GAs

−κ̄GAs − κ̄GAs∂s − κ̄EA∂s −GAs∂
2
s + κ̄2EA GAs∂s

−κ̄GAs −GAs∂s GAs − EJ∂2
s



G :=

 0 0 T̊  + T̊ ∂s + κ̄N̊

0 0 −N̊  − N̊∂s + κ̄T̊

−T̊ ∂s + κ̄N̊ N̊∂s + κ̄T̊ −N̊


are elastic and geometric stiffness operators, and:

LH :=

EA∂s −κ̄EA 0
κ̄GAs GAs∂s −GAs

0 0 EJ∂s


H

, GH :=

0 0 −T̊

0 0 N̊
0 0 0


H

are their counterpart on the free boundary. They hold in case of uniform initial curvature κ̄,
uniform elastic coefficients EA, GAs and uniform prestresses N̊ , T̊ .

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Curved Beams 161

We first described the reference configuration. We introduced the parametric
equations of the centerline and the deviation angle, which measures the amplitude of
the rotation about the tangent to the beam axis, which leads the TNB (Frenet) triad,
intrinsic to the centerline, to match the principal inertia triad, intrinsic to the
cross-section. The deviation angle only alters the torsion of the curve and changes the
basis on which the principal curvature vector is projected.

In analyzing kinematics, we mainly stressed the differences existing within the
straight beam model. Indeed, current and reference curvatures measure the current
state of the beam, that, however, is affected by the initial curvature existing in the
reference configuration. Strain is then introduced as a change of curvature, which is
conveniently defined as the difference between present and initial curvatures, both
related to the reference configuration. To get scalar components, however, we had to
take into account that the reference basis is not fixed, but depends on the abscissa;
therefore, the space-derivative of the rotation tensor is not the derivative of the
components. A formula was derived to perform calculations, simply by expressing
the tensor in a basis of tensors, and then performing differentiations of products.
About kinetic quantities, which involve time-derivatives, we noted that, being the
initial curvature independent of time, this is ineffective, so that kinetic magnitudes
assume the same expressions they have for the straight beam.

Dynamics is ruled by the VPP (or momentum principles), which, in vector form,
has the same expression holding for the straight beam. However, when the balance
equations are projected onto the curved reference basis, the scalar equations contain
the initial curvature components.

Constitutive equations for linear hyperelastic materials were recalled, identical to
those for the straight beam, except for the appearance of the change of curvature
instead of the present curvature.

The Fundamental Problem for the curved beam is governed by 18 equations in 18
unknowns. For the unprestressed case, we derived exact equations of motion for the
unknown displacements. Linearized equations, governing the motion around a
prestressed configuration were also obtained.

Finally, the special case of planar beam was analyzed. Here, the TNB and inertia
bases coincide and the initial curvature is described by a scalar curvature only. An
explicit form for the exact motion of the equations was given in absence of prestress,
and linearized equations for prestress.
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Chapter 4

Internally Constrained Beams

In this chapter, we analyze several models of internally constrained beam, aimed
(a) at illustrating the procedures discussed for the metamodel, and (b) at introducing
models useful for engineering applications. First, we perform an order of magnitude
analysis, based on an energy criterion, to predict, on the grounds of the geometric
characteristics of the beam, when an internally constrained model can be adopted.
Then, by following the methods illustrated in Chapter 1 (namely the mixed, the
displacement and the hybrid formulations), we derive models for the following
straight beams: (a) unshearable (Euler–Bernoulli), (b) inextensible and unshearable
(Euler’s elastica), (c) untwistable, inextensible and unshearable (compact-section or
boxed Euler’s elastica), (d) foil-beam (one-plane-inflexible Euler’s elastica),
(e) shear–shear beam (homogenized tower-building). Finally, we develop a model for
a (f) curved planar beam, inextensible and unshearable.

4.1 Stiff beams and internal constraints

In Chapters 2 and 3 we formulated models of straight and curved beams, directly
derived as one-dimensional polar continua. Since we did not introduce any restrictions
to kinematics, these models should be considered as internally unconstrained one-
dimensional models1. On the other hand, in section 1.3, we introduced the concept of
an internally constrained metamodel, as an ideal beam in which one or more (so-called

1. Of course, if we had derived the models from a 3D-continuum, by enforcing rigidity of the
sections, we should have referred to them as “internally constrained three-dimensional models”.

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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164 Mathematical Models of Beams and Cables

constrained) strains identically vanish in the domain. Since internal constraints reduce
the number of the unknowns of the Fundamental Problem, we are now interested in
formulating specific models of constrained beams.

Order of magnitude analysis

The mechanical experience tells us that a beam can more easily be bent, rather
than extended; similarly, it can more easily be twisted if its cross-section is thin and
open, rather than closed or compact. Such qualitative considerations suggest to us to
neglect some of the strains and formulate (partially) rigid models. However, in order to
derive a reliable internally constrained model, we need a criterion to evaluate a priori
if a strain is or is not negligible with respect to the others. The best way to proceed is
not to directly compare strains among them, but rather to compare their contribution
to the elastic energy. Indeed, we could have small strains that, when multiplied by
large elastic coefficients, could significantly participate in the response of the beam.
In contrast, by referring to energy, we have a global measure accounting for strains
and stiffness, thus being unaffected by this drawback. Of course, the simplest case of
diagonal elastic law strongly simplifies the analysis, and therefore we are limited to
this law.

With these ideas in mind, we rewrite the quadratic elastic potential (equation
[2.163], for the unprestressed beam, and express it in terms of stresses, instead of
strains (also known as complementary elastic energy):

φ =
1

2
EAε2 +GA2γ

2
2 +GA3γ

2
3 +GJ1κ

2
1 + EJ2κ

2
2 + EJ3κ

2
3

=
1

2

N2

EA

=:φe

+
1

2

T 2
2

GA2
+

T 2
3

GA3

=:φs

+
1

2

M2
1

GJ1

=:φt

+
1

2

M2
2

EJ2
+

M2
3

EJ3

=:φf

[4.1]

The four addenda constitute the extensional, shear, torsional and flexural
contributions to the elastic potential, respectively. Our goal is to perform an order of
magnitude analysis of the different contributions in quite common situations.

First, we observe that when forces O (P ) are applied at one end of a beam, then
N = O (P ), Tj = O (P ), M1 = O (Pr), Mi = O (Pl) with i = 2, 3, where r is a
characteristic linear dimension of the cross-section and l is the length of the beam2.
From de Saint-Venant theory and geometric properties of planar figures, we know
that: Ai = ςiA, where ςi is the shear factor, usually O(1); if the cross-section is
compact, or boxed, J1 = O(Ji) and moreover, Ji = O(r2A), since the radii of inertia

2. Here, and in the following, O is the Landau symbol, to be read as “Capital o of”, meaning
“of the same order of”.
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Internally Constrained Beams 165

are of the order of the characteristic dimension of the cross-section. However, if the
beam is thin-walled, and its section is open, then J1 = O(rb3), Ji = O(rb3), with
b  r being a characteristic thickness. A special case is represented by foil-beams,
for which, when a3 is the “strong” axis, J1 = O(rb3), J2 = O(rb3), J3 = O(r3b). In
all cases, G = O (E).

By comparing shear and flexural energies, we have φs/φf = O r2/ςil
2 . Since,

typically, the slenderness ratio l/r ranges between 20 and 100, the shear contribution
is usually negligible. It can be of little importance only in short beams (in which
geometrical nonlinearities have small effects) or for very shear-deformable beams
(i.e. when ςi  1). This case occurs, for example, in beam-like structures, such as
Vierendel or shear-type frames, when we want to homogenize them as beams. In
limit cases, the shear contribution can dominate the flexural contribution; as a result,
the beam is called a shear-beam. Except for these particular cases, the beams are
usually assumed unshearable. It should be observed that consistently with the
no-shear assumption, when we tackle dynamic problems, also the flexural rotatory
inertia should be neglected, unless large non-structural masses are solid with the
beam3.

By comparing extensional and flexural energies, we have
φe/φf = O r2/l2  1. Since the extensional contribution to the energy is
negligible, a model of inextensible beam can be adopted. However, care must be
taken in neglecting extension, since such kind of model is geometrically
incompatible with external constraints that prevent both longitudinal displacements
at the ends, u1A, u1B. Therefore, the dynamics of planar beams with longitudinally
movable or immovable ends are very different.

If we compare torsional and flexural contributions for compact or boxed beams,
we find φt/φf = O r2/l2  1. Such beams, therefore, are almost untwistable,
and a simplified no-twist model can be adopted. However, this is a consequence of
having considered external forces acting with small eccentricity with respect to the
beam axis, as usually happens. If, in contrast, torques C1 = O (Pl) are applied to the
beam, twist cannot be neglected. If we refer, instead, to open thin-walled beams, then
φt/φf = O r4/b2l2 , which is usually of order 1, if b/r = O (r/l). Therefore, such
beams are twistable.

The special case of the foil-beams is now addressed. Because of the large ratio
between the two inertia, the ratio between the two contributions to the flexural energy
is φf3/φf2 = O b2/r2  1. Therefore, an approximated model in which the

3. As a matter of fact, the non-dimensional ratio between inertia couples and forces is

cin3 /lpin2 = O I3θ̈3 / (lmü2) . By assuming harmonic motion and θ3 = O (u2/l),

consistent with no-shear hypothesis (see equation [4.24]), the previous ratio is O r2/l2 .
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166 Mathematical Models of Beams and Cables

bending around the “strong” axis is ignored can be adopted. In contrast, since
φt/φf2 = O (r/l), i.e. the ratio is less than 1 but not so small, twist cannot be
neglected.

4.2 The general approach

To formulate an internally constrained model, we will closely follow the methods
discussed in sections 1.3.1 and 1.3.2, by referring to the beam metamodel. First, we
have to realize that we can no longer use the vector approach, since strains, and
therefore displacements, are generally only partially constrained. For example, if the
beam is unshearable, only two components of the strain vector e are zero (namely
γ2, γ3), not e itself, since ε = 0. Therefore, using the scalar form is mandatory.
However, in order to avoid writing very long formulas, we will adopt a matrix
notation, that, as we noted in section 2.2.5, naturally leads to Lagrangian balance
equations.

Kinematics

Strains for the unconstrained model, in matrix form, are (equation [2.182]):

e = RT (ā1 + u)− ā1

k = B̄ωθ
 [4.2]

where:

u := (u1, u2, u3)
T
, θ := (θ1, θ2, θ3)

T
, e := (ε, γ2, γ3)

T
, k := (κ1, κ2, κ3)

T

[4.3]

Moreover ā1 := (1, 0, 0)
T
, R (θ) is the rotation matrix defined by equation [2.6],

and B̄ω (θ) is the spin-basis matrix given by equation [2.73].

Geometric boundary conditions are expressed by equation [2.19]:

u = ŭ, θ = θ̆ [4.4]

Strain-rates could be obtained by time-differentiation of the strains [4.2]; they,
however, are more conveniently expressed in the form of equation [2.88]:

ė = RT u̇ +ΛRT B̄ωθ̇

k̇ = RT B̄

ωθ̇ + B̄ωθ̇

 [4.5]

where the skew-symmetric matrix Λ is defined in equation [2.85].
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Internally Constrained Beams 167

Constraints enforcing the vanishing of one or more of the strain components are
considered. This entails that strain-rates and displacement-rates are restrained too.

Dynamics

The balance equations are provided by the Virtual Power Principle (VPP). In
extended scalar form, it becomes:

S
(Nε̇+ T2γ̇2 + T3γ̇3 +M1κ̇1 +M2κ̇2 +M3κ̇3) ds

=

S

3

j=1

(p̄jvj + c̄jω̄j) ds+

B

H=A

3

j=1

P̄jvj + C̄jω̄j H

[4.6]

or, in more compact form (see equation [2.143]):

S
tT ė+mT k̇ ds =

S
p̄Tv + c̄T ω̄ ds+

B

H=A

P̄
T
v + C̄

T
ω̄

H
[4.7]

where:

ω̄ := (ω̄1, ω̄2, ω̄3)
T

t := (N,T2, T3)
T
, m := (M1,M2,M3)

T

p̄ := (p̄1, p̄2, p̄3)
T
, c̄ := (c̄1, c̄2, c̄3)

T

P̄H := P̄1, P̄2, P̄3
T

H
, C̄H := C̄1, C̄2, C̄3

T

H

[4.8]

By relating the spin column matrix ω̄ to the Tait-Bryan angles rate θ̇ via ω̄ = B̄ωθ̇

(equation [2.71a]), and using v = u̇, the VPP is finally written as:

S
ėT t+ k̇

T
m ds =

S
u̇T p̄+ θ̇

T
B̄

T
ω c̄ ds+

B

H=A

u̇T P̄ + θ̇
T
B̄

T
ω C̄

H
[4.9]

To obtain balance equations, we can proceed in three different ways according to the
following:

1) The mixed formulation (see section 1.3.1). Here, the constraints are considered
as auxiliary conditions restraining the field of the virtual motions in the VPP.
Therefore, constraints are incorporated in the VPP via Lagrange multipliers. This
approach does not alter the number of balance equations, which now contain active as
well as reactive stresses.
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168 Mathematical Models of Beams and Cables

2) The displacement formulation (see section 1.3.2). In this approach, a subset
of displacements is expressed as slave of the remaining master displacements and
eliminated by the VPP. In this way, a lower number of condensed balance equations
are obtained, only involving active stresses.

3) The hybrid formulation. This is a combination of the two previous methods,
in which a part of the constraints is accounted for by condensation of the slave
displacements, and the remaining part via Lagrange multipliers. Therefore, the
balance equations contain the active stresses and that part of the reactive stresses which
spends (zero) power on the constrained strains appended to the integral principle.

In handling the virtual power equation, we will have to perform integration by parts.
According to the mixed formulation, one integration is necessary to free the
configuration variables u, θ by the space-derivatives. It is important to stress that this
is exactly what we did in dealing with the unconstrained model. When, in contrast,
the displacement (or hybrid) formulation is used, two integrations are necessary. As
we mentioned in section 1.3.2, it is conceptually clearer to perform this operation in
two steps: (a) we first substitute the strain rates, and, by ignoring the constraints on
the velocities, we perform an integration by parts, aimed to free all (master and slave)
velocities from space-derivatives; then, (b) we substitute the velocity constraints
under the integral sign, and perform a new integration by parts to free the (remaining)
master velocities from space derivatives.

The examples that follow clarify the procedure.

Constitutive law

We will consider a linear elastic beam, possibly prestressed, obeying, when
unconstrained, the Hooke law [2.156]:

t = t̊+Eeee+Eekk

m = m̊+Ekek +Ekkk
[4.10]

in which t̊, m̊ are prestresses and Eαβ are elastic submatrices. When constraints, are
introduced, however, the stresses dual of the constrained strains becomes reactive, so
that relevant constitutive law must be suppressed (see sections 1.3.1 and 1.5).

4.3 The unshearable straight beam in 3D

We develop a model for an unshearable straight beam, also called the
Euler–Bernoulli beam4. We say that a straight beam is unshearable when the shear

4. Sometimes also called the extensible Euler’s elastica.
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Internally Constrained Beams 169

strains, γ2, γ3, identically vanish. By using equation [4.2], and accounting for
ε = āT

1 e and γ2 = āT
2 e, γ3 = āT

3 e, the unconstrained (admissible) strains are as
follows:

ε = āT
1 R

T (ā1 + u)− 1

k = B̄ωθ
 [4.11]

and the constraints are:

āT
2 R

T (ā1 + u) = 0, āT
3 R

T (ā1 + u) = 0 [4.12]

We approach the problem either by the mixed or by the displacement formulations.

4.3.1 The mixed formulation

Since γ2 = 0, γ3 = 0 at any time, then γ̇2 = 0, γ̇3 = 0, so that the internal power
T2γ̇2+T3γ̇3, associated with the reactive shear forces, disappears from equation [4.6].
However, unshearability also constitutes a constraint for the velocity field, which must
be accounted for when the principle is applied. The easiest way to accomplish the task
is using Lagrangian multipliers. Accordingly, the VPP is written as a modification of
equation [4.9]:

S
Nε̇+mT k̇ ds =

S
u̇T p̄+ θ̇

T
B̄

T
ω c̄ ds

+

B

H=A

u̇T P̄ + θ̇
T
B̄

T
ω C̄

H
−

S
(λ2γ̇2 + λ3γ̇3) ds

[4.13]

where λ2, λ3 are Lagrangian multipliers. Since this equation coincides with equation
[4.9] when λ2 ≡ T2, λ3 ≡ T3 are taken, the Lagrangian balance equations [2.147] are
obtained, namely:

R (t +Kt) + p̄ = 0

B̄
T
ω [R (m +Km) +RΛt+ c̄] = 0

[4.14]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



170 Mathematical Models of Beams and Cables

together with the boundary conditions [2.148]:

u̇T
H P̄H ±RHtH = 0

θ̇
T

HB̄
T
ωH C̄H ±RHmH = 0

[4.15]

On the other hand, the elastic law only concerns the active stresses (equation
[1.94]). By adopting the diagonal linear elastic law for the unconstrained model
(equations [2.164]), and appending dummy equations for the reactive stresses, we
have:

t = t̊+ EAεā1 + λ

m = m̊+Ekkk
[4.16]

where:

t̊ :=

⎛⎝N̊
0
0

⎞⎠ , λ :=

⎛⎝ 0
T2

T3

⎞⎠

m̊ :=

⎛⎝M̊1

M̊2

M̊3

⎞⎠ , Ekk :=

⎡⎣GJ1 0 0
0 GJ2 0
0 0 GJ3

⎤⎦
[4.17]

In conclusion, the Fundamental Problem is made up of six scalar balance
equations [4.14]; four unconstrained strain–displacement relationships, equation
[4.11]; two equations expressing the vanishing of the shear strains, equations [4.12];
four (meaningful) scalar constitutive laws for the active stresses, equations [4.16];
overall, 16 equations. The unknowns are in the same number, namely: six
displacement components u, θ; four unconstrained strains ε, k; four active stresses
N , t and two reactive stresses T2, T3. Boundary conditions are mechanical
(equations [4.15]) and/or geometrical (equations [4.4]).

In the spirit of the mixed formulation, by using the constitutive law and the
strain-displacement relationships, the whole problem can be formulated as six
balance equations with two constrain conditions appended, all expressed in terms of
the six displacements and the two reactive stresses. In formulas, in the unprestressed
case, and after premultiplying them by RT for an easier expression, we have
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Internally Constrained Beams 171

(balance of momentum):

{EA[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2 − 1]}

− [θ3 cos θ1 cos θ2 − θ2 sin θ1]T2 + [θ2 cos θ1 + θ3 sin θ1 cos θ2]T3

+ cos θ1 cos θ3(p̄1 −mü1)

+ cos θ2 sin θ3(p̄2 −mü2)− sin θ2(p̄3 −mü3) = 0

T 
2 + EA[θ3 cos θ1 cos θ2 − θ2 sin θ1][(1 + u

1) cos θ2 cos θ3

+ u
2 cos θ2 sin θ3 − u

3 sin θ2 − 1]− [θ1 − θ3 sin θ2]T3

+ [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3](p̄1 −mü1)

+ [cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3](p̄2 −mü2)

+ sin θ1 cos θ2(p̄3 −mü3) = 0

T 
3 − EA[θ2 cos θ1 + θ3 sin θ1 cos θ2][(1 + u

1) cos θ2 cos θ3

+ u
2 cos θ2 sin θ3 − u

3 sin θ2 − 1] + [θ1 − θ3 sin θ2]T2

+ [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3](p̄1 −mü1)

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3](p̄2 −mü2)

+ cos θ1 cos θ2(p̄3 −mü3) = 0

[4.18]

and (balance of angular momentum):

{GJ1[θ

1 − θ3 sin θ2]}

 + (EJ3 − EJ2)[θ

2 cos θ1

+ θ3 sin θ1 cos θ2][θ

3 cos θ1 cos θ2 − θ2 sin θ1]

+ cos θ1 cos θ3c̄1 + cos θ2 sin θ3c̄2 − sin θ2c̄3 = 0

{EJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2]}



+ (GJ1 − EJ3)[θ

3 cos θ1 cos θ2 − θ2 sin θ1][θ


1 − θ3 sin θ2]

− T3[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2]

+ [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]c̄1

+ [cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3]c̄2 + sin θ1 cos θ2c̄3 = 0

{EJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1]}



+ (EJ2 −GJ1)[θ

1 − θ3 sin θ2][θ


2 cos θ1 + θ3 sin θ1 cos θ2]

+ T2[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2]

+ [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]c̄1

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]c̄2 + cos θ1 cos θ2c̄3 = 0

[4.19]
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172 Mathematical Models of Beams and Cables

with the boundary conditions:

[±EA[(1 + u
1) cos θ2 cos θ3 + u

2 cos θ2 sin θ3 − u
3 sin θ2 − 1]

+ cos θ1 cos θ3P̄1 + cos θ2 sin θ3P̄2 − sin θ2P̄3]H = 0

[±T2 + [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]P̄1

+ [cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3]P̄2 + sin θ1 cos θ2P̄3]H = 0

[±T3 + [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]P̄1

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]P̄2 + cos θ1 cos θ2P̄3]H = 0

[±GJ1[θ

1 − θ3 sin θ2] + cos θ1 cos θ3C̄1

+ cos θ2 sin θ3C̄2 − sin θ2C̄3]H = 0

[±EJ2[θ

2 cos θ1 + θ3 sin θ1 cos θ2] + [sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3]C̄1

+ [cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3]C̄2 + sin θ1 cos θ2C̄3]H = 0

[±EJ3[θ

3 cos θ1 cos θ2 − θ2 sin θ1] + [cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3]C̄1

+ [cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3]C̄2 + cos θ1 cos θ2C̄3]H = 0

[4.20]

The constraints equations [4.12] become:

(1+u
1)(sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3) + u

2(cos θ1 cos θ3

+ sin θ1 sin θ2 sin θ3) + u
3 sin θ1 cos θ2 = 0

(1+u
1)(cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3) + u

2(cos θ1 sin θ2 sin θ3

− sin θ1 cos θ3) + u
3 cos θ1 cos θ2 = 0

[4.21]

4.3.2 The displacement formulation

The constraints

According to the displacement formulation, we must eliminate two (slave)
variables, conveniently chosen as θ2, θ3, from the constrains [4.12], in order to
express them as functions of the remaining four. Hence, u, θ1 are master
displacements and θ2, θ3 are slave displacements. However, solving equations [4.12]
is not so easy. Therefore, we prefer to follow an equivalent, but simpler, method that
better highlights the geometrical meaning of the constraints. Actually, we know from
kinematics that the unit vector ā1, normal to the cross-section in the reference
configuration, transforms into the unit vector Rā1 in the current configuration.
Moreover, the unit vector x̄ = ā1, tangent to the centerline transforms into the
vector x = ā1 + u, still tangent to the centerline, but no more unitary; if no shear
occurs, then x = 1 + ε, where ε ≡ e is the unit strain. Shear-indeformability also
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Internally Constrained Beams 173

ā1

ā2

ā3 θ1

θ2

θ3 −θ2

u
1

u
2

u
3

P̂ ≡ P Q

Q̂

Figure 4.1: Geometrical interpretation of the unshearability (
−−→
PQ = ds = 1).

requires that cross-section and centerline remain mutually orthogonal in the current
configuration, i.e.:

ā1 + u = (1 + ε)Rā1 [4.22]

which expresses the parallelism between x and Rā1. When this vector equation is
projected onto the B̄-basis, and equation [2.6] is used, it becomes:⎛⎝1 + u

1

u
2

u
3

⎞⎠ = (1 + ε)

⎛⎝cos θ2 cos θ3
cos θ2 sin θ3
− sin θ2

⎞⎠ [4.23]

from which, by eliminating ε, the unknowns θ2, θ3 can easily be derived as:

θ2 = arctan

⎛⎝−
u
3

(1 + u
1)

2
+ u2

2

⎞⎠ , θ3 = arctan
u
2

1 + u
1

[4.24]

which replace equations [4.12]. Relationships [4.24] are susceptible to the
geometrical representation of Figure 4.1, in which the rotations of the centerline
segment are identified with the rotations θ2, θ3 of the cross-section.

Strain–displacement relationships

From equation [4.23], the unit strain also follows so that, by appending equation
[4.11-b], the unconstrained strains become:

ε = (1 + u
1)

2 + u2
2 + u2

3 − 1

k = B̄ωθ


[4.25]

In the expressions of the curvatures, however, θ2 = θ2 (u
), θ3 = θ3 (u

) must be
understood, according to equation [4.24], so that all strains are expressed in terms of
the master variables (see equation [1.45]).
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174 Mathematical Models of Beams and Cables

Velocity constraints

As a consequence of the constraints [4.24], the velocity field is also constrained.
Indeed, by time-differentiating these equations, the rates of the slave variables are
expressed in terms of the rates of the master variables; by appending the dummy
equation θ̇1 = θ̇1 (which expresses the fact that θ̇1 is unconstrained), we have:⎛⎝θ̇1

θ̇2
θ̇3

⎞⎠ =

⎡⎣ 0 0 0
a21 a22 a23
a31 a32 0

⎤⎦⎛⎝u̇
1

u̇
2

u̇
3

⎞⎠+

⎛⎝1
0
0

⎞⎠ θ̇1 [4.26]

or, in compact form:

θ̇ = Aθu̇
 + ā1θ̇1 [4.27]

Here, Aθ := [aij ] has the following non-zero entries5:

a21 :=
(1 + u

1)u

3

((1 + u
1)

2 + u2
2 )

1/2
((1 + u

1)
2 + u2

2 + u2
3 )

a22 :=
u
2u


3

((1 + u
1)

2 + u2
2 )

1/2
((1 + u

1)
2 + u2

2 + u2
3 )

a23 := −
(1 + u

1)
2 + u2

2

((1 + u
1)

2 + u2
2 )

1/2
((1 + u

1)
2 + u2

2 + u2
3 )

a31 :=
u
2

(1 + u
1)

2 + u2
2

, a32 =
1 + u

1

(1 + u
1)

2 + u2
2

[4.28]

Strain-rates

Admissible strain-rates are the time-derivatives of the strains [4.25]; k̇, however,
is more conveniently expressed by equation [4.5b]. Therefore:

ε̇ = dT
ε u̇



k̇ = RT B̄

ωθ̇ + B̄ωθ̇

 [4.29]

5. The matrix Aθ and the column matrix ā1 are pieces of the matrix A introduced for the
metamodel (equation [1.43]), relating velocities and master velocities.
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Internally Constrained Beams 175

where dε = ∂ε/∂u := (d1, d2, d3)
T is a column matrix, whose components are6:

d1 :=
1 + u

1

(1 + u
1)

2 + u2
2 + u2

3

, d2 :=
u
2

(1 + u
1)

2 + u2
2 + u2

3

d3 :=
u
3

(1 + u
1)

2 + u2
2 + u2

3

[4.30]

The balance equations

Balance equations are derived by the VPP [4.9], in which γ̇2 = 0, γ̇3 = 0, i.e.:

S
Nε̇+ k̇

T
m ds

=

S
u̇T p̄+ θ̇

T
B̄

T
ω c̄ ds+

B

H=A

u̇T P̄ + θ̇
T
B̄

T
ω C̄

H

[4.31]

According to the general strategy we have outlined, we first substitute the strain rates
[4.29] in the VPP, by ignoring the constraints on the velocities, and perform an
integration by parts. Since the internal power is:

Pint :=

S
u̇T (Ndε) + θ̇

T
B̄

T
ω + θ̇

T
B̄

T
ω (Rm) ds

=

S

−u̇T (Ndε)

− θ̇

T
B̄

T
ωRm


+ θ̇

T
B̄

T
ω Rm ds

+ u̇T (Ndε) + θ̇
T

B̄
T
ωRm

B

A

[4.32]

the VPP becomes:

S
u̇T (Ndε)


+ p̄ + θ̇

T
B̄

T
ωRm


+ B̄

T
ω c̄− B̄

T
ω Rm ds

+

B

H=A

u̇T P̄ ±Ndε + θ̇
T
B̄

T
ω C̄ ±Rm

H
= 0

[4.33]

6. Note that dε is a piece of the kinematic operator D; the symbol should not be confused with
d, which is the stretching velocity vector.
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176 Mathematical Models of Beams and Cables

In these equations, however, θ̇ is not a free variable, since it is restrained by equation
[4.27]. Therefore, by substituting it under the integral sign (only) and integrating a
second time by parts, the VPP becomes:7

S
u̇T (Ndε)


+ p̄ ds

+
B

H=A

u̇T P̄ ±Ndε + θ̇
T
B̄

T
ω C̄ ±Rm

H

+

S
−u̇T AT

θ B̄
T
ωRm


+ B̄

T
ω c̄− B̄

T
ω Rm


ds

+

S
θ̇1ā

T
1 B̄

T
ωRm


+ B̄

T
ω c̄− B̄

T
ω Rm ds

+ u̇T AT
θ B̄

T
ωRm


+ B̄

T
ω c̄− B̄

T
ω Rm

B

A

= 0

[4.34]

By requiring that the power balance holds for any u̇, θ̇1, the following four
(condensed) local balance equations are derived (see equation [1.54]):

Ndε −AT
θ B̄

T
ωRm


− B̄

T
ω Rm+ B̄

T
ω c̄


+ p̄ = 0

āT
1 B̄

T
ωRm


− B̄

T
ω Rm+ B̄

T
ω c̄ = 0

[4.35]

Moreover, by collecting and vanishing the coefficients of u̇, θ̇1 at the beam ends, the
following alternative boundary conditions are obtained (see equation [1.55]):

u̇T
H P̄ ±Ndε AT

θ B̄
T
ωRm


+ B̄

T
ω c̄− B̄

T
ω Rm

H

= 0

θ̇
T

H B̄
T
ω C̄ ±Rm

H
= 0

[4.36]

7. Note that substitution of the constraint [4.27] at the boundary is useless, since the mechanical
devices which are applied there decide if θ̇H is admissible or not, regardless of the fact that the
spin is expressed in terms of master variables (as we did in equation [1.50] or not (as we are
doing in equation [4.34]).
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Internally Constrained Beams 177

The elastic law

The elastic law for the active stresses is as in equation [4.16], but without reactive
stresses, namely:

N = N̊ + EAε

m = m̊+Ekkk
[4.37]

The Fundamental Problem

According to the displacement method, the condensed balance equations [4.35]
and [4.36] must be expressed in terms of master variables. By using the constitutive
law [4.37] and the condensed strain–displacement relationships [4.25], in which the
constraints [4.24] have been accounted for, four equations of motion in u, θ1 are
finally obtained.

4.4 The unshearable straight planar beam

The unshearable beam is now studied in the planar case in the framework of the
displacement formulation only. Although the relevant equations could be obtained as a
particularization of the 3D-problem, we find it more instructive to restart the procedure
to corroborate its understanding in a more manageable case.

Kinematics

Strains of the planar beam were obtained in equations [2.206] as:

ε = −1 + (1 + u
1) cos θ + u

2 sin θ

γ = −(1 + u
1) sin θ + u

2 cos θ

κ = θ
[4.38]

Unshearability requires that γ = 0, from which the slave variable θ is obtained in
terms of the master variables u1, u2:

θ = arctan
u
2

1 + u
1

[4.39]

or, equivalently:

cos θ =
1 + u

1

(1 + u
1)

2 + u2
2

, sin θ =
u
2

(1 + u
1)

2 + u2
2

[4.40]
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178 Mathematical Models of Beams and Cables

When these results are used, the unconstrained strains become:

ε = (1 + u
1)

2 + u2
2 − 1

κ =
(1 + u

1)u

2 − u

1u
2
2

(1 + u
1)

2 + u2
2

[4.41]

Time-differentiation of equation [4.39] yields the velocity constraint:

θ̇ = a1u̇

1 + a2u̇


2 [4.42]

where:

a1 := −
u
2

(1 + u
1)

2 + u2
2

, a2 :=
1 + u

1

(1 + u
1)

2 + u2
2

[4.43]

Time-differentiation of the unconstrained strains [4.41] provides the strain-rates:

ε̇ = u̇
1 cos θ + u̇

2 sin θ

κ̇ = θ̇
[4.44]

In this latter equation, θ̇ must be understood as given by equation [4.42].

Balance equations

The virtual power balance [2.215], with γ̇ = 0, becomes:

S
(Nε̇+Mκ̇) ds =

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds

+

B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H

[4.45]

By substituting equations [4.44] for ε̇, κ̇, and integrating a first time by parts, we
obtain:

S
−(N cos θ)u̇1 − (N sin θ)u̇2 −M θ̇ ds

+ N (u̇1 cos θ + u̇2 sin θ) +Mθ̇
B

A
=

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds

+
B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H

[4.46]
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Internally Constrained Beams 179

Then, by substituting the velocity constraint [4.42] under the integral signs and
performing a second integration by parts, we have:

S
[(−N cos θ +M a1)u̇1 + (−N sin θ +M a2)u̇2] ds

+ (N cos θ −M a1) u̇1 + (N sin θ −M a2) u̇2 +Mθ̇
B

A

=

S
[(p̄1 − (c̄a1)

)u̇1 + (p̄2 − (c̄a2)
)u̇2)] ds

+
B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H
+ [c̄a1u̇1 + c̄a2u̇2]

B
A

[4.47]

Finally, by equating to zero the coefficients of u̇1, u̇2 in the field, and the coefficients
of u̇1, u̇2, θ̇ at the boundary, the following balance equations are obtained:

(N cos θ) − [(M  + c̄)a1]

+ p̄1 = 0

(N sin θ) − [(M  + c̄)a2]

+ p̄2 = 0

[4.48]

with the alternative boundary conditions:

u̇1H P̄1 ± (N cos θ − (M  + c̄)a1) H
= 0

u̇2H P̄2 ± (N sin θ − (M  + c̄)a2) H
= 0

θ̇H C̄ ±M
H

= 0

[4.49]

The Fundamental Problem

Once the uncoupled linear elastic law is used, and the unconstrained strains are
expressed in terms of the master displacements via equations [4.41], the Fundamental
Problem is described by the following equations, when the d’Alembert principle is
used to introduce the inertia forces:

EAε
(1 + u

1)

1 + ε


+ EJ

(1 + u
1)u


2 − u

1u

2

(1 + ε)2


+ c̄

u
2

(1 + ε)2



+ p̄1 −mü1 = 0

EAε
u
2

1 + ε


− EJ

(1 + u
1)u


2 − u

1u

2

(1 + ε)2


+ c̄

1 + u
1

(1 + ε)2



+ p̄2 −mü2 = 0

[4.50]
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180 Mathematical Models of Beams and Cables

in which the strain ε, as given by equation [4.41a], has been used as a position to
simplify the writing. Moreover, with the same criterion, the relevant mechanical
boundary conditions are:

 EAε
1 + u

1

1 + ε

+ EJ
(1 + u

1)u

2 − u

1u

2

(1 + ε)2


+ c̄

u
2

(1 + ε)2
H

= P̄1H

 EAε
u
2

1 + ε

− EJ
(1 + u

1)u

2 − u

1u

2

(1 + ε)2


+ c̄

1 + u
1

(1 + ε)2
H

= P̄2H

 EJ
(1 + u

1)u

2 − u

1u

2

(1 + ε)2
H

= C̄

[4.51]

The geometric boundary conditions are:

u1H = ŭ1H , u2H = ŭ2H , arctan
u
2

1 + u
1 H

= θ̆H [4.52]

REMARK 4.1. The exact equations [4.50] and [4.51] strongly simplify if we admit
that ε  1, so that 1 + ε  1. This approximation does not entail that the beam
is inextensible, since it is still ε = 0 in the terms proportional to EA. With the same
order of approximation, it could be assumed that 1+u

1  1, and the equations further
simplified.

4.5 The inextensible and unshearable straight beam
in 3D

We now introduce the model of an internally constrained beam, in which not only
the shear strains, but even the extension is prevented. This beam is also known as
(inextensible) Euler’s elastica. We present a hybrid approach that combines the
displacement and the mixed formulations for internally constrained beams. In this
framework, we illustrate two different methodologies, in which the constraints are
handled as they naturally appear (Version I), or they are suitably combined
(Version II).
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Internally Constrained Beams 181

4.5.1 Hybrid formulation: Version I

The constraints require that ε = γ2 = γ3 = 0 8. The unshearability conditions, as
already found, allow elimination of two rotations (equations [4.24], here repeated):

θ2 = arctan

⎛⎝−
u
3

(1 + u
1)

2
+ u2

2

⎞⎠ , θ3 = arctan
u
2

1 + u
1

[4.53]

while the inextensibility condition, ε = 0, leads to:

(1 + u
1)

2
+ u2

2 + u2
3 − 1 = 0 [4.54]

We will account for the three constraints as they are, i.e. without any further
manipulation, and refer to this approach as Version I.

It is apparent that the inextensibility condition, differently from the
unshearability, does not permit any elimination of a variable via algebraic operations,
since all of them are differentiated. For this reason, we will proceed to a partial
condensation, i.e. (a) we will eliminate the two rotations, as requested by the
displacement formulation, by assuming u, θ1 as “master displacements”, while, (b)
we will append the inextensibility constraint, as requested by the mixed formulation.
For these reasons, we will call this method the hybrid formulation. In this, the
locution “master displacements” should be accepted in a broader sense, as variables
that identically satisfied a part of the constraint conditions not explicitly appended.

With these ideas in mind, we write the virtual power by taking k̇ as unique
admissible strain-rate, given by equation [4.29], so that the virtual power density

becomes k̇
T
m. However, the strain-rates depend on the displacement-rates u̇, θ̇1 that

are not free, since they have to satisfy the constraint ε̇ = 0. In order to account for the
latter, we use the Lagrange multiplier technique, by adding the zero term λε̇ to the
virtual power, and we deal with u̇, θ̇1 as if they were free variables. Thus, the VPP
[4.9] becomes (compare it with equation [1.26]):

S
k̇
T
mds =

S
u̇T p̄+ θ̇

T
B̄

T
ω c̄ ds

+

B

H=A

u̇T P̄ + θ̇
T
B̄

T
ω C̄

H
−

S
λε̇ds

[4.55]

8. By following the reasoning of the previous section, we can say that not only must x and
Rā1 be parallel, as in equation [4.22], but that x = 1. Therefore, the constraints require that
x = Rā1, or equivalently e = 0 (see equation [2.24]).
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182 Mathematical Models of Beams and Cables

However, this equation coincides with that holding for the extensible case (equation
[4.31]), if we rename the Lagrange multiplier λ as the axial forceN . As a major result,
the balance equations turn out to be identical to those of the extensible case (equations
[4.35] and [4.36]). However, since N is a reactive stress, it does not appear in the
elastic law that consequently reduces to equation [4.16b] (compare it with equation
[1.30a]):

m = m̊+Ekkk [4.56]

Overall, the Fundamental Problem is similar to that for the extensible beam, but with
a constitutive equation replaced by the constraint equation [4.54]. Moreover, this
constraint strongly simplifies the expression of the elements of the matrices Aθ

[4.28] and dε [4.30].

4.5.2 Hybrid formulation: Version II
There is an alternative way to handle constraints, which we want to discuss now.

It consists of combining them in order to express the rotations θ2, θ3 in terms of the
transverse displacements u2, u3 rather than of the longitudinal displacement u1, the
former being expected to be more relevant9. We will refer to this method as Version
II.

Substitution of equation [4.54] in [4.53] leads to10:

tan θ2 = −
u
3

1− u2
3

, tan θ3 =
u
2

1− u2
2 − u2

3

[4.57]

By time-differentiating them, and appending a dummy equation, we have:⎛⎝θ̇1
θ̇2
θ̇3

⎞⎠ =

⎡⎣0 0 0
0 0 a23
0 a32 a33

⎤⎦⎛⎝u̇
1

u̇
2

u̇
3

⎞⎠+

⎛⎝1
0
0

⎞⎠ θ̇1 [4.58]

which is still of the form [4.27], i.e.:

θ̇ = Aθu̇
 + ā1θ̇1 [4.59]

but where the coefficients of the matrix Aθ are much simpler, namely:

a23 := −
1

1− u2
3

a32 :=
1

1− u2
2 − u2

3

, a33 :=
u
2u


3

(1− u2
3 ) 1− u2

2 − u2
3

[4.60]

9. The longitudinal displacement, indeed, is a second-order variable with respect to the
transverse displacement, as a series expansion of equation [4.54] soon reveals.
10. These new expressions show that θ2, θ3 are odd functions of the transverse displacements.
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Internally Constrained Beams 183

From now on, the procedure is identical to that of Version I, and therefore leads to the
same balance equations [4.35] and [4.36]. However, due to the simpler form of Aθ ,
they contain a lower number of scalar terms. As a matter of fact, since AT

θ has zero
entries in the first row, the first balance equations (expressing the balance of the forces
along ā1) reduce to:

(λd1)

+ p̄1 = 0 [4.61]

in which we preferred not to change the name of the Lagrangian multiplier. Indeed,
since this equation differs from the previous version, we have to conclude that λ
assumes a different meaning than that of Version I. We will investigate this
circumstance in the subsequent section, by dealing with the simpler planar case.
Formulation of the Fundamental Problem is, for the rest, identical to Version I.

