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Preface

Electromagnetic wave scattering from randomly rough surfaces in the
presence of scatterers is an active, interdisciplinary area of research with
countless practical applications in fields such as optics, acoustics, geoscience
and remote sensing. In the last four decades, considerable theoretical progress
has been made in elucidating and understanding the scattering processes
involved in such problems. Numerical simulations allow us to solve the
Maxwell equations exactly, without the limitations of asymptotic approaches
whose regimes of validity are often difficult to assess. The purpose of this
book is to present both asymptotic approaches, such as the Kirchhoff
approximation, and numerical methods, such as the method of moments
(MoM), in order to solve scattering from rough surfaces.

Excellent textbooks on this subject are available and this book focuses on
some scattering problems such as the scattering from a rough surface, a rough
layer, a coated cylinder and an object near a rough surface. Although the
scattering problem is assumed to be two-dimensional (invariant with respect
to a direction), the problem is of practical interest because large problems can
easily be solved, unlike a direct three-dimensional scattering problem, for
which the equations are more complicated (because they are vectorial).
Indeed, due to computing time and memory space requirements, the size of
the problem to be solved is reduced. Nevertheless, advanced numerical
methods can handle large problems, but the complexity of programming
significantly increases.

This book is intended both for graduate students who wish to learn about
scattering by rough surfaces and engineers or researchers who have to solve
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x  Method of Moments for 2D Scattering Problems

such problems. Adding a scatterer near a rough surface, from the MoM, the
problem size increases significantly and in order to solve this problem using
a standard personal computer, in Chapters 3 and 4, a versatile method, which
has been developed in the last decade, is presented in detail.

The increasingly important role of numerical simulations in solving
electromagnetic wave scattering problems has motivated us to provide the
readers with computer codes on topics relevant to the book. These computer
codes are written in the MatLab programming language. They are provided
for two main purposes. The first purpose is to provide the readers a hands-on
training for performing numerical experiments, through which the concepts of
the book can be better communicated. The second purpose is to give new
researchers a set of basic tools with which they could quickly build on their
own projects.

To have the MatLab programs, please send an email to Dr. C. Bourlier at
christophe.bourlier @univ-nantes.fr by providing a receipt of the purchase of
this book.

My thanks go to several people who made this book possible. I am grateful
to Professor Joseph Saillard (retired), for suggesting writing this book, and
both Professors Saillard and Serge Toutain (retired) for giving me the means
to develop this research. I would like to acknowledge Drs N. Déchamps and
G. Kubické, the PhD students whom I co-supervised and who developed the
PILE and E-PILE methods thoroughly presented in this book. I would also like
to thank the National Center for Scientific Research by whom I am employed,
and the DGA (Direction Générale de I’Armement) for their financial support.

Christophe BOURLIER
June 2013
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Introduction

In this book, the method of moments (MoM) is addressed to compute the
field scattered by scatterers such as canonical objects (cylinder or plate) or a
randomly rough surface, and also by an object above or below a random
rough surface. Because the problem is considered two-dimensional (2D), the
integral equations (IEs) are scalar and only the transverse electric (TE) and
transverse magnetic (TM) polarizations are considered (no cross polarizations
occur). Chapter 1 analyzes how the MoM with the point-matching method
and pulse basic functions is applied to convert the IEs into a linear system. In
addition, Chapter 1 presents the statistical parameters necessary to generate
Gaussian random rough surfaces. Chapter 2 compares the MoM with the
exact solution of the field scattered by a circular cylinder in free space, and
with the physical optics (PO) approximation for the scattering from a plate in
free space. Chapter 3 presents numerical results, obtained from the MoM
combined with the efficient E-PILE method, of the scattering from two
illuminated scatterers and shows how the E-PILE algorithm can be hybridized
with asymptotic or rigorous methods valid for the scattering from a single
scatterer (alone). Chapter 4 presents the same results as those in Chapter 3 but
for an object above a random rough surface or for a coated (circular or
elliptical) cylinder. In the last two chapters, the coupling between the two
scatterers is also studied in detail by inverting the impedance matrix by
blocks.
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Integral Equations for a Single Scatterer:
Method of Moments and Rough Surfaces

1.1. Introduction

In this chapter, the integral equations (IEs) are addressed to derive the field
scattered by a single scatterer in free space. They are obtained by introducing
the Green function concept and by applying the boundary conditions onto the
scatterer. In addition, the IEs are converted into a linear system by using the
method of moments (MoM) with the point-matching method. The impedance
matrix is then expressed for any shape of the object. The special case of a
perfectly conducting (PC) object is also discussed. This chapter also presents
the necessary statistical parameters to generate a random rough surface.

In all chapters, the media are considered as homogeneous, linear and
isotropic. In addition, they are considered as non-magnetic, which means that
the magnetic permeability is po = 47 x 10~7 H/m. In addition, the medium
Qo (the subscript 0 is used for variables defined in vacuum) is considered as
vacuum and the time convention e ~7“? is used. Then, the derivative over the
time ¢ is /0t — —jw. For any media without sources, two Maxwell
equations [KON 05, TSA 00] are simplified as:

{curlH:V/\H:—jweE [1.1]
curl E =V ANE = jwugH "’ ’

where H is the magnetic field and E the electric field. In addition, w is the
pulsation (rad/s) and € = €ge, is the permittivity, in which ¢y = 1/(367 x 10°)
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2 Method of Moments for 2D Scattering Problems

is the permittivity in vacuum and ¢, is the relative permittivity (which equals
unity for vacuum). For a two-dimensional (2D) space of unitary vectors (&, 2),
the vectorial operator V is defined in Cartesian coordinates as:

V=—a+—2. [1.2]

1.2. Integral equations
1.2.1. TE and TM polarizations and boundary conditions

Let 7 be the normal to the surface S pointing toward {2y and lying in the
plane (&, 2) (2D problem), and separating two media, 2y (upper) and €
(lower), of dielectric permittivities €y and €; (see Figure 1.1), respectively.

For the transverse electric (TE) polarization (the electric field is normal to
the incident plane (&, 2)), the electric field in the upper medium is defined as
Ey = iy, where 1) is a scalar number. In medium €2, the use of equation
[1.1] leads to:

1

H, = -
Jw o

1
VANEy=———y A V. [1.3]
Jw Ho

knowing that A; A (A2 AAs) = (A1-As)As—(A;-Asg)Ags, for any vectorial
function A;, we have:

1 1
ANH)=———nA (G AVig) = ———[(f- Vibo)§ — (R - §) Vo]
Jw ko JWHo
Jw o

where - = 0 since the normal lies in the plane (&, 2). For the lower medium
1, the quantities £, H; and ¢ also satisfy equation [1.4], in which the
subscript “1” is used for variables defined in ;.

For a surface separating two dielectric media, the boundary conditions state
that the electric and magnetic tangential fields are continuous. Since Eq1 =
10,19, this leads from equation [1.4] to:

Yo(r) = ¥1(r)
{ﬁ‘Vl/Jo(r) — A Vi (r) vr e S. [1.5]
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Integral Equations for a Single Scatterer 3

For the transverse magnetic (TM) polarization (the magnetic field is
normal to the incidence plane (, 2)), the magnetic field in the upper medium
is defined as H = oy. The use of equation [1.1] leads to:

1 1
Eg=——VANHy;=—19 A Vi, [1.6]
Jjweo jweo
and
nAEy=— (y ANVio) A=+ n A (g A Vi)
Jweg Jwe
1
= A Vo)) — (- §)V
o (7 - Vho)y — (1 - §) Vo
Y
— (v, 17
Jweo

Moreover, for the lower medium 1, H; = {1y andn A E; = +y(n -
V11)/(jwer). The boundary conditions state that the electric and magnetic
tangential fields are continuous, leading to:

Po(r) = Y1(r)
{ﬁ - Vapo(r) = E—?ﬁ SV (r) Vr € S. [1.8]

In conclusion, for the TE and TM polarization, equations [1.5] and [1.8]
lead to:

Yo(r) = 1 (r)
{ﬁ “Viho(r) = pone - Vi (r) vres, [1.9]

where pg;1 = 1 for the TE polarization and pg; = e€p/e; for the TM
polarization.

1.2.2. Electric and magnetic currents for a 2D problem

For a 3D problem, the electric J(y and magnetic M currents are defined
on the surface as:

JoZ’fL/\ﬁo, Moz—fb/\E’o, [1.10]

where n is the normal to the surface.
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4  Method of Moments for 2D Scattering Problems

For the TE polarization, Ey = oy and from equation [1.4], we then have:

1 . 1 . .
Joz—mn/\(y/\V%):_7(""V¢0)y, [1.11]

+ R . JWho
My=—-nA(Yoy) =1%o (-1 AN Y)

For the TM polarization, Hy = oy and from equation [1.7], we then
have:

A A~

Jo=n N (Yoy) = 1o (RN Y)

1 1. .. 1.12
My=———nA(§A Vi) =——— (- Vi) g e
Jweo Jweo

In conclusion, for the TE and TM polarizations, )y and the normal
derivative n - Vg = 0y/0n are related to the currents { M, Jo} and
{Jo, M}, respectively.

1.2.3. Huygens’ principle and extinction theorem

In Figure 1.1, the upper medium 2 stands for the domain bounded by the
surface S and the contour Cy o, wWhereas {2y stands for the domain bounded
by the surface .S and the contour C'; .. We recall that the normal to the surface
n pointed toward 2.

(825, 8 . ) . it

(€24, €4 . L)

Figure 1.1. The domain Qg is bounded by the contour Cy oo and the surface S
whereas €)1 is bounded by the contour C o and the surface S
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Integral Equations for a Single Scatterer 5

In media Q¢ and €2; (without sources), the fields 1y and 1, satisfy the
scalar Helmholtz equation:

V2i(r) 4+ k2ipi(r) = 0, Vr € Q;, [1.13]
where k; = w./€;fig is the wave number in medium €; (i = {0,1}) and V? is
the scalar Laplacian. The scalar Green functions go(r, r’) and g1 (7, r’) defined
in media {2y and {21, respectively, satisfy:

V2gi(r,7') + klgi(r,v') = —6(r — '), [1.14]

where 7 = & + 22 are the Cartesian coordinates of the source point and 7’ =
a'x + 2'% are the Cartesian coordinates of the observation point. Physically,
the Green function is the field radiated from a source point represented from
the Dirac delta function 4. It then satisfies the Helmholtz equation, in which
the right-hand side of equation [1.13] is —d(r — 7/).

Applying the scalar Green theorem, we have:

// (fiV2fo — foV2 f1)dr = j{ (f1Vfa = foV f1)-dS, [1.15]
Q c

where dS = ndS, in which n is the unitary vector normal to the closed
oriented contour bounding medium (2.

Let fi = g and fo = g¢ in equation [1.15]. Then, from equations [1.13]
and [1.14], for » € Qg we have:

//Q [¢o(r)V2g0(r,7") — go(r,7") V2 (r)] dr
- /Q {tho(r) [=0(r — ') = kggo(r,7")] + go(r, ') kgabo(r) } dr

= —/ Yo (r)d(r — r')dr
Qo

. —¢0(T’) ifr' € Qo
- 0if ' ¢ Qp

= /C [wo(r)Vgo(r,r') — go(r,r’)V¢0(r)] -dS, [1.16]
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6 Method of Moments for 2D Scattering Problems

where the contour Cy = S U Cj « bounding the medium 2. In addition, the
last line of equation [1.16] can be written as:

/c [IZJO(T)VQO(T,T’) — go(r,r’)Vz/JO(r)] .dS

—— [ [nn 228 oty 200 a5

on on
-
Co

dgo(r, ') Ipo(r)
[%(7‘ ) o o
where 0f/On = m - V f. The minus sign before the integral over S is due
to the sense of the normal 7, which points inside €2g. The plus sign before the
integral over C  is due to the sense of the normal 729 o, which points outside
Qo.

—go(r,7') ] ds, [1.17]

,00

_winc (’I"/ )V'I’/ EQ()

It can be shown that the integral over the contour Cp o, equals minus the
incident field (—inc(7’)) [TSA 00]. For » € S, the substitution of equation
[1.17] into equation [1.16] then leads to:

—ine (") = /s [wo(r)iagoé:;’r ) _ go(r,r')iadg?gr)] ds ifr' ¢ Qo
. [1.18]
Po(r") = e (r') = /s [1#()(7‘)7690(87;L7 ™) go(r, 1"’)78%07574)] ds ifr' € Qo
Special attention must be paid when 7’ approaches the surface S from either
below or above. For more details see [TSA 00 Chapter 4, section 2]. For r’ ¢
Qo, equation [1.18] gives the extinction theorem. For ' € Qg (S excluded),
equation [1.18] gives the Huygens’ principle:

(r,r')

%mwkwwmw%ﬂpw@%n e

on

ds.

= go(r,7")

[1.19]
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Integral Equations for a Single Scatterer 7

This shows that the scattered field 1)sca,0 is expressed from the field o and
its normal derivative on the surface 9v¢9/0n. These two quantities are often
called surface currents.

Applying the same principle for the field ¢; in the lower medium €2;, for
r € S we have [TSA 00]:

— 891(r,r’) / awl(”‘) e
0 7/3{1#1(7')T—g1(r,r) o }dS ifr' ¢ O o

Pi(r') = _[5 [11)1(7‘)%2’7’/) — gl(r,r')awalip] ds ifr' € O

and the scattered field tsca.1 = 91 since ¥ jnc = 0 in §21. In equations [1.18]
and [1.20], the four surface unknowns to determine on the surface are 1y (7),
Oo(r)/On, 11 (r) and O (r)/On, whereas the quantities inc (1), go(r, ")
and g1(r,r’) are known. It is therefore necessary to have two additional
equations, which are obtained from the boundary conditions [1.9] on the
surface S, valid V(r, ') € S. Then, from equations [1.18] (the case for which
is 7" € Qq), [1.20] (the case for which is v’ € ;) and [1.9], V(r, ') € S, the
IEs are [TSA 00]:

Yine(r') = +500(r ][¢ Wdﬁfgo(?’ r)awor(L ) s

. [1.21]
a91 1 n Otbo(r)
0 771#0 ][’l/} dSJr/S o1 gl(r,T )Tds

The symbol § stands for the Cauchy principal value, which means that the
case r = 7’ is not accounted for in the calculation of the integral. In addition,
letting [ dS = f dS+ [, dS (where P is a piece), it is important to note that

for 7 = r' € ST (at the upper limit), [, 1o(r )890(7' )48 = -H/JO( ’)/2, and
forr = 7' € S~ (at the lower limit), [, ¥o(r )390(”’ )ds = vo(r')/2.

To solve a scattering problem, the currents on the surfaces vy and 9y /On
must be calculated. For an arbitrary shape of a surface, a numerically rigorous
method is needed to compute them because the IEs have no analytical
solution. This is discussed in the following section. From the knowledge of
these currents, the scattered field ; sca (i = {1,2}) is then computed in the
domain €2; — S from equations [1.19] and [1.20] (with 7" € €);), respectively.
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8 Method of Moments for 2D Scattering Problems

COMMENT 1.1.— 2D SCALAR GREEN FUNCTION-. For a 2D problem, the
Green function is expressed as:

gi(r,r') = iH(()l)(ki |r—7'||) = iH(()l) [kz\/(:v — )2+ (2 — z’)Q], [1.22]

where H(()l) is the zeroth-order Hankel function of the first kind. Their

derivatives with respect to x and z are then (with D = ||r — 7/||):

dgi(r,7r") _ 0gi(k;D) 0D Jki (1) x—a
= 92 = g p) L
ox oD Ox 4 1 ( )
[1.23]
891‘(7’, Tl) 8gz(kzD) 6D sz (1) z — 2/
= e L (o) s
0z oD 0z 4 1 (ki D)
The quantity dg;(r,r")/On = n - Vg;(r,r’) is then:
dgi(r,r') gk B (ki [l — )
= (r—7') n. [1.24]

on 4 | — 7/

Figure 1.2 shows the real and the imaginary parts of H(()l)(m) and its
envelope versus  (z > 0). For x > 1, it behaves as a periodic function
because for x — +o00, we have [ABR 70]:

HD (z) ~ \/Zexp [j (x _ %)} as & — +00. [1.25]

Moreover, the equation of its envelope is \/2/(zmw) o /1/x, which
corresponds to a cylindrical wave (2D problem).

1.2.4. Radar cross-section (RCS)

For a 2D problem, in medium €2, the RCS is defined as:

2

wsca,O : [1 .26]

RCS = lim 277’
winc,O

r’'—00

where 7’ is the distance between the object (phase center) and the receiver.
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Integral Equations for a Single Scatterer 9

0.6

—Real
= = =Imaginary
- - Envelope

5 10 15 20 25 30 35 40 45 50
Variable x

Figure 1.2. Real and the imaginary parts of Hf)1> (z) and its
envelope versus x (x > 0)

Figure 1.3. Huygens’ principle in the far field for a 2D problem

~
> X
P

As shown in Figure 1.3, in the far field (v’ — oo, 7/ > and 1’ > \g =

2m/ko),

=7l = ' =7 = r

A~

/

— Ky - r for the phase, whereas for

the amplitude term || — 7| ~ r’. From equation [1.25], in the observation
direction defined by ks,, the Green function can be simplified in the far field

_ ] (1) ~ ] 2 i(kor’ —ksca-r—m/4
go(r,v') = ZH (ko || — 7'|]) ~ 4\/;M,eﬂ< ° /M. e

as:

Moreover,

dgo(r,r’) .
on -

n- Vr’g()(rv Tl) ~ —jg()(T, T/)ksca ‘M.

[1.28]
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10 Method of Moments for 2D Scattering Problems

Substituting these two equations into the Huygens’ principle [1.19], the
scattered field in medium €2 in the far-field zone (super script co) is:

i [ 2 s
11)2(2170 = 4\/;074,6 ]ﬂ'/4+k0r wsocoa%'l,binc,o, [129]

where the variable w;’% is:
1 . . Mo(r)] ..
w:cii’% == / |:]ksca : mﬁo(r) + M e ks "dS, [1.30]
’ 1/}inc,0 S on
f(r)

and inc 0 is the modulus of the incident field ipc in medium 2. Then, the
scattered far field is then obtained from the Fourier transform of f(r).

The substitution of equation [1.29] into equation [1.26] then leads to:
2
0
Gt
[1.31]

Since w;);’% is dimensionless, the RCS has the dimension of a distance
(meter), since we consider it to be a 2D problem.

1.2.5. Normalized radar cross-section (NRCS)

If the surface has a finite extent, edge diffraction occurs, because the
incident field does not vanish on the edges of the surface. To reduce this
phenomenon, for the scattering from a rough surface, a tapered incident wave
is used instead of a plane incident wave. A possible option is the Thorsos
wave defined as [THO 88]:

. x + ztan Oine)? .
() = s 239 e - ) exp T E 5 e e
~—_———
Plane wave Corrective term

Damping factor

[1.32]
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Integral Equations for a Single Scatterer 11

2(x + ztan Oy )? B 1] 1 (133]

g2 (kog cos Oinc)?’

w(r) = [

and kinc = ko(sin ;& — cos 0;2). The damping is orthogonal to the incident
vector ki,.. The additional corrective term allows us to better satisfy the
Helmholtz equation. Nevertheless, the Thorsos wave verifies the Helmholtz

equation at the order O (W) , implying that 1/C = gk cos Ojpe >>
1. This condition is not satisfied for:

— grazing incidence angles: Indeed, for given kg and g, if 0j,c — 7/2, then
gko cos Bipe — 0.

— ¢ small in comparison to the wavelength \g: in other words, if the width
of the incident beam is small in comparison to the wavelength.

Typically, 1/(gko cosbinc) < C = 0.037 and in the following, we take
g = L/6, where L is the surface length.

From the Thorsos wave, the normalized incident power on the rough surface
mean plane z = 0 is then:

1 Foo X
Pinc = — |'¢inc0‘2 /OO S'inc - z’z:(] dx

1 too L
S ine|*Kine - 2
2’1/1inc,0|2770 /—oo ‘ lnc’ e

c0S Gine /+°° 9
= ; dzx
2\¢inc,0!2770 —00 ’me’ ‘Z:O

_ gcosbi [ [ 1 + 2tan? Ginc}

210 207 2k3 92 cos? Oinc

dzx

[1.34]

where 7y is the wave impedance in medium )g. In addition, Sj,. is the
Poynting vector that gives the power density carried by the incident wave.
The NRCS is defined as [TSA 00]:

2
, 0o |2 woo,()
1 sca,0

NRCS = lim o sl = [1.35]
=00 210 Dinc 167n0ko  Pinc
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12 Method of Moments for 2D Scattering Problems

where the field @Z}f;”% is computed from equation [1.30]. Note that unlike the
RCS, the NRCS is dimensionless.

1.3. Method of moments with point-matching method

The MoM is a numerical method that has been used extensively for the
solution of scattering electromagnetic problems. Many excellent textbooks like
[HAR 68, TSA 00] have been written on this subject. A characteristic of this
technique is that it leads to a full matrix equation that can be solved from
a matrix inversion. In this book, the MoM with point-matching method and
pulse basis function is applied. Their main advantages are that they are simple
to program and are efficient for scattering from rough surfaces.

Consider a 1D IE of the form:

L(f) =g, [1.36]

where £ is an integral operator or integral-differential operator, f is the
unknown function and g is a given function.

— Step 1: Basis functions

A set of N basis functions in the domain D is chosen. Let the basis
functions be f1, fo,..., fny. The unknown function is expanded in terms of
a linear combination of these functions:

N
ff=> anfa, [1.37]

n=1

and f verifies limpy_, 4 0o ‘ - f ‘ = 0. The substitution of equation [1.37] into
equation [1.36] leads to:

N
Efzﬁ(Zanfn> +e=yg, [1.38]

n=1

where ¢ is the residue due to the truncation of the sum at the order N. Since
L f is a linear operator:

N
Lf=) an(Lfa) +e=0g. [1.39]
n=1
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Integral Equations for a Single Scatterer 13

— Step 2: Testing functions

Next, a set of M weighting functions wi,ws,...,wys is chosen.
Multiplying equation [1.39] by wy,(x) (with m = 1...M), assuming that
{(wm, ) ~ 0 and integrating over the domain D, we obtain:

N N
<wma Zan(ﬁfn)> = Zan <wma Efn> = <wmag> s [1.40]

n=1 n=1

where the inner product (.. .) is defined for a single variable x as:

(f.9) = /D f(@)g(x)da [1.41]

— Step 3: Linear system

From equation [1.40], the linear system to be solved is:
ZX =b, [1.42]

in which the elements of the matrix Z and the vector b are defined as:

1.43
bm - <wmag> ’ [ ]

and the elements of the vector X, which equals a,, must be determined. The
matrix Z is the impedance matrix of the scattering problem and depends on
the shape and the electric properties of the surface.

— Point-matching method

Basis functions can use full domain functions such as sines, cosines, special
functions, polynomials and modal solutions. A set that is useful for a practical
problem is the subsectional basis function. This means that each f, is only
non-zero over a subsection of the domain of f.

A common choice is the pulse function:

lifa, <z < B,

0 otherwise ’ [1.44]

ute) = {

where the interval D is divided into N subintervals 3, — «,, with end points
aq and By withn = {1,2,... , N}.
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14  Method of Moments for 2D Scattering Problems

For the weighting functions wy,, the following are two common choices:

1) Galerkin’s method. In this case, the weighting functions are the same as
the basis function, that is w, (x) = f,(x) withn = {1,2,...,N}.

2) Point-matching method. In this case, the weighting functions are the
Dirac delta functions w,, = 0(z — z,,) with m = {1,2,..., M}, and we
choose M = N.

From the point-matching method and equation [1.40], we obtain:

Zmn = (Wi (), L[fn(z)]) = (6(x — 2m), L[fn()])
_ /D 5z — wm) L1 (@)|dz = L[fa(@m)], [1.45]

and

bm = (W, g(x)) = (6( — zm), 9(x))

= [ 0(x—zp)g(x)dx = g(xm). [1.46]
D

1.4. Application to a surface

In this section, the MoM is applied along with the point-matching method
to convert the IEs [1.21] into a linear system.

1.4.1. The Dirichlet boundary conditions

For a PC surface and for the TE polarization (the Dirichlet boundary
conditions), the field vanishes on the surface, 19 = 0. Thus, equation [1.21]
can be simplified as:

Yine (") = /S go(r, ") 61?757’) ds, [1.47)

where the points 7 = (z,y) and ' = (2/,y’) are on the surface S.
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Integral Equations for a Single Scatterer 15

For a surface of length L and centered on z = 0, equation [1.47] can be
written as:

Lf=y, [1.48]

where

L/2 dz\ 2 ,
Lo = 1+< ) gg(r,r)dg:o. [1.49]

Lo\
f= %g)a 9 = Yinc (")

The unknown is f. From the MoM, equation [1.47] is converted into a
linear system ZX = b. The elements of the impedance matrix Z, Z,,, (with
(n,m) € [1; N]), and the components of the vector b, b,,, are given from
equations [1.45] and [1.46] by:

Zmn = /an 1+ <d;’> gO(TaTm>dx

2
~ )1+ () 60(Pms ) (B — o), [1.50)

and

b = Yine(Tm)- [1.51]

For the calculation of the integration over x of Z,,,,, we assumed that the
integrand does not vary significantly on the range x € [a,; 8,]. Physically, this
condition is fulfilled if 5, — o, <K Ag (corresponding to slow variations of the
Green function gy over the distance 3, — «y,), where g is the wave length in
medium . Typically, for the simulations 3, — a,, = A\g/10, corresponding to
a distance for which the Green function slowly varies. For m = n, the Green
function has a singularity. Then, the evaluation of integral [1.50] requires us
to make Taylor series expansions of the integrand around » = r,,. For more
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16  Method of Moments for 2D Scattering Problems

details, see [TSA 00, Chapter 4]. In conclusion, the elements of the impedance
matrix are:

2 5 B
T =" , [1.52]
HSY (ko 7 — ml) for m # n
where |7, — 7| = \/(xn —2m)2 + (2n — 2m)?
and " on [1.53]
bm = winc(rm)

with v, = dz,,/dx, and A,, = B, — a,.