REMARK 4.2. The circumstance that the expression of the balance equations depend
on the way in which constraints are (in equivalent ways) enforced, should not be
surprising! As a matter of fact, if, in rigid-body mechanics, a point is fixed by three
non-planar and non-parallel pendula, the reactions of each pendulum depend on how
these are oriented, although the resultant force is independent of the arrangement.

4.6 The inextensible and unshearable straight planar
beam

We now explain how to formulate the planar model of Euler’s elastica starting from
the unconstrained beam (derivation from the more general spatial case of constrained
beam is, of course, trivial). The two versions of the hybrid formulation, previously
introduced, are discussed; moreover, a third approach, carried out in the spirit of the
mixed formulation, is presented. The different approaches are useful to understand the
differences encountered in handling constraints in different (but equivalent) manners.

4.6.1 Hybrid formulation: Version I

Unshearability of the planar beam calls for γ = 0; inextensibility for ε = 0. When
the strains [4.38] are used, the following geometrical constraints are obtained:

θ = arctan
u
2

1 + u
1

ε = (1 + u
1)

2 + u2
2 − 1 = 0

[4.62]

From (both of) which, it follows that:

cos θ = 1+ u
1, sin θ = u

2 [4.63]
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184 Mathematical Models of Beams and Cables

The only admissible strain is therefore κ = θ (still given by equation [4.41]). Time
differentiation of the constraints yields:

θ̇ = −u
2u̇


1 + (1 + u

1) u̇

2

ε̇ = (1 + u
1) u̇


1 + u

2u̇

2

[4.64]

where ε = 0 has been taken into account. Moreover, κ̇ = θ̇ and ω = θ̇, with θ̇ given
by the former equations.

The VPP, in which the inextensibility is enforced via a Lagrange multiplier λ,
becomes:

S
Mκ̇ds =

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds

+

B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H
−

S
λε̇ds

[4.65]

which is identical to equation [4.45], with λ ≡ N . Therefore, the same balance
equations [4.48] and [4.49] are obtained, with a more simple expression of sine and
cosine of the rotation angle. In these equations, moreover, N is a reactive force.
Therefore, by expressing M = EJκ, and using [4.41b] for κ, the Fundamental
Problem is presented in the following form, when the d’Alembert principle is used to
express the inertia forces:

[N (1 + u
1)]


+ (EJ ((1 + u

1)u

2 − u

1u

2))


+ c̄ u

2



+ p̄1 −mü1 = 0

(Nu
2)


− (EJ ((1 + u

1) u

2 − u

1u

2))


+ c̄ (1 + u

1)


+ p̄2 −mü2 = 0

[4.66]

with the mechanical boundary conditions:

 N (1 + u
1) + (EJ ((1 + u

1)u

2 − u

1u

2))


+ c̄ u

2
H

= P̄1

 Nu
2 + (EJ ((1 + u

1)u

2 − u

1u

2))


+ c̄ (1 + u

1)
H

= P̄2

 [EJ ((1 + u
1)u


2 − u

1u

2)]H = C̄, H = A,B

[4.67]

and the geometric boundary conditions given by equation [4.52]. Moreover, the
constraint [4.62b] must be appended.
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Internally Constrained Beams 185

4.6.2 Hybrid formulation: Version II

If the constraints [4.62] are combined, the longitudinal displacement can be
eliminated from the expression of the rotation to obtain:

θ = arctan
u
2

1− u2
2

ε = (1 + u
1)

2 + u2
2 − 1 = 0

[4.68]

Thus:

cos θ = 1− u2
2 , sin θ = u

2 [4.69]

while:

κ =
u
2

1− u2
2

[4.70]

Time-differentiation of the modified constraint furnishes:

θ̇ =
u̇
2

1− u2
2

≡
u̇
2

cos θ
[4.71]

where ε = 0 has been taken into account. Moreover, κ̇ = θ̇ and ω = θ̇, with θ̇ given
by the former equations.

The VPP, with the Lagrange multiplier λ, is still given by equation [4.65], and the
first integration by parts still leads to equation [4.46], with λ instead of N . From now
on, however, the procedure differs, since we have to account for the new expression
of θ̇, leading to:

S
−(λ cos θ)u̇1 − (λ sin θ)u̇2 −M  u̇

2

cos θ
ds

+ λ (u̇1 cos θ + u̇2 sin θ) +M
u̇
2

cos θ

B

A

=

S
p̄1u̇1 + p̄2u̇2 + c̄

u̇
2

cos θ
ds+

B

H=A

P̄1u̇1 + P̄2u̇2 + C̄
u̇
2

cos θ H

[4.72]

When a second integration by parts is performed to free u
2 from the space-derivative,

the following balance equations are obtained:

(λ cos θ) + p̄1 = 0

(λ sin θ) −
M  + c̄

cos θ


+ p̄2 = 0

[4.73]
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186 Mathematical Models of Beams and Cables

with the mechanical boundary conditions:

P̄1 ± λ cos θ
H
u̇1H = 0

P̄2 ± −λ sin θ −
M  + c̄

cos θ H

u̇2H = 0

C̄ ±M
H
θ̇H = 0

[4.74]

Once the bending moment is expressed via the elastic law and the d’Alembert
principle is used, the Fundamental Problem is as follows:

λ 1− u2
2


+ p̄1 −mü1 = 0

(λu
2)


−

1

1− u2
2

EJ
u
2

1− u2
2


+ c̄



+ p̄2 −mü2 = 0

[4.75]

and, on the boundary:

 λ 1− u2
2

H

= P̄1H

 λu
2 −

1

1− u2
2

EJ
u
2

1− u2
2


+ c̄

H

= P̄2H

 EJ
u
2

1− u2
2 H

= C̄H

[4.76]

together with:

u1H = ŭ1H , u2H = ŭ2H , arctan
u
2

1− u2
2 H

= θ̆3H [4.77]

Moreover, the inextensibility condition [4.68b] must be appended.

4.6.3 The mixed formulation

So far, we have been following a hybrid approach, in which the rotation θ is
condensed via the unshearability condition, while inextensibility is accounted for by
a Lagrange multiplier. Here, we want to follow a different approach in which all the
constraints are dealt with as auxiliary conditions.
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Internally Constrained Beams 187

First, we note that the pair of constraints, ε = 0, γ = 0, can be solved to furnish
the displacements u1, u2 in terms of the rotation θ (equations [4.62] and [4.63]):

u
1 = cos θ − 1, u

2 = sin θ [4.78]

Hence, we can assume θ as the master variable, and consider u1, u2 as slave variables.
This choice has the advantage that the unique admissible strain is linear in the master
displacement, namely κ = θ. Since the slave variables are expressed in differential
form, they cannot be condensed, but the constraints must be accounted as auxiliary
conditions. By time-differentiating the latter, it follows:

u̇
1 = −θ̇ sin θ, u̇

2 = θ̇ cos θ [4.79]

Since κ̇ = θ̇, ω = θ̇, the VPP becomes:

S
Mθ̇ds =

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds+

B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H

−

S
λ1 u̇

1 + θ̇ sin θ + λ2 u̇
2 − θ̇ cos θ ds ∀ u̇1, u̇2, θ̇

[4.80]

where λ1, λ2 are Lagrangian multipliers. By performing just one integration by parts,
the VPP yields the following field equations:

λ
1 + p̄1 = 0

λ
2 + p̄2 = 0

M  + (−λ1 sin θ + λ2 cos θ) + c̄ = 0

[4.81]

and the alternative boundary conditions:

P̄1 ± λ1 H
u̇1H = 0

P̄2 ± λ2 H
u̇2H = 0

C̄ ±M
H
θ̇H = 0

[4.82]

When the bending moment is expressed as M = EJκ = EJθ and the d’Alembert
principle is used, the whole elastic problem becomes:

EJθ + (−λ1 sin θ + λ2 cos θ) + c̄ = 0

λ
1 + p̄1 = mü1

λ
2 + p̄2 = mü2

u
1 = cos θ − 1

u
2 = sin θ

[4.83]
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188 Mathematical Models of Beams and Cables

with the alternative mechanical boundary conditions:

 EJθH = C̄H

 λ1H = P̄1H

 λ2H = P̄2H

[4.84]

and/or the geometric boundary conditions:

u1H = ŭ1H , u2H = ŭ2H , θH = θ̆H [4.85]

4.6.4 The direct condensation of the elastica equilibrium
equations

In the previous sections, we derived the condensed balance (or equilibrium)
equations by the VPP, in the frameworks of the hybrid or mixed formulations.
However, balance equations for the unconstrained beam are known, and the filtering
of the reactive stresses can also be performed in a direct way, by suitable
algebraic-differential combinations of the field equations. Now, we want to follow
the latter approach, aimed to throw light on the different mechanical meaning of the
Lagrange multipliers we encountered in our treatment.

To this end, we reconsider the equilibrium equations [2.103]:

t + p = 0

m + a1 × t+ c = 0
[4.86]

in which, by virtue of unshearability and inextensibility of the elastica, we substituted
x = a1. In these equations, m = Ma3 is the unique active stress, while t is of
reactive type, since ė = 0 in each admissible motion. However, we have several
possibilities to represent t by components, of course all equivalent. Among the
infinite, we consider the following three representations (see Figure 4.2):

t = Na1 + Ta2

t = R1a1 +R2ā2

t = S1ā1 + S2ā2

[4.87]

The first and third choices appear the more “natural”, since the components are
evaluated in an orthogonal basis, intrinsic to the beam (N,T ), or extrinsic (S1, S2);
the second choice, instead, is less obvious, since the components (R1, R2) are
expressed in a non-orthogonal basis; nonetheless, we will prove that all three
representations are meaningful.

Now, we will project the equilibrium equations always in the reference basis B̄,
but adopt different representations for the reactive stress.
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Internally Constrained Beams 189

a1
a2

Ĉ

N
T

(a)

a1
ā2

Ĉ

R1
R2

(b)

ā1

ā2

Ĉ
S1

S2

(c)

Figure 4.2: Alternative representations of the reactive force-stress of the elastica:
(a) in the intrinsic basis, (b) in a non-orthogonal basis, (c) in the extrinsic basis.

Intrinsic components

By using the components of t in the B-basis, the equilibrium equations in B̄

become:

(N cos θ − T sin θ)

+ p̄1 = 0

(N sin θ + T cos θ)

+ p̄2 = 0

M  + T + c̄ = 0

[4.88]

The shear force can be condensed by evaluating it from the third equation, and
substituting it in the first two equations, thus obtaining:

[N cos θ + (M  + c̄) sin θ]

+ p̄1 = 0

[N sin θ − (M  + c̄) cos θ]

+ p̄2 = 0

[4.89]

These equations coincide with equations [4.48], then reobtained in the Version I of
the hybrid formulation. Therefore, the Lagrange multiplier used there is indeed the
normal force N . The other Lagrange multiplier T , in contrast, did not appear there,
since we used unshearability to condense the rotation, instead to append it.

Oblique components

By using the components of t in the non-orthogonal (a1, ā2)-basis, the equilibrium
equations in B̄ become:

(R1 cos θ)

+ p̄1 = 0

(R1 sin θ +R2)

+ p̄2 = 0

M  +R2 cos θ + c̄ = 0

[4.90]
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190 Mathematical Models of Beams and Cables

TheR2-component can be condensed after having been evaluated by the third equation
and substituted in the remaining equations:

(R1 cos θ)

+ p̄1 = 0

R1 sin θ −
M  + c̄

cos θ


+ p̄2 = 0

[4.91]

These equations coincide with that obtained in the hybrid formulation (equations
[4.73], in the Version II, when λ ≡ R1. Therefore, we conclude that the Lagrange
multiplier λ assumes the meaning of the along-axis internal force, when the other
component is directed along ā2 (i.e. R1 is not the normal force). In other words,
R1, R2 are the reactive forces dual of the geometrical constraints enforced.

Extrinsic components

By using the components of t in the B̄-basis, the equilibrium equations in the same
basis become:

S
1 + p̄1 = 0

S
2 + p̄2 = 0

M  + S2 cos θ − S1 sin θ + c̄ = 0

[4.92]

These coincide with equations [4.81], obtained by the mixed formulation, with λ1 ≡

S1, λ2 ≡ S2. Therefore, the Lagrangian multipliers assume the meaning of extrinsic
components of the reactive force.

4.7 The inextensible, unshearable and untwistable
straight beam

We consider a highly internally constrained model of beam, for which twist, in
addition to shear and extension, is prevented. Since such a beam can only undergo
flexure in two planes, it could be named flexural–flexural beam for short. As we
noted in the general discussion, this is the case of compact or boxed cross-sections.
Of course, a beam can be untwistable but extensible; however, we will skip this case
by leaving the problem to the reader.
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Internally Constrained Beams 191

Kinematics

There are four constraints to be satisfied, namely ε = γ2 = γ3 = 0 and
κ1 = 0. The first three conditions lead to equations already obtained for Euler’s
elastica (Version II, equation [4.57], and equation [4.54]) and the last condition
follows from the first row of equation [2.53]; overall:

tan θ2 = −
u
3

1− u2
3

tan θ3 =
u
2

1− u2
2 − u2

3

ε = (1 + u
1)

2
+ u2

2 + u2
3 − 1 = 0

κ1 = θ1 − θ3 sin θ2 = 0

[4.93]

According to the hybrid formulation, we will condense the rotations θ2, θ3, while
we will account for inextensibility and untwistability via Lagrange multipliers. The
admissible strains reduce to the two flexural curvatures κ2, κ3, given by the second
and third rows of equation [2.53].

Virtual Power Principle

The VPP becomes:

S

0

(M2κ̇2 +M3κ̇3) ds =

S
u̇T p̄+ θ̇

T
B̄

T
ω c̄ ds

+

B

H=A

u̇T P̄ + θ̇
T
B̄

T
ω C̄

H
−

S
[λε̇+ µ1κ̇1] ds

[4.94]

where λ, µ1 are two Lagrange multipliers. This equation coincides with equation
[4.31], valid for an extensible and twistable beam, with λ replacing N and µ1

replacing M1. Therefore, four balance equations are obtained, formally identical to
equations [4.35] and [4.36].

The Fundamental Problem

By expressing the active stresses as M2 = M̊2 + EJ2κ2, M3 = M̊3 + EJ3κ3

and κ2, κ3 in terms of the master displacements, we obtain a system of four balance
equations and two geometrical constraints in the four displacement unknowns u, θ1
and the two reactive stresses λ, µ1.
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192 Mathematical Models of Beams and Cables

4.8 The foil-beam

We want to formulate a model for an unshearable, inextensible and one-plane-
inflexible beam, embedded in a 3D-space; in short, a lamina, or foil-beam.

Kinematics

The beam must obey four constraint conditions, ε = γ2 = γ3 = 0 and κ3 = 0 (if
J3  J2). The first three conditions have already been accounted for in the biflexible
model and the last condition follows from the third row of equation [2.53]; overall:

tan θ2 = −
u
3

1− u2
3

tan θ3 =
u
2

1− u2
2 − u2

3

ε = (1 + u
1)

2
+ u2

2 + u2
3 − 1 = 0

κ1 = θ1 − θ3 sin θ2 = 0

κ3 = −θ2 sin θ1 + θ3 cos θ1 cos θ2 = 0

[4.95]

According to the hybrid formulation, we will condense the rotations θ2, θ3, while we
will account for inextensibility, untwistability and one-plane-inflexibility via Lagrange
multipliers. The admissible strain reduces to just a flexural curvature κ2, given by
equation [2.53b].

Virtual Power Principle

The VPP becomes:

S
M2κ̇2ds =

S
u̇T p̄+ θ̇

T
B̄

T
ω c̄ ds

+

B

H=A

u̇T P̄ + θ̇
T
B̄

T
ω C̄

H
−

S
[λε̇+ µ1κ̇1 + µ3κ̇3] ds

[4.96]

where λ, µ1, µ3 are Lagrange multipliers. This equation coincides with equation
[4.31], valid for an extensible, twistable and flexible beam, with λ, µ1, µ3 replacing
N , M1, M3, in the order. Therefore, four balance equations are obtained, identical to
equations [4.35] and [4.36].
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Internally Constrained Beams 193

The Fundamental Problem

By expressing the active stress as M2 = M̊2 + EJ2κ2, and κ3 in terms of the
master displacements, we obtain a system of four balance equations and three
geometrical constraints in the displacement unknowns u, θ1 and in the reactive
stresses λ, µ1, µ3.

4.9 The shear–shear–torsional beam

A shear-beam is a beam that experiences shear strains much larger than
flexural-strains. This model is often adopted in seismology to study the propagation
of transverse- (or shear-) waves through stratified (and often inhomogeneous) layers.
In structural engineering, this is a homogeneous (and coarse) model for planar
shear-type frames, under planar excitation transverse to the axis (e.g. for seismic or
wind excitation). Here, the macroscopic shear strain is indeed produced by bending
of the columns, accompanied by negligible rotations of the (assumed) rigid floors,
since rotations are prevented by the high axial stiffness of the columns.

A 3D-model of shear-beam could also be used to (roughly) analyze a
tower-building, by including the torsional effect induced by the rotations of the floors
around the tower axis. In this case, we have a shear–shear–torsional beam, whose
model we want to derive now. We will follow the mixed formulation, by specifically
referring to a cantilevered beam (i.e. the model of tower-building), for which analysis
strongly simplifies.

Kinematics

We start from the unconstrained model by enforcing three internal constraints,
prescribing the vanishing of the bending curvatures, κ2 = κ3 = 0, and the vanishing
of the extension, ε = 0. By remembering the strain–displacement relationships
[2.53b,c], we see that inflexibility entails that θ2 = θ3 = 0, i.e. θ2 = const,
θ3 = const. By accounting for the clamp boundary condition at the end A, we have:

θ2 ≡ 0, θ3 ≡ 0 [4.97]

Consequently, from equation [2.52a], the unit extension ε = u
1 follows;

inextensibility therefore entails u1 = const, or by using the clamp condition:

u1 ≡ 0 [4.98]

In conclusion, the cantilever shear–shear–torsional beam only experiences transverse
displacements u2, u3 and a twist θ := θ1; moreover, from equations [2.71a] and
[2.73]), the unique non-zero spin component is ω̄1 = θ̇.
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194 Mathematical Models of Beams and Cables

With the previous results, the admissible strains (equation [2.53a] and [2.52b,c]),
assume the following simple forms:

κ1 = θ

γ2 = u
2 cos θ + u

3 sin θ

γ3 = −u
2 sin θ + u

3 cos θ

[4.99]

Geometrical boundary conditions at the clamped end A require:

u2A = u3A = θA = 0 [4.100]

Time-differentiation of the admissible strains provides:

κ̇1 = θ̇

γ̇2 = u̇
2 cos θ + u̇

3 sin θ + θ̇(−u
2 sin θ + u

3 cos θ)

γ̇3 = −u̇
2 sin θ + u̇

3 cos θ − θ̇(u
2 cos θ + u

3 sin θ)

[4.101]

Virtual Power Principle

The VPP [4.6], by accounting for ε̇ = κ̇2 = κ̇3 = 0, becomes:

S
(T2γ̇2 + T3γ̇3 +M1κ̇1) ds

=

S
p̄2u̇2 + p̄3u̇3 + c̄θ̇ ds+

B

H=A

P̄2u̇2 + P̄3u̇3 + C̄θ̇
H

[4.102]

where the index 1 has been omitted on the couples. After substitution of the strain-
rates [4.101] and integration by parts, the balance equations follow:

(T2 cos θ − T3 sin θ)
 + p̄2 = 0

(T2 sin θ + T3 cos θ)
 + p̄3 = 0

M 
1 + T2(u


2 sin θ − u

3 cos θ) + T3(u

2 cos θ + u

3 sin θ) + c̄1 = 0

[4.103]

with the boundary conditions, holding at the free end B:

T2 cos θ − T3 sin θ − P̄2 B
= 0

T2 sin θ + T3 cos θ − P̄3 B
= 0

M1 − C̄1 B
= 0

[4.104]
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Internally Constrained Beams 195

Elastic law

We assume a linear elastic law for active stresses and admissible strains.
However, the diagonal form we extensively used so far, referred to compact
cross-sections beams, is not suited to the scope when we deal with a tower-building
model. For non-compact, non-symmetric cross-sections, indeed, the flexural-center11

could be far from the centroid, making the uncoupling inaccurate. Therefore, the
full-matrix Hooke law equation [2.157], must be referred to.

We define the flexural-center of the cross-section by point C := (x2C , x3C),
having the property that, in linear elasticity, any shear force tC := T2ā2 + T3ā3
applied to it produces shear strains γ2, γ3, without torsion, κ1 = 0. Consequently,
from Maxwell’s theorem, the flexural-center is also the torsional-center, since a
twist-moment m = M1ā1 induces a rotation around C12. Because of these
properties, we adopt the following elastic potential:

φ :=M̊1κ1 + T̊2γ2 + T̊3γ3

+
1

2
GJCκ

2
1 +GA2 (γ2 − κ1x3C)

2 +GA3 (γ3 + κ1x2C)
2

[4.105]

where GJC is the torsional stiffness (evaluated with respect to C), and GA2, GA3

are the shear stiffnesses; moreover, over-ringed quantities denote an assumed known
prestress existing in the reference configuration. It should be noted that the potential
is such that the shear contribution vanishes when γ2 − κ1x3C = 0, γ3 + κ1x2C = 0,
i.e. when (in the linear approximation) C is the rotation center. This potential, when
the Green law is used:

M1 =
∂φ

∂κ1
, T2 =

∂φ

∂γ2
, T3 =

∂φ

∂γ3
[4.106]

leads to:⎛⎝M1

T2

T3

⎞⎠ =

⎛⎝M̊1

T̊2

T̊3

⎞⎠+

⎡⎣ GJG −GA2x3C GA3x2C

−GA2x3C GA2 0
GA3x2C 0 GA3

⎤⎦⎛⎝κ1

γ2
γ3

⎞⎠ [4.107]

where13:

GJG := GJC +GA2x
2
3C +GA3x

2
2C [4.108]

is the torsional stiffness with respect to the centroid.

11. Also known as the shear-center, or, when referred to a structure as the tower-building, the
stiffness center.
12. The translation of C produced by the twist-moment equates the rotation produced by tC ,
i.e. zero.
13. We know that when a pure shear strain γ2ā2 + γ3ā3 is assigned to the beam, a shear
force tC = GA2γ2ā2 + GA3γ3ā3, applied to the flexural center, and a couple m = 0

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



196 Mathematical Models of Beams and Cables

Elastic constants identification

The three elastic constants GJC , GA2, GA3 could be identified by the (refined) model of
3D-frame via a linearized kinematic analysis and an equivalence condition in energy. To this
end, a cell, made up of two adjacent rigid floors, connected by elastic columns of equal height
h is considered. An (infinitely small) relative motion between the two floors is considered of
components Δu2 = γ2h, Δu3 = γ3h, Δθ = κ1h. The end-sections of a column located at
x2i, x3i undergo a relative displacement:

Δu2i = h (γ2 − κ1x3i) , Δu3i = h (γ3 + κ1x2i) , Δθi = hκ1 [4.109]

so that the ith column stores the elastic energy:

Ui :=
1

2
K1iΔθ2i +K2iΔu2

2i +K3iΔu2
3i =: Ui (κ1, γ2, γ3) [4.110]

where K1i := GJ1i/h, K2i := 12EJ3i/h
3, K3i := 12EJ2i/h

3 are its torsional and flexural
stiffnesses. By summing up the energies stored by N columns, U := N

i=1 Ui is obtained.
After that, a potential per unit length can be defined for the frame as φ = U (κ1, γ2, γ3) /h.
This expression is finally adopted for the rough model, from which the stresses are derived via
the Green law.

The Fundamental Problem

The Fundamental Problem for the shear–shear beam is governed by three balance
equations [4.103], the three unconstrained strain–displacement relationships [4.99],
and the three elastic laws [4.107], in the active stresses T2, T3,M1, three unconstrained
strains γ2, γ3, κ1 and three displacements u2, u3, θ1, all unknown.

The planar model: the shear-beam

When the beam is planar, we have u3 = 0, θ = 0. The only strain different from
zero is γ2 = u

2, which, therefore, is linear in the displacement. The relevant balance

arise; moreover, when the beam undergoes a pure torsion κ1ā1 around the flexural axis, a
couple m = GJCκ1ā1 and a shear force tC = 0 arise. Equation [4.107] express just these
properties; however, T2, T3 are the components of the shear force tG applied to the centroid
(not at C!), and M1 is the torsional moment evaluated with respect to the same point and
the strains are the dual kinematic quantities. As a matter of fact, if the strains (0, γ2, γ3) are
enforced, according to equation [4.107], the force tG := GA2γ2ā2+GA3γ3ā3 and the couple
m = (−GA2γ2x3C +GA3γ3x3C) ā1 arise, equivalent to tC = tG applied to the flexural
center. If the strains (κ1, κ1x3C ,−κ1x2C) are assigned, equivalent to a torsion around C, then
the couple m = GJG −GA2x

2
3C −GA3x

2
2C κ1ā1 = GJCκ1ā1 and the force tG = 0 are

obtained.
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Internally Constrained Beams 197

equation, equation [4.103b], also linearizes, becoming T 
2 + p2 = mü2. By taking

T2 = T̊2 +GA2γ2 and p2 = p̊2 + p̃2, with T̊ 
2 + p̊2=0, the balance equation becomes:

GA2u

2 + p̃2 = 0 [4.111]

i.e. it is linear.

4.10 The planar unshearable and inextensible curved
beam

When the beam is curved, equations are, of course, much more cumbersome, but
the methods we have illustrated for the straight beam still hold. As an example, we
derive here the model of a planar curved beam, under the hypotheses of the elastica,
i.e. unsherability and inextensibility. We will illustrate both the hybrid and mixed
formulations, thus generalizing the results we achieved for the straight beam.

4.10.1 The hybrid formulation

Kinematics

We know, from equation [3.72], that strains for a curved planar beam are:

ε = −1 + (1 + u
1 − κ̄u2) cos θ + (u

2 + κ̄u1) sin θ

γ = −(1 + u
1 − κ̄u2) sin θ + (u

2 + κ̄u1) cos θ

χ = θ
[4.112]

By enforcing γ = 0, squaring and summing equation [4.112a,b], we obtain ε; by
vanishing it, we have:

ε = (1 + u
1 − κ̄u2)2 + (u

2 + κ̄u1)2 − 1 = 0 [4.113]

Then, the rotation angle follows from equation [4.112b]:

θ = arctan
u
2 + κ̄u1

1− (u
2 + κ̄u1)2

[4.114]

in which equation [4.113] has been used. Equivalently:

cos θ = 1− (u
2 + κ̄u1)2, sin θ = u

2 + κ̄u1 [4.115]
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198 Mathematical Models of Beams and Cables

Equations [4.113] and [4.114] generalize equation [4.68], valid for the straight planar
beam, and used in the framework of Version II of the hybrid formulation. By time-
differentiating them, we obtain constraints for velocities:

θ̇ =
κ̄

1− (u
2 + κ̄u1)2

u̇1 +
1

1− (u
2 + κ̄u1)2

u̇
2

ε̇ = κ̄u̇1 sin θ − κ̄u̇2 cos θ + u̇
1 cos θ + u̇

2 sin θ = 0

[4.116]

in which sine and cosine of θ must be considered expressed by equation [4.115].
Finally, χ̇ = θ̇ and ω̄ = θ̇. According to the hybrid formulation, we will condense
the rotation, and account for inextensibility via a Lagrange multiplier.

Virtual Power Principle

The VPP, fulfilling to inextensibility, becomes (as in equation [4.6]) (with χ̇
replacing κ̇):

S
Mχ̇ds =

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds

+
B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H
−

S

λε̇ds

[4.117]

After substitution for χ̇, ε̇ and a first integration by parts, we have:

−

S
M θ̇ds+ Mθ̇

B

A
=

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds

−

S
λκ̄ sin θ − (λ cos θ)


u̇1 − λκ̄ cos θ − (λ sin θ)


u̇2 ds

− [λ cos θu̇1 + λ sin θu̇2] +
B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H

[4.118]

After substitution for θ̇ under the signs of integral, and a second integration by parts,
the balance equations are finally obtained:

− λκ̄ sin θ + (λ cos θ) +
κ̄(M  + c1)

1− (u
2 + κ̄u1)2

− p̄1 = 0

λκ̄ cos θ − (λ sin θ) −
(M  + c1)

1− (u
2 + κ̄u1)2


− p̄2 = 0

[4.119]
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Internally Constrained Beams 199

with the mechanical boundary conditions:

P̄1 ± λ cos θ
H
u̇1H = 0

P̄2 ± λ sin θ +
(M  + c1)

1− (u
2 + κ̄u1)2 H

u̇2H = 0

C̄ ±M
H
θ̇H = 0

[4.120]

These equations generalize equations [4.73] and [4.74], obtained for the straight beam.

The Fundamental Problem

Once the bending moment is expressed via the elastic law, and then by
displacements, and the d’Alembert principle is used, the Fundamental Problem turns
out to be governed by (compare with equations [4.75] and [4.76]):

−λκ̄(u
2 + κ̄u1) + λ 1− (u

2 + κ̄u1)2


+
κ̄

1− (u
2 + κ̄u1)2

EJ
u
2 + κ̄u

1

1− (u
2 + κ̄u1)2


+ c̄

− p̄1 +mü1 = 0

λκ̄ 1− (u
2 + κ̄u1)2 − (λ(u

2 + κ̄u1))


−
1

1− (u
2 + κ̄u1)2

EJ
u
2 + κ̄u

1

1− (u
2 + κ̄u1)2


+ c̄



− p̄2 +mü2 = 0

[4.121]

and, on the boundary:

 λ 1− (u
2 + κ̄u1)2

H

= P̄1H

 λ(u
2 + κ̄u1)

+
1

1− (u
2 + κ̄u1)2

EJ
u
2 + κ̄u

1

1− (u
2 + κ̄u1)2


+ c̄

H

= P̄2H

 EJ
u
2 + κ̄u

1

1− (u
2 + κ̄u1)2 H

= C̄H

[4.122]
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200 Mathematical Models of Beams and Cables

together with:

u1H = ŭ1H , u2H = ŭ2H , arctan
u
2

1− u2
2 H

= θ̆3H [4.123]

Moreover, the inextensibility condition [4.113] must be appended.

4.10.2 The mixed formulation

As for the straight beam, we can formulate the problem by renouncing to condense
the rotation, but rather enforcing both unshearability and inextensibility constrains via
Lagrange multipliers.

First, we rewrite the two conditions in the form:

u
1 = cos θ − 1 + κ̄u2, u

2 = sin θ − κ̄u1 [4.124]

which generalize equations [4.78]. Then, we time-differentiate them, to obtain:

u̇
1 = −θ̇ sin θ + κ̄u̇2, u̇

2 = θ̇ cos θ − κ̄u̇1 [4.125]

Since χ̇ = θ̇, ω̄ = θ̇, the VPP becomes:

S
Mθ̇ds =

S
p̄1u̇1 + p̄2u̇2 + c̄θ̇ ds+

B

H=A

P̄1u̇1 + P̄2u̇2 + C̄θ̇
H

−

S
λ1 u̇

1 + θ̇ sin θ − κ̄u̇2 + λ2 u̇
2 − θ̇ cos θ + κ̄u̇1 ds

∀ u̇1, u̇2, θ̇

[4.126]

where λ1, λ2 are Lagrangian multipliers. By performing just one integration by parts,
the VPP yields the following field equations:

λ
1 − κ̄λ2 + p̄1 = 0

λ
2 + κ̄λ1 + p̄2 = 0

M  + (−λ1 sin θ + λ2 cos θ) + c̄ = 0

[4.127]

and the alternative boundary conditions:

P̄1 ± λ1 H
u̇1H = 0

P̄2 ± λ2 H
u̇2H = 0

C̄ ±M
H
θ̇H = 0

[4.128]
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Internally Constrained Beams 201

When the bending moment is expressed as M = EJκ = EJθ and the d’Alembert
principle is used, the whole elastic problem becomes (compare with equations [4.83]
and [4.84]):

EJθ + (−λ1 sin θ + λ2 cos θ) + c̄ = 0

λ
1 − κ̄λ2 + p̄1 = mü1

λ
2 + κ̄λ1 + p̄2 = mü2

u
1 = cos θ − 1 + κ̄u1

u
2 = sin θ − κ̄u2

[4.129]

with the alternative mechanical boundary conditions:

 λ1 = P̄1H

 λ2 = P̄2H

 EJθ = C̄H

[4.130]

and/or the geometric boundary conditions:

u1H = ŭ1H , u2H = ŭ2H , θH = θ̆H [4.131]

4.11 Summary

In this chapter, we developed specific models for constrained beams. Initially, we
discussed the conditions under which a beam can be modeled as internally
constrained. We wrote the elastic potential for an unconstrained beam, under the
hypothesis of diagonal constitutive law, and we recognized four different
contributions: extensional, shear, flexural and torsional elastic energies. Under
reasonable hypotheses of loading conditions, we evaluated the ratios among the four
contributions, in terms of characteristic dimensions of the section. We found the
following results. (a) The shear energy is always small compared with the flexural
energy, unless the shear factor is very large. This last case only occurs for
homogenized beams, e.g. tower-buildings, in which the (macroscopic) shear strains
prevail on the flexural strains. Therefore, referring to an unshearable (or
Euler–Bernoulli) beam usually entails a very small error. (b) A similar result was
found for the extensional energy. We concluded that beams can be generally
considered as inextensible, provided that the external constraints permit the ends to
approach each other. If, in contrast, such a deformation is prevented, the extensible
model must be adopted. (c) Concerning the torsional energy of compact-section or
boxed beams, we found that this is small compared with the flexural energy, so that
the beams are almost untwistable. If, in contrast, thin-walled beams are considered,
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202 Mathematical Models of Beams and Cables

torsional and flexural energies are of the same order, and therefore twist must be
retained in the model. (d) In the special, but interesting, case of a foil-beam (or
lamina), the energy related to flexure around the strong axis can be neglected in
comparison with the energy for flexure around the weak axis, the latter being of the
same order of the torsional energy.

First, we discussed the general strategy, by observing that a scalar formulation is
needed, since components of the strain vectors are restrained. We rewrote the VPP in
terms of the rates of displacements, u̇, θ̇, that we know lead to Lagrangian balance
equations. Then, we discussed different methods to approach the problem, namely
the mixed, the displacement and the hybrid formulations (Chapter 1). According to
the mixed formulation, all the constraints are appended to the VPP by the Lagrange
multiplier technique. The multipliers thus assume the meaning of reactive stresses.
Balance equations involve both active and reactive stresses. The former can be
expressed in terms of displacements, via the constitutive law and kinematics; the
latter remain as they are. The problem is therefore governed by the balance equations
and the constraints, and appears in mixed displacement-reactive-force form.
Alternatively, the displacement method can be used, which requires solving the
constraints, in order to express slave variables in terms of master variables. No
Lagrange multiplier is therefore used, since the master variables identically satisfy
the constraints, and therefore are free variables. The VPP requires two steps: in the
first step, an integration by parts is performed to free u̇, θ̇ from space-derivatives, by
ignoring constraints; in the second step, velocity constraints are introduced in the
integral terms and a second integration by parts is performed. As a result, balance
equations in the active stresses only are derived. By using constitutive law and
kinematics, the equations of motion are finally derived in the master displacements
only. Third, a hybrid approach, which combines the features of the two methods, was
presented, in which a part of the constraints is solved, and another part is appended to
the VPP. After that we browsed several models of beams, with an increasing number
of internal constraints. In all cases, we dealt with exact equations.

First, we addressed unshearable beams, also called the Euler–Bernoulli beams, in
which the cross-sections keep their initial orthogonality to the centerline. The
relevant geometrical constraints γ2 = γ3 = 0 were first accounted for in the
framework of the mixed formulation. Accordingly, the beam is governed by the same
balance equations of the unconstrained beam, with the only difference that the dual
shear forces T1, T2 have a reactive character, and therefore cannot been expressed in
terms of strains and, then, displacements. As a result, the final system is mixed in the
six displacement fields and two reactive forces; accordingly, the balance equations
must be supplemented by the two unshearability conditions. Exact equations were
provided. An alternative approach, based on the displacement formulation, was
successively followed. Here, the constrains were solved, via algebraic operations
only, to express the rotations θ2, θ3 as slave of the remaining master variables u, θ1.
Time-differentiation of the constraints provided velocity constraints. By using the
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Internally Constrained Beams 203

VPP, four field equations and six alternative boundary conditions were derived.
Using the elastic law and the condensed strain–displacement relationships, the field
equations and the mechanical boundary conditions were expressed in the master
variables only. The whole procedure was restarted for a planar beam, for which
explicit expressions of the equations of motion were provided.

As a second example, we added the inextensibility condition ε = 0 to the
previous model, thus getting (inextensible) Euler’s elastica. Since the added
constraint only contains space derivatives, it cannot be solved with respect to slave
variables without integration. Therefore, we dealt with the inextensibility condition
as an auxiliary constraint for the VPP, thus following the hybrid approach. Two
different versions of the model were developed: in Version I, the geometrical
constraints were taken as they naturally appear; in Version II, they were instead
combined, in order to simplify the expressions of the curvatures. The balance
equations obtained in the two procedures do not coincide, due to the different
meaning of the Lagrange multiplier. The question was studied in more depth
referring to a simpler planar model, for which explicit equations were managed. A
further version of the planar model was derived, according to the mixed formulation.
It was concluded by projection of the vector balance equations in different bases that:
(a) in Version I, the Lagrange multipliers assume the meaning of normal force and
shear force; (b) in Version II, they correspond to the tangent component and to the
component transverse to the axis in the reference configuration; (c) in the mixed
formulation, they correspond to the tangent and transverse components to the
reference axis.

As a third example, we added the untwistability condition. Again, this constraint
has to be appended as inextensibility. Thus, we have only two active stresses (the
bending moments) and two uncondensed reactive stresses appearing in the balance
equations. When the elastic law is used, we have four equations in six mixed
unknowns, counterbalanced by the two appended constraints.

The fourth example, concerning the foil beam, is similar to the previous example,
with a flexure forbidden, but the torsion allowed. Thus, final equations involve the four
master displacements and three reactive stresses.

As a fifth example, a model of a shear–shear–torsional beam was addressed,
representative of a tower building, in which flexure is prevented by the inextensibility
of the columns, while shear strains and torsion are allowed by the low flexural
rigidity of the columns compared with large flexural stiffness of the (almost rigid)
floor-beams. This model was derived according to the displacement formulation. By
exploiting the clamped boundary conditions, it was shown that the beam can only
experience transverse displacements and twist rotation, all entering the admissible
strain–displacement relationships. No appended constraints exist in this special
problem, since the constraints are identically satisfied by the vanishing of
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204 Mathematical Models of Beams and Cables

longitudinal displacement and the two other Tait–Bryan angles. Balance equations in
the active T2, T3, M1 stresses were derived, to be put beside the relevant elastic law
and kinematics. A brief sketch about identification of the elastic constants was
provided. The equation of motion involves the three non-zero displacements only.

All previous models referred to straight beams. As the sixth and final example,
we studied a planar curved beam in which we introduced the inextensibility and
unshearability constraints. We illustrated both the hybrid and mixed formulations,
thus generalizing the results we achieved for the straight beam.
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Chapter 5

Flexible Cables

In this chapter, we develop a model of flexible cable, i.e. of a slender body of
negligible flexural and torsional stiffness. First, we carry out an order of magnitude
analysis of the elastic potential energy of the Euler–Bernoulli beam, when the
slenderness approaches infinity, and provide mathematical arguments for ignoring
flexural and torsional contributions. Then, we formulate a model of one-dimensional
(1D) Cauchy continuum embedded in a three-dimensional (3D)-space. We start by
considering unprestressed cables, i.e. we assume one of the infinite natural states of
the cable as reference configuration. Successively, we address prestressed cables, for
which the shape assumed by the cable under static loads is taken as the reference
configuration. For these cables, we obtain incremental equations of motions, linking
the change of stress to the incremental loads. As a particular case, we formulate
linearized models. We also specialize all these equations to taut strings, i.e. cables
that are rectilinear in the prestressed configuration. Then, we discuss an
approximated model for shallow cables, horizontal or inclined. Under quite strong
simplifying hypotheses, we condense the tangential motion, and come to a pair of
integro-differential equations only in the transverse motion. Finally, we formulate a
model for (not shallow) inextensible cables. We retrace the theory for unprestressed
and prestressed inextensible cables.

5.1 Flexible cables as a limit of slender beams

The “physical” idea we have of a cable is that of an extremely flexible slender
body, which can be bent and twisted with virtually zero force. In bending, we have
to enforce small curvature radii, of the order of few times the diameter of the cable,

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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206 Mathematical Models of Beams and Cables

in order to experience a perceptible flexural stiffness; similarly, we have to twist the
cable several times, in order to perceive a significant torsional stiffness, namely until
the longitudinal fibers dispose themselves in helices whose step is of the order of few
times the diameter. In contrast, it is easy to detect a large axial stiffness of the cable.
Such experimental observations suggest introducing a mathematical model of a 1D
body that has zero bending- and torsion-stiffnesses but a finite axial stiffness. Such
an object is not endowed with its own shape, since it can undergo infinite non-rigid
transformations, which require zero deformation work to be spent. In other words, it
possesses infinite natural states.

To support these qualitative considerations with more rigorous mathematical
arguments, we perform an order of magnitude analysis of the quadratic elastic
potential of a beam, as we did in Chapter 4 to justify internally constrained models.
There, however, we used the complementary elastic energy, in order to show that,
when order-1 forces are assigned, small energy contributions denote large (at the
limit, infinite) stiffness; here, instead, we use the elastic energy, in order to show that,
when order-1 displacements are assigned, small energy contributions denote small (at
the limit, zero) stiffness. Moreover, we start directly from the Euler–Bernoulli model,
for which no shear-strains are allowed, consistent with the fact that we are
considering extremely slender beams.

The quadratic, uncoupled, elastic potential energy of a straight beam, deprived of
the shear strains, becomes (remember equation [4.1]):

φ =
1

2
EAε2 +

1

2
GJ1κ

2
1 +

1

2
EJ2κ

2
2 + EJ3κ

2
3

=
1

2
EAu2

1

=:φe

+
1

2
GJ1θ

2
1

=:φt

+
1

2
EJ2u

2
3 + EJ3u

2
2

=:φf

+ h.o.t.
[5.1]

where linear kinematics, sufficient to our scope, has been used in writing ε  u
1,

κ1  θ1 and κ2,3  u
3,2. By accounting for A = O r

2 , J1 = O r
4 ,

E/G = O (1), with r as a cross-section characteristic radius, and assuming that all
the displacements vary in space on a characteristic length l of the order of the beam
length, i.e. u

i=O(ui/l), θ1 = O(θ1/l), we have:

φe = O E
r2

l2
u2
1 , φt = O E

r4

l2
θ21 , φf = O E

r4

l4
u2
n [5.2]

where un := u2
2 + u2

3
1/2

is the modulus of the normal displacement. In order to
compare the energy contributions, we have to establish the magnitude of the
displacement ratios. A commonly accepted hypothesis is that the tangential
displacement u1 is of the same order, or smaller, than the normal displacement un.
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Flexible Cables 207

Moreover, it can also be assumed that θ1 = O (un/l), for example of the order
O 10−1 . With these assumptions, it follows that:

φf

φt
= O

u2
n

l2θ21
= O (1) ,

φf

φe
= O

r2

l2
u2
n

u2
1

= O
r2

l2
 1 [5.3]

since r/l can be O 10−2 or less. In conclusion, while the torsion and flexural
energies are comparable, the extension energy is much larger, e.g. O 104 times
larger. This result justifies the introduction of an ideal model in which the beam
possesses just this latter form of energy. Thus, a cable can be viewed as a limit case
of a beam in which J1, J2, J3 → 0, i.e. a (infinitely) flexible and twistable beam.
However, the hypotheses that led us to this result should not be forgotten; namely a
cable is flexible when the flexural and torsion curvatures are not too small (i.e. when
the characteristic length l is considerably larger than r).

REMARK 5.1. In an infinitely flexible and twistable beam, the couple-stress m

identically goes to zero. For equilibrium reasons, even the shear forces vanish, so that
the force-stress t is direct along the tangent to the current configuration (i.e. it
possesses only the axial component). Therefore, no reactive force is triggered by the
unshearability condition. Later we will see that these properties are consequences of
kinematics and the virtual power.

5.2 Unprestressed cables

We develop a model of flexible cable that is stress-free in its reference
configuration. Since the attitude of its cross-sections is ineffective in describing the
state of the body, we refer to a 1D Cauchy continuum, immersed in a 3D-space. Such
a continuum (also called not-structured) is made up of points that do not posses
orientation, so that they are allowed to translate, not to rotate. As a dynamic
counterpart, they exchange contact internal forces, not couples.

5.2.1 Kinematics

The reference configuration

Let us consider the cable in any one of the infinite natural configurations, in which
it is undeformed and unstressed. We take it as a reference configuration assumed at
time t = 0. To describe it, we use the parametric equation of the centerline S, namely
x̄ = x̄(s), where s is the arclength and x̄ is a vector identifying the position of the
generic point P with respect to an arbitrary pole O (Figure 5.1(a)). By taking an
external orthogonal basis Be := (i1, i2, i3), it is x̄ =

3
j=1 x̄j(s)ij .
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208 Mathematical Models of Beams and Cables

at

an

ab

e

āt

ān

āb

x

x̄s

ŝ
A

Â

B B̂

P

P̂

S

Ŝ

O i1

i2

i3

(a)

t
A

Â

B B̂

P

P̂

SŜ

p(s, t)

PA(t)

PB(t)

(b)

Figure 5.1: Unprestressed cable: (a) kinematics: natural reference configuration S,
triad B̄f = (āt, ān, āb), arclength s, position vector x̄(s), strain vector e; current
configuration Ŝ, triad Bf = (at, an, ab), arclength ŝ, position vector x(s); external
triad Be = (i1, i2, i3); (b) dynamics: stress vector t, loads p,PH .

A Frenet triad B̄f := (āt (s) , ān (s) ān (s)) can be built-up on S, similarly to
what we did for the curved beam (section 3.1), i.e:

āt = x̄, ān =
1

k̄
x̄, āb =

1

k̄
(x̄

× x̄) [5.4]

where:

k̄ = x̄ , τ̄ =
x̄ × x̄ · x̄

x̄ 2
[5.5]

are the curvature and the torsion of the line, respectively. The Frenet formulas [2.33]
hold for the derivatives of the unit vectors:

āt = k̄ān, āb = −τ̄ ān, ān = τ̄ āb − k̄āt [5.6]

REMARK 5.2. We will see that the choice of the natural configuration, to be taken as
the reference configuration, does not affect the final results. Moreover, the cable is not
requested to satisfy any geometrical boundary conditions in this state. The simplest
choice, therefore, would be to take the cable as rectilinear, in such a way B̄f ≡ Be.

REMARK 5.3. The Frenet triad does not identify the attitude of the point P , which is
not endowed with orientation, but rather the attitude of a second-order neighborhood
of the point, lying in the osculating plane. As a matter of fact, the first and second
derivatives of x̄ appear in the definition of the triad. In other words, while in a polar
continuum the position of P is sufficient to identify the local triad, in a non-polar
continuum, we also need to know the position of the points close to P . We will return
to this point later.
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Flexible Cables 209

The current configuration

Let the cable assume a (current) configuration at time t > 0, in which the
centerline lies on the curve Ŝ (Figure 5.1). To describe it, we need the parametric
equations x = x (s, t), or, by components, x =

3
j=1 xj(s, t)ij , which identify the

current position P̂ of the material point P , which occupied the abscissa s on S. Note
that Ŝ is not parametrized by its “natural” deformed arclength ŝ, but rather by the
undeformed arclength s of the curve S. This entails that the unit vector of the
principal basis intrinsic to Ŝ , as well the Frenet formulas, the curvature and the
torsion in the current configuration, all assume more complex expressions. To obtain
them, we have to perform the derivatives of composite functions, by taking
x = x (s (ŝ)) (time omitted) and applying the chain rule. Thus, e.g., the tangent unit
vector is:

at :=
dx

dŝ
=

dx

ds

ds

dŝ
=

1

λ

dx

ds
[5.7]

where the stretch:

λ :=
dŝ

ds
=

dx

ds
= x [5.8]

has been introduced, equal to the ratio between the deformed and undeformed
elemental arcs. By proceeding in a similar way, we obtain the unit vectors of the
Frenet triad Bf := (at (s, t) , an (s, t) , ab (s, t)) in the current configuration:

at =
1

λ
x, an =

1

λ2k
x, ab =

1

λ3k
(x

× x) [5.9]

and the curvature and torsion:

k =
1

λ2
x , τ =

x × x · x

λ2 x 2
[5.10]

Moreover, the following Frenet formulas hold (compare them with equation [2.33],
valid for natural parametrization):

at = λkan, ab = −λτan, an = λ (τab − kat) [5.11]

REMARK 5.4. Note that the stretch λ appears in the definition of the current triad of
a cable, while no such magnitude appeared in dealing with beams. Indeed, in beams
the triad is intrinsic to the point while in cables it is intrinsic to the (stretched)
neighborhood.

The geometric boundary conditions

The position vector must satisfy geometric boundary conditions at the constrained
ends H = A,B, namely:

xH = x̆H [5.12]
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210 Mathematical Models of Beams and Cables

or:

xjH = x̆jH , j = 1, 2, 3 [5.13]

The macro-rotation

We already noted that the Frenet triads, B̄f ,Bf , describe the attitude of a
neighborhood of a point P . Accordingly, we can define a rotation of this
neighborhood. To this end, we introduce a tensor R that leads the triad B̄f to match
the triad Bf via:

aα = Rāα α = t, n, b [5.14]

We call R the macro-rotation tensor to be distinguished by the micro-rotation tensor
we considered in the polar continuum.

The components of R in the reference basis can be easily evaluated as:

[Rαβ ]B̄f
= āα ·Rāβ = āα · aβ α, β = t, n, b [5.15]

and then expressed, via equations [5.4] and [5.9], in terms of x̄,x and their derivatives.
Therefore, R is not an independent displacement field. It adds nothing new to the
kinematic description, which is completely defined by the position vectors.

REMARK 5.5. Macro- and micro-rotations should not be confused. The former refers
to a neighborhood and the latter refers to a point. The former exist both in Cauchy and
polar continua and the latter exist only in the polar case1.

REMARK 5.6. Of course, a displacement field u := x− x̄ could be defined, as we did
for the beam, measuring the distance between the current and the reference position
of a material point. However, this is not of interest for the cable, since, as we said, the
reference configuration is arbitrary, and therefore the same current position x could be
identified by infinite u’s. For this reason, we will refer directly to the position x. This
choice renders any boundary condition on x̄ meaningless.

The strain vector

In a Cauchy continuum, the strain is only a measure of the non-rigid relative
displacements (not of the relative rotations, which are not defined). Therefore,

1. For example, in the linear Timoshenko beam, the shear-strain γ2 = u
2 − θ3 is the difference

between the (infinitesimal) macro-rotation u
2 and the micro-rotation θ3.
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Flexible Cables 211

curvatures have no meaning in cables, and strains reduce to the (reference)
strain-vector [2.24], i.e.:

e :=RTx
−āt = λRTat−āt

=(λ− 1) āt
[5.16]

where we wrote āt instead of ā1, used equation [5.9a], and finally equation [5.14].
Hence (as we already observed for the unshearable beam (Chapter 4)), the strain vector
is tangent to the centerline. By representing it as:

e := eāt [5.17]

it follows that the unique scalar strain component is e = λ − 1, which represents the
unit extension2; in terms of the position vector, we have:

e = x
− 1 [5.18]

By using the components of x in the external basis, the strain becomes:

e = x2
1 + x2

2 + x2
3 − 1 [5.19]

The macro-spin

The velocity of a cable is completely described by the vector field v := ẋ (s, t).
However, as we did for the rotation, we could be interested in determining the spin of
a neighborhood of the generic point P , that we will call the macro-spin. To evaluate
it, we remember (equation [2.76]) that, in a rigid motion, the velocity gradient is
v = ω× x. This formula can be inverted by vector-multiplication of both members
by x, by additionally requiring that ω ⊥ x (since the component of ω parallel to x

does not contribute to v). It follows that3:

ω =
1

λ2
(x

× v) [5.20]

We take this expression as the definition of the macro-spin. Indeed, if v is rigid, it
returns the spin that produced the rigid gradient; if v is non-rigid, the formula gives
the spin that extracts its rigid part from the gradient.

2. We use the symbol e = e to denote the unit extension, although it coincides with the
longitudinal strain ε we used for the unshearable beam.
3. By expanding the double cross-product, we have:

x
 × v

 = x
 × ω× x

 = x
 · x

ω− x
 ·ω
=0

x


from which, by using equations [5.8] and [5.20], follows.
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212 Mathematical Models of Beams and Cables

The stretching velocity gradient

By closely following section 2.1.8, we introduce a (material) velocity gradient
g := v; subtracting from it the rigid gradient w = ω × x, in which ω is the
macro-spin [5.20], we obtain the stretching velocity gradient d := v −ω × x. By
transforming this expression, we have:

d :=v +
x × (x × v)

λ2

=v +
(x · v)x − (x · x)v

λ2

=(v
· at)at

[5.21]

where, in the order, we substituted equation [5.20], expanded the double
cross-product and used x = λat (equation [5.9a]). Remarkably, we find that the
stretching velocity gradient is the component of the velocity gradient v tangent to
the centerline in the current configuration. Therefore, the transverse component is
responsible for the macro-spin.

REMARK 5.7. The decomposition of the velocity gradient vector in the tangent
(stretching) and normal (spin effect) components is the counterpart of what occurs in
the 3D Cauchy continuum, in which the velocity gradient tensor decomposes in its
symmetric (stretching) and skew-symmetric (spin) parts.

The strain rate

First, we define the (scalar) strain-rate as the time-derivative of the strain [5.18],
namely4:

ė =
∂
√
x · x

∂t
=

ẋ · x

x =
v · x

λ
= v

· at [5.22]

in which we used x = λat. Consequently, the vector strain-rate becomes:

ė = ėāt = (v
· at) āt [5.23]

4. In the symbolism of the metamodel (Chapter 1), since at = (1/λ) 3
j=1 x


jij , we have:

ė =
1

λ
x
1∂s x

2∂s x
3∂s

ẋ1

ẋ2

ẋ3


which defines the kinematic operator D as a 3 × 1 (formal) matrix. This circumstance, once
again, shows that the flexible cable is a locally undetermined mechanical system, since there
exist non-rigid velocity fields for which ė = 0.
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Flexible Cables 213

If we compare the stretching velocity gradient [5.21] with the strain-rate so far
obtained, we find:

d = Rė [5.24]

i.e. the same result holding for the beam (equation [2.79]), namely the stretching
velocity gradient is equal to the strain-rate vector pushed-forward.

5.2.2 Dynamics

Now, we address the dynamic aspects of the model. Let us consider the cable
loaded by external forces of linear density p(s, t) acting in the domain (having the
meaning of force per unit of undeformed length), and by forces PH(t) applied at the
boundaries H = A,B (see Figure 5.1(b)). No couples can be applied, since the
continuum is non-polar. To obtain the equations governing the dynamics, we first
execute the balance of powers, then, as an alternative, the balance of forces.

The Virtual Power Principle

By superimposing a virtual motion v to the current configuration, we write the
expressions for the external and internal virtual powers:

Pext :=

S
p · vds+

B

H=A

PH · vH

Pint :=

S
t · dds

[5.25]

Here, t is a force-stress that spends power in the stretching velocity gradient d. Since
the latter, by equation [5.21], is collinear to at, the stress t must also be collinear to
at, i.e.:

t = Tat [5.26]

where T is referred to as the tension of the cable5. This is a remarkable result that the
cable is only capable to provide axial forces. It should be noticed that this is not an
additional hypothesis, but a consequence of kinematics and Virtual Power Principle.

5. We use the symbol T = t to denote the tension, although it coincides with the normal
force N we used for the beam. However, while the axial force is a component of t, since shear
forces do exist in a beam, the tension is the modulus of t, since no shear forces are present in a
cable.
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214 Mathematical Models of Beams and Cables

By using equation [5.21], the Virtual Power Principle (VPP) becomes6:

S
p · vds +

B

H=A

PH · vH =

S
t · vds ∀v [5.27]

or, after integration by parts:

S
(t + p) · vds+

B

H=A

[(PH ± tH) · vH ] = 0 ∀v [5.28]

This leads to the following local balance equation:

t + p = 0 [5.29]

and the alternate boundary conditions:

(PH ± tH) · vH = 0 [5.30]

Inertial effects can be accounted via the d’Alembert principle for which the field
equation modifies into:

t + p = mẍ [5.31]

REMARK 5.8. The balance equations are well-known, since they formally coincide
with a part of the equations we obtained for the beam (equation [2.103]); however, it
should be kept in mind that while t can be any vector of the space for the beam (i.e. it
has three non-zero components), t must be parallel to at for the cable (i.e. it has just
one component).

REMARK 5.9. Since, by virtue of equation [5.24], t · d = t · Rė, and, moreover,
t = Tat and ė = ėāt, the internal virtual power can also be written in terms of
strain-rate component:

Pint =

S
T ėds [5.32]

which is a particular case of equation [2.98], valid for the beam.

6. Indeed t · d = (v · at) (t · at) = v · atT = t · v. Alternatively:

t · d = t · (v −ω× x
) = t · v − x

 × t ·ω = t · v

since t x.
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Flexible Cables 215

The momentum principles

We could ask ourselves the reason for which the dynamics of the flexible cable
is only governed by the linear momentum equation, while the angular momentum
equation disappears. The answer is given by the alternative approach based on the
balance of the forces.

The linear momentum principle, written for a segment of cable, formally reads
as for the beam (see equation [2.125]), and therefore leads to equation [5.31]. The
angular momentum principle, instead, still reads as in equation [2.128], but deprived
of the (internal and external) couple contributions, as well as of the rotatory part of
the angular momentum. Thus, in the localized balance equation [2.131], only terms of
non-polar type survive, namely:

x
× t = 0 [5.33]

i.e. an equation which is trivially satisfied, since t x.

Concerning boundary conditions of a mechanical type, since no external couples
are applied and no internal couples can emerge at the boundaries, no further
requirements must be made, in addition to equation [5.30].

REMARK 5.10. The absence of a moment condition for the flexible cable depends
on the fact that, since the stress-force is direct along the tangent to the centerline,
and since no couples can act on the cable, rotational equilibrium of an infinitesimal
segment is always satisfied. This circumstance is similar to that met in the 3D Cauchy
continuum, where the symmetry of the stress tensor assures the rotational equilibrium
of an infinitesimal parallelepiped element.

The scalar balance equations in the external basis

The balance equations [5.29] and [5.30] are projected onto the external basis
(i1, i2, i3). By letting:

p :=

3

j=1

pjij, PH :=

3

j=1

PjH ij [5.34]

and accounting for:

t = Tat = T
x

λ
=

T

1 + e

3

j=1

x
j ij [5.35]
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216 Mathematical Models of Beams and Cables

the scalar field equations follow:

∂

∂s

T

1 + e

∂x1

∂s
+ p1 = mẍ1

∂

∂s

T

1 + e

∂x2

∂s
+ p2 = mẍ2

∂

∂s

T

1 + e

∂x3

∂s
+ p3 = mẍ3

[5.36]

with the relevant boundary conditions:


T

1 + e

∂xj

∂s H

= PjH , j = 1, 2, 3 [5.37]

In statics, the field equations reduce to:

d

ds

T

1 + e

dx1

ds
+ p1 = 0

d

ds

T

1 + e

dx2

ds
+ p2 = 0

d

ds

T

1 + e

dx3

ds
+ p3 = 0

[5.38]

REMARK 5.11. The field and boundary conditions can be easily interpreted, if we
consider that T∂xj/∂ŝ represents the projection of the internal force on the jth unit
vector of the external basis.

The static equations in the current basis

The projection of the balance equations [5.29] and [5.30] onto the (unknown)
current basis Bf is not convenient in the dynamic case7. Nevertheless, in the static
case, the equations considerably simplify and their detection provides insights into
the mechanical behavior of the cable.

The internal force, in the current basis, becomes:

t = (Tat)

= T at + Tλkan [5.39]

7. Indeed, the inertia forces assume the cumbersome form:pint
pinn
pinb

 := −m

at · i1 at · i2 at · i3
an · i1 an · i2 an · i2
ab · i1 ab · i2 ab · i2

ẍ1

ẍ2

ẍ3


where the elements of the matrix must be evaluated via equation [5.9].
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Flexible Cables 217

in which we used at = λkan (equation [5.11a]); with regard to external forces, we
have:

p := ptat + pnan + pbab

PH = [Ptat + Pnan + Pbab]H
[5.40]

Thus, we obtain the static field equations:

T  + pt = 0

λTk + pn = 0

pb = 0

[5.41]

sided by the following boundary conditions:

TH = PtH , 0 = PnH , 0 = PbH [5.42]

The scalar field equation [5.41c] states that pb = 0, i.e. p = ptat + pnan (remember
that at, an are unknowns!). This circumstance has a strong mechanical meaning,
namely the cable locally disposes itself in such a way that the osculating plane
contains the force density p. Similarly, the mechanical boundary conditions [5.42]
state that, at the free boundary, the tangent at the centerline atH is aligned with the
prescribed force PH , if this is different from zero. If, in contrast, the force is zero,
then tH goes to zero and the tangent is arbitrary.

A remarkable case occurs when pt ≡ 0, i.e. when p = pnan; this happens, e.g.,
when the cable is loaded by pressure forces, which, for their nature, are normal to
the surface on which they act. In this case, equation [5.41a] provides T = const and
equation [5.41b] provides:

k = −
p̂n
T

[5.43]

where p̂ := −pn/λ. This quantity has a clear meaning emerging from the force
continuity law pnds = p̂dŝ; it is therefore the force per unit of stretched length of the
cable. If also p̂ = const, then the cable disposes itself along a circumference of
radius R := k−1 = |T/p̂n|, as it is well-known from elementary mechanics. The
minus sign denotes that concavity is opposite to the pressure.

5.2.3 Constitutive law

We derive constitutive laws by specializing those relevant to a beam.

For hyperelastic material, the Green law [2.151] reduces to:

RT t =
∂φ(e)

∂e
[5.44]
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218 Mathematical Models of Beams and Cables

It states that the pulled-back stress, RT t, equates the derivative of the elastic potential
φ with respect to the strain e. In scalar form, since RT t = T āt and ∂φ

∂e = ∂φ
∂e āt, we

have:

T =
∂φ

∂e
[5.45]

If φ = 1
2EAe2 is taken, then:

T = EAe [5.46]

where EA is the axial stiffness of the flexible cable.

For linear viscoelastic materials, if we adopt the Kelvin–Voigt model (see
equation [2.180]), we have:

T = EAe+ ηAė [5.47]

where η is the viscosity coefficient. According to the standard model, we instead have
(see equation [2.181]):

Ṫ +
E0 + Ev

η
T = E0Aė+

E0Ev

η
Ae [5.48]

where E0, Ev are two elastic moduli.

5.2.4 The Fundamental Problem

The Fundamental Problem for the flexible cable is governed by the following set
of equations:

– One strain-position scalar relationship [5.19]:

e = x2
1 + x2

2 + x2
3 − 1 [5.49]

– Three balance scalar equations that, in the external basis, become
(equation [5.36]):

∂

∂s

T

1 + e

∂x1

∂s
+ p1 = mẍ1

∂

∂s

T

1 + e

∂x2

∂s
+ p2 = mẍ2

∂

∂s

T

1 + e

∂x3

∂s
+ p3 = mẍ3

[5.50]
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Flexible Cables 219

– One constitutive equation, which is equation [5.46] if the material is elastic:

T = EAe [5.51]

– Alternative geometrical/mechanical boundary conditions (equations [5.61] and
[5.37]):

xjH = x̆jH , j = 1, 2, 3


T

1 + e

∂xj

∂s H

= PjH , j = 1, 2, 3
[5.52]

The unknowns of the problem are the components of the position vector xj , the unit
extension e, and the stress T . Overall, five differential/algebraic equations in five
unknowns. By formulating the problem only in terms of the position, we finally have:

∂

∂s

EAe

1 + e

∂x1

∂s
+ p1 = mẍ1

∂

∂s

EAe

1 + e

∂x2

∂s
+ p2 = mẍ2

∂

∂s

EAe

1 + e

∂x3

∂s
+ p3 = mẍ3

[5.53]

with the mechanical boundary conditions:


EAe

1 + e

∂xj

∂s H

= PjH , j = 1, 2, 3 [5.54]

where e = x − 1. Usually e  1, so that 1 + e  1 could be taken, to slightly
simplify the previous equations.

The planar force case

When the external forces are planar, e.g. contained in the (i1, i2)-plane, the current
configuration of the cable is also contained in the plane (consistently with what was
already observed about the fact that the osculating plane contains the force). As a
matter of fact, since p3 = 0, P3H = 0, equations [5.36] and [5.37] admit the solution
x3 = 0, and they reduce to:

∂

∂s

T

1 + e

∂x1

∂s
+ p1 = mẍ1

∂

∂s

T

1 + e

∂x2

∂s
+ p2 = mẍ2

[5.55]
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220 Mathematical Models of Beams and Cables

and:


T

1 + e

∂x1

∂s H

= P1H , 
T

1 + e

∂x2

∂s H

= P2H [5.56]

The unit strain [5.19] simplifies into:

e = x2
1 + x2

2 − 1 [5.57]

Geometric boundary conditions, if any, should be compatible with the planar solution,
i.e. they must prescribe that the end points(s) belong to the same plane:

x1H = x̆1H , x2H = x̆2H , x3H = 0 [5.58]

5.3 Prestressed cables

In the previous section, we formulated a mathematical model of flexible cable
that, in the reference configuration, is stress-free. However, very often, we are
interested in evaluating the response of cables that are prestressed by static forces. A
typical case is represented by cables in equilibrium under their own weight (as the
electrical lines), or permanent loads (as suspended bridges), solicited by incremental
forces, such as wind- or traffic-loads. In these cases, it is convenient just to take the
prestressed configuration as reference configuration, and to refer all quantities to it.
In particular, using relative positions (i.e. displacements), instead of absolute
positions, allows some simplifications, as series expansions around equilibrium or
even linearization. For example, we could be interested in oscillations of small
amplitude around the equilibrium configuration, for which the linearized theory is
sufficient to the purpose.

According to these ideas, we want to formulate a model of prestressed cable. We
assume that a prestress analysis, able to describe the transformation of the cable from
the natural to the reference configuration, has already been performed by using the
tools described in the previous sections, so that we will focus our attention on the study
of the response of the cable to incremental loads, of static or dynamic nature. We will
mainly use exact equations, except for assuming λ = 1 in the balance equations; for
this reason, will call the model quasi-exact. Then, we will linearize it.

5.3.1 Quasi-exact models

Prestressed reference state

Let us consider a flexible cable, lying on the curve S of the 3D-space, described by
the (natural) parametric equations x̄ = x̄ (s), where s is the arclength (Figure 5.2a).
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Flexible Cables 221

By denoting by B̄f := (āt (s) , ān (s) , ān (s)) the relevant Frenet triad, the formulas
[5.6] hold. Let the cable be in equilibrium under static external loads p̊ (s) , P̊H and
internal stress t̊ (s), so that the balance equations [5.69] and the boundary conditions
[5.30] are satisfied, i.e.:

t̊ + p̊ = 0

̊tH = P̊H

[5.59]

REMARK 5.12. It should be noted that s is a stretched abscissa, as a result of the
transformation undergone by the cable in passing from its natural to the prestressed
configuration. However, according to the referential description, we can forget such a
transformation, and take s as the material abscissa.

at

an

ab
āt

ān

āb

x(s)

x̄(s)

A

Â

B B̂

P

P̂

S

Ŝ

O i1

i2

i3

u

(a)

t
A

Â

B B̂

P

P̂

SŜ

p(s, t)

PA(t)

PB(t)

P̊A

P̊B

p̊
t̊

(b)

Figure 5.2: Prestressed cable: (a) kinematics: reference prestressed configuration S,
current configuration Ŝ , displacement u; (b) dynamics: preloads p̊, P̊H , prestress t̊,
current loads p,PH , current stress t.

Kinematics

Let the cable occupy, at time t, a current configuration described by the (non-
natural) parametric equations x = x (s, t). Let Bf := (at (s, t) , an (s, t) , ab (s, t))
be the relevant principal triad, whose vectors satisfy the Frenet formulas [5.11]. We
define the displacement vector:

u := x (s, t)− x̄ (s) [5.60]

and describe the current configuration in terms of it. Displacements are restrained by
geometric boundary conditions at the constrained ends:

uH = ŭH [5.61]
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222 Mathematical Models of Beams and Cables

We assume the unit strain [5.18] as a (scalar) measure of the strain; by using
equation [5.60], and remembering that x̄ = āt, it becomes:

e = 1 + 2u · āt + u · u − 1 [5.62]

By representing the displacement in the external basis, we have:

u :=

3

j=1

ujij [5.63]

Since āt =
3
j=1 x̄


j ij , then:

e = 1+ 2

⎛⎝ 3

j=1

x̄
ju


j +

1

2

3

j=1

u2
j

⎞⎠− 1 [5.64]

If, in contrast, we represent the displacement in the intrinsic reference basis, i.e. if we
put:

u := utāt + unān + ubāb [5.65]

and, moreover, we use the Frenet formulas [5.11] to express u (or, equivalently, the
Poisson formula in B̄f ), we have:

u = u
t − k̄un āt + u

n + k̄ut − τ̄ub ān + (u
b + τ̄un) āb [5.66]

Consequently, we obtain:

e = 1 + 2 u
t − k̄un

+ u
t − k̄un

2
+ u

n + k̄ut − τ̄ub
2
+ (u

b + τ̄un)
2 1/2

− 1

[5.67]

For later purposes, we also evaluate the second derivative of u:

u = u
t − k̄un


− k̄ u

n + k̄ut − τ̄ub āt

+ u
n + k̄ut − τ̄ub


+ k̄ u

t − k̄un − τ̄ (u
b + τ̄un) ān

+ (u
b + τ̄un)


+ τ̄ u

n + k̄ut − τ̄ub āb

[5.68]

The incremental balance equations

The balance equations are given by equations [5.31] and [5.30] that, in terms of
displacement, become:

t + p = mü

 tH = PH

[5.69]
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Flexible Cables 223

Here, t (s, t) and p (s, t) represent the stress and the force acting in the current
configuration. In order to express the equations in terms of increments with respect to
the reference configuration, we subtract equation [5.59] from the previous equations,
by obtaining:

t− t̊

+ p̃ = mü

 t− t̊ = P̃H

[5.70]

where:

p̃ := p− p̊, P̃H := PH − P̊H [5.71]

are incremental loads. Equations [5.70] are called the incremental balance equations.

To express them in scalar form, first we have to note that t and t̊ are generally
non-parallel, since t = Tat and t̊ = T̊ āt. Since, from equations [5.9a] and [5.60], it
is at = (āt + u) /λ, then:

t− t̊ =
T

λ
(āt + u)− T̊ āt [5.72]

It appears clearly that the incremental balance equations provide a significant
simplification if and only if we can assume λ = 18. The hypothesis seems acceptable
in the engineering field, where usually λ = 1 + O 10−3 ; for this reason, we will
use it and call the relevant model quasi-exact. Accordingly, equations [5.70] become:

T̃ āt + Tu 
+ p̃ = mü

 T̃ āt + Tu
H

= P̃H

[5.73]

where T̃ := T − T̊ is the increment of (scalar) stress. When these equations are
projected onto the external basis, they furnish:

T̃ x̄
j + Tu

j


+ p̃j = müj, j = 1, 2, 3 [5.74]

and:

 T̃ x̄
j + Tu

j
H

= P̃jH , j = 1, 2, 3 [5.75]

8. Indeed, if this is not the case, it is preferable to use the current balance equations [5.69]
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224 Mathematical Models of Beams and Cables

If equations [5.73] are projected onto the intrinsic reference basis, with the help of
equations [5.66] and [5.68], they provide:

T̃  + T u
t − k̄un


− k̄T u

n + k̄ut − τ̄ub + p̃t = müt

k̄T̃ + T u
n + k̄ut − τ̄ub



+ k̄T u
t − k̄un − τ̄ (u

b + τ̄un) + p̃n = mün

[T (u
b + τ̄un)]


+ τ̄T u

n + k̄ut − τ̄ub + p̃b = müb

[5.76]

and:

 T̃ + T u
t − k̄un

H
= P̃t

 T u
n + k̄ut − τ̄ub H

= P̃n

 [T (u
b + τ̄un)]H = P̃b

[5.77]

The elastic law

We confine ourselves to the a hyperelastic material. By taking a quadratic non-
homogeneous potential, φ = T̊ e + 1

2EAe2, and using the Green law T = ∂φ
∂e , we

derive:

T = T̊ + EAe [5.78]

where EA is the axial stiffness of the flexible cables

REMARK 5.13. Note that EA = ∂2φ
∂e2

e=0
. However, e = 0 now identifies the

prestressed configuration, while in the previous section it refers to the natural
configuration. Therefore, strictly speaking, the axial stiffness of prestressed cables is
different from that of unprestressed cables. Usually, however, such a difference is
neglected.

The Fundamental Problem

The Fundamental Problem is governed by the strain–displacement relationship
[5.62], the incremental balance equations [5.70a] and the elastic law [5.78], equipped
with the geometric [5.61] and the mechanical [5.70b] boundary conditions.

Once the problem is formulated in terms of displacements, the equations of motion
are derived. In the external basis, they become:

EAex̄
j + T̊ + EAe u

j


+ p̃j = müj, j = 1, 2, 3 [5.79]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Flexible Cables 225

and:

 EAex̄
j + T̊ + EAe u

j
H

= P̃jH , j = 1, 2, 3 [5.80]

where e is defined in equation [5.64].

When the problem is expressed in the intrinsic reference basis, it appears as
follows:

(EAe) + T̊ + EAe u
t − k̄un

− k̄ T̊ + EAe u
n + k̄ut − τ̄ub + p̃t = müt

(EAe) k̄ + T̊ + EAe u
n + k̄ut − τ̄ub



+ T̊ + EAe k̄ u
t − k̄un − τ̄ (u

b + τ̄un) + p̃n = mün

T̊ + EAe (u
b + τ̄un)



+ τ̄ T̊ + EAe u
n + k̄ut − τ̄ub + p̃b = müb

[5.81]

and:

 EAe+ T̊ + EAe u
t − k̄un

H
= P̃t

 T̊ + EAe u
n + k̄ut − τ̄ub

H
= P̃n

 T̊ + EAe (u
b + τ̄un)

H
= P̃b

[5.82]

where e is defined in equation [5.67].

5.3.2 The linearized theory

Linearized theory is based on equations that are linear in the displacements
measured from a (generally) nonlinear equilibrium configuration. Accordingly, the
strain–displacement relationship must be linearized in the displacement u, and the
incremental balance equations linearized in the increment of stress T̃ := T − T̊ , by
considering the prestress as an order-1 magnitude.

The strain [5.62], when linearized, becomes:

e = u
· āt [5.83]
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226 Mathematical Models of Beams and Cables

and the incremental balance equations [5.73], when linearized, become:

T̃ āt + T̊u 
+ p̃ = mü

 T̃ āt + T̊u
H

= P̃H

[5.84]

The constitutive law [5.78] is rewritten in such a way to link the incremental stress to
the (incremental) strain:

T̃ = EAe [5.85]

When these equations are combined, we obtain the linearized equations of motion and
mechanical boundary conditions:

EA (u
· āt) āt + T̊u 

+ p̃ = mü

 EA (u
· āt) āt + T̊u

H
= P̃H

[5.86]

to be supplemented with the geometric boundary conditions.

In the external basis, the field equations become:

EA
3

i=1

x̄
iu


i x̄

j + T̊ u
j



+ p̃j = müj, j = 1, 2, 3 [5.87]

and the boundary conditions become:

 EA

3

i=1

x̄
iu


i x̄

j + T̊ u
j

H

= P̃jH , j = 1, 2, 3 [5.88]

In the intrinsic basis, we have:

EA u
t − k̄un


+ T̊ u

t − k̄un



− k̄T̊ u
n + k̄ut − τ̄ub + p̃t = müt

EAk̄ u
t − k̄un + T̊ u

n + k̄ut − τ̄ub



+ T̊ k̄ u
t − k̄un − τ̄ (u

b + τ̄un) + p̃n = mün

T̊ (u
b + τ̄un)



+ τ̄ T̊ u
n + k̄ut − τ̄ub + p̃b = müb

[5.89]
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Flexible Cables 227

with:

 EA u
t − k̄un + T̊ u

t − k̄un
H

= P̃t

 T̊ u
n + k̄ut − τ̄ub

H
= P̃n

 T̊ (u
b + τ̄un)

H
= P̃b

[5.90]

These equations govern the small amplitude motions of the cable around the
prestressed configuration9.

REMARK 5.14. Equations [5.84] suggest the following consideration. According to
the linearized theory (and consistently with the Leibniz rule for the derivative of a
product), the internal force equilibrating the incremental loads (and inertia forces) is
the sum of two contributions: the change of stress acting in the old geometry,
i.e. EA (u · āt) āt, and the old stress acting in the change of geometry, i.e. T̊u. The
first contribution determines the elastic stiffness and the second contribution
determines the geometric stiffness.

5.3.3 Taut strings
An idealized model of prestressed cable is the taut string. It is assumed that the

cable, in the reference configuration, is solicited exclusively by equal and opposite
end-forces, namely −P̊A = P̊B =: T̊ i1 (i.e. the self-weight is not present,
Figure 5.3). These forces can be active or reactive. In the first case, the string is free
in the space with two opposite forces attached at the ends; in the second case, the
string is first stretched between two fixed supports, whose distance is larger than the
natural length, and then the ends are fixed. A mixed free-fixed set-up is also possible.
Of course, free-strings can only support self-equilibrated incremental loads (even of
inertial nature), while constrained strings can support more general force systems.
Since p̊ = 0 in equations [5.59], t̊ is constant along s, and therefore, since it is
everywhere tangent to the centerline, the cable is rectilinear. From the boundary
conditions, it follows that t̊ = T̊ i1, i.e. T̊ is the tension of the taut string. In the
reference configuration, the intrinsic triad B̄f (there exist infinite amounts of them)
can be conveniently taken to be coincident with the external basis Be. Moreover, due
to the straightness, the Frenet curvature and the torsion identically vanish,
i.e. k̄ = τ̄ = 0.

When incremental loads (possibly including the self-weight) act on the string, this
moves into a new (current) configuration, which is generally curved and described by

9. With the symbols of the metamodel, the linearized equations of motion become
Lu+Gu = p̃, in the field, and LHu+ GHu = P̃ , on the boundary.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



228 Mathematical Models of Beams and Cables

x(s, t), defining a current Frenet triad Bf . All the equations governing the motion of
the string can be obtained by specializing those obtained for the cable, as illustrated
later.

āt

ān

āb

i1

i2

i3

u

x
x̄

A

Â

B

B̂
P

P̂

p(s, t)

PA(t)

PB(t)

−T̊ i1 T̊ i1

Figure 5.3: Taut string: pretension T̊ , preloads ±T̊ i1, loads p, PH , displacement u.

Nonlinear model

The strain–displacement relationship [5.62] becomes:

e = 1 + 2u · i1 + u · u − 1 [5.91]

or, since u :=
3
j=1 ujij:

e = 1+ 2

⎛⎝u
1 +

1

2

3

j=1

u2
j

⎞⎠− 1 [5.92]

The (quasi-exact) incremental balance equations [5.73], with āt ≡ i1, become:

T̃ i1 + Tu 
+ p̃ = mü

 T̃ i1 + Tu
H

= P̃H

[5.93]

The elastic law [5.78] remains unaltered:

T = T̊ + EAe [5.94]

When all these equations are combined among them, the following equations of
motion are derived:

T̊u + [EAe (i1 + u)] + p̃ = mü

 T̊u + EAe (i1 + u)
H

= P̃H

[5.95]
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Flexible Cables 229

with e given by equation [5.92].

The projection of the balance equations onto the external basis leads to:

T̊ u
1 + [EAe (1 + u

1)]

+ p̃1 = mü1

T̊ u
2 + (EAeu

2)

+ p̃2 = mü2

T̊ u
3 + (EAeu

3)

+ p̃3 = mü3

[5.96]

together with:

 T̊ u
1 + EAe (1 + u

1)
H

= P̃1H

 T̊ + EAe u
2

H
= P̃2H

 T̊ + EAe u
3

H
= P̃3H

[5.97]

where e is defined by equation [5.92].

REMARK 5.15. Although the equation of motion of a taut string are much simpler
than the equation for a cable, they are still fully coupled, since the strain depends on
all the components of motion.