1.4.2. The Neumann boundary conditions

For a PC surface and for the TM polarization (the Neumann boundary
conditions), the normal derivative of the field vanishes on the surface,
Oy /On = 0. Thus, equation [1.21] can be simplified as:

8 /
(') = gon(r") = . o) s (154

where the points 7 = (z,y) and ' = (2/,y') are on the surface.

Using the same method as in the previous section and from equation [1.24],
we have:

ko B (kollrn — Tl
4 [7n = Tl
Zpn = X [Yn(Tn — Tm) — (20 — 2m)] form # n, [1.55]
1A m form =n
2 Aw 14792
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Integral Equations for a Single Scatterer 17

where 7/, = d% and
Xn = w(rn)

1.56

{bm = ¢inc(rm)~ [ ]

1.4.3. General case

For a dielectric medium €2, equation [1.21] leads to:

( Yine(r') = +5 1/10 ][¢ 890 )d5+/SQO(T77")61/§7§T)dS

Neumann Dirichlet

_ 1 \don(r ) 1 nBo(r) o
0 = ¢0 ][w dS+/Sp01gl(r7r) o ds

Dirichlet with kg — k1

[1.57]

Neumann with kg — k1

The general case is then obtained from “linear combinations” of the
Neumann and Dirichlet boundary conditions. The discretization of the above
equations from the MoM then leads to the following impedance matrix:

_ ZNeu 1 ZDir
Z =z = , 1.58
ZNeu,ko—k1 — L Dir,ko—k1 L1.58]
pPo1

where the subscripts “Neu” and “Dir” mean Neumann and Dirichlet,
respectively. It is important to note that for Zney k,—k,, the Cauchy principal
value is —1/2, instead of +1/2 for Zney. In addition, the vectors b and X
are:

_winc(rl) 1 7,[)0(7‘1)
¢inc(r2) 77b(J(T2)
. T
b= %‘“C(TN) and X = ggg(ry)) [1.59]
0 81#0(?”2)
. ¢ N times o
0 ()
L L on
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18 Method of Moments for 2D Scattering Problems

B The square matrix Z is of size 2N x 2N. The square matrices Zpir and
ZNeuw Of size N x N are expressed from equations [1.52] and [1.55],
respectively.

For a dielectric media 2y, the sampling step 3, — v, is (Ao/10)/[\/€x1]
instead of /10 for a PC surface because the wave number in medium §2; is
k1 = ko\/€;1, where ko is the wave number in a vacuum. Thus, for a highly
conducting surface checking Im(e,;) > 1, the number of samples on the
surface increases significantly, which makes the inversion of the impedance
matrix very difficult. To overcome this issue, the impedance boundary
condition (IBC) is applied.

1.4.4. Impedance boundary condition

For Im(e,1) > 1, system [1.57] can be converted into only one IES. Indeed,
from the Leontovitch boundary condition which is also called IBC, we have on
the surface r € S:

TE s yo(r) = 2 [22 200

) [1.60]
Mo(r) ko [eo
™ ; 2P0 0 Jero
on iV e Yo(r)
where Im(e,1) > 1. System [1.57] is then simplified as:
ol AN 31/10(7”) AN L 6&690(1”,’?’)
TE : ¢inc(v') = /s o {gg('r,r ) oo / o on ] ds
[1.61]

’ 1 12 ’ k T 8 bl !
T clr) = () + f alr) |an(r )2 [0 9000 g
For the TE polarization, it is important to note that the unknown is
OPo(r)/On since |0vo(r)/On| > |¢o(r)|, which is similar to considering
the Dirichlet boundary condition. On the other hand, for the TM polarization,
the unknown is ¢o(r) since |1o(r)| > [0¢o(r)/On|, which is similar to

considering the Neumann boundary condition.

35U8217 SUOWWOD AR 3|ed||dde auy Aq peusenoh are sajoe YO ‘8sn Jo SanJ Joj Akeig1T auluQ AS]IAA UO (SUOIIPUOD-pUe-SWB)/W0D A3 1M ARe.q Ul |uo//:SdlYy) SUORIPUOD pUe SWB | 8Yl 89S *[£202/2T/9T] uo AriqitauluQ 48| ‘ulssuifug jo AlsieAlunexeyq Ag /1opwod A8 |Im Arelqipul|uoy//sdny woiy papeojumoq



Integral Equations for a Single Scatterer 19

From the MoM, the matrix impedance is then:

Z = BZpir + aZNeu, [1.62]
with
ca_ _J [&0  _ Oto(r) _ Oto(r)
TE: 5 =1, a—ko 6,.1’X_ o , Yo(r) =« o
. [1.63]
k " 0
s =2 [Tt X =, 2 i)

In conclusion, the use of the IBC allows us to discretize the surface along
the wave number ko and then it becomes independent of the permittivity of
medium 2. In terms of number of unknowns, it is equivalent to solving the
scattering by a PC surface.

1.5. Forward-Backward (FB) method

For a problem with many unknowns, it is interesting to investigate
rigorous fast numerical methods to treat the scattering from a large
electrically rough surface. For instance, for a single rough surface, we can
quote the banded-matrix-iterative-approach/canonical grid (BMIA-CAG) of
Tsang er al. [TSA 93a, TSA 93b, TSA 95] of complexity O(N log N), the
FB method of Holliday et al. [KAP 96, ADA 96, HOL 98, 10D 02] of
complexity O(N?) and the accelerated version FB method with spectral
acceleration (FB-SA) of Chou et al. [CHO 02, CHO 00, TOR 00, TOR 02] of
complexity O(N), in which N is the number of unknowns on the surface.

In this section, the FB method is applied to a dielectric surface to speed up
the calculation of Z ™~ 'b, in order to reduce the complexity to O(N?) instead
of O(N?) from a direct lower—upper (LU) inversion.

We want to solve ZX = b < X = Z 'b. From equation [1.58], the
matrix Z of size 2N x 2N can be expressed from four square submatrices of

size N x N as:
B [ X _ b
D},X_[ J,b_{bQ]. [1.64]

|

Q
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20 Method of Moments for 2D Scattering Problems

The FB algorithm decomposes Z X = b into:

{ %DiagXI,Forw + BDiagXZForw = bl - %Foerl - BiFoerZ [1 65]
CDiagXLForw + DDiagXZ,Forw = b2 - CFoer1 - DFoer2 T
and
{ %DiagXI,Back + BDiagXQ,Back = _%Bacle - BiBackXQ [ 66]
Ciag X1 Back + Dpiag X2 Back = —CBack X1 — Dpack X2~ )

For instance, ADiag is a diagonal matrix, Afory a lower triangular matrix
and Ap,k  an upper triangular matrix, all built from A
(A = Aporw + ADiag + Agack)- The subscripts {Diag, Forw, Back} stand for
diagonal, forward and backward matrices and are referred to as diagonal,
lower and upper triangular matrices, respectively. Moreover,
{b1,by, X1, X2} are column vectors of length N. Finally, the unknown
vectors are decomposed into X; = X orw + X Back (¢ = {1,2}), in which
X Forw gives the forward contribution (from the points on the left of the
current point) and X; gack gives the backward contribution (from the right).
The surface is oriented by assuming that the incident beam propagates from
the left to the right.

To compute X; = X porw + X Back, an iterative procedure is applied.
Assuming first that Xi,Back =0= X, = Xi,Forw + Xi,BaCk = Xi,Forw’
equation [1.65] is solved for X; rorw. Then, by introducing X ; rorw in equation
[1.66], we obtain X; gack. The first iteration X ,EO) is then equal to X; porw +

X; Back- The scheme is repeated to calculate the next iterations X l(-p ) up to the
order p = Fgg.

The use of equations [1.65] and [1.66] is very convenient to solve by
substitution for X, porw and X pack. For instance, from [1.65], since
{ Aforw, BForw; CForw, Drorw} are lower triangular matrices with null
diagonal coefficients, we get with m € [2; N]:

n=m-—1
m,m ym m,m ym —_ }m m,n yn m,n yn
ADiag Xl,ForW + BDiag XQ,ForW - bl - § (AFoerl + BFoer2 )
n=1

[1.67]

Diag 1,Forw Forw Forw

n=m-—1
Chiag XT¥orw + Dpiag X8korw = 05" = Y (Crome X{' + D X3')
n=1
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For instance, A™" is the element of the matrix A of column m and row n.
X' is the nth component of the vector X;. Thus, assuming first
XBak = 0= X; = Xi,Forw + Xi,Back = Xi,Forw and by SOIVing equation
[1.67], the unknowns { X{'gys X8 kory | With m € [2; N] are calculated from
4AN? /2 multiplications. From equation [1.66], we obtain a similar equation
system to [1.67] but the sum over n is n € [m + 1; N|, and the unknowns
{ X Back> XTgack ) With m € [1;N — 1] are also calculated from 4N?/2

multiplications. In conclusion, the complexity of the FB method is O(N?).

Déchamps et al. [DEC 07b] mathematically showed that the FB method
converges if the spectral radius (i.e. the modulus of the eigenvalue, which has
the highest modulus) of the characteristic matrix M c,FB 18 strictly smaller
than 1, where M ¢,FB 18 expressed as:

_ — — —1 = — — —1 =
MqFB = (ZDiag + ZForw) Z¥orw (ZDiag + ZBack) Zpack-  [1.68]

This method will be tested in Chapter 2.

1.6. Random rough surface generation

In this section, we describe how to generate realizations of a random rough
surface. We assume that the surface is Gaussian, which means that the height
probability density function (PDF) follows a Gaussian process or a normal
law. We assume that the surface height profile z(x) is univocal and follows a
stationary Gaussian random process.

1.6.1. Statistical parameters

For a centered Gaussian process, the surface height PDF is given by:

1 22
(2) = —=), 1.69
p2(2) o2n eXp< 202) [1.69]
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22 Method of Moments for 2D Scattering Problems

and checks:
(1) = /OO p(z)dz =1
(z) = /_00 z2p.(2z)dz =0 , [1.70]
(=@ == [ ez =o?

where

(o) = /Oo (o)p=(2)dz. [1.71]

—0o0

The real number o, stands for the surface height standard deviation and the
surface height mean value (z) is zero. Since the height PDF is Gaussian, the
derivative d"z(x)/dx™ also follows a Gaussian process.

Full characterization of the random rough surface height z is necessary for
knowing the correlation between two heights on the surface of abscissa z; and
x9. For z real, the surface height autocorrelation function is then defined as:

(z(x1)z(x1 + ) = Cy(z). [1.72]

Since the process is stationary, C, depends only on the abscissa difference
T = 9 — x1 between two points of the surface. Then, a Gaussian process is
fully characterized by its height PDF, p.(z), and its surface height
autocorrelation function, C,(x).

The power spectral density (PSD) or the surface height spectrum is defined
as:

A JFOO .
C.(k) = FT[C.(z)] = C.(z)e % dz, [1.73]
and
1 —17A 1 e jkx
C.(z) = —FT CL (k)] = — C.(k)e* dk, [1.74]
2 27 J_ o

where FT denotes the Fourier transform.
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From equations [1.74], [1.73], [1.72] and [1.70], we have:

1 [t .

o2 = C,(0) C.(k)dk. [1.75]

:ﬁ .

In addition, we can show that the surface slope autocorrelation function Cj
is defined from the surface height autocorrelation function C, as [BOU 99]:

C&PC, 1 [r

_ 2 A ikx
Cs(x) = e kE“C,(k)e’*dx, [1.76]
and then the slope variance is:
1 [T ,.
o2 =C,(0) = o / k2C.,(k)dk. [1.77]
™ —0o0

In addition, equation [1.77] shows that the surface slope spectrum is
Cs(k) = K2C, (k).

1.6.2. Generation of a random praofile

At the input of a linear filter, if e is a stationary process (of second order)
of PSD C, then the output signal s of PSD C satisfies [KUN 91]:

2 .
Ce, [1.78]

~

Cs = |G,y

where C'g = FT(g) is the PSD of g, where g is the impulse response of the
filter. In addition, if Cy; € RY, then:

Cy =1/ == [1.79]

Since the system is assumed to be linear, we have [KUN 91]:

s =g+e=FT ! [FT(g)FT(e)] = FT ! Cs FT(e)| , [1.80]

e

where the symbol * stands for the convolution product.
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24  Method of Moments for 2D Scattering Problems

Since we want to generate a surface height Gaussian process z = s, a
Gaussian white noise of unitary variance is applied at the input of the filter,
which implies that C, = 1 Vk. Then:

z=FT! [\/g FT(e)] . [1.81]

Numerically, the convolution product is calculated in the Fourier domain
because the complexity of a fast Fourier transform (FFT) is O(N log N)
instead of O(NN?) if the convolution product is calculated from its definition:

1 N
2(i) = g(i) x e(i) = 1 Y _g(n)e(n — i), [1.82]
n=1

where NV is the length of both g and e. Since the surface height z is real, from
equation [1.81], the function inside the operator FT~! must satisfy f*(—k) =
f(k) Yk, with * the complex conjugate operator. As shown further, C. is real
and an even function of k. Thus, FT(e) = é is a complex Gaussian white noise,
which must satisfy é(—k)* = é(k). For more details, see [TSA 00, Chapter 4].

For surface height Gaussian and exponential autocorrelation functions
defined as:

2 a?

C,(x) = oZexp 7]
Kie [1.83]

C.(z) = 0% exp 7

the surface height spectra (or PSD) are given from equation [1.73] by:

272
C.(k) = 0?Ley/T exp (—k LC)

4
A 2021,

O = e

[1.84]
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For an exponential autocorrelation function, its derivative is not defined for
x = 0. This implies, from equation [1.77], that the surface slope variance is
not defined (from —C”/(0)). On the other hand, it can be estimated from the
spectrum of the generated surface C.(k), because C. (k) has a limited band,
of upper cutoff spatial frequency k.. Indeed, to have k. — oo, the sampling
step of the surface (generates from an FFT algorithm) must tend to zero since
Az =7 /(2k.).

From equations [1.84], [1.83], [1.77] and [1.75], we can show for a
Gaussian autocorrelation function that:

Ok A Oz ocetf (P
keLe kL2 2ooV2, [1.85
Os.k. ~ 05,00 erf(kchC) - ﬁ exp ( C4 C>:| ) 05,00 = O—ch\f’ [ ]
and for an exponential autocorrelation function that:
2arctan(k.L.)
Ozk. = O0z,00 f
. 1.86
. arctan(k.L.) 2k, [1.86]
Osk, =0 — ", 0500 =20
s,ke 8,00 kch 5 8,00 2,00 ﬂ'LC

For k. — oo, arctan(k.L.) — /2 and arctan(k.L.)/(kcLc) — 0. Then,
0200 = 0, and 04 oo = 05. Compared to a Gaussian autocorrelation function,
the decreasing is slower since the function arctan(u)/u decreases more slowly
than the functions ue "/ /\/7 and erf(u/2).

For remote sensing applications, it is interesting to study the case of a sea
surface. Under approximations [ELF 97], the sea surface can be modeled as a
Gaussian process. For a 2D surface, the surface height autocorrelation function
is defined from its spectrum as:

1
(27)?

+o0o +oo ) .
C.(z,y) = / C, (ky, ky)eTF= Tk qk dk,.  [1.87]
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26 Method of Moments for 2D Scattering Problems

In addition, an ocean-like 2D spectrum is defined in polar coordinates
(kp, @) from C,(ky, ky)dkydk, = k,C.,(p,¢)dk,dp = S(k,)[1+
f(¢)]dk,d¢, where S(k,) is the isotropic part of the sea spectrum and f(¢) is
its anisotropic part. As C,(0,0) = o2, we then have:

9 1 —+00 +oo
O'Z = (27[_)2/_00 /_OO Cz(kx,ky)dkxdky

21 ')
=(271T)2 /0 1+ 7(9) /O S (k) dk,

1 oo
=3/ S(k,)dk,, [1.88]

since f is a periodic function over ¢.

To set up a correspondence between a 2D spectrum S(k,) and 1D
spectrum C’Z(k) the comparison of equation [1.88] with equation [1.74] leads
to C,(|k]) = S (kp)/2 since C., is an even function of k. In the following, the
spectrum of Elfouhaily et al. is used [ELF 97] for dealing with the case of a
sea surface.

1.6.3. Simulations

In Figure 1.4, the surface height autocorrelation function is Gaussian of
correlation length L. = 10 and of variance o, = 1. a) The number of samples
is N = 8,192, and b) the number of samples is N = 1,6384.

The top of Figure 1.4 shows that the surface heights (more precisely,
erf(3/1/(2)) =99.7% of heights) range from —30, to +30,. As the
correlation length decreases, the simulations show (not displayed here) that
the surface is more irregular (the horizontal distance between two consecutive
extrema decreases) because the surface slope variance increases.
Theoretically, from equation [1.85], if L. is divided by 2, then the slope
variance o« 18 multiplied by 2.

In the middle of Figure 1.4, the histograms show that z follows a Gaussian
process and as the number of samples N increases, the histogram better
matches the theoretical histogram (which is related to the height PDF by a
normalization).
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Figure 1.4. Top: Surface heights over x € [0;200] versus the abscissa x. Middle: Height
histogram versus the surface heights. Bottom: Surface height autocorrelation function versus
the abscissa x. The surface height autocorrelation function is Gaussian of correlation
length L. = 10 and of variance o, = 1. a) The number of samples is N = 8,192,
and b) the number of samples is N = 1,6384

The bottom of Figure 1.4 shows as N increases, the curve obtained
numerically from z and equation [1.82] better matches the theoretical curve
(equation [1.83]) for larger x. Indeed, as NN increases, the length of the
surface increases (with a constant sampling step) and then the correlation
between far surface points is better predicted.

From Figure 1.5, the same remarks hold for an exponential autocorrelation
function. The comparison of Figure 1.5 with Figure 1.4 shows that the surface
is more irregular than that obtained from a Gaussian autocorrelation function,
because the high frequencies contribute more to an exponential
autocorrelation function. Indeed, as k increases, equation [1.84] shows that
the corresponding spectrum decreases more slowly than that obtained from a
Gaussian autocorrelation function. From an electromagnetic point of view,
these high frequencies can have a strong impact on the scattered field.

Table 1.1 shows the values of the surface height and slope standard
deviations, where o, ;. and o, are computed from equations [1.85] and
[1.86]. Moreover, ¢, and 75 are computed from the generated surfaces shown
in Figures 1.4 and 1.5. For the height variance, we can observe that o j, is
very close to 7, and the difference decreases as /N increases. For the slope
variance and for a Gaussian autocorrelation function, a good agreement is

35U8217 SUOWWOD AR 3|ed||dde auy Aq peusenoh are sajoe YO ‘8sn Jo SanJ Joj Akeig1T auluQ AS]IAA UO (SUOIIPUOD-pUe-SWB)/W0D A3 1M ARe.q Ul |uo//:SdlYy) SUORIPUOD pUe SWB | 8Yl 89S *[£202/2T/9T] uo AriqitauluQ 48| ‘ulssuifug jo AlsieAlunexeyq Ag /1opwod A8 |Im Arelqipul|uoy//sdny woiy papeojumoq



28 Method of Moments for 2D Scattering Problems

also obtained between o . and 7, whereas the agreement is less good for an
exponential autocorrelation function. In addition, as IV increases, the slope
variance does not change significantly with a Gaussian autocorrelation
function, whereas with an exponential autocorrelation function, it changes

significantly.
3 T T T T T T T T T
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g ]
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a) N = 8,192 b) N = 16,384

Figure 1.5. Same plots as in Figure 1.4 but for an exponential
autocorrelation function

N o Oz k. Os Os.ke
Gaussian  |8,192 |0.963]1.000{0.132(0.141
Gaussian  |16,384]0.988(1.000{0.141]0.141
Exponential {8,192 [0.985(0.999(0.132{1.272
Exponential |16,384(0.993(0.999|1.587|1.805

Table 1.1. Values of the surface height and standard deviations

The comparison of the surface heights and slopes computed from a sea-
like spectrum and a Gaussian autocorrelation function of the same height and
slope variances is shown in Figure 1.6. The wind speed defined at 10 m above
the sea is ujp = 5 m/s, the number of samples is N = 524,288 and the
surface length is 400 m. Figure 1.6a) shows that the surface heights are similar,
whereas the surface slopes strongly differ. Indeed, as shown in Figure 1.7, the
sea slope spectrum contributes significantly to high wave numbers whereas for
a Gaussian autocorrelation function, its slope spectrum rapidly decreases as k
increases.
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Figure 1.6. Top: Surface heights in m versus the abscissa x in m. Bottom: Surface slopes versus
the abscissa x in m. For the sea spectrum, the wind speed w10 = 5 m/s. The number of samples is
N = 524288 and the surface length is 400 m. For the Gaussian surface height autocorrelation
function, the height variance o2 is the same as the sea surface and its associated correlation
length L.. is computed from the sea surface slope variance o2 and equation [1.85] with k. — 0o

Heigh spectrum

Slope spectrum

X
1
1

\

I
-1 0 1 2 3

10
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Figure 1.7. a) Surface height spectra C. versus the wave number k in rad/m.
b) Surface slope spectra Cs = k*C., versus the wave number k in rad/m.
Same parameters as in Figure 1.6
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30 Method of Moments for 2D Scattering Problems

1.6.4. Conclusion

This section shows that the elevations of a random rough surface following
a Gaussian process depend strongly on the choice of the height
autocorrelation function. Indeed, two random rough surfaces having the same
slope and height variances can strongly differ if the slope spectrum of one of
the surfaces contributes to high frequencies. In fact, the surface variance
(height, slope etc.) is obtained by integrating the corresponding spectrum over
all the wave numbers, and cannot give the associated power for each
frequency. When we want to properly characterize a natural surface (ocean,
land, mountain, etc.), this point highlights that the knowledge of the surface
height autocorrelation function or its spectrum is essential. Indeed, we will
show in Chapter 2 that the high-frequency components of the surface can
have a strong impact on the scattered field.
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2

Validation of the Method of Moments for a
Single Scatterer

2.1. Introduction

In this chapter, the method of moments (MoM), presented in Chapter 1, is
tested on a cylinder of infinite length along the ¢ direction. Indeed, from this
canonical shape, the scattered field can be derived exactly and analytically by
using the Bessel functions. Then, the scattered fields calculated with these two
methods are compared for both a perfectly conducting and a dielectric cylinder.
In addition, the MoM is compared with the physical optics (PO) approximation
for the scattering from an elliptical cylinder, a plate and a rough surface.

Recall that the time convention e~/ is used. Then, the derivative over the
time t is 0/ 0t — —jw.
2.2. Solutions of a scattering problem

In this section, the possible ways to solve an electromagnetic scattering
two-dimensional (2D) problem are described.
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32 Method of Moments for 2D Scattering Problems

For a 2D problem and V (7, 7’) € S, we have shown in Chapter 1 that the
currents 1 and 9¢y/On on the surface S separating two dielectric media €;
(1 = {0, 1}) satisfy:

(") = = [ o) 2207 o) 2000 s

; [21]

_ r Ggl(r,r’) o L ror 87;Z)0(T)
! _/s [%( )™ on ngl( ) on }dS

where ¥’ = 2’Z + 2’2 and » = xZ + 22 are two points on the surface, and
Yine 18 the incident field in medium €2 illuminating the surface. The problem
is assumed to be invariant with respect to the ¢ direction. The Green function
inside €2; is expressed as:

gi(r,r') = iH(()l)(ki |r—7'|)) = %H(()I) [kz\/(:c —x')2+ (2 — z’)2] ., [2.2]

where H(()l) is the zeroth-order Hankel function of the first kind. The scattered
field 1sca,; inside Q; (r' € Q; and S excluded) is then computed using the
Huygens’ principle, in which the currents vy and 9vy/0n on the surface are
involved.

For the transverse electric (TE) polarization, the electric field E; = ¢,y
(t = {0,1}) and po1 = 1, whereas for the transverse magnetic (TM)
polarization, the magnetic field H; = ;4 and pg; = €p/€1, in which ¢; is the
permittivity of £2;, which is assumed to be non-magnetic. The wave number
k; = kon; = ko./€r;, Where €,; is the relative permittivity of the medium €;
and kg is the wave number in vacuum.

In addition, the field v; satisfies the Helmholtz scalar wave equation in
medium €2;:

V2 (r) + k24pi(r) = 0, [2.3]
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Validation of the MoM for a Single Scatterer 33

and the boundary conditions

_ . . tho(r) = u(r)
Dielectric media: { f - Vho(r) = porn - Vapi (1)

Dirichlet: Yo(r) =0 : [2.4]
Neumann: 5%(7‘) =0
on

for r € S, and n is the normal to the surface oriented toward ).

Finally, to have uniqueness of the solution, the scattered field must satisfy
the far radiation condition (far from the object r — o0), which is expressed as
[BOW 87]:

0
r—00 or

If the incident field is a plane wave, only the scattered field satisfies
condition [2.5].

According to the scattering problem that needs to be solved, either the
integral equations [2.1] or the Helmholtz equation [2.3] combined with the
boundary conditions [2.4] and condition [2.5] are used.

For objects of simple shape, such as circular cylinder, elliptical cylinder
and sphere for a three-dimensional problem, the scattered field can be derived
with any approximation [BOW 87]. Section 2.3 derives the expression of the
scattered field by an infinite cylinder illuminated by a plane wave.

For objects of complex shapes, the integral equations are solved
numerically. One possible candidate is the MoM presented in Chapter 1. This
method will be validated from the exact solution of the scattering from a
circular cylinder and will be also used to study the accuracy of the PO
approximation.

To solve the scattering problem, approximations can be introduced,
allowing us to obtain an approximate expression (often analytical and applied
next on a local region of the scatterer) of the scattered field. Section 2.4
presents the PO approximation.
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34 Method of Moments for 2D Scattering Problems

2.3. Comparison with the exact solution of a circular cylinder in free
space

In this section, the field scattered by a cylinder is discussed. Since the
cylinder is assumed to be invariant with respect to the direction g, its length is
infinite in this direction (see Figure 2.1). The curl operator in Cartesian
(F = F,(z, z)y) and polar coordinates (r,0 ) (F = F.7 + Fy0) is defined as:

oF, OF,
curl F = —— Y34+ — Y3 [2.6]
0z 0z
and
10F, oF, ~
1F =-—Y#+ 0. 2.7
cur ] T+ o [2.7]
y
‘‘‘‘‘‘‘‘‘‘‘ z 2’- é f:
kmo 91__ \/
> D
P - -t ( "J;;\é;\ ¥
a
Y s
Figure 2.1. Scattering from an infinite cylinder
respectively. In addition
0 0 0 10,
v 7 2 r —0 [2.8]

With n = 7, from equation [2.4] the boundary conditions [2.4] are then:

Yo(r) =1 (r)
Dielectric media: < 9 oYy

o T 291
Dirichlet: Yo(r) =0 ' ‘
Neumann: Holr) =0

or
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Validation of the MoM for a Single Scatterer 35

For the TE polarization, E = v(x, z)¢ and from a Maxwell equation [1.1],
H = curl E/(jwpyp). Then, from equations [2.6] and [2.7], we have:

1 (e, N _ 1 (tov. ou,
H_jw,ug <82m axz>_jw,uo <r80r 87“0>' [2.10]

For the TM polarization, H = (x, z)y and from a Maxwell equation
[1.1], E = —curl H /(jwe). Then, from equations [2.6] and [2.7], we have:

E_1<WA WA>_1<3%_18¢A). [2.11]

 jwe o 9z ~ jwe \ Or r a0

2.3.1. Solution of the Helmholtz equation

The method of variable separation leads to 1sca (7,0 ) = 11(r)12(0). Since
in polar coordinates:

2p 10 (0F\ 10
vii= “or) T 2002

2.12
ror [ ]

the substitution of ¥, (7,0 ) in the Helmholtz equation leads to:

2 r
T mwmen 4 5 DO 2 6 -0

2 2
:>¢2{d¢1_|_rd¢1} Y1 d*Yy

= k? =0
r | dr dr? + r2 do?2 R

1"
I o 2.2 2

+ —; + k = —-=[2.13]
! wlqbl (>

7,2

U1

=

The left-hand side of the equality depends only on the variable r, whereas
the right-hand side of the equality depends only on the variable 6. Thus, these
two terms are equal if they are equal to the same constant —a. This leads to:

2(0) _ _ o
1%9) - . : [2.14]
MAETOM S
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36 Method of Moments for 2D Scattering Problems

The solution of the first differential equation is ¥2(f) = 7Y (circular
symmetry). In addition, since ¥2(6 + 27) = 1)2(6), the constant o« = n is an
integer. The second differential equation is then:

P2y (r) + i (r) + (K% — n?)y (r) = 0. [2.15]

The solution of this differential equation can be expressed by the following
Bessel functions [ABR 70]:

{Jn(kr) Bessel function of first kind and order n 2.16]

Y, (kr) or Ny, (kr) Neumann function of first kind and order n
where Y,,(z) = [J(x) cos(nm) — J_,(x)]/ sin(nm) [ABR 70].

Moreover, all linear combinations of both of these solutions, as, for
instance, the Hankel functions defined by [ABR 70]:

H" (kr) = J,(K7) + 7Y, (kr) Hankel function of first kind and order n
H'?) (kr) = J,(Kr) — jY,(kr) Hankel function of second kind and order n’

[2.17]

are also solutions to the differential equation.

In conclusion, the solution of the scalar wave propagation equation in polar
coordinates is:

n=-+o00
Ysea(r,0) = Y [Ann(kr) + BpYn(kr)] e
n=+4o00 '
-3 [Can)(m)JanHg?)(kr) e, [2.18]

where A,, = C,, + D,, and B, = i(C,, — D,,).
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The series expansions of the functions HS) and Hg) are expressed as

[ABR 70]:

Hg)(z) — iej(z—inﬂ'—%w)
Tz
when |z| — oo, [2.19]
H%Q) (Z) _ ie—j(z—%nw—%ﬂ)
Tz

leading for |z| — oo to

8H7(11)(2) (1) 1 j(zfnlfi) 1
0z V2zmz 2z

W) )
0z " N7 /z

Therefore, the function HT(IQ)(K r) does not satisfy the far radiation
condition [2.5] and cannot be a solution (D,, = 0). The solution is then
simplified as:

n=-+oo
Ysea(r0) = Y CoHP (kr)el™, [2.20]

where the constant C), will be determined from the boundary conditions.

Figure 2.2 shows the real and imaginary parts of HY (x) € C versus x and
n and the Bessel functions J,,(z) € R versus z and n.

First, we consider the TE polarization and we assume a perfectly
conducting cylinder; next the TM polarization (Neumann condition) and
finally, a dielectric cylinder.

2.3.2. Dirichlet boundary conditions

For the Dirichlet boundary condition, from equation [2.9], on the cylinder
of radius a, Yo (r = a,0 ) = 0 V0, and the field inside 2 is zero (that is inside
the cylinder). This implies that 1sc, 0(a,0 ) + ¢inc(a,0) = 0 V6.
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Imaginary part
) PR

10 15 20 .
Variable x Variable x

a) b)

Figure 2.2. a) Real and imaginary parts of oY (z) versus .
b) the Bessel functions {J,(z)} versus x

Assuming a plane incident wave, = ¢inc,06j ko ( 8in Bine — 2z 08 finc) —
wincjoejko’"sm(ei"cfg) (ko = ko(Zsin Oipe — 2z cos bipc)) with tanf = z/x and

r = V2 + 22, we have:

n=-4oo
Yine,06’ 00 One=0) 1N 0 HD (kga)e ™™ = 0 0. [2.21]

To have all the terms inside the sum, the plane wave is decomposed on the
basis of the Bessel functions according to the [ABR 70]:

;z<t—> n=+00
e )= 3" t"(2). [2.22]

Setting z = kor and t = €/(%ie=9) we have:

n=-+oo
ikorsin(0—0ine) _ Z ejn(gincfa).]n(kor)_ [2.23]

n=—oo

Then, equation [2.21] is:

n=+oo
> [Yincoe™ s (koa) + CoHI (koa)| 70 = 0 0. [2.24]
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Validation of the MoM for a Single Scatterer 39

This equality must be verified for any (0, n), then:

Q;Z)inc,OejneinCJn(koa)

C, = —
HY (koa)

[2.25]

In conclusion, for the TE polarization, the scattered field for a perfectly
conducting cylinder is:

n=-+oo

wsca O(r 9 1/]mc 0 Z

W H (” (Koa)

n(ko®) b0 (ko) einCu0) 1> a0 [2.26]

To reduce the computing time, the following recurrence relation with
Fo(2) = {In(2), HY (2), H? (2)} is used [ABR 70]:

2n
fnJrl(z) = 7fn(z) - fnfl(z)- [2.27]
Moreover, if n is an integer, then:

fon(2) = (1) ful2). [2.28]

In conclusion, from fy(z) and fi(z), the sum for n > 1 can be computed
and

n=—4o0o
Ysea0(r:0) _ Z T (koa) Hg)(k‘or) eIn(Binc—0)

7#inc,O n—1 H;l)(k‘oa)
+ (—1)"6*1"“*“*9)} + Jggkoa) H" (kor) for r > a. [2.29]

2.3.3. Neumann boundary conditions

For the Neumann boundary condition, from equation [2.9], on the cylinder
of radius a, 0v/0r = 0. Thus, from equation [2.20], using the same process
as in the TE polarization, we obtain with )y, = winc,ogeﬂ' kor sin(6inc—0).

n=-4oo
Yseao(rf) = Y CoHWY (kor)e 7, [2.30]
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40 Method of Moments for 2D Scattering Problems

where C,, satisfies the following boundary condition:

n=+00
i{ > [tineoe ™1 (or) + CaH (kor)| e‘jne} — 0V6.[2.31]
Then
. jneinc /
C, = _¢1nc,06 Jn(k'oa)’ [2.32]

Hi{ (koa)
where the prime symbol denotes the derivative. The scattered field inside 2
is then:

n=-+oo g
weca O(T’ 9 wmc 0 Z J kOCL (1) (K?”)ejn(einc_e), r > a. [2.33]

n—foo
Inside the cylinder, the scattered field 1)y, 1 is zero.

To avoid the need to numerically compute the deviations of the
Bessel functions the following recurrence relations with f,(z) =

{J.(2),H ( ), H )( )} are applied [ABR 70]:

Fiz) = faa(z) = E2

Jal2) = Z al2) = foa(2): [2:34]

Knowing fy and fi, the derivatives f{ and f] are calculated and from
equations [2.27], [2.28] and [2.34], the sum over n can be reduced for n > 0.

Numerically, for the evaluation of equation [2.29] and [2.33], the sum over
n must be truncated. Typically, the end value of n is chosen as the integer part
of 2kpa + 1 [BOW 87].

Figure 2.3a) shows the modulus of the total field versus the abscissa x and
the height z for a perfectly conducting cylinder and for the TE polarization.
Figure 2.3b) shows |C},| (equation [2.25]) versus the sum index 1, A\g = 1 m,
a = 2Xg, Yinc,o0 = 1 and O;pc = 0. Figure 2.4 shows the same results as in
Figure 2.3, but for the TM polarization.

Figures 2.3a) and 2.4a) show behind (region z < 0) and near the cylinder
that the total field is small, because the object is not directly illuminated on this
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Validation of the MoM for a Single Scatterer 41

side by the incident field. It corresponds to the so-called shadow zone. We can
also observe the interference phenomenon between the scattered field and the
incident field. As expected for the TE polarization, the total field is zero on the
cylinder whereas for the TM polarization, the total field is maximized. Figures
2.3b) and 2.4b) show that the truncation of the sum at n = N, which equals
the integer part of 2kga + 1, is a good criterion since |Cy| =~ 0 and then, the
higher order terms n > N can be neglected in the calculation of the sum. For
a =2\, N =27.

10 2
8 1.8
6 1.6
4 1.4/
2 1.2
E 0 1
n
-2 0.8--
4 06
k] 0.4
-8 0.2
'1—01 - 10 0 O0 2 4 6 8 1b 1é 1‘4 16 18 20 22 24 26
x [m] Integer n
a) W)sca,O + 'l/)incl b) ‘C"|

Figure 2.3. a) Modulus of the total field versus the abscissa x and the height z
for a perfectly conducting cylinder and for the TE polarization.
b) |Cr| versus the sum index n. Ao = 1 m, a = 20, Yine,0 = 1 and Oinc = 0

i
=1

i 1.8
8 16
4 14
2 1.2
E 1] 1
" -2 08--
-4 0.6
5 0.4
8 0.2 T
'1—01 - o 10 o 00 2 4 6 8 1b 1é 1‘4 16 18 20 22 24 26
x [m] Integer n
a) |wsca,0 + ¢inc| b) ‘Cn|

Figure 2.4. Same results as in Figure 2.3 but for the TM polarization
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42 Method of Moments for 2D Scattering Problems

2.3.4. Dielectric cylinder

For a dielectric cylinder (dielectric medium €2, ), the Helmholtz scalar wave
equation is:

(V2 + k3 (r)] v = 0, [2.35]
where
_ Jkoforr >a
ki(r) = {lﬁ forr<a" [2.36]

For » > a, from section 2.3.2, the total field inside €y can be written as
(equations [2.20] and [2.23]):

n=+oo
do(rf) =Y [Ban(km -+ an%”(km] e "% with B, = thine 0’

[2.37]

For the field inside the cylinder (r < a), the first line of equation [2.18]
is used, corresponding to a decomposition of an infinite sum of Bessel J,, and
Neumann Y, (x) functions. Moreover, since the Neumann function diverges
for a null argument ( = 0, center of the cylinder), we have B,, = 0 in equation
[2.18] and the field is then simplified as:

n=-+oo

Pi(rf) = > Apdn(kar)e 7. [2.38]

n=—0oo

In equations [2.37] and [2.38], the two unknowns are C;, and A,,. From the
boundary conditions [2.9], we have:

w()(a've ) = 1/11(6%9 )
Onbo(r,0) — oor oY1 (r,0) [2.39]

or 0 or

r=a r=a
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Thus,

n=-+oo n=-+oo

Z {Ban(koa) +CnH£11)(k0a)} e It = Z ApJ, (kra)em?

n=—oo n=—oo

n=+oo n=+o0o

Ko 37 [Batiiua) + CHO (ko) 77" = porks 3 Auk (e

n=—oo n=—oo

[2.40]
The above equation must be satisfied for all (6, 7). Then

BuJn(koa) + CoHY (koa) = AnJy,(kra)

, [2.41]

k
ByJ,, (koa) + Cnlesl)(koa) = po1 k—lAnJ;(kla)
0

leading with o = po1k1/ko = po1+/€1/¢€o to

HY (koa)Y, (koa) — HY (koa)T (Koa)
" aHY (koa)Y, (k1a) — HY (koa)J, (k1)

A, =B

[2.42]
Jn(k1a)T, (koa) — adp(koa)J,, (k1a)

" aHY (koa)Y (kra) — HAY (koa)J, (k1)

C,=B8B

Substituting equation [2.42] into equations [2.37] and [2.38], the total field
can be computed inside and outside the cylinder. Using the recurrence relations
[2.27], [2.28] and [2.34], the sum over n can be reduced for n > 0 and the
derivatives can be calculated analytically.

Figure 2.5a) shows the modulus of the total field versus the abscissa z and
the height z for a dielectric cylinder and for the TE polarization. Figure 2.5b)
shows |A,| and |C,,| (equation [2.42]) versus the sum index n, A\g = 1 m,
a = 20, Yinc,0 = 1, binc = 0 and €,1 = 4 + 0.05;. Figure 2.6 shows the same
results as in Figure 2.5, but for the TM polarization.

Unlike a perfectly conducting cylinder, the scattered field inside the
cylinder is not zero. Like the case of a perfectly conducting cylinder,
Figures 2.5b) and 2.6b) show that the truncation of the sum at n = N, which
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equals the integer part of 2kga + 1, is a good criterion since |Ax| ~ 0 and

=
o
o
L

] ]
b‘ 4
4 ]
Z 0 2 4 6 8 10 12 14 16 18 20 22 24 26
E o
"l 2
-2
1.6F ]
4
__12f ]
. o

- 08 1
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0 L L L L L L L
[ 2 4 6 8 10 12 14 16 18 20 22 24 26

x [m] Integer n

a) |wsca,0 + winc| b) ‘An| and ‘Cn|

w; 1
o

Figure 2.5. a) Modulus of the total field versus the abscissa x and the height z
for a dielectric cylinder and for the TE polarization. b) | Ay | and |Cy| versus
the sum index n. A\o = 1m, a = 2o, Yinc,0 = 1, Oinc = 0 and €1 = 4+ 0.055
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Figure 2.6. Same results as in Figure 2.5, but for the TM polarization
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2.3.5. MoM for an elliptical cylinder

The MoM with point-matching method is thoroughly explained in section
1.3. The MoM converts the integral equation into a linear system as:

ZX =b, [2.43]

where Z is the impedance matrix, X is the unknown vector (currents on the
sampled surface) and b is a vector of components equal to the incident field on
the sampled surface.

For the Dirichlet boundary condition, the elements of Z are expressed
from equation [1.52], and the components of the vectors X and b are
X, = OYo(ry)/On and by, = Yine(ry,), respectively. For the Neumann
boundary condition, the elements of Z are expressed by equation [1.55] and
the components of the vectors X and b are X,, = o(r,) and
b, = Yinc(rm), respectively. For dielectric media, the elements of Z are
expressed by equation [1.58] and the vectors X and b are expressed by
equation [1.59].

Using the Huygens’ principle expressed in far field, the radar cross-section
(RCS) is expressed as [1.31]:

00,0 2
RCS — ¢sca,0 [2 44]
4|ko| '
where
1 0 .
w:;;% = - / |:jksca : mﬁo(?“) + M e_JkSC“"’dS. [2.45]
’ ¢inc,0 S on

In addition, iy o is the modulus of the incident field in €2y and the vector
k.. gives the observation direction.

The surface currents, ¢y and Jv¢y/0On, are computed from inverting the
impedance matrix, and then the RCS is computed from the numerical
integration on these surface currents via equation [2.45].
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46 Method of Moments for 2D Scattering Problems

In polar coordinates, an elliptical cylinder of major and minor axis a and b
is defined as:

{x—xc+:z:ocosa—2081na with {wo = acosf , [2.46]

Z = Z, + Topsin a + zg cos « zp = bsinf

where (z., z.) are the center coordinates of the cylinder and « the rotation
angle defined from the direction & and # € [0;27[. Then, the slope on the
cylinder surface is:

dz dzgcosa+drgsina  sina + 7 cosa

= — = = 2.47
i dr  drgcosa —dzysina  cosa —ypsina’ [ ]
where
dzg dzg df bcos 0do b
0 dxg df drg —asinfdb a <0 [ ]
In addition, the derivative of  is
by _dydh ab - [2.49]
dr  df dx (acosasinf + bsina cos §)
The surface element dS > 0 is:
dS = \/(dz)? + (dz)2 = /(dxo)? + (dz20)? = |dwo|\/1 + 72
= Va2sin2 6 + b2 cos? 0d6. [2.50]
The unitary vector normal to the cylinder 7 is:
d
Ao_seldn) o s. [2.51]

V1472

For 6 € [0, 7] (upper part of the cylinder), —sgn(dz) = +1, which is
consistent with a rough surface, for which the normal to the surface always
points toward 2. For the Neumann boundary condition, the sampling step
A, = Tp4+1 — x, must be substituted for —|A,,|sgn(dx) for the computation
of the elements [1.55] of the impedance matrix, whereas for the Dirichlet
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Validation of the MoM for a Single Scatterer 47

boundary condition, the sampling step A,, must be substituted for |A,,| for
the computation of the elements [1.52] of the impedance matrix.

To apply the MoM, the cylinder must be sampled as follows:
. 27
0, = (n —1)A# with Af = ~ and n € [1; NJ, [2.52]

where [V, is the number of samples describing the ellipse. We then define:

Nyop
Ao

N, = [2.53]

where V), is the number of samples per wavelength and p is the perimeter of
the ellipse defined as:

2m /2
p= dS:4/ Va2sin? 6 + b2 cos? 0d0
0

. / 2t2
= 4a/ V1 —e2cos20df = 4a t, [2.54]

1—t2

where e = +/|a? — b?|/ max(a,b) is the ellipse eccentricity. Then, p is
computed from the “ellipke” Matlab function.

From 0., the coordinates (x,, z,), the slope 7,, the sampling step A,,,
sgn(A,), and /1472 = +a?sin?6, + b2cos26, of the ellipse are
computed, which allows us to compute the elements of the impedance matrix.

The incident wave is assumed to be a plane wave Yj,. = wincvoejki"’ =
wmgoejko sin(tine—0) with k; = ko(sin 0;& — cos 6;2).

2.3.6. Numerical comparisons for a circular cylinder

Here, the specific case of a circular cylinder of radius a = b, center
(24, 2.) = (0,0) and rotation angle o« = 0 is considered, in order to validate
the MoM with an exact analytical solution.

For the Dirichlet boundary condition, the total field on the cylinder is zero.
To compare the exact solution with that obtained from the MoM, the normal
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48 Method of Moments for 2D Scattering Problems

derivative of ¢o(7,0 ) = sca0(r,0) + Yinc(r,0 ) must be derived. In polar
coordinates, we have for a circular cylinder:

oY ) o, 10y, —YE+ 2
— = . 0 —_— 0). 2.
o, = Vin= <8r ] ) ( i sgn(0) [2.55]
Knowing that 7 = cos & + sin 62, 0 = sin 0z — cos 0z, v = —cotf, we
have:
g:f: [?ﬁ(—’ycos@—i—sinG)—i—lfgg( ’ysinG—cos@)}\/l:_j
_ N
= 5,580 2(sinf) = o [2.56]

From equation [2.26], this leads, on the cylinder r = a, to:

oy
or

— awsca,o

awinc
or +

or

r=a r=a

= : N~ / — M /(1) jn(eincfe)
—koiﬁmc,o Z Jn(koa) 1 Hn (koa) e

r=a

n=—00 H’gz (k()a)
n=-+00
= 7/)1110 0 Z e]n(einc_e)’ [2.57]

n=—00 ]ﬂ'CLH (k‘oa)

since the Wonskrian H (w)7,(u) — HAV (WIa(u) = 2/(jmu) ¥(n,u)
[ABR 70].

For the Neumann boundary condition, the field on the cylinder is expressed
by equation [2.33] as:

n=+o00 J%(koa) (1) 12 (Gne—0)
w ( /(/)111(20 Z koa WH'” (k'oa)e] inc
n=—oo n Oa
n=+00 9 .
= _winC,O Z ejn(einc_e)' [258]

oo jTrkoaHigl)(kga)
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Validation of the MoM for a Single Scatterer 49

Using the same process, from equation [2.42] and [2.38], we can show that
the currents on a dielectric cylinder are:

( n=+oo 1 _
25, (k1a)ed™(On—0)
Yo(a,0) = Yinc,0 Z (1)
W mhoa [aHg)(kOa)J;(kla) - Hggl)(koa)Jn(kla)}

Mo o 2ad’, (kya)ed™(Oine=0)
87 = 2/Jinc,o Z
[ nEte jma [aHg)(koa)J;(kla) - H;(l)(koa)Jn(kla)]

[2.59]

For the Dirichlet boundary condition, || = |y/€r1/€:0| — 00, and then
equation [2.57] is retrieved where ¢g(a,0 ) = 0. For the Neumann boundary
condition, |a| = |\/€r0/€r1| — 0 and, then equation [2.58] is retrieved, where
0Yo(r,0)/0r|r=q = 0.

The RCS is expressed by equation [1.26]. Using equation [2.19] for the
Taylor series expansion of the Hankel function when » — oo, from equations
[2.26], [2.33], [2.42] and [2.38], and § = 7/2 — Oy, (from Figures 1.3 and
2.1), we have:

_ 2
4 n=-o00 '
A — n(einc+95ca_7r)
RCS(finc: fa) = 7 n:ZOO Apél : [2.60]
where
J(nlgkoa) Dirichlet
H,, (k()a)
J (k
A, = % Neumann [2.61]
Hn (koa)
I (k1a)Y (koa) — ody, (koa)Y, (k . .
(1() 10))u(koa) — a /((1)Oa) n(k1a) Dielectric
aHy,’ (koa)d), (k1a) — Hy 7 (koa)Tn(k1a)
and o« = y/€,1/€r0 for the TE polarization and o = +/¢€,0/€,1 for the TM
polarization.
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50 Method of Moments for 2D Scattering Problems

In Figure 2.7, the label “MoM (V)" stands for the MoM, in which N is
the number of unknowns on the cylinder, and the label “Ana (/V.)” stands for
the exact analytical solution, in which N, is the number of terms to compute
the sum over n. Moreover, the RCS is plotted over the range 0y, € [0;7]
because it is symmetric with respect to fipc = 0.

151 25,
= IX\OM(12172)6| —MoM (126)
< 12r - --Ana S .
> 20 Ana ( 27)
2 °r
5 L .
2 o
.
H H H __‘.——/‘ [a)
0 60 120 180 240 300 360 E
Angle 6 [7] %) ot
[&]
1801 o
% 120F -57
S oor : _1of
(_Y: 0 il
; 60 ! =15
2 120 I —20 ; ; ; ; ; ;
C - 0 50 120 180 - 23; 300 360 0 30 60 90 120 150 180
Angle 6 [°] Angle O cn [’
a) |0vo/0n| and arg(do/On) b) RCS

Figure 2.7. a) Modulus |0vo/On| and phase arg(9o/0On) on the cylinder
for the Dirichlet boundary condition (TE polarization) versus the angle 6.
b) RCS in dBm scale versus the observation angle 0ycq. Ao = 1 m, Ny, = 10,
a = 2Xo and 0 =0

Figure 2.7a) shows the modulus |01y /0n| and the phase arg(9dyy/0n) on
the cylinder versus the angle 6 for the Dirichlet boundary condition (TE
polarization). Figure 2.7b) shows the RCS in dBm scale versus the
observation angle ,. The simulations parameters are Ao = 1 m, N, = 10,
a = 2 and i, = 0. Figure 2.8 shows the same results as in Figure 2.7 but
for the Neumann boundary condition (TM polarization).

In Figure 2.7a), the modulus reaches its maximum in the direction § = 90°
and decreases from this direction to reach its minimum behind the object
defined for & = 270°. This corresponds to the shadow zone. For the Dirichlet

boundary condition and for § = 7/2, |0¢g/On| = 2|0%inc/On| =
2|100ine/Or| = 2|jkosin(binc — O)Vine] = 2ko ~ 12.57 (also
arg(Oine/On) = —m/2), whereas for the Neumann boundary condition,

[o] = 2|Yine] = 2 (also arg(yp) = 0). As shown, these levels can be
predicted from the PO approximation. In addition, in Figure 2.8a), a perfect
agreement between the two methods is observed, whereas the agreement is

35U8217 SUOWWOD AR 3|ed||dde auy Aq peusenoh are sajoe YO ‘8sn Jo SanJ Joj Akeig1T auluQ AS]IAA UO (SUOIIPUOD-pUe-SWB)/W0D A3 1M ARe.q Ul |uo//:SdlYy) SUORIPUOD pUe SWB | 8Yl 89S *[£202/2T/9T] uo AriqitauluQ 48| ‘ulssuifug jo AlsieAlunexeyq Ag /1opwod A8 |Im Arelqipul|uoy//sdny woiy papeojumoq



Validation of the MoM for a Single Scatterer 51

good in Figure 2.7a). In Figures 2.7b) and 2.8b), a perfect agreement is
obtained between the two methods, and the RCS is maximum in the forward
direction given by 6s.s = 7 + Oinc. For this specific direction, it can be shown
that the RCS is independent of the object shape and depends only on the
silhouette of the object [KUB 11] in the high-frequency domain.