Linearized theory

In the framework of the linearized theory, the strain [5.92] must be linearized as:

e = u
1 [5.98]

as well as the incremental balance equations [5.93], which become:

T̃ i1 + T̊u + p̃ = mü

 T̃ i1 + T̊u
H

= P̃H

[5.99]

while the constitutive law is presented in the incremental form:

T̃ = EAe [5.100]

By combining the previous equations, the linearized equations of motion are obtained:

EAu
1 i1 + T̊u + p̃ = mü

 EAu
1i1 + T̊u

H
= P̃H

[5.101]
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230 Mathematical Models of Beams and Cables

When these are projected on the external basis, they provide:

EA+ T̊ u
1 + p̃1 = mü1

T̊ u
2 + p̃2 = mü2

T̊ u
3 + p̃3 = mü3

[5.102]

with the mechanical boundary conditions:

 EA+ T̊ u
1

H
= P̃1H

 T̊ u
2

H
= P̃2H

 T̊ u
3

H
= P̃3H

[5.103]

alternative to geometric boundary conditions.

REMARK 5.16. The linearized equations of motion of the taut string are all uncoupled.
Thus, longitudinal and transverse motions are each independent of other.

REMARK 5.17. Each of equations [5.102] has the form of the linear wave equation

ü = c2l,tu
, where cl := EA+ T̊ /m and ct := T̊ /m are the longitudinal and

transverse celerity of the traveling waves, respectively.

REMARK 5.18. In the linearized theory, the elastic stiffness of the taut string, EA∂2
s ,

only contributes to the longitudinal equation of motion, while the transverse equations
involve the geometrical stiffness T̊ ∂2

s . On the other hand, since, usually, T̊ /EA  1,
the longitudinal motion of the taut string is essentially unaffected by the prestress;

consistently, cl = EA
m .

5.4 Shallow cables
So far we developed exact or quasi-exact models of flexible cables, leading to quite

complex equations. Now, we want to show how to derive an approximated model of
shallow cable, prestressed by its own weight and, possibly, by end forces. Derivation
is mainly based on the results of [IRV 74, IRV 81, PER 87]. Shallowness is meant
here as a small deviation of the cable from the chord that joins the two (assumed
fixed) ends; the chord can be horizontal (suspended cable) or inclined (cable-stay).
We will refer to the maximum normal deviation as the sag of the cable. Moreover, we
will introduce hypotheses on the order of magnitude of the displacements, and we will
expand the strain in series, in order to obtain a more amenable expression.

We mainly carry out the analysis in the intrinsic reference basis; however, at the
end, we will outline how to perform similar calculations in the external basis.
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Figure 5.4: Shallow cable: (a) reference configuration; centerline S in the (i1, i2)-
plane, sag d; (b) current configuration, centerline Ŝ and its horizontal projection,
displacement components ut, un, ub.

5.4.1 An approximated nonlinear model
Hypotheses

We introduce the following hypotheses:

1) In the reference configuration, the cable is planar, and possesses a small sag-
to-length ratio δ := d/l, e.g. of the order O 10−1 ; planarity entails that the torsion
τ̄ identically goes to zero.

2) The Frenet curvature k̄ is assumed constant along the cable and small, namely
k̄l = O δ2 , as for a shallow parabola.

3) The prestress T̊ is assumed constant along the cable10.

4) The T̊ /EA ratio is small, e.g. of order O 10−3 or smaller; this entails that the

transverse celerity of the (rectified) cable, ct = T̊ /m, is much more smaller than

the longitudinal celerity cl = EA/m.

5) All the displacements vary on a scale-length of the order of the cable length,
i.e. u

α = O (ua/l).

6) The transverse displacements un, ub are both assumed of the order of the sag, so
that un/l = O (δ), ub/l = O (δ); the tangential displacement ut, instead, is assumed
to be smaller, i.e. ut/l = O δ2 .

7) The incremental loads are purely transverse, i.e. p̃t = 0.

10. In a horizontal cable under self weight p, T̊ is close to the value pl2/(8d); in an inclined
cable, T̊ p2l

2/(8d)+p1lf(s), where p1 and p2 are the components of p in the triad intrinsic
to the chord (see figure 5.4(a)), and f(s) = O(1), so that, due to the tangential component,
the tension is variable. However, very often inclined cables are prestressed by end forces (as it
happens in stays), so that a constant contribution, usually larger, adds itself to the former one,
making the approximation acceptable. Moreover, stays are much more shallow, e.g. they have
δ = O(10−2), so that also the constant contribution to T̊ due to p2 prevails on that due to p1.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



232 Mathematical Models of Beams and Cables

The expanded strain–displacement relationship

By expanding the unit strain [5.67] in series for small displacements, we have:

e = u
t − k̄un +

1

2
u
t − k̄un

2
+ u

n + k̄ut
2
+ u2

b + h.o.t. [5.104]

where we accounted for τ̄ = 0. Since the first term in the square bracket is the squared
linear term, we ignore it (Biot approximation); moreover, we neglect k̄ut with respect
u
n, since their ratio is O δ2 ; by ignoring higher order terms, we finally write:

e = u
t − k̄un +

1

2
u2
n + u2

b [5.105]

The static condensation of the tangential displacement

Firstly, we analyze the balance equations [5.81a], which govern the tangential
motion. We observe that the leading term among the internal forces is
(EAe)


= O (EAu

t ), the remaining terms being δ2-times smaller; moreover, if we
are interested in time-evolutions having a characteristic time O (l/ct) (as it occurs
when the motion is prevalently transverse), we can conclude that:

müt = O mut
c2t
l2

= O
T̊ ut

l2
 O

EAut

l2
= (EAe)

 [5.106]

Therefore, the tangential inertia can be neglected, and the equation simplified into:

(EAe) = 0 [5.107]

From this, it follows that:

e (s, t) = e0 (t) [5.108]

i.e. the unit strain is constant along the cable, and it varies only with time. Of course,
this result, which is consequent to strong simplifications, should be understood in the
sense that the strain is weakly variable with s, so that, in a rough approximation, it is
taken as a constant.

By integrating the strain–displacement relationship [5.105], we get:

ut = utA (t) + e0 (t) (s− sA) + k̄

s

sA

unds−
1

2

s

sA

u2
n + u2

b ds [5.109]

This expresses the tangential displacement as a “slave” of the transverse
displacements un, ub. We therefore say that the tangential displacement has been
statically condensed.
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Flexible Cables 233

Equation [5.109] depends on two arbitrary functions of time (i.e constant in space),
namely utA and e0, that must be determined by geometric boundary conditions. The
simplest case is that of fixed ends, namely utA = utB = 0, ∀t, but other conditions
prescribing the motion of the supports can easily be accounted for (e.g. [LUO 12]).
By enforcing homogeneous conditions, the strain is found:

e0 (t) = −
k̄

l

sB

sA

unds+
1

2l

sB

sA

u2
n + u2

b ds [5.110]

The transverse motion

We now move on to analyze the balance equations along the normal and
binormal, equations [5.81b,c], in which τ̄ = 0 must be taken, together with
T̊ + EAe = const, as follows from hypothesis 3 and the previous analysis. No
further simplifications can be done in the equation relevant to the binormal
directions. Instead, concerning the equation in the normal direction, we observe that
k̄ut/u


n = O δ2 , as well as k̄ u

t − k̄un /u
n = O δ2 , so that the smaller terms

can be neglected. Therefore, to within an error of O δ2 , the transverse motion is
governed by the following, simplified, equations:

T̊ + EAe0 u
n + EAe0k̄ + p̃n = mün

T̊ + EAe0 u
b + p̃b = müb

[5.111]

where, by virtue of equations [5.108], e = e0 (t) is given by equation [5.110]. Hence,
the motion is governed by two integro-differential equations in the transverse
displacements un (s, t) , ub (s, t). The problem is completed by the geometric
boundary conditions that have not yet been used; for fixed ends, they become:

unH = ubH = 0, ∀t [5.112]

The formulation in the external basis

If components are desired in the external basis, instead of the intrinsic basis,
hypothesis 2, concerning the initial curvature, must be substituted by the (equivalent)
hypothesis that the arc element ds can be confused with its along-chord projection
dx1; moreover, the same hypotheses introduced for the tangential ut and transverse
un, ub displacements must be made for the along-chord u1 and transverse-to-chord
displacements u2, u3, respectively (with minor physical meaning).
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234 Mathematical Models of Beams and Cables

The strain [5.64] admits the MacLaurin expansion:

e =

3

j=1

x̄
ju


j +

1

2

3

j=1

u2
j + h.o.t. [5.113]

Since the cable is planar in the reference configuration, x̄3 ≡ 0. Moreover, if x
1  1

is taken, and u2
1 is neglected with respect to u

1, the strain becomes:

e = u
1 + x̄

2u

2 +

1

2
u2
2 + u2

3 [5.114]

With the same hypotheses, the along-chord equation of motion [5.79a] simplifies into:

EAe (1 + u
1) + T̊ u

1


= mü1 [5.115]

Since u
1 = O (e), we can neglect it in the first term; then, since T̊  EA, we can

neglect T̊ u
1 with respect to EAe; finally, by using arguments already discussed, we

can ignore the along-chord inertia forces, so that we find again equation [5.107], from
which e (s, t) = e0 (t). By using the expression [5.114] for e and integrating it under
homogeneous boundary conditions, we find:

e0 (t) =
1

l

sB

sA

x̄
2u


2ds+

1

2l

sB

sA

u2
2 + u2

3 ds [5.116]

The two remaining equations of motion, consequently, become:

T̊ u
2 + EAe0 (x̄


2 + u

2) + p̃2 = mü2

T̊ + EAe0 u
3 + p̃3 = mü3

[5.117]

which, together with the boundary conditions:

u2H = u3H = 0, ∀t [5.118]

govern the motion.

5.4.2 An approximated linearized model

If we are interested in analyzing motions of small amplitude around the
prestressed configuration of a shallow cable, we can resort to the linearized theory.
Accordingly, only the linear part of the unit strain, equations [5.105] or [5.114], is
taken, and second-order products between increments of stress and geometry changes
are ignored in the incremental balance equations.
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Flexible Cables 235

As a result, the transverse equations of motion, in intrinsic components [5.111],
simplify into:

T̊ u
n + EAe0k̄ + p̃n = mün

T̊ u
b + p̃b = müb

[5.119]

in which, after the linearization of equation [5.110]:

e0 (t) = −
k̄

l

sB

sA

unds [5.120]

Similarly, the transverse equations of motion [5.117], in Cartesian components,
become:

T̊ u
2 + EAe0x̄


2 + p̃2 = mü2

T̊ u
3 + p̃3 = mü3

[5.121]

where, by linearizing equation [5.116]:

e0 (t) =
1

l

sB

sA

x̄
2u


2ds [5.122]

REMARK 5.19. In the framework of the linearized theory, the out-of-plane motion of
shallow cable is governed by the equation of the taut string [5.102], i.e. any
information concerning the curvature of the cable is lost, in the simplification
process. In contrast, the in-plane motion is governed by a modified equation, which
accounts for the pre-existing curvature, k̄ or x̄

2 . No such term can appear in the
out-of-plane equation of motion, since the pre-existing torsion τ̄ is zero.

5.5 Inextensible cables

So far, we considered flexible cables endowed with a finite axial stiffness, so that
the potential elastic energy accounts solely for unit extension. However, a simpler
model can be formulated, in which even the extensional energy is considered small in
comparison with the potential energy of the external loads, i.e. with the work spent
by the forces in changing the cable configuration. According to this model, the cable
behaves as a perfectly flexible body against bending and torsion, but infinitely stiff
against extension. We will call it the inextensible cable. As we did for internally
constrained beams (Chapter 4), we derive this model from the unconstrained beam.
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236 Mathematical Models of Beams and Cables

REMARK 5.20. While the inextensible model is expected to capture the essential
aspect of slack cables, in contrast it fails to accurately describe the mechanics of
shallow cables, where the elastic energy is not smaller than the work spent by the
external forces. As a matter of fact, if we put e0 = 0 in equations [5.111] or [5.117],
we see that any information related to the curvature of the cable disappears, so that
these equations reduce to those of the taut string. Moreover, it has been shown in
[IRV 74, IRV 81], that the inextensible model fails to describe the free evolution of
elastic shallow cables even in the linear range.

5.5.1 Inextensible unprestressed cables

The inextensibility condition requires that e = 0 at any point and at any time;
consequently, the unit strain identically goes to zero, i.e. e := x − 1 = 0. This
constitutes a geometric constraint limiting the configurations admissible by the cable;
by using Cartesian components, the constraint becomes:

e := x2
1 + x2

2 + x2
3 − 1 = 0 [5.123]

or, in a more expressive form:

x2
1 + x2

2 + x2
3 = 1 [5.124]

Since the stretch λ := dŝ/ds ≡ x = 1, the unit vectors of the Frenet triad in the
current configuration become as in the natural parametrization (compare them with
equations [5.9]), i.e.:

at = x, an =
1

k
x, ab =

1

k
(x

× x) [5.125]

On the other hand, the VPP [5.27], with equation [5.24], states that:

S
p · vds +

B

H=A

PH · vH =

S
t ·Rėds [5.126]

for any admissible virtual motions. Since the latter must satisfy the constraint ė = 0,
the internal virtual power identically goes to zero. However, according to the mixed
formulation, we can consider the reactive stress t as a Lagrangian (vector) parameter
spending virtual power in the zero strain-rate, so that the relevant term works as an
appended constraint, and the previous principle still holds. As a result, the same
balance equations [5.31] and boundary conditions [5.30] valid for the extensible
cable are obtained:

t + p = mẍ

(PH ± tH) · vH = 0
[5.127]
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Flexible Cables 237

in which, however, now t := Tat = Tx. When these equations are projected in the
external basis, they provide (see equations [5.36] and [5.37]):

∂

∂s
T
∂x1

∂s
+ p1 = mẍ1

∂

∂s
T
∂x2

∂s
+ p2 = mẍ2

∂

∂s
T
∂x3

∂s
+ p3 = mẍ3

[5.128]

and the mechanical:

 T
∂xj

∂s H

= PjH , j = 1, 2, 3 [5.129]

or geometric boundary conditions:

xjH = x̆jH , j = 1, 2, 3 [5.130]

The Fundamental Problem is completed by the constraint [5.124]. Thus, we have
four scalar equations in four unknowns, namely the three components of the position
vector xj and the reactive tension T .

5.5.2 Inextensible prestressed cables

The nonlinear theory

Let us consider the inextensible cable in the reference configuration, described by
x̄ (s). When the cable moves to a current configuration x = x (s, t), it must satisfy the
constraint e = x − 1 = 0. If we introduce displacements u := x− x̄, and account
for x̄ = āt, the constraint becomes:

āt + u = 1 [5.131]

or, in Cartesian components (see equation [5.64]):

3

j=1

x̄
ju


j +

1

2

3

j=1

u2
j = 0 [5.132]

or, in the reference intrinsic components (see equation [5.67]):

u
t− k̄un+

1

2
u
t − k̄un

2
+ u

n + k̄ut − τ̄ub
2
+ (u

b + τ̄un)
2

= 0 [5.133]
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238 Mathematical Models of Beams and Cables

Let us assume that, in the reference configuration, the cable is in equilibrium under
static preloads p̊, P̊H causing the prestress t̊ and that, in the current configuration,
dynamic total forces p, PH trigger the stress t. We can define incremental loads
p̃ := p− p̊ and P̃H := PH − P̊H , and incremental stress t̃ := t− t̊ to reformulate
the balance equations in incremental form. As we saw in section 5.3 for the
extensible cable, they become (equations [5.70]):

t− t̊

+ p̃ = mü

 t− t̊
H

= P̃H

[5.134]

Now, however, differently from that case, the incremental vector stress becomes
(compare it with equation [5.72]):

t− t̊ = T (āt + u)− T̊ āt [5.135]

so that the approximation λ = 1 has not to be used, since it is intrinsic to the model
of the inextensible cable. Therefore, the Cartesian forms [5.74] and [5.75] and the
intrinsic forms [5.76] and [5.77] of the incremental balance equations [5.134] follow.

In summary, the Fundamental Problem, is governed by three balance equations
and a geometrical constraint; the unknowns are the three displacement components
and the reactive stress. In Cartesian components, by letting T = T0 + T̃ , the problem
becomes:

T̃ x̄
j + Tu

j


+ p̃j = müj , j = 1, 2, 3

3

j=1

x̄
ju


j +

1

2

3

j=1

u2
j = 0

[5.136]

and:

 T̃ x̄
j + Tu

j
H

= P̃jH , j = 1, 2, 3

ujH = ŭjH , j = 1, 2, 3

[5.137]
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Flexible Cables 239

In intrinsic components, it is expressed by:

T̃  + T  u
t − k̄un

+ T u
t − k̄un


− k̄ u

n + k̄ut − τ̄ub + p̃t = müt

T̃ k̄ + T  u
n + k̄ut − τ̄ub

+ T u
n + k̄ut − τ̄ub


+ k̄ u

t − k̄un − τ̄ (u
b + τ̄un) + p̃n = mün

T  (u
b + τ̄un) + T (u

b + τ̄un)

+ τ̄ u

n + k̄ut − τ̄ub + p̃b = müb

u
t − k̄un +

1

2
u
t − k̄un

2
+ u

n + k̄ut − τ̄ub
2
+ (u

b + τ̄un)
2

= 0

[5.138]

with:

 T̃ + T u
t − k̄un

H
= P̃t

 T u
n + k̄ut − τ̄ub H

= P̃n

 [T (u
b + τ̄un)]H = P̃b

ut = ŭt, un = ŭn, ub = ŭb

[5.139]

The linearized theory

When the constraint [5.62] and the incremental balance equations [5.134] are
linearized, they provide the governing equation for the linearized theory, ruling the
small motions of the cable around the prestressed configuration. They become:

T̃ āt + T̊u 
+ p̃ = mü

 T̃ āt + T̊u
H

= P̃H

u
· āt = 0

[5.140]

In Cartesian components, they become:

T̃ x̄
j + T̊ u

j


+ p̃j = müj

 T̃ x̄
j + T̊ u

j
H

= P̃jH , j = 1, 2, 3

3

j=1

x̄
ju


j = 0

[5.141]
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240 Mathematical Models of Beams and Cables

In the intrinsic basis, we have:

T̃ 
− T̊ k̄ u

n + k̄ut − τ̄ub + p̃t = müt

T̃ k̄ + T̊  u
n + k̄ut − τ̄ub

+ T̊ u
n + k̄ut − τ̄ub


− τ̄ (u

b + τ̄un) + p̃n = mün

T̊  (u
b + τ̄un)

+ T̊ (u
b + τ̄un)


+ τ̄ u

n + k̄ut − τ̄ub + p̃b = müb

u
t − k̄un = 0

[5.142]

with:

 T̃H = P̃t

 T̊ u
n + k̄ut − τ̄ub

H
= P̃n

 T̊ (u
b + τ̄un)

H
= P̃b

[5.143]

in which the kinematic constraint has been exploited, in order to vanish some terms in
the balance equations.

5.6 Summary

In this chapter, we discussed several models of flexible cable. We first performed an
order of magnitude analysis, based on energy considerations, to validate the common
idea that a cable is an extremely slender beam. The limit process, carried out under
the hypothesis that the displacement field does not vary on a too short scale, led us to
formulate a model of a 1D body endowed with axial stiffness only, and zero bending
and torsion stiffness. Such a body is modeled as a 1D Cauchy continuum, embedded
in a 3D-space.

Firstly, unprestressed cables were addressed, for which the reference
configuration is taken coincident with one of the infinite natural configurations that
the cable can assume. However, the arbitrary choice of one of them revealed itself to
be inessential, once kinematics are expressed in terms of the (absolute) current
position, instead of the (relative) displacement. Since the continuum is non-polar,
Frenet triads, macro-rotations and macro-spin had to be introduced, based on the
state of a neighborhood of the point, instead of the state of the point itself. The
analysis led us to define the strain as a vector which is tangent to the centerline in the
reference configuration. Its modulus is the unit strain, which is the unique component
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Flexible Cables 241

of the strain in the reference triad (i.e. there are not shear-strains). The strain-rate is
affected only by the tangential component of the velocity gradient (i.e. its stretching
part), since the transverse component is responsible for the macro-spin. Such a result
required introducing a dual variable, which is a stress-force tangent to the centerline
in the current configuration. Its modulus is the tension of the cable, which is the
unique component of the stress in the current triad (i.e. there are not shear-stresses).
By the VPP, we obtained a vector balance equation that can be recognized as the
linear momentum equation of the alternative force balance approach. We commented
that the angular momentum equation does not appear in the formulation, since, due to
the lack of polar contributions, it is trivially satisfied by the fact that the stress-force
is tangent to the centerline. The projection of the balance equations on the principal
triad, in the static case, revealed interesting mechanical aspects: namely the cable
locally disposes itself in a (osculating) plane that contains the local force; therefore,
if the system of forces is planar, the cable is also contained in the same plane. Linear
1D constitutive laws were successively given, for hyperelastic and viscoelastic
materials. Finally, the elastic Fundamental Problem was formulated, and the
governing equations expressed in the Cartesian basis.

Prestressed cables were successively addressed, i.e. cables in equilibrium under
static forces, disturbed by incremental forces. We took the prestressed configuration
as reference configuration, and measured all quantities from it. Therefore, we
expressed the strain in terms of displacements, and defined incremental loads and
stresses. We derived an incremental balance equation by subtracting the balance
equations relevant to the current and the reference configurations. However, we
noted, in order that the scalar increment of tension appears in the equation, a
simplification must be introduced, namely to neglect the stretch in the current balance
equations. This hypothesis seems reasonable in applications, since the stretch is
nearly equal to 1; however, strictly speaking, the model is inconsistent, and can be
justified only on the grounds of an asymptotic analysis. For this reason, we call the
model quasi-exact. We formulated the elastic Fundamental Problem both in
Cartesian components and in the intrinsic components, in the (known) Frenet basis of
the reference configuration. These equations were successively linearized, to obtain a
model able to describe motions of small amplitudes around the prestressed
configuration.

The general equations for prestressed cables were then specialized to taut strings,
i.e. to cables that, in their reference configuration, are solicited by two equal and
opposite forces, so that they assume a rectilinear configuration. The relevant
equations are considerably simpler, yet coupled. However, when they are linearized,
a full uncoupling occurs, and they reduce to the well-known traveling wave (linear)
equations. It was noted, that the celerity of longitudinal waves is much higher that
that of transverse waves.
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242 Mathematical Models of Beams and Cables

An approximated model for shallow cables was then derived. These are
prestressed cables that assume a curvilinear shape in their reference configuration
that is close to the chord that joins the two ends. The commonest case of planar
reference configuration was addressed. By defining the sag as the maximum normal
distance between the chord and the centerline, we can say that the cable is shallow if
the sag-to-chord length is of the order of 1/10. For these cables, a technical theory
has been developed in the literature, based on quite strong hypotheses that, however,
have been validated by numerical results. Due to the shallowness of the cable, the
prestress and the curvature of the cable are assumed constant; moreover, the
tangential displacement is assumed smaller than the transverse component; finally,
the tangential inertia force is neglected, allowing a static condensation of the
tangential displacement. As a result, the unit strain is found to be constant along the
cable. The relevant equations of motion are of integro-differential type, and only
contain the transverse components of motion. If these equations are linearized, the
out-of-plane motion turns out to be uncoupled from the in-plane motion, and
governed by the simpler taut string equation, i.e. any information about the curvature
of the cable is lost. The in-plane equation, in contrast, accounts for the curvature and
elasticity of the cable via an integral term.

A simplified model of flexible inextensible cable was then formulated. It was
obtained by the axially deformable model by introducing an internal constraint
expressing inextensibility. Following the mixed formulation, we stated the problem in
terms of position (or displacement) vector and the stress vector, which is a reactive
force playing the role of Lagrangian multiplier in the virtual power approach. Thus,
the same balance equations holding for the extensible cable were derived, in which,
however, the stretch is rigorously zero. These equations must only be sided by the
inextensibility condition, since the constitutive law loses its meaning.
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Chapter 6

Stiff Cables

In this chapter, we consider cables that are endowed with flexural and torsional
stiffnesses. First, we discuss the technical problems in which such properties play a
non-negligible role, so that they must necessarily be taken into account. Then, we
formulate an approximated model of cable undergoing small curvatures and large
extension, sufficiently simple, but able to account for new phenomena. To avoid
cumbersome formulas, we restrict ourselves to planar natural configurations.
Prestressed cables are successively addressed, for which nonlinear and linearized
equations are derived, again, by assuming a planar reference configuration. Taut
strings are considered as a particular case. Then, the order of magnitude of the terms
of polar nature is evaluated, and reduced models are consistently derived. These
models are unable to describe boundary layers, but capable to account for the twist of
both non-shallow and shallow cables. Finally, inextensible stiff cables are considered,
whose equations of motion are derived in the unprestressed and prestressed cases, as
well as for reduced models.

6.1 Motivations

In Chapter 5 we studied cables as (perfectly) flexible bodies, modeled as a one-
dimensional (1D) Cauchy continuum, embedded in a 3D-space. The choice of such a
model was justified by an elastic energy analysis in which the cable was considered to
be a slender beam, whose length-to-diameter ratio tends to infinity. However, it was
stressed that such a model requires that the curvature radius assumed by the cable
in the current configuration, both in bending and torsion, is sufficiently large with
respect to the diameter of the cable cross-section. If this is not the case, i.e. if the cable

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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244 Mathematical Models of Beams and Cables

undergoes large curvatures, the Cauchy model is inadequate to accurately describe
the mechanical behavior of the body. In such problems, therefore, a richer model of
cable equipped with flexural and torsional stiffnesses must be employed. We will refer
to this as stiff cable, as opposed to flexible cable. Another possible name would be
“cable-beam”, to stress the double nature of the model.

Before going into the formulation, however, we want to mention some physical
problems in which the use of a stiff cable is needed. The discussion will give us some
hints for modeling.

Loss of pretension

The first drawback we can encounter in using the flexible cable model is the
phenomenon of loss of pretension. This occurs, for example, in a suspended cable,
weakly tensed by its own weight, when it experiences free (or forced) periodic
oscillations, causing a dynamic stress that superimposes on the pretension. Since the
dynamic contribution takes both signs in a period, if it is, in absolute value, smaller
than the pretension (as happens for small-amplitude motions), then the cable remains
tensed; if, in contrast, it is larger (as happens for sufficiently large motion
amplitudes), the cable is compressed somewhere. Due to the fact that the flexural
stiffness is small, the critical compressive load is also small, so that instability occurs
via (perhaps local) buckling. Of course, such a phenomenon cannot be described by
the flexible model, which is deprived of any flexural stiffness. Accounting for the
latter, in contrast, it permits the transformation of the extensional energy into
flexural energy [YOK 01], by also allowing the occurrence of loops, which
have been observed in some studies concerning low-tension cables
[GAT 02, GOY 07, GOY 05].

Boundary layers

When a cable is, for example, clamped at the ends, the flexible model is unable to
satisfy the geometric boundary condition, since the order of the differential problem is
too low. This drawback is not a consequence of nonlinearity, but manifests itself even
in the linear range. For example, according to the flexible model, the free motion of
a linear, planar, taut string is governed by a second-order differential equation in the
transverse displacement only (the 1D-wave equation):

Tu = mü [6.1]

where T is the tension and m is the mass per unit length. Thus, the conditions of zero-
displacement at the ends, uH = 0, can be satisfied, but the conditions of zero-(macro-)
rotation, u

H = 0, cannot. If we add to the model a bending stiffness EJ , the relevant
equation becomes of fourth order, namely:

EJu + Tu = mü [6.2]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Stiff Cables 245

so that the four conditions can now be satisfied. However, a new difficulty arises,
since, due to the high slenderness of the cable, the highest derivative in the equation
is multiplied by a small coefficient1, i.e. equation [6.2] is a singular differential
equation [BEN 99]. Problems like this are difficult to solve numerically, since the
relevant models are ill conditioned. If one wants to solve the problem analytically,
specific perturbation methods are available [BEN 99, NAY 73]. Without going into
details, we can say that: (a) far from boundaries (outer regime) the response is
weakly variable, so that the flexural effect can be neglected; (b) close to the ends
(inner regime), in order to satisfy the boundary conditions, the response becomes
strongly variable, entailing that the highest order derivative is large and the flexural
effect must be taken into account.

It must be remarked that the flexural regime phenomenon is caused not only by
the constraints at the boundaries, but it is also triggered by point-forces in the
domain. These, indeed, would cause cusps in the flexible model, which are not
kinematically admissible for the stiff model. Therefore, boundary layers manifest
themselves in order to smooth the solution. As an example, when a force travels
through a cable, a boundary layer moves with it.

Twist-depending forces

The external forces are often considered to be independent of the response of the
structure. However, there are problems in which the interaction cannot be ignored.
This is the case, for example, of the aerodynamic forces, which depend on the surface
exposed to the flow. If the body is cylindrical, with a non-circular cross-section, and
the flow is orthogonal to the axis of the cylinder, the aerodynamic forces depend on the
rotation of the cylinder around its own axis. This circumstance roughly occurs when
iced cables are invested by wind, possibly causing aeroelastic instability [BLE 01].
In such problems, the twist angle, although of minor importance in the description
of cable mechanics, must mandatorily be accounted in the model, since it affects the
external excitation.

An approximated model

Of course, an accurate formulation of the problem would require the use of the
fully nonlinear model of curved beam that we illustrated in Chapter 3. This, however,

1. Equation [6.2], in non-dimensional form, becomes (hat omitted):
2u + u = ü [6.3]

where ŝ := s/l, t̂ := (t/l) T/m are new coordinates, l is the string length, û := u/l is the
non-dimensional displacement, and 2 := EJ/(T l2) 1 is a small parameter.
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246 Mathematical Models of Beams and Cables

is quite cumbersome and, when applied to cables, calls for overcoming the
ill-conditioning of the equations. Therefore, for the purpose of this book, it is
conjectured here that a linear approximation of the curvature of the beam, when
combined with a nonlinear description of the unit extension of the flexible cable,
would supply a reasonably simple model, amenable to an analytical treatment, and
still able to capture the essential aspects of the mentioned phenomena. Of course,
large curvatures, such as those analyzed in [YOK 01] and [GOY 05], cannot be dealt
with this simplified model.

6.2 Unprestressed stiff cables

We formulate an approximated model of stiff cable that undergoes finite
extensions and small curvatures. While, therefore, an exact kinematics is used to
describe elongations of the cable, an infinitesimal kinematics is employed to describe
flexural and torsional curvatures.

6.2.1 Kinematics

Let us consider the cable as a slender and unshearable beam, and model it as a 1D-
polar continuum immersed in a 3D-space. Differently from the flexible cable, the stiff
cable possesses a unique natural shape; we will take this as the reference configuration.
Moreover, in order to simplify the model, we will make the following assumptions:
(a) the cable is (initially) planar, and (b) the principal inertia triad coincides with the
Frenet triad. However, we will allow the cable to change its original planar shape
during the motion, by disposing itself on a spatial curve, along which the two triads
are no longer coincident.

The displacement and rotation fields

Let the cable lie, at time t = 0, on the curve S of the plane π, having equation
x̄ = x̄(s), where s is the arc length. A Frenet triad B̄f := (āt (s) , ān (s) , āb (s)) is
taken along S, with āt = x̄ the tangent to the curve, ān = x̄/k̄ the (inward when
k > 0) normal to the curve in π and āb the binormal orthogonal to π; here, k̄ = x̄

is the (scalar) curvature of S. Moreover, let us assume that the inertia principal triad
of the cross-section, B̄ := (ā1 (s) , ā2 (s) , ā3 (s)), is aligned with the Frenet triad B̄f ,
so that the deviation angle δ we considered in Chapter 3 is identically zero. Since the
torsion of the planar curve is also zero, the Frenet formulas [5.6] reduce to:

ā1 = κ̄ā2, ā2 = −κ̄ā1, ā3 = 0 [6.4]
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Stiff Cables 247

where we used āi (i = 1, 2, 3) instead of āα (α = t, n, b), and, moreover, we wrote
κ̄ := k̄, to keep a formal analogy with the curved beam (Chapter 3).

Let Ŝ be the (generally) spatial curve on which the centerline lies at time t, of
parametric equation x = x (s, t), and let B := (a1 (s, t) , a2 (s, t) , a3 (s, t)) be the
triad solid to the cross-section. If we assume that the cable is shear-undeformable,
then a1 is tangent to Ŝ , but, in general, a2, a3 are no more aligned with the current
normal and binormal.

The referential description of the motion requires assigning the vector field u (s, t)
and the rotation tensor field R (s, t), defined by:

u = x− x̄, ai = Rāi [6.5]

where R depends on the three Tait–Bryan angles θi, as defined by equation [2.6].
Displacements and rotations are constrained by geometrical boundary conditions:

uH = ŭH(t), RH = R̆H(t) [6.6]

REMARK 6.1. It should be noted that, differently from the flexible cable (Cauchy
continuum), here (polar continuum) R is a micro-rotation. For this reason, we do not
need to use the stretch λ in the definition of the current principal triad.

Strains and unshearability

We define the unit extension as for the flexible cable, namely e = eā1, with
e := x − 1. Since x = ā1 + u, by letting u :=

3
i=1 uiāi and using the Frenet

formulas [6.4], we find:

e = (1 + u
1 − κ̄u2)

2 + (u
2 + κ̄u1)

2 + u2
3 − 1 [6.7]

To express unshearability, we proceed as in section 4.3.2 (where we dealt with
unshearable straight beams) by requiring that, in the current configuration, the
normal to the cross-section a1 = Rā1 coincides with the (unit) tangent to the
centerline, x/ x , i.e.:

ā1 + u = (1 + e)Rā1 [6.8]
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248 Mathematical Models of Beams and Cables

When this vector equation is projected onto the B̄-basis, it provides:⎛⎝1 + u
1 − κ̄u2

u
2 + κ̄u1

u
3

⎞⎠ = (1 + e)

⎛⎝cos θ2 cos θ3
cos θ2 sin θ3
− sin θ2

⎞⎠ [6.9]

from which, by eliminating e, the slave rotations θ2, θ3 can be determined as (exact)
functions of the master displacements u1, u2, u3

2. With the aim, however, to formulate
a simple model, we linearize these constraints, by taking cos θi  1 and sin θi  θi,
and, consequently, we get:

θ2 = −u
3, θ3 = u

2 + κ̄u1 [6.11]

With these internal constraints, the geometric boundary conditions [6.6] become:

u1H = ŭ1H , u2H = ŭ2H , u3H = ŭ3H

θ1H = θ̆1H , −u
3H = θ̆2H , u

2H + κ̄u1H = θ̆3H
[6.12]

To evaluate the change of curvature, χ :=
3
i=1 χiāi, we use equations [3.35], which

we derived for the curved beam, and particularize them to the case of planar beam, for
which κ̄1 = 0, κ̄2 = 0, κ̄3 = κ̄. Under the assumption of small rotations, we obtain:

χ1 = θ1 − κ̄θ2, χ2 = θ2 + κ̄θ1, χ3 = θ3 [6.13]

or, by using the constraints [6.11] and letting θ := θ1:

χ1 = θ + κ̄u
3, χ2 = −u

3 + κ̄θ, χ3 = u
2 + (κ̄u1)

 [6.14]

Velocity and spin

The velocity field is v := u̇ = 3
i=1 u̇iāi. The spin ω = 3

i=1 ωiai has (current)
components given by equation [2.62]. In the linear approximation for the rotations,
they reduce to:

ω1 = θ̇1, ω2 = θ̇2, ω3 = θ̇3 [6.15]

2. Namely:

tan θ2 = − u
3

(1 + u
1 − κ̄u2)

2 + (u
2 + κ̄u1)

2
, tan θ3 =

u
2 + κ̄u1

1 + u
1 − κ̄u2

[6.10]
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Stiff Cables 249

Strain-rates

Time-differentiation of the unit extension provides ė = ėā1, with:

ė =
1

1 + e
[(1 + u

1 − κ̄u2) (u̇

1 − κ̄u̇2) + (u

2 + κ̄u1) (u̇

2 + κ̄u̇1) + u

3u̇

3] [6.16]

Time-differentiation of the increment of curvature provides χ̇ :=
3
i=1 χ̇iāi, where:

χ̇1 = θ̇ + κ̄u̇
3, χ̇2 = −u̇

3 + κ̄θ̇, χ̇3 = u̇
2 + (κ̄u̇1)

 [6.17]

6.2.2 Dynamics

We consider the cable under the action of field-loads p =
3
i=1 p̄iāi and end-

loads PH =
3
i=1 P̄iH āiH ; moreover, only couples c = c̄ā1, CH = C̄H ā1H are

considered, for simplicity.

Balance equations

The balance equations are derived by the Virtual Power Principle (VPP), in the
spirit of the displacement formulation (in which the slave variables are eliminated).
The principle requires that:

S
RT t · ė+RTm · χ̇ ds =

S
(p · v + c ·ω) ds

+

B

H=A

(PH · vH +CH ·ωH) ∀v,ω

[6.18]

where t = Ta1 + T2a2 + T3a3 and m = M1a1 + M2a2 + M3a3 are the stresses,
whose components, as usual, are expressed in the current basis. Here, T is the normal
force or tension of the cable, M1 is the torsional moment and M2, M3 are the bending
moments. Moreover, T2, T3 are shear forces (note that they are different from zero);
however, since ė = ėā1, they do not appear in the displacement formulation, being
reactive stresses. By expanding the scalar products, the VPP becomes:

S
(T ė+M1χ̇1 +M2χ̇2 +M3χ̇3) ds =

S

3

i=1

p̄iu̇i + c̄θ̇ ds

+

B

H=A

3

i=1

P̄iu̇i + C̄θ̇

H

∀ u̇1, u̇2, u̇3, θ̇

[6.19]
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250 Mathematical Models of Beams and Cables

Concerning the virtual work spent by the tension, by using the strain-rate-velocity
relationships [6.16] and [6.17] and integrating by parts, we have:

S
T ėds =

S
−

T

1 + e
(1 + u

1 − κ̄u2)


+ κ̄
T

1 + e
(u

2 + κ̄u1) u̇1 ds

+

S
−

T

1 + e
(u

2 + κ̄u1)

− κ̄

T

1 + e
(1 + u

1 − κ̄u2) u̇2ds

+

S
−

T

1 + e
u
3


u̇3ds

+
T

1 + e
(1 + u

1 − κ̄u2) u̇1 +
T

1 + e
(u

2 + κ̄u1) u̇2 +
T

1 + e
u
3u̇3

B

A

[6.20]

Similarly:

S
(M1χ̇1 +M2χ̇2 +M3χ̇3) ds

=

S
(−M 

1 + κ̄M2) θ̇ − κ̄M 
3u̇1 +M 

3 u̇2 + −M 
2 − (κ̄M1)


u̇3 ds

+ M1θ̇ + κ̄M3u̇1 +M3u̇

2 −M 

3u̇2 −M2u̇

3 + (M 

2 + κ̄M1) u̇3

B

A

[6.21]

The VPP, therefore, provides the following field equations:

κ̄M 
3 +

T

1 + e
(1 + u

1 − κ̄u2)

− κ̄

T

1 + e
(u

2 + κ̄u1) + p̄1 = mü1

−M 
3 +

T

1 + e
(u

2 + κ̄u1)

+ κ̄

T

1 + e
(1 + u

1 − κ̄u2) + p̄2 = mü2

M 
2 + (κ̄M1)

 +
T

1 + e
u
3


+ p̄3 = mü3

M 
1 − κ̄M2 + c̄ = Iθ̈

[6.22]
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Stiff Cables 251

and the mechanical boundary conditions:

P̄1 ± κ̄M3 +
T

1 + e
(1 + u

1 − κ̄u2)
H

u̇1H = 0

P̄2 ± −M 
3 +

T

1 + e
(u

2 + κ̄u1)
H

u̇2H = 0

[±M3]H u̇
2H = 0

P̄3 ± M 
2 + κ̄M1 +

T

1 + e
u
3

H

u̇3H = 0

[M2]H u̇
3H = 0

C̄ ±M1 H
θ̇H = 0

[6.23]

where inertia forces have been added in the field, m being the linear mass density and
I := I1 the mass inertia moment with respect to a1.

6.2.3 The elastic law

The active stresses are related to the admissible strains by the constitutive law. By
assuming that the material is linearly hyperelastic and there is no prestress, the law
becomes:

T = EAe, M1 = GJ1χ1, M2 = EJ2χ2, M3 = EJ3χ3 [6.24]

where EA is the axial stiffness, GJ1 is the torsional stiffness and EJ2, EJ3 are the
flexural stiffnesses.