25,

MoM (126) —MoM (126)
- -Ana(2n 20{{---Ana(27) |-

o 16F

Modulus of
N

0 60 120 240 300 360

180
Angle 6 [°]

RCS [dBm]

|
&
3

Phase of A 1
o

. " i 0 30 60 90 120 150 180
240 300 360 Angle 8__ []

L
N
S

60 120

o

180
Angle 6 [7]

sca

a) |t)o and arg(t)o) b) RCS

Figure 2.8. Same results as in Figure 2.7 but for the Neumann boundary
condition (TM polarization)

Figure 2.9 shows the same results as in Figure 2.7 but for N, = 20. The
increase of the number of samples slightly improves the agreement between
the two methods.

@
n

5
MoM (251) —MoM (251)
= = ~Ana(27) 20{---Ana (27)

N

Modulus of & \yola n
© o ©

60 120 240 300 360

o

180
Angle 6 [°]

RCS [dBm]

o B
g 8

Phase of @ wola n[°]
o

|
Loy
-
S 3

. i 0 30 60 90 120 150 180
300 360 Angle esca ]

60 120

o

180
Angle 6 [7]

a) [0 /On| b) RCS

Figure 2.9. Same results as in Figure 2.7 but for Ny, = 20
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52 Method of Moments for 2D Scattering Problems

Figure 2.10a) shows ||, arg(o), |01 /0r| and arg(diy/0r) versus the
angle ¢. The simulation parameters are \og = 1 m, a = 2Xg, Yinco = 1,
Oinc = 0 and €,1 = 4 + 0.55 and the polarization is TE. Figure 2.10b) shows
the same results as in Figure 2.10a), but for the TM polarization. Unlike a
perfectly conducting cylinder (Figures 2.7a) and 2.8a)), the currents are
maximum behind the object defined for # = 270°, because a part of the
incident field is transmitted into the cylinder. This phenomenon can also be
observed in Figures 2.5 and 2.6. A perfect agreement between the two
methods is observed.
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Figure 2.10. Top: |¢o| and arg(o) versus the angle 0. Bottom: |00 /Or|
and arg (0o /0r) versus the angle 6. Ao = 1 m, a = 2o, Yinc,0 = 1, Oine =0
and e;1 = 4 4 0.5j. a) TE polarization, b) TM polarization

Figure 2.11 shows the RCS in dBm scale versus the angle 6, for the TE
and TM polarizations. The simulation parameters are the same as in Figure
2.10a). Like a perfectly conducting cylinder (Figures 2.7b) and 2.8b)), the RCS
is maximum in the forward direction defined as 0s.; = 7 + 6 = 7 but its
level is smaller than that obtained from a perfectly conducting cylinder.

For a dielectric cylinder, it is important to note that the number of samples
per wavelength is Ny, = Ny,|\/€1/€0| because the wave number inside the
cylinder is k1 = ko./€,1. In addition, the number of unknowns is multiplied
by two in comparison to a perfectly conducting cylinder, because both )y and
01y /On must be computed.

Figure 2.12 shows the RCS in dBm scale, computed from the MoM,
versus the angle 6y, and for the TE polarization. \g = 1 m, a = 2\,
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Validation of the MoM for a Single Scatterer 53

Yinc,0 = 1 and 0, = 0. Figure 2.13 shows the same results as in Figure 2.12,
but for the TM polarization. In Figure 2.12, the labels “MoM-PC (N)”,
“MoM-IBC (N)” and “MoM-DI (N)” stand for the MoM by considering
perfectly conducting, IBC (highly conducting surface with impedance
boundary condition) and dielectric surfaces, respectively. Moreover, N is the
number of unknowns. For the IBC approximation, the elements of the
impedance matrix are expressed by equation [1.62]. For both figures, the left
figure a) shows results for €,; = 4 + 0.57, whereas the right figure b) shows
results for €,1 = 4 + 23.

RCS [dBm]

RCS [dBm]

25, 25,

—MoM (502) ——MoM (502)
201 ---Ana (27) 201---Ana (27)

RCS [dBm]

30 60 90 120 150 180 0 30 60 90 120 150 180

Angle Ssca [] Angle esca []
a) TE polarization b) TM polarization
Figure 2.11. RCS in dBm scale versus the angle 0y.,. Same simulation
parameters as in Figure 2.10a)
25- 251
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g 5 B ’Nx\/.\’/ y
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Figure 2.12. RCS in dBm scale, computed from the MoM, versus the angle 0.,
and for the TE polarization. Ao = 1 m, a = 2o, Yinc,0 = 1 and Oine = 0
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Figure 2.13. Same results as in Figure 2.12 but for the TM polarization

As the imaginary part of the permittivity increases (from 0.5 to 2), the
agreement between dielectric and IBC surfaces is better, especially for the TE
polarization. The difference with a perfectly conducting surface remains
significant.

The use of the IBC allows us to sample the surface along the wave number
ko instead of k; and then the sampling step is independent of the permittivity
of medium €2;. In terms of number of unknowns, it is equivalent to solve the
scattering by a perfectly conducting surface, which makes the IBC very
powerful.

2.3.7. Conclusion

By comparison with the exact solution, this section clearly shows that the
MoM is efficient for calculating the field scattered by a (circular) cylinder.
The advantage of the MoM is that it is able to numerically calculate the
scattered field from an object of any shape. For example, for an elliptical
cylinder, it is possible to obtain an exact solution [BOW 87] of the scattered
field by introducing the Mathieu functions [ABR 70]. Nevertheless, unlike the
Bessel functions, these functions are difficult to calculate numerically. It is,
therefore, convenient to use the MoM for this specific shape.

As the frequency f increases (kg = 2w/\g = 27 f/c increases, where c is
the celerity of light in a vacuum), the number of unknowns N increases and
then the size (N x N) of the impedance matrix increases. From a
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Validation of the MoM for a Single Scatterer 55

lower—upper (LU) inversion, the complexity (number of multiplications) is
O(N?) and then the inversion can require a long computing time. In addition,
the impedance matrix must be stored to be inverted. The analytical solution
requires the computation of a sum, where the number of terms is the integer
part of 2kga + 1. Then, at high frequencies, the series converges very slowly.
In this case, the Watson transformation can be used to convert the solution
into a rapidly convergent series. For more details, see [KON 05, Chapter 6].

It is then useful to develop methods to calculate the scattered field at high
frequencies. It is discussed in the following section, which is focus on the PO
approximation.

2.4. PO approximation
2.4.1. Formulation

For a surface illuminated by the incident field, the PO approximation
assumes that a point on the surface M (z, z) can be substituted for a straight
line of infinite length which is tangent to the surface at this point. Then, the
currents can be expressed by the Fresnel coefficient (valid for a planar surface
of infinite area) and from a Snell-Descartes law giving the direction of the
reflected field. In the shadowed zone Ssp,, the currents vanish. Then, the total
field on the surface is:

_ [1 + R(Q)] Yine T € S
o = {o r e S’ [2.62]

where R is the Fresnel coefficients and 6 is the angle between the normal to the
surface n and the direction of the incident wave I%inc (see Figure 2.14) defined
as cosf = —Igzinc - ni. In addition, Sy stands for the illuminated surface and
Ssha stands for the shadowed surface (S = Sy U Ssha). The PO approximation
is valid for pg cos® 6 > )¢ [BRE 80], where py is the local radius of curvature

of the surface.

Assuming a plane incident wave defined by ¥j,c = %Z)inc,oej kine™ the use of
the PO approximation leads to:

Yo(r) = [1 + R (0(7))] Yinc(r)

81@;)757’) = jkinc - 1(r) [1 = R (0(r))] Yine (1)

s Vr € 5111 [2.63]
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56 Method of Moments for 2D Scattering Problems

and 0, otherwise. Substituting equation [2.63] into equation [2.45], the RCS
under the PO approximation is:

00,0 2
Res = V00 [2.64]
4|ko| '
where

P20 = —j / {ksca - 1 [1+ R(0)] + kine - 1 [1 — R(6)]} & Kine=hsa) 74 G,
S

[2.65]

.......

""""
ey
.,
g
o,
.

__________ Tangent
""""" plane

Figure 2.14. Physical optics approximation

2.4.2. Applications

2.4.2.1. Perfectly conducting plate

For a perfectly conducting plate (of length L and centered on (0,0), see
Figure 2.15), the Fresnel reflection coefficient is R(f) = —1 for the TE
polarization and R(#) = +1 for the TM polarization. In addition, the normal
to the surface n = 2 and dS = dx for any x € S. Equation [2.65] is then
simplified as:

0,0 +L/2 k k
”[l)sca”o = _2.]ka . 2/ 6‘7( inc — sca)':lidx7 [266]
—L/2
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Validation of the MoM for a Single Scatterer 57

where k, = kin for the TE polarization and k, = kg, for the T™M
polarization. The integration over x can then be done analytically starting
from equation [2.64] to:

[2.67]

1
RCS = — {kOL cos B,sinc {

ko L(sin Ojpe — sin Ogc,) 2
ko ’

2

where sinc(u) = sin(u)/u, 0, = Oy for the TE polarization and 6, = 0y,
for the TM polarization.

b4
4

Figure 2.15. Field scattered by a plate with the PO approximation

In Figure 2.16, the label “MoM (IN)” stands for the MoM, in which N is
the number of unknowns on the plate, and the label “PO” stands for the PO
solution. Moreover, the RCS is plotted over the range 6y, € [0; 7] because it
is symmetric with respect to i, = 0.

Figure 2.16a) shows the modulus |0vy/0n| and the phase arg(dyo/0n)
on the plate versus the integer n € [1;N] for the Dirichlet boundary
condition. Figure 2.16b) shows the RCS in dBm scale versus the observation
angle Osca, Ao = 1 m, Ny, = 10, L = 5\, and 6. = 0. Figure 2.17 shows
the same results as in Figure 2.7, but for the Neumann boundary condition
(TM polarization).

For the directly illuminated surface (n € [1; N/2]), a good agreement is
obtained between the PO approximation and the MoM. As expected, in the
shadow region (n € [N/2 + 1; NJ), the PO predicts a null field, whereas the
MoM predicts a small field, but does not equal zero due to the creeping waves.
Moreover, the PO does not take into account the edge diffraction contribution
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58 Method of Moments for 2D Scattering Problems

coming from the fact that the surface has a finite length and explains why the
field increases near the illuminated surface edges.

201 30r
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a) |00 /0n| and arg (0o /On) b) RCS
Figure 2.16. a) Modulus |0vo/On| and the phase arg(0vo/0n) on the plate
for the Dirichlet boundary condition versus the integer n. b) RCS in dBm scale
versus the observation angle Osco. Ao = 1 m, Nx, =10, L = 5o
and Oy =0
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Figure 2.17. Same results as in Figure 2.16, but for the TM polarization

Figure 2.18 shows the same results as in Figure 2.16 but for L = 10A¢. In
comparison to Figure 2.16a), the agreement with the MoM is better because
the surface length is twice longer, and then the currents related to the edge
diffraction are more concentrated on the edges. On the RCS, the spreading
around the specular (fsca = Oine = 0) and forward (Oscy, = T — Oipc = )
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Validation of the MoM for a Single Scatterer 59

directions is smaller than that observed in Figure 2.16b) because the length L
is twice longer. Like in Figures 2.16b) and 2.17b), far from these directions, the
difference between the RCS computed from MoM and that from PO increases,
but in this region, the levels are small.
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a) |00 /0n| and arg(Oo/On) b) RCS

Figure 2.18. Same results as in Figure 2.16 but L = 10)\¢

....’N,

Figure 2.19. Field scattered by a perfectly conducting elliptical cylinder with
the PO approximation

For the MoM, a plate thickness is introduced, which equals A\g/Ny,. The
advantage of introducing a thickness is to exhibit physical phenomena as the
shadow and illuminated regions. The drawback is that the number of unknowns
is twice as many. In fact, for the simulations, it is not necessary to introduce
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60 Method of Moments for 2D Scattering Problems

a thickness. Due to the linearity of the integral operator, the currents on the
plate are then equal to the sum of the currents on the front and back sides (with
thickness).

2.4.2.2. Perfectly conducting elliptical cylinder

In polar coordinates, the equation of an ellipse of center (0, 0) is:

 pang o 0052l [2.68]

{mzacosH

where a is the major axis and b is the minor axis. Moreover

dST - gy = rtE ksa/1 + v2sgn(sin 6)dx
V1+92
= (—vksca + T + kgca - 2) sgn(sin )dz, [2.69]
where v = d—;. Since ydxr = dz = bcosfdf and dz = —asin 0d6, equation

[2.63] is simplified as:
ﬂffz{% = 2j/ (bcosbk, - & + asin bk, - 2) x
St
eIl (Kine=Ksca) & co5 O-+b(Kine—ksca) -2 sin ] sgn(sin@)df, [2.70]

where o = inc for the TE polarization and o = sca for the TM polarization.
Let cos X = % (Kinc — Ksca) - & and sin y = %(k:inc — kgca) - 2, where:

u = \/[a(kinc - ksca) : §3]2 + [b(kinc - ksca) : 2]2

, [2.71]
b(kinc - ksca)
a(kinc - ksca)

tany =

| W
|
Q
=
7 N
>
=1
(e]
[N}
>
&
o
N—

we obtain

P2 = 95 / (bcos Okq - & + asin Ok, - 2) €70 sgn(sin )d6.[2.72]
S

sca,0

To easily calculate the illuminated zone, we assume that §; = 0 and then
the integration variable is € [0;7|. It is possible to treat the general case
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Validation of the MoM for a Single Scatterer 61

0; # 0 for which 0 € [01nin; Omax], in Which Oy,i, and 6y, are calculated from
the condition 7 - k; = 0 (limit between the illuminated and shadow regions).

From equation [2.22], we have:

n=-o0o
eJucos(0—x) Z " ejn9 X) [2.73]
n=—oo
Then
n=-+00 ) o
/ eJucos(0=x) ooq 9l = Z g™l )ejnx/ eI cos 0db
0 n=—oo 0
n=+00 —J
1 + (1) e ImX
=S g = )_]1 [274]
n=—oo "
Using the same process, we show that:
/7r jucos(0—X) ¢in 0dh n:ioo T (u) [1 + (—1)”] e [2.75]
e in = - U . .
0 n:—ooj " n2 -1

Thus, the integration over 6 € [0; 7| of equation [2.72] leads to:

n=-+00 —4
+ (=D"e X . X ;
Yo =2j Z ViRl — (jnbky - & — akg - 2). [2.76]

From equation [2.64], the RCS of an elliptical cylinder for §; = 0 is:

2
- 1 n=+o0o . [1 + (_1)71,]e—jnx ' . R
RCS = | D 3Mn(u)=— 51— (nbka - & —aka-2)| . [277]

n=—oo

For a circular cylinder, a = b, the above equation is valid V6; by making
a rotation of the cylinder (due to the cylindrical symmetry). From equation
[2.71], tan x = cot([fsca — Oinc|/2) and u = 2a| cos([fsca — Oinc|/2)|.
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62 Method of Moments for 2D Scattering Problems

For a plate of length L = 2a, b = 0, siny = 0 and cos y = sgn[(kinc —
ksca) - 2] = £1. Then, x = £, e /"X = ¢¥/"™ = (—1)" In addition,
u = L|(kinc — Ksca) - Z|/2 = L| sin Oipc — sin Oscy|/2. Thus

1 1"Es —1) +1]°
_ 2 : —
RCS = T (koL cosfy) 3 Z ]”Jn(u)ﬁ [2.78]
n=-—00
The comparison of equation [2.78] with equation [2.67] leads to:
' 1 n=-+00 . (_1)n +1

n=—oo

In Figure 2.20, the label “MoM (V) stands for the MoM, in which N is
the number of unknowns on the elliptical cylinder, and the label “PO” stands
for the PO solution. Moreover, the RCS is plotted over the range 0y, € [0; 7],
because it is symmetric with respect to #ipc = 0.

0 0 0
— MoM (314) — MoM (255) — MoM (210)
25/{==-PO (20) 25/{-=-PO (20) 25({==-PO(20)

RCS [dBm]
RCS [dBm]
RCS [dBm]

60 90 120 150 180 "o 30 60 90 120 150 180 "o 30 20 150 180
Angle 6___[°] Angle 6, [']

30 60 90 1
sca Angle HSCB 1

a)b:5/\0 b)b=3)\0 C)b:)\o

Figure 2.20. RCS in dBm scale versus the observation angle Oscq. Ao = 1 m,
N, = 10, a = 5o, inc = 0 and the polarization is TE

Figure 2.20 shows the RCS in dBm scale versus the observation angle 0.,
and for different values of b. The simulation parameters are \g = 1 m,
Ny, = 10, a = 5Ao, binc = 0 and the polarization is TE. Figure 2.21 shows
the same results as in Figure 2.20 but for the TM polarization. Like for a
plate, a good agreement between the MoM and PO is observed around the
specular and the forward directions. Far from these directions, the difference
increases between the two methods, but it remains smaller than that observed
for a plate. Indeed, for an elliptical cylinder, the edge diffraction contribution
is smaller. As b decreases, the region in which a difference is noticeable
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Validation of the MoM for a Single Scatterer 63

increases and in the forward direction, the RCS remains unchanged, whereas
in the specular direction, the RCS increases. For more details on these
phenomena, see [KUB 11].

0 0
—MoM (314) — MoM (255) —MoM (210)
2511~ =PO (20) 251{~--PO (20) 251|---PO (20)

RCS [dBm]
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0 150 ] 180
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0 150 180 0 30 0 150 180 0 30

60 90 12 60 90 12 60 90 12
Angle 6 ['] Angle 6, ['] Angle’6___ [']

a)b:5Ao b)b:3)\0 C)b:)\o

Figure 2.21. Same results as in Figure 2.20, but for the TM polarization

2.4.2.3. Gaussian random rough surface

In this section, for a random rough surface, the PO is compared with the
MoM. The generation of a rough surface is detailed in section 1.6. In addition,
to avoid the edge diffraction phenomenon, the Thorsos tapered wave defined
in section 1.2.5 is used as the incident field and the normalized radar cross-
section (NRCS) is defined by equation [1.35]. For all simulations, the extent g
is g = L/6 where L is the surface length.

Figure 2.22a) shows the surface heights versus the abscissa. Figure 2.22b)
shows the associated NRCS in dB scale versus the observation angle 6., for
the TE polarization and for a perfectly conducting surface. The surface height
autocorrelation function is Gaussian, the wavelength is A\g = 1 m, the number
of samples per wavelength is V), = 10, the surface length is L = 300\, the
height standard deviation is 0, = 0.5\, the correlation length is L. = 5\, the
incidence angle is 0;,c = 30° and the surface height autocorrelation function
is Gaussian. Figure 2.23 shows the same results as in Figure 2.22b), but one
parameter changes: (a) TM polarization, (b) L. = 2\, (c) 0, = Ag and (d)
€1 =2+ 0.17.

Figure 2.22b) shows that the NRCS is maximum around the specular
direction defined by 6s; = i = 30° and that far from this direction, the
NRCS decreases rapidly. For a smooth surface of infinite length, the NRCS is
proportional to the Dirac delta function §(60sca — Ginc) and then, the incident
field is scattered only in the specular direction. As the correlation length
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64 Method of Moments for 2D Scattering Problems

decreases (divided by 2.5 in Figure 2.23b)) or o, increases (multiplied by 2 in
Figure 2.23c¢)), the power is scattered in a larger angular domain 6, than that
observed in Figure 2.22b).

10y;

15 —MoM (3000)
---PO
1 or
05f I
2 el
5 o % -20
o o
T z
-0.5 -30
-1 —40t
-1 % 60 30 0 30 60 90
!:P50-120 90 60 -30 0 30 60 90 120 150 - - 30 s
Abscissa ngie Oscq rl
a) Surface heights z b) NRCS

Figure 2.22. a) Surface heights versus the abscissa. b) Associated NRCS in dB
scale versus the observation angle Oy, for the TE polarization and for a perfectly
conducting surface. \o = 1 m, Nx, = 10, L = 3000, 0. = 0.5A0, Lc = 5o,
Oinc = 30° and the surface height autocorrelation function is Gaussian

In Figure 2.23b), the surface is more “irregular” because the slope
standard deviation is larger (theoretically, o5 = V20, /L) than that of Figure
2.22a). This implies higher NRCS contributions far from the specular
direction. In addition, for grazing angles (|0sa| approaching 7/2), the results
obtained from the two methods differ slightly because the PO (developed at
the first order, here) does not take the multiple reflections into account. The
PO can be extended to account for this phenomenon
[ISH 86, BOU 04a, BOU 04b], but then the complexity increases. Besides,
from the view point of the geometric optics approximation, due to the surface
roughness, a part of the surface cannot be illuminated from the transmitter
or/and the receiver. This phenomenon can also be integrated via a shadowing
function [BOU 04a, BOU 04b, LI 11, PIN 13]. These two phenomena are
illustrated in Figure 2.24.

In Figure 2.23c), the surface is rougher from the view point of the Rayleigh
parameter defined as R, = koo (cos finc + cos bsca) [OGI 91, PIN 13]. This
parameter is related to the phase difference from a point of the surface to its
mean plane. Thus, as o, increases, the surface becomes rougher and the power
is more incoherent.
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Figure 2.23. Same results as in Figure 2.22b), but for a) TM polarization,
b) Le = 2)o, ¢) 0» = Ao and d) €r1 = 2 + 0.1
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Figure 2.24. lllustration of phenomena not accounted for in PO: multiple
reflections and the shadow
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66 Method of Moments for 2D Scattering Problems

Figures 2.23a) and d) highlight a good agreement between the two methods,
and for a lower dielectric medium, the NRCS levels are smaller than those
obtained from a perfectly conducting surface, because a part of the scattered
field is transmitted into the lower medium.

2.4.2.4. Exponential random rough surface

Figure 2.25 shows the same results as in Figure 2.22, but for an
exponential surface height autocorrelation function. As expected, the surface
elevations differ strongly from those of a Gaussian autocorrelation function
(see Figure 2.22a)). As explained in section 1.6, this comes from the
contribution of the surface high frequencies. The comparison of Figure 2.25b)
with Figure 2.22b) clearly shows that two rough surfaces having the same
correlation length and the same height standard deviation can give totally
different NRCSs. In addition, Figure 2.25b) shows that the agreement
between the PO and the MoM is poor because the PO can not correctly
estimate the contribution of the surface high-frequencies. Indeed, for Figure
2.22a), the mean value of pg cos® @ is 106.77 > A\g = 1, whereas for Figure
2.25a), {po cos® ) ~ 0.66 < .

1.57

— MoM (3000)
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_ N NN S N B N | I -5 ‘ : : : : ‘
1P50-120-90 60 <30 © 30 60 90 120 150 o ~s0 30 ey 0 %0
Abscissa ngle 6., ]
a) Surface heights z b) RCS

Figure 2.25. Same results as in Figure 2.22, but for an exponential surface
height autocorrelation function

2.4.3. Sea-like surface

Figure 2.26 shows the same results as in Figure 2.22a), but for a sea surface.
The wind speed, u1¢, defined at 10 m above the sea is 5 m/s. The surface length
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Validation of the MoM for a Single Scatterer 67

is L = 50 m, the number of points is 5,000 and the surface height spectrum is
that of Elfouhaily et al. [ELF 97]. Figure 2.27 shows the NRCS of this surface
in dB scale versus the observation angle fs.,: (a) TE polarization and (b) TM
polarization. The simulation parameters are \g = 0.1 m, Ny, = 10, ¢,1 =
70.4 4+ 40.65 and 6;,c = 30°.

0.15
0.1y

0.05

Heights
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_0'1—%5 -20-15-10 -5 0 5 10 15 20 25
Abscissa

Figure 2.26. Same results as in Figure 2.22a) but for a sea surface. The wind
speed, w10, defined at 10 m above the sea is 5 m/s. The surface length is
L = 50 m, the number of points is 5,000 and the surface height spectrum is
that of Elfouhaily et al. [ELF 97]

Figure 2.26 shows that the surface length is large enough to observe
several periods of the waves having the greatest wavelength. Since a fast
Fourier transform (FFT) algorithm is applied to generate the surface, the sea
spectrum is truncated at kp,i, = w/L, for the lower frequency, and at
kmax = /A, for the upper frequency. With a sampling step Az = Ay/10,
we have kpax = 107/ Ag. In [BOU 00], a criterion is given to ensure that all
the frequencies of the surface height spectrum are generated:
kmin < 0.28kpeqx in which Kpeax = 02%g / u%o is the wave number of the most
energetic wave, with 2 = 0.84 for a fully developed sea and g = 9.81 m/s.
Thus, with u;g = 5 m/s, kpeax = 0.277 rad/m, which implies that
kmin < 0.0775 rad/m, and then L > 40.5 m. With L < 40.5 m, the low
frequencies of the sea spectrum are truncated.

Figure 2.27 shows a good agreement between the MoM and PO methods
and the agreement is better for the TM polarization. A better agreement can
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68 Method of Moments for 2D Scattering Problems

be obtained by using specific asymptotic models [PIN 13, ELF 04, BOU 05]
developed for a sea surface. Since |e,1| > 1, the IBC approximation is
applied to calculate the scattered field. This allows us to decrease the number
of unknowns if the surface is considered as dielectric. Otherwise, the number
of unknowns should be approximately multiplied by |\/€,1| ~ 9 leading to
45,000.