6.2.4 The Fundamental Problem

The Fundamental Problem is governed by four strain–displacement relationships
[6.7] and [6.14]; four balance equations [6.22]; four elastic laws [6.24] and the
geometrical/mechanical boundary conditions [6.12] and [6.23]. There are 12
unknowns: four displacements, four strains and four active stresses.
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252 Mathematical Models of Beams and Cables

When these equations are combined only in terms of displacements, we obtain the
equations of motion:

EJ3κ̄ (u

2 + κ̄u1)


+

EAe

1 + e
(1 + u

1 − κ̄u2)

− κ̄

EAe

1 + e
(u

2 + κ̄u1)

+ p̄1 = mü1

−EJ3 (u

2 + κ̄u1)


+

EAe

1 + e
(u

2 + κ̄u1)

+ κ̄

EAe

1 + e
(1 + u

1 − κ̄u2)

+ p̄2 = mü2

EJ2 (−u
3 + κ̄θ)


+GJ1 [κ̄ (θ

 + κ̄u
3)]


+

EAe

1 + e
u
3


+ p̄3 = mü3

GJ1 (θ
 + κ̄u

3)

− EJ2κ̄ (−u

3 + κ̄θ) + c̄ = Iθ̈

[6.25]

with the mechanical boundary conditions:

 κ̄EJ3 u
2 + (κ̄u1)


+

EAe

1 + e
(1 + u

1 − κ̄u2)
H

= P̄1H

 −EJ3 u
2 + (κ̄u1)

 +
EAe

1 + e
(u

2 + κ̄u1)
H

= P̄2H

 EJ3 u
2 + (κ̄u1)


H

= 0

 EJ2 −u
3 + (κ̄θ) + k̄GJ1 (θ

 + κ̄u
3) +

EAe

1 + e
u
3

H

= P̄3H

± [EJ2 (−u
3 + κ̄θ)]H = 0

 [GJ1 (θ
 + κ̄u

3)]H = C̄H

[6.26]

and/or geometrical boundary conditions [6.12].

REMARK 6.2. The first three equations of motion are fully coupled by the nonlinear
unit strain. The fourth equation, due to linearization of the curvatures, is linear, and,
due to the planarity of the cable, couples twist and out-of-plane displacements only.
However, due to the mentioned extensional coupling, twist triggers the in-plane
displacements too.

6.3 Prestressed stiff cables

As for the flexible cable (section 5.3), we are interested in describing the motion
of stiff cables that, in their reference configuration, are prestressed by static forces.
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Stiff Cables 253

Accordingly, we will measure displacements and strains starting from this
configuration, rather than from the natural configuration. We will assume that a
preload analysis, leading the cable from the natural to the reference configuration,
has already been performed via the model of the previous section, and we want to
describe the response to the cable to incremental loads, possibly of dynamic type.
Both the nonlinear and the linearized theories are addressed for the cable, and then
specialized to taut strings.

6.3.1 Nonlinear model

Pre-existing equilibrium state

We assume that the prestressed cable still keeps its natural planar shape. This is
rigorously true if the forces belong to the same plane (and couples are absent), while
it must be taken as a further approximation if this is not the case. For example, a cable
under self-weight and horizontal static wind forces only approximately disposes itself
on a plane inclined on the vertical axis. Moreover, aerodynamic couples distributed
along the centerline also contribute to the loss of planarity. As we already commented
for beams, it is quite commonly accepted to account for a state of prestress in the body
by neglecting the change of geometry, thus confusing the natural and the prestressed
configurations. This hypothesis, however, must be taken with caution in a cable, which
is a much more flexible body than a beam.

With this clarification, we consider preloads p̊, c̊, P̊H , C̊H in equilibrium with
the prestresses t̊, m̊. They all satisfy the static version of equations [6.22] and [6.23],
when these are written in the reference configuration, i.e. for zero displacements and
strains, namely:

κ̄M̊ 
3 + T̊  + p̊t = 0

−M̊ 
3 + κ̄T̊ + p̊n = 0

M̊ 
2 + κ̄M̊1


+ p̊3 = 0

M̊ 
1 − κ̄M̊2 + c̊ = 0

[6.27]

and:

 k̄M̊3 + T̊
H

= P̊1H ,  −M̊ 
3

H
= P̊2H ,  M̊3

H
= 0

 M̊ 
2 + k̄M̊1

H
= P̊3H , ± M̊2

H
= 0,  M̊1

H
= C̊H

[6.28]
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254 Mathematical Models of Beams and Cables

Incremental balance equations

When dynamic incremental loads p̃, c̃, P̃H , C̃H take action on the prestressed
cable, the balance equations [6.22] and [6.23] must be satisfied, with p, c,PH ,CH

being the total loads (namely p := p̊ + p̃ and similar). By subtracting from these
equations the equilibrium equations [6.27] and [6.28], holding in the prestressed state,
the incremental equations are derived. The latter, however, assume a simple form,
only if we neglect the unit strain with respect to 1, as we observed for flexible cables
in formulating a quasi-exact model (section 5.3.1)3. By proceeding in this way and
denoting with T̃ := T − T̊ , M̃i := Mi − M̊i the increments of stress, we obtain:

κ̄M̃ 
3 + T̃  + [T (u

1 − κ̄u2)]

− κ̄T (u

2 + κ̄u1) + p̃1 = mü1

−M̃ 
3 + κ̄T̃ + [T (u

2 + κ̄u1)]

+ κ̄T (u

1 − κ̄u2) + p̃2 = mü2

M̃ 
2 + κ̄M̃1


+ (Tu

3)

+ p̃3 = mü3

M̃ 
1 − κ̄M̃2 + c̃ = Iθ̈

[6.29]

together with:

 κ̄M̃3 + T̃ + T (u
1 − κ̄u2)

H
= P̃1H

 −M̃ 
3 + T (u

2 + κ̄u1)
H

= P̃2H

 M̃3
H

= 0

 M̃ 
2 + κ̄M̃1 + Tu

3
H

= P̃3H

± M̃2
H

= 0

 M̃1
H

= C̃H

[6.30]

Note that these equations reduce to the incremental balance equations for the flexible
cable (equations [5.76] and [5.77] with torsion vanished), if moments are ignored.

3. For example, in the first field equation, a term like this appears:

T

1 + e
1 + u

t − k̄un


− T̊  T̃ + T u

t − k̄un
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Stiff Cables 255

Elastic law

Due to the prestress, the linear elastic law is non-homogeneous, namely:

T = T̊ + EAe, M1 = M̊1 +GJ1χ1

M2 = M̊2 + EJ2χ2, M3 = M̊3 + EJ3χ3

[6.31]

However, since only the increment of moments appears in the balance equations (due
to linearization of the curvatures), the elastic law becomes:

T = T̊ + EAe, M̃1 = GJ1χ1, M̃2 = EJ2χ2, M̃3 = EJ3χ3 [6.32]

The Fundamental Problem

The incremental form of the Fundamental Problem is constituted by the
strain-displacement relationships (equations [6.7] and [6.14]), the balance equations
[6.29], the elastic law [6.32], and the boundary conditions ([6.6] and [6.30]). When
the problem is stated in terms of displacements only, the following equations of
motion are derived in the field:

κ̄EJ3 (u

2 + κ̄u1)


+ EAe + T̊ + EAe (u

1 − κ̄u2)


− κ̄ T̊ + EAe (u
2 + κ̄u1) + p̃1 = mü1

−EJ3 (u

2 + κ̄u1)


+ κ̄EAe+ T̊ + EAe (u

2 + κ̄u1)


+ κ̄ T̊ + EAe (u
1 − κ̄u2) + p̃2 = mü2

EJ2 (−u
3 + κ̄θ)


+ [κ̄GJ1 (θ

 + κ̄u
3)]



+ T̊ + EAe u
3


+ p̃3 = mü3

GJ1 (θ
 + κ̄u

3)

− κ̄EJ2 (−u

3 + κ̄θ) + c̃ = Iθ̈

[6.33]
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256 Mathematical Models of Beams and Cables

to be put beside, on the boundary, by equation [6.6] and:

 κ̄EJ3 (u

2 + κ̄u1)


+ EAe+ T̊ + EAe (u

1 − κ̄u2)
H

= P̃1H

 −EJ3 (u

2 + κ̄u1)


+ T̊ + EAe (u

2 + κ̄u1)
H

= P̃2H

 EJ3 (u

2 + κ̄u1)


H

= 0

 EJ2 (−u
3 + κ̄θ)


+ k̄GJ1 (θ

 + κ̄u
3) + T̊ + EAe u

3
H

= P̃3H

± [EJ2 (−u
3 + κ̄θ)]H = 0

 [GJ1 (θ
 + κ̄u

3)]H = C̃H

[6.34]

where the unit strain e is expressed by equation [6.7].

6.3.2 The linearized model

If we are interested in small motions around the prestressed configuration, we
can linearize the incremental problem. By linearizing equation [6.7] and appending
(already linear) equation [6.14], the strain–displacement relationships become:

e = u
1−κ̄u2, χ1 = θ+κ̄u

3, χ2 = −u
3+κ̄θ, χ3 = u

2+(κ̄u1)
 [6.35]

Linearization of the incremental balance equations [6.29] and [6.30] is simply
obtained by replacing T by T̊ , namely:

κ̄M̃ 
3 + T̃  + T̊ (u

1 − κ̄u2)

− κ̄T̊ (u

2 + κ̄u1) + p̃1 = mü1

−M̃ 
3 + κ̄T̃ + T̊ (u

2 + κ̄u1)

+ κ̄T̊ (u

1 − κ̄u2) + p̃2 = mü2

M̃ 
2 + κ̄M̃1


+ T̊ u

3


+ p̃3 = mü3

M̃ 
1 − κ̄M̃2 + c̃ = Iθ̈

[6.36]
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Stiff Cables 257

and:

 k̄M̃3 + T̃ + T̊ (u
1 − κ̄u2)

H
= P̃1H

 −M̃ 
3 + T̊ (u

2 + κ̄u1)
H

= P̃2H

 M̃3
H

= 0

 M̃ 
2 + κ̄M̃1 + T̊ u

3
H

= P̃3H

± M̃2
H

= 0

 M̃1
H

= C̃H

[6.37]

The incremental constitutive law follows from equation [6.32]:

T̃ = EAe, M̃1 = GJ1χ1, M̃2 = EJ2χ2, M̃3 = EJ3χ3 [6.38]

Combination of these equations leads to the linearized equations of motion4:

κ̄EJ3 (u

2 + κ̄u1)


+ EA (u

1 − κ̄u2)

+ T̊ (u

1 − κ̄u2)


− κ̄T̊ (u
2 + κ̄u1) + p̃1 = mü1

−EJ3 (u

2 + κ̄u1)


+ κ̄EA u

1 − k̄u2

+ T̊ (u
2 + κ̄u1)


+ k̄T̊ (u

1 − κ̄u2) + p̃2 = mü2

EJ2 (−u
3 + κ̄θ)


+ k̄GJ1 (θ

 + κ̄u
3)


+ T̊ u

3


+ p̃3 = mü3

GJ1 (θ
 + κ̄u

3)

− k̄EJ2 (−u

3 + κ̄θ) + c̃ = Iθ̈

[6.39]

4. These equations are of type Lw +Gw = p̃, in the field, and LHw + GHw = P̃ , on the
boundary, as we saw in Chapter 1.
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258 Mathematical Models of Beams and Cables

and the mechanical boundary conditions:

 κ̄EJ3 (u

3 + κ̄u1)


+ EA (u

1 − κ̄u2) + T̊ (u
1 − κ̄u2)

H
= P̄1H

 −EJ3 (u

2 + κ̄u1)


+ T̊ (u

2 + κ̄u1)
H

= P̄2H

 EJ3 (u

2 + κ̄u1)


H

= 0

 EJ2 (−u
3 + κ̄θ)


+ k̄GJ1 (θ

 + κ̄u
3) + T̊ u

3
H

= P̄3H

± [EJ2 (−u
3 + κ̄θ)]H = 0

 [GJ1 (θ
 + κ̄u

3)]H = C̄H

[6.40]

to be sided by the geometric boundary conditions. These equations reduce to those for
the planar flexible model (equations [5.89] and [5.90], with τ̄ = 0) when the flexural
and torsional contributions are neglected.

6.3.3 Taut strings

We now consider a stiff cable that, in its natural configuration, is rectilinear and
aligned along the i1-axis of the Cartesian basis Be := (i1, i2, i3), coincident with the
intrinsic one. Let the cable be solicited exclusively by two equal and opposite static
forces −P̊A = P̊B =: T̊ i1. Since κ̄ = 0, distributed loads are zero (i.e. p̊1 = p̊2 =
p̊3 = c̊ = 0), and transverse end-forces and end-couples are zero too (i.e. P̊2H =
P̊3H = C̊H = 0), then the equilibrium equations [6.27] and [6.28], relevant to the
prestressed configuration, admit the solution:

T̊ = const, M̊1 = M̊2 = M̊3 = 0 [6.41]

i.e. the cable is taut with zero bending and torsional moments, as in the flexible case
(section 5.3.3).

Nonlinear model

Since the cable is rectilinear (κ̄ = 0), the strains [6.7] and [6.14] reduce to:

e = (1 + u
1)

2
+ u2

2 + u2
3 − 1 [6.42]

and:

χ1 = θ, χ2 = −u
3 , χ3 = u

2 [6.43]
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Stiff Cables 259

The incremental balance equations [6.33] and [6.34] also simplify into:

T̃  + (Tu
1)


+ p̃1 = mü1

−M̃ 
3 + (Tu

2)

+ p̃2 = mü2

M̃ 
2 + (Tu

3)

+ p̃3 = mü3

M̃ 
1 + c̃ = Iθ̈

[6.44]

and:

 T̃ + Tu
1

H
= P̃1H

 −M̃ 
3 + Tu

2
H

= P̃2H

 M̃3
H

= 0

 M̃ 
2 + Tu

3
H

= P̃3H

± M̃2
H

= 0

 M̃1
H

= C̃H

[6.45]

The elastic law [6.31], by accounting for the prestresses [6.41], becomes:

T = T̊ +EAe, M1 = GJ1χ1, M2 = EJ2χ2, M3 = EJ3χ3 [6.46]

The Fundamental Problem, when formulated in terms of displacements only, becomes
(compare it with equations [5.95] and [5.97], relevant to the flexible model):

T̊ u
1 + [EAe (1 + u

1)]

+ p̃1 = mü1

−EJ3u

2 + T̊ u

2 + (EAeu
2)


+ p̃2 = mü2

−EJ2u

3 + T̊ u

3 + (EAeu
3)


+ p̃3 = mü3

GJ1θ
 + c̃ = Iθ̈

[6.47]
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260 Mathematical Models of Beams and Cables

and:

 T̊ u
1 + EAe (1 + u

1)
H

= P̃1H

 −EJ3u

2 + T̊ + EAe u

2
H

= P̃2H

 [EJ3u

2 ]H = 0

 −EJ2u

3 + T̊ + EAe u

3
H

= P̃3H

± [−EJ2u

3 ]H = 0

 [GJ1θ
]H = C̃H

[6.48]

plus geometric boundary conditions.

REMARK 6.3. The field equation and boundary conditions governing the torsional
motion of the taut string are uncoupled from the remaining ones. Since curvatures
have been linearized, the governing equation is linear.

Linearized model

When the previous equations are linearized around the prestressed configuration,
i.e. small motions around it are considered, the problem becomes:

EA+ T̊ u + p̃1 = mü1

−EJ3u

2 + T̊ u

2 + p̃2 = mü2

−EJ2u

3 + T̊ u

3 + p̃3 = mü3

GJ1θ
 + c̃ = Iθ̈

[6.49]

and:

 EA+ T̊ u
1

H
= P̃1H

 −EJ3u

2 + T̊ u

2
H

= P̃2H

 [EJ3u

2 ]H = 0

 −EJ2u

3 + T̊ u

3
H

= P̃3H

± [−EJ2u

3 ]H = 0

 [GJ1θ
]H = C̃H

[6.50]
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Stiff Cables 261

where the linearized strain e = u
1 has been used. Geometric boundary conditions

must also be enforced. These equations reduce to those for the flexible model, when
flexure and torsion are ignored (section 5.3.3); as in that case, all the equations are
uncoupled.

6.4 Reduced models

The large-extension small-curvature model of stiff cable (equations [6.33] and
[6.34]), incorporates the flexible model, in the sense that: (a) the linear momentum
equations contain additional terms due to the bending and torsion of the unshearable
beam; (b) the angular momentum equation around the tangent is a further balance
equation. This disappears when the twist angle is not included in the set of the
kinematic descriptors. We will now investigate the role of these differences with
respect to the flexible model, in order to understand if and when they can be
neglected, to get a consistently reduced model. To acheive this goal, we will perform
an order of magnitude analysis, by distinguishing the cases of sagged and shallow
cables.

6.4.1 Sagged cables

If the cable is sagged, we can assume that its radius of curvature in the reference
configuration is of the order of the length of the cable (this entailing that the sag-to-
length ratio is of order 1); therefore, κ̄ = O l

−1 . Moreover, we assume that all the
translation components are of the same order, i.e. ui = O (u), (i = 1, 2, 3), where
u := u is a measure of the amplitude. If we are interested in motions in which the
displacements vary on a characteristic length of the order of l (as it happens for the first
few natural modes of the cable), we can assume that ∂nui/∂s

n = O (u/ln). Similarly,
we assume that ∂nθ/∂sn = O (θ/ln), but we still have to estimate θ and to relate it to
u, which is a less easy task. To this end, we consider the homogeneous static version
of equation [6.33d] and consider u3 as a “know-term”. Since GJ1/EJ2 = O (1), by
referring to an average (constant) curvature κ̄, we rewrite this equation as:

θ − κ̄2θ = O (κ̄u
3) [6.51]

The first two terms on the left side, by virtue of the previous assumptions, are of the
same order of magnitude. By balancing them with the right side, we get θ = O (u/l),
i.e. the estimation we sought for.

With these results we note that each increment of curvature [6.14] is made up of
two terms of equal order, and that these orders are all equal among them, namely
χi = O u/l2 , (i = 1, 2, 3). Therefore, forces due to bending and torsion, which
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262 Mathematical Models of Beams and Cables

appear in the equations of motion [6.33], are of the same order, and no simplification
is allowed among them. However, if we compare these flexural/torsional effects with
the extensional or geometric effects, we discover that they are much smaller. As a
matter of fact, in equation [6.33a], we have:

κ̄EJ3u

2

T̊ u
1

= O
EJ3

T̊ l2
= O

E

σ̊

ρ23
l2

 1 [6.52]

where σ̊ := T̊ /A and ρ23 := J3/A5. Similarly, in the equation [6.33c] (and [6.33b]),
we have:

O
EJ2u


3

T̊ u
3

= O
κ̄GJ1θ



T̊ u
3

= O
E

σ̊

ρ22
l2

 1 [6.53]

This analysis is consistent with the discussion at the beginning of this chapter. The
flexural and torsional terms appearing in the linear momentum equations are important
only near the constraints, where boundary layers occur. Here, in fact, the derivatives of
the displacements are much larger than far from the constraints, e.g. u

2  O (u/l), so
that the previous analysis, valid far from the constraints, no longer holds. If, however,
we are not interested in investigating boundary layers, but we accept a local error, we
can neglect all flexural and torsional terms in equations [6.33a,b,c], which therefore
reduce to those for the flexible model. However, equation [6.33d], which expresses
the tangent angular momentum balance equation, survives, since all terms are of the
same order. Therefore, the reduced model becomes:

EAe + T̊ + EAe (u
1 − κ̄u2)



− κ̄ T̊ + EAe (u
2 + κ̄u1) + p̃1 = mü1

κ̄EAe+ T̊ + EAe (u
2 + κ̄u1)



+ κ̄ T̊ + EAe (u
1 − κ̄u2) + p̃2 = mü2

T̊ + EAe u
3


+ p̃3 = mü3

GJ1 (θ
 + κ̄u

3)

− κ̄EJ2 (−u

3 + κ̄θ) + c̃ = Iθ̈

[6.54]

Concerning boundary conditions, since the field equations lowered in order, we cannot
satisfy all of them, consistent with the fact that we ignored the boundary layers. Thus,
if the cable is clamped at one end, we cannot enforce rotations θ2 and θ3 there; in

5. Typical values are: E/σ̊ = 103 and ρ23/l
2 = 10−6 or smaller.
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Stiff Cables 263

contrast, we have to prescribe the twist. Therefore, the geometric boundary conditions
[6.12] reduce to:

u1H = ŭ1H , u2H = ŭ2H , u3H = ŭ3H , θ1H = θ̆1H [6.55]

Analogously, at the free end of the cable, we cannot prescribe the value of the bending
moment, but we have to enforce the torsional moment. Thus, the mechanical boundary
conditions [6.34] reduce to:

 EAe+ T̊ + EAe (u
1 − κ̄u2)

H
= P̃1H

 T̊ + EAe (u
2 + κ̄u1)

H
= P̃2H

 T̊ + EAe u
3

H
= P̃3H

 [GJ1 (θ
 + κ̄u

3)]H = C̃H

[6.56]

REMARK 6.4. The torsion equation [6.54d] is uncoupled from the others, so that, in
most of the problems, the twist angle behaves as a passive variable, forced by the out-
of-plane motion u3 (s, t), which evolves according to the flexible model. However, an
important exception to this rule occurs, as discussed at the beginning, namely when
the incremental forces depend on the configuration, i.e. p̃i = p̃i (u1, u2, u3, θ). In this
case, the twist actively participates in the motion, since it affects the forces p̃i, which
drive the out-of-plane response u3, which in turn modifies θ, so that the problem is
fully coupled.

6.4.2 Shallow cables

When the sag-to-length ratio δ := d/l is small, for example of the order O 10−1 ,
we say that the cable is shallow, and assume that the hypotheses introduced in section
5.4 are valid, in particular κ̄l = const = O δ2 , and T̊ = const along s. These allow
us to further simplify the linear momentum equations, as we did for the flexible model,
also performing the static condensation of the tangential displacement. Thus, when
boundary conditions prescribe zero displacements, we reobtain equations [5.111] and
[5.110], with symbols updated, namely:

T̊ + EAe0 u
2 + EAe0κ̄+ p̃2 = mü2

T̊ + EAe0 u
3 + p̃3 = mü3

[6.57]

where:

e0 (t) = −
κ̄

l

sB

sA

u2ds+
1

2l

sB

sA

u2
2 + u2

3 ds [6.58]

and where u2H = u3H = 0 at H = A,B.
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264 Mathematical Models of Beams and Cables

Concerning instead the torsion equation [6.54d], it cannot be further simplified.
Indeed, a simple analysis of equation [6.51] reveals that, although κ̄ is small, κ̄θ
could be of the same order of θ, since the twist could contain a large, almost
constant component (pendulum motion), if allowed by the end constraints
(e.g. spherical hinges)6. By taking κ̄ constant, the equation becomes:

GJ1θ

− κ̄2EJ2θ + (GJ1 + EJ2) κ̄u


3 + c̃ = Iθ̈ [6.59]

A static condensation of the twist can be performed, in the same manner as we did for
the tangential displacement, if we observe that the celerity of the torsional waves is
much higher than that of the transverse waves7. Thus, if we neglect the twist inertia in
the previous equation and assume c̃ = 0 for simplicity, by solving for θ as a function
of u3, we obtain:

θ = −
GJ1 + EJ2
√
GJ1 EJ2

s

0

u
3 (σ, t) sinh [κ (s− σ)] dσ+A coshκ s+B sinhκ s [6.60]

where κ := κ̄ EJ2/GJ1 and A,B are arbitrary constants. These are determined
by the boundary conditions for the twist. For example, if the twist is restrained, then
θH = 0; if the twist is free (spherical hinge), then [θ + κ̄u

3]H = 0.

6.5 Inextensible stiff cables

We now want to formulate a model of stiff cable that is able to bend and twist, but
not to elongate. Consistently with the approximations of this chapter, we use linear
kinematics to evaluate the changes of curvature, but exact kinematics to express the
inextensibility condition.

6. The solution to equation [6.51] is:

θ = A cosh κ̄s+B sinh κ̄s+ κ̄f (s, t)

A+ κ̄ (Bs+ f (s, t)) + O δ2

where A,B are arbitrary constants, f (s, t) is a particular solution to the know-term u
3 and

where we used the fact that κ̄s is small in the [0, l] interval. Therefore, quasi-constant rotations
θ A are in principle possible, which, however, do not affect the derivatives.
7. See [LUO 07] for a numerical example.
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Stiff Cables 265

6.5.1 Unprestressed cables

Inextensibility requires that the unit extension [6.7] identically vanishes at any
time, so that:

e = (1 + u
1 − κ̄u2)

2
+ (u

2 + κ̄u1)
2
+ u2

3 − 1 = 0 [6.61]

From this, by equating ė to zero, we obtain the following velocity constraint:

(1 + u
1 − κ̄u2) (u̇


1 − κ̄u̇2) + (u

2 + κ̄u1) (u̇

2 + κ̄u̇1) + u

3u̇

3 = 0 [6.62]

The VPP [6.19] still holds, in which, however, the tension T is a Lagrange multiplier
associated with the inextensibility condition, namely:

S
(M1χ̇1 +M2χ̇2 +M3χ̇3) ds =

3

i=1

p̄iu̇i + c̄θ̇ ds

+
B

H=A

3

i=1

P̄iu̇i + C̄θ̇

H

−

S
T ėds ∀ u̇1, u̇2, u̇3, θ̇

[6.63]

Therefore, the same balance equations [6.22] are derived, but with e = 0, i.e.:

κ̄M 
3 + [T (1 + u

1 − κ̄u2)]

− κ̄T (u

2 + κ̄u1) + p̄1 = mü1

−M 
3 + [T (u

2 + κ̄u1)]

+ κ̄T (1 + u

1 − κ̄u2) + p̄2 = mü2

M 
2 + (κ̄M1)


+ (Tu

3)

+ p̄3 = mü3

M 
1 − κ̄M2 + c̄ = Iθ̈

[6.64]

Similarly, the alternative boundary conditions [6.23] are obtained:

P̄1 ± (κ̄M3 + T (1 + u
1 − κ̄u2)) H

u̇1H = 0

P̄2 ± (−M 
3 + T (u

2 + κ̄u1)) H
u̇2H = 0

[±M3]H u̇
2H = 0

P̄3 ± (M 
2 + κ̄M1 + Tu

3) H
u̇3H = 0

[M2]H u̇
3H = 0

C̄ ±M1 H
θ̇H = 0

[6.65]

In these equations, the active stresses must be expressed in terms of displacements via
the elastic law [6.24b–d] and the curvature–displacement relationships [6.14], thus

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



266 Mathematical Models of Beams and Cables

obtaining:

M1 = GJ1 (θ
 + κ̄u

3)

M2 = EJ2 (−u
3 + κ̄θ)

M3 = EJ3 u
2 + (κ̄u1)


[6.66]

The Fundamental Problem is completed by the geometric constraint [6.61] and the
geometric boundary conditions [6.12]. It turns out to be a mixed problem, where the
unknowns are the master configuration variables ui, θ and the reactive tension T .

REMARK 6.5. For the flexible cable model, where no shear forces exist, we followed
the mixed formulation (section 5.5); for the stiff cable model, for which shear forces
instead exist, we used the hybrid formulation. As a matter of fact, we directly
accounted for unshearability, via master and slave variables, but enforced
inextensibility via a Lagrange multiplier. As a result, the (non-zero) reactive shear
forces were removed from the balance equations, while the reactive tension, in
contrast, appeared.

6.5.2 Prestressed cables

If the inextensible cable is preloaded by forces p̊, c̊, P̊H , C̊H , causing the
prestresses M̊i, T̊ and, moreover, it assumes a planar configuration, then we take this
as a reference configuration.

The nonlinear model

Since the balance equations [6.64] and [6.65] are, by hypothesis, satisfied
identically with zero displacements, the balance equations [6.27] and [6.28] must
hold. By subtracting them from equations [6.64] and [6.65], the incremental balance
equations [6.29] and [6.30] are obtained, with no further approximation required,
since the unit extension is now rigorously zero.

The constitutive law concerns the active stresses Mi. Since they only appear as
incremental parts M̃i, and these are proportional to the change of curvatures [6.14],
then:

M̃1 = GJ1 (θ
 + κ̄u

3)

M̃2 = EJ2 (−u
3 + κ̄θ)

M̃3 = EJ3 u
2 + (κ̄u1)



[6.67]

In contrast, T = T̊ + T̃ is a reactive stress, T̊ being known and T̃ unknown.
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Stiff Cables 267

When these relationships are substituted in the incremental balance equations, the
following equations of motion are derived:

κ̄GJ1 (θ
 + κ̄u

3)

+ T̃  + [T (u

1 − κ̄u2)]


− κ̄T (u
2 + κ̄u1) + p̃1 = mü1

−EJ3 u
2 + (κ̄u1)

 
+ κ̄T̃ + [T (u

2 + κ̄u1)]


+ κ̄T (u
1 − κ̄u2) + p̃2 = mü2

EJ2 (−u
3 + κ̄θ)


+ [κ̄GJ1 (θ

 + κ̄u
3)]


+ (Tu

3)

+ p̃3 = mü3

GJ1 (θ
 + κ̄u

3)

− κ̄EJ2 (−u

3 + κ̄θ) + c̃ = Iθ̈

[6.68]

with the boundary conditions:

 κ̄EJ3 u
2 + (κ̄u1)


+ T̃ + T (u

1 − κ̄u2)
H

= P̃1H

 −EJ3 u
2 + (κ̄u1)

 
+ T (u

2 + κ̄u1)
H

= P̃2H

 EJ3 u
2 + (κ̄u1)


H

= 0

 EJ2 (−u
3 + κ̄θ)


+ κ̄GJ1 (θ

 + κ̄u
3) + Tu

3
H

= P̃3H

± [EJ2 (−u
3 + κ̄θ)]H = 0

 [GJ1 (θ
 + κ̄u

3)]H = C̃H

[6.69]

They must be supplemented with the constraint condition [6.61] and the geometric
boundary conditions [6.12].

The linearized model

According to the linearized theory, the previous equations of motion are simplified
by substituting T by T̊ , namely:

κ̄GJ1 (θ
 + κ̄u

3)

+ T̃  + T̊ (u

1 − κ̄u2)


− κ̄T̊ (u
2 + κ̄u1) + p̃1 = mü1

−EJ3 u
2 + (κ̄u1)

 
+ κ̄T̃ + T̊ (u

2 + κ̄u1)


+ κ̄T̊ (u
1 − κ̄u2) + p̃2 = mü2

EJ2 (−u
3 + κ̄θ)


+ [κ̄GJ1 (θ

 + κ̄u
3)]


+ T̊ u

3


+ p̃3 = mü3

GJ1 (θ
 + κ̄u

3)

− κ̄EJ2 (−u

3 + κ̄θ) + c̃ = Iθ̈

[6.70]
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268 Mathematical Models of Beams and Cables

and:

 κ̄EJ3 u
2 + (κ̄u1)

 + T̃ + T̊ (u
1 − κ̄u2)

H
= P̃1H

 −EJ3 u
2 + (κ̄u1)

 
+ T̊ (u

2 + κ̄u1)
H

= P̃2H

 EJ3 u
2 + (κ̄u1)


H

= 0

 EJ2 (−u
3 + κ̄θ)


+ κ̄GJ1 (θ

 + κ̄u
3) + T̊ u

3
H

= P̃3H

± [EJ2 (−u
3 + κ̄θ)]H = 0

 [GJ1 (θ
 + κ̄u

3)]H = C̃H

[6.71]

Consistently, the geometrical constraint [6.61] is linearized too:

u
1 − κ̄u2 = 0 [6.72]

The geometric boundary conditions [6.12] are, instead, already in the linear form.

6.5.3 Reduced model

If boundary layers are not of interest, we can reduce the model by neglecting
bending and torsion moments. The balance equations [6.68] reduce to:

T̃  + [T (u
1 − κ̄u2)]


− κ̄T (u

2 + κ̄u1) + p̃1 = mü1

κ̄T̃ + [T (u
2 + κ̄u1)]


+ κ̄T (u

1 − κ̄u2) + p̃2 = mü2

(Tu
3)


+ p̃3 = mü3

GJ1 (θ
 + κ̄u

3)

− κ̄EJ2 (−u

3 + κ̄θ) + c̃ = Iθ̈

[6.73]

to be joined to equation ([6.61]). The consistent geometric boundary conditions
become:

u1H = ŭ1H , u2H = ŭ2H , u3H = ŭ3H , θ1H = θ̆1H [6.74]

with the mechanical boundary conditions changing into:

 T̃ + T (u
1 − κ̄u2)

H
= P̃1H

 [T (u
2 + κ̄u1)]H = P̃2H

 [Tu
3]H = P̃3

 [GJ1 (θ
 + κ̄u

3)]H = C̃H

[6.75]
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Stiff Cables 269

6.6 Summary

In this chapter, we formulated models of stiff cables, i.e. extremely flexible
bodies, endowed with flexural and torsional stiffnesses. The need for including these
effects, which were neglected in the (purely) flexible model of the cable, was
primarily discussed. We identified three classes of problem in which the cable has to
be considered stiff. (a) Large amplitude oscillations. When a cable, prestressed, e.g.,
by its own weight, undergoes large oscillations, the increment of stress can overcome
(in absolute value) the prestress, so that the cable, in principle, experiences
compression. Since the critical load of cables is almost close to zero, due to their
evanescent flexural stiffness, it is expected that energy migrates from extensional to
flexural form. Therefore, flexural stiffness cannot be ignored. On the other hand, due
to the equilibrium of the curved element, if a bending moment arises, a torsional
moment also has to be triggered, so that all the internal couples must be accounted
for. Therefore, the need to use a polar continuum was recognized. (b) Boundary
layers. We observed that the equations for the stiff cable are singular equations since
a small coefficient affecting the highest derivative appears. Far from the end (or load
singularities in the field), the highest derivatives can be neglected, and the flexible
model can be used; however, close to the boundaries, in order to fit the boundary
conditions (in larger number with respect to the flexible model), the response of the
cable is strongly variable, so that the highest derivatives cannot be neglected. Here,
the cable behaves as a beam. In summary, two types of regime can be observed: the
outer, valid in the most part of the field, and the inner, close to the boundaries. (c)
Twist-dependent forces. Since, in aerodynamics, the forces depend on the attitude of
the body, twist cannot be ignored, although it would be of minor importance in
describing the mechanics of the body itself. Therefore, again, a polar model must be
adopted.

We conjectured that, in these classes of problem, a linear approximation of the
curvature is sufficient to capture the phenomenon (except for the appearance of loops,
which call for large curvatures). Consequently, we developed an approximated model
of small-curvature large-extension cable, i.e. we used linear kinematics to express the
bending and torsion and nonlinear kinematics to express the extension. Shear-strains,
instead, were assumed to be rigorously zero (unshearable beam). Of course, if an exact
model were instead desired, the curved beam model of Chapter 3 should be used.
To limit the algebra, we assumed that the (unique) natural configuration of the stiff
cable is planar. By following the displacement formulation for internally constrained
beams, we eliminated two slave rotations, by linking them to the master variables
(three translation components and the twist) via the unshearability conditions. Then,
by using the VPP, we obtained four balance equations. Assuming no prestress, four
equations of motion in the master displacements were derived, together with natural
boundary conditions.
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270 Mathematical Models of Beams and Cables

When the cable is prestressed, under the hypothesis that the reference
(prestressed) configuration is still planar, we obtained incremental balance equations
as the difference between the current balance equations and the static version holding
in the prestressed state. As we did for the flexible model, we neglected the unit strain
with respect to 1, in order to get simpler expressions. Linearized equations,
governing the small motions around the prestressed state, were also given.
Furthermore, all the equations were specialized to the case of taut stiff string, both in
nonlinear and linearized regimes.

An order of magnitude analysis was carried out on the equations of a prestressed
cable in order to discuss the role of the additional (polar) terms appearing in the stiff
versus the flexible model. We found that the flexural–torsional effects are negligible
in the greater part of the field, so that the flexible model could be used. However, this
is not true close to the boundaries, or close to load singularities, where the complete
equations must be used. We noted that if we are not interested in the boundary layers,
we can use a reduced model, made up of the three equations of motions of the
flexible model, and an additional equation governing the twist. The latter expresses
the balance of out-of-plane flexural couples, torsional couples, external incremental
couples and the inertia effects. The torsion equation is uncoupled from the other
three. Therefore: (a) if the external forces are independent of the twist, this is a
passive variable, in the sense that it does not affect the motion, but it can be
computed after the translational response has been evaluated by the flexible model;
(b) if the external forces do depend on the twist, as happens when they are of
aerodynamic nature, then the twist is an active variable, since it contributes to the
determination of the action, which drives the out-of-plane motion, which in turn
affects the twist. Of course, the reduced model can be further simplified for shallow
cables, along the lines we already illustrated for the flexible model. We also noted
that since the celerity of the (prevalently) torsional waves is much higher than that of
the transverse waves, which we are mostly interest in, we can statically condense the
twist. Accordingly, we neglected the torsional inertia, and expressed the twist as an
integral of the out-of-plane motion. The procedure is similar to that which allows us
to express a tangential motion of shallow flexible cables as a slave of the transverse
motion. In all cases, when a reduced model is used, since the order of the differential
problem is lowered with respect to the original one, not all the boundary conditions
can be satisfied, consistent with the fact we ignored the boundary layers.

At the end of the chapter, we briefly addressed inextensible stiff cables. By
following a hybrid formulation, in which shear forces are condensed while the
tension is accounted for as a Lagrange multiplier, we obtained four equations of
motion in the four master displacements and the tension, to which the inextensibility
condition must be appended. If the cable is prestressed, incremental balance
equations were found, in the four displacements and in the increment of the reactive
tension. A reduced model was also derived by neglecting the polar effects in the
linear momentum equations only.
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Chapter 7

Locally-Deformable
Thin-Walled Beams

In this chapter, we formulate a few one-dimensional (1D)-models of thin-walled
beam (TWB), whose cross-section is free to deform itself, and therefore called “locally
deformable beams”. In the first part of the chapter, we develop a “direct” 1D-model,
by introducing a discrete number of new “distortional variables”, able to account for
changes of the shape in the cross-sections, both in time and along the beam axis. A
“two-axis beam” is also introduced, by distinguishing the centroid- and the flexural-
center axes, since this shrewdness entails some simplifications in the equations. In the
second part of the chapter, an identification procedure is illustrated based on a 3D
fiber-model, called the “bundle of rods”, in which each fiber obeys the kinematic laws
established for compact beams. The analysis is not only aimed at stating a nonlinear
constitutive law for the 1D-model, via an identification procedure, but also at giving
a physical meaning to all the kinematic and dynamic quantities involved. The method
is illustrated by referring to: (a) warpable, cross-undeformable beams, embedded in a
3D-space; and (b) unwarpable, cross-deformable beams, embedded in a 2D-space.

7.1 Motivations

So far, we considered beams (or stiff cables) whose cross-sections are planar rigid
bodies. The hypothesis allowed us to reduce the original 3D problem to a simpler 1D
problem, for which a direct model can be easily formulated. We referred to these as
locally rigid beams, thereby indicating the property of the cross-sections. However,
problems exist in which such an idealization is inadequate to describe the

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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272 Mathematical Models of Beams and Cables

phenomenon, and therefore call for formulating beams whose cross-sections are able
to change their initial shape. We will refer to this kind of more sophisticated model as
locally deformable beams, still alluding to the capability of the cross-sections.

As a first example, let us consider the torsion of a bar, produced by two opposite
torque-couples applied at the ends. We know, from the de Saint-Venant theory, that,
even in the linear range, the cross-sections warp themselves, but all in the same way,
so that no longitudinal strains (and stresses) arise. This kind of deformation is called
uniform torsion. Here, warping plays the role of a secondary effect, of the same type
of the transverse deformation due to Poisson effect, occurring in flexure. In contrast, if
one or both the end-sections are warping-restrained, and/or distributed twist-couples
act along the beam axis, the torsion becomes non-uniform, so that the warping changes
along the beam axis. This entails the occurrence of longitudinal stresses, which in turn
call for equilibrating tangential stresses (called “secondary”), which add themselves
to the “primary” ones, thus deeply modifying the mechanical behavior of the beam.
The phenomenon is particularly significant in TWB, which is very flexible to torsion,
and therefore sensitive to changes in the state of tangential stress. The example clearly
shows how the distortion (in this case, out-of-plane) of the cross-section can play a
key role, requiring a more accurate model than the locally rigid beam.

As a second example, we consider a thin tubular beam, under planar flexure. It
is well-known, from experimental observations, that the annular section of the beam
modifies its initial shape in an ovalized pattern, flattening on the plane orthogonal to
the deflection plane. This phenomenon, known in literature (see [BRA 27]) as Brazier
effect (or “ovalization” or “flattening phenomenon”), causes a magnification of the
deflection of the beam, due to the reduction of the moment of inertia of the deformed
cross section with respect to the neutral axis, and possibly leads to the collapse of
the structure for instability (limit point bifurcation). Brazier explained the observed
mechanical behavior with very simple and effective reasoning. When the beam is bent,
the stress regime is governed by the well-known Navier formula, predicting a linear
distribution of the normal stress on the cross-section. However, this result concerns
the de Saint-Venant linear theory, for which equilibrium is enforced in the reference
(undeformed) configuration. Since, in contrast, the beam is bent, the Navier stresses
are not in equilibrium, but call for external pressures, direct along the principal normal
to the bent fibers, to be (fictitiously) applied, proportional to the curvature as well as
to the normal stress, and direct along the outward (inward) normal to the fiber, if they
are taut (compressed), namely from the inside of the tube to the outside. Since these
pressures do not really exist, we have to remove them, by applying pressures changed
in sign, from the outside to inside, thus causing the flattening of the tube. The example
shows how important it is for tubular beams to use a proper modeling which accounts
for local (in this case, in-plane) deformability of the cross-sections.
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Locally-Deformable Thin-Walled Beams 273

7.2 A one-dimensional direct model for
double-symmetric TWB

We first address the task of formulating a 1D-model of TWB via a direct approach.
To make the treatment easier, we refer to double-symmetric cross-sections, for which
the centroid and the flexural center coincide, so that we can focus our attention on the
“true” novelty of the model, namely the local distortion of the beam. Later, in the next
section, we will study how to tackle general cross-sections.

Kinematics

Let us consider a beam, whose configuration is described by a translation field
u (s, t) := x − x̄, a rotation field R (s, t) and a set of n scalar fields
(a1 (s, t) , a2 (s, t) , . . . , an (s, t)), each measuring an independent type of distortion
of the cross-section. We will refer to them as distortional variables. By following the
reasoning we developed about kinematics of the metamodel (section 1.2.1), there
exist 6 + n scalar configuration variables, which, together with their first
space-derivatives, constitute a set of 12 + 2n d.o.f for the element of beam. Since six
of them describe a rigid motion, the beam can deform itself in 6 + 2n essentially
independent ways. Therefore, n additional distortional variables aj increase of 2n the
number of strain components. In other words, since the rigid motions have already
been accounted for in defining the strains of the locally rigid model, any additional
generalized displacement aj entails that the same aj and its first derivative aj are
generalized strains. Thus, aj is simultaneously a configuration variable and a
strain, since, when it is different from zero, it necessarily implies a non-rigid
transformation of the beam configuration. In conclusion, the following
strain-displacement-relationships hold:

e := RT (ā1 + u)− ā1

k := axial RTR

αj := aj , βj := aj

[7.1]

The first two of them are the familiar strains of the locally rigid beam, and the last two
concern the strains of the cross-section1, namely the distortional strain αj and the
distortion gradient βj . It should be noted that kinematics of the rigid and deformable
cross-section is uncoupled, since e and k only depend on R and u, while αj and βj

only depend on aj .

1. In order to stress the double nature of aj , we introduced a different name for the strain, αj ,
although it coincides with aj .
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274 Mathematical Models of Beams and Cables

The geometric boundary conditions prescribe the values of the configuration
variables at the ends, if a constraint is applied, namely2:

uH = ŭH(t), RH = R̆H(t), ajH = ăjH , H = A,B [7.2]

The velocity consists of a translational velocity vector field v = u̇ (s, t), an

angular velocity vector field ω = axial Ṙ (s, t)RT (s, t) and a set of scalar

velocity fields ȧj (s, t). By time-differentiating the previous equations, we get the
strain rates ė, k̇, α̇j , β̇j . They are related to the stretching velocity gradients by:

Rė = v
−ω× x, Rk̇ = ω, α̇j = ȧj , β̇j = ȧj [7.3]

the first two being well-known from equations [2.79] and [2.83], and the last two being
an obvious consequence of equations [7.1c,d].

Dynamics

In this section, we first consider static forces, and later account for inertia forces via
the d’Alembert Principle. We consider the beam loaded by generalized external forces,
defined as “dynamic quantities spending virtual power on the independent velocity
fields”, via:

Pext :=

S

⎛⎝p · v + c ·ω+

n

j=1

qj ȧj

⎞⎠ ds

+

B

H=A

(PH · vH +CH ·ωH +QjH ȧjH )

[7.4]

Here, p,PH and c,CH are the usual forces and couples we introduced in the locally
rigid model, while qj , Qj are new entities, peculiar to the locally deformable beam,
to be referred to as distortional forces. The two sets of forces should be regarded as
Lagrangian external forces, respectively associated with rigid and non-rigid motions
of the cross-section (equivalent to forces distributed on the cross-section of the 3D-
body).

Then, by similar arguments, but referring to the internal virtual power, we
introduce generalized internal forces, or stresses, defined as follows:

Pint :=

S

⎛⎝t ·Rė+m ·Rk̇+
n

j=1

Djα̇j +Bj β̇j

⎞⎠ ds [7.5]

2. For example, if an infinitely rigid diaphragm is present at one end, able to prevent in-plane
and out-of-plane distortions of the cross-section, then ajH = 0 ∀j.
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Locally-Deformable Thin-Walled Beams 275

where t,m are the force-stress and the couple-stress already introduced, while Dj , Bj

are new internal contact actions, which will be called distortional and bi-distortional
stresses, respectively, dual of the distortional strain-rates and their spatial gradients,
respectively. Once again, the two sets of stresses should be regarded as Lagrangian
internal forces equivalent to the distributed stresses acting on the cross-section.

To obtain the balance equations, we equate the external and internal powers, and
use the virtual power principle (VPP), by requiring that the equality is satisfied for any
kinematically admissible virtual motion. By using equation [7.3], the principle reads:

S

⎛⎝p · v + c ·ω+

n

j=1

qj ȧj

⎞⎠ ds

+

B

H=A

(PH · vH +CH ·ωH +QjH ȧjH)

=

S

⎛⎝t · (v
−ω× x) +m ·ω +

n

j=1

Dj ȧj +Bj ȧ

j

⎞⎠ ds

∀ (v,ω, ȧj)

[7.6]

or, after integration by parts:

S

⎛⎝(t + p) · v + (m + x
× t+ c) ·ω+

n

j=1

B
j −Dj + qj ȧj

⎞⎠ ds+

B

H=A

[(PH ± tH) · vH + (CH ±mH) ·ωH + (QjH ±BjH) ȧjH ] = 0

∀ (v,ω, ȧj)

[7.7]

From this expression, the balance equations follow:

t + p = 0

m + x
× t+ c = 0

B
j −Dj + qj = 0, j = 1, 2, . . . n

[7.8]

together with the boundary conditions:

(PH ± tH) · vH = 0

(CH ±mH) ·ωH = 0

(QjH ±BjH ) ȧjH = 0

[7.9]

which are, alternatively, of geometrical or mechanical type.
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276 Mathematical Models of Beams and Cables

The first two of equations [7.8] and [7.9] are identical to those for the locally-rigid
beam; the novelty consists of the balance equations [7.8c] and [7.9c], which involve
the distortional stresses. It should be noted that the locally rigid dynamics is uncoupled
by the cross-section distortional dynamics, since stresses t,m only depend on forces
p,PH , c,CH , while stresses Dj , Bj only depend on forces qj , QjH .

Inertia forces

To account for inertia forces, we use the d’Alembert Principle. Accordingly, the
generalized forces in the balance equations [7.8] must be expressed as an active and
an inertia contributions, namely: p = pa + pin, c = ca + cin, qj = qaj + qinj .

In Chapter 2 (equations [2.127] and [2.131]), we found that the inertia action is
equivalent to: (a) a force pin := −mv̇, equal to the opposite to the time-derivative
of the linear momentum (equation [2.119]); and (b) a couple cin := −JGω̇, equal
to the opposite of the time-derivative of the rotational part of the angular moment
(equation [2.120]). By keeping the analogy with the forcesp, we admit that the inertial
distortional forces are proportional to the time-derivative of the distortional velocity
ȧj , i.e. qinj := −mj äj , through a “distortional mass” mj .

By accounting for the inertia forces, the balance equations [7.8] are thus modified3:

t + p = mv̇

m + x
× t+ c = JGω̇

B
j −Dj + qj = mj äj, j = 1, 2, . . . , n

[7.10]

where the superscript on the active forces has been omitted.

Elastic law

We consider the beam as being made of a hyperelastic material. To formulate a
constitutive law, first, we have to write an elastic potential φ, depending on the
generalized strains, i.e.:

φ = φ (e,k, αj , βj) [7.11]

3. Usually, however, the inertial effect of the distortion of the cross-section is kept small, and
therefore neglected.
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Locally-Deformable Thin-Walled Beams 277

By equating the linear density of the deformation work:

d

ds
(Pintdt) =

⎡⎣t ·Rė+m ·Rk̇+

n

j=1

Djα̇j +Bj β̇j

⎤⎦ dt [7.12]

to the differential dφ of the elastic potential, the stress–strain relationships follow
(compare them with equations [2.151], holding for the locally rigid beam):

RT t =
∂φ

∂e
, RTm =

∂φ

∂k
, Dj =

∂φ

∂αj
, Bj =

∂φ

∂βj
[7.13]

Such relations are, in general, nonlinear, but, more importantly, they couple all stresses
and strains.

The Fundamental Problem

The Fundamental Problem is governed by the kinematic relationships
(equations [7.1] and [7.3]), the balance equations (equations [7.10] and [7.9]) and the
elastic law (equations [7.13]), plus the geometric boundary conditions.

REMARK 7.1. While kinematics and dynamics leave the quantities concerning locally
rigid and locally deformable beams uncoupled, the elastic law finally couples them,
so that the resulting equations are indeed coupled.

7.3 A one-dimensional direct model for non-symmetric
TWB

When the cross-section of the TWB is not symmetric, the flexural center C of the
cross-section4 does not coincide with the centroid G. Of course, we could still refer
to the centroid, by using the model of the previous section. However, while kinematic
and dynamic relationships, first established, are unaffected by this choice, the
constitutive law linking quantities referred to the centroid is more involved, since
flexure and torsion couple themselves even in the linear range. To avoid this
occurrence, it is suitable to choose the flexural center locus as the beam axis (to be
referred to as the flexural-axis) instead of the customary centroid locus (the
centroid-axis). Thus, a pure torsion, induced by twist-couples, leaves the position of
the flexural-axis (no translation) unaltered, while a pure flexure, induced by
transverse forces applied at the flexural-axis, does not entail twist. Furthermore, the

4. The flexural center is also known as “shear center” or “torsion center”.
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278 Mathematical Models of Beams and Cables

choice of the flexural center as a pole entails some drawbacks concerning extension
and flexure induced by axial loads, which are better described with respect to the
centroid. Therefore, according to what is done in the linear theory, we will favor the
flexural-axis (since transverse forces are usually more important than axial forces),
but we will also use the centroid-axis as a secondary one. In conclusion,
non-symmetric TWB could be referred to as two-axis beams5.

The contents of this section have partially been inspired by the works [RUT 06,
PIG 09, RIZ 96, RUT 06, LOF 13], where, however, distortion is specifically referred
to by warping only.

C-strains

Let us describe the current configuration of the beam via: (a) the position
xC (s, t) of its flexural-axis; (b) the tensor R (s, t), which represents a field of
rotations occurring around axes crossing the flexural-axis; and (c) a set of scalar
distortions (a1 (s, t) , a2 (s, t) , . . . , an (s, t)). By denoting by uC (s, t) := xC − x̄C

the translation field, the following strain–displacement relationships hold (compare
them with equation [7.1]):

eC := RT (ā1 + u
C)− ā1

k := axial RTR

αj := aj , βj := aj

[7.14]

Here, eC ,k are the strains referred to by the flexural-axis or, in short, C-strains; they
admit the following decomposition in B̄:

eC := εC ā1 + γC

k := κ1ā1 + kπ

[7.15]

where γC := γ2C ā2 + γ3C ā3, kπ := κ2ā2 + κ3ā3 are the components of eC and k

along the cross-section plane π := span (ā2, ā3) in the reference configuration. By
remembering equations [2.52] and [2.53], and replacing ui by uiC , the scalar

5. These considerations, of course, are valid for any cross-section shapes, not necessary thin-
walled. However, the question is negligible for compact beams, since points G and C are close,
and the torsional stiffness of the beam is high.
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Locally-Deformable Thin-Walled Beams 279

components of the strains read:

εC = (1 + u
1C) (cos θ2 cos θ3) + u

2C cos θ2 sin θ3 − u
3C sin θ2 − 1

γ2C = (1 + u
1C) (sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3)

+ u
2C (sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3) + u

3C sin θ1 cos θ2

γ3C = (1 + u
1C) (cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3)

+ u
2C (cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3) + u

3C cos θ1 cos θ2

κ1 = θ1 − θ3 sin θ2

κ2 = θ2 cos θ1 + θ3 sin θ1 cos θ2

κ3 = −θ2 sin θ1 + θ3 cos θ1 cos θ2

[7.16]

Velocity and strain-rates

The velocity consists of a translational velocity vector field vC = u̇C (s, t), an

angular velocity vector field ω = axial Ṙ (s, t)RT (s, t) and a set of scalar velocity

fields ȧj (s, t). The strain-rates are related to the stretching velocity gradients by:

RėC = v
C −ω× x

C , Rk̇ = ω, α̇j = ȧj , β̇j = ȧj [7.17]

according to equations [2.79], [2.83], and equations [7.14c,d].

Relation between C- and G-strains

As an alternative, we could refer the strains to the centroid-axis (G-strains). Thus,
we should take xG (s, t) as position vector, uG (s, t) := xG − x̄G as translation field
and still R (s, t) and aj . As a result, only the first of equations [7.14] would change
into:

eG := RT (ā1 + u
G)− ā1 [7.18]

To find a relationship between the two strain measures, eC , eG, we observe that, in
the rigid part of the transformation (i.e. to within the effect of the distortion), it is:

uG = uC − (R− I) r̄C [7.19]

where r̄C :=
−−→
GC = r2C ā2 + r3C ā3 is the oriented distance of C from G in the

reference configuration. By space-differentiating the latter, substituting it in
equation [7.18] and accounting for equations [7.14a,b], it follows that:

eG = eC − k× r̄C [7.20]
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280 Mathematical Models of Beams and Cables

By decomposing this relation along ā1 and π, and accounting for equation [7.15b], we
finally get:

εG = εC − kπ × r̄C · ā1

γG = γC − κ1ā1 × r̄C
[7.21]

Since using εG is more convenient than εC , while using γC is more convenient than
γG, we adopt a mixed description, by taking εG,γC as strain measures. Therefore,
the strain is described by (εG,γC ;κ1,kπ ;αj , βj).

External forces, stresses and balance equations

We define the quantities spending virtual power on the independent velocity fields
(vC ,ω, ȧj) as generalized external forces; hence:

Pext :=

S

⎛⎝p · vC + c ·ω+
n

j=1

qj ȧj

⎞⎠ ds

+

B

H=A

⎛⎝PH · vCH +CH ·ωH +

n

j=1

QjH ȧjH

⎞⎠
[7.22]

Accordingly, p,PH and c,CH are forces reduced to the pole C.

Similarly, we introduce generalized internal forces, or stresses
(N, tπ ;M1,mπ;αj , βj), as dual quantities of the strain rates, defined via the internal
virtual power expression6:

Pint :=

S
Nε̇G + tπ ·Rγ̇C +M1κ̇1 +mπ ·Rk̇π

+

n

j=1

Djα̇j +Bj β̇j ds

[7.23]

Accordingly, N is the normal stress reduced at the centroid (and consequently mπ

is the flexural moment with respect to the same point G), while tπ is the shear-stress

6. Note that, consistently with the usual representation of the stresses and strains, while kπ

belongs to the (ā1, ā2)-plane, mπ belongs to the (a1,a2)-plane.
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Locally-Deformable Thin-Walled Beams 281

reduced to the flexural center (and consequently M1 is the torsional moment with
respect to the same point C).

By virtue of equation [7.21a], we can transform the previous expression into:

Pint :=

S
Nε̇C + tπ ·Rγ̇C +M1κ̇1

+ (mπ − rC × a1N) ·Rk̇π +

n

j=1

Djα̇j +Bj β̇j ds

=

S
t ·RėC +m ·Rk̇− rC ×Na1 ·Rk̇

+
n

j=1

Djα̇j +Bj β̇j ds

=

S
t · (v

C −ω× x
C) + (m− rC ×Na1) ·ω



+

n

j=1

Dj ȧj +Bj ȧ

j ds

[7.24]

where in the first line we used a known property of the mixed product7; in the second
line, we defined t := Na1 + tπ, m := M1a1 +mπ and grouped terms8; in the third

7. Here, we use u × v ·w = Ru×Rv ·Rw.
8. We grouped two pairs of terms, according to:

t ·RėC = (Na1 + tπ) ·R (ε̇C ā1 + γ̇C) = Nε̇C + tπ ·Rγ̇C

m ·Rk̇ = (M1a1 +mπ) ·R κ̇1ā1 + k̇π = M1κ̇1 +mπ ·Rk̇π
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282 Mathematical Models of Beams and Cables

line, we introduced equations [7.17]. Hence, the VPP, after integration by parts, reads:

S
(t + p) · vC + (m− rC ×Na1)

 + x
C × t+ c ·ω

+

n

j=1

B
j −Dj + qj ȧj ds

+
B

H=A

(PH ± tH) · vCH + (CH ± (mH − rC ×NHa1)) ·ωH

+
n

j=1

(QjH ±Bj) ȧjH = 0, ∀ (vC ,ω, ȧj)

[7.25]

from which the balance equations follow:

t + p = 0

(m− rC ×Na1)

+ x

C × t+ c = 0

B
j −Dj + qj = 0

[7.26]

with the alternative boundary conditions:

(PH ± tH) · vCH = 0

(CH ± (mH − rC ×NHa1)) ·ωH = 0

(QjH ±BjH ) ȧjH = 0

[7.27]

The balance equations relevant to the distortion (equations [7.26c] and [7.27c])
are unaffected by the change of pole; the same occurs for the force balance
(equations [7.26a], [7.27a]). In contrast, the moment equilibrium (equations [7.26b]
and [7.27b]) contains extra-terms, due to the fact that moments are evaluated with
respect to C 9; hence, since the normal force is applied to the centroid G, it gives the
(purely flexural) contribution

−−→
CG×Na1 to the moment with respect to C.

When balance equations [7.26] and [7.27] are projected onto the current basis B,
scalar equations similar to equations [2.137] and [2.139], but with few extra-terms,

9. This is consistent with the fact that the rigid virtual motion has been described with respect
to C.
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Locally-Deformable Thin-Walled Beams 283

are obtained, together with uncoupled appended equations, namely:

N 
− κ3T2 + κ2T3 + p1 = 0

T 
2 + κ3N − κ1T3 + p2 = 0

T 
3 − κ2N + κ1T2 + p3 = 0

M 
1 − κ3M2 + κ2M3 + r2Cκ2N + r3Cκ3N − γ3CT2 + γ2CT3 + c1 = 0

M 
2 + κ3M1 − κ1M3 − r2Cκ1N − r3CN

 + γ3CN

− (1 + εC)T3 + c2 = 0

M 
3 − κ2M1 + κ1M2 − r3Cκ1N + r2CN


− γ2CN

+ (1 + εC)T2 + c2 = 0

B
j −Dj + qj = 0

[7.28]

and:

[(P1 ±N) v1C ]H = 0

[(P2 ± T2) v2C ]H = 0

[(P3 ± T3) v3C ]H = 0

[(C1 ±M1)ω1]H = 0

[(C2 ± (M2 −Nr3C))ω2]H = 0

[(C3 ± (M3 +Nr2C))ω3]H = 0

[(Qj ±Bj) ȧj ]H = 0

[7.29]

REMARK 7.2. The reader should clearly bear in mind that, as a consequence of the
kinematic description, while stresses are referred to two poles, G and C, external
forces are referred to the unique pole C.

Inertia forces

As we recalled in the previous section, the inertia action, according to d’Alembert,
consists of a force pin := −mv̇G, applied to the centroid, and a couple cin :=
−JGω̇. Since we are now expressing equilibrium of the moments around the pole C,
we have to modify the inertia couple cin by accounting for the eccentricity of pin;
hence, cin := rC ×mv̇G − JGω̇. Since, moreover, from equation [7.19], it follows
that vG = vC −ω× rC , we finally have:

pin := −m (vC −ω× rC)˙

cin := rC ×m (vC −ω× rC)˙− JGω̇
[7.30]
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284 Mathematical Models of Beams and Cables

The balance equations [7.26] therefore modify into:

t + p = m (vC −ω× rC)˙

(m− rC ×Na1)

+ x

C × t+ c = −rC ×m (vC −ω× rC)˙+ JGω̇

B
j −Dj + qj = 0

[7.31]

where the superscript on the active forces has been omitted.

Elastic law

The elastic law is still formally given by equations [7.13], but uncoupling is
expected in the linear part, among axial force, flexural and torsional moments. The
Fundamental Problem then follows.

7.4 Identification strategy from 3D-models of TWB

In formulating a 1D-model of TWB, we found that the direct approach is a
powerful strategy, easy and elegant. However, it leaves open several questions which
need an answer, before the model can be used for practical purposes, namely:

1) First, and most importantly, how to choose the constants appearing in the elastic
potential?

2) What is the physical meaning of the distortional variables aj , we introduced in
the model?

3) What is the physical meaning of the generalized external forces qj , Qj which
spend power on ȧj?

4) What is the physical meaning of the generalized stresses Dj , Bj , spending
power on the distortional strain-rates α̇j , β̇j ?

The same issues, of course, could be raised by dealing with a standard, locally rigid,
model. However, and only in this case, most of the previous questions have an
immediate answer, since we are “accustomed” to handling rigid bodies. Namely,
generalized displacements of a section are the six d.o.f. of a rigid body; the
associated generalized external forces are the resultant and the resultant moment of
the distributed forces, obtained by standard operation of static equivalence; similarly,
the generalized stresses are the resultant and resultant moment of the local stresses,
once they have been integrated over the cross-sections. The same constitutive law is a
consequence of the local behavior, after local quantities have been expressed in terms
of generalized quantities. All these answers, indeed, are still valid in handling locally
deformable beams, with the only difference that the “weight functions” we have to
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Locally-Deformable Thin-Walled Beams 285

use to combine local forces and local stresses are not the usual linear functions of the
coordinates (consequence of the local rigidity), but richer functions of the
coordinates and of the strain themselves (consequence of the local flexibility).

We will address this topic by explaining how to use a suitable 3D-model to identify
all the quantities appearing in the 1D-model. As a general philosophy, we will look
for few maps, namely a displacement-, a velocity-, a strain- and a strain-rate-map
which link local quantities from one side (namely displacement, velocities, strains
and strain-rates at a generic point of the 3D-model), and generalized quantities on the
other side (i.e. the same quantities for the 1D-model). They will be found to assume
the following symbolic forms:

u = û (uC ,R, aj; r̄)

ε = ε̂ (e,k, αj , βj ; r̄)

v = vC +ω× r+

n

j=1

∂û

∂aj
ȧj

ε̇ =
∂ε̂

∂e
ė+

∂ε̂

∂k
k̇+

n

j=1

∂ε̂

∂αj
α̇j +

∂ε̂

∂βj
β̇j

[7.32]

where (a) local displacements u and local strains ε are nonlinear functions of the
generalized displacements uC ,R, aj and generalized strains e,k, αj , βj ,
respectively; (b) local velocities v and local strain-rates ε̇, obtained by
time-differentiation of the former relationships, are, of course, linear functions of the
generalized velocities vC ,ω, ȧj and of the generalized strain-rates ė, k̇, α̇j , β̇j ,
respectively. In all maps, the position vector r̄ or r appears, evaluated in the reference
or current configuration, respectively.

By equating the external virtual power for the two models, and using the
velocity-map, the generalized external forces are identified. Similarly, by equating
the internal virtual power for the two models, and using the strain-rate-map, the
generalized stresses are identified. Finally, by equating the elastic potential for the
two models, and using the strain-map, the elastic constants are identified. The first
two steps are valid for any material; the third one, just for hyperelastic material. In
what follows, we will show in detail how to apply the procedure.

7.5 A fiber-model of TWB

For identification purposes, we need a 3D-model of TWB. We will formulate one
here, based on the fundamental idea of the Generalized Beam Theory (GBT), which
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286 Mathematical Models of Beams and Cables

has recently received a strong following in the literature (see,
e.g., [SIL 03, CAM 06])10. However, we will limit ourselves to exploiting this idea,
by adapting the treatment to our purposes.

Geometry and basic hypotheses

Let us consider a TWB beam in the undeformed reference configuration. It is a
cylinder, whose cross-section A (Figure 7.1) is spanned by a segment Ξ (the chord),
of length b = b (c) (the thickness, generally variable), which moves in the plane by
keeping (a) its middle point on a planar curve C (the middle-line) and (b) its attitude
orthogonal to C. Here, c is a curvilinear abscissa (the directrix-abscissa) defined on
the middle-line. We assume that the thickness b (c) is everywhere much lesser than a
characteristic length of the cross-section (e.g. the average diameter). This geometric
property allows us to assume that, on the generic cross-section at the axis-abscissa s,
all the quantities Q relevant to points on the same chord Ξ are constant, i.e. Q depend
only on the abscissas s and c. Hence, the dimension of the spatial domain in which
the quantities are defined reduces to 2. In other words, the body is confused with the
cylindrical middle-surface, of directrix C.

C

Ξ

b(c)

(a)

ā2

ā3

r̄− r̄C

r̄C

r̄

āt

ān

c
C

G

P

ϕ
C

(b)

Figure 7.1: TWB cross-section: (a) geometry and chord; (b) curvilinear abscissa c,
Frenet triad, centroid G and flexural center C.

A Frenet triad (āt (c) , ān (c) , āb), intrinsic to C, is introduced in the reference
configuration, in which āt (c) is the tangent unit vector, ān (c) is the normal unit
vector and āb ≡ ā1 is the binormal unit vector, independent of c and coincident with
the normal to the cross-section.

10. GBT is a variant of the Kantorovitch semi-variational method, able to reduce the spatial
dimension of the problem, via the partially assumed mode technique.
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Locally-Deformable Thin-Walled Beams 287

Distortional variables

Let us consider the TWB beam as a deformable cylinder. Its generic material point
P , in the reference configuration, occupies the position x̄ (s, c) := sā1 + r̄ (c), where

r̄ (c) := r2 (c) ā2 + r3 (c) ā3 ≡
−−→
GP is the oriented distance of P from the centroid

G of the cross-section containing P . To describe the current position x (s, r̄ (c) , t)
of P , we can superimpose two transformations: (a) a locally rigid transformation, in
which the cross-section behaves as a planar rigid body (as we saw, more conveniently
referred to the flexural center C, instead of the centroid G); and (b) a pure distortion,
in which the cross-section changes its shape, both in-plane and out-of-plane. This
transformation is more suitably described in the reference configuration, and is then
pushed forward to the current configuration. Accordingly, we have11:

x = xC (s, t) +R (s, t) (r̄ (c)− r̄C) +R (s, t)w (s, c, t) [7.33]

where w (s, c, t) is a “distortional” vector field. As a result, the displacement
u := x (s, r̄ (c) , t)− x̄ (s, r̄ (c)) of the point P reads12:

u = uC (s, t) + (R (s, t)− I) (r̄ (c)− r̄C) +R (s, t)w (s, c, t) [7.34]

Such a representation, however, would lead to a 2D-model, due to the dependence
of w on two spatial coordinates. Therefore, in order to reduce them to one, and
exploiting the basic idea of GBT, we express the distortion w as a linear combination
of known functions ψ’s of the directrix-abscissa, and unknown functions a’s of the
axis-abscissa (in addition to time), such that:

w =

n

j=1

aj (s, t) ψ̄j (c) [7.35]

where aj are distortional amplitudes and:

ψ̄j := ψtj (c) āt (c) + ψnj (c) ān (c) + ψwj (c) ā1 [7.36]

are distortional modes, whose components onto the intrinsic basis are ψtj , ψnj

(describing the in-plane change of shape of the cross-section) and ψwj (describing
the out-of-plane displacement, called warping).

The distortional modes, the translation and the rotation must be a set of linearly
independent functions, in the sense that none of them must be a linear combination of
the remaining ones. This property assures that distortions are not rigid motions, and
that any of them describes essentially different ways in which the cross-section loses
its initial shape.

11. Note the slight change of notations with respect to the 1D-model. Now, the old x and u are
changed into xC and uC , since the new x and u are referred to the generic point P = G.
12. Indeed, x̄ = x̄C + (r̄− r̄C) (see Figure 7.1).
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288 Mathematical Models of Beams and Cables

Fiber-models and local strains

With equations [7.35] and [7.36], the equation [7.34] constitutes a
displacement-map, of the form [7.32a]. To build up the strain-map, we need to
introduce local measures for the strains. The simplest way to proceed would be using
a 3D strain tensor for Cauchy continuum, for example the Green–Lagrange tensor, as
done in [DI 03a], and several other works. This approach, however, has the drawback
of leading to expressions for local strains which do not exclusively involve
generalized strains for the 1D-model, i.e. are not of the form [7.32b], and therefore
are not suited to identify the 1D-model. Therefore, a suitable 3D-model has to be
introduced, along the lines we followed in Chapter 2 by dealing with compact beams,
but accounting, at the same time, for the loss of shape of the cross-section.

To this purpose, ideally we can buildup a physical model of TWB, as made of
a bundle of thin rods (or fibers), transversely connected by an infinite number of
ribs, where each element of the bundle complies with the kinematic laws that we
established for the beam as a whole. We consider three different cases.

1) If the ribs are infinitely rigid, both in their plane and out-of-plane, then the
TWB is also locally rigid, since the cross-section is constrained to remain planar. In
this case, the unique strains allowed are those of the rods, i.e. local extension, shear-
strains, flexural and torsional curvatures. However, if we admit that the distortion is
weakly variable along the beam axis (i.e. if we exclude deformation patterns like
those occurring in local buckling), then the local flexure of the rods is expected to
be negligible in comparison with the extension of the same fibers. Local torsion,
instead, is of some interest, since it allows us to capture the de Saint-Venant torsion
mechanism, that otherwise would be lost, after the cross-section has been flattened on
its middle-line.

2) If the ribs are infinitely rigid in their plane, but infinitely flexible out-of-plane,
then local deformability only concerns warping (according to the fundamental Vlasov
hypothesis on which the classical TWB theory is grounded, [VLA 61]). In this case,
strains are as before, but, due to the loss of planarity of the cross-section, the local
normal aw (c) at the deformed cross-section at the abscissa c now depends on c, and
it is no more parallel to the binormal ab to the unwarped section.

3) Finally, if the ribs have finite in-plane stiffness and zero out-of-plane stiffness,
then local deformability also concerns the loss of shape of the cross-section. Strains
of the fibers are no more sufficient to describe the state of strain of the TWB, but
extension and flexure of the ribs must be accounted for, as planar curved beam.

Case (1) has been addressed in Chapter 2; cases (2) and (3) will be considered further
on.
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Locally-Deformable Thin-Walled Beams 289

Working plan

A general treatment of a fully deformable TWB is, unfortunately, far beyond
the scope of this book, since the complex topic would require a dedicated volume.
Therefore, in the next few sections, we will confine ourselves to two comparatively
simple models:

1) warpable TWB model, with cross-sections undeformable in their own plane;

2) planar, unwarpable, TWB model, with cross-sections deformable in their own
plane.

To keep the algebra as simple as possible, we will account for distortion by means of
a unique mode, of amplitude a (i.e. we take n = 1 in equation [7.35]) by leaving the
quite obvious extension to several parameters to the reader. Accordingly, we have (a)
ψ̄ = ψw (c) ā1 or (b), ψ̄ = ψt (c) āt (c) +ψn (c) ān (c). Since warping is mainly due
to torsion13, we will refer case (b) to planar beams.

7.6 Warpable, cross-undeformable TWB

We consider a fiber-model of TWB, whose cross-section is rigid in its own plane,
but it is free to warp out-of-plane. The cross-section can indifferently be open or
closed. Moreover, we assume that the beam is unshearable.

7.6.1 Kinematics

Displacement field

From equations [7.33], [7.35] and [7.36], it follows that the position field of a
TWB only undergoing a warping distortion is:

x = xC (s, t) +R (s, t) (r̄ (c)− r̄C) + aw (s, t)ψw (c)R (s, t) ā1 [7.37]

where ψw (c) is the warping function. As a result:

u = uC (s, t) + (R (s, t)− I) (r̄ (c)− r̄C) + aw (s, t)ψw (c)R (s, t) ā1 [7.38]

is a displacement-map of the form [7.32a].

In order to assure that ψw (c) is a pure distortion, it has to be neither a translation
nor a rotation. To formalize this property, we will require that the distortion mode is

13. Warping due to shear strains is usually approximately accounted for via shear-factors.
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290 Mathematical Models of Beams and Cables

“orthogonal” to any translation along ā1 and any rotation around an axis contained in
the plane of the cross-section. Since the latter are linear in r2, r3, we have:

C
ψw (c) bdc = 0,

C
r2 (c)ψw (c) bdc = 0

C
r3 (c)ψw (c) bdc = 0

[7.39]

These conditions will be referred to as orthogonality conditions14. The warping
function can, in principle, be chosen arbitrarily, provided it is sufficiently smooth.

Longitudinal and transverse local strains

Because of warping, the cross-section is no longer planar in the actual
configuration, but it is an (assumed) smooth surface. It is useful to evaluate the local
normal āw = āw (s, c, t) to this surface, at the generic point P on C, when the
surface is pulled back to the reference configuration. It turns out that15:

āw = ā1 − aw (s, t)
dψw (c)

dc
āt [7.40]

We define the local (right) strain vector e (s, c, t) as the difference between the tangent
to the longitudinal fiber passing for P , and the local normal to the warped cross-
section, both pulled back to the reference configuration, i.e.:

e = RT (s, t)x (s, t)− āw (s, c, t) [7.41]

It should be noted that this expression correctly reduces to zero, if the transformation
is rigid (i.e. if RTx = ā1 and ψw ≡ 0). If we make use of equations [7.37] and

14. Orthogonality is a stronger condition than linear independence. It is not strictly necessary,
but sometimes simplifies the resulting expression. In some other cases, in contrast, it can be
more conveniently relaxed in a “not-parallelism condition”. To better understand the concept,
let us consider a discrete system, made of two masses linked by an elastic spring and free to
move along a straight line. The matrix column (1, 1) represents a rigid motion, while (−1, 1) is
a purely distortional mode, satisfying orthogonality. However, (1, 0) and (0, 1) are also possible
distortional modes, although they are non-orthogonal to the rigid motion.
15. Note that āw = 1 + O a2

w , so that āw should be normalized to 1. However, we will
avoid doing so, since, however, it leads to an exact measure of strain (the next equation [7.41]).
Therefore, normalization would only modify the physical meaning of the strain, to within the
usual error we make confusing longitudinal and transverse strains with unit extension and shear-
strains.
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Locally-Deformable Thin-Walled Beams 291

[7.40], the strain assumes the form:

e = RT [x
C +R (r̄− r̄C ) + ψw (Raw +Raw) ā1]

− ā1 + aw
dψw

dc
āt

= RTx
C − ā1 +RTR (r̄− r̄C)

+ ψw RTRaw + aw ā1 + aw
dψw

dc
āt

[7.42]

which can be expressed in terms of the sole generalized strains of the 1D-model, such
that:

e = eC + k× (r̄− r̄C + αwψwā1) + αw
dψw

dc
āt + βwψwā1 [7.43]

where:

αw := aw, βw := aw [7.44]

are the warping strain and the warping strain gradient, respectively.

Equation [7.43] defines the local strains as the sum of four contributions: (a) the
strain at the flexural-axis; (b) the strain due to the beam curvature; this is similar to
that which we found for unwarpable beams (equations [2.159] and [2.174]), but it
accounts now for the fact that the planar “arm” r̄− r̄C is increased by an out-of-plane
component, caused by warping, which brings a second-order contribution to the strain;
(c) a transverse-strain, induced by the variation of warping along the middle-line C;
and (d) a longitudinal strain, induced by the variation of warping along the beam axis.

By decomposing all the vectors along the plane π := span (ā2, ā3) and its normal
ā1, i.e. by using :

e = εā1 + γ, eC = εC ā1 + γC , k = κ1ā1 + kπ [7.45]

we have:

ε = εC + kπ × (r̄− r̄C) · ā1 + βwψw

γ = γC + κ1ā1 × (r̄− r̄C) + αw kπ × ā1ψw +
dψw

dc
āt

[7.46]

We now introduce the hypothesis that the beam is unshearable. Since the
cross-section loses its planarity, we have to specify which fiber of the bundle remains
collinear to the local normal to the warped cross-section. Being the shear referred to
the flexural center, it appears natural to select just this axis, by requiring that γC = 0.
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292 Mathematical Models of Beams and Cables

The transverse strain can be projected further onto the tangent and onto the normal
to the middle-line; by letting γt := γ · āt, γn := γ · ān, we have:

γt = κ1 (r̄− r̄C)× āt · ā1 + αw kπ × ā1 · ātψw +
dψw

dc

γn = κ1 (r̄− r̄C)× ān · ā1 + αwkπ × ā1 · ānψw

[7.47]

According to a commonly accepted hypothesis, we will neglect the shear-strains γn
normal to the middle-line C. Indeed, a full 3D analysis would require them to vanish
at the external and internal boundaries (i.e. at the ends of the chord Ξ), and, since the
thickness is small, it is reasonable to assume they vanish everywhere16.

Local curvatures

The local curvatures of the fibers do not coincide with that of the beam as a whole,
since warping modifies the local triad intrinsic to the warped cross-section. However,
warping causes rotation of the local normal around an, so that it only affects the
flexural curvatures. The latter, as we observed, are negligible, since they bring a small
contribution to the elastic energy, and therefore we will only account for the local
twist, κt, equal to the global twist, namely:

κt = κ1 [7.48]

Summary of local strains

By using equation [7.21a] in equation [7.46a], and appending equations [7.46b]
and [7.48], we finally get:

ε = εG + kπ × r̄ · ā1 + βwψw

γt = κ1 (r̄− r̄C)× āt · ā1 + αw kπ × ā1 · ātψw +
dψw

dc

κt = κ1

[7.49]

This is a strain-map of the form [7.32b].

16. A more refined analysis, in which the variation of the warping along the chord is accounted
for, would make it possible to remove the linear part of γn, in the same way it occurs in the de
Saint-Venant problem of uniform torsion.
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Locally-Deformable Thin-Walled Beams 293

Velocity and strain-rate field

To evaluate the velocity field, we time-differentiate equations [7.37]; since:

(aw (s, t)R (s, t) ā1)˙= ȧwR+ awṘ ā1 = ȧw + awṘRT a1 [7.50]

we have:

v = vC (s, t) +ω (s, t)× (r− rC)

+ (ȧw (s, t)a1 + aw (s, t)ω (s, t)× a1)ψw (c)
[7.51]

in which the warping velocity ȧw appears. This is a velocity-map of the form [7.32c].
Note that the velocity field is referred to the flexural center, consistently with
displacements.

The strain-rate velocity field follows from time-differentiation of equations [7.49]:

ε̇ = ε̇G + k̇π × r̄ · ā1 + β̇wψw

γ̇t = κ̇1 (r̄− r̄C)× āt · ā1

+ αwk̇π × ā1 · ātψw + α̇w kπ × ā1 · ātψw +
dψw

dc

κ̇t = κ̇1

[7.52]

or:

ε̇ = ε̇G +Rk̇π × r · a1 + β̇wψw

γ̇t = κ̇1 (r− rC)× at · a1

+ αwRk̇π × a1 · atψw + α̇w Rkπ × a1 · atψw +
dψw

dc

κ̇t = κ̇1

[7.53]

where all the vector factors of the mixed products have been rotated. A strain-rate-
map of the form [7.32d] is thus obtained.