10, 10y,

— MoM (5000) —MoM (5000)
---PO ---PO
o i o i
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o o
S S
[/p n -
3 20 8 20
=z =z
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¢ !
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a) b)

Figure 2.27. NRCS in dB scale versus the observation angle Os,.
a) TE polarization. b) TM polarization. Ao = 0.1 m, Ny, = 10, L = 50 m,
€r1 = 70.4 4+ 40.65, w10 = 5 m/s, 0inc = 30° and the surface height spectrum
is that of Elfouhaily et al. [ELF 97]

As shown previously, as the wind speed and/or the frequency increases,
the number of unknowns increases significantly, and then the impedance
matrix can become difficult to invert from a standard algorithm, such as LU,
with a standard computer. Then, specific algorithms are applied to overcome
this issue. For more details, see [TSA 93a, TSA 93b, TSA 95] for the
banded matrix iterative  method/canonical grid (BMIA/CAQG),
[KAP 96, ADA 96, HOL 98, 10D 02] for the forward-backward (FB) and
[CHO 02, CHO 00, TOR 00, TOR 02] for the FB spectral acceleration
(FB-SA). These methods allow us to reduce the memory space requirement
and the complexity of the impedance matrix inversion. In fact, this operation
is not made explicitly, and the matrix-vector product Z ~'b s substituted for a
succession of the matrix-vector products. It is also worth reading the topical
reviews in [WAR 01, SAI 01].
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Validation of the MoM for a Single Scatterer

2.5. FB method

In this section, the FB method is tested on a random rough surface, which

was discussed in detail in Chapter 1.

Figure 2.28 shows the NRCS in dB scale computed from an LU (RCSLy)
inversion and the FB method (RCSgp) versus the observation angle 6y.,. The
simulation parameters are Ao = 1 m, Ny, = 10, L = 300\g, o, = 0.5\0,
L. = 5Xg, 0inc = 30° and the surface height autocorrelation function is
(a) Dirichlet boundary condition,
condition, (c) Dielectric case, TE polarization and €,; = 2 + 0.15, and (d)

Gaussian:

Dielectric case, TM polarization and €¢,; = 2 + 0.17.

NRCS [dB]

NRCS [dB]

Figure 2.28. NRCS in dB scale versus the observation angle 0y, computed from an LU
inversion and the FB method. \o = 1 m, Ny, = 10, L = 300Xo, 0. = 0.5Xo, L. =
5X0, Oine = 30° and the surface height autocorrelation function is Gaussian. a) Dirichlet
boundary condition; b) Neumann boundary condition; c) dielectric case, TE polarization and
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In Figure 2.28, for a given FB order, the value in parentheses is the relative
residual error defined as:
normgscae[_ﬂ/gmm (NRCSFB — NRCSLU)

2.80
normgscae[,ﬂ./g;ﬂ./Q] (NRCSLu) [ ]

€FB —

where the “norm” stands for the norm two.

The results show that the FB converges rapidly for the TE polarization and
very rapidly for the TM polarization and the convergence is slower for a
dielectric surface. It was shown in [BOU 08, KUB 08] that the convergence
order of the FB method is quite insensitive to the height variance o2 and the
incidence angle 6.

For a dielectric rough surface, lodice [IOD 02] studied in detail the
convergence of the FB against the choice of the height autocorrelation
function (HAF). For a Gaussian HAF, the FB always converges, whereas for
an exponential HAF (with the same correlation length and variance height as
the Gaussian case), the FB may fail for very rough surfaces. Déchamps et al.
[DEC 07b] mathematically showed that the FB method converges if the
spectral radius (i.e. the modulus of the eigenvalue that has the highest
modulus) of the characteristic matrix M c,FB 1s strictly smaller than one,
where M ¢,FB 18 expressed as:

_ _ _ —1 = _ _ —1 =
MC,FB = (ZDiag =+ ZForw) ZForw (ZDiag + ZBack) Zpack- [2.81]

Figure 2.29 shows the same variation as in Figure 2.28, but for a sea surface.
The simulation parameters are Ay = 0.1 m, Ny, = 10, L = 50 m, ¢,1 =
70.4 + 40.67, u19 = 5 m/s, O = 30° and the surface height spectrum is that
of Elfouhaily et al. [ELF 97]. The IBC approximation is applied to calculate
the currents on the surface. The FB method converges more rapidly for the TM
polarization.

The FB method accelerates the computation of the surface currents in
comparison to a direct LU inversion, but the memory requirement is the same
for the both methods, since the elements of the impedance matrix must be
stored. From the FB algorithmic scheme, it is possible to compute for each
iteration and for a given component of the current vector, only a row of Z.
Then, the memory requirement becomes N instead of N2, but the computing
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Validation of the MoM for a Single Scatterer 71

time increases, because this row must be recalculated for each iteration. To
solve this issue, the FB combined with the spectral-acceleration (FB-SA)
[CHO 02, CHO 00, TOR 00, TOR 02] has been developed to both reduce the
memory requirement and the computing time (complexity O(NV) instead of
O(N?) with the FB). Its principle is to split up the impedance matrix into
strong and weak interactions. Then, the strong interactions are calculated
from the FB, whereas the weak interactions are computed from the SA. Since
the limit distance between the strong and weak interactions xsa is much
shorter than the surface length, the complexity of the method is that of SA,
that is O(NN). The BMIA-CAG [TSA 93a, TSA 93b, TSA 95] use the same
process. The FB-SA is very efficient for a sea surface, since xsa = 0.02u%,
[KUB 10c, KUB 10b], and as well as for a Gaussian autocorrelation function,
since xsp = 3L. [BOUO08, KUB 08]. The FB-SA has also shown its
efficiency for the diffraction from the Earth in High-Frequency (HF) band
([3 — 30] MHz) [BOU 11a, BOU 11b].

—LU P —LU
- -FB: Order 1 (0.2901) ﬂp -© -FB: Order 1 (0.0023)
0 FB: Order 3 (0.0245) Fhle 0 FB: Order 3 (0.0000)
j 0
o

FB: Order 6 (0.0006) w FB: Order 6 (0.0000)
! |

NRCS [dB]
b b
o o
&.}5
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=
e N
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gﬁ%”’
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_4om‘3@vﬁ ‘b . . N
A I ‘
%o 60 30 0 30 60 90 0 0 30
Angle esca [l Angle esca [l
a) TE polarization b) TM polarization

Figure 2.29. Same variation as in Figure 2.28, but for a sea surface. Ao = 0.1
m, Nx, =10, L = 50 m, ¢;1 = 70.4 + 40.67, w10 = 5 m/s, Oinc = 30° and
the surface height spectrum is that of Elfouhaily et al. [ELF 97]

2.6. Conclusion

In this chapter, from the MoM, the currents on the surface and then the
corresponding RCSs are computed. The results are then compared with the
exact solution of an infinite circular cylinder, leading to a very good agreement
between the two methods. In addition, for a perfectly conducting elliptical
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72 Method of Moments for 2D Scattering Problems

cylinder, a perfectly conducting plate and a rough dielectric surface, the PO
approximation has been compared with the MoM.

Here, the scatterer is assumed to be in free space. In many scattering
problems, the scatterer is often in the presence of another scatterer. For
instance, this topic concerns the scattering of an object near (below or above)
a random rough surface or the scattering from a stack of two one-dimensional
rough interfaces separating homogeneous media. Chapters 3 and 4 solve this
issue with the MoM.
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3

Scattering from Two llluminated Scatterers

3.1. Introduction

The study of scattering from several objects or several objects near a
surface (smooth or rough) is an active research area. Many applications are
concerned by these works, for instance in the remote sensing domain, for the
detection of ocean ice, sand cover of arid regions, or oil slicks on the ocean.
Also in the optics domain, for instance, for optical studies of thin films and
coated surfaces and in the treatment of antireflection coatings. When the
objects are circular  cylinders near a smooth surface
[SOM 64, YOU 88, VAL 94, MAD 95, VID 97, HEN 07, AHM 08, LEE 11,
PAW 11, FIA 12, PAW 12], exact closed-form expressions of the scattered
field can be obtained, but the complexity of programming is high. When the
shape of the cylinder is elliptic [TSO 10, ZOU 11, ZOU 13], it is also
possible to have a closed form expression of the scattered field by introducing
the Mathieu functions [ABR 70], but these functions are very difficult to
program, unlike the well-known Bessel functions, used for circular cylinders.
References cited above can be referred for an exhaustive review of these
issues. A means of validating the resulting formula is to compare it with
another exact method, such as the method of moments (MoM), presented in
this chapter. In addition, the advantage of the MoM is that it can be used for
any incident wave, instead of a plane wave, which is often used in the above
references. The MatLab codes provided with this book can be used by
researchers or engineers to validate their models. When the surface is rough,
some asymptotic models and exact numerical methods have been investigated
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74  Method of Moments for 2D Scattering Problems

[PIN 99, JOH 02, WAN 03, LIU 04, YE 06, DON 07, YE 07] (see also
references therein for an exhaustive review).

For the problem of scattering from a single electrically large or multi-scale
(like the sea) rough surface (i.e. many unknowns), starting from the MoM,
exact, fast numerical methods have been investigated to solve this issue (see
Chapter 2). For instance, we can quote the banded-matrix-iterative-
approach/canonical grid (BMIA-CAG) of Tsang et al. [TSA 93a, TSA 93b,
TSA 95] of complexity O(N log N), the forward-backward (FB) method of
Holliday et al. [KAP 96, ADA 96, HOL 98, 10D 02] of complexity O(N 2)
and the accelerated FB spectral acceleration (FB-SA) version of Chou et al.
[CHO 02, CHO 00, TOR 00, TOR 02, PIN 99] of complexity O(N), in which
N is the number of unknowns on the surface.

In the same spirit, from the MoM, Kubické et al. have developed the
extended propagation-inside-layer expansion (E-PILE) method to explain the
case of two illuminated scatterers and applied it to an object located above a
rough surface [KUB 08, KUB 10a, KUB 10c, KUB 10b]. In [KUB 08],
[KUB 10c] and [KUB 10b], E-PILE is combined with the FB-SA to calculate
the local interactions on the rough surface. Moreover, in [KUB 10a], the
E-PILE is combined with both the FB-SA and the physical optics (PO)
approximation up to second order to calculate the local interactions on the
object (a cross). As a result, since the number of unknowns on the surface N;
is much greater than that of the object Vo, the complexity of the method is
reduced to O(Ny) instead of O([N7 + N2]?), if a direct lower—upper (LU)
inversion is applied to inverse the impedance matrix of the two scatterers.

The aim of this chapter is to present the efficient E-PILE method and to
explain how the calculation of the local interactions on each scatterer can be
accelerated by the PO and FB methods, which are valid for a single scatterer.
Chapter 4 will present the PILE method, for which only one scatterer is
illuminated from the incident wave, and numerical results will be shown for a
coated cylinder, an object below a rough surface and a rough layer.

The following section presents the integral equations and the MoM, in
which the MoM is generalized to P > 2 scatterers. In section 3.3, the E-PILE
algorithm is presented and section 3.4 presents how PO and FB can be
combined with E-PILE. Several numerical examples are also analyzed, like
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Scattering from Two llluminated Scatterers 75

the scattering from two cylinders, from two PC plates, from P plates and
cylinders, and an object above a rough surface.

3.2. Integral equations and method of moments
3.2.1. Integral equations for two scatterers

The problem to be solved is illustrated in Figure 3.1. A source is defined
in the medium €2y of permittivity eg. This medium contains two scatterers:
scatterer 1 of medium §2; and of permittivity €1, and scatterer 2 of medium 2
and of permittivity €. The surface S; (i = {1, 2}) bounds 2;; its normal, n;,
points toward 2. S, is the surface bounding the space €2g; its normal, 71,
points toward outside 2.

Figure 3.1. Scattering from two scatterers: integral equations

From the Helmoltz wave propagation equation [1.13] in each medium, from
the definition of the Green function [1.14] and from the far radiation condition,
the use of the Green theorem for two scatterers leads to [WAN 03]:

Yo(r') ifr' e
{ 00 otherwise? = Vinc(r")
e ]
+/S [1/12( )agog;,r) —go(r,r’)aq’gir)] ds, [3.1]
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76  Method of Moments for 2D Scattering Problems

where i, is the incident field defined inside the medium €2g. In equation [3.1],
if ' — S (case 7' € ), then:

tilr!) = 50 ) P07 (s + /S aotr. ) 20 g

~~ ~~

:>A1 :>Bl

_/ 890(r,r’)¢2(r)d5+/ go(r,r/)a%(r)db’.
Sa

6” So 8n

=Ao =B

[3.2]

The symbol f stands for the Cauchy principal value, which means that the
case 7 = 7’ is not accounted for in the calculation of the integral. In addition,
letting [ dS = f dS+ [, dS (where P is a piece), it is important to note that

for r = v/ € S (above the surface), [, wl(r)%dé’ =+ (r')/2, and
forr = 7’ € S| (below the surface), [}, wl(r)%dé’ = —1(r’)/2. The
difference in sign between the two equations is due to the sense of the normal
to the surface S;.

In equation [3.1], if ' — S;“ (case ' € Qy), the use of the same method
leads to:

Yine(r') = "‘%‘/’2(7“/) —][ sz(r)dﬁ/ go(r,r')mds

Ss on S on

:>A2 :>BQ

_/ ago(r,r/)wl(r)d5+/ go(r,r')%(’”)ds.
S1

on S on

éAm :>Blg

[3.3]
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The four unknowns to be determined are the currents {1);, d1;/On} on the
surfaces {S;} (i = {1,2}). Two additional equations are required. Applying
the Green theorem in medium 2;, we have [TSA 00] (or equation [1.20]):

0 - /S [%(r)agi(r"’“/) —gi(r,'r/)a%(rq s if ' ¢ Q

on on
. [3.4]
9gi(r, ! / 0v; ir
—hi(r') = /s [%(T)gg;lr) —gi(r, 7)) %7(:)} ds ifr’ € Q,

From the boundary conditions on scatterer ¢ expressed as:

to(r) = i(r)
Oo(r) oy (r), [3.5]

on Poi on

where pg; = 1 for the transverse electric (TE) polarization and pg; = €o/¢; for
the transverse magnetic (TM) polarization, we have for ' — Sy (' € Q1):

_ _} A 891(7‘,1") i N 01 (r)
0= 2%(?‘) . 1#1(7“)78” dS+p01 /51 g1(r,r") . dsS,[3.6]

S

Ci
and for ' — Sy (r' € Q9):

o 1 / 892(T7T/) L / 8¢2(T)
0= —21/)2(?“ ) — ., @le('r)ian dS+p02 /S2 g2(r,7") o dsS .[3.7]

Co D>

From equations [3.2], [3.3], [3.6] and [3.7], the unknowns on the surfaces
S1 and Sy can be computed from the MoM.

3.2.2. Method of moments for two scatterers

In this section, the MoM is applied with the point-matching method and
the pulse basis function to convert the integral equations [3.2], [3.3], [3.6] and
[3.7] into a linear system. This method is thoroughly explained in section 1.3.
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78 Method of Moments for 2D Scattering Problems

Equations [3.2], [3.3], [3.6] and [3.7] lead to a coupled system. From the
MoM, the equations are discretized on the surface of each scatterer, leading to
the linear system Z X = b. The unknown vector X is then:

[3.8]

x= 5.

X

where the components of the vectors X; and X are the currents discretized
on the surface S7 and So, respectively. They are written as:

oPi(r1)  OYi(rn,
on ' On

T
X, = |:¢1(7’1) .. .¢1(T'N1) ) ] Tpe[1;Ny] € S1, [3.9]

T
X9 = [1/12(7“1) o Pa(Ty) 81/}35:2) aw%(:lz\@) ] Tpe[1;N,] € 52,[3.10]

where the symbol T stands for transpose, and N; is the number of samples on
the surface S;. The length of the vector X; is then 2.1V;.

The vector b of length 2(N; + Na) is the incident field discretized on the
surfaces S7 and S5. It is defined as:

N7 times

’L/Jjnc(Tl)...’L/Jjnc(TNl) O...O 1/11,10(7“1),..1/}1,19(7“1\]2) 00

T

N times . [311]

=[]

b—{,'PeSl

bl,ress

The impedance matrix of size 2(IN; + Na) x 2(Ny + N3) is then:

[ Ay 131 As By
C, —D; O 0 7 5
2 R {_Zl Z_ﬂ} [3.12]
A Bipa A 132 Zy Zy |’
0 0 Cy; —Dy
L £02 .
where
_ Al Bl B AQ BZ
== 1 - =15 1 =
Z Cy,—D; |’ Z3 Cy —Ds |’ 5131
Po1 P02
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and

[3.14]

5 _[Am le} Zl2_{;112 312]
’ 0 0 |’

The impedance matrix Z,; of size 2N; x 2N; is the impedance matrix of the
scatterer ¢ in free space.

The matrix A; of size N; x N; is the matrix of a Neumann boundary
condition problem expressed from equation [1.55] with A, — wv,|A,| for
any orientation of the normal to the surface. Its elements are:

 jkoval Al HY” (Kol — )
4 ||"°n - rm”

Ajmn = X [V (T — Zm) — (20 — 2m)] form # n, [3.15]

—_ f —

where  (xy, 2p,) € Siy  (Tm, 2m) S Si, v = dz/dx,
lrn — Tl = \/(:vn —2m)% 4+ (z2n — 2m)%, v = N - 2 is the sense of the
(1)

normal to the surface, A, is the sampling step, Hy’ is the zeroth-order

Hankel function of the first kind and Hgl) 1s its derivative.

The matrix B; of size N; x N; is the matrix of a Dirichlet boundary
condition problem expressed from equation [1.52] with A, — |A,]|. Its
elements are:

HY (ko |7 — 7)) for m # n

i1ALl\/1 2
B JAnlV1 497 .[3.16]

,mn — A 94
1+2m (0.164I<:0\/1 + 7,2L|An|) form=mn
77

where (2, z,) € S; and (zy,, 2m) € S;.

The matrix C; is similar to the matrix A; but the Cauchy principal value
is —1/2 instead of +1/2 for the calculation of the diagonal elements Cj ;,,,. In
addition, the matrices C; and D, are obtained from the matrices A; and B;
by substituting kg for k;.
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80 Method of Moments for 2D Scattering Problems

The matrices Zs; (of size 2N} x 2N5) and Z 5 (of size 2N x 2N;) can
be interpreted as coupling matrices. For instance, from equation [3.3], the
matrices A2 and B multiplied by the vector containing the currents on Sy
(11 and Oty /On, respectively) give a scattered field calculated on scatterer 2.
Then, the matrices A2 and By propagate the currents from scatterer 1 to
scatterer 2. It is then a coupling matrix. The same remark holds for the
matrices As; and Bs;. These matrices are expressed from the matrices A;
and B;, with the main difference that the case n = m does not occur since a
point of scatterer 1 always points onto a point of scatterer 2 and vice versa.
Their elements are expressed as:

( 1
g = — 1 Gollrin = r2.m)
: 4 710 — T2,m]
X [Y1,0(T10 — T2m) — (210 — 22,m)]
1
Aot = 1 (ollran = r1.ml)
’ 4 72, — T1mll
% Yo (T2m — T1m) — (Z2m — 21m)] [3.17]
i A 1 2
7]’ 1,n| +71n (1) k' _
12,mn = A ( 0 Hrl n— T2 mH)
j’A27n| 1 + ’an
Bot g = HY (ko |20 — 71m]l)

4

for any (n, m). The subscripts “1,n” and “2, m” refer to a point on scatterer 1
and 2, respectively.

From the knowledge of the currents {1;,01;/0n} on the scatterers, the
scattered field tsca,, in medium v’ € Q,, (v = {0, 1,2}) is computed from the
Huygens’ principle as:

p=2 /
zﬂscaO Z/ |: ag(]:;r) - .g(]('f‘a’r',)aug)?gr)] dS

7

g1 (r,r’")

Vsea1 (r') = —/S1 [%(T) on —gl(r,r/)a%lp} ds -[3-18]
Oga(r,r’) Oy ()

k¢sca,2(7‘/) = —/52 {%(T)an — go(r, ") o= } ds
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Scattering from Two llluminated Scatterers 81

3.2.2.1. Case of perfectly conducting scatterers

For a perfectly conducting (PC) scatterer 7, the impedance matrix Z; can be
simplified. For the TE polarization (Dirichlet boundary condition), ¢); on the
surface vanishes and the only unknown on the surface is 9v; /On. Then:

_ _ O
TE: Zl:BZ7 X,L: awl
n

[3.19]

For the TM polarization (Neumann boundary condition), 9v;/9n on the
surface vanishes and the only unknown on the surface is ;. Then:

In addition, if scatterer 1 is PC and scatterer 2 is dielectric, then:

_ _ oo 5 B
TE: Z1 = By Zy = [As By Z12 = [0 12]
, [3.21]
- o . A
T™: Z1 = Ay Zy = [As1 Bo1] Zyg = [(—) 12]

and the matrix Z, is expressed from eql_lation [_3.13]. In addition, if scatterer 2
isPC,then Z; = B; (i = {1,_2}) and Z;; = B;j (j = {1,2} with j # 1) for
the TE polarization, whereas Z; = A; and Z;; = A;; for the TM polarization.

If the scatterer 2 is PC and the scatterer 1 is dielectric, then the matrices
are obtained from equation [3.21] by substituting subscripts {1, 12,21} for
{2,21,12}, and Z is expressed from equation [3.13].
3.2.2.2. IBC approximation

From section 1.4.4, if the scatterer ¢ satisfies the Leontovitvh boundary
condition or the impedance boundary condition (IBC), then:

Zi = OéiAi + Bsz, [3.22]
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82 Method of Moments for 2D Scattering Problems

with
A L J [e0 o Oi(r) o Oi(r)
TE: /B’L =1 Q; = kO €ri Xz - 87’1 7/’2("') = Q5 an
[3.23]
a ko [0 o Ni(r)
™ : §; = J s a; =1 X;= %(T) on ﬂz¢0(r)

In addition, if the scatterer 1 satisfies the IBC approximation and the
scatterer 2 is dielectric, from equation [3.21], the coupling matrix Zo;
remains unchanged and the coupling matrix Z 9 is:

0 [3.24]

Ziy— [a1A12 + 51312} .
If scatterers 1 and 2 satisfy the IBC approximation, then Z; = o; A;+ 3; B;

and Zij = aiBij + BlAZj

3.2.2.3. Numerical results: case of two elliptical cylinders

Like for the scattering from a single circular cylinder (see section 2.3), the
exact solution of the scattering from two cylinders can be obtained. Refer, for
instance, reference [YOU 88]. Then, to apply the boundary condition on each
cylinder, the coordinates of cylinder 1 are expressed from the coordinates of
cylinder 2 via the Graf addition theorem [ABR 70] on the Bessel functions.
Since the multiple reflections are accounted for, the complexity of
programming increases significantly. In addition, the incident field is often
considered as a plane wave. With the MoM, this is not a constraint and it can
also be applied to an elliptical cylinder without modification of the MatLab
code.

Figure 3.2 shows the modulus and the phase of the currents {v;, 9v;/On}
versus 60; of two dielectric elliptical cylinders of semi-major a; = as = 2)\g
and semi-minor by = by = \g axes, of centers C; = (F2,0)\o and of rotation
angles o; = /4 (Ao = 1 m, €1 = €20 = 44 0.057, Yinc,0 = 1, Oinc = 0 and
TE polarization).

In addition, the currents are plotted when the coupling is neglected, which
means that the coupling matrices Z 15 and Z 5, are taken as zeros. Figure 3.3a)
shows the total field versus the abscissa x and the height z, and Figure 3.3b)
shows the radar cross-section (RCS) in dBm scale versus the observation angle
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Scattering from Two llluminated Scatterers 83

Osca- For the cylinder i, §; = 0 corresponds to the points of coordinates (F2 +

V2, FV2)Ao.

3 3 180
- 24 = ~ 24 = 1
= * Z o 60
S 18 z S 18 z
3 S E] S o
3 12 3 12
3 a 3 8 -60
£ 2
= o6 x = o6 T 5
A i !
0 60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360
Angle 9‘ 1 Angle e‘ 1 Angle 82 1 Angle 92 1
20 180 20 180
c = MoM (776) c — MoM (776)
= 16 = 120 - = = MoM wa;iwa czupllng S = = = = MoM (776), No coupling
= [SI 2 = <
g = | g =
5 2 ) 5 2
El 5 v ] s
3 @ 60 3 2
! 8 ) g 8
s £ 120 v 2 £ -120
'
0 60 120 180 240 300 360 O 60 120 180 240 300 360 0 60 120 180 240 300 360 O 60 120 180 240 300 360
Angle 9‘ 1 Angle e‘ 1 Angle 92 [ Angle 92 [l
a) 11 and OY1/0n b) ¢z and 92 /On

Figure 3.2. Modulus and phase of the currents {1;, 01; /On} versus 0; of two
dielectric elliptical cylinders of semi-major a1 = a2 = 2o and semi-minor
b1 = ba = Ao axes, of centers C; = (F2,0)\o and of rotation angles ov; = Fr /4.
Ao =1m, €1 = €2 = 44 0.057, Yinc,0 = 1, Oine = 0 and TE polarization

25,
—MoM (776)
- --MoM (776), No coupling

RCS [dBm]

_15 ; ; ; ; ;
5 4 3 2 1 0 1 2 3 4 5 0 30 60 90 120 150 180
x [m] Angle 6__ [°]
a) |winc + wsca,0| b) RCS

Figure 3.3. a) Modulus of the total field versus the abscissa x and the height z.
b) RCS in dBm scale versus the observation angle 0y.,. The parameters are the
same as in Figure 3.2
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84 Method of Moments for 2D Scattering Problems

As expected, a coupling between the two cylinders is observed. Figure 3.3b)
shows clearly that the scattered field is strongly modified between the two
cylinders.

For the TE and TM polarizations, Figures 3.4 and 3.5 show the same
variation as in Figure 3.3, respectively, but the cylinders are PC. In
comparison to Figure 3.3, the coupling between the two cylinders is stronger
because no field is absorbed inside the cylinders, unlike dielectric cylinders.

[—MoM (194)
201~ - ~MoM (194), No coupling

z [m]

RCS [dBm]

o 0 30 60 90 120 150 180
x [m] Angle esca [l

a) |1/}inc + 'l/}sca,0| b) RCS

Figure 3.4. Same variation as in Figure 3.3, but the cylinders
are perfectly conducting

3.2.3. Method of moments for P scatterers

From equation [3.12], it is easy to generalize the MoM for P scatterers.
Then, we have:

?1 Zl2~-~?1P X1

_ Zon Ly ...Zsp X

Z=| . X=1 . | [3.25]
Zpl ZP2 Zp Xp
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Scattering from Two llluminated Scatterers 85

where
o A, B,
= Aij Bij = v v
Lo | A 2 = - 1 -
Z;; [ % ] Zi=|eg Lp,| [3.26]
P40

and integers ¢ and j # i range from 1 to P. If the number of samples on
scatterer ¢ is NN;, then the size of the resulting impedance matrix is
(2 Zi 1 Ni) x (2 Zfi 1 Ni), which significantly increases the number of
unknowns of the scatterers equaling QZZP: 1 Ni (currents 1; and 0;/0n
discretized on each scatterer).