7.6.2 Identification procedure

Generalized external force identification

To identify external forces, the external virtual powers of the two models are
equated. To this end, we consider body forces b (s, r, t) (having the dimension of
forces per unit of volume ML−2T−2 ) applied to the volume V of the cylinder, and
surface forces fH (r, t) (having the dimension of forces per unit of
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294 Mathematical Models of Beams and Cables

surface ML−1T−2 ) applied to the bases AH , with H = A,B. Then, we
superimpose an admissible virtual motion v (s, r, t) to the current configuration of
the beam, and evaluate the external virtual power spent by the external forces, i.e.:

Pext =

V
b · vdV +

B

H=AAH

fH · vHdA

=

S
ds

C
b · [vC +ω× (r− rC)

+ (ȧwa1 + awω× a1)ψw]bdc

+

B

H=AAH

fH · [vCH +ωH × (r− rC)

+ (ȧwHa1 + awHωH × a1)ψw]bdc

[7.54]

in which dA = bdc is the area element, dV = dAds is the volume element and
the velocity-map [7.51] has been used. Since the external virtual power [7.22] for the
1D-model reads:

Pext :=

S
(p · vC + c ·ω+ qwȧw) ds

+
B

H=A

(PH · vCH +CH ·ωH +QwH ȧwH)

[7.55]

the following generalized forces are identified:

p :=

C
bbdc, c :=

C
(r− rC + awψwa1)× bbdc

PH :=

CH

fHbdc, CH :=

CH

(r− rC + awHψwa1)× fHbdc

qw :=

C
ψwa1 · bbdc, QwH :=

CH

ψwa1 · fHbdc

[7.56]

The forces p,PH are the resultants of the body- and surface-forces. Similarly, the
couples c,CH are the resultant moments, which, however, account for the change of
geometry induced by the warping. The forces qw and QwH are the scalar products of
the body- and surface-forces by the warping function. It appears that they are of the
same type of the other forces, if one replaces the “rigid” weight functions
1, r2 (c) , r3 (c) by the “flexible” weight function ψw (c).
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Locally-Deformable Thin-Walled Beams 295

Generalized stress identification

To identify generalized stresses, the internal virtual power of the two models is
equated. By denoting by σ = σa1 + τtat the stresses, and by mt the local torsional
moment (having the dimension of a couple for surface unit, [MT−2]), all acting in the
current configuration, the internal virtual power of the 3D-model reads:

Pint =

V
(σε̇+ τtγ̇t +mtκ̇t) dV

=

S
ds

C
σ ε̇G + r× a1 ·Rk̇π

+ τt (κ̇1 (r− rC)× at · a1) +mtκ̇1 bdc

+

S
ds

C
σβ̇wψw + τt α̇w Rkπ × a1 · atψw +

dψw

dc

+ αwa1 × at ·Rk̇πψw bdc

[7.57]

where the strain-rate-map [7.53] has been used. Since the internal virtual power [7.23],
for the 1D-model, after introducing shear-undeformability, reads:

Pint :=

S
Nε̇G +M1κ̇1 +mπ ·Rk̇π +Dwα̇w +Bwβ̇w ds [7.58]

the generalized active stresses are identified as follows:

N =

C
σbdc, M1 =

C
[(r− rC)× τtat · a1 +mt] bdc

mπ :=

C
(r× σa1 + αwψwa1 × τtat) bdc

Dw =

C
τt Rkπ · anψw +

dψw

dc
bdc, Bw :=

C
σψwbdc

[7.59]

The planar component tπ of the internal force (shear-force) is instead of a reactive
type.

The first three of the active stresses can be interpreted as the resultant of the local
stresses, as for the locally rigid beam (with the flexural moment evaluated with
respect to the centroid, and the torsional moment with respect to the flexural
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296 Mathematical Models of Beams and Cables

center17). However, since the cross-section is warped in the current configuration,
even the tangential stress contributes to the flexural moment. Moreover, the
distortional stresses represent the virtual power of the local stresses in the local
strain-rates produced by warping.

Elastic constant identification

To identify the constitutive law for hyperelastic material, the elastic potential of
the two models must be equated. By assuming that the material is linearly elastic, the
potential for the 3D-model, relevant to the whole length of the beam, reads:

U :=

S
ds

C

1

2
Eε2 +Gγ2

t +
1

3
Gb2κ2

t bdc

=:

S
(φε + φγ + φκt) ds

[7.60]

where E is the Young modulus, G is the tangential modulus and Gb2/3 is the de
Saint-Venant torsional stiffness per unit of area18. By using the strain-map [7.49], we
observe that, due to the geometrical properties of the principal centroid-axis and the
orthogonality conditions [7.39]:

φε =
1

2
E

C
(εG + κ2r3 − κ3r2 + βwψw)

2 bdc

=
1

2
EAε2G + EJ2κ

2
2 + EJ3κ

2
3 + EΓwβ

2
w

φκt =
1

2
GJSV κ

2
1

φγ =
1

2
G

C
κ1rnC + αw

dψw

dc
+ αwkπ · ānψw

2

bdc

=
1

2
G Jnκ

2
1 + Jwα

2
w + α2

wkπ · Γwkπ

+G Jnwκ1αw + κ1αwkπ · yn + α2
wkπ · yw

[7.61]

17. In the torsional moment, the local contribution mt accounts for the variation of the
tangential stresses along the chord.
18. Note that this stiffness is relevant to an open flow, as for a thin rectangular section.
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Locally-Deformable Thin-Walled Beams 297

where the following geometric characteristics have been introduced19:

A :=

C
bdc, J2 :=

C
r23bdc, J3 :=

C
r22bdc

Jn :=

C
r2nCbdc, Jnw :=

C
rnC

dψw

dc
bdc, Jw :=

C

dψw

dc

2

bdc

JSV :=
1

3
C

b3dc, Γw :=

C
ψ2
wbdc, Γw :=

C
ān ⊗ ānψ

2
wbdc

yn :=

C
rncψwānbdc, yw :=

C
ψw

dψw

dc
ānbdc

[7.62]

in which Γw is the warping torsional stiffness and JSV is the de Saint-Venant torsional
stiffness of open TWB; moreover rnC := (r̄ (c)− r̄C)×āt·ā1 = − (r̄− r̄C)·ān is the
normal distance from C of a point P on C. Furthermore, yn,yw are constant vectors,
having components Yni, Ywi, and Γw is a constant symmetric tensor, of components
Γwij , with i, j = 2, 320.

By requiring that U = 1
2 C φds, we get the elastic potential for the 1D-model:

φ =
1

2
[EAε2G + (GJSV +GJn)κ

2
1 + EJ2κ

2
2 + EJ3κ

2
3 +GJwα

2
w

+ EΓwβ
2
w + 2GJnwκ1αw]

+Gκ1αwkπ · yn +Gα2
wkπ · yw +

1

2
Gα2

wkπ · Γwkπ

[7.63]

This expression, however, suffers the drawbacks we already discussed about the
locally rigid beam (section 2.3.2), i.e. it is unable to capture the “shortening effect”
due to the torsion–extension and torsion–flexure couplings. By proceeding as in that

19. In attributing a name to each quantity, we thought ψw to be an area [L2], according to the
meaning it takes in the Vlasov theory (see section 8.2.1 ahead). As a result, [Jα] = L4 ,
[Yα] = L5 and [Γα] = L6 .
20. By letting ān = − sinϕā2 + cosϕā3 (in which ϕ(c) is the angle in figure 7.1(b)), the
scalar representation of the tensor product ān ⊗ ān is:

sin2 ϕ − sinϕ cosϕ
− sinϕ cosϕ cos2 ϕ
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298 Mathematical Models of Beams and Cables

case, we correct it, by adding cubic terms (although inconsistently) deriving from the
sum of 1

2κ
2
1 (r − rC)

2to the longitudinal strain [7.49a], thus obtaining:

φ =
1

2
[EAε2G + (GJSV +GJn)κ

2
1 + EJ2κ

2
2 + EJ3κ

2
3

+GJwα
2
w + EΓwβ

2
w + 2GJnwκ1αw]

+Gκ1αwkπ · yn +Gα2
wkπ · yw +

1

2
Gα2

wkπ · Γwkπ

+
1

2
EJCεGκ

2
1 − EY3Cκ3κ

2
1 + EY2Cκ2κ

2
1 + EΓwCβwκ

2
1

[7.64]

where (remember equation [2.176]):

JC :=

C
(r − rC)

2
bdc, ΓwC :=

C
ψw (r − rC)

2
bdc

Y2C :=

C
r3 (r − rC)

2 bdc, Y3C :=

C
r2 (r − rC)

2 bdc

[7.65]

From the potential [7.64] the following constitutive law is drawn:⎛⎜⎜⎜⎜⎜⎜⎝
N
M1

M2

M3

Dw

Bw

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
EA 0 0 0 0 0
0 GJSV +GJn 0 0 GJnw 0
0 0 EJ2 0 0 0
0 0 0 EJ3 0 0
0 GJnw 0 0 GJw 0
0 0 0 0 0 EΓw

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
εG
κ1

κ2

κ3

αw

βw

⎞⎟⎟⎟⎟⎟⎟⎠
+ f (ε)

[7.66]

where:

f (ε) :=

⎛⎜⎜⎜⎜⎜⎜⎝

1
2EJCκ

2
1

κ1 (EJCεG − EY3Cκ3 + EY2Cκ2)
1
2EY2Cκ

2
1

−
1
2EY3Cκ

2
1

Gκ1kπ · yn
1
2EΓwCκ

2
1

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝
0

EΓwCβwκ1

GYn2αwκ1 + α2
w (GYw2 +GΓw22κ2 +GΓw23κ3)

GYn3αwκ1 + α2
w (GYw3 +GΓw32κ2 +GΓw33κ3)

αw (Gkπ · yw +Gkπ · Γwkπ)
0

⎞⎟⎟⎟⎟⎟⎟⎠

[7.67]

is the nonlinear part.
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Locally-Deformable Thin-Walled Beams 299

REMARK 7.3. The linear part of the elastic law [7.66d] states that the torsional
moment depends not only on the torsional curvature κ1, but also on the warping αw.
Torsion κ1 brings two contributions: (a) one is due to the local twist of the fibers,
leading to the de Saint-Venant stiffness GJSV for TWB; (b) the other is due to the
shear-strain induced by a twist of the section around the flexural center (remember
equation [7.46b]), expressed by the inertia stiffness GJn. Warping αw also brings a
further contribution, via the stiffness GJnw. Since the linear torsional stiffness of a
TWB is just GJSV , it is expected that the two additional terms cancel each other out,
when a suitable warping function is chosen. This is indeed the case, as we will show
later, in section 8.3.

7.6.3 The Fundamental Problem

The Fundamental Problem for the 1D, unshearable, warpable and cross-
undeformable TWB is governed by the following equations, when warping is
described by just one distortion variable aw:

1) six strain–displacement relationships [7.16a,d,e,f] and [7.44];

2) two unshearability conditions, derived from equations [7.16b,c] by zeroing
γ2C , γ3C ;

3) seven balance equations [7.26] (with index j replaced by w);

4) six elastic law [7.66], linking the active stresses to the admissible strains.

The mechanical boundary conditions are stated by equations [7.27] (with index j
replaced by w).

The previous equations express the mixed formulation for the internally
constrained TWB. They are a system of 21 equations in the following unknowns: (a)
the seven displacements u1C , u2C , u3C , θ1, θ2, θ3, aw; (b) the six admissible strains
εC , κ1, κ2, κ3, αw, βw; (c) the six active stresses N,M1,M2,M3, Dw, Bw and the
two reactive shear-stresses T2, T3.

7.7 Unwarpable, cross-deformable, planar TWB

We consider a TWB, indifferently open or closed, whose cross-section is allowed
to distort in its own plane, but is prevented from warping out-of-plane. The cross-
section is symmetric with respect to the ā2-axis, which therefore contains the centroid
G and the flexural center C. Loads are symmetric with respect to the (ā1, ā2)-plane,
so that, while the beam is assumed to be unshearable, it extends and bends itself in
this plane, undergoing a cross-section distortion which preserves the symmetry.
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300 Mathematical Models of Beams and Cables

ā2

ā3

āt

ān ψ̄π(c)

C

Ĉ

c

G

C

P

P̂

Figure 7.2: Mono-symmetric cross-section undergoing in-plane distortion.

7.7.1 Kinematics

Displacement field

From equations [7.33], [7.35] and [7.36], the position field of a TWB undergoing
in-plane distortion only is:

x = xC (s, t) +R (s, t) (r̄ (c)− r̄C) + aπ (s, t)R (s, t) ψ̄π (c) [7.68]

where R (s, t) is a rotation of amplitude θ around the axis ā3 ≡ a3, aπ (s, t) is an
unknown amplitude function and ψ̄π (c) is a (sufficiently smooth) distortional vector,
belonging to the cross-section plane π, which respects the symmetry with respect to
the ā2-axis (Figure 7.2). The components of ψ̄π on the intrinsic basis to the
middle-line C, (āt (c) , ān (c)), will be denoted by ψt (c) , ψn (c); the components in
the Cartesian basis (ā2, ā3) will be denoted by ψ2 (c) , ψ3 (c).

The displacement field is:

u = uC (s, t) + (R (s, t)− I) (r̄ (c)− r̄C) + aπ (s, t)R (s, t) ψ̄π [7.69]

which constitutes a displacement-map of the form [7.32a]. To enforce that ψ̄π is a
pure distortion, we impose that it is orthogonal to a translation along ā2; therefore:

C
ψ2 (c) bdc = 0 [7.70]

Longitudinal and transverse local strains

We adopt for the local strain vector e (s, c, t) the same expression we used for the
beam as a whole. Since, due to the lack of warping, the local normals remain parallel
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Locally-Deformable Thin-Walled Beams 301

to the same direction a1, we have:

e = RT (s, t)x (s, t)− ā1 (s, c, t) [7.71]

By using [7.68], the strain assumes the form:

e = RT x
C +R (r̄− r̄C ) + (Raπ +Raπ) ψ̄π − ā1

= RTx
C − ā1 +RTR (r̄− r̄C) + RTRaπ + aπ ψ̄π

[7.72]

which can be expressed in terms of the sole generalized strains of the 1D-model, i.e.:

e = eC + k× (r̄− r̄C) + απψ̄π + βπψ̄π [7.73]

where the warping strain απ and the warping strain gradient βπ have been introduced,
defined by:

απ := aπ, βπ := aπ [7.74]

The local strain is the sum of three contributions: (a) the strain at the flexural axis;
(b) the strain induced by the beam curvature, which accounts, as a second-order effect,
for the in-plane distortion; and (c) a transverse-strain, induced by the variation of the
distortion along the beam axis.

Since k =: κā3, by decomposing e, eC along π and its normal
(equation [7.45a,b]), we have:

ε = εC + κā3 × (r̄− r̄C) + απψ̄π · ā1

γ = γC + βπψ̄π

[7.75]

We assume γC = 0 for unshearability, and neglect shear-strains normal to the middle-
line. Therefore, by rearranging the first of them according to equation [7.46a], and
projecting the second one on the tangent to C, we obtain:

ε = εG + κā3 × r̄+ απψ̄π · ā1

γt = βπψt

[7.76]

which is a strain-map of the form [7.32b].

Distortional strains

The rigid motion of the cross-section leaves the ribs undeformed. The planar
distortion of the cross-section, however, induces a local torsion κt (c) of the
longitudinal fibers (depending on the directrix-abscissa c), although the global
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302 Mathematical Models of Beams and Cables

torsion is zero. Moreover, it triggers an elongation εc (c) and a flexure χc (c) of the
ribs21. To evaluate all these contribution, we linearize the kinematics, based on the
fact that aπ is considered smaller of the rigid displacements of the sections (typically,
the former is of the order of the thickness b, while the latter is of the order of the
average diameter). Moreover, we assume that the ribs are shear-undeformable, and
exploit the results we achieved concerning the planar arch (section 3.3). Accordingly,
we have22:

κt = βπ (ψ

n + κ̄ψt)

χc = απ (ψ

n + κ̄ψt)



εc = απ (ψ

t − κ̄ψn)

[7.77]

where κ̄ = κ̄ (c) is the local curvature of the middle-line C, and dashes denote
differentiation with respect to the relevant spatial variable (namely c, when they are
applied to ψ).

REMARK 7.4. In this model, the longitudinal fibers do not undergo flexure due to
distortional displacements, since their sections have been assumed to remain parallel
to the plane π in the current configuration. In contrast, distortion induces shear, already
accounted by equation [7.75b].

Velocity and strain-rate field

The velocity field is supplied by time-differentiation of equation [7.68]; since:

(aπ (s, t)R (s, t))˙ψ̄π (c) = ȧπR+ aπṘ ψ̄π = ȧπ + aπṘRT ψπ [7.78]

in which ψπ := Rψ̄π, we finally have:

v = vC (s, t) +ω (s, t)× (r (c)− rC)

+ ȧπ (s, t)ψπ (c) + aπ (s, t)ω (s, t)×ψπ (c)
[7.79]

in which ω = ωa3 and the ȧπ is the distortional velocity. This is a velocity-map of
the form [7.32c].

21. Here and in what follows, the index c denotes “along the abscissa c”, or “circumferential”.
22. We remember that the rotation of the centerline of the unshearable arch is θc = u

n + κ̄ut,
with un, ut the normal and tangential displacement components. Therefore, the torsion of the
fibers is equal to ∂sθc, while the flexure of the ribs is ∂cθc.
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Locally-Deformable Thin-Walled Beams 303

The strain-rate is obtained by time-differentiating the strains [7.76] and [7.77]:

ε̇ = ε̇G + κ̇ā3 × r̄+ απψ̄π · ā1 + κā3 × α̇πψ̄π · ā1

γ̇t = β̇πψt

κ̇t = β̇π (ψ

n + κ̄ψt)

χ̇c = α̇π (ψ

n + κ̄ψt)



ε̇c = α̇π (ψ

t − κ̄ψn)

[7.80]

A strain-rate-map of the form [7.32d] is therefore obtained.

7.7.2 Identification procedure

We identify external forces, generalized stresses and elastic constants, in a way
similar to that followed for the warpable beam. Symbols keep the same meaning as in
the former case.

Generalized external force identification

The external virtual power for the 3D-model, using the velocity-map [7.79c],
reads:

Pext =

V
b · vdV +

B

H=AAH

fH · vHdA

=

S
ds

C
b · (vC + ωa3 × (r− rC) + ȧπψπ + aπωa3 ×ψπ) bdc

+

B

H=ACH

fH · (vCH + ωHa3 × (r− rC)

+ ȧπHψπ + aπHωHa3 ×ψπ)bdc

[7.81]

Since the external virtual power [7.22] for the 1D-model reads:

Pext :=

C
(p · vC + cω + qπȧπ) ds

+

B

H=A

(PH · vCH + CHωH +QπH ȧπH)

[7.82]
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304 Mathematical Models of Beams and Cables

the following generalized forces are identified:

p :=

C
bbdc, c :=

C
(r− rC + aπψπ)× b · a3bdc

PH :=

CH

fHbdc, CH :=

CH

(r− rC + aπψπ)× fH · a3bdc

qw :=

C
ψπ · bbdc, QwH :=

CH

ψπ · fHbdc

[7.83]

The generalized forces p,PH , as well the couples c, CH , are the resultant forces
and moments applied to the cross-section; the latter, however, account for the change
of the planar geometry. The distortional forces qπ and QπH are the scalar product of
the body- and surface-forces by the planar distortional mode.

REMARK 7.5. External forces orthogonal to the symmetry-plane, supposedly
symmetric with respect to this plane, also contribute to the distortional forces. In
contrast, they have no effect on the generalized forces of the locally rigid model,
since they cancel by themselves.

Generalized stress identification

We write the internal virtual power for the 3D-model. By denoting by σ = σa1 +
τtat the stresses acting on the fibers, by mt the torsional moment of the fibers, by mc

the flexural moment of the ribs and by σc the normal stress of the ribs, we have:

Pint =

V
(σε̇+ τtγ̇t +mtκ̇t +mcχ̇c + σcε̇c) dV

=

S
ds

C
σ(ε̇G + κ̇ (r+ απψπ)× a1 · a3

− κα̇πa2 ·ψπ) + τtβ̇πψt bdc

+

S
ds

C
β̇πmt (ψ


n + κ̄ψt) + α̇πmc (ψ


n + κ̄ψt)



+ α̇πσc (ψ

t − κ̄ψn) bdc

[7.84]

where the strain-rate-map [7.80b] has been used and all vectors in the mixed products
have been rotated. In addition, the internal virtual power [7.23] for the 1D-model,
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Locally-Deformable Thin-Walled Beams 305

accounting for unshearability, is:

Pint :=

S
Nε̇G +Mκ̇+Dπα̇π +Bπβ̇π ds [7.85]

where m =: Ma3 is the flexural moment. By equating the two expressions for the
internal power, the generalized stresses are identified as:

N =

C
σbdc

M =

C
[(r+ απψπ)× σa1 · a3] bdc

Dπ =

C
mc (ψ


n + κ̄ψt)


+ σc (ψ


t − κ̄ψn)− σκψπ · a2 bdc

Bπ =

C
[τtψt +mt (ψ


n + κ̄ψt)] bdc

[7.86]

The first two generalized stresses can be interpreted as the resultant of the local
stresses; however, in the moment evaluation, since the cross-section is deformed in
its plane, the “arms” of the normal stresses are modified with respect to the reference
configuration. The distortional stresses, as usual, represent the virtual power of the
local stresses in the local distortional strain-rates.

REMARK 7.6. The variation of the planar geometry of the section was the argument
exploited by Brazier [BRA 27] to explain why the “effective moment of inertia” of the
cross-section is less than that of the undeformed cross-section.

Elastic constant identification

The elastic potential for the 3D-model reads:

U :=

S
ds

C

1

2
Eε2 +Gγ2

t +
1

3
Gb2κ2

t +
1

12
Eb2χ2

c + Eε2c bdc

=:

C
(φε + φγ + φκt + φχc + φεc) ds

[7.87]
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306 Mathematical Models of Beams and Cables

By using strains [7.76], [7.75b] and [7.77], and exploiting the geometrical properties
of the principal centroid axis and the orthogonality condition [7.70], we have:

φε =
1

2
E

C
[εG − (r2 + απψ2)κ]

2
bdc

=
1

2
EAε2G +

1

2
EJ3 + 2EJ3ψαπ + EJψα

2
π κ2

φγ =
1

2
G

C
β2
πψ

2
t bdc =

1

2
GJγβ

2
π

φκt =
1

2
G

C

1

3
b3β2

π (ψ

n + κ̄ψt)

2
dc =

1

2
GJktβ

2
π

φχc =
1

2
E

C

1

12
b3α2

π (ψ

n + κ̄ψt)

2
dc =

1

2
EAχα

2
π

φεc =
1

2
E

C
bα2

π (ψ

t − κ̄ψn)

2
dc =

1

2
EAεα

2
π

[7.88]

where the following geometrical quantities have been introduced23:

J3 =

C
r22bdc, J3ψ =

C
r2ψ2bdc, Jψ =

C
ψ2
2bdc

Jγ =

C
ψ2
t bdc, Jkt =

1

3
C

(ψ
n + κ̄ψt)

2
b3dc

Aχ =
1

12
C

(ψ
n + κ̄ψt)

2
b3dc, Aε =

C

(ψ
t − κ̄ψn)

2
bdc

[7.89]

23. In attributing a name to each quantity, we thought ψt, ψt to be lengths [L1], according to
the meaning they take in the Brazier theory (see section 8.5 ahead). As a result, [Aα] = L2 ,
[Jα] = L4 .
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Locally-Deformable Thin-Walled Beams 307

with A the cross-section area. By requiring that U = 1
2 C φds, we get the elastic

potential for the 1D-model:

φ =
1

2
EAε2G + EJ3κ

2

+
1

2
(EAχ + EAε)α

2
π +

1

2
(GJkt +GJγ)β

2
π

+ EJ3ψαπκ
2 +

1

2
EJψα

2
πκ

2

[7.90]

from which the constitutive law follows by differentiation:⎛⎜⎜⎝
N
M
Dπ

Bπ

⎞⎟⎟⎠ =

⎡⎢⎢⎣
EA 0 0 0
0 EJ3 0 0
0 0 EAχ + EAε 0
0 0 0 GJkt +GJγ

⎤⎥⎥⎦
⎛⎜⎜⎝
εG
κ
απ

βπ

⎞⎟⎟⎠+ f (ε) [7.91]

where:

f (ε) :=

⎛⎜⎜⎝
0

2EJ3ψκαπ + EJψκα
2
π

EJ3ψκ
2 + EJψκ

2απ

0

⎞⎟⎟⎠ [7.92]

It appears that coupling is only of nonlinear nature. If we assume small distortions, we
can neglect terms proportional to EJψ.

7.7.3 The Fundamental Problem

The Fundamental Problem for the 1D, planar, unshearable, unwarpable and cross-
deformable TWB is governed by the following equations, when local distortion is
described by just one configuration variable aπ:

1) The strain–displacement relationships [7.16a,f], [7.14c,d], specialized to the
planar case:

εC = (1 + u
1C) cos θ + u

2C sin θ − 1

κ = θ

απ = aπ, βπ = aπ

[7.93]

2) The unshearability condition, derived from equation [7.16b]:

− (1 + u
1C) sin θ + u

2C cos θ = 0 [7.94]
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308 Mathematical Models of Beams and Cables

3) The balance equations [7.26], specialized to the planar case:

N 
− κT + p1 = 0

T  + κN + p2 = 0

M  + r2CN
 + (1 + εC) T + c = 0

B
π −Dπ + qπ = 0

[7.95]

4) The elastic law [7.91], linking the active stresses to the admissible strains.

The mechanical boundary conditions follow from equations [7.29]:

[(P1 ±N) v1C ]H = 0, [(P2 ± T ) v2C ]H = 0

[(C ± (M − r2CN))ω]H = 0, [(Qπ ±Bπ) ȧπ]H = 0, H = A,B
[7.96]

The previous equations express the mixed formulation for the internally constrained
TWB under study. They are a system of 13 equations in the following unknowns: (a)
the four displacements u1C , u2C , θ, aπ; (b) the four admissible strains εC , κ, απ, βπ;
(c) the four active stresses N,M,Dπ, Bπ and the reactive shear-stress T .

7.8 Summary

In this chapter, we formulated 1D-models for TWB, whose cross-sections are
susceptible to change their initial shape. We called these beams locally deformable,
just referring to the cross-sections, as opposite to locally rigid beams, whose
cross-sections behave as rigid bodies.

We first introduced a direct model, in the spirit of this book. The formulations
start by considering a set of additional parameters with respect to those describing
kinematics of locally rigid beams. They are scalar distortional variables aj (s, t),
supposed to describe (in a rough way) the change of shape of the cross-section at the
abscissa s and time t. These parameters were recognized to possess a double nature,
namely, of displacements (since they describe the new configuration of the beam) and
of strains (since they are identically zero in a rigid transformation of the beam).
Accordingly, we used the symbol aj to denote a displacement, and the symbol
αj := aj to denote the distortional strain; moreover, the gradient of the distortion,
βj := aj was recognized to be a further strain. Remarkably, kinematics of the rigid
and distortional transformations was found to be uncoupled. The balance equations
were derived by the VPP, after having introduced the dual stress quantities Dj , Bj ,
spending power on the strain-rates α̇j , β̇j , respectively. They were named the
distortional stresses. Again, the balance equations involving distortional stresses
were found to be uncoupled from those relevant to locally rigid beams. The elastic
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Locally-Deformable Thin-Walled Beams 309

problem was completed by constitutive laws derived from an assumed elastic
potential, which finally couples the two groups of equations.

The model so far described does not account for the (linear) properties of the
flexural- (or shear-) center, which are instead useful to simplify the constitutive law.
Therefore, a two-axis beam was considered, whose main axis is the locus of the
flexural centers C, and the secondary axis that of the centroids G. The rigid
kinematics of the cross-section was described with reference to C, so that
displacement, velocity, rotation and spin denote quantities relevant to this point.
Consistently, C-strains eC ,k were derived, and their relationships with the more
familiar G-strains eG,k were found. However, it was observed that longitudinal
strains εG are more convenient than εC , while transverse strains γC are more
convenient than γG, so that a mixed description was adopted. When the internal
virtual power is written consistently, the axial force N assumes the meaning of
internal force applied to the centroid, while the shear-force tπ assumes that of force
applied to the flexural-center; consequently, mπ is the flexural moment with respect
to the centroid, and M1 is the torsional moment with respect to the flexural-center.
The balance equations were derived by the VPP. Since velocities are referred to C,
they assume the meaning of cardinal equations evaluated with respect to the same
point C. Therefore, the moment mπ appears in the balance equations modified by an
extra-term which is the torque of N (applied at G) with respect to C.

The direct approach was commented to be an elegant way to derive a 1D-model.
However, it leaves the meaning of the distortional parameters, as well as that of the
distortional stresses. Most importantly, the procedure leaves the question of how to
choose the constants appearing in the constitutive law open. For these reasons, it has
been found to be convenient to establish a procedure of identification from an
(approximated) 3D-model of TWB. The identification is based on the construction of
maps, relating the local quantities of the 3D-model to the global quantities of the
1D-model. Thus, a displacement-map relates the local displacements u to the global
uC ,R, aj; a strain-map links the local strains ε to the global strains e,k, αj , βj ;
time-differentiation of the former relations provides a velocity-map and a
strain-rate-map. Identification of the external (internal) forces is performed by
equating the external (internal) virtual power for the two models, and using the
velocity- and the strain-rate-maps, respectively. The constitutive law is a consequence
of equating the elastic potentials of the two models and of the use of the strain-map.

The 3D-model employed for the identification is based on the usual hypotheses
for TWB, justified by the smallness of the thickness. Moreover, it exploits the idea
of the modern GBT, which describes the distortion of the cross-section as a linear
combination of known shape-functions and unknown amplitude-functions aj (s, t).
When, however, a strain measure must be introduced, it is easy to ascertain that not all
strains are consistent with those adopted for the 1D-model, since they usually involve
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310 Mathematical Models of Beams and Cables

quantities which do not appear in the 1D-model. Here, therefore, a fiber-model was
used, made up of rods, each obeying the kinematic laws we established for the beam
as a whole, which revealed itself to be well suited to the scope.

Two applications of the identification procedure were developed, concerning
comparatively simple problems: (a) TWB embedded in a 3D-space, undergoing
warping only, of amplitude aw; and (b) TWB embedded in a 2D-space, undergoing
cross-section planar distortions only, of amplitude aπ. To limit the algebra, we
described the distortion by a unique a-parameter. For both problems, we identified
the 1D external and the internal forces starting from body- and surface-forces acting
on the 3D-model. In this way, we were able to give meaning to the
distortional-forces, which are particular to locally deformable beams. Moreover, we
observed that distortion enters in the expressions of generalized forces: for example,
warping causes the tangential stresses to contribute to the flexural moment;
analogously, the in-plane distortions modify the cross-section geometry, and
therefore affect the flexural moment. Finally, we obtained nonlinear constitutive
equations for hyperelastic TWB, revealing the existence of several couplings among
the generalized strains.
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Chapter 8

Distortion-Constrained
Thin-Walled Beams

In this chapter, we consider locally deformable thin-walled beams (TWBs), whose
distortional descriptors are not free, but are requested to satisfy additional conditions.
Three different constraints are addressed, namely: (a) the Vlasov constraint for open
TWB; (b) the Bredt constraint, for closed TWB; (c) the Brazier constraint, for planar
TWB under flexure. The non-uniform torsion case is first discussed for educational
purposes, aimed to put the elasto-reactive nature of the stresses in light. To this end,
the mixed formulation is mainly followed, and a brief outline of the displacement
formulation is given. The general problem is finally addressed, in the spirit of the
displacement formulation, in which the distortional variables are taken as slave of the
master locally rigid displacements.

8.1 Introduction

In Chapter 7, in dealing with models of locally deformable TWB, we introduced
a set of kinematic descriptors ai (s, t), called the distortional variables, having the
meaning of space- and time-dependent amplitudes of a set of distortional modes,
assigned along the cross-section profile. These amplitudes were dealt with as free
variables, like the displacements describing the rigid kinematics. The formulation led
us to strain–displacement relationships [7.14c,d] and balance equation(s) [7.26c]
involving distortional strains and stresses, respectively, uncoupled from homologous
quantities for locally rigid models, equations [7.14a,b] and [7.26a,b]. Coupling, as
we observed, is therefore only due to the constitutive law, which we identified via a

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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312 Mathematical Models of Beams and Cables

fiber-model of three-dimensional (3D)-beam. On the other hand, in the qualitative
discussion in section 7.1, we explained how the distortions of a TWB are mainly
related to the rigid cross-section kinematics, namely the warping to the torsional
curvature, and the in-plane distortions to the flexural curvature. Therefore, we would
explore here the possibility to formulate internally constrained models of TWB, in
which the distortional variables are rendered as slave of the locally-rigid
displacements. We will call these models distortion-constrained TWBs.

In this chapter, we will show how to introduce the constraints and discuss the
implications they have on the active/reactive nature of the stresses. The discussion is
aimed: (a) to regain classical results from the linear theory, by clarifying the role of
the internal constraints; (b) to extend the classical theories to the nonlinear range; (c)
to give hints on how to chose the distortional modes. Once again, however, we will
consider only one distortional variable to limit the extension of the formulas.

8.2 Internal constraints

We consider the Vlasov and Bredt constraints, able to relate the warping distortion
αw to the torsion κ1 of open or closed TWB, respectively, whose cross-sections are
susceptible to warp, but not to deform in their plane. On the grounds of kinematic
or equilibrium considerations concerning the 3D-model, we will derive a kinematic
constraint condition for the one-dimensional (1D)-model, namely:

αw = κ1 [8.1]

Then, we will consider a (Brazier) constraint, capable of relating the in-plane
distortional strain απ to the flexure κ := κ3 of planar unwarpable TWB. Based on
the equilibrium of the 3D-TWB, we will show that:

απ = κ2 [8.2]

8.2.1 The Vlasov constraint for open TWB

We consider a warpable, cross-undeformable 3D-TWB, having an open profile C,
and introduce a kinematic hypothesis by Vlasov [VLA 61], namely the tangential
shear-strain identically vanishes along the middle-line C, i.e. γt (c) = 0 ∀c 1. From a
geometrical point of view, this hypothesis implies that the cross-section warps in
such a way that the local normal aw remains aligned with the current tangent x to

1. The hypothesis is suggested by the fact that, in de Saint-Venant Problem of torsion, the shear-
strains vary on the chord with a linear law by vanishing at the middle-line.
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Distortion-Constrained Thin-Walled Beams 313

the longitudinal fibers, after the latter incline themselves as a consequence of torsion.
Concerning our model of a bundle of rods, not only the fiber passing through the
flexural center is shear-undeformable, but all the rods are shear-undeformable.
However, we will not satisfy this nonlinear kinematic constraint, but we will
linearize it in the strains, by somewhat relaxing it. By remembering equation [7.49b],
we enforce:

κ1 (s, t) rnC (c) + αw (s, t)
dψw (c)

dc
+ h.o.t. = 0 [8.3]

where rnC := (r̄ (c)− r̄C)× āt · ā1 and h.o.t. denotes quadratic term that we neglect.
In order the previous equation holds for any s, t, equation [8.1] follows. Moreover, in
order it holds for any c, then dψw/dc = −rnC , or:

dψw = −2dΩC [8.4]

Here dΩC := (1/2) rnCdc is the (oriented) elementary sectorial area spanned by the
radius CP , when its free-end P travels the line C by moving of an amount āt (c) dc
(see Figure 8.1, where rnC > 0, dΩC > 0).

ān

āt
C

P

dΩC

c

dc

M

rnC

Figure 8.1: Sectorial area.

By integrating equation [8.4] between the origin M of the c-abscissa, and the
generic point P , and enforcing the orthogonality condition [7.39a], it follows2:

ψw (c) = −2 ΩC (c)− Ω̄C [8.5]

2. According to equation [8.5], the warping mode ψw has the dimension of an area, as we
anticipated in Chapter 7. Consequently, aw has the dimension of the inverse of a length,
according to equation [8.1].
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314 Mathematical Models of Beams and Cables

where:

ΩC (c) :=

P

M

rnCdc [8.6]

is the sectorial area referred to the flexural center, and Ω̄C := C ΩC (c) b (c) dc /A
is its average value of ΩC (c) on the area A, with b (c) the thickness3.

With the warping function satisfying dψw/dc = −rnC , the following
relationships hold among some of the cross-section geometric characteristics we
found for the unconstrained beam [7.62]:

Jn = Jw = −Jnw [8.7]

REMARK 8.1. The Vlasov constraint not only links the warping amplitude to the
torsion (equation [8.1]), but it even leads us to choose a specific distortional mode
(equation [8.5]).

REMARK 8.2. The previous results are well-known in the linear theory of open TWB.
However, they also hold in the nonlinear field, since the torsion is allowed to be large
here. On the other hand, we neglected the flexural–torsional coupling in the constraint
equation. To account for this effect too, a unique distortional mode is not sufficient.

8.2.2 The Bredt constraint for tubular TWB

Now we consider a warpable, cross-undeformable, TWB having a closed profile
C. For the sake of simplicity, we will confine ourselves to a tubular cross-section,
i.e. degree-2 internally connected profiles. The extension to higher degree connections
(cellular cross-sections), although not difficult, is omitted here, and left to the reader4.

According to Bredt’s approximate theory of torsion, we introduce the following
kinematic hypothesis: the flow of tangential shear-strain across the chord Ξ is

3. It is easy to check that the remaining two orthogonality conditions [7.39b,c] lead to determine
the coordinates of the flexural center:

r2C :=
2

J2
C

r3 (c)ΩG (c) b (c) dc, r3C := − 2

J3
C

r2 (c)ΩG (c) b (c) dc

As a matter of fact, from equation [8.6], ΩC = ΩG− r̄C ×(r̄− r̄M ) · ā1 follows. By enforcing
the orthogonality conditions [7.39], accounting for the properties of principal axes, and solving
with respect to the components of r̄C , the previous equations are obtained.
4. For cellular sections, the Bredt condition must be enforced for each branch, and the
monodromy condition enforced for each independent closed path.
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Distortion-Constrained Thin-Walled Beams 315

constant along the middle-line C and proportional to the torsion,
i.e. γt (s, c, t) b (c) = κ1(s, t)Q, with Q = constant5. To within a second-order error,
we already discussed, the constraint becomes:

κ1 (s, t) rnC (c) + αw (s, t)
dψw (c)

dc
+ h.o.t. = κ1(s, t)

Q

b (c)
[8.8]

From this, equation [8.1] is recovered, together with:

dψw =
Q

b (c)
− rnC dc [8.9]

By integrating the latter:

ψw = Q

P

M

dc

b (c)
− 2ΩC (c) + const [8.10]

where the constant is determined by requiring that the average value of ψw vanishes.
The constant Q is instead determined by the monodromy condition, which requires
that the closed line integral of dψw vanishes, i.e. C dψw = 06. From this, it follows:

Q =
2Ω

C
dc
b(c)

[8.11]

where Ω is the area of the region enclosed by the middle-line C7.

When the warping function satisfies equation [8.9], it follows that some of the
geometrical characteristics [7.62], relevant to the unconstrained TWB, are not linearly
independent, since:

Jn + 2Jnw + Jw =
4Ω2

C
dc
b(c)

=: JBR [8.12]

where JBR is the Bredt torsional stiffness of a tubular cross-section.

5. The hypothesis is suggested by the fact that, in de Saint-Venant Problem of uniform torsion,
the shear-strains (and stresses) are a solenoidal field (i.e. their in-plane divergence is zero
everywhere), this entailing, via the Gauss theorem, the constancy of the flow.
6. The condition entails that dψw is an exact differential.
7. Do not confuse the area Ω with the sectorial area ΩC (c). Of course Ω = ΩC (lC)−ΩC (0),
where lC is the length of C.
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316 Mathematical Models of Beams and Cables

8.2.3 The Brazier constraint for planar TWB

We consider a TWB, with a symmetric cross-section, bent in the plane of
symmetry, undergoing distortion with no-warping. Our goal is to link the amplitude
of the distortion to the curvature. To this end, we will closely follow the reasoning by
Brazier [BRA 27], who approximately evaluated the distortion: (a) by ignoring the
effect of the distortion itself on the stress; (b) by ignoring the effect of the extension.

When the beam is bent in the (ā1, ā2)-plane, with a curvature κā38, the generic
fiber belonging to the middle surface of the TWB, put at the distance r̄ (c) by G, is
solicited by a normal stress9:

σ = Eκā3 × r̄ (c) · ā1 = −Eκr2 (c) [8.13]

Therefore, the elementary cylinder of cross-section area b (c) dc, centered on the fiber,
is solicited by an axial force:

dN = σ (c) b (c) dc = −Eκr2 (c) b (c) dc [8.14]

Since the curvature of this cylinder is (approximately) equal to that of the centroidal
fiber, κā3, the bent cylinder is in equilibrium if and only if an external force per unit
length f (c) dc, acting along ā2, is (temporarily) applied on it, with10:

f (c) dc = −κdN (c) = Eκ2r2 (c) b (c) dc [8.15]

Since this force must be removed, as it has been artificially introduced, a force equal
and opposite must be applied, namely:

f (c) = −f (c) = −Eκ2 (s, t) r2 (c) b (c) [8.16]

This latter is responsible for the cross-section distortion. Note that f linearly depends
on the distance r2, and its resultant is C f (c) dc = 0 ; therefore, distortion is produced
by self-equilibrated forces.

To evaluate the distortion of the cross-section, we take an infinitesimal segment of
TWB of unitary length ds = 1 and consider it as a planar frame in the (ā2, ā3)-plane,

8. We understood the dependence on s, t, by considering these quantities as fixed. In contrast,
we highlight the dependence on the abscissa c of a given cross-section.
9. Note that, consistently with the equation [7.76], the stress should be written to
σ=E εG + κā3 × r̄+ απψ̄π · ā1 ; therefore, εG, απ must been neglected, according to
Brazier.
10. Remember that the balance equation of a cable, governing the equilibrium along the
local normal (here confused with ā2), becomes pn = −κN (with extension neglected and
symbols updated). By differentiating it with respect to c, and by letting f (c) := dpn/dc,
equation [8.15] follows. Therefore f (c) is a force per unit of area.
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Distortion-Constrained Thin-Walled Beams 317

made of beams with rectangular cross-sections ds× b (c). Then, we load the frame by
a surface force f̂ (c) = −Er2 (c) b (c), corresponding to a unitary curvature κ = 1,
and evaluate the linear static response of the frame, ψ̄π = ψ2 (c) ā2 + ψ3 (c) ā3,
which depends only on the geometrical characteristics of the cross-section. Hence,
the response to f = κ2 (s, t) f̂ (c) is w = κ2 (s, t) ψ̄π (c). We can conclude that the
distortional amplitude aπ (and therefore the distortional strain απ) coincide with the
squared curvature, i.e. equation [8.2] holds. We will call this relationship the Brazier
constraint.

REMARK 8.3. Note that, differently from the Vlasov and Bredt constraints, which are
linear, the Brazier constraint is nonlinear.

REMARK 8.4. As for Vlasov’s and Bredt’s, the Brazier constraint leads to the
selection of a specific distorsional mode.

8.3 The non-uniform torsion problem for
bi-symmetric cross-sections

Before addressing the general problem for flexural–flexural–torsional–extensional
TWB undergoing distortion, it is instructive to analyze the particular case of pure
torsion. This problem, indeed, explains in the simplest way the role played by the
internal constraints and the reactive stresses. We start by formulating the
unconstrained problem; then, we address the constrained problem, first by the mixed
and then by the displacement formulations.

8.3.1 The unconstrained model

Let us consider a 1D-model of warpable and cross-undeformable TWB,
exclusively loaded by torsional couples c = cā1,CH = CH ā1, with warping forces
qw, QwH assumed to be zero for the sake of simplicity. The model is a particular case
of the general 1D-model illustrated in section 7.3, here re-derived for clarity.

Twisted and shortened beams

First we observe that, due to nonlinearities, extension, flexure, torsion and warping
are fully coupled; therefore, even if the beam is loaded by torsional couples only, it
extends and bends itself, so that the problem is not simpler than the general problem.
As a matter of fact, we check that, when the current configuration is rectilinear, i.e.
κ1 = 0, κ2 = κ3 = 0, the purely torsional state of stress M1 = 0, N = T2 = T3 =
M2 = M3 = 0 does satisfy the balance equations [7.28a,b,c,e,f] and the relevant
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318 Mathematical Models of Beams and Cables

boundary conditions [7.29a,b,c,e,f]. However, this solution is not compatible with the
constitutive law [7.66]. As an example, EY2Cκ

2
1 requires M2 = 0. Therefore, with

the aim to tackle the simplest possible problem, we limit ourselves to bi-symmetric
cross-sections (e.g. the I-section), for which some elastic constants appearing in the
constitutive law vanish. By accounting for definitions [7.62], and for the fact that ψw

is antisymmetric on such cross-sections, we have:

Y2C = Y3C = 0, Yw2 = Yw3 = 0 [8.17]

which imply M2 = M3 = 0, as we wanted. On the other hand, it follows from the
same constitutive law that N = 0 entails a non-zero axial shortening, which always
accompanies the twist, equal to:

εG = −ρ2Cκ
2
1 [8.18]

where ρ2C := JC/A. Therefore, the constitutive law for the twisted (and shortened)
beam becomes:⎛⎝M1

Dw

Bw

⎞⎠ =

⎡⎣GJSV +GJn GJnw 0
GJnw GJw 0
0 0 EΓw

⎤⎦⎛⎝κ1

αw

βw

⎞⎠+

⎛⎝EΓwCβwκ1 − EJCρ
2
Cκ

3
1

0
1
2EΓwCκ

2
1

⎞⎠
[8.19]

REMARK 8.5. Note that the shortening produces a softening-type cubic term in the
torsional moment law. Indeed, in the fiber model, the part of the elastic energy
necessary to extend the fibers is subtracted from that necessary to produce local shear
strains.

The Fundamental Problem

Under these assumptions, the only non-zero displacements are the twist angle
θ := θ1 and the warping amplitude aw; strains consist of the torsional curvature κ1

and distortional quantities αw, βw. The strain–displacement relationships are:

κ1 = θ, αw = aw, βw = aw [8.20]

The strain-rates are:

κ̇1 = θ̇, α̇w = ȧw, β̇w = ȧw [8.21]

and the spin is:

ω = θ̇ [8.22]
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Distortion-Constrained Thin-Walled Beams 319

By denoting the dual stresses (torsional moment, distortional and bi-distortional
stresses, respectively) by M1, Dw, Bw, the Virtual Power Principle (VPP) becomes:

S
M1κ̇1 +Dwα̇w +Bwβ̇w ds =

S
cωds+

B

H=A

CHωH [8.23]

or, by using equations [8.21] and [8.22]:

S
M1θ̇

 +Dwȧw +Bwȧ

w ds =

S
cθ̇ds+

B

H=A

CH θ̇H , ∀ θ̇, ȧw [8.24]

By performing an integration by parts, we get:

S
(M 

1 + c) θ̇ + (B
w −Dw) ȧw ds

+

B

H=A

(CH ±M1H) θ̇H ±BwH ȧwH = 0, ∀ θ̇, ȧw

[8.25]

from which the following balance equations are derived:

M 
1 + c = 0

B
w −Dw = 0

[8.26]

together with the boundary conditions:

(CH ±M1H) θ̇H = 0

±BwH ȧH = 0
[8.27]

The constitutive law is given by equation [8.19].

To summarize, the unconstrained nonlinear problem of torsion for bi-symmetric
cross-sections is governed by eight equations [8.20] and [8.26], [8.19], plus boundary
conditions, in the eight unknowns (θ, aw;κ1, αw, βw;M1, Dw, Bw).

8.3.2 The mixed formulation for the constrained model

We introduce the constraint κ1 = αw in the unconstrained model. We first perform
this task according to the mixed formulation, which better highlights the role of the
active and reactive stresses.
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320 Mathematical Models of Beams and Cables

Active and reactive stresses

First we observe that this kind of constraint is slightly more general than those so
far considered in this book, but it falls in the class of the “general linear constraints”
we discussed in section 1.3.1. By following the approach illustrated there, we split the
internal virtual power in an active and a reactive part, i.e.:

Pint = Pact + Preact =

S
M1aκ̇1 +Dwaα̇w +Bwaβ̇w ds

+

S
R (α̇w − κ̇1) ds

[8.28]

or:

Pint =

S
(M1a −R) κ̇1 + (Dwa +R) α̇w +Bwaβ̇w ds [8.29]

where the index a denotes the active component of the stress, and R is a Lagrangian
multiplier affecting the strain-rate constraint α̇w − κ̇1 = 0. Note that R spends zero
power in all the kinematically admissible virtual motions, according to the “Perfect
Constraint Postulate”11. This expression shows that the total stresses that conjugate to
the strains are:

M1 := M1a −R

Dw := Dwa +R

Bw := Bwa

[8.30]

Thus, although the bi-distortional stress Bw is purely active, the torsional moment M1

and the distortional stress Dw are of a mixed active-reactive nature, but their reactive
parts are related.

The balance equations

To obtain the balance equations, we write the VPP [8.23], but with the Lagrangian
multiplier incorporated, and use equations [8.21] and [8.22], i.e.:

S
(M1a −R) θ̇ + (Dwa +R) ȧw +Bwȧ


w ds =

S
cθ̇ds+

B

H=A

CH θ̇H

∀ θ̇, ȧw

[8.31]

11. It could be useful to think to the reactive virtual power as the power that the reactive stresses
would spend in the strain-rates if they were allowed to violate the constraint condition.
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Distortion-Constrained Thin-Walled Beams 321

Since this coincides with equation [8.24], if equations [8.30a,b] are taken into account,
the same balance equations [8.26] and [8.27] follow, but with the stresses split, i.e.:

(M1a −R)

+ c = 0

B
w − (Dwa +R) = 0

[8.32]

and:

[C ± (M1a −R)]H θ̇H = 0

BwH ȧwH = 0
[8.33]

The constitutive law

To derive the constitutive law for the active part of the stress, we use
equation [8.19], in which we rename M1, Dw as M1a, Dwa, and we introduce the
constraint κ1 = αw, thus obtaining:⎛⎝M1a

Dwa

Bw

⎞⎠ =

⎡⎣G (JSV + Jn + Jnw) 0
G (Jw + Jnw) 0

0 EΓw

⎤⎦ κ1

βw

+

⎛⎝EΓwCβwκ1 − EJCρ
2
cκ

3
1

0
1
2EΓwCκ

2
1

⎞⎠
[8.34]

The Fundamental Problem

By summarizing, the constrained nonlinear problem of torsion, according to the
mixed formulation, is governed by nine equations [8.20], [8.1], [8.32] and [8.34], plus
boundary conditions, in the nine unknowns (θ, aw;κ1, αw, βw;M1a, Dwa, Bw;R).

The condensed problem

Although the condensed equations could be more straightforwardly obtained by
the displacement formulation, we want to derive them in the context of the mixed
formulation, aimed to throw light on the question.

Since αw = κ1, the strain–displacement relationships [8.20] can be expressed in
terms of the twist only, i.e.:

κ1 = θ, βw = θ [8.35]
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322 Mathematical Models of Beams and Cables

By eliminating the reactive stress between equations [8.32], we obtain a unique
balance equation linking the three active stresses, namely:

(M1a +Dwa)

−B

w + c = 0 [8.36]

together with the condensed boundary conditions:

[C ± (M1a +Dwa −B
w)]H θ̇H = 0

BwH ȧwH = 0
[8.37]

Note that, in these equations, only the sum M1a + Dwa appears, not each stress
individually. Therefore, we can condense also the elastic law [8.34], by adding the
first two rows to each other, thus obtaining:

M1a +Dwa

Bw
=

G (JSV + Jn + 2Jnw + Jw) 0
0 EΓw

κ1

βw

+
EΓwCβwκ1 − EJCρ

2
cκ

3
1

1
2EΓwCκ

2
1

[8.38]

These equations specialize as follows to open or tubular TWB, when the
relationship among the elastic constants, equations [8.7] or [8.12], is accounted for:

1) Open TWB. Because of equations [8.7], Dwa = 0 follows from
equation [8.34b], so that the distortional stress Dw = R is just of reactive type;
in contrast, the torsional moment M1 = M1a − R is partially active and partially
reactive12. The condensed elastic law [8.38] becomes:

M1a

Bw
=

GJSV 0
0 EΓw

κ1

βw
+

EΓwCβwκ1 − EJCρ
2
cκ

3
1

1
2EΓwCκ

2
1

[8.39]

2) Tubular TWB. Because of equations [8.12], it turns out that Dwa = 0, so that
both M1 and Dw are made of an active and a reactive quota. The condensed elastic
law [8.38] becomes:

M1a +Dwa

Bw
=

GJBR 0
0 EΓw

κ1

βw
+

EΓwCβwκ1 − EJCρ
2
cκ

3
1

1
2EΓwCκ

2
1

[8.40]

in which, being JSV  JBR, the former has been neglected with respect to the latter.

In summary, the condensed problem consists of: two strain–displacement
relationships [8.35], one balance equation [8.36], two elastic laws [8.39] or [8.40],

12. The reactive torsional moment R contributes to the equilibrium. It is occasionally named in
literature the “secondary torsional moment”, or the “bi-shear”. The bi-distortional stress Bw is
also known as “bi-moment”.
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Distortion-Constrained Thin-Walled Beams 323

plus boundary conditions, in the five unknowns (θ;κ1, βw;M1a + Dwa;Bw). When
these are combined in terms of the twist angle only, they lead to:

GJtθ

− EΓwθ


− 3EJCρ

2
cθ

2θ + c = 0

C ± (GJtθ

− EΓwθ


− EJCρ

2
cθ

3)
H
θ̇H = 0

EΓwθ
 +

1

2
EΓwCθ

2
H

ȧwH = 0

[8.41]

where:

Jt :=
GJSV for open TWB

GJBR for tubular TWB
[8.42]

If these equations are linearized in θ, the well-known equations of the Vlasov
theory of the torsion are recovered.

REMARK 8.6. When, as a particular case, the torsion is uniform, then, from
equations [8.35], κ1 = θ = const and βw = θ = 0. If we neglect the nonlinear
terms, then Bw = 0 follows from equations [8.39b] or [8.40b]. This entails, from
equation [8.32b], that R = −Da, so that the reactive moment vanishes in open TWB,
but it is different from zero in tubular TWB.

8.3.3 The displacement formulation for the constrained model

The equilibrium equations [8.41], expressed in terms of the twist angle only, can,
of course, directly be obtained via the displacement approach. This way is shorter,
although it hides the role of the reactive stresses. We will illustrate the method here,
as an exercise, in view of applying this method ahead.

When αw = κ1 is substituted in the internal virtual power (left hand member of
equation [8.23]), this reduces to:

Pint =

S

Mtκ̇1 +Bwβ̇w ds [8.43]

where:

Mt := M1 +Dw [8.44]

is the generalized active stress dual of the torsion-rate. According to the displacement method,
we have to eliminate a slave variable from the constraint αw = κ1, or, in terms of
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324 Mathematical Models of Beams and Cables

displacements, from aw = θ. By taking aw as slave and θ as master variable, we obtain
equations [8.35]. The VPP, equation [8.23], therefore changes into:

S

Mtθ̇
 +Bw θ̇

 ds =

S

cθ̇ds+

B

H=A

CH θ̇H , ∀θ̇ [8.45]

which, after two integrations by parts, becomes:

S

M 
t −B

w + c θ̇ds

+
B

H=A

CH ± Mt −B
w θ̇H

B

H=A

BwH θ̇H = 0, ∀θ̇
[8.46]

The field equation follows:

M 
t −B

w + c = 0 [8.47]

with the associated boundary condition:

C ± Mt −B
w H

θ̇H = 0

BwH θ̇H = 0
[8.48]

These condensed equilibrium equations are identical to [8.36] and [8.37], found via the mixed
formulation, if we observe that Mt = M1+Dw ≡ M1a+Dwa. With the same substitution, the
constitutive law is still expressed by equation [8.38]. Hence, the same equations [8.41] follow.

8.4 The general problem for warpable TWB

Now, we come back to the general problem of warpable, distortion-constrained,
TWB. In formulating the model, we will follow the displacement method in order to
condense the reactive part of the torsional moment. However, we will keep the shear
forces in the model, so that, strictly speaking, the model obeys the hybrid formulation.
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Distortion-Constrained Thin-Walled Beams 325

The balance equations for the constrained problem

The internal virtual power [7.58], once the constraint αw = κ1 (in addition to
unshearability) has been accounted for, becomes:

Pint :=

S
Nε̇G +Mtκ̇1 +mπ ·Rk̇π +Bwβ̇w ds [8.49]

where Mt := M1 +Dw. Similarly, since aw = κ1 also follows from the constraint,
the external virtual power [7.55] assumes the form:

Pext :=

S
(p · vC + c ·ω+ qwκ̇1) ds

+

B

H=A

(PH · vCH +CH ·ωH +QwH κ̇1H)

[8.50]

The balance equations are supplied by the VPP, when one uses the previous
expressions for the internal and external powers. According to the hybrid
formulation, we add the zero-terms tπ ·Rγ̇C to the equation, where tπ assumes the
meaning of vector of Lagrangian parameters. Moreover, by accounting for
equation [7.21a] in order to change the pole (as we did in section 7.3), the VPP
becomes:

S
Nε̇C + tπ ·Rγ̇C + (Mt − qw) κ̇1

+ (mπ − rC ×Na1) ·Rk̇π +Bwβ̇w ds

=

S
(p · vC + c ·ω) ds+

B

H=A

(PH · vCH +CH ·ωH +QwH κ̇1H)

[8.51]

Using the strain-rate constraints β̇w = α̇
w = κ̇

1, and integrating by parts, it follows
that:

S
Bwβ̇wds =

S
Bwκ̇


1ds = −

S
B

wκ̇1ds+ [Bwκ̇1]
B
A [8.52]
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326 Mathematical Models of Beams and Cables

Moreover, by remembering the strain-rate-velocity relationships [7.17a,b], the VPP is
transformed into13:

S
[t · (v

C −ω× x
C) + ((Mt −B

w − qw)a1

+ (mπ − rC ×Na1)) ·ω
]ds

=

S
(p · vC + c ·ω) ds

+

B

H=A

(PH · vCH +CH ·ωH +QwHa1 ·ω

H)− [Bwa1 ·ω

]BA

∀ (vC ,ω)

[8.53]

After another integration by parts, we get:

S
(t + p) · vC + (((Mt −B

w − qw)a1)


+ (mπ − rC × a1N)

+ x

C × t+ c) ·ω ds

+
B

H=A

[(PH ± tH) · vCH + (CH ± (MtH −B
wH − qwH)a1

± (mπH − rC ×NHa1)) ·ωH ]

+ (QwH ±BwH)a1 ·ω

H = 0, ∀ (vC ,ω)

[8.54]

Finally, we obtain the field equations:

t + p = 0

((Mt −B
w − qw)a1)


+ (mπ − rC ×Na1)

 + x
C × t+ c = 0

[8.55]

and the boundary conditions:

(PH ± tH) · vCH = 0

[C± (Mt −B
w − qw)a1 ± (mπ − rC ×Na1)]H ·ωH = 0

(Qw ±Bw)H a1 ·ω

H = 0

[8.56]

where the index π, as usual, denotes, the component in the (a1, a2)-plane.

13. As a matter of fact, v
C − ω × x

C = RėC = R (ε̇C ā1 + γ̇C) and ω = Rk̇ =

R κ̇1ā1 + k̇π ; moreover, from the latter, κ̇1 = ω · a1.
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Distortion-Constrained Thin-Walled Beams 327

REMARK 8.7. If we compare equations [8.55] and [8.56] with equations [7.26] and
[7.27], relevant to the distortion-unconstrained beam, we note that: (a) the balance
equation relevant to the distortional-variable disappears; (b) the torsional moment M1

is modified by the warping stresses Dw, and, moreover, it combines with −B
w in the

equilibrium equation. The non-uniform torsion case, of section 8.3, is derived as a
particular case.

The elastic law

The elastic law must link the active stresses, N , Mt, M2, M3 to the admissible
strains εG, κ1, κ2, κ3. It is derived by the identified law [7.66] for
distortion-unconstrained TWB, by substituting the constraint [8.1] and adding to
each other the rows relevant to M1 and Dw. The following relationships are found:⎛⎜⎜⎜⎜⎝

N
Mt

M2

M3

Bw

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
EA 0 0 0 0
0 GJt 0 0 0
0 0 EJ2 0 0
0 0 0 EJ3 0
0 0 0 0 EΓw

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝
εG
κ1

κ2

κ3

βw

⎞⎟⎟⎟⎟⎠+ f (ε) [8.57]

where Jt is defined in equation (8.42), and, moreover:

f (ε) :=

⎛⎜⎜⎜⎜⎝
1
2EJCκ

2
1

κ1 [EJCεG − EY3Cκ3 + EY2Cκ2 + EΓwCβw]
κ2
1[

1
2EY2C +GYn2 +GYw2]

κ2
1 −

1
2EY3C +GYn3 +GYw3

1
2EΓwCκ

2
1

⎞⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝
0

Gκ1 [kπ · yn +Gkπ · yw +Gkπ · Γwkπ]
κ2
1 [GΓw22κ2 +GΓw23κ3]

κ2
1 [GΓw32κ2 +GΓw33κ3]

0

⎞⎟⎟⎟⎟⎠
[8.58]

The Fundamental Problem

The Fundamental Problem for the unshearable, warpable, distortion-constrained
TWB, is governed by the following equations.

1) Four strain–displacement relationships [7.16a,d,e,f];

2) Two unshearability conditions, derived from equations [7.16b,c] by zeroing
γ2C , γ3C ;

3) One relationship, βw = κ
1, consequent to the distortion constraint;
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328 Mathematical Models of Beams and Cables

4) Six balance equations [8.55];

5) Five elastic laws [8.57].

The mechanical boundary conditions are given by equations [8.56], which must be
supplemented by proper geometric conditions.

The previous equations express the hybrid formulation for the TWB under
analysis. They are a system of 18 equations in the following unknowns: (a) the six
displacements u1C , u2C , u3C , θ1, θ2, θ3; (b) the five admissible strains
εC , κ1, κ2, κ3, βw; (c) the five active stresses N,Mt,M2,M3, Bw and the two
reactive shear-stresses T2, T3.

8.5 Cross-deformable planar TWB

Active and reactive stresses

Because of the nonlinear Brazier constraint [8.2], the linear constraint α̇π = 2κκ̇
holds for the strain-rates. Therefore, when a Lagrange multiplier R is enclosed in the
expression [7.85] of internal virtual power (already accounting for unshearability), the
latter becomes:

Pint =

S
Naε̇G +Maκ̇+Dπaα̇π +Bπaβ̇π ds+

S
R (α̇π − 2κκ̇) ds [8.59]

or:

Pint =

S
Naε̇G + (Ma − 2κR) κ̇+ (Dπa +R) α̇π +Bπaβ̇π ds [8.60]

It follows that the total stresses, conjugate of the strain-rates, are made of an active
and a reactive parts:

N := Na

M := Ma − 2κR

Dπ := Dπa +R

Bπ := Bπa

[8.61]

Note that, due to the nonlinearity, the reactive part of the stresses explicitly depends
on the configuration. If the reactive force R is condensed, a purely active stress
Mf := M + 2Dπκ = Ma + 2Dπaκ is found, conjugate of the flexure-rate.
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Distortion-Constrained Thin-Walled Beams 329

The same result, of course, can be achieved if the strain-rate constraint α̇π =
2κκ̇ is directly substituted in the internal virtual power [7.85], thus renouncing the
evaluation of the reactive stress R. Indeed, we have:

Pint :=

S
Nε̇G + (M + 2Dπκ) κ̇+Bπβ̇π ds [8.62]

from which it appears that Mf := M + 2Dπκ is the purely active stress conjugate of
the flexural curvature rate.

The balance equations for the constrained problem

We derive the balance equations for the constrained TWB by the VPP. We follow
the displacement approach to account for the Brazier constraint; thus, we take the
expression [8.62] for the internal power and the following expression for the external
power:

Pext :=

S
(p · vC + cω + 2qπκκ̇) ds

+

B

H=A

(PH · vCH + CHωH + 2QπHκH κ̇H)

[8.63]

in which we used aπ = κ2, and therefore ȧπ = 2κκ̇. Moreover, we account for the
unshearability by adding the zero-terms T γ̇C to the internal power, where T is a new
scalar Lagrangian parameter. In conclusion, by remembering (equation [7.21a]) that
ε̇G = ε̇C + κ̇r2C , the VPP becomes:

S
Nε̇C + T γ̇C + (Mf +Nr2C − 2κqπ) κ̇+Bπβ̇π ds

=

S
(p · vC + cω) ds+

B

H=A

(PH · vCH + CHωH + 2κHQπH κ̇H)

[8.64]

Since β̇π = α̇
π, α̇π = 2κκ̇, an integration by parts provides:

S
Bπβ̇πds = −

S
B

πα̇πds+ [Bπα̇π ]
B
A = −2

S
B

πκκ̇ds+2 [Bπκκ̇]
B
A [8.65]
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330 Mathematical Models of Beams and Cables

Because of Nε̇C +T γ̇C = t ·RėC = t · (v
C −ω× x

C), where ω = ωa3, the VPP
assumes the form:

S

[t · (v
C −ω× x

C) + (Mf +Nr2C − 2 (B
π + qπ)κ) κ̇] ds

=

S
(p · vC + cω) ds

+

B

H=A

(PH · vCH + CHωH + 2κHQπH κ̇H)− 2 [Bπκκ̇]
B
A

[8.66]

By integrating by parts, and accounting for ω = ωa3 = θ̇a3, κ = θ, and κ̇ = ω, we
finally obtain:

S
(t + p) · vC

+ (Mf +Nr2C − 2 (B
π + qπ)κ)


+ x

C × t · a3 + c ω ds

+

B

H=A

(PH ± tH) · vCH

+ (CH ± (Mf +Nr2C) 2 (B
π + qπ) κ)ωH

− 2κH (QπH ±BπH)ω
H = 0, ∀ (vC , ω)

[8.67]

This supplies the balance equations:

t + p = 0

(Mf +Nr2C − 2 (B
π + qπ) κ)


+ x

C × t · a3 + c = 0
[8.68]

with the boundary conditions:

[P± t]H · vCH = 0

[C ± (Mf +Nr2C − 2 (B
π + qπ)κ)]H ωH = 0

[8.69]

REMARK 8.8. Coupling between distortional and rigid-model stresses only appear in
the nonlinear part of the balance equations.
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Distortion-Constrained Thin-Walled Beams 331

The Fundamental Problem

The Fundamental Problem for the 1D, planar, unshearable, distortion-constrained
TWB is governed by the following equations (compare them with those for the
distortion-free problem, section 7.7.3).

1) The strain–displacement relationships:

εC = (1 + u
1C) cos θ + u

2C sin θ − 1

κ = θ

βπ = 2θθ
[8.70]

2) The unshearability condition:

− (1 + u
1C) sin θ + u

2C cos θ = 0 [8.71]

3) The balance equations [8.68]:

N 
− κT + p1 = 0

T  + κN + p2 = 0

(Mf +Nr2C − 2 (B
π + qπ) κ)


+ (1 + εC)T + c = 0

[8.72]

4) The elastic law [7.91], in which the constraint απ = κ2 is substituted, and
stresses are combined to eliminate the reactive part:⎛⎝ N

Mf

Bπ

⎞⎠ =

⎡⎣EA 0 0
0 EJ3 0
0 0 GJκ +GJγ

⎤⎦⎛⎝εG
κ
βπ

⎞⎠+ f (ε) [8.73]

where:

f (ε) :=

⎛⎝ 0
2E (Aχ +Aε + 2J3ψ)κ

3 + 3EJψκ
5

0

⎞⎠ [8.74]

The problem is completed by the following mechanical boundary conditions:

[P1 ±N ]H v1H = 0

[P2 ± T ]H v2H = 0

[C ± (Mf +Nr2C − 2 (B
π + qπ)κ)]H ωH = 0

[8.75]

and proper geometric boundary conditions.

The previous equations constitute a system of 10 equations in the following
unknowns: (a) the three displacements u1C , u2C , θ; (b) the three admissible strains
εC , κ, βπ; (c) the three dual active stresses N , Mf , Bπ and the reactive shear-stress
T .
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332 Mathematical Models of Beams and Cables

8.6 Summary

In this chapter, we tackled distortion-constrained TWB. These are beams in
which the distortional strains are not free, but which must satisfy some kinematic
constraints. Thus, if we enforce the Vlasov condition, which requires the vanishing of
the shear-strain on the middle-line of an open TWB, we obtain the linear constraint
αw = κ1; moreover, the warping function naturally springs as the sectorial area
function of the linear theory. Similarly, if we enforce the Bredt condition, concerning
the constancy of the shear-flow in a tubular section, we obtain the same constraint as
before, and the related warping function. Finally, if we consider a symmetric TWB
bent in its plane of symmetry, and enforce the Brazier constraint, which, on the
grounds of (approximated) equilibrium conditions, relates the flattening of the
cross-section to the bending curvature, we find the nonlinear constraint απ = κ2 and
the relevant distortional mode.

These kinds of constraints are more general than those considered throughout the
book, which were confined to the vanishing of one or more strain components. To
investigate their effect on the stresses, we first addressed, for educational purposes,
the simple problem of non-uniform torsion of a warpable cross-undeformable beam.
We observed that, by incorporating the constraint condition in the expression of the
internal virtual power, we are able to distinguish an active and a reactive contribution:
the first expresses the power spent by the stress that depends on the strain
(irrespectively of the constitutive law); the second expresses the power spent by the
contribution of the stress that is independent of the strain14. In some sense, the
reactive virtual power can be seen as the power that the reactive stresses would spend
in the strains if they were allowed to violate the constraint condition. When the
internal power is written for the TWB in torsion, it is found that the torsional moment
M1 and the distortional moment Dw are both made up of an active and a reactive
part, this latter being equal and opposite in sign, in order to satisfy the “Postulate of
Perfect Constraint”. The active part of Dw is found to vanish in open cross-section,
but to be different from zero in tubular sections. The sum of the two total stresses is
the active torsional moment Mt := M1 + Dw conjugate of the torsional
curvature-rate. Most remarkably, the kinematic constraint couples the balance
equations for locally rigid and locally deformable-beams, which are instead
uncoupled for free distortional parameters. Moreover, this coupling manifests itself
even in the linear part of the equations.

14. A useful example showing the double nature of the stress consists of an elastic truss-beam,
to which one or more rigid trusses are added: the normal forces exerted by the elastic trusses
are active stresses, the normal forces exerted by the rigid trusses are reactive stresses, which add
themselves to the former.
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Distortion-Constrained Thin-Walled Beams 333

The general problem of cross-underfomable, warpable TWB was successively
addressed. The problem was formulated by direct elimination of the Vlasov/Bredt
condition, but accounting for the unshearability of the beam via Lagrange multipliers.
The previous consideration, valid for the simple case of torsion, was thus generalized.

As a last example, we introduced the Brazier constraint in a planar, unwarpable
TWB. We observed that the flexural moment M and the in-plane distortional
moment Dπ are of an active-reactive nature. A generalized active flexural moment
Mf := M + 2Dπκ was defined, conjugate of the flexural curvature rate. Because of
the nonlinearity of the constraint, it is explicitly configuration-dependent. The
balance equations, derived as for the warpable beam, were found to be coupled only
in their nonlinear part.
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Index

A

action and reaction principle, 92
adjoint

homogeneous problem, 24
operators (see operator, adjoint)

B

balance equation
in vector form, 87, 88, 143, 214, 275,

282, 326, 330
incremental, 120, 121, 128, 150, 159,

223, 226, 228, 229, 237, 239, 254,
256, 259, 266

of power or force, 5, 83
Lagrangian, 99, 166, 169
projected onto

the current basis, 97, 143, 216, 283
the reference basis, 99, 125, 144,

156, 224, 225
the external basis, 215, 223, 229,

237
split, 30

beam
elastica

(see elastica, Euler)
alternative reactive stress

representation, 188
Euler-Bernoulli (see Euler-Bernoulli

beam)
foil, 165, 192
inextensible (see inextensible)
planar, 122, 152, 177, 183, 196, 197,

299, 316, 328

prestressed (see prestressed)
shear-shear-torsional beams, 193
unprestressed (see unprestressed)
unshearable (see unshearable)
untwistable (see untwistable)
unwarpable (see unwarpable)
warpable (see warpable)

boundary conditions
alternative, derived from the VPP, 7,

87, 143, 214, 275, 282, 319
geometric, 4, 63, 122, 138, 154, 166,

209, 247, 274
mechanical, from equilibrium, 96, 125,

217
boundary layers, 244, 262, 268

C

cable
inextensible (see inextensible)
infinite natural states of, 206
loaded by forces

pressure, 217
planar, 219

osculating plane property, 217
prestressed (see prestressed)
sagged, 261
shallow, 230, 263
stiff, reduced model, 261, 268
unprestressed (see unprestressed)

condensation
of balance equations, 20, 188
of slave displacements, 19, 168, 181
static, 232, 263

Mathematical Models of Beams and Cables    Angelo Luongo and Daniele Zulli
© 2013 ISTE Ltd.  Published 2013 by ISTE Ltd.
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346 Mathematical Models of Beams and Cables

constraint
Brazier, 312, 317, 328
Bredt, 312, 314
general linear, 15, 320
Vlasov, 312

curvature
change (or increment of), 139,

154, 248
current (definition), 71, 140
current vs reference, 72
initial (definition), 133, 153
local, in the fiber model, 292, 302
reference (definition), 71, 139
referred to the unstretched arc length,

71
curvature tensor

(definition), 77, 138
Frenet, 69
skew symmetric, 71, 72, 139

curvature vector (definition), 68

D

d’Alembert principle, 35, 88, 214, 274,
276, 283

deformation work, 10, 15, 102, 277
deviation angle, 134, 135, 153, 246
directors, 56, 57, 70, 134, 137, 153
distortional

force, 274, 304
inertial force, 276
mode, 287, 304, 314
mode orthogonality, 290, 300
strain, 273, 301, 312, 317
strain-rates, 275
stress, 275, 276, 319
variable, 273, 287, 311

E

elastic
law for large twist, 106
matrix, 11, 16, 104, 112
potential, 10, 16, 25, 102, 104, 164,

195, 206, 276, 297, 305, 307
potential energy (definition), 34

elastica, Euler, 180, 183, 188, 197

equilibrium
conditions for an infinitesimal element,

96
equation

(see also balance equations), 5, 7,
9, 91

incremental (see balance equations,
incremental)

Euler–Bernoulli beam, 45, 168, 206
Euler–Rodrigues formula, 61, 64

F

flexural center, 109, 195, 277, 281, 287,
291, 293, 296, 299

formulation
displacement, 18, 22, 31, 32, 38, 42,

43, 168, 172, 323
hybrid, 168, 181–183, 185, 197
mixed, 13, 16, 29, 30, 37, 41, 42, 167,

169, 186, 200, 319
Frenet

curvature tensor (see curvature tensor,
Frenet)

formulas, 69, 208, 209, 246
triad, or basis, 69, 134, 208, 209, 236
for non-natural parameterization, 209
principal curvature and torsion of a

line, 69, 134, 208, 209
fundamental formula of rigid

kinematics, 76
Fundamental Problem, for

curved beams in 3D, 144
foil beams, 193
inextensible cables,

flexible, 237, 238
stiff, 266–268

inextensible unshearable
planar curved beams, 199, 201
planar straight beams, 184, 186,

187
straight beams in 3D, 182
untwistable straight beams, 191

locally deformable TWB, 277
metamodel, 11, 16, 32
non-uniform torsion of constrained

TWB, 318, 321, 323
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planar curved beams, 158
planar straight beams, 127
prestressed cables

flexible, 224, 226
stiff, 255, 257

reduced models of stiff cables, 262,
263

shallow cables, 233–235
shear–shear–torsional beams, 196
straight beams in 3D, 114
taut strings, 230, 259, 260
unprestressed cables

flexible, 218
stiff, 251
planar straight beams, 179

unshearable
straight beams in 3D, 170, 177

unwarpable cross-deformable
constrained TWB, 331
unconstrained TWB, 307, 331

warpable cross-undeformable
constrained TWB, 327
unconstrained TWB, 299

Fundamental Problem synoptic table, 51

G

generalized beam theory (GBT), 285, 287
Green identity, 7, 20, 21, 36, 45
Green law (see also Hyperelastic law),

102, 112, 195, 217, 224, 277

H

Hamilton principle, 35, 88
homogenization, 110, 196
Hooke law, 11, 103, 168
hyperelastic

law, 9, 102, 144, 217, 224, 251
law accounting for distortion, 298, 307,

318, 321, 327

I

identification (of the elastic constants,
external forces, stresses), 104, 196,
284, 293, 294, 296, 303

inertia
force, 35, 88, 96, 99

tensor, 90
inextensible, 165, 180, 183, 190, 197,

235–237, 264
internal constraint, 12, 13, 37, 163, 172,

312, 314, 316

K, L

Kelvin–Voigt (visco-elastic law), 113, 127,
218

Lagrangian multiplier
different meaning, 188
technique, 14–16, 20, 37, 41, 167, 168,

320
linear theory, 8, 12, 17, 23, 96, 121
linear vs linearized theories, 26
linearized theory, 26, 30, 39, 118, 128, 149,

159, 225, 229, 239, 267
locally deformable beams (definition), 272

M

map of
displacement, 285, 288, 289, 300
strain, 104, 285, 292, 301
strain-rate, 285, 293, 303
velocity, 285, 293, 302

master, (definition)
displacement, 19
velocity, 21

metamodel (definition), 2
momentum

balance, identically satisfied for
flexible cables, 215

principal, 5, 83, 91, 215

O

operator
adjoint, 8, 12, 15, 17, 21–23
elastic stiffness, 27, 33, 129, 160
equilibrium, 8

condensation, 21
linear, 8, 36, 38

geometric stiffness, 27, 33, 41, 129,
160

kinematic
finite, 5
infinitesimal, 5, 124, 155
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348 Mathematical Models of Beams and Cables

kinematic and equilibrium, are adjoint,
8

velocity constraint, 19, 21, 45
order of magnitude analysis, 164, 206, 230,

261
ovalization, or Brazier effect, 2, 3, 272

P

Poisson formula, 72, 75, 136
prestressed, 24, 29, 39, 41, 118, 128, 149,

159, 229, 237, 252, 266
pseudo-vector, 74, 99, 141

R

rheological models, 113
rotation

axis, 61, 62, 64, 87
is not a vector, 60
micro/macro, 210
tensor, 57, 60

Building, 58
tackling, 60

S

Shear
beam, planar, 197
strain, 65, 67, 68
strain vs transverse strain, 67, 68
-undeformability, geometric

interpretation, 173
shortening, 108, 297, 318
slave, displacement (definition), 19
spin

-basis, 77, 101, 141, 166
gradients (definition), 79
macro, of cables, 211
tensor (definition), 74
tensor, skew-symmetric, 75
vector

(definition), 75
geometric interpretation, 77
in the reference and current basis,

141
standard visco-elastic model, 113, 114, 218
strain

right and left, 66

vector,
(definition), 64, 210

strain, current
(definition), 66
G- and C-, 278, 279
local, in the fiber model, 290, 300
longitudinal (definition), 66, 290, 300
physical measures, 67
reference (definition), 66
transverse (definition), 66
vs reference, 67

strain–displacement
relationship, 4, 73, 123, 166, 222, 228,

238, 258, 273, 278, 321
linearized, 119, 128, 159, 225, 229,

256
strain-rate (definition)

beams, 79
cables, 212
metamodel, 57

stress
active (definition), 13, 16
active and reactive in TWB, 320, 322,

328
distortional (see distortional stress),

296, 320
reactive

(definition), 102
evaluation, 75

stretch (definition), 209
stretching velocity gradient

(definition), 80, 212
geometrical interpretation, 80
of cables, 212
vs strain-rates, 79

string (see Taut string), 1, 24, 50

T

Tait–Bryan (or Cardan or Euler) angles,
59, 60, 61, 68, 99,

Taut string, 227, 235, 236, 244, 258
tension of cables (definition), 213
Timoshenko beam, 4, 44, 122, 129, 160
torsion, non-uniform, 272, 317
torsional stiffness, 205, 206

Bredt, 315
de saint venant , 296, 297, 299

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Index 349

warping, 297
with respect to G or C, 195

total potential energy (TPE) principle, 33,
34

TWB,
fiber model, 285, 287, 289, 318
non-independency of geometric

characteristics, 315, 322
two-axis, 278
unwarpable, cross-deformable

constrained, 328
unconstrained, 399

warpable, cross-undeformable
constrained, 324
unconstrained, 289

U

unit extension,
for large twist, 107
of beam, 67
of cables, 211, 247
vs longitudinal strain, 68

unshearable, 165, 168, 177, 180, 183, 190,
197, 247

untwistable, 165, 190
unwarpable, 299

V

variational formulation, 33
synoptic table, 53

velocity gradient (definition), 78
velocity vector (definition), 74
virtual power

active, 15
frame-indifferent, 84
internal, in terms of strain-rates, 85,

214, 274, 280
reactive, 15

virtual power principle (VPP)
constrained beams, 167, 169, 175, 178,

181, 184, 185, 187, 191, 192, 194,
198, 200

curved beams, 143, 157
flexible cables, 214
locally deformable TWB, 275, 280,

319, 320, 324, 325, 329
metamodel, 6, 14, 16, 20
stiff cables, 249, 266
straight beams, 86, 126

virtual work principle (VWP), 8, 34

W

warpable, 289, 312, 314, 324
warping, 83, 106, 272, 287

function, 289, 294, 314, 315

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by D

haka U
niversity of E

ngineerin, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