In addition, the complexity of programming also increases significantly.
Nevertheless, if the scatterers are assumed to be PC, then for the TE and TM
polarizations, {Zz = Bi7 Z,‘j = BZ]} and {Z, = Ai, Zij = Aij},
respectively. In addition, the size of the impedance matrix is reduced to
Sict Nix 251, Ni

——MoM (194)
20H -~ ~MoM (194), No coupling

RCS [dBm]
(4]

E 0 30 60 90 120 150 180
x [m] Angle 6__ [°]

a) |'l/]inc + wsca,0| b) RCS

Figure 3.5. Same variation as in Figure 3.4, but for the TM polarization

For the TE and TM polarizations, Figure 3.6 shows the total field scattered
by six scatterers (three PC elliptical cylinders and three PC plates).
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1.8 1.8
16 1.6
14 1.4
1.2 1.2
E 1 E 1
N N
0.8:- 08~
0.6 0.5
0.4 0.4
0.2 0.2
¢ Q.O g € 4 2 & 2 4 8 8 10 .
X [m]
a) TE b) TM

Figure 3.6. Modulus of the total field vinc + Vsca,0 versus the abscissa x and the height z. a)
TE polarization. b) TM polarization. The three elliptical PC cylinders have semi-major {a1 =
as = 3,a2 = 2}X\o and semi-minor {b1 = by = bz = 2} axes, their centers are C1 =
(—3.5,6) X0, C2 = (0,0) and C3 = (+3.5,6)No, and their rotation angles are an = 10°,
az = 0and ag = —10°. The lengths of the three PC plates are Ly = 4o and Ls = L = 5\,
their centers are Cy = (0,3)Xo, C5 = (—=5,1) o and Cs = (+5,1)A\o and their rotation
angles are s =0, a5 = —ag = —7/4 (Ao = 1 m)

3.3. Efficient inversion of the impedance matrix: E-PILE method for two
scatterers
3.3.1. Mathematical formulation

To efficiently solve the linear system Z X = b, a decomposition by blocks
of the the impedance matrix expressed by equation [3.12] is used. From this
decomposition, the inversion of Z can also be expressed by submatrices as
[PRE 92]:

. [TU
zZ'= [ W], [3.27]

8SUBD | SUOWILLIOD) aAIER.D a|aed|jdde auy Ag peusenob ae sspiLe YO 9sn Jo SajnJ 1oy A%eiqiT auljuQ As|IA\ UO (SUO1IPUOD-PUe-SWLIBYWO0D AS | 1M Alelq Ul uo//sdiy) SuonipuoD pue swie 18Uyl 8es “[€202/2T/9T] uo AriqiauljuQ As|ip ‘uussulbug Jo AlsieAlun exeyq Ag /1op/wod:Asim:Aze.q 1 euljuo//sdiy Wwoiy pepeojumoq



Scattering from Two llluminated Scatterers 87

where

_ _ N |
T = (Zl — 221251212)

Lo 51
Z2122

U=-(21- 222, ' Zn)
I . 13.28]
V=-2,'Z (Z1 —ZnZ, le)
_ _ o _ PN

W = Z2_1 + ZQ_IZI2 (Zl - Z21ZQ_1212> Z2122_1

and the unknown vector X is obtained as follows:
Xi1| s-1[bi]  [Tbi+Ub
2] (2] [Pt

By using equations [3.28] and [3.29], the currents on scatterer 1, X1, can
be expressed as:

_ RN | _ N1
X = (Zl —ZnZ, 1212> b — (Zl - 221221Z12> ZnZ, 1b2,
[3.30]
which leads to:
_ PN | o
X1 = (Zl —ZnZ, 1Z12> <b1 —ZnZ, 152)
[3.31]

—(1-27'202;,20) 27" (b1 - 2223"D:).

where I is the identity matrix. Let us introduce the characteristic matrix M el
as:

Mc,1 221—122122—1212. [3.32]

The first term in equation [3.31] can be expanded as an infinite series
(Taylor series expansion of the inverse of the Shur complement) over p:

. | - ., =
(1-20'2212y'20) = (I-M,) ' =3 ML, 333
p=0
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88 Method of Moments for 2D Scattering Problems

For the numerical computation, the sum must be lowered at the order
PrpriLg. From equations [3.31] and [3.33], the currents on scatterer 1, X, are
then expressed as:

p=PEpILE p=FE-PILE

X =| Y M|z (bl—ZmZ;le): DR SRAERD
p=0 p=0
where

{Yg()) =z (bl —ZnZ, 162) forp =0 [3.35]

v =nr, v for p > 0

The currents on scatterer 2, X 5, are obtained from equations [3.34], [3.35]
and [3.32] by substituting, the subscripts {2,1,21,12} for the subscripts
{1,2,12,21}, respectively.

We define the norm HM el H of a complex matrix by its spectral radius, that
is the modulus of its eingenvalue, which has the highest modulus. Expansion
[3.33] is then valid if || M 1| is strictly smaller than 1.

The physical interpretation of M c,1 is shown in Figure 3.7: in the
zeroth-order term, Z fl accounts for the local interactions on scatterer 1, so

Y§°> corresponds to the contribution of the scattering on scatterer 1 when it is
illuminated by the direct incident field (b;) and the direct scattered field by
scatterer 2 (—Z91Z o 'by). Indeed, Z N ! accounts for the local interactions on
scatterer 2, and Z»; propagates the field on scatterer 2 toward scatterer 1. In
the first-order term, Ygl) = M C71Y§0), VAD propagates the resulting field
information, Ygo), toward scatterer 2, Z 9 ! accounts for the local interactions
on this scatterer and Zy; re-propagates the resulting field information toward
scatterer 1; finally, Z 1_1 updates the field values on scatterer 1. So the
characteristic matrix M ¢,1 1s related to a back-and-forth between the two
scatterers. In conclusion, the order Fg py g of PILE corresponds to the number
of back-and-forths between scatterers 1 and 2. The same conclusion holds for

M5
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Scatterer 1 Scatterer 2

Figure 3.7. Illustration of the physical interpretation of the E-PILE method

3.3.2. Numerical results

3.3.2.1. Two perfectly conducting plates

To confirm that the E-PILE order is related to the number of reflections
between the two scatterers, we will choose scenarios for which this
phenomenon is clearly identified.

Figure 3.8 shows the modulus of the total field versus the abscissa z in
meters and the height z in meters. Two identical PC plates are considered. The
simulations parameters are \g = 1 m, fipc = 0, Yinco = 1, the lengths of
the plates are L1 = Lo = 5\, their rotation angles are oy = —ay = 7/4,
their centers have coordinates C 2 = (F2.5,0)\o and the polarization is TE.
Figure 3.9 shows the corresponding RCS in dBm scale versus the scattering
angle Og,. In the figure, for a given E-PILE order, the number in parentheses
is the residual relative error defined as:

normg,, (RCSg-pig — RCSLy)
normasca (RCSLU)

€E-PILE — s [3.36]

where the symbol “norm” stands for the norm 2. RCSy y stands for the RCS
that is computed from a direct LU inversion of the impedance matrix of the
two scatterers and, RCSg.py g that computed from E-PILE.

Figure 3.9 shows that the coupling must be taken into account and the
results match well with those computed from LU for Pgppg = 0. As shown
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90 Method of Moments for 2D Scattering Problems

in Figure 3.8, this corresponds to one reflection between the two plates. For
this scenario and from a geometrical point of view, only one reflection
between the two plates occurs, and for 6, = 0, the RCS is then at a
maximum for a scattering angle 05, = 0.

LU + no coupling (0.8273)

2

1.8

18

z[m]
z[m]

14: -

1.2585

1

08- -

06

0.4

z[m]
z[m]

0.2

T4 324 012345 4224012345 ©

x [m] x [m]

Figure 3.8. Modulus of the total field versus the abscissa x in meters and the height z in meters.
Two identical perfectly conducting plates are considered. Ao = 1 m, 0ijpc = 0, Yinc,0 = 1; the
lengths of the plates are 5o, their rotation angles are a1 = —a2 = /4 (angles defined in
counterclockwise), their centers have coordinates C12 = (F2.5,0)\o, and the polarization
is TE

Figure 3.10 shows the same results as in Figure 3.8, but L; = La = 6,
a; = ag = 0and C1 2 = (0,F2.5)\g. Figure 3.11 shows the corresponding
RCS in dBm scale versus the scattering angle fg,.

For this example, from a geometrical point of view, the number of
reflections inside the opened cavity (space between the two plates) is given by
the integer part of L/(dtan 6i,), giving 2 for d = 5. It is consistent with
Figures 3.10 and 3.9, where the convergence is achieved for Pgppg = 2 (for
a given precision).

To know the convergence rate of E-PILE, we therefore need to calculate
the norm of the characteristic matrix, HM ||, which equals the modulus of its
eingenvalue, which has the highest modulus. For Figures 3.9 and 3.11,
||M CH = {0.036,0.956}, respectively. For a large problem, the computation
of this norm is very time consuming and it is not recommended.
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91

35, SRS
= © - LU + no coupling (0.8273)
304 E-PILE: Order 0 (0.0638)
E-PILE: Order 1 (0.0022)

LU

RCS [dBm]

-10

90 120 150 18

45—t ‘
-180-150-120 -90 -60 -30 O 30 60
Angle 6 [°]

Figure 3.9. RCS in dBm scale versus the scattering angle 0y.,. The parameters
are the same as in Figure 3.8

LU + no coupling {0.75803) E-PILE: Grder 0 (0.3017)
5 2
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Figure 3.10. Same results as in Figure 3.8, but 0i,c = 30°, L1 = L2 = 6o,
a1 = as = 0and 01,2 = (0, :|:2.5))\0
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Figure 3.11. RCS in dBm scale versus the scattering angle Oyc.. The
parameters are the same as in Figure 3.10

3.3.2.2. Two elliptical perfectly conducting cylinders

Figure 3.12 shows the modulus of the total field in dB scale versus the
abscissa  in m and the height z in meters. The simulation parameters are \g =
1 meters, a; = a2 = Ao (semi-major axis), by = ba = 3\g/2 (semi-minor
axis), C12 = (0,F2)\g (centers), a2 = £30° (rotation angles), Vinco = 1
and 6i,c = 0, TE polarization and the two elliptical cylinders are assumed
to be PC. Figure 3.13 shows the corresponding RCS in dBm scale versus the
scattering angle fyc,. As the order Py py g increases, Figure 3.12 shows that the
field computed from E-PILE between the two cylinders and behind the upper
cylinder converges toward that computed from LU. Between the two cylinders,
the fields do not vanish because the first cylinder is excited by the second
cylinder due to the creeping waves, whereas behind the first cylinder, the total
field vanishes in the shadow zone. Figure 3.13 shows that the convergence is
achieved for Pepig = 3.

For a scenario made up of an object (like an elliptical cylinder, a plate
and a cross) above a rough surface of sea-like and Gaussian spectra, Kubické
et al. [KUB 08, KUB 10c, KUB 10b] showed that the E-PILE method always
converges.

For Figure 3.13,

M.|| = 0.221.
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Figure 3.12. Modulus of the total field in dB scale versus the abscissa x in meters and the
height z in meters. \o = 1 m, a1 = a2 = Ao (semi-major axis), by = ba = 3\ /2 (semi-minor
axis), C1 2 = (0,F2) Ao (centers), an,2 = £30° (rotation angles), Yinc,o = 1 and 0y = 0, TE

polarization and the two elliptical cylinders are assumed to be perfectly conducting
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Figure 3.13. RCS in dBm scale versus the scattering angle Oyc,.
The parameters are the same as in Figure 3.12

In comparison to an LU inversion, one of the advantages of the E-PILE
method is its ability to quantify the coupling between the two scatterers
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94 Method of Moments for 2D Scattering Problems

within the order Pg pypg. Equation [3.35] clearly shows that the calculation of
zZ; Luis required, in which Z; is the impedance matrix of scatterer i in free
space. Another advantage of the E-PILE method is its ability to calculate this
matrix-vector product by fast numerical methods that already exist for a
single scatterer (in free space). In comparison to a direct LU inversion of
complexity O((Ny + N2)3), the complexity of E-PILE, which is similar to
LU without hybridization (O(N} + N3)), can be significantly reduced by
combining such accelerations. The following section presents how the local
interactions (related to Z; 1u) on each scatterer can be computed by the FB
and the PO in the E-PILE algorithm.

3.4. E-PILE method combined with PO and FB

This section presents how the PO and FB methods, applied to calculate
the local interactions on a single scatterer, can be hybridized in the E-PILE
algorithm to compute the field scattered by two scatterers.

3.4.1. E-PILE hybridized with FB

Equation [3.35] clearly shows that the calculation of Z; Ywis required, in
which Z; is the impedance matrix of scatterer i in free space. To calculate the
local interactions on a rough surface, the FB method can be applied. For any
scatterer above a rough surface, in [KUB 08], [KUB 10c] and [KUB 10b], it
was shown that the order of convergence FPrp is obtained by considering only
the scattering from the single rough surface (without the scatterer). Physically,
this conclusion can be explained by the fact that the inversion of the impedance
matrix is independent of the incident field u.

Thus, if we consider the rough surface (scatterer 1) giving the NRCS plotted
in Figure 2.28a) (\o = 1 m, N), = 10, L = 300X\, 0, = 0.5\g, L. = 5o,
Oinc = 30°, the surface height autocorrelation function is Gaussian and the
Dirichlet boundary condition), Prg = 5. A circular cylinder (scatterer 2) of
radius a1 = 2)¢ and center C; = (0,3)\) is located above the surface. The
scene is shown in Figure 3.14a) and the corresponding NRCS is plotted in
Figure 3.14b).
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Scattering from Two llluminated Scatterers 95

In the figure, for a given E-PILE order combined with a fifth-order FB, the
number in parentheses is the residual relative error defined as:

norm@sca (NRCSE-PILE+FB - NRCSLU)

NRCS.D) , [3.37]

€E-PILE+FB =
normg

where the symbol “norm” stands for the norm 2.

As the E-PILE order increases, Figure 3.14b) shows that the results
converge toward those obtained from an LU inversion and the residual error at
Pe pi g = 8 is similar to that obtained when the surface is alone (without the
object, see Figure 2.28a)). In addition, E-PILE+FB converges rapidly, and
the convergence order is Pg.pr g = 8 (for a given precision). It depends on the
expected precision.

Figure 3.15 shows the same results as in Figure 3.14, but the object is a
plate of length L; = 10\, of center C; = (0,5)\g), of rotation angle o; =
0 and N), = 10. Figure 3.15b) shows that E-PIPLE+FB converges rapidly
(PegpiLe = 1) and like previously, the residual error is not zero because the FB
is applied to calculate the local interactions on the rough surface.

The complexity of E-PILE+FB is O(N1Ny + N + N3) instead of
O((Ny + N)3) if a direct LU inversion is used. O(NN1N3) corresponds to the
complexity of the vector-matrix products, O(NZ) corresponds to the
complexity of FB applied to compute the local interactions on the rough
surface (scatterer 2) and O(N}) corresponds to the complexity of LU to
compute the local interactions on the object (scatterer 1). Combining the SA
[CHO 02, CHO 00, TOR 00, TOR 02] with FB, the complexity O(N3)
becomes O(N2) and then the E-PILE+FB-SA method is very efficient for
calculating the field scattered by an object above a very large rough surface
(in comparison to the object) [KUB 10a, KUB 10c, KUB 10b]. In addition,
with the SA, the memory space requirement decreases from O(NZ) (for the
FB) to O(N3), because only the elements of the impedance matrix of the
strong interactions must be stored.

Another means of decreasing the memory space requirement and the
complexity is to hybridize E-PILE with asymptotic methods such as PO. This
is described in the next section.
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Figure 3.14. NRCS in dB scale versus the observation angle 0., computed from LU and E-
PILE combined with FB. 0;,c = 30° and the Neumann boundary condition (TM polarization).
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Figure 3.15. Same results as in Figure 3.14 but the object is a plate of length
Ly = 10Xo, of center C1 = (0,5X\o), of rotation angle a2 = 0 and Ny, = 10

3.4.2. E-PILE hybridized with PO

This section focuses on the integration of PO in the E-PILE algorithm. We
consider only the PO at the first order, meaning that the multiple reflections
on the same scatterer are neglected. As shown in [KUB 10a], it is not difficult
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Scattering from Two llluminated Scatterers 97

to include the higher order reflections but the complexity of programming
increases.

3.4.2.1. The Neumann boundary condition

For the TM polarization and for a PC object (scatterer 1) in free space,
the total field on the object surface due to a single reflection is given with PO
approximation by equation [2.62]:

Y1(r) = 2inc(r)  Vr € Sui, [3.38]

where Sy is the illuminated surface on the object excited by the incident field
Yine(7), and 1 (7) is the total field on the object.

If we consider two different sources that illuminate the object, we can write
under PO approximation:

Y1(1) = 2[ F (1) Yinc(r) + B21 (1)1 (7)] = 24, (1), [3.39]

where =; and =9; are two shadowing functions (Boolean) defined as:

- 1 Vr € Su
=i(r) = {0 otherwise’ [3.40]

and

1Vr e 5111_21

0 otherwise [3.41]

Ea(r) = {

where Syjj_9; is the surface of the object illuminated by the field 121 (7).

By sampling the object surface into /Ny elements, equation [3.39] can be
converted into

Xl;O =2 (Elbl + E21b21) = 2’[1,/, [3.42]
where XF0 is the unknown vector whose elements are the total field on the

object ¢(r1 ) sampled on the surface (n € [1; N;] and ry, € =)). =, and
=91 are diagonal matrices, in which some elements are set to zero due to the
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98 Method of Moments for 2D Scattering Problems

shadowing (sampling of the shadowing functions Z;(r; ) and Zg1(71,)).
Their elements are defined as:

= _ J1Vri, € Su

=lnn = { 0 otherwise ’ [3.43]
and

- [ 1VYr1, € Sm—21

—2Lnn = {0 otherwise ‘ [3.44]

By considering the zeroth order (Pg.p g = 0) of E-PILE, equation [3.42]
is quite similar to [3.35]. Indeed, the unknowns X (10) on the object can be
expressed as:

x =2z, [3.45]
where u can be seen as an incident field on the object defined as:
u:bl—ZmZ;le. [3.46]

In the E-PILE algorithm, the excitation can be split up into two sources:
one related to the direct illumination of the incident field by, and the other one
related to the coupling (multiple interactions) with the second scatterer Zo; v,
where v are the currents on scatterer 2. Thus, the excited surfaces on the object
are not the same according to the source. For example, for a plate (scatterer 1)
above a rough surface (scatterer 2), the incident field by illuminates the top
side of the plate, whereas the field scattered from the rough surface toward the
object illuminates the bottom side of the plate.

Thus, from equations [3.46], [3.45] and [3.42], we have:

x0 =9 (b’l - Z’mZ;IbQ) = 24/, [3.47]

u

where the elements of Z fl are Z1,mn = gém,n (Kr(znecker §ympol defined as
Ommn = 1if m = n, 0 otherwise), b; = E1by and Zy; = Ep1 Za;. Thus, the
inversion of Z becomes analytic and straightforward. The shadowing is taken
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into account within the source vector u’. Moreover, the matrix-vector product
7—1
Z | u becomes a scalar-vector product 2u/.

At the order Pg py g, since M ¢,1 is related to a back-and-forth between the
two scatterers (which rigorously takes into account the coupling effect), the

total field X'; on scatterer 1 is expressed from [3.34], in which X 50) is given
by [3.47] and the p-th order is given by:

xP =, xPY, [3.48]
where M'C,l = 22’2122_1212.

The elements of the vector b’1 = E,b; and of the matrix Z ,21 = 5917291
are defined from geometrical considerations as:

1 —sgn |:’fll7n . I;:;nc} inf. -
by — b 1+ 520 [U1,nY1,n SiN Ginc + V1,1 COS Oinc] [3.49]

) 2 - 3T 2 )

b/l,n =
and
L —sgn[(r1,m — T2n) - P1m)

2

1+ sgn [(xl,m - x?,n)vl,m')/l,m - (Zl,m - ZZ,n)Ul,m]
2 M
[3.50]

/
ZQl,mn = ZQLm"

- Z21,mn

where vy, gives the sign of the vector 721 normal to scatterer 1 (v; = sgn(n; -
%)), and 71, is the slope of scatterer 1 at the point 1 .

In conclusion, the impedance matrix Z; is not stored (O(N?) — 1), its
inversion is analytic (not computed: O(N7) — 1) and the computing time is
also reduced for the matrix-vector product Z, v (for any incident field vector
v); PO shadowing effects being geometrically taken into account during the
incident vector and coupling matrix fillings.

The PO approximation can also be applied onto scatterer 2 by the
substitution of subscripts {1,2,21,12} for {2,1,12,21}. The resulting
complexity of the E-PILE method, named as E-PILE + PO (scatterer 1) + PO
(scatterer 2), is then O(N1N3), corresponding to the matrix-vector products
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100 Method of Moments for 2D Scattering Problems

complexity, instead of O(N} + N3 + N1Ny) ~ O(N; + N3) if E-PILE is
applied without acceleration.

3.4.2.2. The Dirichlet boundary condition

For TE polarization, and for a PC scatterer, the Dirichlet boundary
condition implies 1)(r) = 0 on the scatterer. Then, X is the unknown vector
containing the normal derivative of the total field on scatterer 1: 9y (r)/On
sampled on the surface. From the PO approximation, for a scatterer in free
space, we have from equation [2.62]:

8¢1 (r) 8@blnc( )
on = an Vr € SH], [3.51]

and for two sources:

0 0 inc — 0 0 inc
D)y [z Delr) | 2] _ el

. [3.52]

where =; and Z»; are shadowing functions (Boolean) defined from equations
[3.40] and [3.41], respectively.

Using the same process as for the TM case, the normal derivative of the

total field X1 on scatterer 1 is expressed by equation [3.34], in which X ©
is given by [3 47] and the pth order is given by equatlon [3.48]. In addltlon
M/cl = 2Z21Z2 Z12 with b1 = ulabl/anl and Z21 = _.218Z21/8n1
The symbol Oe /On is the normal derivative which operates on the coordinates
(w1, 21). Like for the TM polarization, the impedance matrix Z; is not stored,
its inversion is analytic (not computed) and the computing time is also reduced

for the matrix-vector product Z 1_11: (for any incident field vector v).

The PO approximation can be applied on the scatterer 2 by the substitution
of subscripts {1,2,21,12} for {2,1,12,21} and on scatterer 1, a direct LU
inversion is applied. According to the Neumann boundary condition, the
MatLab program is more complex because the operator O e /On; must be
computed either numerically or analytically.

For the Dirichlet boundary condition, Z5 = By and from equation
[3.17], its elements are:

j|A27n‘ 1+ /Y%,n
21,mn = 4

HY (o 72 — 71.ml)- (3.53]
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Figure 3.16. a) Two parallel PC plates with thicknesses (Ao /20) of lengths L1 = Ly = 10\,
of centers C1,2 = (0, F5X\o), of rotation angles a1,2 = 0 and 0;,. = 30°. b) Two PC circular
cylinders of radius a1 = az = 2.5\, of centers C1,2 = (F5Xo,0) and 0y = 0. ¢) A PC plate
above a rough surface, with a plate: L1 = 10Xo, o1 = 0 and C1 = (0,3)Xo; and a rough
surface: La = 300X, 0. = 0.5Xo, L = 5o, the surface height autocorrelation function
is Gaussian, the parameter of the Thorsos wave (defined from equation [1.32]) is g = L1/6.
Oinc = 30°. For the three cases, the polarization is TM and N, = 10

Then, the elements of 9Z51/0n; are:

5 T : ’ (221 — Y1.ma1) ,[3.54]
n Aoy /1 + ’Y%,m

where 91 = T2, — Tim, 221 = 229 — Z1,m and r9; = x%l + Z%l' In
addition, for a plane wave ¥inc(7") = Vinc,0€’ ki e have:

awian;(’r) =n- Vwinc(r) = ]ﬁ : kincwinc(r)' [3.55]

3.4.2.3. Numerical results

First, we consider the scenario depicted in Figure 3.16a): two parallel PC
plates of lengths L1 = Ly = 10\, of centers C; 2 = (0, F5)¢), of rotation
angles a1 2 = 0. The incident angle is 0;,c = 30°, the polarization is TM and
Ny, = 10.

Figure 3.17 shows the modulus of the currents on scatterer 1 (bottom plate)
versus the index n;. The currents on scatterer 2 (top plate) are not shown.
Figure 3.18 shows the RCS versus the scattering angle 6c,. In the figure:
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Figure 3.17. Modulus of the currents on scatterer 1 (bottom plate) versus the
index n1. The samples n1 € [1; 100] correspond to the upper side of the plate
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Figure 3.18. RCS versus the scattering angle Os.q. The parameters are the
same as in Figure 3.17
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Scattering from Two llluminated Scatterers 103

— “E-PILE4+LU+LU” means that currents are computed from E-PILE, in
which the local interactions on scatterers 1 and 2 are both computed from an
LU inversion.

— “E-PILE+PO+LU” means that currents are computed from E-PILE, in
which the local interactions on scatterers 1 and 2 are computed from PO and
an LU inversion, respectively.

— “E-PILE4+LU+PQO” means that currents are computed from E-PILE, in
which the local interactions on scatterers 1 and 2 are computed from an LU
inversion and PO, respectively.

— “E-PILE4+PO+PO” means that currents are computed from E-PILE, in
which the local interactions on scatterers 1 and 2 are both computed from PO.

— “LU” means that the currents are computed from a direct LU inversion.

In addition, the value given in the figure is the corresponding residual
relative error between “LU” and the corresponding method.

As the order Pgppg (given in the title of each subfigure) increases,
Figures 3.17 and 3.18 show that the results computed from E-PILE converge
toward those obtained from LU and that the currents evaluated from
“E-PILE4+PO+PO” weakly change in the illuminated zone, whereas they
vanish in the shadow zone and do not vary with Pgppg. E-PILE+PO+PO
gives satisfactory results in comparison to E-PILE and when an LU inversion
is applied to calculate the local interactions on either the scatterer 1 or
scatterer 2, the results are similar to those obtained from “E-PILE+PO+PO”.

We consider the scenario depicted in Figure 3.16b): two PC circular
cylinders of radius a; = as = 2.5\g and centers C 2 = (F5A0,0). The
incident angle is 6;,c = 0, the polarization is TM and N, = 10.

Figures 3.19 and 3.20 show the same results as in Figures 3.17 and 3.18,
respectively, but they consider the scene depicted in Figure 3.16b). As we can
see in Figure 3.19, for 61 € [n/2;37/2], the field evaluated from PO is
constant (2 for 61 € [r/2;7]| and O for 6; € [m;37/2]) because a point on
scatterer 1 cannot interact with a point of scatterer 2, due to the shadow that is
taken into account via the coupling matrices. In this region, E-PILE+LU+LU
predicts a non-zero current due to the creeping waves. Figure 3.20 also shows
that E-PILE+PO+PO gives satisfactory results and that the residual errors of
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104 Method of Moments for 2D Scattering Problems

E-PILE+PO+LU and E-PILE+LU+PO are the same, which is consistent with
the reciprocity principle since cylinder 1 is symmetrical to cylinder 2 with
respect to the straight line x = 0, as 0, = 0.

Order 0

— © — E-PILE+LU+LU: 0.195
E-PILE+PO+LU: 0.413
E-PILE+LU+PO: 0.221

— % — E-PILE+PO+PO: 0.426|

; ) N 4l
0 30 60 90 120 150 180 210 240 270 300 330 360

— © — E-PILE+LU+LU: 0.006
E-PILE+PO+LU: 0.354
E-PILE+LU+PO: 0.060

— % — E-PILE+PO+PO: 0.361

| | L ) h i Y
0 30 60 90 120 150 180 210 240 270 300 330 360
Angle 61 in degrees

Figure 3.19. Modulus of the currents on scatterer 1 (left cylinder) versus the
polar angle 01. 01 = 0 corresponds to the point of coordinates (0, —2.5X0) as
in Figure 3.16b

The last scenario is depicted in Figure 3.16c): a PC plate above a rough
surface with a plate: Ly = 10\g, a1 = 0 and C; = {0,5} Ao, and a rough
surface: Lo = 300A\g, 0, = 0.5X\g, L. = 5Ag, the surface height
autocorrelation function is Gaussian and the parameter of the Thorsos wave
(defined from equation [1.32]) is ¢ = L;/6. The incident angle is €, = 30°,
the polarization is TE and N, = 10. Figure 3.21 shows the corresponding
NRCS in dB scale. As we can see, E-PILE+PO+PO and E-PILE+PO+LU
predict good results in comparison to E-PILE+LU+LU and when PO is
applied onto the rough surface (E-PILE+LU+PO), the results are not as good.
In general [KUB 08, KUB 10c, KUB 10b], for a PC object (cylinder, plate
and cross) above a rough surface, E-PILE+PO+LU gave satisfactory results.
In addition, for the calculation of the local interactions on the rough surface,
FB can be applied instead of a direct LU inversion, reducing the complexity
without loss in precision.
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Scattering from Two llluminated Scatterers 105

Order 0
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Figure 3.20. RCS versus the scattering angle Oy... The parameters are the
same as in Figure 3.19
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Figure 3.21. NRCS in dB versus the scattering angle O,.,. The parameters are
the same as in Figure 3.16¢
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106 Method of Moments for 2D Scattering Problems

Figures 3.22 and 3.23 show the same results as in Figures 3.18-3.20 but for
the TE polarization. As we can see, E-PILE+PO+PO gives satisfactory results
in comparison to E-PILE+LU+LU and, the relative residual error indicated in
the figure is larger than that obtained for the TM polarization.

RCS [dBm]

RCS [dBm]

— © — E-PILE+LU+LU: 0.021

E-PILE+PO+LU: 0.030
H E-PILE+LU+PO: 0.035
— % — E-PILE+PO+PO: 0.031

Order 1

— © — E-PILE+LU+LU: 0.007

E-PILE+PO+LU: 0.032
H E-PILE+LU+PO: 0.034
— % — E-PILE+PO+PO: 0.036)

Figure 3.22. RCS in dBm versus the scattering angle Oy... The parameters are
the same as in Figure 3.18 but for the TE polarization (scenario
depicted in Figure 3.16a)
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Figure 3.23. RCS in dBm versus the scattering angle Oy.,. Same parameters as
in Figure 3.20 but for the TE polarization (scenario depicted in Figure 3.16b)
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Scattering from Two llluminated Scatterers 107

The E-PILE+PO+PO method can be extended to two dielectric scatterers,
but the complexity of programming significantly increases.

3.5. Conclusion

In this chapter, an efficient numerical method has been presented, from the
integral equations, to calculate the field scattered by two illuminated
scatterers. The E-PILE method starts from the MoM and the impedance
matrix of the two scatterers is then inverted by blocks from a Taylor series
expansion of the inverse of the Schur complement. Its main interest is that it
is rigorous, with a simple formulation and with a straightforward physical
interpretation. Actually, this last property relies on the fact that each block of
the impedance matrix is linked to a particular and quasi-independent physical
process occurring during the multiple-scattering process between the two
scatterers: local interactions on each interface, corresponding to the inversion
of the impedance matrix of each scatterer in free space, and both upward and
downward coupling. Furthermore, the E-PILE method allows us to use any
fast method developed for a single interface. Here, PO and FB have been
hybridized with E-PILE to decrease the complexity of E-PILE, and according
to the scenario, this hybridization gives satisfactory results.
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4

Scattering from Two Scatterers Where
Only One Is llluminated

4.1. Introduction

In this chapter, the field scattered by two objects is calculated, but unlike
in Chapter 3, only one scatterer is illuminated. For instance, this general issue
concerns the scattering from a coated object, from a stack of two rough
interfaces of infinite length separating homogeneous media (a rough layer) or
from an object below a rough surface of infinite length (see Figure 4.1).
Numerically, it is not possible to generate a surface of infinite length. From
the point of view of numerical methods, “infinite length” means that the
surface is large compared to the electromagnetic wavelength, and for random
rough surfaces, large compared to the correlation length. In addition, the
incident field and the surface currents on the surface edges must both vanish.

Source € £, Source < £, Source € £,
Q4 Q
VA AVARE AV AVA
2,
Sz\[\!\f\/\ s “'
2
12
ObJect below
Coated object Rough layer a rough layer

Figure 4.1. Scattering from two scatterers where only one is illuminated.
The incident wave is defined inside the medium Qg
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110 Method of Moments for 2D Scattering Problems

Following the same idea as in Chapter 3, the efficient
propagation-inside-layer expansion (PILE) method, developed by Déchamps
et al. [DEC 06], is presented and applied for different scenarios. This method,
originally devoted to the scattering from a random rough layer, has the main
advantage that the resolution of the linear system (obtained from the method
of moments (MoM)) is divided into different steps. Two steps are dedicated
for solving the local interactions (computed from inverting a matrix), which
can be done using efficient methods valid for a single rough interface, such as
forward-backward spectral acceleration FB-SA and banded matrix iterative
method/canonical grid (BMIA/CAG). Two steps are dedicated to solving the
coupling interactions (com puted from a matrix-vector product), which can be
done by updating the previous efficient methods. This has been investigated
by BMIA/CAG [DEC 07a] and FB-SA [DEC 07b] for a rough layer and by
Bourlier et al. [BOU 08] for an object located below a rough surface, in
which the FB-SA is applied to calculate the local interactions on the rough
surface. In addition, the order of the PILE method corresponds to the number
of reflections between the two scatterers.

The applications of the general issue are numerous and it is not possible
to present an exhaustive review. For a partial review, see [JOH 02, WAN 03,
DEC 06, DEC 07a, DEC 07b, BOU 08, AHM 08, PAW 11, FIA 12, ZOU 11,
Z0U 13] (references therein).

The purpose of this chapter is to present the efficient PILE method and to
explain how the calculation of the local interactions on each scatterer can be
accelerated from the physical optics (PO) and FB methods, valid for a single
scatterer. Section 4.2 presents the integral equations and the MoM. In section
4.3, the PILE algorithm is presented and section 4.4 presents how PO and FB
can be combined with PILE. Several numerical examples are discussed, such
as the scattering from a coated cylinder, a random rough layer or an object
below a random rough surface.

4.2. Integral equations and method of moments

4.2.1. Integral equations

The problem to be solved is shown in Figure 4.1. A source illuminating the
upper scatterer (object or rough surface) is defined inside the medium 2y and
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Scattering from Two Scatterers Where Only One Is llluminated 111

the second scatterer is embedded inside the medium (2; separating media {2
and €. The medium 29 is bounded by the surface S5 of scatterer 2.

From the Helmholtz wave propagation equation [1.13] in each medium,
from the definition of the Green function [1.14] and from the far radiation
condition, the use of the Green theorem leads to [DEC 06]:

Y] ifr e _ /
{0 otherwise ¢mc(r ) + /

S on on

[4.1]

[zw(r)ag‘)(’"”/) gt )220 s

{1/)[’!‘/] if’!‘/ € Ql _ _/A; -w(r> agl(:; 7',) —gl(’f’,'f'/)aw(lr)_ dS

0 otherwise on

B
et .
+/32 _w(r)glg;”—gl(r,r) 1/’(7')_ as,  [42]
(
B

on

OY(r)]

!
& — go(r,7") an | ds, [4.3]

P(r') ifr' ey _ [ 092
{0 otherwise _/S2 W(r) n

in which g; is the Green function inside the medium €2; (: = {1, 2,3}).

To obtain the integral equations, 7’ — S (tends to S; from above) in
equations [4.1] (case 7’ € Qo) and [4.2] (case ' ¢ Q1) and 7' — S5 (tends
to Sy from above) in equations [4.3] (case 7' ¢ (22) and [4.2] (case ' € Q).
Then, from the boundary conditions applied onto scatterers 1 and 2 expressed
as:

w(r)’reﬂo - w(,r)‘reﬂl vr € Sl
0 0
reQp refd
, [4.4]
w(r)’rem = ¢(T)‘reﬂ2 vr € 5
on re; on reQls
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112  Method of Moments for 2D Scattering Problems

we obtain the following four integral equations:

n_ Lo [ Ogo(r,r) N OP1(r)
) = +ynr!) = f PO myas [ o, )5 T s
2:21 :>Bl
Y(r,r") € S, [4.5]
1, dg1(r, ') 1/ NP1 (r)
0= —5un(r) ][S M inmas o [ g s
=C :;Bl
dg1(r,r’)  Oa (1)
+/ ————1a(7r)dS — gi(r,r dsS
. on 2(7) S, 1) —p
=A :EZI
Ve S, [4.6]
L [ Ogi(r, ) 1 Oa(r)
O—+21/12(T‘) ]éz - 1/)2(7')613—}-/5291(7’,7") on ds
::22 :>BQ
dg1(r,r") O () 1
v [ T (s — ) 2T g 2
[ ryas = [ o) P
:>A12 :>B12
VTIGSQ, [4.7]
1, dga(r, ') 1/ O (r)
0= yualr)  f FEET uswyis s [ gy 22 as
:>CQ é‘éz
V(r,r") € Sy, [4.8]

where {vj,01;/0n} are the currents on the surface S; (j = {1,2}). In
addition, p;; = 1 (¢ = {0,1} and j # ¢) in the TE polarization and
pij = € / ¢; in the TM polarization, where ¢; is the permittivity of medium €2;.
The symbol § stands for the Cauchy principal value, which means that the
case r = 7’ is not accounted for in the calculation of the integral. In addition,
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Scattering from Two Scatterers Where Only One Is llluminated 113

letting |, 5, 45 = fdS+ | p, @S (where Pj is a piece), it is important to note
that for » = ¢ € SJT (at the upper limit of the surface),
ij ;(r) 89] (r 99,01 45 — +1p;(r )/2, and for r = r’ € S, (at the lower limit

of the surface), [, v;( r)%dé’ = —1;(r’)/2. The sign difference is
J
due to the sense of the normal to the surface S;.

From equations [4.5]—[4.8], the currents {1;, 01;/On} on the surface S;
can be computed from the MoM.

4.2.2. Method of moments

In this section, the MoM is applied with the point-matching method to
convert the integral equations [4.5]-[4.8] into a linear system. This method
was thoroughly explained in section 1.3.

Equations [4.5]-[4.8] lead to a coupled system. From the MoM, the
equations are discretized on each surface of the scatterer, leading to the linear
system Z X = b. The unknown vector is then:

X1
x-[X] oo
where the components of the vectors X ; and X are the currents discretized
on the surfaces S and S, respectively. They are written as:

_ 1T
X1 = [ty 28800 O0r) | e,
[4.10]
[ o ) 17
Xo = |a(r1)...12(rnN,) ¢§)§1T2)"' ¢28(;N2) Theiing) € S,
[4.11]

where the symbol T stands for the transpose operator and V; is the number of
samples on the surface .S;. Then, the length of the vector X; is 2N;.
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114 Method of Moments for 2D Scattering Problems

The vector b of length 2(/N7 + Na) is the incident field discretized on the
surfaces S7 and Ss. It is defined as:

T
bl winc(rl)-”winc(TNl) 00 00
b= |:b :| = N7 times 2N3 times . [4.12]
2 N——

b}',TES& bg,T‘ESZ

The impedance matrix Z of size 2(N1 + Na) x 2(N7 + Na) is expressed
as:

A, B; O 0
1 _
C EDI A By P
Z=|5 14 - - = |2t 4.13
A2 —Bi12 Ay Bo [le Zy [+.13]
pPo1 1
0 0 Cy —Dy
L P12 i
where
B Al Bl B AQ B2
= _ 1 - — _ 1 -
Z, C, Dy | Zs Cy Dy | [4.14]
Po1 P12
and
0 o A iB
Zy = [ } , Zip= _12 po1_ 2. [4.15]
Aj By 0 0

The impedance matrix Z,; of size 2N; x 2N; is the impedance matrix of
scatterer ¢ in free space, where N, is the number of the samples on scatterer <.

In comparison to Chapter 3, in which the two scatterers are illuminated
(b1 and by, different of 0), for scatterer 2, pgo is substituted for p;o (equations
[3.13] and [4.14]) because scatterer 2 is embedded in medium 2. In addition,
the coupling matrices Zo; and Z 5 between scatterers 1 and 2 slightly differ,
because the wave number is k; instead of kg as mentioned in Chapter 3.
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7Fr07rn S:qua[ions [3.15] and [3.16], the elements of the matrices
{A1,B1,C1, D} are:

 jkovalAn| HY” (kollr — 7))
4 Hrn - "'mH

Atmn = X [y (Tn — Tm) — (2n — 2m)] form #n [4.16]

L vp]Ay ’Y/(xn)
- f _
+2 At 1+ ~2(xp) orme=n

HY (ko |70 — 7o) form #n

B JlARN T+ 2

1,mn — 4 )

.
1+ 1 (0.1641%,/1 n 'y%\An\) form = n
T

(4.17]
Jhrval Anl HYY (R [fr = 7]
o n|=n 1 11Tn m
4 ||Tn - rm”
CLmn = X [Yn(@n — Tm) — (2 — 2m)] form #n [4.18]
L og]An]  A(2n)
_i for m —
92 47 1 +72($n) orm n
H(()l)(kl 77 — Tmll) form #n

D _ J1ARN 1+ 72

1,mn — A )

.
14+ (0.164k1,/1 +731Any) form =n
T

[4.19]

where 7, = (zy,2n) € S1, Tm = (Tm, 2m) € S1, Yo = dzp/dxy, A, the
sampling step, v,, = sgn(n, - 2) (N, is the vector normal to the surface at the
point 7,,), H(()l) the zeroth-order Hankel function of the first kind and Hgl) its
derivative. The elements of the matrices {;12, B, C,, 1_)2} are obtained from
those of { Ay, By, C1, D1} by substituting the wave numbers {ko, ko, k1, k1 }
for {k1, k1, ko, ko }, respectively.
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116  Method of Moments for 2D Scattering Problems

7Fr0r£1 ecluatiop [3.17], the elements of the coupling matrices
{A12, B2, A1, By, } are:

,

1
g = — 1 (i = r2ml)
’ 1 10 — T2l
X [’Yl,n(xl,n - 552,m) - (Zl,n - 22,771)]
1
A = — Y (s = r1ml)
’ 4 720 — T 1ml]
, [4.20]
X V2 (Zon — T1m) — (22,0 — 21,m)]
1ALl /1477,
Biomn = =S HO (et 71,0 — T2l
3182,/ 1473,
Botmn = —— V"2 HD (k) 1790 — 71ml)

for all (n, m). The subscripts “1,n” and “2, m” refer to a point on scatterers 1
and 2, respectively.

From the knowledge of the currents {v;,0v;/On} on scatterers S;

(t = {1, 2}), the scattered field 1)sc, ,, inside the medium 2, (v = {0,1,2}) is
computed from the Huygens’ principle as:

' Ysca0(r") = /S1 [wo(T)W - go(r,r’)aqu)] ds

Vsea 1 (7 pr/ [ 8917)—91(7" r)&/(;( )] ds, [4.21]
| Vicaar’) = - /S 2 [1/,2(74)392;7{) oty 2020

withwy = —1, wy = +1 and g, (r,7') = (j/H)H (k, |7’ = r|).

4.2.3. Case for which scatterer 2 is perfectly conducting

_ If scatterer 2 is assumed to be perfectly conducting, the impedance matrix
Z 9 can be simplified. For the TE polarization (Dirichlet boundary condition),
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19 vanishes on the surface and the only unknown on the surface is 9 /On.
Then

TE: Zy = By, Xy = %1/’2. [4.22]
n

For the TM polarization (Neumann boundary condition), 015 /On vanishes
on the surface and the only unknown on the surface is 2. Then

T™: ZQ = AQ, XQ = 1/12. [423]

In addition, the coupling matrices are simplified as:

_ -1 - = 0
TE: Zlg = [Alz BlQ] Z21 = { ' :|
pPo1
[4.24]

- -1 2 - 0
™: Z15 = |:A12 312} Zy = [A }
Po1 21

4.2.4. Numerical results

4.2.4.1. Case of a coated circular cylinder and comparison with the analytical
solution

For a coated circular cylinder, that is two concentric circular cylinders of
radii a1 and az < ap separating homogeneous media (€, 2,s), as
discussed in section 2.3, the exact solution of the scattered field can be
obtained by using the Bessel functions.

Inside medium €2, from equation [2.37], the total field v is:

n=-+o00
do(rf) =Y [Aan(kor) + BHWY (kor) | €79 with A, = tine g™ e
[4.25]
Inside medium €2y, from equation [2.37], the total field v; is:
n=-+oo '
i(rf)= > [Can(klr) + DpHY (kyr) [ €707, [4.26]
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118 Method of Moments for 2D Scattering Problems

Inside medium €25, from equation [2.38], the total field s is:

n=-+oo

Ya(rf) = Y Epln(kar)e . [4.27]

n=—oo

In equations [4.25]-[4.27], the four unknowns are B,, C,, D, and E,.
From the boundary conditions [2.9], we have:

w()(alv 0) = 1/}1 (a’la 6)
YP1(ag, 0) = P(az,0)
o 0P
ar . = po1 or . [4.28]
on[ o
or r=as i or r=az
From equations [4.25]-[4.27] V (6, n), we have:
Hg)(koal) —Jn(k‘lal) —H&l)(klal)
kngl)(koal) —po1kidy, (k1a1) —P01k‘1H;51)(k31a1)
0 Tn(kyas) HY (kras)
0 li;l(klag) legl)(klag)
0 Bn —Aan(k()CH)
0 Cn o *AnkoJln(kioal)
3, (ko) D, | = lo ) [4.29]
—kop12Y, (k2as2) E, 0

This linear system can be solved analytically, but for convenience it is
solved numerically by inverting the matrix of size 4 x 4.

Figure 4.2a) shows the modulus and the phase of the currents on scatterer
1 versus the angle ;. Figure 4.2b) shows the modulus and the phase of the
currents on scatterer 2 versus the angle 5. The angles 6; and 0, are defined
from the horizontal direction &. Figure 4.2c¢) shows the modulus of the total
field versus the abscissa  and the height 2. Figure 4.2d) shows the radar cross-
section (RCS) versus the scattering angle 6.,. The radii of the two concentric
circular cylinders are a; = 3)\g and ay = 2\, their centers are C; = Cy =
(0,0), the relative permittivities of media {0, 21,2} are {e,0 = 1,61 =
2,e,9 = 4 4 0.055}, respectively. The incidence angle is 6, = 0 and the
polarization is TE. For the MoM, the number of samples per wavelength is
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Scattering from Two Scatterers Where Only One Is llluminated 119

N, = 10 and the number of unknowns is given in parentheses in the figure. In
addition, for scatterer 1 (r = ay) in the figure legend, the label “Ana 1” means
that the currents are computed from equation [4.25], whereas the label “Ana
2” means that the currents are computed from equation [4.26]. For scatterer 2
(r = ag) in the legend, the label “Ana 1” means that the currents are computed
from equation [4.26], whereas the label “Ana 2” means that the currents are
computed from equation [4.27].

2 180 3 180
o1 = 1 e s ™
S 12 = 60 S 18 _}N &
E S o E] S o
s s
3 o8 2 g 12 8 60
s 04 [ = os & iz
!
[ 60 120 180 240 300 360 - 0 60 120 180 240 300 360 0 60 120 180 240 300 360 - 0 60 120 180 240 300 360
Angle e‘ 1 Angle 8‘ 1 Angle 62 1 Angle 92 1
10 20 180
— — MoM (1036)
S s £ s, 1 T o |
z < > < 60
s 6 s s =
5 2 5 g
ER E ERR E 60
3 8 3 g -
s 2 § 2 ¢ g -120
1 H
0 60 120 180 240 300 360 "0 60 120 180 240 300 360 0 60 120 180 240 300 360 - 0 60 120 180 240 300 360
Angle 91 1 Angle 91 1 Angle 92 1 Angle 92 1
a) Currents on scatterer 1 b) Currents on scatterer 2
1 20
4 18
3
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2
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o
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~ o
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2
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e 18
. _15 ‘ ‘ ‘ ‘ ‘ ‘
5 520 0 30 60 9 120 150 180
Angle 6___[°]
sca
¢) Modulus of the total field in dB scale d) RCS

Figure 4.2. a) Modulus and phase of the currents on scatterer 1 versus the angle 01. b) Modulus
and phase of the currents on scatterer 2 versus the angle 2. ¢) Modulus of the total field in dB
scale versus the abscissa x and the height z. d) RCS in dBm scale versus the scattering angle
Osca. The radii of the two concentric circular cylinders are a1 = 3o, a2 = 2o, their centers
are C1 = C2 = (0,0), the relative permittivities of media {Qo, 1,2} are {e,0 = 1,6,1 =
2,er2 =4+0.055}, and Ao = 1 m. The incidence angle is 0inc = 0 and the polarization is TE.
For the MoM, the number of samples per wavelength is Ny, = 10
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120 Method of Moments for 2D Scattering Problems

Figure 4.3 shows the same results as in Figure 4.2 but for the TM

polarization.
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Figure 4.3. Same results as in Figure 4.2 but for the TM polarization

For the two polarizations, the results calculated from “Ana 1” and “Ana
2” perfectly match, which means that the boundary conditions are satisfied. A
small difference between the MoM and the analytical solution is observed on
the currents and Figures 4.2d) and 4.3d) show that this deviation has a small
impact on the RCS. This deviation can be decreased by increasing Ny, (for

instance, from 10 to 20).

4.24.2. Case of a coated elliptical cylinder

The MoM allows us to treat any geometry like a dielectric elliptical
cylinder, which is coated eccentrically by a non-confocal dielectric elliptical
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Scattering from Two Scatterers Where Only One Is llluminated 121

cylinder. As shown in [ZOU 13], this issue can be solved by introducing the
Mathieu functions and the equivalent of the Graf theorem on the Bessel
functions, which significantly increases the complexity of programming. One
of the advantages of the MoM is its ability to solve this issue for any incident
field with only minor modifications to the program.

Figure 4.4 shows the same results as in Figures 4.2¢) and 4.2d) but for two
eccentric elliptical cylinders of different rotation angles a1 2 and centers C' 5.
Figure 4.5 shows the same results as in Figure 4.4 but for the TM polarization.
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Figure 4.4. Same results as in Figures 4.2c) and 4.2d) but a1 = 4o,
b1 = 3)\(), a1 = 7T/6, az = 2)\0, bg =5 Ao, Qg = *71'/4, C1 B (0,0),

Co= (1,1
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Figure 4.5. Same results as in Figure 4.4 but for the TM polarization
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122 Method of Moments for 2D Scattering Problems

4.3. Efficient inversion of the impedance matrix: PILE method
4.3.1. Mathematical formulation

To efficiently solve the linear system ZX = b, the PILE method,
developed by Déchamps et al. [DEC 06], can be applied. It is based on an
inversion by blocks (Schur complement [PRE 92]) of the impedance matrix
[4.13]. This method was later generalized by Kubické et al. [KUB 08], and
called extended-PILE (E-PILE), to the more general case for which the two
scatterers are illuminated (see Chapter 3). Its principle is thoroughly
explained in section 3.3. From equation [3.34] with by = 0 (scatterer 2 is not
illuminated), the currents on scatterer 1, X 1, are then expressed as:

p=Pp1LE ~ ~ p=PpiLE
Xi=| Y M|Z'bi= Y vP [4.30]
p=0 p=0
in which
Ygo) = Z;lbl forp=10
v® _ iy ) [4.31]
1 =M.Y] orp >0
and
M.=Z{'202,"Z5. [4.32]
From equations [3.28] and [3.29], X, = Vb, = —Z;lzlgTbl =
—Z;lzngl.

We define the norm HM c H of a complex matrix by its spectral radius, that is
the modulus of its eingenvalue that has the highest modulus. Expansion [4.30]
is then valid if HM CH is strictly smaller than one.

Equation [4.31] has a clear physical interpretation: the total currents on

the scatterer 1 are the sum of the contributions ng ) corresponding to

successive iterations p. In the zeroth-order term, Z 1_1 accounts for the local
interactions on scatterer 1, so Ygo) corresponds to the contribution of the
direct reflection on scatterer 1, without entering the medium 2;. In the
first-order term given by Ygl) =M CY§0>, the matrix Z5 propagates the
resulting currents, Y§0) toward scatterer 2, Z, " accounts for the local
interactions on scatterer 2, and the matrix Z9; repropagates the resulting

contribution toward scatterer 1; finally, Z 1_1 updates the currents values on
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scatterer 1. And so on for the subsequent terms ng ) for p > 1. Thus, the total

currents Y(lp ) on scatterer 1 are due to the multiple scattering of the field
inside the medium €2;.

4.3.2. Numerical results

4.3.2.1. Coated circular cylinder

Figure 4.6 shows the modulus of the total field in dB scale versus the
abscissa x and the height z. Figure 4.7 shows the RCS in dB scale versus the
scattering angle fy,. The radii of the two concentric circular cylinders are
a; =3X\g, az=2)\p, their centers are C;=Cy=(0,0), the relative
permittivities of media {Qg,Q1,Q0} are {e,0=1,6,1=2 + 0.1j,6,0=
4 4 0.15}, respectively. The incidence angle is 6, = 0 and the polarization is
TE. For the MoM, the number of samples per wavelength is Ny, = 10. In
addition, the value of the following relative residual error defined as:

normy,, (RCSPILE — RCSLU)
(RCSLy) ’

€PILE = [4.33]

normy

sca

is given, where the “norm” stands for the norm two.
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Figure 4.6. Modulus of the total field in dB scale versus the abscissa x and the height z. The
radii of the two concentric circular cylinders are a1 = 3)\o and az = 2o, their centers are
C1 = Cy = (0,0), the relative permittivities of media {Qo,Q1,Q2} are {er0 = 1,601 =
2+ 0.15,e2 =4+ 0.15}, and Ao = 1 m. The incidence angle is 0;,c = 0 and the polarization
is TE
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Figure 4.8. Same results as in Figure 4.7, but for the a) TM polarization and
b) scatterer 2 is perfectly conducting

Figure 4.8 shows the same results as in Figure 4.7 but for the a) TM
polarization and b) scatterer 2 is perfectly conducting.

For Ppi g = 0, in Figure 4.6, the field inside the cylinder 2 is zero because

X

0, whereas the field inside 5 and € differs from zero and

corresponds to the field radiated by the cylinder 1. As the order Fprg
increases, Figures 4.7 and 4.8a) show that the RCS converges rapidly toward
that obtained from a direct lower—upper (LU) inversion of the impedance
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matrix of the two cylinders. Indeed, since {21 and {2- are lossy media, the field
inside the cylinders is damped. In addition, Figure 4.8b) shows that PILE also
converges rapidly, which can be surprising, since Pprg is related to the
numbers of reflections between the two scatterers. A physical explanation is
that, unlike a dielectric medium (29, no field is transmitted into {25 and then
the upper part of cylinder 2 cannot interact with the lower part of the cylinder
1, which reduces the interaction between cylinders 1 and 2.

A means for knowing the convergence rate of PILE is to calculate the norm

of the characteristic matrix, || M .||, which equals the modulus of its eigenvalue
M.|| =

that has the highest modulus. For Figures 4.7 and 4.8a) and 4.8b),
{0.271,0.105, 0.297}, respectively. For a large problem, the computation of
this norm is very time consuming and it is not recommended.

The first advantage of PILE in comparison to a direct LU inversion is its
ability to quantify the coupling between the two scatterers.

4.3.2.2. Cylinder below a rough surface

Figure 4.9 shows the modulus of the total field versus the abscissa  and the
height 2. Figure 4.10a) shows the normalized radar cross-section (NRCS) in dB
scale versus the scattering angle 0yc,. The rough surface has a Gaussian surface
height autocorrelation function of correlation length L, = Ag and a standard
deviation of height o, = 0.5\¢. Its length is L; = 40\ and the number of
samples is N; = 566. The parameters of the perfectly conducting elliptical
cylinder below the surface are aa = 2Xg, ba = Mg, 2w = 0, C2 = (0, —2) )¢
and No = 97.

The relative permittivity of the medium €5 is €,;7 = 24 0.17, the incidence
angle is 0. = /6, the polarization is TE and A\g = 1 m. Figure 4.10b) shows
the same results as in Figure 4.10a) but for the TM polarization.

Since €2; is a lossy medium, PILE converges very rapidly, as shown in
Figure 4.10. Figure 4.9 clearly shows the interference between the transmitted
wave from (g into €2; and the first reflected wave by the cylinder taken into
account for Ppirg = 1. The comparison with the results computed from an
LU inversion shows that it is not necessary to include the second reflection by
the cylinder (it would correspond to Ppi g = 2). In addition, the shadow zone
behind the cylinder is well predicted. For further simulations, see [BOU 08].
The authors showed that as o, and 6y, increase and the polarization changes,
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126  Method of Moments for 2D Scattering Problems

the convergence order (order for which the convergence is reached) does not
change and as the permittivity of medium §2; increases, the convergence order
decreases and as the major axis of the cylinder increases, it slightly increases.
There are no simulations in which the order of convergence exceeds four. In
general, PILE converges more rapidly than E-PILE because for the latter, the
two scatterers are embedded in the lossless medium €2, which is vacuum.
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Figure 4.9. Modulus of the total field versus the abscissa x and the height z. The rough surface
has a Gaussian surface height autocorrelation function of correlation length L. = Ao and of
height standard deviation o, = 0.5Xo. Its length is L1 = 40)\o and the number of samples is
N1 = 566. The parameters of the perfectly conducting elliptical cylinder below the surface are
az = 2\, ba = Ao, a2 = 0, C2 = (0, —2) Ao and N2 = 97. The relative permittivity of the
medium Q1 is €r1 = 2 + 0.1, the incidence angle is 0, = /6, the polarization is TE and
)\0 =1m

_For Figures 4.10a) and 4.10b), the norm of the characteristic matrix is
HMCH = {0.144, 0.137}, respectively.

4.3.2.3. Random rough layer

Figure 4.11 shows the modulus of the total field versus the abscissa = and
the height z. The two random rough surfaces have Gaussian surface height
autocorrelation functions. For the upper one: L. = Ag, 0,1 = 0.5\g, L1 =
40X and N7 = 800. For the lower one: L. = 2\g, 0,2 = 0.5Ag, Ly =
40)\p and Ny = 560. The thickness 2 is 2\g (Cy = (0, —2)g)), the relative
permittivities of media Q4 2 are €,1,,0 = {4+ 0.15,2 + 0.01;}, the incidence
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Scattering from Two Scatterers Where Only One Is llluminated 127

angle is Oj,c = /6, the polarization is TE and \g = 1 m. Figure 4.12a) shows
the corresponding NRCS and Figure 4.12b) shows the same results but for the
TM polarization. As can be seen, PILE rapidly converges because 21 and {29
are lossy media.
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Figure 4.10. NRCS in dB scale versus the scattering angle 0.
Same parameters as in Figure 4.9
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Figure 4.11. Modulus of the total field versus the abscissa x and the height z. The two rough
surfaces have Gaussian surface height autocorrelation functions. For the upper one: L1 = Ao,
0.1 = 0.5X0, L1 = 40Xg and N1 = 800. For the lower one: L.o = 2)\g, 0,2 = 0.5,
Ly = 40X and Ny = 560. The thickness of Q1 is 2Xo (C2 = (0,—2Xo)), the relative
permittivities of the media Q1,2 are €100 = {4 + 0.15,2 + 0.015}, the incidence angle is
Oinc = /6, the polarization is TE and Ao = 1 m

8SUBD | SUOWILLIOD) aAIER.D a|aed|jdde auy Ag peusenob ae sspiLe YO 9sn Jo SajnJ 1oy A%eiqiT auljuQ As|IA\ UO (SUO1IPUOD-PUe-SWLIBYWO0D AS | 1M Alelq Ul uo//sdiy) SuonipuoD pue swie 18Uyl 8es “[€202/2T/9T] uo AriqiauljuQ As|ip ‘uussulbug Jo AlsieAlun exeyq Ag /1op/wod:Asim:Aze.q 1 euljuo//sdiy Wwoiy pepeojumoq



128 Method of Moments for 2D Scattering Problems

— & —Order 0: 0.260 % ® ki — & —Order 0: 0.244
Order 1: 0.045 ¢ & Q\L Order 1: 0.062|
Order 2: 0.005 *( ) &0‘) % o 10 Order 2: 0.004 " t;; g gz
-10f-*-L "%} o T f%m* -10f=* - A
g T4 [ R TN P ® ) Sige B of
Jnn H@%*‘? | e o %“ﬁ% s S,
@@b Yot St e g “I;uu o Tk s\ PHe L FILL ] @r M
18l + Py i Wi FPGE 0T . el b 1 dlg 3y o e &
15 13 4 15 a3 i
ARRION I3 BT R R T b R TR Y o ik
g RN RIS TR B NG E -} PYRESE B E I YR
o _ook ¢ le gﬁ& i ',‘,(lf { ] T“W & ‘\: a1l ‘f) X o _o0} 4 1 \ lf %’ 6 t\vlr’.‘*“ Gf“a‘,iqiw«ﬂbg
g Fopee 4oL R N% ST R VY R
£ ¥y o1 ] P e = |7 F pts 4R g
251 § v b 251 ; mo
! ¢ Py : | o TR
30} ) P 30} | ¢ RS
] | - i b b i Iy P A
! ! v + b s %
S ‘ S ‘ ‘ ‘ _te W
"o 60  -30 0 30 60 90 R Y T, 0 30 60 90
Angle Ssca [°1 Angle esca rl
a) TE polarization b) TM polarization

Figure 4.12. NRCS in dB scale versus the scattering angle Oq.
Same parameters as in Figure 4.11

For Figures 4.12a) and 4.12b), the norm of the characteristic matrix is
| M| = {0.144,0.137}, respectively.

4.3.2.4. Conclusion

The numerical results showed that PILE converges rapidly because its
order is related to the multiple reflections between the two scatterers. For
practical applications, 27 is a lossy medium and then the wave is damped,
which explains why PILE converges rapidly. If scatterer 2 is perfectly
conducting, the PILE order increases in comparison to a dielectric {29
medium. From the available MatLab codes, it is easy to verify this. In
addition, for further simulations, the reader is referred to [DEC 06, BOU 08].

4.4. PILE method combined with FB or PO

This section presents how PO and FB methods, applied to calculate the
local interactions on a single scatterer, can be hybridized in the PILE algorithm
to compute the field scattered by two scatterers.

4.4.1. PILE hybridized with FB

Equation [4.31] clearly shows that the calculation of Z; Yuis required, in
which Z; is the impedance matrix of scatterer ¢ in free space. Then, to
calculate the local interactions on a random rough surface, the FB method can
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Scattering from Two Scatterers Where Only One Is llluminated 129

be applied. For any scatterer below a rough surface and for a rough layer,
Bourlier ef al. [BOU 08] and Déchamps and Bourlier [DEC 07a, DEC 07b]
showed that the order Prg of convergence of FB is obtained by considering
only scattering from the single rough surface (without the scatterer). This can
be explained by the fact that the inversion of the impedance matrix is
independent of the incident field u.

For the example shown in Figure 4.11, first, the FB order for the lower and
upper rough surfaces must be determined. Then, each surface is considered to
be alone, and for a residual relative error smaller than 0.01, we find
{prB,1 = 9, prB,2 = 8} for the TE polarization and {prg 1 = 7, prp2 = 7} for
the TM polarization. Combining PILE with FB for the calculation of the local
interactions on each surface, the NRCSs depicted in Figure 4.13 are computed
from PILE+FB+FB. In comparison with Figure 4.12, we can see that the
residual errors (defined from equation [4.33]) are nearly identical, meaning
that FB has converged for the calculation of the local interactions on each
scatterer.
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Figure 4.13. NRCS in dB scale versus the scattering angle Os.a computed from
PILE+FB+FB. Same parameters as in Figure 4.12

It is also possible to apply the FB only on scatterer 1 or 2 and to apply an
LU inversion on the other scatterer. For an object below a rough surface, the FB
is applied onto the surface, whereas an LU inversion is applied onto the object,
since FB does not converge for a closed surface. With the same parameters as
in Figure 4.9, Figure 4.14 shows the NRCS computed from PILE+FB+LU with
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130 Method of Moments for 2D Scattering Problems

{prB,1 =9, 7} for the TE and TM polarizations, respectively. As was the case
previously, in comparison to Figure 4.10, we can see that the residual errors
are quasi-identical, meaning that the FB has converged for the calculation of
the local interactions on the rough surface.
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Figure 4.14. NRCS in dB scale versus the scattering angle Os.. computed from
PILE+FB+LU. Same parameters as in Figure 4.10

4.4.2. PILE hybridized with PO

This section focuses on the integration of PO in the PILE algorithm. For
E-PILE, this hybridization is thoroughly explained in section 3.4.2 by
considering the scattering by two illuminated perfectly conducting scatterers.
Here, the problem is slightly different and more complicated, because the
illuminated scatterer must be dielectric to interact with the non-illuminated
scatterer.

For a coated cylinder illuminated by a plane wave of incidence angle
Oinc = 0, if the PO approximation is applied at first order (only point-to-point
local interactions are considered, i.e. no multiple reflections) on the
illuminated scatterer (number 1), then in the shadow zone (lower part of the
cylinder), the currents vanish. Thus, the PO at first order can predict bad
results. To overcome this issue, the field transmitted into the cylinder must be
computed by iterating the PO approximation on each scatterer. For an object
below a rough surface, the problem is similar. For a rough layer, the inverse of
the impedance matrix of a single dielectric rough surface must be calculated
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Scattering from Two Scatterers Where Only One Is llluminated 131

from the PO. This operation is not trivial and it is a prospect considered in
this book. In conclusion, to simplify the formulation, we assume that the
non-illuminated scatterer is perfectly conducting and the PO is applied only
onto this scatterer.

4.4.2.1. Formulation

For scatterer 2, the total field on the object surface in the medium {2; due
to a single reflection is given under the PO approximation by equation [2.62]:

Yo(r) =2 { Vine,1 (1) 7 € S and Oya(r) =0V r € .S,y, TM polarization,

0 T € 52 3ha on
[4.34]
8"/Jinc7l('r)
Oya(r) _ o, TESm 4 Yo(r) =0V r € S, TE polarization,
on 0 T € 52 3ha

[4.35]

where iy 1 is the field inside §2; radiated from the currents on scatterer 1,
Som is the illuminated surface and Sash, is the shadowed surface
(S2 = S21m U S2.sha). Then, under the PO approximation, the inverse of the
matrix impedance Z 5 lisa diagonal matrix of elements equal to 2 for the TM
polarization and elements 20(e)/0n for the TE polarization. The complexity
of the inversion is then O(1) instead of O(N3) from a direct LU inversion.

For example, for the calculation of Ygl) =Z ;12 01Zo 'z 12Y§0), where
Yﬁ‘” =7 flbl, first, the vector Y(10) is multiplied by the matrix Z15 giving
u=2 12Y§0). It can be considered as an incident field for scatterer 2. If the
PO is applied onto scatterer 2, then some elements of Z15 can be zero due to
the fact that a point on scatterer 2 cannot be viewed from a point of scatterer 1.
For a convex object, this condition is satisfied if 7y - (ro — r1) > 0. Then, the
elements of the modified matrix Z ’12 are:

1 —sgn [(T2.m — T1n) - P2m]
2
1+ sgn [($2,m - xl,n)v2,m’72,m - (32,m - Zl,n)v2,m]

= Z12,mn 2 .

!
Z12,mn = levmn

[4.36]
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132 Method of Moments for 2D Scattering Problems

Next, u = Z1,Y'\” is multiplied by Z; *. Then, if the PO is applied onto
>—1
scatterer 2, currents v = Z, u are computed as follows:

— — 1= _ _ 1 _
v=2"u=2,"2,Y" =D [A'lz me/”] [Z;]

_I- 1 =
=D [A'uwl + me’mwQ} , [4.37]

where D is the diagonal matrix of elements equal to 2 at point T2, for the
TM polarization and elements equal to 20 e /On for the TE polarization. In
addition, Ygo) = [w] wl]T (w; and wy are vectors of length N7 ). For the TM
polarization, the above equation needs to compute dA15/0n and B12/0n at
point 7. From equation [4.20], we then show that

0B12.mn Jk1va m|A1,n‘ I+91,Hu
on = (212 — y2,mT12) , [4.38]
n T2,m Ari94/1 + 73,7”
and
aA mn k v n A n (% ,m
('192’ = L [Bnlos, [woo + w10 (Yi,n + Y2,m) + W11Y1,0Y2m] 5
[4.39]
where
_ klz%QHIO (33%2 - z%z)Hll
wOO - 7“2 ’[”3
12 12
T12212
w10 = r3 (2H11 — Hlokﬁlrlg) , [440]
12
_ kiafoHio | (2 — 2iy)Hn
wll - 7"2 7"3
( 12 12

_ _ _ 2 2 _
and T12 = T1n — Tom, 212 = Z1n — Z2ms T12 = \/Tig + 219, Hip =
(1) 1)
Hy ' (kir12), Hir = Hy ' (k17r12).
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4.4.2.2. Numerical results: coated elliptical cylinder

Figure 4.16 shows the RCS in dBm versus the angle 0,, respectively, and
for both TE and TM polarizations. The parameters are given in Figure 4.15a).
In the figure, the label “PILE+LU+PO” means that the PILE is hybridized with
LU for the calculation of the local interactions on cylinder 1 and with PO for
the calculation of the local interactions on cylinder 2. In addition, the value of
the following residual relative error defined as

normesca (RCSPILE+LU+PO - RCSLU)
normesca (RCSLU)

€PILE — s [4.41]

is given in parentheses.
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Figure 4.15. a) A coated elliptical cylinder: semi-major axes a1 = 6o, a2 = 2o, semi-
minor axes b1 = 3o, ba = Ao; centers C1 = (0,0), C2 = (1,1)No; rotation angles a1 =
0, aa = 30° and incidence angle 0;,. = 30°. b) Elliptical cylinder below a rough surface:
a2 = 5)\0, bz = 2)\0, CQ = (0,—2))\0, Qo = 0, L1 = 120)\0, O, = 0.5)\0, LC = 5)\0,
the surface height autocorrelation function is Gaussian, the parameter of the Thorsos wave
(defined in equation [1.32]) is g = L2/6 and incidence angle 0, = 30°. ¢) Rough layer:
L1 = Lo = 120)\g, 0.1 = 0.5Xg, 022 = 0.1X\o, Lc1 = H5Ao, Lea = 2o, the smface
height autocorrelation function for both surfaces is Gaussian, the parameter of the Thorsos
wave (defined from equation [1.32]) is g = L2 /6 and the incidence angle 0;nc = 30°

As the PILE order increases, the results converge toward those obtained
from a direct LU inversion of the impedance matrix of the two scatterers. In
addition, the results obtained from “PILE+LU+PO” match well with those
obtained without hybridization (PILE) and the differences have a minor
impact on the RCS. This hybridization is therefore very efficient and allows
us to reduce the complexity to O(N5) (LU inversion on scatterer 1) instead of
O((N1 + No)?3) for a direct LU inversion.
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Figure 4.16. RCS in dBm versus Oy.4. a) TE polarization. b) TM polarization.
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The parameters are given in Figure 4.15a)
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4.4.2.3. Numerical results: object below a random rough surface

Figure 4.17 shows the NRCS in dB versus the scattering angle 6y,, and for
both the TE and TM polarizations. The parameters are given in Figure 4.15b).
In the figure, the label “PILE+FB+PO” means that PILE is hybridized with FB
for the calculation of the local interactions on the rough surface and with PO
for the calculation of the local interactions on the cylinder. The order of FB is 6.
As we saw previously, as the PILE order increases, the results converge toward
those obtained from a direct LU inversion of the impedance matrix of the two
scatterers. In addition, the results computed from “PILE+FB+PO” match well
with those obtained without hybridization (“PILE”) and the differences have a
minor impact on the RCS. This hybridization is then very efficient and allows
us to reduce the complexity to O(N?) (FB on scatterer 1) instead of O((N7 +
Ny)3) for a direct LU inversion.

4.4.2.4. Numerical results: random rough layer

Figure 4.18 shows the NRCS in dB versus the scattering angle Ogca,
respectively, for the TE polarization and the TM polarization. The parameters
are given in Figure 4.15c¢). A very good agreement between the different
methods is obtained. The zero order of the PILE method corresponds to the
scattering from scatterer 1 alone.

For a rough layer, the FB can be applied on both surfaces and can also be
accelerated by hybridizing the SA. The resulting complexity is then
O(Ny + Ny + N1 N3), in which O(N7Ns) corresponds to the complexity of
the matrix-vector products. The SA can also be applied to reduce this
complexity to O(Ny) + O(N3) leading to a very efficient method. For more
details, see [DEC 07b]. Similarly, for slightly rough surfaces (where typically
the standard height deviation does not exceed the wavelength), the
BMIA/CAG can be applied to reduce both the complexity of the calculations
of the local interactions and the matrix-vector products [DEC 07a].
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Figure 4.17. NRCS in dB versus the scattering angle ... a) TE polarization.
b) TM polarization. The simulation parameters are given in Figure 4.15b
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Figure 4.18. NRCS in dB versus Oscq. a) TE polarization. b) TM polarization.
The simulation parameters are given in Figure 4.15¢
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4.5. Conclusion

This chapter presents an efficient numerical method to calculate the field
scattered by two scatterers where only one is illuminated. The PILE method
starts from the MoM and the impedance matrix of the two scatterers is then
inverted by blocks from the Taylor series expansion of the inverse of the
Schur complement. Its main use is that it is rigorous, with a simple
formulation and has a straightforward physical interpretation. Actually, this
last property relies on the fact that each block of the impedance matrix is
linked to a particular and quasi-independent physical process occurring
during the multiple scattering process between the two scatterers: local
interactions on each interface, corresponding to the inversion of the
impedance matrix of each scatterer in free space, and both upward and
downward coupling. Furthermore, the PILE method allows us to use any fast
method developed for a single interface. Here, for a scatterer 2 that is
assumed to conduct perfectly, in order to decrease the complexity of PILE,
PO and/or FB have been hybridized with PILE and according to the scenario,
this hybridization gives satisfactory results.
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Appendix

MatLab Codes

This appendix presents the codes developed using the MatLab software for
presenting the numerical results.

A program, whose name begins by “A_", is a main program, which
generates the figures. A program, whose name begins by “F_", is a function,
which can be called from the main program.

At the beginning of each main program, the called functions are mentioned
as comments.

Al.1. Chapter 1

Table A1.1 presents the programs used in Chapter 1.

Name Corresponding figures
A_Surface_Generation.m 1.4,1.5
A_Surface_Generation_Spectra.m|1.6, 1.7

Table A1.1. Relation between figures of Chapter 1 and names of the programs

Al.2. Chapter 2

Table A1.2 presents the programs used in Chapter 2.
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Name Corresponding figures
A_Cylinder_Ana_DI_PC 2.3-2.6
A_Cylinder_Ana_MoM_PC.m 2.7-2.9
A_Cylinder_Ana_MoM_DIL.m 2.10a), 2.10b), 2.11
A_CylinderE_MoM_DI_IBC_PC.m |2.12,2.13

A_Plate_ MoM_PO_PC.m 2.16-2.18
A_CylinderE_MoM_PO_PC.m 2.20,2.21
A_Surface_MoM_PO_DI_IBC_PC.m|2.22, 2.23, 2.25, 2.26, 2.27
A_Surface. MoM_FB_DI IBC_PC.m|(2.28, 2.29

Table A1.2. Relation between figures of Chapter 2 and names of the programs
A1.3. Chapter 3

Table A1.3 presents the programs used in Chapter 3.

Name Corresponding figures
A_2CylindersE_LU.m 3.2-3.5
A_NScatterers_LLU_PC 3.6

A_2Scatterers_ EPILE_FB PC 3.8-3.11
A_2CylindersE_EPILE 3.12,3.13
A_2Scatterers_EPILE_LU_FB_DI 3.14,3.15
A_2Scatterers_ EPILE_LU_FB_PO_PC|3.16-3.23

Table A1.3. Relation between figures of Chapter 3 and names of the programs

Al4. Chapter 4

Table A1.4 presents the programs used in Chapter 4.

Name Corresponding figures
A_CoatedCylinder_LU_Ana 42,43
A_CoatedCylinderE_LU 44,45
A_CoatedCylinderE_PILE.m 4.64.8
A_SurfaceObject_PILE_FB_LU.m 4.9,4.10
A_Layer_PILE_FB_FB_LU.m 4.11-4.13
A_CoatedCylinderE_PILE_PO.m 4.15a), 4.16
A_SurfaceObjectLayer_PILE_PO_PC.m(4.15b), 4.15c), 4.17, 4.18

Table A1.4. Relation between figures of Chapter 4 and names of the programs
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21

R

radar cross-section (RCS), 8—12
rough
layer, 126-128, 135-137
surface, 125, 126

S

sea surface, 66—68

shadowing function,
97,98

spectrum/spectra, 29, 67,
68,71

T, W

thorsos wave, 101, 133
transverse
electric (TE), 2, 3
magnetic (TM) 2, 3
Wonskrian, 48
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